JP2008080190A - Mixed bed ion-exchange resin column - Google Patents

Mixed bed ion-exchange resin column Download PDF

Info

Publication number
JP2008080190A
JP2008080190A JP2006260298A JP2006260298A JP2008080190A JP 2008080190 A JP2008080190 A JP 2008080190A JP 2006260298 A JP2006260298 A JP 2006260298A JP 2006260298 A JP2006260298 A JP 2006260298A JP 2008080190 A JP2008080190 A JP 2008080190A
Authority
JP
Japan
Prior art keywords
exchange resin
particle size
resin
anion
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006260298A
Other languages
Japanese (ja)
Other versions
JP4984788B2 (en
Inventor
Takeshi Tsurumi
武 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006260298A priority Critical patent/JP4984788B2/en
Publication of JP2008080190A publication Critical patent/JP2008080190A/en
Application granted granted Critical
Publication of JP4984788B2 publication Critical patent/JP4984788B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mixed bed ion-exchange resin column comprising a cation-exchange resin and an anion-exchange resin which are uniform in particle size distribution, while the ion-exchange resin column being capable of performing efficient regeneration and separation. <P>SOLUTION: The mixed bed ion-exchange resin column, which comprises a main cation-exchange resin and a main anion-exchange resin which are both uniform in particle size distribution, contains at least either a sub-cation-exchange resin which is smaller in particle size than the main cation-exchange resin and is uniform in particle size or a sub-anion-exchange resin which is larger in particle size than the main anion-exchange resin and is uniform in particle size distribution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、混床式イオン交換樹脂塔に関し、さらに詳しくは、イオン交換樹脂の再生分離時にカチオン交換樹脂とアニオン交換樹脂とを効率よく分離できる混床式イオン交換樹脂塔に関する。   The present invention relates to a mixed bed ion exchange resin tower, and more particularly to a mixed bed ion exchange resin tower capable of efficiently separating a cation exchange resin and an anion exchange resin during regeneration separation of the ion exchange resin.

混床式イオン交換樹脂塔は、例えば、純水装置、発電所の復水脱塩装置、軟水装置、食品製造プロセス、薬品製造プロセスなどにおいて、水中もしくは溶媒中の不純物を除去または分離することを目的として使用される。   Mixed-bed ion exchange resin towers are used to remove or separate impurities in water or solvents in, for example, pure water equipment, condensate desalination equipment at power plants, soft water equipment, food production processes, chemical production processes, etc. Used as a purpose.

たとえば、復水脱塩装置は、カチオン交換樹脂とアニオン交換樹脂を混合状態で単一塔に充填し、この混床式イオン交換樹脂塔に復水を通水することにより、復水中の不純物を除去する装置で、処理水質が良好であることからカチオン樹脂とアニオン樹脂を混合状態で脱塩に使用する。そのイオン交換能力が飽和したときは、酸・アルカリ剤で再生を行い、イオン交換能力を回復させ、繰り返し脱塩に使用する。この再生に当たっては、カチオン樹脂とアニオン樹脂をより完全に分離してそれぞれ再生することが要求されている。   For example, in a condensate demineralization apparatus, a cation exchange resin and an anion exchange resin are mixed in a single column, and the condensed water is passed through the mixed bed ion exchange resin tower, thereby removing impurities in the condensate. In the apparatus to remove, since the quality of treated water is good, a cation resin and an anion resin are used for desalting in a mixed state. When the ion exchange capacity is saturated, regeneration is performed with an acid / alkali agent to restore the ion exchange capacity, and it is repeatedly used for desalting. In this regeneration, it is required to separate the cation resin and the anion resin more completely and regenerate each.

特に発電所の復水脱塩装置においては、両樹脂の分離をより完全にし、カチオン樹脂がアニオン樹脂の再生剤であるNaOH溶液に接触しR−Na形になることと、アニオン樹脂がカチオン樹脂の再生剤であるHClやH2SO4溶液に接触しR−Cl形やR2−SO4形になること(これらを便宜上、「逆再生」という。)を極力減少させることが必要である。このような逆再生された樹脂の発生は再生を不完全とし、処理水量が不足し、処理水質が悪化する原因となるため、できる限り逆再生を防止することが必要である。   Especially in the condensate demineralizer of a power plant, the separation of both resins is made more complete, the cationic resin comes into contact with the NaOH solution that is a regenerant of the anionic resin and becomes R-Na form, and the anionic resin is the cationic resin. It is necessary to reduce as much as possible the R-Cl and R2-SO4 forms (which are referred to as "reverse regeneration" for convenience) that come into contact with the HCl or H2SO4 solution. The generation of such a reversely regenerated resin makes the regeneration incomplete, the amount of treated water becomes insufficient, and the quality of the treated water deteriorates. Therefore, it is necessary to prevent reverse regeneration as much as possible.

