JP2008060239A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2008060239A
JP2008060239A JP2006233782A JP2006233782A JP2008060239A JP 2008060239 A JP2008060239 A JP 2008060239A JP 2006233782 A JP2006233782 A JP 2006233782A JP 2006233782 A JP2006233782 A JP 2006233782A JP 2008060239 A JP2008060239 A JP 2008060239A
Authority
JP
Japan
Prior art keywords
film
metal oxide
oxide film
semiconductor device
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006233782A
Other languages
English (en)
Inventor
Shinichiro Hayashi
慎一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006233782A priority Critical patent/JP2008060239A/ja
Publication of JP2008060239A publication Critical patent/JP2008060239A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】酸素バリア性に優れた導電性バリア層を提供すると共に、強誘電体膜に対して熱処理を施した後も安定した酸素バリア性を有する導電性バリア層を提供することである。
【解決手段】強誘電体膜を用いた不揮発性の半導体装置は、半導体基板10上に形成され、導電性金属酸化膜からなる導電性バリア膜17と、導電性バリア膜17の上に、下部電極18、ビスマス層状ペロブスカイト型構造を有する容量絶縁膜20及び上部電極21が順に形成されてなる容量素子22とを備える。導電性バリア膜17は、貴金属酸化膜と、貴金属酸化膜の結晶粒界に配置された卑金属酸化膜とからなる。
【選択図】図1

Description

本発明は、容量素子の下部電極の下側に形成された導電性金属酸化膜からなる導電性バリア層を備えた半導体装置及びその製造方法に関し、特に、ビスマス層状ペロブスカイト型構造を有する容量絶縁膜を用いた電気的に書き換え可能な不揮発性の半導体装置及びその製造方法に関するものである。
近年、プレーナ型構造を用いた1kbit〜64kbitの比較的に小容量の強誘電体メモリ装置が量産され始め、最近ではスタック型構造を持つ256kbit〜4Mbitの大容量のメモリ装置が開発の中心となってきている。
スタック型の不揮発性の半導体装置は、容量素子を構成する下部電極の下側に、半導体基板と電気的に接続するコンタクトプラグが配置されていることで、セルサイズを縮小して集積度の大幅な向上を図ろうとするものである。このようなスタック型構造の不揮発性の半導体装置を実現するためには、容量絶縁膜を結晶化する熱処理に際し、容量絶縁膜からの酸素の拡散を防止することでコンタクトプラグが酸化されないようにする構造として、容量素子と下部電極との間に導電性バリア層を設けた構造が提案されている。
例えば特許文献1によると、導電性バリア層として、M1M21−y(0<x<1、M1:Au、Pt、Ir、Pd、Os、Re、Rh、Tu、Cu、Co、Fe、Ni、V、Cr、M2:Ta、Ti、Zr、Hf、W、Y、Mo、Nb)で表される合金バリア層が提案されている。
特開2002−141483号公報
しかしながら、本件発明者が検討したところによると、上記特許文献1に開示された合金組成の範囲内にて成膜条件を調整しながら成膜したが、600℃〜700℃程度という比較的低温の条件下であっても、アモルファス又は微結晶構造の安定した導電性バリア層を形成することが困難であることが分かった。
また、上記特許文献1においては、700℃程度という比較的低温の条件下で導電性バリア膜を形成する方法が提案されているが、ビスマス層状ペロブスカイト型構造を有する強誘電体膜を容量絶縁膜として用いた場合に要する700℃〜800℃といった比較的高温の熱処理の条件下においても、酸素バリア性に優れた導電性バリア層を形成することが求められている。
前記に鑑み、本発明の目的は、酸素バリア性に優れた導電性バリア層を提供すると共に、強誘電体膜に対して熱処理を施した後も安定した酸素バリア性を有する導電性バリア層を提供することである。また、その結果、所望の分極特性を有する高集積化に適した半導体装置及びその製造方法を提供することである。
