JP2008072135A - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
JP2008072135A
JP2008072135A JP2007274260A JP2007274260A JP2008072135A JP 2008072135 A JP2008072135 A JP 2008072135A JP 2007274260 A JP2007274260 A JP 2007274260A JP 2007274260 A JP2007274260 A JP 2007274260A JP 2008072135 A JP2008072135 A JP 2008072135A
Authority
JP
Japan
Prior art keywords
chip
integrated circuit
product
processor
sram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007274260A
Other languages
English (en)
Inventor
Tomoyoshi Momohara
朋美 桃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007274260A priority Critical patent/JP2008072135A/ja
Publication of JP2008072135A publication Critical patent/JP2008072135A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • H01L2924/15156Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】製造コストを下げることが可能な、1以上の集積回路チップによって構成される半導体集積回路装置を提供すること。
【解決手段】プロセッサチップ1と、このプロセッサチップ1に設けられた、外部端子に接続される外部パッド2と、このプロセッサチップ1に設けられた、このプロセッサチップ1の機能を拡張するためのSRAMチップに接続される機能拡張用パッド3とを具備することを特徴としている。
【選択図】 図1

Description

この発明は、1以上の集積回路チップによって構成される半導体集積回路装置に関する。
現在、コンピュータ等に代表される電子機器のシステムは、プロセッサ、メモリ等の様々なLSIをマザーボードと呼ばれる回路基板上で互いに結合することにより得られている。
このような電子機器において、近年、多機能化、高速動作化、小型化、低価格化等の進展が急速である。この進展は、LSIの小型化、および高性能化等によるところが大きい。
さらに電子機器の多機能化、高速動作化、小型化、低価格化の進展を加速させるために、マザーボード上で構成されているシステムを1チップに集積してしまおうとする動きがある。システムLSIとよばれる技術である。
システムLSIの課題は、超高速動作のマイクロプロセッサ、超大規模容量のメモリ、超高感度のアナログ回路等を、如何に大規模に、如何に低コストで1チップに集積するかである。この課題を解決するために、LSIメーカにおいては、その研究、開発が進められている。現状では、プロセッサ、メモリ、アナログ回路等を小規模に集積するものについては、充分に実用に耐え得るレベルに達している。しかしながら、大規模なシステムを集積するものについては、依然として実用段階には至っていない。しかも、その研究、開発に、多額の費用がかかっているのも事実である。
そこで、LSIメーカは、システムLSIの開発と並行して、複数のLSIチップを1つのパッケージに収容するマルチチップパッケージ(MCP)製品や、複数のLSIチップをシステム構成用の回路基板にセットしたマルチチップモジュール(MCM)製品の開発を進めている。
これらMCPやMCMについては、例えばプロセッサ等で既に実用化されており、電子機器の多機能化、高速動作化、小型化、低価格化に充分に貢献している。MCPの典型例を図18(A)に示す。
図18(A)に示すように、プロセッサチップ101およびキャッシュメモリとしてのSRAMチップ102がそれぞれベアの状態で、1つのセラミックパッケージ103に収容されている。
このようなMCPやMCMの課題は、良品チップのなかでも、特に優れたチップ(Known Good Die:KGD)を選んでアセンブリしなければならないことである。MCPやMCMでは、優れたチップを選んでアセンブリしないと、歩留りが急速に悪化するのである。この結果、製造コストは比較的高くなり、製品価格を高めに設定せざるを得ない。製品価格が高いと市場への普及が遅れ、技術の進歩に対する貢献度が低くなる。
そこで、図18(B)に示すように、キャッシュメモリとしてのSRAMチップ102を取り付けず、プロセッサチップ101のみを収容した製品を同時に製品化する。このような製品はMCPではないので、良品チップのなからKGDを選んでアセンブリする必要はなく、既存の製品通り、良品チップをアセンブリすれば良い。これにより、製造コストは格段に下がる。
よって、図18(A)に示す製品と同等の性能を持つ製品を、より廉価に市場に提供できる(普及製品)。このような製品に対し、図18(A)に示す製品は、その機能を拡張させた機能拡張製品となる。