再生操作では酸とアルカリを用いてそれぞれカチオン樹脂とアニオン樹脂を再生するため、この再生剤が復水に混入しないように、脱塩塔と再生塔は通常全く別の塔として構成し、樹脂は配管を通じて移送される。再生塔では、塔の下方から上向きに水を流すことによって、カチオン交換樹脂とアニオン交換樹脂の比重差および粒径差に基づき樹脂分離を行う。樹脂層下層部は比重の大きいカチオン交換樹脂が、樹脂層上部は比重の軽いアニオン交換樹脂が存在する。 分離した樹脂に対して、カチオン交換樹脂層に塔下部から酸、アニオン交換樹脂層に塔上部からアルカリを注入し、両樹脂層の境界面に設置されている中間排水管から排出することにより再生する1塔での再生方式がある。この方式は、カチオン樹脂とアニオン樹脂の樹脂量バランスがずれた場合に、両樹脂の境界面近傍に設置する中間排水管の上部を完全にアニオン樹脂、下部を完全にカチオン樹脂とすることは困難であり、かつ、カチオン樹脂とアニオン樹脂の境界面を完全に水平を保ちにくいことなどの理由から、カチオン樹脂層の上部のアニオン樹脂を更に別の再生塔に移送分離してそれぞれの再生塔で再生する方式が一般的である。いずれにしても復水脱塩設備のように、カチオン樹脂とアニオン樹脂を混合して脱塩に使用する装置においては、再生時には確実に両樹脂を層分離することが非常に重要である。   In the regeneration operation, acid resin and alkali resin are used to regenerate the cation resin and anion resin, respectively. Therefore, the desalting tower and the regeneration tower are usually configured as completely separate towers so that this regenerant does not mix with the condensate. It is transferred through piping. In the regeneration tower, the resin is separated based on the specific gravity difference and the particle size difference between the cation exchange resin and the anion exchange resin by flowing water upward from the bottom of the tower. A cation exchange resin having a large specific gravity exists in the lower layer part of the resin layer, and an anion exchange resin having a light specific gravity exists in the upper part of the resin layer. The separated resin is regenerated by injecting acid from the bottom of the tower into the cation exchange resin layer and alkali from the top of the tower into the anion exchange resin layer, and discharging it from the intermediate drain pipe installed at the interface between the two resin layers. There is a regeneration system with one tower. In this method, when the resin amount balance between the cation resin and the anion resin deviates, it is difficult to make the upper part of the intermediate drain pipe installed near the boundary surface between the two resins completely anion resin and the lower part completely cationic resin. And because the interface between the cation resin and the anion resin is difficult to keep completely horizontal, the anion resin at the top of the cation resin layer is transferred to another regeneration tower and separated in each regeneration tower. A reproduction method is common. In any case, in an apparatus that mixes a cation resin and an anion resin and uses it for desalting, such as a condensate desalination facility, it is very important to reliably separate the two layers during regeneration.

上述したようにカチオン交換樹脂とアニオン交換樹脂の分離は、一般的には混合状態のカチオン交換樹脂とアニオン交換樹脂に下方から上方に向けて水を流し、カチオン樹脂とアニオン樹脂の終末速度の差を利用してそれぞれの樹脂のみの層を形成させて分離している。一般的なイオン交換樹脂の粒径は単一ではなく幅を持っており、ガウス頻度曲線のような存在比率である。このため、水逆洗分離を行うと、下層のカチオン樹脂層の中でも最下層には比較的粒径の大きなカチオン樹脂が集まり、カチオン樹脂層の上部には比較的粒径の小さなカチオン樹脂が集まることになる。アニオン樹脂層に関しても同様である。   As described above, the separation of the cation exchange resin and the anion exchange resin is generally performed by flowing water from the bottom to the top of the mixed cation exchange resin and the anion exchange resin, and the difference in the terminal velocity between the cation resin and the anion resin. Are used to separate and form layers of only the respective resins. The particle size of a general ion exchange resin is not single but has a width, which is an abundance ratio like a Gaussian frequency curve. For this reason, when water backwash separation is performed, among the lower cationic resin layers, a cationic resin having a relatively large particle size gathers in the lowermost layer, and a cationic resin having a relatively small particle size gathers on the upper portion of the cationic resin layer. It will be. The same applies to the anion resin layer.

特に粒径の大きなアニオン樹脂と特に粒径の小さなカチオン樹脂はそれぞれカチオン樹脂層とアニオン樹脂層から分離しにくくなるため、復水脱塩処理に用いるイオン交換樹脂ではより完全な分離状態を実現するために、通常はカチオン交換樹脂の平均粒径0.6〜0.75mm(最大径1.18mm、最小径0.5mm)、アニオン交換樹脂の平均粒径0.5〜0.65mm(最大径1.18mm、最小径0.42mm)と粒度分布規定を設けて使用される。   In particular, anion resins with a large particle size and cation resins with a particularly small particle size are difficult to separate from the cation resin layer and the anion resin layer, respectively. Therefore, the average particle diameter of cation exchange resin is usually 0.6 to 0.75 mm (maximum diameter 1.18 mm, minimum diameter 0.5 mm), and the average particle diameter of anion exchange resin 0.5 to 0.65 mm (maximum diameter). 1.18 mm, minimum diameter 0.42 mm) and a particle size distribution rule are used.

従来、このような混床式イオン交換樹脂塔では、樹脂粒径として上述したような幅の広いガウス分布(正規分布)を有するカチオン交換樹脂またはアニオン交換樹脂を用いていたが、近年、分布幅の狭い均一な粒径の樹脂が使用されれるようになってきた。このような均一粒径樹脂が採用される理由はさまざまであり、樹脂再生後の洗浄性が良いこと、製造上高交換容量であること、通水差圧が低いこと、反応性が均一で樹脂の利用率が高いことなどが挙げられる。しかし、均一粒径樹脂を採用した場合、イオン交換樹脂の逆洗による流動状態は従来のガウス型粒径分布を持つ樹脂に比較して必ずしも良好とは言えず、現実の樹脂分離性は却って悪化する傾向が認められた。これは、均一粒径を有するカチオン交換樹脂およびアニオン交換樹脂からなる混床層を、沈降速度差を利用した水逆洗により分離しようとすると、その粒径の均一さのため、従来のガウス分布を有する樹脂(以下、従来樹脂という)と比較して、カチオン、アニオン各々の層が激しく流動してそれぞれの層に相手層の樹脂の引き込みが起こり、引き込まれた樹脂が相手側の樹脂と共に樹脂層を大きく流動するという現象が生じるからと推定される。   Conventionally, in such a mixed bed type ion exchange resin tower, a cation exchange resin or anion exchange resin having a wide Gaussian distribution (normal distribution) as described above has been used as the resin particle diameter. Narrow and uniform particle size resins have been used. There are various reasons why such a uniform particle size resin is adopted, that is, good cleanability after resin regeneration, high exchange capacity in production, low water flow differential pressure, uniform reactivity and resin. The utilization rate is high. However, when a uniform particle size resin is used, the flow state by backwashing of the ion exchange resin is not necessarily good compared to a resin having a conventional Gaussian particle size distribution, and the actual resin separation performance is worsened. The tendency to do was recognized. This is because when a mixed bed layer composed of a cation exchange resin and an anion exchange resin having a uniform particle size is separated by water back-washing using a difference in sedimentation speed, the conventional Gaussian distribution due to the uniformity of the particle size. Compared with a resin having a cation (hereinafter referred to as a conventional resin), the cation and anion layers flow violently, and the resin of the mating layer is drawn into each layer, and the drawn resin is resin together with the mating resin. It is estimated that the phenomenon of large flow in the bed occurs.

