JP2008066386A - 不揮発性半導体記憶装置の製造方法 - Google Patents

不揮発性半導体記憶装置の製造方法 Download PDF

Info

Publication number
JP2008066386A
JP2008066386A JP2006240358A JP2006240358A JP2008066386A JP 2008066386 A JP2008066386 A JP 2008066386A JP 2006240358 A JP2006240358 A JP 2006240358A JP 2006240358 A JP2006240358 A JP 2006240358A JP 2008066386 A JP2008066386 A JP 2008066386A
Authority
JP
Japan
Prior art keywords
conductive film
forming
film
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006240358A
Other languages
English (en)
Inventor
Masaaki Shinohara
正昭 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006240358A priority Critical patent/JP2008066386A/ja
Publication of JP2008066386A publication Critical patent/JP2008066386A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】微細化をはかりつつ、メモリセルのしきい値電圧の変動が抑制された不揮発性半導体記憶装置の製造方法を提供する。
【解決手段】不揮発性半導体記憶装置100の製造方法は、分離領域を形成する工程と、第1絶縁膜を形成する工程と、第1導電膜を形成する工程と、第1導電膜上に第2絶縁膜を形成する工程と、第2絶縁膜をパターニングして、第1活性領域上に位置する第1導電膜の上面を露出すると共に、第2活性領域上に位置する第1導電膜の上面を覆う絶縁膜パターンを形成する工程と、第1導電膜パターンSGを形成すると共に、第2活性領域上に位置する第2導電膜を除去する工程と、電荷を蓄積可能な第3絶縁膜21を形成する工程と、第2導電膜パターンMGを形成する工程と、第3導電膜パターンTG1、TG2を形成する工程と、不純物領域を形成する工程とを備える。
【選択図】図2