前記の目的を達成するため、本発明の一側面に係る半導体装置は、基板上に形成され、導電性金属酸化膜からなる導電性バリア膜と、導電性バリア膜の上に、下部電極、容量絶縁膜及び上部電極が順に形成されてなる容量素子とを備え、導電性バリア膜は、貴金属酸化膜と、貴金属酸化膜の結晶粒界に配置された卑金属酸化膜とからなる。
本発明の一側面に係る半導体装置によると、容量素子の下部に形成された導電性バリア膜が、貴金属酸化膜の結晶粒界に卑金属酸化膜が配置された構造を有しているため、金属の相互拡散の径路となる空隙がなく、界面反応性を抑制できる。これにより、導電性バリア膜の安定した酸素バリア性を得ることができる。その結果、コンタクト抵抗の安定化を実現すると共に、所望の分極特性を有する高集積化に適した半導体装置を実現できる。
本発明の一側面に係る半導体装置において、導電性バリア膜は、貴金属酸化膜の結晶粒界に卑金属酸化膜が詰め込まれたスタッフト構造を有していることにより、より安定した酸素バリア性を得ることができる。
本発明の一側面に係る半導体装置において、導電性金属酸化膜は、A1−xO(但し、xは、0.05≦x≦0.3の関係を満たす)を有する組成式よりなり、Aは、Ir、Pt、Pd、及びRuからなる群のうちから選択された1種類又は複数種類の貴金属元素であり、Bは、Al、Si、Ni、及びCuからなる群のうちから選択された1種類又は複数種類の卑金属元素であることが好ましい。
このようにすると、優れた容量特性が得られる。
本発明の一側面に係る半導体装置において、導電性金属酸化膜は、微結晶構造を有している。
本発明の一側面に係る半導体装置において、容量素子が、断面形状に凹部又は凸部を有する立体型構造を有している場合であっても、安定した酸素バリア性が得られる。
本発明の一側面に係る半導体装置において、下部電極における導電性バリア膜と対向する面は、1辺長が0.3μm以上であって且つ1.0μm以下の範囲の四角形状を有している場合において、容量素子として優れた値が得られる。
本発明の一側面に係る半導体装置において、容量絶縁膜は、ビスマス層状ペロブスカイトからなる場合であっても、安定した酸素バリア性が得られる。
本発明の一側面に係る半導体装置において、ビスマス層状ペロブスカイトは、SrBi(Ta1−xNb(但し、xは、0≦x<1の関係を満たす)、又はBi4−xLaTi12(但し、xは、0≦x<1の関係を満たす)からなることが好ましい。
本発明の一側面に係る半導体装置の製造方法は、基板上の絶縁膜の上に、導電性金属酸化膜からなる導電性バリア膜を形成する工程と、導電性バリア膜の上に、下部電極、容量絶縁膜及び上部電極が順に形成されてなる容量素子を形成する工程とを備え、導電性バリア膜は、貴金属酸化膜と、貴金属酸化膜の結晶粒界に配置された卑金属酸化膜とからなる。
本発明の一側面に係る半導体装置の製造方法によると、容量素子の下部に形成された導電性バリア膜が、貴金属酸化膜の結晶粒界に卑金属酸化膜が配置された構造を有しており、金属の相互拡散の径路となる空隙を有する結晶粒界がなく、界面反応性を抑制できる。これにより、安定した酸素バリア性を得ることができる。その結果、コンタクト抵抗の安定化ができ、所望の分極特性を有する高集積化に適した半導体装置を製造することができる。
本発明の一側面に係る半導体装置の製造方法において、導電性バリア膜は、貴金属及び卑金属からなるターゲットを用い、基板とターゲットとの距離を10cm以上であって且つ40cm以下とした条件下で、スパッタ法によって形成されることが好ましい。
このようにすると、ロングスロースパッタとなり、且つ、スパッタレートとの関係で安定してロングスロースパッタを使用できる。このため、貴金属酸化膜の結晶粒界に卑金属酸化膜が詰め込まれてなるスタッフト構造を有し且つ微結晶構造を有する導電性バリア膜を安定して得ることができる。
本発明の一側面に係る半導体装置の製造方法において、導電性金属酸化膜は、A1−xO(但し、xは、0.05≦x≦0.3の関係を満たす)よりなり、金属元素Aは、Ir、Pt、Pd、及びRuからなる群のうちから選択された1種類又は複数種類の貴金属元素であり、金属元素Bは、Al、Si、Ni、及びCuからなる群のうちから選択された1種類又は複数種類の卑金属元素であることが好ましい。
このようにすると、容量特性として優れた値が得られる。
本発明の一側面に係る半導体装置の製造方法において、容量絶縁膜は、ビスマス層状ペロブスカイトよりなり、上部電極を形成した後に、容量絶縁膜を結晶化する工程をさらに備えることが好ましい。
このようにすると、高温の熱処理となるビスマス層状ペロブスカイトの結晶化処理が必要な場合であっても、安定した酸素バリア性が得られる。