このように一度引き込まれた樹脂は、この流動により再分離されにくく、再び樹脂界面から元の層に戻るには長い時間を要する。このため、均一粒径分布を有するカチオン交換樹脂およびアニオン交換樹脂のほかに、水逆洗による展開時に中間層を形成する、前記カチオン交換樹脂の粒径よりも小さな平均粒径で且つ幅の広い粒径分布を有するカチオン交換樹脂、および前記アニオン交換樹脂の粒径よりも大きな平均粒径で且つ幅の広い粒径分布を有するアニオン交換樹脂の少なくとも何れか一方を加えて分離性を高めることが提案された(例えば、特許文献1参照)。   The resin once drawn in this way is not easily separated again by this flow, and it takes a long time to return to the original layer from the resin interface again. Therefore, in addition to the cation exchange resin and the anion exchange resin having a uniform particle size distribution, an intermediate layer is formed at the time of development by backwashing with water, and the average particle size is smaller than the particle size of the cation exchange resin and wide. Separation can be improved by adding at least one of a cation exchange resin having a particle size distribution and an anion exchange resin having an average particle size larger than that of the anion exchange resin and a wide particle size distribution. It has been proposed (see, for example, Patent Document 1).

また、新品のイオン交換樹脂を用いる場合は、特に、使いはじめにカチオン交換樹脂とアニオン交換樹脂の絡みつきが起こりやすく、したがって、上述したような引き込み現象が顕著に発生しやすい。さらに、逆洗水の流量の僅かな変動によっても大きく影響されて、この流動に大きな乱れが生じ、分離層の破壊や樹脂の激しい引き込みが起こる。このため、均一粒径樹脂の扱いには慎重な操作と、従来より長い分離時間とを必要とする。また、カチオン交換樹脂とアニオン交換樹脂との中間比重のイオン交換能を有さない樹脂を添加して分離性を向上させる方法も行われている。しかしながら、中間比重のイオン交換能を有さない樹脂を添加するため、充填層の均一性を乱すことになり、イオン交換能や微粒子除去能といった装置性能を低下させることになり好ましくない。
特開平10−202119(特許請求の範囲)
In addition, when a new ion exchange resin is used, the cation exchange resin and the anion exchange resin tend to be entangled at the beginning of use, and therefore the above-described pulling phenomenon tends to occur remarkably. Furthermore, even a slight fluctuation in the flow rate of the backwash water is greatly affected, and this flow is greatly disturbed, causing the separation layer to be broken and the resin to be drawn deeply. For this reason, a careful operation and a longer separation time than before are required to handle the uniform particle size resin. In addition, a method of improving the separability by adding a resin having an intermediate specific gravity between the cation exchange resin and the anion exchange resin and having no ion exchange ability is also performed. However, since a resin having an intermediate specific gravity and no ion exchange ability is added, the uniformity of the packed bed is disturbed, and the apparatus performance such as ion exchange ability and fine particle removal ability is deteriorated.
JP-A-10-202119 (Claims)

本発明はこのような事情に鑑み、均一粒径分布をもつカチオン交換樹脂及び/又はアニオン交換樹脂からなる混床式イオン交換樹脂塔において、分離性をさらに改善したイオン交換樹脂塔を提供することを課題とする。   In view of such circumstances, the present invention provides an ion exchange resin tower having further improved separability in a mixed bed type ion exchange resin tower comprising a cation exchange resin and / or an anion exchange resin having a uniform particle size distribution. Is an issue.

前記課題を解決する本発明の第1の態様は、均一粒径分布を有する主カチオン交換樹脂および均一粒径分布を有する主アニオン交換樹脂からなる混床式イオン交換樹脂塔であって、前記主カチオン交換樹脂の粒径よりも小さな粒径で且つ均一粒径を有する副カチオン交換樹脂、および前記主アニオン交換樹脂の粒径よりも大きな粒径で且つ均一粒径分布を有する副アニオン交換樹脂の少なくとも何れか一方を含むことを特徴とする混床式イオン交換樹脂塔にある。   A first aspect of the present invention for solving the above problems is a mixed bed ion exchange resin tower comprising a main cation exchange resin having a uniform particle size distribution and a main anion exchange resin having a uniform particle size distribution. A secondary cation exchange resin having a particle size smaller than that of the cation exchange resin and a uniform particle size, and a secondary anion exchange resin having a particle size larger than that of the main anion exchange resin and a uniform particle size distribution. It is in a mixed bed type ion exchange resin tower characterized by including at least one of them.

本発明の第2の態様は、第1の態様において、副カチオン交換樹脂の粒径が、主カチオン交換樹脂の粒径の0.88〜0.92倍であることを特徴とする混床式イオン交換樹脂塔にある。   According to a second aspect of the present invention, in the first aspect, the mixed cation type is characterized in that the particle size of the secondary cation exchange resin is 0.88 to 0.92 times the particle size of the main cation exchange resin. Located in the ion exchange resin tower.

本発明の第3の態様は、第1または2の態様において副アニオン交換樹脂の粒径が、主アニオン交換樹脂の粒径の1.08〜1.12倍であることを特徴とする混床式イオン交換樹脂塔にある。   According to a third aspect of the present invention, in the first or second aspect, the mixed anion exchange resin has a particle size of 1.08 to 1.12 times the particle size of the main anion exchange resin. It is in the type ion exchange resin tower.