しかしながら、図18(A)、(B)に示す製品では、パッケージ103にキャッシュメモリを増設するための増設スロット104を設けておかなければならず、小型化の要求を充分に満たしているとは言い難い。また、パッケージ103が大きくなるので、当然パッケージ103の価格も高くなる。特にセラミックパッケージのような高級なパッケージでは、かなりの製造コストアップになる。
普及製品用のパッケージと、機能拡張製品用のパッケージとを別々に用意する手段もあるが、パッケージメーカに対して相応の負担をかけることになり、顕著な製造コストダウンは望めない。
また、LSIメーカにとっても、パッケージの種類が増えるだけで、生産性は悪化し、製造コストを下げられるような利点はさほどない。
以上のように、従来のMCP製品やMCM製品は製造コストが比較的高くなる傾向がある。
この発明は上記の事情に鑑み為されたもので、その目的は、製造コストを下げることが可能な、1以上の集積回路チップによって構成される半導体集積回路装置を提供することにある。
本願発明の一態様によれば、主集積回路チップと、前記主集積回路チップに設けられた、外部端子に接続される外部パッドと、前記主集積回路チップに設けられた、この主集積回路チップの機能を拡張するための副集積回路チップに接続される機能拡張用パッドとを具備し、パッケージに収容されている前記副集積回路チップと前記主集積回路チップとを接続する機能拡張用パッドで構成されていることを特徴とする半導体集積回路装置が提供される。
上記構成を有する半導体集積回路装置であると、主集積回路チップに、外部端子に接続される外部パッドの他に、機能拡張用パッドを有している。この機能拡張用パッドに、主集積回路チップの機能を拡張するための副集積回路チップを接続することで、その主集積回路チップの機能を拡張できる。このため、パッケージに主集積回路チップの他、機能を拡張するためのスロットを設ける必要がなく、パッケージを小型化することができる。このようにパッケージの小型化が可能であることにより、1以上の集積回路チップによって構成される半導体集積回路装置において、その製造コストを下げることができる。
上記の構成により、製造コストを下げることが可能な、1以上の集積回路チップによって構成される半導体集積回路装置を提供できる。
以下、図面を参照してこの発明の実施の形態を説明する。
[第1の実施形態]
図1は、この発明の第1の実施形態に係るプロセッサチップの斜視図である。
図1に示すように、プロセッサチップ(主集積回路チップ)1は、図示せぬ外部端子に接続される外部パッド2の他、プロセッサチップ1の機能を拡張するための副集積回路チップに接続される機能拡張用パッド3を有している。プロセッサチップ1は、機能拡張用パッド3により構成した8つの増設スロット4−1〜4−8を有しており、最大8つの副集積回路チップを接続できるようになっている。以下、プロセッサチップ1の機能拡張を、増設スロット4−1〜4−8にキャッシュメモリを接続し、キャッシュメモリの容量を増やす場合を例にして説明する。
図2(A)、(B)はそれぞれ、プロセッサチップ1の機能を拡張した状態を示す斜視図である。
図2(A)、(B)に示すように、キャッシュメモリとしてSRAMチップ(副集積回路チップ)5がそれぞれ、増設スロット4−1〜4−8に設けられた機能拡張用パッド3を介して、プロセッサチップ1に接続されている。プロセッサチップ1とSRAMチップ5との接続には、半田ボールを用いて接続する、いわゆるフリップチップ方式が使用される。
ここで、SRAMチップ5の容量を8Mビットとすると、図2(A)では、2つのSRAMチップ5が接続されているので、キャッシュメモリを2Mバイト増設できる。また、図2(B)では全ての増設スロット4−1〜4−8を使用して、8つのSRAMチップ5が接続されているので、キャッシュメモリを8Mバイト増設できる。
このように第1の実施形態に係るプロセッサチップ1によれば、機能拡張用パッド3を介してSRAMチップ5をプロセッサチップ1の上に接続することにより、キャッシュメモリの容量の増加、即ち機能の拡張が可能であるので、これを収容するパッケージには、増設スロットを確保しておく必要がなくなる。よって、パッケージの小型化が可能となり、製造コストを低減できる。
さらにこの第1の実施形態に係るプロセッサチップ1からは、キャッシュメモリを増設せず、プロセッサチップ1のみで構成した標準製品(標準プロセッサ)、キャッシュメモリを1Mバイトから最大8Mバイトまで順次増設し、プロセッサチップ1の機能を拡張した8種類の機能拡張製品(機能拡張プロセッサ)、合計9種類の製品を得ることができる。しかも、これら9種類の製品を1種類のパッケージにより展開できるので、生産性も向上する。
よって、1以上の集積回路チップにより構成される半導体集積回路装置を、より安い製造コストで生産できる。
次に、第1の実施形態に係るプロセッサチップ1を利用した好適な生産フローの一例を説明する。
図3は、この発明の第1の実施形態に係るプロセッサチップ1を利用した生産フローの一例を示す流れ図である。
図3に示す参照符号10は、プロセッサチップ1のみで構成される標準製品(標準プロセッサ)の生産フロー、参照符号11はプロセッサチップ1にSRAMチップ5を接続した機能拡張製品(機能拡張プロセッサ)の生産フロー、参照符号12はSRAMチップ5のみで構成される標準製品(標準SRAM)の生産フローである。
図3に示すように、プロセッサチップ1の機能を拡張するために用いられるSRAMチップ5は機能拡張専用とせず、これ単体でもSRAM製品として製品化する。このようにSRAMチップ5を、機能拡張専用で開発するのではなく、SRAM製品として実際に製品に使用することを前提として開発する。これにより、LSIメーカにとっては、新製品の開発コストを圧縮できる。