本発明の一側面に係る半導体装置の製造方法において、ビスマス層状ペロブスカイトは、SrBi(Ta1−xNb(但し、xは、0≦x<1の関係を満たす)、又はBi4−xLaTi12(但し、xは、0≦x<1の関係を満たす)からなるが好ましい。
本発明によると、貴金属酸化膜と、貴金属酸化膜の結晶粒界に配置された卑金属酸化膜とからなる酸素拡散を防止する導電性バリア膜を用いるため、酸素バリア性に優れ、安定したコンタクト抵抗を有する半導体装置を実現することができる。
(第1の実施形態)
以下に、本発明の第1の実施形態に係る半導体装置の構造について図面を参照しながら説明する。
図1は、本発明の第1の実施形態に係る半導体装置、具体的には不揮発性メモリ装置の構造を示す要部断面図である。
図1に示すように、例えばシリコン(Si)からなる半導体基板10の主面には、例えばSTI(shallow trench isolation)等からなる素子分離領域11によって区画された複数の素子形成領域が形成されている。各素子形成領域には、半導体基板10の上に、例えば酸化シリコンからなるゲート絶縁膜12aを介在させて、例えばポリシリコンからなるゲート電極12bが形成されている。ゲート電極12bの側面には、例えばシリコン窒化膜からなるサイドウォール12cが形成されている。半導体基板10におけるゲート電極12bの側方の領域には、浅いソースドレイン領域13aが形成されており、半導体基板10におけるサイドウォール12cの外側方下の領域には、深いソースドレイン領域13bが形成されている。ソースドレイン領域13は、浅いソースドレイン領域13aと深いソースドレイン領域13bとによって構成されている。半導体基板10上の全面には、ゲート電極12b及びサイドウォール12cを覆うように、例えば酸化シリコンからなる第1の層間絶縁膜14が形成されている。第1の層間絶縁膜14には、ソースドレイン領域13と電気的に接続する例えばタングステン(W)又はポリシリコンからなるコンタクトプラグ15が形成されている。
また、第1の層間絶縁膜14の上には、下面がコンタクトプラグ15の上端と接続するように、例えば厚さが約50nm〜150nmの窒化チタンアルミニウム(TiAlN)からなる導電膜16が形成されている。なお、導電膜16の構成として、該窒化チタンアルミニウムと厚さが約30nm〜100nmのイリジウム(Ir)とからなる積層膜を用いてもよい。また、導電膜16の上には、導電性バリア層として、例えば厚さが約30nm〜100nmであるIr0.75Al0.25O膜からなる導電性金属酸化膜17が形成されている。導電性金属酸化膜17は、上述の構成により、酸素バリア性を有する。
ここで、導電性金属酸化膜17について説明する。
図2(a)は、本発明の第1の実施形態に係る導電性金属酸化膜17の構造を示す模式図であって、(b)は、比較対象の従来の酸素バリア膜30の構造を示す模式図である。
本発明の第1の実施形態に係る導電性金属酸化膜17は、A1−xO(但し、A及びBは金属元素であり、xは、0.05≦x≦0.3の関係を満たす)よりなり、金属元素Aは、Ir、Pt、Pd、及びRuからなる群から選択される1種類又は複数種類の貴金属元素であり、金属元素Bは、Al、Si、Ni、及びCuからなる群から選択される1種類又は複数種類の卑金属元素である。具体的な構造としては、図2(a)に示すように、導電性金属酸化膜17は、貴金属酸化膜と、該貴金属酸化膜の結晶粒界に配置された卑金属酸化膜とからなるが、貴金属酸化膜の結晶と卑金属酸化膜の結晶とが交互に配置されており、卑金属酸化膜は貴金属酸化膜の結晶粒界を詰め込むように存在している。つまり、導電性金属酸化膜17は、貴金属酸化膜の結晶粒界に卑金属酸化膜が詰め込まれてなるスタッフト構造を有している。一方、図2(b)に示す従来の酸素バリア膜30では、貴金属酸化膜が粒状に分布しており、貴金属酸化膜と卑金属酸化膜とが不規則に配置されている。また、貴金属酸化膜の結晶粒界には、金属の相互拡散の経路Rとなる隙間を有する結晶粒界が存在している。
また、導電性金属酸化膜17の上には、例えば厚さが約50nm〜150nmの白金(Pt)からなる下部電極18が形成されている。導電膜16、導電性金属酸化膜17及び下部電極18からなる構造体の間には、例えば酸化シリコンからなる第2の層間絶縁膜19が埋め込まれている。下部電極18及び第2の層間絶縁膜19の上には、例えば厚さが50nm〜150nmのビスマス層状ペロブスカイト構造を有するタンタルニオブ酸ストロンチウムビスマス(SrBi(Ta1−yNb (但し、yは0≦y<1である。))からなる容量絶縁膜20が形成されており、該容量絶縁膜20の上には、例えば厚さが約50nm〜150nmの白金からなる上部電極21が形成されている。この下部電極18、容量絶縁膜20及び上部電極21から容量素子22が構成されている。