本発明の第4の態様は、第1〜3のいずれかの態様において、副カチオン交換樹脂の樹脂量が、主副全カチオン交換樹脂量の5〜25%であることを特徴とする混床式イオン交換樹脂塔にある。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the mixed cation is characterized in that the resin amount of the secondary cation exchange resin is 5 to 25% of the main secondary total cation exchange resin amount. It is in the type ion exchange resin tower.

本発明の第5の態様は、第1〜4のいずれかの態様において、副アニオン交換樹脂の樹脂量が、主副全アニオン交換樹脂量の5〜35%であることを特徴とする混床式イオン交換樹脂塔にある。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the mixed anion exchange resin amount is 5 to 35% of the main auxiliary total anion exchange resin amount. It is in the type ion exchange resin tower.

本発明によれば、均一粒径分布を有する主カチオン交換樹脂および均一粒径分布を有する主アニオン交換樹脂からなる混床式イオン交換樹脂塔に、水逆洗による展開時に中間層を形成する、前記カチオン交換樹脂の粒径よりも小さな平均粒径で且つ幅の広い粒径分布を有するカチオン交換樹脂、および前記アニオン交換樹脂の粒径よりも大きな平均粒径で且つ幅の広い粒径分布を有するアニオン交換樹脂の少なくとも何れか一方を加える代わりに、前記主カチオン交換樹脂の粒径よりも小さな粒径で且つ均一粒径を有する副カチオン交換樹脂、および前記主アニオン交換樹脂の粒径よりも大きな粒径で且つ均一粒径分布を有する副アニオン交換樹脂の少なくとも何れか一方を加えて混床を形成したので、水逆洗による展開時に形成するカチオン交換樹脂層とアニオン交換樹層とにそれぞれ混入するアニオン交換樹樹脂とカチオン交換樹脂の割合を低減することができる。   According to the present invention, an intermediate layer is formed in a mixed bed type ion exchange resin tower composed of a main cation exchange resin having a uniform particle size distribution and a main anion exchange resin having a uniform particle size distribution when deployed by backwashing with water, A cation exchange resin having an average particle size smaller than the particle size of the cation exchange resin and a wide particle size distribution, and an average particle size larger than the particle size of the anion exchange resin and a wide particle size distribution Instead of adding at least one of the anion exchange resins having, a secondary cation exchange resin having a uniform particle size smaller than the particle size of the main cation exchange resin, and more than the particle size of the main anion exchange resin Since a mixed bed is formed by adding at least one of the secondary anion exchange resins having a large particle size and a uniform particle size distribution, It is possible to reduce the ratio of anion exchange resin the resin and the cation exchange resin to be mixed respectively to the exchange resin layer and the anion exchange resin layer.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、均一粒径分布とは、分布の中心粒径±0.05mmと分布の巾が0.1mm以内であることをいう。純水装置や復水脱塩装置に用いられる均一粒径分布を有する主カチオン交換樹脂の粒径分布の中心粒径は、0.60〜0.70mmであり、たとえば均一粒径分布を有する主カチオン交換樹脂は0.65mm±0.05mmというように表示できる。また、均一粒径分布を有する主アニオン交換樹脂は、粒径分布の中心粒径は、0.50〜0.60mmであり、たとえば樹脂粒径が0.55mm±0.05mmというように表示できる。   In the present invention, the uniform particle size distribution means that the center particle size of the distribution is ± 0.05 mm and the width of the distribution is within 0.1 mm. The central particle size of the particle size distribution of the main cation exchange resin having a uniform particle size distribution used in a pure water device or a condensate desalination device is 0.60 to 0.70 mm. The cation exchange resin can be displayed as 0.65 mm ± 0.05 mm. Further, the main anion exchange resin having a uniform particle size distribution has a center particle size of 0.50 to 0.60 mm, for example, the resin particle size can be expressed as 0.55 mm ± 0.05 mm. .

前記主カチオン交換樹脂の粒径よりも小さな粒径で且つ均一粒径を有する副カチオン交換樹脂は、粒径分布の中心粒径は、0.55〜0.63mmであり、たとえば均一粒径分布を有する主カチオン交換樹脂は0.60mm±0.05mmというように表示できる。副カチオン交換樹脂は、その粒径分布の中心粒径が、主カチオン交換樹脂の粒径分布の中心粒径の0.88〜0.92倍のものを用いることが好ましい。また前記主アニオン交換樹脂の粒径よりも小さな粒径で且つ均一粒径を有する副カチオン交換樹脂は、粒径分布の中心粒径は、0.55〜0.70mmであり、たとえば均一粒径分布を有する主カチオン交換樹脂は0.65mm±0.05mmというように表示できる。副アニオン交換樹脂は、その粒径分布の中心粒径が、主アニオン交換樹脂の粒径分布の中心粒径の1.08〜1.12倍のものを用いることが好ましい。これらの粒径を選択することにより、水逆洗による展開層分離の際、同一樹脂に関して、それぞれの流動展開層、帯域、または 層域が構成され、カチオン交換樹脂層とアニオン交換樹脂層との分離界面部分の分離性が良くなる。   The secondary cation exchange resin having a particle size smaller than that of the main cation exchange resin and having a uniform particle size has a center particle size of 0.55 to 0.63 mm, for example, a uniform particle size distribution. The main cation exchange resin having can be expressed as 0.60 mm ± 0.05 mm. It is preferable to use a secondary cation exchange resin having a central particle size of 0.88 to 0.92 times the central particle size of the particle size distribution of the main cation exchange resin. Further, the secondary cation exchange resin having a particle size smaller than that of the main anion exchange resin and having a uniform particle size has a center particle size of 0.55 to 0.70 mm, for example, a uniform particle size. The main cation exchange resin having a distribution can be expressed as 0.65 mm ± 0.05 mm. It is preferable to use a secondary anion exchange resin having a central particle size of 1.08 to 1.12 times the central particle size of the particle size distribution of the main anion exchange resin. By selecting these particle diameters, when developing layers are separated by backwashing with water, each fluid developing layer, zone, or layer zone is configured for the same resin, and the cation exchange resin layer and the anion exchange resin layer are separated from each other. Separation at the separation interface is improved.