また、実際に製品化されている既存のSRAMチップを利用して、プロセッサチップ1の機能を拡張することもできる。この場合、SRAMチップを新規に開発しなくて済むので、機能拡張のための開発コストは全くかからない。
このようにプロセッサチップ1(主集積回路チップ)の機能を拡張するためのSRAMチップ5(副集積回路チップ)に製品としての機能を持たせる。さらにSRAMチップ5のみで構成されたSRAM製品を生産する。これにより、多種多様な製品を生産するLSIメーカにとっては、トータルの開発コストを低下できる。
よって、第1の実施形態に係るプロセッサチップ1を搭載したプロセッサ製品を、図3に示す生産フローにしたがって生産すれば、このプロセッサ製品ばかりでなく、他の製品、第1の実施形態では、SRAM製品にかかる製造コストも削減することが可能になる。
[第2の実施形態]
この発明に係るプロセッサチップ1では、その上にSRAMチップ5が搭載される。このため、機能拡張用パッド3が形成される面は、高い精度で平坦化されていたほうが良い。
図4(A)および(B)はそれぞれ、第2の実施形態に係る半導体集積回路装置の断面図である。
図4(A)に示すように、機能拡張用パッド3が形成される絶縁膜20の表面を平坦化する。この平坦化にはCMP法を使用すれば良い。同図中の矢印は、CMP法により平坦化された面を示している。
また、図4(B)に示すように、機能拡張用パッド3を、これが形成される絶縁膜20とともにCMP法により平坦化しても良い。いわゆるダマシン法である。同図中の矢印は、CMP法により平坦化された面を示している。
これらのように、プロセッサチップ1の機能拡張用パッド3が形成される面を平坦化することにより、SRAMチップ5と機能拡張用パッド3とをより確実に接続できる。よって、プロセッサチップ1の機能を拡張する場合において、その歩留りを向上でき、製造コストをより低くできる。
また、SRAMチップ5と機能拡張用パッド3とをより確実に接続できるので、機能拡張プロセッサ製品の信頼性、特に装置寿命に関する信頼性を高められる効果も、同時に期待できる。
[第3の実施形態]
ウェーハプロセス終了後、図3に示したように、チップにはバーンインと呼ばれる強制劣化試験が行われる。この後、チップをテストし、確実に動作したもののみを良品チップとし、次のアセンブリプロセスに進める。
機能拡張製品を生産する際には、良品チップのなかでも、特に優れたチップ(Known Good Die:KGD)を選ぶ。このKGDの基準は極めて高い。ベアチップ出荷が想定されるためである。つまり、チップを裸のままユーザに供給し、MCMのアセンブリをユーザに、ユーザ自身の好みに応じて自由にできるようにゆだねるのである。
この発明に係るプロセッサチップ1と、その機能を拡張するSRAMチップ5との接続は、フリップチップ方式である。このため、MCMのアセンブリに使用する半田リフロー装置を持っているユーザであれば、ユーザ自ら、プロセッサチップ1にSRAMチップ5を接続できる。したがって、この発明においても、プロセッサチップ1とSRAMチップ5との接続を、ユーザにゆだねることができる。
ところで、KGDの基準が過度に高いのは、“ベアチップ出荷”という流通方式が生まれて、そう時間が経過していないためである。
また、MCMのプロセスも比較的新しい技術であり、完全に完成しているわけではない。特にMCMの歩留りは、KGDの品質によって、予想以上の変化をみせる。この原因はいまだ明確ではない。原因が明確でない以上、KGDの基準は過度に高く設定せざるを得ないのである。
LSIのなかでも、特に最先端の技術を駆使して製造されるメモリLSIにおいては、1枚のウェーハからごく僅かしかKGDを採れない、と予想される。このため、SRAMチップ5が最先端の技術を駆使して製造されているような場合、図2(B)に示すように8つのKGDを得るためには、相当の製造コストがかかることが予想される。これでは、廉価な製品をユーザに供給できない。
このような事情を解消する一つの例が、この第3の実施形態である。
図5は、この発明の第3の実施形態に係る生産フローを示す流れ図である。
図5に示す参照符号10は、プロセッサチップ1のみで構成される標準製品(標準プロセッサ)の生産フロー、参照符号11はプロセッサチップ1にSRAMチップ5を接続した機能拡張製品(機能拡張プロセッサ)の生産フロー、参照符号12はSRAMチップ5のみで構成される標準製品(標準SRAM)の生産フローである。
図5に示すように、第3の実施形態では、プロセッサチップ1に、KGDではなく、良品チップをアセンブリし、これをパッケージングしたSRAM製品を接続する。
パッケージング技術は既に確立している技術であり、その基準は、KGDのように過度に高くは設定されていない。即ち、パッケージングされた製品の基準は、模索期にあるKGDの基準よりもはるかに適切である。
このように第3の実施形態によれば、パッケージングされた製品を機能拡張用の部品とするので、KGDを機能拡張用の部品とする場合に比べ、良品チップを無駄にする確率を小さくできる。よって、機能拡張製品の製造コストを、さらに下げることが可能になる。
[第4の実施形態]
次に、主集積回路チップに、機能拡張のために接続される製品に好適なパッケージの一例を、第4の実施形態として説明する。
図6は、この発明の第4の実施形態に係る機能拡張用のSRAM製品を示す図で、(A)図はその断面図、(B)図はその分解図である。