本発明の第1の実施形態に係る半導体記憶装置によると、容量素子22の下部電極18とコンタクトプラグ15との間に設けられた導電性金属酸化膜17が、貴金属酸化膜の結晶粒界に卑金属酸化膜が詰め込まれてなるスタッフト構造を有しており、金属の相互拡散の径路となる空隙を有する結晶粒界がないため、界面反応性を抑制できる。これにより、安定した酸素バリア性を有する導電性バリア層を得ることができる。その結果、コンタクト抵抗の安定化が図られ、所望の分極特性を有する高集積化に適した半導体装置を実現できる。
以下、本発明の第1の実施形態に係る半導体装置の製造方法について図面を参照しながら説明する。
図3(a)〜図3(d)は、本発明の第1の実施形態に係る半導体装置の製造方法を工程順に示す要部工程断面図である。
まず、図3(a)に示すように、半導体基板10の主面に、例えばSTI(Shallow Trench Isolation)法等により素子分離領域11を選択的に形成することにより、半導体基板10の主面を複数の素子形成領域に区画する。続いて、半導体基板10の全面に、例えば酸化シリコンからなるゲート絶縁膜形成膜及びポリシリコン膜からなるゲート電極形成膜を順に堆積した後に、リソグラフィ及びドライエッチング法を用いて、ゲート絶縁膜12a及びゲート電極12bを形成する。続いて、ゲート電極12bをマスクとしてイオン注入を行なうことにより、半導体基板10におけるゲート電極12bの側方下の領域に浅いソースドレイン領域13aを形成する。続いて、半導体基板10の全面に半導体基板10の全面に、例えばシリコン窒化膜を化学的気相堆積法(CVD:Chemical Vapor Deposition)法等により堆積した後、堆積したシリコン窒化膜をエッチングし、ゲート電極12b及びゲート絶縁膜12aの側面にシリコン窒化膜よりなるサイドウォール12cを形成する。続いて、半導体基板10におけるサイドウォール12cの外側方下の領域に深いソースドレイン領域13bを形成する。ソースドレイン領域13は、浅いソースドレイン領域13a及び深いソースドレイン領域13bとによって構成されている。
続いて、半導体基板10の全面に、ゲート電極12b及びサイドウォール12cを覆うように、CVD法により例えば酸化シリコンからなる第1の層間絶縁膜14を堆積した後に、該第1の層間絶縁膜14の表面を化学的機械研磨(CMP:Chemical Mechanical Polishing)法により平坦化する。続いて、リソグラフィ法及びドライエッチング法により、第1の層間絶縁膜14にソースドレイン領域13を露出するコンタクトホールを形成した後に、CVD法及びエッチバック法、又はCVD法及びCMP法の組み合わせを用いて、下端がソースドレイン領域13に接続する例えばタングステン(W)又はポリシリコンからなるコンタクトプラグ15を形成する。
続いて、スパッタ法又はCVD法により、第1の層間絶縁膜14及びコンタクトプラグ15の上に、例えば厚さが約50nm〜150nmの窒化チタンアルミニウム(TiAlN)からなり、後に導電膜16となる導電膜形成膜を形成する。なお、該導電膜形成膜は、窒化チタンアルミニウムと厚さが約30nm〜100nmのイリジウム(Ir)とからなる積層膜を用いてもよい。
続いて、ロングスロースパッタ法により、該導電膜形成膜の上に、例えば厚さが約50nmであるIr0.75Al0.25O膜からなり、後に導電性バリア層である導電性金属酸化膜17となる導電性金属酸化膜形成膜を形成する。ここで、ロングスロースパッタ法では、スパッタターゲットとして所望の組成を有するIrとAlとの合金を使用すると共に、スパッタガスとしてアルゴンと酸素とを使用し、半導体基板10と該スパッタターゲットとの距離を約30cmにして、スパッタ圧力を0.3Paとしている。このようにすると、スパッタ時間と形成された膜厚とが比例する関係が得られ、いわゆるインキュベーション時間がなく、制御性に優れ、工業的に使用することができるスパッタが可能となる。なお、このようにして形成された導電性金属酸化膜17の構造及び効果は、上述した図2(a)を用いた説明と同様である。
続いて、スパッタ法により、導電性金属酸化膜形成膜の上に、例えば厚さが約50nm〜150nmの白金(Pt)からなり、後に下部電極18となる下部電極形成膜を形成する。続いて、塩素(Cl )を含むエッチングガスを用いたドライエッチングにより、導電膜形成膜、導電性金属酸化膜形成膜及び下部電極形成膜をパターニングして、導電膜16、導電性金属酸化膜17及び下部電極18を形成する。
続いて、CVD法により、第1の層間絶縁膜14の上に、導電膜16、導電性金属酸化膜17及び下部電極18からなる構造を覆うように、例えば厚さが400nm〜600nmの酸化シリコンからなる第2の層間絶縁膜19を形成する。
次に、図3(b)に示すように、CMP法又はエッチング法により、下部電極18を露出させる。