本発明において、均一粒径樹脂の混合床に、副カチオン交換樹脂また副アニオン交換樹脂を添加する割合は、副カチオン交換樹脂の場合、主副全カチオン交換樹脂の5〜25%(容量)とするのが好ましく、副アニオン交換樹脂の場合は、主副全アニオン交換樹脂の5〜35%(容量)とするのが好ましい。このような樹脂添加量とすると水逆洗による展開層分離の際、それぞれの流動層は接触が少ない。これらの範囲をはずれると、均一粒径樹脂を使用する効果が低減し好ましくない。   In the present invention, the ratio of adding the secondary cation exchange resin or secondary anion exchange resin to the mixed bed of uniform particle size resin is 5 to 25% (volume) of the primary secondary secondary cation exchange resin in the case of the secondary cation exchange resin. In the case of a secondary anion exchange resin, it is preferably 5 to 35% (capacity) of the main and secondary total anion exchange resin. With such a resin addition amount, each fluidized bed has little contact during separation of the development layer by backwashing with water. Outside these ranges, the effect of using a uniform particle size resin is reduced, which is not preferable.

一般にの純水装置や復水脱塩装置では、カチオン樹脂量とアニオン樹脂量は容積比率で2:1〜1:2程度で使用される。したがって、均一粒径樹脂を混合して混床を形成する場合にも同様とする。   In a general pure water device or a condensate demineralizer, the amount of the cation resin and the amount of the anion resin are used in a volume ratio of about 2: 1 to 1: 2. Therefore, the same applies to the case where a mixed bed is formed by mixing uniform particle size resins.

この混床イオン交換樹脂層を水逆洗すると、全ての樹脂が展開し各樹脂層で均一に流動して上から下の方向に主アニオン交換樹脂層、副アニオン交換樹脂層、副カチオン交換樹脂層および主カチオン交換樹脂層を形成する。副アニオン交換樹脂層、副カチオン交換樹脂層の層内流動速度は主アニオン交換樹脂層、主カチオン交換樹脂層が接触する場合に比較して流動速度の差が小さく、分離性能が向上する。これに比べ、副アニオン交換樹脂層および/またはアニオン交換樹脂層に従来のガウス分布を有する樹脂を用いると、隣り合う各樹脂の流動層の流動速度の差が大きく流れの乱れ(乱流)が発生し、分離性能は劣る。   When this mixed bed ion exchange resin layer is back-washed with water, all the resins develop and flow uniformly in each resin layer, and the main anion exchange resin layer, the secondary anion exchange resin layer, and the secondary cation exchange resin in the top-down direction. Forming a layer and a main cation exchange resin layer. The in-layer flow rates of the secondary anion exchange resin layer and the secondary cation exchange resin layer have a smaller difference in flow rate than when the main anion exchange resin layer and the main cation exchange resin layer are in contact with each other, and the separation performance is improved. In contrast, when a resin having a conventional Gaussian distribution is used for the secondary anion exchange resin layer and / or the anion exchange resin layer, the difference in flow velocity between the fluidized beds of adjacent resins is large, and the flow turbulence (turbulent flow) is reduced. Occurs and the separation performance is poor.