Description

本発明は半導体記憶装置の製造方法に関し、特に、制御ゲート電極とメモリゲート電極を有する不揮発性の半導体記憶装置の製造方法に関するものである。
従来から、電源をオフにしても情報が失われない不揮発性の電荷蓄積方式には、記憶用MOS型トランジスタのフローティングゲート方式と、窒化ケイ素膜のような電荷を蓄積する性質をもつ絶縁膜に電荷を蓄積するMONOS(Metal Oxide Nitride Oxide Silicon)方式とがある。
このフローティングゲート方式は、絶縁膜内に埋設され、どこにも放電経路が形成されていないたとえば、ポリシリコン膜等からなるフローティングゲートを用いている。このようなフローティングゲート方式は、大容量のデータ格納用のフラッシュメモリに用いられている。
しかし、微細化に伴い、フローティングゲートとコントロールゲートとの間のカップリング比が確保しがたくなっている。また、フローティングゲート内に蓄積された電荷のリークを抑制するために、フローティングゲートの周囲を絶縁膜で取り囲む必要がある。しかし、このフローティングゲートの周囲を取り囲む絶縁膜にリークパスが形成されると、このリークパスからフローティングゲート内に蓄積された電荷が外部にリークし易く、電荷保持寿命が低下する。
その一方で、MONOS方式は、シリコン窒化膜とシリコン酸化膜との重合構造に代表されるように、少なくとも1つの絶縁膜が有する電荷の蓄積トラップを利用している。
このMONOS方式においては、窒化シリコン膜等の電荷蓄積トラップ内に電荷を蓄積する離散的記憶方式である。このため、窒化シリコン膜の周囲のシリコン酸化膜等にリークパスが形成されていても、窒化シリコン膜内の全ての蓄積電荷がリークすることがなく、酸化膜欠陥に強い構成となっている。
このようなMONOS型の不揮発性半導体記憶装置としては、メモリセルに制御ゲート電極を含む制御トランジスタとメモリゲート電極を含むメモリトランジスタの2つのMISFET(Metal Insulator Semiconductor Field Effect Transistor)を備えた不揮発
性の半導体記憶装置が提案されている。
この不揮発性半導体記憶装置では、制御ゲート電極は、半導体基板の表面上にゲート絶縁膜を介在させて形成されている。メモリゲート電極は、半導体基板の表面上にONO(Oxide Nitride Oxide)膜を介在させて、制御ゲート電極の側面上にサイドウォール状に
形成されている。そのONO膜は、半導体基板の表面から制御ゲート電極の側面上にまで延在して、制御ゲート電極の側面とメモリゲート電極との間に介在する。その制御ゲート電極とメモリゲート電極を挟んで一方の側に位置する半導体基板の領域はソース領域が形成され、他方の半導体基板の領域にはドレイン領域が形成されている。メモリセルの書き込み、読み出しおよび消去のそれぞれの動作は、制御ゲート電極、メモリゲート電極、ソース領域およびドレイン領域にそれぞれ所定の電圧を印加することによって行なわれる。
このようなMONOS方式で形成されたメモリセルは、構成が単純であるため、理論回路と混載しやすいという特徴がある。
また、蓄積された情報を読み出すには、制御ゲート電極を含むトランジスタのみの動作で行なうことができ、理論回路領域内のトランジスタの薄膜化を図ることができる。
このように構成されたMONOS型の不揮発性半導体記憶装置を製造する際には、まず、半導体基板の主表面上に導電膜を形成して、この導電膜にパターニングを施して、制御ゲート電極を形成すると共に、周辺回路領域上を覆う導電膜パターンを形成する。そして、この制御ゲート電極の上面および側面上を覆うように、ONO膜を形成し、このONO膜上であって、制御ゲート電極の側面上にサイドウォール状のメモリゲート電極を形成する。
しかる後に、メモリゲート電極と制御ゲート電極間にONO膜を残して、ONO膜を除去する。その後、形成された制御ゲート電極およびメモリゲート電極をマスクとして、低濃度の不純物拡散層を形成する。さらに、制御ゲート電極とメモリゲート電極の側面上にサイドウォール絶縁膜を形成する。そして、深い高濃度の不純物拡散層を形成して、ソース領域およびドレイン領域を形成する。
そして、周辺回路領域上に残留する導電膜パターンにパターニングを施して、周辺回路トランジスタのゲート電極を形成する。その後、制御ゲート電極、メモリゲート電極、ソース領域およびドレイン領域上にコバルトシリサイド膜を形成し、コンタクト部を形成する。
特開2004−186452号公報
近年、不揮発性半導体記憶装置の微細化に伴って、制御ゲート電極やメモリゲート電極の微細化が図られている。
このため、サイドウォール状のメモリゲート電極の高さが低くなり、メモリゲート電極と、制御ゲート電極とをマスクとして不純物を注入する際に、不純物がメモリゲート電極を突き抜けて、チャネル領域に不純物が導入されるという問題が生じる。
この不純物の突き抜けを抑制する手段として、イオン注入エネルギの低減が考えられる。しかし、不純物の注入工程におけるイオン注入エネルギはシリサイド時の半導体基板と不純物拡散層との間の短絡不良対策等の観点から設定されている。このため、スケーリングにかかわらず、必要なシリサイド処理を行なっている限り、変更が難しく、イオン注入のエネルギの低減を図ることにより、不純物の突き抜けを抑制するという手法をとることは困難なものとなっている。
また、制御ゲート電極および周辺トランジスタのゲート電極の微細化を図りつつ、制御ゲート電極および周辺トランジスタのゲート電極を高く形成する方法も考えられる。ここで、制御ゲート電極および周辺トランジスタのゲート電極の微細化を図るには、たとえば、90nmルールのリソグラフィでは、従来のKrF光源からArF光源への変更、あるいは、KrF光源でもより高精度化するために、フォトレジストの薄膜化が図られている。このため、このフォトレジスト膜をマスクとするドライエッチングの除去量は、制限されており、制御ゲート電極などのさらなる厚膜化は困難である。
本発明は、上記のような課題に鑑みてなされたものであり、その目的は、微細化をはかりつつ、メモリセルのしきい値電圧の変動が抑制された不揮発性半導体記憶装置の製造方法を提供することである。
本発明に係る不揮発性半導体記憶装置の製造方法は、半導体基板の主表面に第1および第2活性領域を規定する分離領域を形成する工程と、半導体基板の主表面上に第1絶縁膜を形成する工程と、第1および第2活性領域上に位置する第1絶縁膜上に、第1導電膜を形成する工程と、第1導電膜上に第2絶縁膜を形成する工程と、第2絶縁膜をパターニングして、第1活性領域上に位置する第1導電膜の上面を露出すると共に、第2活性領域上に位置する第1導電膜の上面を覆う絶縁膜パターンを形成する工程と、第1導電膜および絶縁膜パターンを覆う第2導電膜を形成する工程と、第1絶縁膜および絶縁膜パターンをストッパとして機能させて、第2導電膜および第1導電膜をパターニングし、第1活性領域上に第1導電膜パターンを形成すると共に、第2活性領域上に位置する第2導電膜を除去する工程と、第1導電膜パターンの側面上に電荷を蓄積可能な第3絶縁膜を形成する工程と、第1導電膜パターンの側面上に第2導電膜パターンを形成する工程と、絶縁膜パターンを除去し、第2活性領域上に位置する第1導電膜をパターニングして、第3導電膜パターンを形成する工程と、第1導電膜パターンと第2導電膜パターンと第3導電膜パターンとをマスクとして、半導体基板の主表面に不純物を導入して不純物領域を形成する工程とを備える。
本発明に係る不揮発性半導体記憶装置の製造方法によれば、微細化を図ることができると共に、メモリセルのしきい値電圧が変動することを抑制することができる。
図1から図17を用いて、本発明に係る実施の形態について説明する。図1は、本実施の形態に係る不揮発性半導体記憶装置100の平面図である。この図1に示されるように、不揮発性半導体記憶装置100は、半導体基板1の主表面上に形成された分離領域50と、この分離領域50によって規定され、複数のメモリセルMCが形成されたメモリセル領域1Aと、メモリセルの動作制御を行なう周辺トランジスタが形成された周辺回路領域1Dとを備えている。
メモリセル領域1Aと、周辺回路領域1Dとの間に位置する半導体基板1の主表面上には、分離領域50が位置する境界領域1Cが形成されている。
メモリセル領域1Aは、複数の分離メモリセル領域1Aa、1Abと、分離メモリセル領域1Aaと分離メモリセル領域1Abとの間に形成されたワードシャント領域1Eとを備えている。分離メモリセル領域1Aa、1Abには、複数のメモリセルMCが形成されている。
分離メモリセル領域1Aa、1Abが位置する半導体基板1の主表面上には、一方向に向けて延在する制御ゲート電極SGと、この制御ゲート電極SGに沿って延在するメモリゲート電極MGとを備えている。
そして、制御ゲート電極SG間に位置する半導体基板1の主表面上には、制御ゲート電極SGが延在する方向に、複数の分離領域2が間隔を隔てて複数形成されている。
制御ゲート電極SG間に位置すると共に、分離領域2間に位置する半導体基板1の主表面上には、ドレイン領域として機能する複数の不純物拡散層DR1が形成されている。
この各不純物拡散層DR1には、所定の電圧を不純物拡散層DR1に印加するコンタクト部(電圧印加部)23aが形成されている。
また、メモリゲート電極MG間に位置する半導体基板1の主表面上には、ドレイン領域として機能可能な不純物拡散層SR1が形成されている。この不純物拡散層SR1は、制御ゲート電極SGが延在する方向に沿って延在している。この不純物拡散層SR1にも、不純物拡散層SR1に所定の電圧を印加するコンタクト部23bが形成されている。
そして、ワードシャント領域1E上には、分割メモリセル領域1Aaに形成された制御ゲート電極SGと、分割メモリセル領域1Abに形成された制御ゲート電極SGとを接続する接続配線9が形成されている。また、ワードシャント領域1E上には、分割メモリセル領域1Aa上のメモリゲート電極MGと、分割メモリセル領域1Ab上に形成されたメモリゲート電極MGとを接続する接続配線14を備えている。
接続配線9は、パッド部23cと、このパッド部23cに接続され、接続配線9を介して、制御ゲート電極SGに所定の電圧を印加するコンタクト部とを備えている。また、接続配線14は、パッド部14aと、このパッド部14aに接続され、接続配線14を介して、メモリゲート電極MGに所定の電圧を印加するコンタクト部23dとを備えている。
図2は、本実施の形態2に係る不揮発性半導体記憶装置100の断面図である。なお、図2から図17において、(A)は、図1に示すメモリセル領域1Aにおける断面図である。(B)は、図1に示す周辺回路領域1Dのうち、メモリセル領域1Aおよび境界領域1Cに近接する部分における断面図である。さらに、(C)は、図1における周辺回路領域1Dにおける断面図である。
この図2(A)に示されるように、メモリセル領域1Aが位置する半導体基板1の主表面上には、メモリセルMCが形成されており、このメモリセルMCは、たとえばシリコン酸化膜等からなる絶縁膜1bと、この絶縁膜1bの上面上に形成された制御ゲート電極(第1配線)SGと、この制御ゲート電極(第1配線)SGの一方の側面上に形成されたメモリゲート電極(第2配線)MGと、絶縁膜11と、不純物拡散層DR1、SR1とを備えている。
制御ゲート電極SGは、たとえば、ポリシリコン膜等から形成されており、半導体基板1の主表面に対して垂直な方向の厚さが、たとえば、100nm以上300nm以下程度とされているこの制御ゲート電極SGの上面上には、たとえば、コバルトシリサイド等のシリサイド膜21が形成されている。
そして、制御ゲート電極SG下に位置する半導体基板1の主表面上に形成された絶縁膜1bの半導体基板1の主表面に対して垂直な方向の厚さは、たとえば、2nm程度とされている。
制御ゲート電極SGの一方の側面上に、絶縁膜11を介して形成されたメモリゲート電極MGは、サイドウォール状に形成されており、たとえば、ポリシリコン膜等からなる。なお、サイドウォール状に形成されたメモリゲート電極MGとは、まず、制御ゲート電極SG側の側面が、制御ゲート電極SGの側面に沿った垂直壁とされている。そして、メモリゲート電極MGに対して反対側に位置する側面は、上端部側から下端部側に向かうに従って、制御ゲート電極SGから離間するように湾曲している。
絶縁膜11は、メモリゲート電極が形成された制御ゲート電極SGの側面上から、メモリゲート電極MG下に位置する半導体基板1の主表面上にわたって形成されている。
この絶縁膜11は、半導体基板1の主表面に対して垂直な方向の厚さが、4nm程度とされたシリコン酸化膜(SiO2)と、このシリコン酸化膜上に形成され、厚さが10nm程度とされたシリコン窒化膜(Si3N4)と、このシリコン窒化膜上に形成され、厚さが、4nm程度とされたシリコン酸化膜等から構成されている。そして、この絶縁膜11は、窒化シリコン膜等に形成された電荷トラップを用いて、電荷蓄積層として機能する。
このメモリゲート電極MGの側面上および制御ゲート電極SGの側面上には、シリコン酸化膜などからなるサイドウォール状の絶縁膜18が形成されている。なお、メモリゲート電極MGの上面側は、絶縁膜18に覆われておらず、コバルトシリサイド膜等からなるシリサイド膜21が形成されている。
そして、メモリゲートMGに対して、制御ゲート電極SGと反対側に位置する半導体基板1の主表面上には、ソース領域として機能する不純物拡散層(第1不純物拡散層)SR1が形成されている。この不純物拡散層SR1は、サイドウォール絶縁膜18下にまで延在する低濃度の不純物拡散層Sa1と、高濃度の不純物拡散層Sb1とを備えている。また、制御ゲート電極SGに対して、メモリゲート電極MGと反対側に位置する半導体基板1の主表面上には、ドレインとして機能する不純物拡散層(第2不純物拡散層)DR1が形成されている。この不純物拡散層DR1も、低濃度の不純物拡散層Da1と、高濃度の不純物拡散層Db1とを備えている。不純物拡散層SR1、DR1の上面上にも、シリサイド膜21が形成されている。
図2(B)、(C)に示されるように、周辺回路トランジスタは、半導体基板1の主表面上に形成され、たとえば、シリコン酸化膜等からなる絶縁膜1a、1cと、この絶縁膜1a、1c上に形成されたゲート電極TG1、TG2と、このゲート電極TG、TG2の側面上に形成されたサイドウォール状の絶縁膜18と、このゲート電極TG1、TG2と隣り合う半導体基板1の主表面上に形成され、ソース領域およびドレイン領域として機能可能な不純物拡散層DR2、DR2とを備えている。
周辺回路トランジスタのゲート電極TG1、TG2は、たとえば、ポリシリコン膜等から構成され、半導体基板1の主表面に対して垂直な方向の厚さは、たとえば、150nm程度とされている。このように、周辺回路トランジスタのゲート電極TG1、TG2の高さは、メモリセルMCの制御ゲート電極SGの高さよりも低く形成されている。そして、このゲート電極TG1、TG2の上面上にも、シリサイド膜21が形成されている。このように構成された不揮発性半導体記憶装置100の各動作について説明する。
Figure 2008066386
上記表1は、書込み動作、読出し動作、消去動作を行なう際、選択されたメモリセルの制御ゲート電極SG、メモリゲート電極MG、ソース領域として機能する不純物拡散層SD1、ドレイン領域として機能する不純物拡散層DR1と、半導体基板1の主表面に印加する電圧を示した表である。
なお、表1において、Vmgは、メモリゲート電極MGに印加される電圧、Vsは、ソース領域として機能する不純物拡散層SR1に印加される電圧、Vsgは、制御ゲート電極SGに印加される電圧、Vdは、ドレイン領域として機能する不純物拡散層DR1に印加される電圧、Vsubは、半導体基板1に印加される電圧を示している。
たとえば、書込み動作の際には、選択されたメモリゲート電極MGに12V程度の電圧を印加し、選択されたメモリセルMCの制御ゲート電極SGに1.5V程度の電圧を印加する。そして、不純物拡散層SR1に、5V程度の電圧を印加し、不純物拡散層DR1には、1V程度の電圧を印加し、さらに、半導体基板1には、0V程度の電圧を印加する。
このように、電圧を印加すると、メモリゲート電極MGおよび制御ゲート電極SG下に位置する半導体基板(チャネル領域)1に、ホットエレクトロンが発生する。この発生したホットエレクトロンは、選択されたメモリセルトランジスタの絶縁膜11内に注入される。そして、絶縁膜11内に注入された電子は、絶縁膜11内のシリコン窒化膜内にトラップされる。このように、絶縁膜11内に、電子がトラップされると、選択されたメモリセルトランジスタのしきい値電圧が上昇する。
消去動作は、上記表1に示されるように、たとえば、選択されたメモリセルトランジスタのメモリゲート電極MGに、−5V程度の電圧を印加し、制御ゲート電極SGに、0V程度の電圧を印加する。そして、不純物拡散層SR1に、7V程度の電圧を印加する。さらに、不純物拡散層DR1の電圧は、Openとして、半導体基板1の電圧は、0V程度とする。このとき、バンド間トンネル現象により、ホール(正孔)が発生し、発生したホールは、電界によって加速されて、絶縁膜11のシリコン窒化膜内に注入される。これにより、選択されたメモリセルトランジスタのしきい値電圧が低下する。
書込み動作は、選択されたメモリセルトランジスタのメモリゲート電極MGに、たとえば、12V程度の電圧を印加し、制御ゲート電極SGに、たとえば、1.5V程度の電圧を印加する。また、不純物拡散層SR1に、たとえば、5V程度の電圧を印加し、不純物拡散層SD1には、1V程度の電圧を印加し、さらに、半導体基板1には、0V程度の電圧を印加する。
このとき、メモリゲート電極MGには、消去状態におけるしきい値電圧と、書込み状態におけるメモリセルトランジスタのしきい値電圧との間の電圧を印加する。これにより、選択されたメモリセルトランジスタに情報が書き込まれた状態か、否かが、判断される。
このような不揮発性半導体記憶装置100の製造方法について説明する。図3(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第1工程をそれぞれ示す断面図である。
まず、半導体基板1の主表面上に、選択的に分離領域50を形成して、活性領域としてのメモリセル領域(第2領域)1Aと周辺回路領域(第1領域)1Dを規定する。そして、半導体基板1の主表面上に熱酸化処理などを施して、主表面にシリコン酸化膜などからなる絶縁膜1eを形成する。そして、この絶縁膜1eの上面上に、多結晶シリコン膜などからなる導電膜60を、たとえば、160nm程度堆積する。さらに、この導電膜60の上面上に、TEOS(tetraethoxysilane)とO等のソースガスを反応させて、シリコン酸化膜からなる絶縁膜61をCVD法により、たとえば、70nm程度形成する。そして、図1に示す周辺回路領域1D上に位置する絶縁膜61の上面上を覆うレジストパターン90を形成する。
図4(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第2工程をそれぞれ示す断面図であり、図5(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第3工程をそれぞれ示す断面図である。この図4に示すように、レジストパターン90をマスクとして、HF(フッ化水素)を用いて、絶縁膜61にウエットエッチングを施し、周辺回路領域1D上を覆う絶縁膜パターン61Aを形成する。これにより、図1に示す周辺回路領域1D上に位置する導電膜60の上面上に、絶縁膜パターン61Aが残留し、図1に示すメモリセル領域1A上に位置する導電膜60の上面が露出される。
その後、図5に示すように、周辺回路領域1D上に残留した絶縁膜パターン61Aに、HF等をも用いて、絶縁膜パターン61Aの薄膜化を図り、たとえば、絶縁膜パターン(第2絶縁膜パターン)61Aの膜厚が30nm程度となるようにする。
図6(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第4工程をそれぞれ示す断面図である。この図6に示すように、周辺回路領域1Dおよびメモリセル領域1A上を覆うように、たとえば、多結晶シリコン膜からなる導電膜70をCVD(Chemical Vapor Deposition)法等により堆積する。これにより、絶縁膜パターン61Aおよび導電膜60の上面が、導電膜70によって覆われる。
この際、絶縁膜パターン61A下に位置する導電膜70の上面は、メモリセル領域1Aから周辺回路領域1Dにわたって平坦面状とされている。さらに、上記第3工程において、絶縁膜パターン61Aの膜厚を低減することにより、周辺回路領域1Dとメモリセル領域1Aとの境界領域近傍において、周辺回路領域1D上に形成された絶縁膜パターン61Aと、メモリセル領域1A上に形成された導電膜60の上面との間の段差が小さく低減されている。
図7(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第5工程をそれぞれ示す断面図である。この図7に示されるように、メモリセル領域1Aおよび周辺回路領域1D上を覆うBARC(Bottom Anti-Reflection Coating)等の反射防止膜80をスピンコート法で塗布する。ここで、反射防止膜80をスピンコート法により形成することにより、CVD法で反射防止膜80を形成した場合より、反射防止膜80に段差部が形成されることを抑制することができる。