次に、図3(c)に示すように、有機金属分解(MOD)法、有機金属化学的気相堆積(MOCVD)法又はスパッタ法により、下部電極18及び第2の層間絶縁膜19の上に、例えば厚さが50nm〜150nmのビスマス層状ペロブスカイト構造を有するSrBi(Ta1−yNb (但し、yは0≦y<1である。))からなる容量絶縁膜形成膜20Aを成膜する。続いて、スパッタ法により、容量絶縁膜形成膜20Aの上に、例えば白金からなる上部電極形成膜21Aを成膜する。その後、成膜された容量絶縁膜形成膜20Aに対して、温度が600℃〜800℃の酸素雰囲気で熱処理を行なう。
次に、図3(d)に示すように、リソグラフィ法により、上部電極膜形成膜21Aの上に下部電極18を覆うレジストパターン(図示せず)を形成し、その後、ドライエッチング法により、上部電極形成膜21A及び容量絶縁膜形成膜20Aをパターニングして、上部電極形成膜21Aから上部電極21を形成すると共に、容量絶縁膜形成膜20Aから容量絶縁膜20を形成する。これにより、導電性金属酸化膜17の上に、下部電極18、容量絶縁膜20及び上部電極21からなる容量素子22が形成される。
また、温度が600℃〜800℃の酸素雰囲気での上記の熱処理は、上部電極形成膜21Aの成膜後に行ったが、パターニングして上部電極21を形成した後でもよいし、さらに、上部電極21を覆う上層の絶縁膜(図示せず)を形成した後に行ってもよい。熱処理工程を後に実行する方が、半導体基板10のプロセス中におけるダメージを排除できると共に、高い容量素子特性を得られるため、一層好ましい。
本発明の第1の実施形態に係る半導体装置の製造方法によると、容量素子22の下部電極18とコンタクトプラグ15との間に、スタッフト構造を有する導電性金属酸化膜17を形成する。スタッフト構造を有する導電性金属酸化膜17は、金属の相互拡散の径路となる空隙を有する結晶粒界がないため、界面反応性を抑制できる。これにより、安定した酸素バリア性を得ることができる。その結果、コンタクト抵抗の安定化が図られ、所望の分極特性を有する高集積化に適した半導体装置を製造することができる。
このようにして、容量絶縁膜20の酸素を使用した熱処理時にも安定な貴金属において、酸素拡散が起こる貴金属の結晶粒界に卑金属を配置する構成を有する導電性金属酸化膜17を形成することで、卑金属は酸化物を形成し且つ熱処理時にも安定であり、量産性に優れた半導体装置の製造方法を実現することができる。
なお、以上の第1の実施形態に係る半導体装置及びその製造方法において、下部電極18及び上部電極21の材料としては、白金の他に、ルテニウム、酸化ルテニウム、イリジウム、酸化イリジウム、チタンアルミニウム、窒化チタンアルミニウム、チタン、窒化チタン、タンタル、及び窒化タンタルからなる群より選択された1つの材料又は複数の材料を用いてもよい。
また、容量絶縁膜20の材料としては、SrBi(Ta1−yNb 他に、例えばチタン酸ビスマスランタン((BiLa1−yTi12)(但し、いずれも、yは0≦y<1である。)等のビスマス層状ペロブスカイトを用いてもよい。
さらに、導電膜16の材料としては、TiAlNの他に、Ti、W、Ta等の高融点金属膜、高融点金属シリサイド膜、高融点金属炭化物膜、若しくはこれらの複合膜、又は以上の膜を組み合わせた積層膜であってもよい。
−変形例−
以上の第1の実施形態において、容量素子22は、平面型の構造を有する場合について説明したが、図4に示すように、立体型の構造を有する場合であっても、本発明は同様に実施可能である。すなわち、第2の層間絶縁膜19a及び導電性金属酸化膜17の上に第3の層間絶縁膜19bを形成し、該第3の層間絶縁膜19bに形成した凹部に、下部電極、容量絶縁膜20及び上部電極21からなる容量素子22を設けた構成であってもよい。なお、図4では省略しているが、その他の構成は前述した図1と同様である。
(第2の実施形態)
本発明の第2の実施形態に係る半導体装置及びその製造方法では、上述した第1の実施形態で説明した半導体装置及びその製造方法における好ましい条件について、図面を参照しながら説明する。なお、下記の測定では、測定対象とする容量素子22は正方形状を有し、面積総和が1mmとなるようにアレイ総数を変えて行った。また、容量素子22を構成する容量絶縁膜20の膜厚は60nmとし、印加する電圧を1.2Vとした。
まず、ロングスロースパッタ法を用いて、特にスタッフト構造を有する導電性金属酸化膜17を形成する際における好適な条件について説明する。
図5は、半導体基板10とスパッタターゲットとの距離(cm)と容量特性(%)(但し、距離50cmの最大値を100%として規格化している。)との関係を示すと共に、半導体基板10とスパッタターゲットとの距離(cm)とスパッタレート(%)(但し、距離3cmの最大値を100%として規格化している。)との関係を示している。
スパッタ圧力を0.3Paとし、半導体基板10とスパッタターゲットとの距離を変えて、容量特性を測定したところ、図5から明らかなように、半導体基板10とスパッタターゲットとの距離が相対的に長くなると、ロングスロースパッタとなる条件になり、容量特性が向上することがわかる。好適な条件としては、スパッタレートとの関係で決まり、ロングスロースパッタが安定して使用できる条件は、スパッタレートの最大値の約80%であるため、半導体基板10とスパッタターゲットとの距離は、10cm以上であって且つ40cm以下であることが分かる。
同様にして、図示はしていないが、半導体基板10とスパッタターゲットとの距離を30cmに設定したときにおいて、スパッタ圧力を変えて容量特性を評価したところ、スパッタ圧力は、0.1Pa以上であって且つ1Pa以下であることが好適な条件となることが分かった。
このような好適な条件下でのロングスロースパッタ法によって形成した導電性金属酸化膜17を備えた半導体装置では、図4に示した立体型の構造を有する容量素子22を有する場合に、例えば0.13μm、110nm、又は65nmのCMOSを半導体基板10上に集積した半導体装置が実現される。
次に、上述したロングスロースパッタ法における好適な条件を用いて導電性金属酸化膜17の1辺長として望ましい値について説明する。ここでは、導電性金属酸化膜17は四角形状を有し、酸素バリア性は短辺長で決まるので、これを導電性金属酸化膜17の1辺長として定義した。
図6は、容量素子22の導電性金属酸化膜17の1辺長(μm)と容量特性(比誘電率)(但し、導電性金属酸化膜17の1辺長1.0(μm)のときの容量特性を100%として規格化している。)との関係を示している。また、導電性金属酸化膜17として、酸化イリジウムアルミニウム(Ir1−xAlO)を材料とする場合と、酸化白金シリコン(Pt1−xSiO)を材料とする場合とについて測定した。
上述したロングスロースパッタ法における好適な一条件(ここでは、半導体基板10とスパッタターゲットとの距離が30cm、スパッタ圧力が0.3Pa)下で、容量素子22の導電性金属酸化膜17の1辺長を変えたところ、図6から明らかなように、第1の実施形態のスタッフト構造を有する導電性金属酸化膜17を使用することにより、1辺長が少なくとも0.3μmの容量素子22を実用できることが分かる。なお、1辺長の上限としては、1μmまで実用可能である。この場合導電性金属酸化膜17は正方形状となる。
さらに、上述したロングスロースパッタ法における好適な条件を用いて導電性金属酸化膜17を形成した場合における、スタッフト構造を有する導電性金属酸化膜17の組成として望ましい値について説明する。
図7は、スタッフト構造を有する導電性金属酸化膜17の組成(x値)と容量特性(但し、導電性金属酸化膜17の1辺長1.0(μm)のときの容量特性を100%として規格化している。)との関係を示している。
上述したロングスロースパッタ法における好適な一条件(ここでは、半導体基板10とスパッタターゲットとの距離が30cm、スパッタ圧力が0.3Pa)下で、スタッフト構造を有する導電性金属酸化膜17の組成を変えたところ、図7から明らかなように、その組成は、x値が0.05以上であって且つ0.3以下が望ましことが分かる。
−変形例−
以上の第2の実施形態において、容量素子22は、平面型の構造を有する場合について説明したが、立体型の構造を有する場合であっても、本発明は同様に実施可能である。図6と図7に相当する測定について、立体型の構造を有する容量素子22を使用して行なった。図4に示した、第3の層間絶縁膜19bに形成した凹部の深さ(凹部内に形成した下部電極の高さ)を概1μmに設定した。このため、測定対象とする容量素子22の面積総和が1mmとなるように、立体型の構造を有する容量素子22に比較して、アレイ総数を減じて行った。記載を省略しているが、その他の構成は前述した図6と図7と同様である。立体型の構造を有する電極の高さは、少なくとも0.3μmが容量特性増大の観点から望ましく、上限としては2μmまで実用可能である。
酸素バリア性はスタッフト構造を有する導電性金属酸化膜17により規定されるので、容量素子22に平面型の構造を用いた場合と同様に、1辺長が少なくとも0.3μmの容量素子22を実用でき、1辺長の上限としては1μmまで実用可能である。この場合導電性金属酸化膜17は正方形状となる。
上述した本発明を用いれば、高集積デバイス、特に0.13μm、110nm、65nmのCMOSを有する半導体装置をより効率よく実現することができる。
本発明に係る半導体装置及びその製造方法は、酸素バリア性を有する導電性金属酸化物を用いる容量素子を備えた半導体装置及びその製造方法等にとって有用である。
本発明の第1の実施形態に係る半導体装置の構造を示す要部断面図である。 (a)は本発明の第1の実施形態における導電性金属酸化膜の構造を示す模式図であり、(b)は従来の酸素バリア膜の構造を示す模式図である。 (a)〜(d)は、本発明の第1の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。 本発明の第1の実施形態の変形例に係る半導体装置の構造を示す要部断面図である。 本発明の第2の実施形態における、半導体基板とスパッタターゲットとの距離(cm)と容量特性(%)との関係図、及び半導体基板とスパッタターゲットとの距離(cm)とスパッタレート(%)との関係図である。 本発明の第2の実施形態における、容量素子の導電性金属酸化膜の1辺長(μm)と容量特性(比誘電率)との関係図である。 スタッフト構造を有する導電性金属酸化膜の組成(x値)と容量特性との関係図である。
符号の説明
10 半導体基板
11 素子分離領域
12a ゲート絶縁膜
12b ゲート電極
12c サイドウォール
13 ソースドレイン領域
13a 浅いソースドレイン領域
13b 深いソースドレイン領域
14 第1の層間絶縁膜
15 コンタクトプラグ
16 導電膜
17 導電性金属酸化膜
18 下部電極
19、19a 第2の層間絶縁膜
20 容量絶縁膜
20A 容量絶縁膜形成膜
21 上部電極
21A 上部電極形成膜
22 容量素子
19b 第3の層間絶縁膜

Claims (13)

  1. 基板上に形成され、導電性金属酸化膜よりなる導電性バリア膜と、
    前記導電性バリア膜の上に、下部電極、容量絶縁膜及び上部電極が順に形成されてなる容量素子とを備え、
    前記導電性バリア膜は、貴金属酸化膜と、前記貴金属酸化膜の結晶粒界に配置された卑金属酸化膜とからなることを特徴とする半導体装置。
  2. 前記導電性バリア膜は、前記貴金属酸化膜の結晶粒界に前記卑金属酸化膜が詰め込まれたスタッフト構造を有していることを特徴とする請求項1に記載の半導体装置。
  3. 前記導電性金属酸化膜は、A1−xO(但し、xは、0.05≦x≦0.3の関係を満たす)を有する組成式からなり、
    前記Aは、Ir、Pt、Pd、及びRuからなる群のうちから選択された1種類又は複数種類の貴金属元素であり、
    前記Bは、Al、Si、Ni、及びCuからなる群のうちから選択された1種類又は複数種類の卑金属元素であることを特徴とする請求項1に記載の半導体装置。
  4. 前記導電性金属酸化膜は、微結晶構造を有していることを特徴とする請求項1に記載の半導体装置。
  5. 前記容量素子は、断面形状に凹部又は凸部を有する立体型構造を有していることを特徴とする請求項1に記載の半導体装置。
  6. 前記下部電極における前記導電性バリア膜と対向する面は、1辺長が0.3μm以上であって且つ1.0μm以下の範囲の四角形状を有していることを特徴とする請求項1から5のうちのいずれか1項に記載の半導体装置。
  7. 前記容量絶縁膜は、ビスマス層状ペロブスカイトからなることを特徴とする請求項1に記載の半導体装置。
  8. 前記ビスマス層状ペロブスカイトは、SrBi(Ta1−xNb(但し、xは、0≦x<1の関係を満たす)、又はBi4−xLaTi12(但し、xは、0≦x<1の関係を満たす)からなることを特徴とする請求項7に記載の半導体装置。
  9. 基板上の絶縁膜の上に、導電性金属酸化膜からなる導電性バリア膜を形成する工程と、
    前記導電性バリア膜の上に、下部電極、容量絶縁膜及び上部電極が順に形成されてなる容量素子を形成する工程とを備え、
    前記導電性バリア膜は、貴金属酸化膜と、前記貴金属酸化膜の結晶粒界に配置された卑金属酸化膜とからなることを特徴とする半導体装置の製造方法。
  10. 前記導電性バリア膜は、貴金属及び卑金属からなるターゲットを用い、前記基板と前記ターゲットとの距離を10cm以上であって且つ40cm以下とした条件下で、スパッタ法によって形成されることを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記導電性金属酸化膜は、A1−xO(但し、xは、0.05≦x≦0.3の関係を満たす)を有する組成式よりなり、
    前記Aは、Ir、Pt、Pd、及びRuからなる群のうちから選択された1種類又は複数種類の貴金属元素であり、
    前記Bは、Al、Si、Ni、及びCuからなる群のうちから選択された1種類又は複数種類の卑金属元素であることを特徴とする請求項9に記載の半導体装置の製造方法。
  12. 前記容量絶縁膜は、ビスマス層状ペロブスカイトよりなり、
    前記上部電極を形成した後に、前記容量絶縁膜を結晶化する工程をさらに備えることを特徴とする請求項9に記載の半導体装置の製造方法。
  13. 前記ビスマス層状ペロブスカイトは、SrBi(Ta1−xNb(但し、xは、0≦x<1の関係を満たす)、又はBi4−xLaTi12(但し、xは、0≦x<1の関係を満たす)からなることを特徴とする請求項12に記載の半導体装置の製造方法。
JP2006233782A 2006-08-30 2006-08-30 半導体装置及びその製造方法 Pending JP2008060239A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233782A JP2008060239A (ja) 2006-08-30 2006-08-30 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233782A JP2008060239A (ja) 2006-08-30 2006-08-30 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008060239A true JP2008060239A (ja) 2008-03-13

Family

ID=39242651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233782A Pending JP2008060239A (ja) 2006-08-30 2006-08-30 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008060239A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072364A (ja) * 2014-09-29 2016-05-09 日亜化学工業株式会社 リードフレーム及び発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072364A (ja) * 2014-09-29 2016-05-09 日亜化学工業株式会社 リードフレーム及び発光装置

Similar Documents

Publication Publication Date Title
US6831323B2 (en) Semiconductor device and method for fabricating the same
JP4535076B2 (ja) 強誘電体キャパシタとその製造方法
JP2009253033A (ja) 半導体記憶装置及びその製造方法
US7732851B2 (en) Method for fabricating a three-dimensional capacitor
US20060183250A1 (en) Methods of fabricating ferroelectric capacitors utilizing a partial chemical mechanical polishing process
JP2009065089A (ja) 半導体装置及びその製造方法
JP2005217189A (ja) 容量素子及びその製造方法
KR20100089522A (ko) 커패시터 및 그 제조 방법.
US7573120B2 (en) Semiconductor device and method of manufacturing the same
US20070284636A1 (en) Semiconductor memory device and method for fabricating the same
JP4105656B2 (ja) 半導体装置及びその製造方法
JP2008147491A (ja) 半導体記憶装置
JP2003086771A (ja) 容量素子、半導体記憶装置及びその製造方法
KR100471730B1 (ko) 배리어 구조물을 구비한 커패시터 전극의 제조 방법
JP4284228B2 (ja) 半導体装置の製造方法
JP5487140B2 (ja) 半導体装置の製造方法
JP2008060239A (ja) 半導体装置及びその製造方法
JP2004281965A (ja) 半導体装置及びその製造方法
JP2009071142A (ja) 強誘電体メモリ装置の製造方法
JP2005353829A (ja) 半導体装置及びその製造方法
JP2012028606A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2009071141A (ja) 強誘電体メモリ装置の製造方法及び強誘電体メモリ装置
JP2004179497A (ja) 半導体装置および半導体装置の製造方法
JP2009081229A (ja) 半導体装置及びその製造方法
KR20110111141A (ko) 커패시터 및 그 형성 방법