以下、本発明を実施例に基づいて説明する。
(実施例1〜8、比較例1〜5)
内径40mm、高さ2000mmのカラムに、下記の各樹脂をそれぞれ混合充填したイオン交換樹脂層を形成した。なお、カチオン交換樹脂はアンモニア形、アニオン交換樹脂はOH形を用いた。
実施例1
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 685mL
均一粒径650μm±50μm
副カチオン交換樹脂:カチオン樹脂 ダイヤイオンSK112篩分(注) 15mL
均一粒径600μm
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 300mL
副アニオン交換樹脂:不使用
(注)JIS呼び寸法600の篩で篩い分けし、篩の目に詰まった樹脂を用いた。
実施例2
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 665mL
均一粒径650μm±50μm
副カチオン交換樹脂:カチオン樹脂 ダイヤイオンSK112篩分 35mL
均一粒径600μm
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 300mL
副アニオン交換樹脂:不使用
実施例3
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 525mL
均一粒径650μm±50μm
副カチオン交換樹脂:カチオン樹脂 ダイヤイオンSK112篩分 175mL
均一粒径600μm
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 300mL
副アニオン交換樹脂:不使用
実施例4
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 700mL
均一粒径650μm±50μm
副カチオン交換樹脂:不使用
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 288mL
副アニオン交換樹脂:アニオン樹脂 ダイヤイオンSA10A篩分(注) 12mL
均一粒径600μm
(注)JIS呼び寸法600の篩で篩い分けし、篩の目に詰まった樹脂を用いた。
実施例5
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 700mL
均一粒径650μm±50μm
副カチオン交換樹脂:不使用
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 270mL
副アニオン交換樹脂:アニオン樹脂 ダイヤイオンSA10A篩分 30mL
均一粒径600μm
実施例6
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 700mL
均一粒径650μm±50μm
副カチオン交換樹脂:不使用
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 195mL
副アニオン交換樹脂:アニオン樹脂 ダイヤイオンSA10A篩分 105mL
均一粒径600μm
実施例7
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 665mL
均一粒径650μm±50μm
副カチオン交換樹脂:カチオン樹脂 ダイヤイオンSK112篩分 35mL
均一粒径600μm
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 285mL
副アニオン交換樹脂:アニオン樹脂 ダイヤイオンSA10A篩分 15mL
均一粒径600μm
実施例8
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 665mL
均一粒径650μm±50μm
副カチオン交換樹脂:カチオン樹脂 ダイヤイオンSK112篩分 35mL
均一粒径600μm
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 255mL
副アニオン交換樹脂:ゲル型アニオン樹脂 ダイヤイオンSA10A篩分 45mL
比較例1
主カチオン交換樹脂:ポーラス型カチオン交換樹脂 PK228G 700mL
粒径500〜1180μm
副カチオン交換樹脂:不使用
主アニオン交換樹脂:ポーラス型アニオン交換樹脂 PA312L 300mL
粒径420〜1180μm
副アニオン交換樹脂:不使用
比較例2
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 700mL
均一粒径650μm±50μm
副カチオン交換樹脂:不使用
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 300mL
均一粒径550μm±50μm
副アニオン交換樹脂:不使用
比較例3
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 665mL
均一粒径650μm±50μm
副カチオン交換樹脂:カチオン樹脂 ダイヤイオン SK112 35mL
粒径300〜1180μm
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 300mL
均一粒径550μm±50μm
副アニオン交換樹脂:不使用
比較例4
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 700mL
均一粒径650μm±50μm
副カチオン交換樹脂:不使用
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 285mL
均一粒径550μm±50μm
副アニオン交換樹脂:ゲル型アニオン交換樹脂 ダイヤイオン SA10A 15mL
粒径300〜1180μm
比較例5
主カチオン交換樹脂:ゲル型カチオン交換樹脂 Dowex 650C 665mL
均一粒径650μm±50μm
副カチオン交換樹脂:カチオン樹脂 ダイヤイオン SK112 35mL
粒径300〜1180μm
主アニオン交換樹脂:ゲル型アニオン交換樹脂 Dowex 550A 285mL
均一粒径550μm±50μm
副アニオン交換樹脂:ゲル型アニオン交換樹脂 ダイヤイオン SA10A 15mL
粒径300〜1180μm
[実験方法]
上述した実施例1〜8および比較例1〜5のイオン交換樹脂を混合充填した各カラムに底部から純水を通水し、LV10m/hの上向流で30分逆洗し、引き続きLV15m/hで45分逆洗した。流動展開状態の樹脂層の上部からサイホン管によりアニオン交換樹脂の約90%を採取し、また、流動展開状態の樹脂層の最下部からサイホン管によりカチオン交換樹脂の約90%を採取した。次に、それぞれ採取した樹脂を20%濃度の水酸化ナトリウム水溶液によりカチオン交換樹脂とアニオン交換樹脂とに分離し、それぞれの容積をメスシリンダーで測定した。混入樹脂の容積は少量であったので、0.5mL未満の樹脂量については、粒径を計測し、顕微鏡観察により粒径から球の容積を計算して求めた。
Hereinafter, the present invention will be described based on examples.
(Examples 1-8, Comparative Examples 1-5)
An ion exchange resin layer was formed by mixing and filling the following resins in a column having an inner diameter of 40 mm and a height of 2000 mm. The cation exchange resin was ammonia type, and the anion exchange resin was OH type.
Example 1
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 685 mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Cation resin Diaion SK112 sieve (Note) 15mL
Uniform particle size 600μm
Main anion exchange resin: Gel type anion exchange resin Dowex 550A 300mL
Secondary anion exchange resin: Not used (Note) A resin clogged with a sieve having a JIS nominal size of 600 and clogged with a sieve was used.
Example 2
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 665 mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Cation resin Diaion SK112 sieve 35mL
Uniform particle size 600μm
Main anion exchange resin: Gel type anion exchange resin Dowex 550A 300mL
Secondary anion exchange resin: Non-use Example 3
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 525 mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: cation resin Diaion SK112 sieve 175mL
Uniform particle size 600μm
Main anion exchange resin: Gel type anion exchange resin Dowex 550A 300mL
Secondary anion exchange resin: Non-use Example 4
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 700mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Not used Main anion exchange resin: Gel anion exchange resin Dowex 550A 288 mL
Secondary anion exchange resin: Anion resin Diaion SA10A sieve (Note) 12mL
Uniform particle size 600μm
(Note) A JIS nominal size 600 sieve was used, and a resin clogged with a sieve was used.
Example 5
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 700mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Not used Main anion exchange resin: Gel anion exchange resin Dowex 550A 270 mL
Secondary anion exchange resin: Anion resin Diaion SA10A sieving 30mL
Uniform particle size 600μm
Example 6
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 700mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Not used Main anion exchange resin: Gel type anion exchange resin Dowex 550A 195 mL
Secondary anion exchange resin: Anion resin Diaion SA10A sieving 105mL
Uniform particle size 600μm
Example 7
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 665 mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Cation resin Diaion SK112 sieve 35mL
Uniform particle size 600μm
Main anion exchange resin: Gel type anion exchange resin Dowex 550A 285 mL
Secondary anion exchange resin: Anion resin Diaion SA10A sieve 15 mL
Uniform particle size 600μm
Example 8
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 665 mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Cation resin Diaion SK112 sieve 35mL
Uniform particle size 600μm
Main anion exchange resin: Gel type anion exchange resin Dowex 550A 255 mL
Secondary anion exchange resin: Gel type anion resin Diaion SA10A sieving 45 mL
Comparative Example 1
Main cation exchange resin: Porous cation exchange resin PK228G 700mL
Particle size 500-1180μm
Secondary cation exchange resin: Not used Main anion exchange resin: Porous anion exchange resin PA312L 300mL
Particle size 420-1180μm
Secondary anion exchange resin: non-use comparative example 2
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 700mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Not used Main anion exchange resin: Gel type anion exchange resin Dowex 550A 300 mL
Uniform particle size 550μm ± 50μm
Secondary anion exchange resin: non-use comparative example 3
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 665 mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Cationic resin Diaion SK112 35mL
Particle size 300-1180μm
Main anion exchange resin: Gel type anion exchange resin Dowex 550A 300mL
Uniform particle size 550μm ± 50μm
Secondary anion exchange resin: non-use comparative example 4
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 700mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Not used Main anion exchange resin: Gel anion exchange resin Dowex 550A 285 mL
Uniform particle size 550μm ± 50μm
Secondary anion exchange resin: Gel type anion exchange resin Diaion SA10A 15 mL
Particle size 300-1180μm
Comparative Example 5
Main cation exchange resin: Gel type cation exchange resin Dowex 650C 665 mL
Uniform particle size 650μm ± 50μm
Secondary cation exchange resin: Cationic resin Diaion SK112 35mL
Particle size 300-1180μm
Main anion exchange resin: Gel type anion exchange resin Dowex 550A 285 mL
Uniform particle size 550μm ± 50μm
Secondary anion exchange resin: Gel type anion exchange resin Diaion SA10A 15 mL
Particle size 300-1180μm
[experimental method]
Pure water was passed from the bottom to each column mixed and packed with the ion exchange resins of Examples 1 to 8 and Comparative Examples 1 to 5 described above, back-washed with an upward flow of LV 10 m / h for 30 minutes, and subsequently LV 15 m / h Back washed with h for 45 minutes. About 90% of the anion exchange resin was collected from the upper part of the resin layer in the flow developed state by a siphon tube, and about 90% of the cation exchange resin was collected from the lowermost part of the resin layer in the flow developed state by the siphon tube. Next, each collected resin was separated into a cation exchange resin and an anion exchange resin with a 20% strength aqueous sodium hydroxide solution, and each volume was measured with a graduated cylinder. Since the volume of the mixed resin was small, the amount of resin less than 0.5 mL was determined by measuring the particle size and calculating the volume of the sphere from the particle size by microscopic observation.