好ましくは、絶縁膜パターン61Aは、反射防止膜80より薄く形成しておく。絶縁膜パターン61Aの膜厚を反射防止膜80より薄く形成することで、絶縁膜パターン61Aの周縁部に形成される段差部を反射防止膜80で埋め込むことができる。このため、絶縁膜パターン61Aの周縁部上に位置する反射防止膜80の上面は、滑らかな傾斜面とされる。具体的には、反射防止膜80の膜厚は、80nm程度とされる。そのため、絶縁膜パターン61Aの膜厚を、50nm以下30nm以上とする。なお、絶縁膜パターン61Aの膜厚を30nm以上としたのは、後述するように、絶縁膜パターン61Aをエッチング時のストッパとして機能させるためである。
ここで、上記第4工程において、メモリセル領域1A,周辺回路領域1Dおよび周辺回路領域1Dとメモリセル領域1Aとの境界領域においても、大きな段差部が形成されていない。このため、形成された反射防止膜80の膜厚は、略全面にわたって略均一となり、反射防止膜80の膜厚に大きな差が生じることを抑制することができる。すなわち、略全面にわたって、所望の膜厚となるように形成することができる。
そして、このように平坦面状に形成された反射防止膜80の上面上に、制御ゲートSGのパターンが形成されたレジストパターン81を形成する。ここで、レジストパターン81を形成する際に、まず、フォトレジスト膜を形成する。そして、このフォトレジスト膜の上方に形成する制御ゲート電極のパターンが形成されたマスクを配置する。
このマスクの上方に、フッ化クリプトン(KrF)エキシマレーザを配置して、このレーザ光源を用いて露光処理を施す。そして、制御ゲート電極SGのパターンが形成されたレジストパターン81を形成する。ここで、反射防止膜80は、略全面において膜厚が一定となり、略全面にわたって平坦面状に形成されており、導電膜70が反射防止膜80から露出することを抑制することができる。このように、導電膜70の一部が露出することを抑制することにより、レジストパターン81を形成する際に、ハレーション(halation)およびオーバ露光が生じることを抑制することができる。
このため、正確に制御ゲート電極SGのパターンが形成されたレジストパターン81を形成することができる。
図8(A)〜(C)は、不揮発性半導体記憶装置100製造工程の第6工程をそれぞれ示す断面図である。この図8(A)〜(C)に示されるように、レジストパターン81を用いて、導電膜70および導電膜60にパターニングを施して、制御ゲート電極SGをメモリセル領域1Aが位置する半導体基板1の主表面上に形成する。そして、周辺回路領域1Dが位置する半導体基板1の主表面上には、周辺回路領域1Dが位置する半導体基板1の主表面を覆う導電膜60aを残留させる。
メモリセル領域1Aにおいては、絶縁膜1eをストッパとし、周辺回路領域1Dにおいては絶縁膜パターン61Aをストッパとして利用する。なお、導電膜70と導電膜60とは、いずれも、多結晶シリコン膜等から構成されており、同質の導電膜から構成されているが、互いに異なる導電膜から構成してもよい。
ここで、レジストパターン81の膜厚は、略全面にわたって均一とされている。このためメモリセル領域1A上のいずれの位置においても、導電膜60、導電膜70および反射防止膜80からなる積層体の膜厚に大きな差が生じることが抑制されている。このため、メモリセル領域1Aにおいて施すエッチン量が位置によって大きく異なることを抑制することができる。なお、周辺回路領域1D上においても、同様の効果を得ることができる。
制御ゲート電極SGのパターニング工程が終了すると、制御ゲート電極SGおよび導電膜60aの上面に残留した反射防止膜80の洗浄およびレジストパターン81を除去する。
反射防止膜80の膜厚は、全面にわたって略均一とされているため、反射防止膜80をエッチングする際に、過剰なエッチングを反射防止膜80に施さなくても、反射防止膜80を除去することができる。
これにより、反射防止膜80のエッチングによって、制御ゲート電極SGや導電膜60aがエッチングされ、制御ゲート電極SGおよび導電膜60aの寸法が変動することを抑制することができる。
図9(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第7工程をそれぞれ示す断面図である。この図9(A)〜(C)に示されるように、半導体基板1の主表面上をHF等を用いて洗浄することにより、図8に示す絶縁膜パターン61Aおよび制御ゲート電極SGと隣り合う半導体基板1の主表面上に形成された絶縁膜1eを除去する。なお、制御ゲート電極SG下に位置する半導体基板1の主表面には、ゲート絶縁膜1bが形成され、導電膜60a下に位置する半導体基板1の主表面上には、絶縁膜1dが残留する。
図10(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第8工程をそれぞれ示す断面図であり、図11(A)〜(C)は、第9工程をそれぞれ示す断面図であり、さらに、図12(A)〜(C)は、第10工程をそれぞれ示す断面図である。
図10に示すように、制御ゲート電極SGおよび導電膜60aの表面を覆うように、所謂ONO膜からなる絶縁膜11を形成する。
そして、図11に示すように、多結晶シリコン膜等からなる導電膜を堆積して、この導電膜にドライエッチングを施して、制御ゲート電極SGおよび導電膜60aの周縁部に沿って延在する導電膜MGaおよびメモリゲート電極MGを形成する。
さらに、図12において、導電膜MGaをエッチングして、制御ゲート電極SGの一方の側面上にサイドウォール状のメモリゲート電極MGを形成する。ここで、制御ゲート電極SGの高さは、250nm程度とされているため、メモリゲート電極MGの高さも、250nm程度となる。
図13(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第11工程をそれぞれ示す断面図であり、図14(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第12工程をそれぞれ示す断面図である。そして、図13に示すように、絶縁膜11のうち、メモリゲート電極MGと半導体基板1との間に位置する部分と、制御ゲート電極SGとメモリゲート電極MGとの間に位置する部分とを残すように、絶縁膜11にエッチングを施す。
その後、図14に示すように、メモリセル領域1A上を覆うと共に、図15に示す周辺回路トランジスタのゲート電極TG1、TG2のパターンが形成されたレジストパターン110を形成する。
図15(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第13工程をそれぞれ示す断面図であり、図16(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第14工程をそれぞれ示す断面図であり、さらに、図17(A)〜(C)は、不揮発性半導体記憶装置100の製造工程の第15工程をそれぞれ示す断面図である。
そして、図15に示すように、導電膜60aにパターニングを施して、周辺回路領域1Dが位置する半導体基板1の主表面上にゲート電極TG1、TG2を形成する。ここで、導電膜60aの厚さは、150nm程度とされているため、微細パターン用のフォトレジスト膜と、ArF(アルゴン・フッ素)レーザ光源とを用いたリソグラフィを用いて、パターニングを行なうことができる。すなわち、制御ゲート電極SG電極をパターニングする際に用いられる光源の波長より短い波長の光源を用いて、パターニングをすることができ、ゲート電極TG1、TG2の微細化を図ることができる。
ここで、メモリセル領域1Aが位置する半導体基板1の主表面上においては、制御ゲートSGが、導電膜60と導電膜70との積層体から構成される一方で、ゲーFト電極TG1,TG2は、導電膜60から形成され、ゲート電極TG1,TG2の高さは、制御ゲート電極SGより低くすることができる。
このように、本実施の形態2に係る不揮発性半導体記憶装置100の製造方法によれば、制御ゲート電極SGを2層の導電膜60、70から構成し、周辺回路トランジスタのゲート電極TG1、TG2となる部分には、導電膜60、70間にストッパを形成しておく。これにより、制御ゲート電極SGをパターニングする際に、反射防止膜80を平坦面状に形成することができると共に、周辺回路領域1D上に形成される導電膜の厚さをゲート電極TG1、TG2の高さにまで低減することができる。
そして、図16に示されるように、メモリゲート電極MGおよび制御ゲート電極SGと隣り合う半導体基板1の主表面に不純物を注入(導入)して、不純物拡散層Da1,Sa1を形成すると共に、ゲート電極TG1、TG2と隣り合う半導体基板1の主表面に不純物を注入して、低濃度の不純物拡散層Da2,Da3、Sa2,Sa3を形成する。
具体的には、メモリセル領域1A上に、ヒ素を、5KeV,2×1015atoms/cm2、周辺回路領域1D上に、ヒ素を5KeV,6×1014atoms/cm2のイオン注入を行なう。
ここで、メモリゲート電極MGの高さが、100nm以上300nm以下程度とされているので、不純物が、メモリゲート電極MG下に位置する半導体基板(メモリゲート電極下チャネル領域)内に不純物が導入されることを抑制することができる。
このように、低濃度の不純物拡散層Da1,Sa1,Da2,Da3,Sa2,Sa3を形成した後に、図17に示すように、メモリゲート電極MGの側面上と、制御ゲート電極SGのメモリゲート電極MGと反対側に位置する側面上と、ゲート電極TGの両側面上とに、シリコン酸化膜等からなるサイドウォール状の絶縁膜18を形成する。
その後に、形成されたメモリゲート電極MG、制御ゲート電極SG、ゲート電極TG1、TG2およびサイドウォール絶縁膜18をマスクとして利用して、半導体基板1の主表面に不純物を注入する。
これにより、高濃度不純物拡散層Db1,Sb1,Db2,Sb2を形成する。これにより、ソース領域としての不純物拡散層SR1、SR2と、ドレイン領域としての不純物拡散層DR1、DR2を形成する。
具体的には、半導体基板1の主表上に、メモリゲート電極MG、制御ゲート電極、ゲート電極TGをマスクとして、ヒ素を50KeV、2×1017atoms/cm2、リンを、40KeV、1×1013atoms/cm2の条件で注入する。
不純物拡散層SR1,SR2,DR1,DR2を形成するためのイオン注入工程において、最も注入エネルギの高いのは、この第12工程において、リンを40KeV、1×1013atoms/cm2の条件で、注入する工程である。
この条件の下で、注入イオンの投影飛程Rpと標準偏差σ(ΔRp)を試算すると、Rp=60nm、σ=25nmとなる。そして、注入されるイオン量がチャネルのしきい値電圧に影響を与えないレベルまで低減されるために必要な高さとしては、(Rp+3×σ=)135nmとなる。その一方で、メモリゲート電極の高さは、100nm以上300nm以下程度とされている。このため、メモリゲート電極MG下に不純物が導入されることを抑制することができる。このように、メモリセルトランジスタのチャネル領域内に不純物が導入されることを抑制することができるため、メモリセルトランジスタのしきい値電圧が変動することを抑制することができる。
そして、図2に示されるように、制御ゲート電極SG、メモリゲート電極MG,ゲート電極TGを覆うように、半導体基板1の主表面上に、たとえば、スパッタリング法により、コバルトや、ニッケルなどの所定の金属膜が形成される。次に、たとえば、窒素等の雰囲気の下で、所定の温度の熱処理を施すことによって、制御ゲート電極SG等を構成するポリシリコン膜内のシリコンと、金属とが反応(シリサイド化)して、金属シリサイド膜が形成される。その後、未反応の金属膜が除去される。ここで、不純物拡散層SR1,SR2,DR1,DR2の注入条件は、上記のように所定のエネルギ以上で半導体基板1内に注入されているため、半導体基板1の主表面から所定の深さにまで不純物が達している。このため、不純物拡散層SR1,SR2,DR1,DR2の上面に形成され金属シリサイド膜が不純物拡散層SR1,SR2,DR1,DR2下に位置する半導体基板1にまで達することを抑制することができる。このようにして、不揮発性半導体記憶装置100を製造する。このようにして、本実施の形態に係る不揮発性半導体記憶装置100を製造することができる。
以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明は、不揮発性半導体記憶装置の製造方法に好適である。
本実施の形態に係る不揮発性半導体記憶装置の平面図である。 本実施の形態に係る不揮発性半導体記憶装置の断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第1工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第2工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第3工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第4工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第5工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第6工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第7工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第8工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第9工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第10工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第11工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第12工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第13工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第14工程をそれぞれ示す断面図である。 本実施の形態に係る不揮発性半導体記憶装置の製造工程の第15工程をそれぞれ示す断面図である。
符号の説明
1A メモリセル領域、1 半導体基板、1D 周辺回路領域、1C 境界領域、2 分離領域、51a 導電膜、51b 導電膜パターン、52 レジストパターン、54 レジストパターン、100 不揮発性半導体記憶装置、MG メモリゲート電極、SG 制御ゲート電極、TG ゲート電極。

Claims (5)

  1. 半導体基板の主表面に第1および第2活性領域を規定する分離領域を形成する工程と、
    前記半導体基板の主表面上に第1絶縁膜を形成する工程と、
    前記第1および第2活性領域上に位置する前記第1絶縁膜上に、第1導電膜を形成する工程と、
    前記第1導電膜上に第2絶縁膜を形成する工程と、
    前記第2絶縁膜をパターニングして、前記第1活性領域上に位置する前記第1導電膜の上面を露出すると共に、前記第2活性領域上に位置する前記第1導電膜の上面を覆う絶縁膜パターンを形成する工程と、
    前記第1導電膜および前記絶縁膜パターンを覆う第2導電膜を形成する工程と、
    前記第1絶縁膜および前記絶縁膜パターンをストッパとして機能させて、前記第2導電膜および前記第1導電膜をパターニングし、前記第1活性領域上に第1導電膜パターンを形成すると共に、前記第2活性領域上に位置する前記第2導電膜を除去する工程と、
    前記第1導電膜パターンの側面上に電荷を蓄積可能な第3絶縁膜を形成する工程と、
    前記第1導電膜パターンの側面上に第2導電膜パターンを形成する工程と、
    前記絶縁膜パターンを除去し、前記第2活性領域上に位置する前記第1導電膜をパターニングして、第3導電膜パターンを形成する工程と、
    前記第1導電膜パターンと前記第2導電膜パターンと前記第3導電膜パターンとをマスクとして、前記半導体基板の主表面に不純物を導入して不純物領域を形成する工程と、
    を備えた、不揮発性半導体記憶装置の製造方法。
  2. 前記第1導電膜パターンを形成する工程は、前記第1および第2導電膜上に反射防止膜をスピンコート法で形成する工程を含む、請求項1に記載の不揮発性半導体記憶装置の製造方法。
  3. 前記第2導電膜を形成する前に、前記絶縁膜パターンの膜厚を減じる工程をさらに備えた、請求項1または請求項2に記載の不揮発性半導体記憶装置の製造方法。
  4. 前記第1導電膜パターンを形成する工程は、前記第1および第2導電膜上に反射防止膜を形成する工程を含み、
    前記第2導電膜を形成する前に、前記絶縁膜パターンの膜厚を前記反射防止膜の膜厚より薄くする工程をさらに備える、請求項1に記載の不揮発性半導体記憶装置の製造方法。
  5. 第1導電膜パターンを形成する工程は、前記第1導電膜および前記第2導電膜の上面上に第1フォトレジスト膜を形成し、第1光源を用いて前記第1導電膜パターンが形成された第1レジストパターンを形成する工程を含み、
    第3導電膜パターンを形成する工程は、前記第1導電膜の上面上に第2フォトレジスト膜を形成し、第2光源を用いて前記第1導電膜パターンが形成された第2レジストパターンを形成する工程を含み、
    前記第2露光光源の波長は、前記第1露光光源の波長より長い、請求項1から請求項4のいずれかに記載の不揮発性半導体記憶装置の製造方法。
JP2006240358A 2006-09-05 2006-09-05 不揮発性半導体記憶装置の製造方法 Pending JP2008066386A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240358A JP2008066386A (ja) 2006-09-05 2006-09-05 不揮発性半導体記憶装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240358A JP2008066386A (ja) 2006-09-05 2006-09-05 不揮発性半導体記憶装置の製造方法

Publications (1)

Publication Number Publication Date
JP2008066386A true JP2008066386A (ja) 2008-03-21

Family

ID=39288844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240358A Pending JP2008066386A (ja) 2006-09-05 2006-09-05 不揮発性半導体記憶装置の製造方法

Country Status (1)

Country Link
JP (1) JP2008066386A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231829A (ja) * 2001-01-22 2002-08-16 Halo Lsi Design & Device Technol Inc 不揮発性半導体メモリおよびその製造方法
JP2003218232A (ja) * 2002-01-25 2003-07-31 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2004247633A (ja) * 2003-02-17 2004-09-02 Renesas Technology Corp 半導体装置
JP2006351987A (ja) * 2005-06-20 2006-12-28 Renesas Technology Corp 不揮発性半導体装置およびその製造方法
JP2007258401A (ja) * 2006-03-23 2007-10-04 Nec Electronics Corp 不揮発性半導体記憶装置及び不揮発性半導体記憶装置の製造方法
JP2007305711A (ja) * 2006-05-10 2007-11-22 Renesas Technology Corp 半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231829A (ja) * 2001-01-22 2002-08-16 Halo Lsi Design & Device Technol Inc 不揮発性半導体メモリおよびその製造方法
JP2003218232A (ja) * 2002-01-25 2003-07-31 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2004247633A (ja) * 2003-02-17 2004-09-02 Renesas Technology Corp 半導体装置
JP2006351987A (ja) * 2005-06-20 2006-12-28 Renesas Technology Corp 不揮発性半導体装置およびその製造方法
JP2007258401A (ja) * 2006-03-23 2007-10-04 Nec Electronics Corp 不揮発性半導体記憶装置及び不揮発性半導体記憶装置の製造方法
JP2007305711A (ja) * 2006-05-10 2007-11-22 Renesas Technology Corp 半導体装置およびその製造方法

Similar Documents

Publication Publication Date Title
US7087955B2 (en) Semiconductor device and a method of manufacturing the same
JP4659527B2 (ja) 半導体装置の製造方法
KR100669864B1 (ko) 불휘발성 메모리 장치의 제조 방법
US7709874B2 (en) Semiconductor device having a split gate structure with a recessed top face electrode
US6940120B2 (en) Non-volatile semiconductor memory device and method of fabricating thereof
US20030141535A1 (en) Fabrication method for flash memory
US7488634B2 (en) Method for fabricating flash memory device
JP5425378B2 (ja) 半導体装置の製造方法
US7687345B2 (en) Flash memory device and method of manufacturing the same
JP5047786B2 (ja) 半導体装置の製造方法
US6960527B2 (en) Method for fabricating non-volatile memory device having sidewall gate structure and SONOS cell structure
JP3745297B2 (ja) 不揮発性半導体記憶装置の製造方法
JP2007194483A (ja) 半導体装置及び半導体装置の製造方法
JP2008066725A (ja) Eeprom装置及びその製造方法
US7067374B2 (en) Manufacturing methods and structures of memory device
JP4895823B2 (ja) 半導体装置
JP2008166528A (ja) 半導体装置およびその製造方法
US20090142914A1 (en) Method for Manufacturing Semiconductor Device
JP2008066386A (ja) 不揮発性半導体記憶装置の製造方法
JPWO2006077650A1 (ja) 半導体装置及びその製造方法
JP2007251016A (ja) 不揮発性半導体記憶装置の製造方法
TWI383499B (zh) 半導體裝置及用於其之製造方法
JP5566013B2 (ja) 半導体装置及びその製造方法
US20060240620A1 (en) Semiconductor device and method of manufacturing the same
KR20070119052A (ko) 반도체 장치 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108