図6(A)、(B)に示すように、パッケージとして好適なものは、チップサイズパッケージ(CSP)である。SRAMチップ5は接続用半田ボール34を有している。接続用半田ボール34は、配線板31に形成された接続用パッド33にフリップチップ方式を用いて接続される。配線板31とSRAMチップ5との接続部分は、モールド樹脂35によりモールドされる。
配線板31に形成された半田ボール32は、プロセッサチップ1の機能拡張用パッド3にフリップチップ方式にて接続される。この接続は、半田ボール32を機能拡張用パッド3の上に載せた後、半田リフロー装置により、半田ボール32をメルトすることで行われる。
このようなCSPは、チップのサイズとほぼ同等の大きさである。このため、他のパッケージ、例えばQFP等に比べて、その大きさは大変小さい。よって、プロセッサチップ1の上に、より多く接続することができる。
また、CSPは配線板31を有するので、これの外部端子、即ち半田ボール32の配置を、SRAMチップ5の半田ボール34の配置と全く同じとすることもできる。このようにすると、SRAMチップ5をベアチップの状態で接続する場合、およびSRAMチップ5をCSPに収容した状態で接続する場合のどちらにも適用でき、便利である。
図7(A)、(B)はそれぞれ、第4の実施形態に係るSRAM製品を用いてプロセッサチップ1の機能を拡張した状態を示す斜視図である。
図7(A)では、プロセッサチップ1に、2つの増設スロットを用いて、2つのSRAM製品(CSP)5が接続されている。SRAM製品(CSP)5が8Mビットの容量を持つとすれば、図7(A)に示す製品は、キャッシュメモリ2Mバイト拡張製品となる。
また、図7(B)では、プロセッサチップ1に、8つの増設スロットを全て用いて、8つのSRAM製品(CSP)5が接続されている。よって、図7(B)に示す製品は、キャッシュメモリ8Mバイト拡張製品となる。
このように、第4の実施形態においても、第1の実施形態と同様に、プロセッサ1のみで構成される標準製品の他、SRAM製品(CSP)5の接続数に応じた機能拡張製品を得ることができる。
[第5の実施形態]
この発明による機能拡張は、キャッシュメモリの増設だけでなく、他の機能拡張にも適用できる。その代表的な一例を第5の実施形態として説明する。
図8は、この発明の第5の実施形態に係る半導体集積回路装置の斜視図である。
図8に示すように、プロセッサチップ1は、図示せぬ外部端子に接続される外部パッド2の他、プロセッサチップ1の機能を拡張するための副集積回路チップに接続される機能拡張用パッド3を有している。プロセッサチップ1は、機能拡張用パッド3により構成した6つの増設スロット4−11〜4−16を有しており、最大6つの副集積回路チップを接続できるようになっている。
この第5の実施形態では、増設スロット4−11にはグラフィックスコントローラが、増設スロット4−12にはインターフェースが接続されるようになっている。インターフェースは、グラフィックスコントローラとプロセッサチップ1との動作規格(動作周波数や動作電源電圧)が異なったり、あるいはグラフィックスコントローラとプロセッサチップ1とのデータ転送規格(入出力ビット数)が異なる場合に接続されるものである。そのためにインターフェースには、周波数変換器回路、電圧変換回路、マルチ/デマルチプレクサ等が組み込まれる。
また、増設スロット4−13、4−14には画像メモリが、増設スロット4−15には画像データ通信用としてMEPGが、増設スロット4−16にはキャッシュメモリが接続されるようになっている。
この第5の実施形態では、これらグラフィックスコントローラ、インターフェース、画像メモリ、MPEG、キャッシュメモリがそれぞれ副集積回路チップとして用意される。これらの副集積回路チップを、主集積回路チップであるプロセッサチップ1に接続することにより、これらの組み合わせに応じた種類の機能拡張製品が揃えられるようになっている。
なお、標準製品は、図8に示すプロセッサチップ1のみで構成される製品である。
以下、主集積回路チップ(プロセッサチップ1)の機能を拡張した例を、各副集積回路チップをそれぞれ、第4の実施形態のようにCSPとした場合を想定して説明する。
図9(A)、(B)はグラフィックス機能が拡張された製品を示す斜視図である。
図9(A)に示すように、増設スロット4−11を使用して、グラフィックスコントローラ製品(CSP)51がプロセッサチップ1に接続されている。これにより、プロセッサチップ1にはグラフィックス機能が拡張され、グラフィックス機能拡張製品(I)となる。
このグラフィックス機能拡張製品(I)は、インターフェースが接続されない。これは、グラフィックスコントローラ製品(CSP)51の動作規格およびデータ転送規格が、プロセッサチップ1の動作規格およびデータ転送規格と同じであるためである。
これに対し、図9(B)に示すグラフィックス機能拡張製品(II)では、増設スロット4−12を使用して、インターフェース製品(CSP)52がプロセッサチップ1に接続されている。これは、グラフィックスコントローラ製品(CSP)51’の動作規格およびデータ転送規格(以下規格)が、プロセッサチップ1の規格と合わないためである。
インターフェース製品(CSP)52は、このような規格が合わないものどうしを電気的に接続する機能を持つ。このようなインターフェース製品(CSP)52を接続するための増設スロット4−12を設ける大きな理由は次の通りである。
この発明では、第3の実施形態でも説明したように、主集積回路チップと副集積回路チップとの接続をメーカで行うばかりでなく、ユーザにゆだねることについても想定している。ユーザは、好みに応じたLSI製品を求める。つまりユーザは、一つのメーカのLSI製品だけでなく、様々なメーカからLSI製品を求める。
今後、技術の複雑化に伴って、一つのメーカで、全てのLSI製品を揃えることは難しくなってくる、と推測される。特にメモリ、プロセッサ、グラフィックスコントローラの開発には、それぞれ高度の技術力を要する。このため、これらのLSI製品の全てを、一つのメーカで揃えることは、極めて困難になると予測される。よって、ユーザが様々なメーカからLSI製品を求める傾向は、益々強まる。ユーザが様々なメーカからLSI製品を求める以上、主集積回路チップ(プロセッサチップ1)の規格と、副集積回路チップ(グラフィックスコントローラ製品(CSP)51’)の規格とが合わないことも充分に想定しなければならない。
第5の実施形態は、インターフェース製品(CSP)52を接続するための増設スロット4−12を設けておくことで、主集積回路チップと副集積回路チップとで互いに規格が異なる場合でも互いに接続することができる。よって、ユーザ自身で、ユーザの好みに応じて独自にアセンブリできる利点も維持できる。
また、メーカにとっても、主集積回路チップの規格にあった副集積回路チップを新たに開発する必要が特になくなるので、開発コストを圧縮できる利点がある。
さらに主集積回路チップの規格に合わなくても、ユーザが要求する仕様を満足するような副集積回路チップが既にあれば、それを主集積回路チップに接続して製品化することもでき、受注から納入までのターンアラウンドタイムを短縮できる効果もある。
図10(A)に、上述したグラフィックス機能拡張製品(II)に、増設スロット4−13、4−14を使用し、2つのVRAM製品(CSP)53を増設した製品を示す。VRAM製品(CSP)53は画像メモリとして機能する。
VRAM製品(CSP)53の容量を8Mビットとすると、2Mバイトの画像メモリを有する機能拡張製品となる。
また、図10(B)は、図10(A)に示す製品に、増設スロット4−15、4−16を使用し、MEPG製品(CSP)54、およびSRAM製品(CSP)5をそれぞれ増設した製品を示している。
MPEG製品(CSP)54は画像データ通信用で、特に画像データを通信用に圧縮する機能を有する。また、SRAM製品(CSP)5は、プロセッサチップ1のキャッシュメモリである。
SRAM製品(CSP)5の容量を8Mビットとすると、1Mバイトのキャッシュメモリを有する。さらにMPEG製品(CSP)54を有するので、画像データ通信機能を合わせ持つ機能拡張製品となる。
このように、この発明は、プロセッサのキャッシュメモリを拡張するだけでなく、プロセッサが使われる電子機器のシステムを取り込むような機能の拡張も可能である。
[第6の実施形態]
SRAMチップ5を製品化する場合、この製品が搭載される回路基板の配線の配置が、プロセッサチップ1の機能拡張用パッド3の配置とが異なることも想定される。
このような場合には、SRAMチップ5のパッドの配置を変更、即ち別のマスクセットを用いて、市販用のSRAMチップと、機能拡張用のSRAMチップとを製造しなければならない。これはウェーハプロセスの煩雑化を招く。特にホトリソグラフィ工程に使用するマスクセットの種類が増えるうえ、これらのマスクセットを全て管理する必要があるので、SRAMチップの生産性は著しく損なわれる。
また、ホトリソグラフィ工程に使用する新たなマスクセットを開発し、製造するには高度の技術を要するので、相応の製造コストがかかる。
これらの事情を解消する一例が、この第6の実施形態である。
第6の実施形態は、第4の実施形態と同様にSRAMチップ5をCSP製品としてプロセッサチップ1に接続するものである。
図11は、この発明の第6の実施形態に係る半導体集積回路装置を示す断面図である。
図11に示すように、CSP製品は配線板31を有する。第6の実施形態では、配線板31に、市販用配線板31A、機能拡張用配線板31Bとの2種類を備える。市販用配線板31AはSRAMチップ5を使用したSRAM製品を市販するときに用いられる。また、機能拡張用配線31BはSRAMチップ5をプロセッサチップ1に接続するときに用いる。
市販用配線板31Aの半田ボール32の配置ピッチP1は、図示せぬ回路基板の配線の配置ピッチに合ったものに、また、接続パッド33の配置ピッチP2はSRAMチップ5の半田ボール34の配置ピッチP3に合ったものにされている。
機能拡張用配線板31Bの半田ボール32の配置ピッチP4は、プロセッサチップ1の機能拡張用パッド3の配置ピッチに合ったものに、また、接続パッド33の配置ピッチP5はSRAMチップ5の半田ボール34の配置ピッチP3に合ったものにされている。
以上のように、CSP製品の配線板31に、市販用配線板31A、および機能拡張用31Bをそれぞれ備えることにより、1種類のマスクセットから、異なる配置ピッチを持つ回路基板、およびプロセッサチップ1のどちらにも接続できるSRAM製品を得ることができる。
この場合には、配線板31の種類は増えるが、ホトリソグラフィ工程に使用するマスクセットの種類が増えるよりは、生産性の悪化は小さくて済む。また、配線板31のほうが、ホトリソグラフィ用のマスクセットよりも製造コストは低い。当然SRAMチップ1よりも低い。
よって、第6の実施形態によれば、製造コストをさらに低下させることが可能である。
また、主集積回路チップに設けられた増設スロット4の大きさと、ここに接続される副集積回路チップの大きさとが互いに異なる場合もある。この場合にも、この第6の実施形態は次のように変形して適用することができる。
図12は、この発明の第6の実施形態に係る半導体集積回路装置の変形を示す断面図である。
図12に示すように、市販用配線板31Aの大きさは、SRAMチップ5の大きさと、ほぼ同じである。これに対し、機能拡張用配線板31Bの大きさは増設スロット4にあった大きさとされ、市販用配線板31Aよりも大きい。
このように市販用配線板31Aと、機能拡張用配線板31Bとを備えることにより、増設スロット4の大きさと異なるサイズのSRAMチップ5でも、プロセッサチップ1に接続することができる。
[第7の実施形態]
次に、この発明に係るプロセッサ製品を収容するパッケージの例を、この発明の第7の実施形態として説明する。
なお、この説明は、各副集積回路チップをそれぞれ、第4の実施形態のようにCSPとした場合を想定している。
図13(A)は、この発明に係るプロセッサ製品をPGA型パッケージに収容した状態を示す平面図である。また、図13(B)は図13(A)中のB−B線に沿う断面図である。
図13(A)、(B)に示すように、PGA型のセラミックパッケージ61の中には、SRAM製品(CSP)5が接続されたプロセッサチップ1が収容されている。プロセッサチップ1の外部パッド2は、パッケージ61の図示せぬ配線パターンにボンディングワイヤ62により電気的に接続されている。図示せぬ配線パターンは、パッケージ61の外部ピン63に電気的に接続される。参照符号64は、気密封止用のキャップである。
このようにこの発明に係るプロセッサは、既存のPGA型のセラミックパッケージに収容することができる。よって、電子機器のシステムを構成するマザーボード上に、従来と同様に接続することができる。
また、この発明に係るプロセッサは、PGA型のセラミックパッケージばかりでなく、他の既存のパッケージにも収容可能である。
図14(A)は、この発明に係るプロセッサを、BGA型のセラミックパッケージ71に収容した例、図14(B)はモールドパッケージ(QFP型)72に収容した例である。
さらにこの発明に係るプロセッサは、TAB方式とすることも可能である。
図14(C)はTAB方式とした例である。
図14(C)に示すように、プロセッサチップ1の外部パッド2はTABテープ73に形成された薄膜導線パターン74に電気的に接続される。また、参照符号75は、外部パッド2と薄膜導線パターン74との接続部分を外界から隔離するためのポッティング樹脂である。
図14(D)は、この発明に係るプロセッサを、チップサイズパッケージ76に収容した例である。
図14(D)に示すチップサイズパッケージ76は、電子機器のシステムを構成するマザーボードに、フリップチップ方式により接続される。
このようにこの発明に係るプロセッサは、様々な既存のパッケージに収容して、製品化することができる。
[第8の実施形態]
この発明に係るプロセッサ製品は、既存のLSIチップと同様に、マルチチップパッケージ(MCP)やマルチチップモジュール(MCM)とすることも可能である。以下、この発明に係るプロセッサ製品を、MCPやMCMとした例を、この発明の第8の実施形態として説明する。この説明においても、各副集積回路チップをそれぞれ、第4の実施形態のようにCSPとした場合を想定する。
図15は、この発明に係るプロセッサ製品をマルチチップパッケージ製品としたときの平面図である。
図15に示すように、セラミックパッケージ61の中には、SRAM製品(CSP)5が接続され、機能が拡張されたプロセッサチップ1が4つ収容されている。これにより、MCP製品となる。
このようにこの発明に係るプロセッサ製品をMCP製品とすれば、従来のMCP製品に比べて、多くの機能を、よりコンパクトに集積することが可能になる。
図16は、この発明に係るプロセッサ製品をマルチチップモジュール製品としたときの平面図である。
図16に示すように、SRAM製品(CSP)5が接続され、機能が拡張されたプロセッサチップ1、および第5の実施形態により説明したプロセッサチップ1がそれぞれ、システム構成用の回路基板81に接続されて、マルチチップモジュール製品を構成している。
このようにこの発明に係るプロセッサ製品をMCM製品とすれば、MCP製品と同様に、多くの機能を、よりコンパクトに集積できる。
さらに図16に示すMCM製品を、図17に示すように、セラミックパッケージ61の中に収容しても良い。これは、マルチチップモジュールパッケージ製品とよばれる製品となる。
以上、この発明を第1〜第8の実施形態により説明したが、この発明はこれらの実施形態に限られるものではなく、様々な変形が可能である。
例えば上記実施形態では、主集積回路チップとしてプロセッサチップを例示したが、主集積回路チップとして、ギガビットクラスの記憶容量を持つ超大規模メモリチップに変更することもできる。
この場合には、超大規模メモリチップに、その機能を拡張するための副集積回路チップを接続することにより、メモリ製品としての機能ばかりでなく、その周辺のシステムを取り込み、より高度な機能と超大規模メモリとを同時に集積したLSI製品を、より廉価に提供することができる。
図1はこの発明の第1の実施形態に係る半導体集積回路装置の斜視図。 図2(A)、(B)はそれぞれ第1の実施形態に係る半導体集積回路装置の機能を拡張した状態を示す斜視図。 図3はこの発明の第1の実施形態に係る半導体集積回路装置を利用した生産フローを示す流れ図。 図4(A)はこの発明の第2の実施形態に係る半導体集積回路装置の断面図、図4(B)はこの発明の第2の実施形態に係る半導体集積回路装置の変形例を示す断面図。 図5はこの発明の第3の実施形態に係る半導体集積回路装置の生産フローを示す流れ図。 図6(A)はこの発明の第4の実施形態に係る半導体集積回路装置が具備するキャッシュメモリの断面図、図4(B)はこの発明の第4の実施形態に係る半導体集積回路装置が具備するキャッシュメモリの分解図。 図7(A)、(B)はそれぞれ第4の実施形態に係る半導体集積回路装置を用いて主集積回路チップの機能を拡張した状態を示す斜視図。 図8はこの発明の第5の実施形態に係る半導体集積回路装置の斜視図。 図9(A)、(B)はそれぞれ第5の実施形態に係る半導体集積回路装置の機能を拡張した状態を示す斜視図。 図10(A)、(B)はそれぞれ第5の実施形態に係る半導体集積回路装置の機能を拡張した状態を示す斜視図。 図11はこの発明の第6の実施形態に係る半導体集積回路装置を示す図。 図12はこの発明の第6の実施形態に係る半導体集積回路装置の変形例を示す図。 図13(A)はこの発明の第7の実施形態に係る半導体集積回路装置の平面図、図13(B)は図13(A)中のB−B線に沿う断面図。 図14(A)〜(D)はそれぞれこの発明の第7の実施形態に係る半導体集積回路装置の変形例を示す断面図。 図15はこの発明に係る半導体集積回路装置をマルチチップパッケージ製品としたときの平面図。 図16はこの発明に係る半導体集積回路装置をマルチチップモジュール製品としたときの平面図。 図17はこの発明に係る半導体集積回路装置をマルチチップモジュールパッケージ製品としたときの平面図。 図18(A)、(B)はそれぞれ従来のマルチチップパッケージ製品の平面図。
符号の説明
1…プロセッサチップ、2…外部パッド、3…機能拡張用パッド、4−1〜4−8、4−11〜4−16…増設スロット、5…SRAMチップ/SRAM製品(CSP)、10…標準プロセッサ製品生産フロー、11…機能拡張プロセッサ製品生産フロー、12…標準SRAM製品生産フロー、20…機能拡張用パッドが形成される絶縁膜、31…配線板、31A…市販用配線板、31B…機能拡張用配線板、32…半田ボール、33…接続用パッド、34…接続用半田ボール、35…モールド樹脂、51、51’…グラフィックスコントローラ製品(CSP)、52…インターフェース製品(CSP)、53…VRAM製品(CSP)、54…MPEG製品(CSP)、61…セラミックパッケージ(PGA)、71…セラミックパッケージ(BGA)、72…モールドパッケージ(QFP)、75…ポッティング樹脂(TAB)、76…チップサイズパッケージ(CSP)、81…システム構成用の回路基板(MCM)。

Claims (5)

  1. 主集積回路チップと、前記主集積回路チップに設けられた、外部端子に接続される外部パッドと、前記主集積回路チップに設けられた、この主集積回路チップの機能を拡張するための副集積回路チップに接続される機能拡張用パッドとを具備し、
    パッケージに収容されている前記副集積回路チップと前記主集積回路チップとを接続する機能拡張用パッドで構成されていることを特徴とする半導体集積回路装置。
  2. 前記副集積回路チップは標準製品で構成されることを特徴とする請求項1に記載の半導体集積回路装置。
  3. 前記主集積回路チップと前記副集積回路チップとの接続部分がバンプにより接続されることを特徴とする請求項1または請求項2に記載の半導体集積回路装置。
  4. 前記主集積回路チップと前記副集積回路チップとの間にそれぞれのパッドを接続する配線板を有することを特徴とする請求項1至乃請求項3のいずれかに記載の半導体集積回路装置。
  5. 前記主集積回路チップと前記副集積回路チップとの間にそれぞれのパッドを接続する配線板を有し、前記配線板を半導体基板で形成することを特徴とする請求項1至乃請求項4のいずれかに記載の半導体集積回路装置。
JP2007274260A 2007-10-22 2007-10-22 半導体集積回路装置 Pending JP2008072135A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274260A JP2008072135A (ja) 2007-10-22 2007-10-22 半導体集積回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274260A JP2008072135A (ja) 2007-10-22 2007-10-22 半導体集積回路装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17000398A Division JP4095170B2 (ja) 1998-06-17 1998-06-17 半導体集積回路装置

Publications (1)

Publication Number Publication Date
JP2008072135A true JP2008072135A (ja) 2008-03-27

Family

ID=39293390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274260A Pending JP2008072135A (ja) 2007-10-22 2007-10-22 半導体集積回路装置

Country Status (1)

Country Link
JP (1) JP2008072135A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548001A (ja) * 1991-08-19 1993-02-26 Fujitsu Ltd 半導体集積回路の実装方法
JPH05109977A (ja) * 1991-10-18 1993-04-30 Mitsubishi Electric Corp 半導体装置
JPH05136207A (ja) * 1991-11-14 1993-06-01 Hitachi Ltd 半導体装置およびその製造方法
JPH0778938A (ja) * 1993-09-09 1995-03-20 Sony Corp 複合半導体装置及びその製造方法
JPH09326465A (ja) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2000012764A (ja) * 1998-06-17 2000-01-14 Toshiba Corp 半導体集積回路装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548001A (ja) * 1991-08-19 1993-02-26 Fujitsu Ltd 半導体集積回路の実装方法
JPH05109977A (ja) * 1991-10-18 1993-04-30 Mitsubishi Electric Corp 半導体装置
JPH05136207A (ja) * 1991-11-14 1993-06-01 Hitachi Ltd 半導体装置およびその製造方法
JPH0778938A (ja) * 1993-09-09 1995-03-20 Sony Corp 複合半導体装置及びその製造方法
JPH09326465A (ja) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2000012764A (ja) * 1998-06-17 2000-01-14 Toshiba Corp 半導体集積回路装置

Similar Documents

Publication Publication Date Title
KR101797331B1 (ko) 복수의 수직으로 내장된 다이를 갖는 기판을 가진 멀티 칩 패키지 및 그 형성 프로세스
US7215016B2 (en) Multi-chips stacked package
US8053881B2 (en) Semiconductor package and method for manufacturing the same
US7888785B2 (en) Semiconductor package embedded in substrate, system including the same and associated methods
US8031475B2 (en) Integrated circuit package system with flexible substrate and mounded package
US20070108583A1 (en) Integrated circuit package-on-package stacking system
US7160757B2 (en) Gap control between interposer and substrate in electronic assemblies
US6127726A (en) Cavity down plastic ball grid array multi-chip module
JP2010219539A (ja) チップオンチップ及びパッケージオンパッケージ技術のための柔軟なパッケージング
US11955431B2 (en) Interposer structures and methods for 2.5D and 3D packaging
US20080105962A1 (en) Chip package
WO2017209874A1 (en) Top-side connector interface for processor packaging
Hsieh Advanced flip chip package on package technology for mobile applications
CN112928101A (zh) 重构晶圆组件
US7868439B2 (en) Chip package and substrate thereof
JP4095170B2 (ja) 半導体集積回路装置
US20080142947A1 (en) Chip package and method of manufacturing the same
US20140061950A1 (en) Stackable flip chip for memory packages
TW202008522A (zh) 半導體封裝
WO2022068467A1 (zh) 封装结构、装置、板卡及布局集成电路的方法
JP2008072135A (ja) 半導体集積回路装置
US20080088005A1 (en) SIP package with small dimension
JP2005109476A (ja) 高速リード線へのトレース・アクセスを提供するパッケージ化集積回路
US20070164395A1 (en) Chip package with built-in capacitor structure
JPH0778938A (ja) 複合半導体装置及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601