この結果を表1に示す。   The results are shown in Table 1.

Figure 2008080190
表1より、比較例1に示す従来樹脂(ポーラス型ガウス分布カチオン樹脂とアニオン樹脂の組み合わせ)では、アニオン樹脂逆再生:0.08%、カチオン樹脂逆再生:0.02%の樹脂分離が実現できている。これに対し、比較例2に示す、均一粒径樹脂の組み合わせでは各々0.86%、0.43%の逆再生樹脂が発生し、比較例1よりも樹脂再生状態が悪化してしまう。
Figure 2008080190
From Table 1, the conventional resin shown in Comparative Example 1 (combination of porous Gaussian distribution cation resin and anion resin) achieves resin separation of 0.08% anion resin reverse regeneration and 0.02% cation resin reverse regeneration. is made of. On the other hand, in the combination of the uniform particle size resins shown in Comparative Example 2, 0.86% and 0.43% reversely regenerated resins are generated, respectively, and the resin regeneration state is worse than that in Comparative Example 1.

これに対し、副カチオン樹脂として粒径のより小さな均一粒径樹脂を2.1%、5.0%、25%量混入させた場合の逆再生量は、それぞれアニオン樹脂逆再生は0.12%、0.06%、0.09%、カチオン樹脂逆再生は0.016%、0.017%、0.023%と、比較例1と同等程度の分離状態が得られた。
副カチオン樹脂の混入量を2.1%と少なくした実施例1場合は、分離改善効果がやや不十分と判断される。
On the other hand, the reverse regeneration amount in the case where 2.1%, 5.0%, and 25% of a uniform particle size resin having a smaller particle size as a secondary cation resin is mixed is 0.12 for the anionic resin reverse regeneration. %, 0.06%, 0.09%, and the reverse regeneration of the cationic resin were 0.016%, 0.017%, 0.023%, and a separation state comparable to that of Comparative Example 1 was obtained.
In the case of Example 1 in which the mixing amount of the secondary cation resin is reduced to 2.1%, it is judged that the separation improvement effect is slightly insufficient.

副カチオン樹脂の混入量を25%と多くした実施例3場合は、分離改善効果は十分であるが、均一粒径樹脂の特徴が失われ易いと判断される。しかし、これらの分離状態は比較例3と比べてより良い分離状態を実現できているといえる。   In Example 3 in which the amount of the secondary cation resin was increased to 25%, the separation improvement effect was sufficient, but it was determined that the characteristics of the uniform particle size resin were easily lost. However, it can be said that these separated states can realize a better separated state as compared with Comparative Example 3.

同様に、副アニオン樹脂として粒径のより大きな均一粒径樹脂を4%、10%、35%量混入させた場合の逆再生量は、それぞれアニオン樹脂逆再生は0.13%、0.11%、0.10%、カチオン樹脂逆再生は0.049%、0.024%、0.031%と、比較例1と同等程度の分離状態が得られた。   Similarly, when the 4%, 10%, and 35% of a uniform particle size resin having a larger particle size is mixed as a secondary anion resin, the reverse regeneration amounts are 0.13% and 0.11 for anion resin reverse regeneration, respectively. %, 0.10%, and cationic resin reverse regeneration were 0.049%, 0.024%, and 0.031%, respectively, and a separation state equivalent to that of Comparative Example 1 was obtained.

副アニオン樹脂混入量が4%の場合は、カチオン樹脂逆再生が0.0049%と分離効果の改善程度が小さく、副アニオン樹脂混入量は5%以上が好適であると判断できる。
When the amount of secondary anion resin is 4%, the reverse regeneration of the cationic resin is 0.0049%, and the improvement degree of the separation effect is small, and it can be determined that the amount of secondary anion resin is preferably 5% or more.

Claims (5)

均一粒径分布を有する主カチオン交換樹脂および均一粒径分布を有する主アニオン交換樹脂からなる混床式イオン交換樹脂塔であって、前記主カチオン交換樹脂の粒径よりも小さな粒径で且つ均一粒径を有する副カチオン交換樹脂、および前記主アニオン交換樹脂の粒径よりも大きな粒径で且つ均一粒径分布を有する副アニオン交換樹脂の少なくとも何れか一方を含むことを特徴とする混床式イオン交換樹脂塔。   A mixed bed ion exchange resin tower comprising a main cation exchange resin having a uniform particle size distribution and a main anion exchange resin having a uniform particle size distribution, wherein the particle size is smaller than the main cation exchange resin and uniform. A mixed bed type comprising: a secondary cation exchange resin having a particle size; and at least one of a secondary anion exchange resin having a uniform particle size distribution and a particle size larger than that of the main anion exchange resin Ion exchange resin tower. 副カチオン交換樹脂の粒径が、主カチオン交換樹脂の粒径の0.88〜0.92倍である請求項1記載の混床式イオン交換樹脂塔。   The mixed bed ion exchange resin tower according to claim 1, wherein the particle size of the secondary cation exchange resin is 0.88 to 0.92 times the particle size of the main cation exchange resin. 副アニオン交換樹脂の粒径が、主アニオン交換樹脂の粒径の1.08〜1.12倍である請求項1または2記載の混床式イオン交換樹脂塔。   The mixed bed ion exchange resin tower according to claim 1 or 2, wherein the particle size of the secondary anion exchange resin is 1.08 to 1.12 times the particle size of the main anion exchange resin. 副カチオン交換樹脂の樹脂量が、主副全カチオン交換樹脂量の5〜25%である請求項1〜3のいずれかに記載の混床式イオン交換樹脂塔。   The mixed bed type ion exchange resin tower according to any one of claims 1 to 3, wherein the amount of the secondary cation exchange resin is 5 to 25% of the amount of the main and secondary total cation exchange resin. 副アニオン交換樹脂の樹脂量が、主副全アニオン交換樹脂量の5〜35%である請求項1〜4のいずれかに記載の混床式イオン交換樹脂塔。

The mixed-bed type ion exchange resin tower according to any one of claims 1 to 4, wherein the amount of the secondary anion exchange resin is 5 to 35% of the amount of the main secondary total anion exchange resin.

JP2006260298A 2006-09-26 2006-09-26 Mixed bed type ion exchange resin tower Expired - Fee Related JP4984788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260298A JP4984788B2 (en) 2006-09-26 2006-09-26 Mixed bed type ion exchange resin tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260298A JP4984788B2 (en) 2006-09-26 2006-09-26 Mixed bed type ion exchange resin tower

Publications (2)

Publication Number Publication Date
JP2008080190A true JP2008080190A (en) 2008-04-10
JP4984788B2 JP4984788B2 (en) 2012-07-25

Family

ID=39351588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260298A Expired - Fee Related JP4984788B2 (en) 2006-09-26 2006-09-26 Mixed bed type ion exchange resin tower

Country Status (1)

Country Link
JP (1) JP4984788B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073686A (en) * 2006-08-23 2008-04-03 Everpure Llc Filtering system and measure which are characterized by reducing color throw
JP2009281874A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2013017935A (en) * 2011-07-08 2013-01-31 Mitsubishi Chemicals Corp Mixed ion exchange resin, desalination method, and desalting device
JP2020147554A (en) * 2019-03-15 2020-09-17 竹本油脂株式会社 Method for treating solution of alkali metal salt or ammonium salt of organic sulfonic acid, and method for producing organic sulfonic acid solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202119A (en) * 1997-01-28 1998-08-04 Kurita Water Ind Ltd Mixed-bed type ion-exchange resin tower
JPH10258289A (en) * 1997-03-19 1998-09-29 Asahi Glass Co Ltd Apparatus for producing deionized water
JP2000046992A (en) * 1998-07-27 2000-02-18 Ebara Corp Condensate demineralization device
JP2006159013A (en) * 2004-12-03 2006-06-22 Ebara Corp Method and apparatus for regeneration by chemical-passing of ion exchange resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202119A (en) * 1997-01-28 1998-08-04 Kurita Water Ind Ltd Mixed-bed type ion-exchange resin tower
JPH10258289A (en) * 1997-03-19 1998-09-29 Asahi Glass Co Ltd Apparatus for producing deionized water
JP2000046992A (en) * 1998-07-27 2000-02-18 Ebara Corp Condensate demineralization device
JP2006159013A (en) * 2004-12-03 2006-06-22 Ebara Corp Method and apparatus for regeneration by chemical-passing of ion exchange resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073686A (en) * 2006-08-23 2008-04-03 Everpure Llc Filtering system and measure which are characterized by reducing color throw
JP2009281874A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2013017935A (en) * 2011-07-08 2013-01-31 Mitsubishi Chemicals Corp Mixed ion exchange resin, desalination method, and desalting device
JP2020147554A (en) * 2019-03-15 2020-09-17 竹本油脂株式会社 Method for treating solution of alkali metal salt or ammonium salt of organic sulfonic acid, and method for producing organic sulfonic acid solution

Also Published As

Publication number Publication date
JP4984788B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
KR101918771B1 (en) Ion-exchange device
JP4984788B2 (en) Mixed bed type ion exchange resin tower
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
WO2011040278A1 (en) Ion-exchange device, column therefor, and water treatment device
JP4931178B2 (en) Condensate desalination method and apparatus
JP2011072927A (en) Ion-exchange device, and column therefor
JP5849419B2 (en) Pure water production equipment
US4564455A (en) Three component resin system and method for purifying aqueous solutions
JP3992299B2 (en) Ultrapure water production equipment
JP5729062B2 (en) Water treatment method and water treatment system
JP4087052B2 (en) Regeneration method of ion exchange resin
Meyers Behavior of silica in ion exchange and other systems
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JP5609181B2 (en) Ion exchanger
JP5648231B2 (en) Purification method of alkaline aqueous solution
JP2002361247A (en) Method for manufacturing pure water
JP4502084B2 (en) Mixed bed type ion exchange resin tower and method for forming the mixed bed
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP6337933B2 (en) Water quality management system and operation method of water quality management system
JP7184152B1 (en) Separation column for mixed ion exchange resin and method for separating mixed ion exchange resin using the same
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP5311227B2 (en) Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
WO2023062925A1 (en) Acid solution purification method
JP2742975B2 (en) Regeneration method of ion exchange device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees