JP2008051395A - エジェクタ式冷凍サイクル - Google Patents
エジェクタ式冷凍サイクル Download PDFInfo
- Publication number
- JP2008051395A JP2008051395A JP2006227578A JP2006227578A JP2008051395A JP 2008051395 A JP2008051395 A JP 2008051395A JP 2006227578 A JP2006227578 A JP 2006227578A JP 2006227578 A JP2006227578 A JP 2006227578A JP 2008051395 A JP2008051395 A JP 2008051395A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- ejector
- suction
- coolant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0012—Ejectors with the cooled primary flow at high pressure
Landscapes
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】冷媒吸引口から吸引される吸引冷媒流量が増加しても吸引圧損の増加が抑制できるエジェクタ式冷凍サイクルを提供する。
【解決手段】エジェクタ式冷凍サイクルに適用されるエジェクタ14の冷媒吸引口14dおよび第2蒸発器17の冷媒流出口17dを複数個設け、対応する冷媒吸引口14dおよび冷媒流出口17dを、それぞれ異なる冷媒通路18で接続する。これにより、第2蒸発器17流出冷媒を適切に分配して、それぞれの冷媒吸引口14dから吸引させることができるので、冷媒吸引口14dから吸引される吸引冷媒流量が増加しても、吸引圧損の増加を抑制できる。
【選択図】図1
【解決手段】エジェクタ式冷凍サイクルに適用されるエジェクタ14の冷媒吸引口14dおよび第2蒸発器17の冷媒流出口17dを複数個設け、対応する冷媒吸引口14dおよび冷媒流出口17dを、それぞれ異なる冷媒通路18で接続する。これにより、第2蒸発器17流出冷媒を適切に分配して、それぞれの冷媒吸引口14dから吸引させることができるので、冷媒吸引口14dから吸引される吸引冷媒流量が増加しても、吸引圧損の増加を抑制できる。
【選択図】図1
Description
本発明は、流体減圧手段の役割および流体循環手段の役割を果たすエジェクタを有するエジェクタ式冷凍サイクルに関する。
従来、エジェクタを有するエジェクタ式冷凍サイクルが知られている。この種のエジェクタ式冷凍サイクルでは、エジェクタのノズル部で冷媒を減圧膨張させて噴射する際の噴射冷媒の圧力低下によって、蒸発器下流側の冷媒を冷媒吸引口からエジェクタ内部へ吸引している。
さらに、上記の噴射冷媒と冷媒吸引口から吸引された吸引冷媒とを混合し、ディフューザ部にて混合冷媒の運動エネルギーを圧力エネルギーに変換することで昇圧させて、昇圧された冷媒を圧縮機に吸引させることで圧縮機の消費動力を低減させ、サイクル効率(COP)の向上を図っている。
従って、冷媒吸引口から冷媒を吸入する際の圧力損失(以下、吸引圧損という)が増大してしまうと、冷媒を充分に吸引することができなくなり、混合冷媒の運動エネルギー量が減少してしまう。そのため、ディフーザ部における冷媒の昇圧量が減少して、サイクル向上効果も低下してしまう。
そこで、特許文献1に開示されたエジェクタでは、吸引冷媒が冷媒吸引口からノズル部に向かって流れることを禁止する壁部を設けることによって、吸引冷媒の全量が冷媒吸引口からノズル部出口側(冷媒噴射口側)に向かって流れるようにして、吸引圧損を低減させている。
特開2004−340136号公報
ところが、特許文献1のエジェクタを採用したエジェクタ式冷凍サイクルを、実際に作動させると、サイクルを循環する循環冷媒流量が増加すると、吸引圧損が増加してしまう。そこで、本発明者らがその原因について調査したところ、循環冷媒流量が増加すると、吸引冷媒流量も増加してしまうことが原因であると判った。
その理由は、特許文献1のエジェクタでは、単に吸引冷媒の流れ方向を適切な方向に変化させることによって吸引圧損を低減させているだけなので、吸引冷媒流量の増加してしまうと、吸引圧損を抑制するために必要な冷媒通路面積(冷媒吸引口の開口面積)を確保できなくなるからである。
このため、特許文献1のエジェクタを採用したエジェクタ式冷凍サイクルでは、吸引冷媒流量が所定値以上に増加すると、吸引圧損の増加を抑制することができず、充分なサイクル効率向上効果を得ることができない。
本発明は上記点に鑑み、冷媒吸引口から吸引される吸引冷媒流量が増加しても吸引圧損の増加が抑制できるエジェクタ式冷凍サイクルを提供することを目的とする。
上記の目的を達成するため、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、放熱器(12)にて放熱された冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14d)から吸引するエジェクタ(14)と、冷媒を蒸発させて、冷媒流出口(17d)から冷媒吸引口(14d)上流側へ流出する蒸発器(17)とを備え、冷媒吸引口(14d)および冷媒流出口(17d)は複数個設けられており、さらに、対応する冷媒吸引口(14d)および冷媒流出口(17d)が、それぞれ異なる冷媒通路(18)で接続されていることエジェクタ式冷凍サイクルを特徴とする。
これによれば、エジェクタ(14)の冷媒吸引口(14d)が複数個設けられているので、冷媒吸引口(14d)を1個のみ設ける場合に対して、冷媒吸引口(14d)の冷媒通路面積(冷媒吸引口(14d)の開口面積)の合計値を容易に増加させることができる。
さらに、対応する冷媒吸引口(14d)および冷媒流出口(17d)を、それぞれ異なる冷媒通路(18)で接続しているので、蒸発器(17)流出冷媒を適切に分配して、それぞれの冷媒吸引口(14d)から吸引させることができる。その結果、冷媒吸引口(14d)から吸引される吸引冷媒流量が増加しても、吸引圧損の増加を抑制できる。
また、上記特徴のエジェクタ式冷凍サイクルにおいて、具体的に、放熱器(12)にて放熱された冷媒の流れを分岐する分岐部(Z)と、分岐部(Z)で分岐された一方の冷媒を減圧膨張させる絞り機構(16)とを備え、ノズル部(14a)は、分岐部(Z)で分岐された他方の冷媒を減圧膨張させ、蒸発器(17)は、絞り機構(16)下流側の低圧冷媒を蒸発させるようになっていてもよい。さらに、エジェクタ(14)下流側冷媒を気相冷媒と液相冷媒とに分離する気液分離器(20)を備え、蒸発器(17)は、気液分離器(20)で分離された液相冷媒を蒸発させるようになっていてもよい。
また、上述の特徴のエジェクタ式冷凍サイクルにおいて、エジェクタ(14)は、ノズル部(14a)を収容する筒状のボデー部(14b)を有し、複数個の冷媒吸引口(14d)は、ボデー部(14b)の軸周りに均等な間隔で配置されていてもよい。
これによれば、複数個の冷媒吸引口(14d)が、ボデー部(14b)の軸周りに均等な間隔で配置されているので、エジェクタ(14)のノズル部(14a)の全周から冷媒を均等に吸引させることができる。その結果、吸引冷媒流れの偏在を防止して、より一層、吸引圧損の増加を抑制できる。
なお、本発明の軸周りに均等な間隔で配置されているとは、ボデー部(14b)の軸方向から見て放射状に配置されていることを意味している。さらに、軸周りに完全に均等な間隔で配置されていることのみを意味するものではなく、冷媒吸引口(14d)をボデー部(14b)に形成する際の加工誤差等によって均等な間隔から微小にずれて略均等な間隔で配置されているものも含む意味である。
また、上述の特徴のエジェクタ式冷凍サイクルにおいて、蒸発器(17)は、複数の独立した冷媒流路を有する熱交換器で構成されており、複数個の冷媒流出口(17d)は、それぞれの冷媒流路に設けられていてもよい。
これによれば、複数個の冷媒流出口(17d)が、それぞれの独立した冷媒流路に設けられているので、冷媒流出口(17d)から冷媒通路(18)に均等に冷媒を流入させることができる。その結果、冷媒吸引口(14d)から均等に冷媒を吸引できるので、より一層、吸引圧損の増加を抑制できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
図1〜図3により、本発明の第1実施形態を説明する。図1は本実施形態のエジェクタ式冷凍サイクル10をバス車両用空調装置に適用した例の全体構成図を示す。なお、バス車両用空調装置では、一般的に、通常の車両用空調装置に対して、冷凍サイクルを循環する循環冷媒流量が多くなっている。
図1〜図3により、本発明の第1実施形態を説明する。図1は本実施形態のエジェクタ式冷凍サイクル10をバス車両用空調装置に適用した例の全体構成図を示す。なお、バス車両用空調装置では、一般的に、通常の車両用空調装置に対して、冷凍サイクルを循環する循環冷媒流量が多くなっている。
まず、エジェクタ式冷凍サイクル10において、冷媒を吸入して圧縮する圧縮機11は、電磁クラッチ11a、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。もちろん、圧縮機11を回転駆動させるための専用エンジンを設けて、圧縮機11が、この専用エンジンから駆動力を得るようにしてもよい。
圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチ11aの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを採用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。
圧縮機11の冷媒吐出側には放熱器12が接続されている。この放熱器12は、圧縮機11から吐出された高温高圧冷媒と図示しない放熱器用送風機より送風される外気(車室外空気)とを熱交換させて、高温高圧冷媒を冷却する熱交換器である。
より具体的には、放熱器12は、冷媒流れ上流側に位置する凝縮用熱交換部12aと、この凝縮用熱交換部からの冷媒を導入して冷媒の気液を分離してサイクル内の余剰液相冷媒を溜めるレシーバ12bと、このレシーバ12bからの飽和液相冷媒を過冷却する過冷却用熱交換部12cとを有する、いわゆるサブクールタイプの凝縮器である。
放熱器12の出口側(具体的には、過冷却用熱交換部12cの出口側)には、温度式膨張弁13が接続されている。この温度式膨張弁13は放熱器12から流出した高圧液相冷媒を中間圧に減圧するとともに、温度式膨張弁13から流出する冷媒の流量を調整するものである。
具体的には、本実施形態の温度式膨張弁13は、圧縮機11の吸入側通路に配置された感温部13aを有しており、圧縮機11の吸入側冷媒の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、圧縮機吸入側冷媒の過熱度が予め設定された所定値となるように弁開度(冷媒流量)を調整している。
温度式膨張弁13の下流側には、冷媒の流れを分岐する分岐部Zが設けられている。このような分岐部Zは、1つの冷媒流入口と2つの冷媒流出口とを有する三方継手等によって容易に構成できる。そして、分岐部Zで分岐された一方の冷媒はエジェクタ14側へ流入し、他方の冷媒は絞り機構16側へ流入するようになっている。
エジェクタ14は、冷媒を減圧する減圧手段の機能を果たすとともに、高速で噴出する冷媒流の吸引作用によって冷媒の循環を行う冷媒循環手段としての機能を果たす。ここで、図2により、エジェクタ14の詳細について説明する。図2(a)はエジェクタ14の軸方向(長手方向)断面図であり、図2(b)は、図2(a)のA−A断面図である。
本実施形態のエジェクタ14は、ノズル部14aおよびボデー部14bを有して構成されている。ノズル部14aは、ステンレス合金等の金属で形成されており、略円筒状で冷媒の流れ方向に向かって先細りの形状の先端部を有し、この形状に沿って冷媒通路面積を小さく絞って、冷媒を等エントロピ的に減圧膨張させるようになっている。従って、先細り形状の先端部に冷媒を噴射する冷媒噴射孔14cが形成されている。
また、ノズル部14aは、ボデー部14bの内部に圧入等の方法で固定されており、圧入部(固定部)から冷媒が漏れないようになっている。もちろん、固定部から冷媒が漏れないようになっていれば、接着、溶接、圧接、はんだ付け等の接合手段で接合・固定してもよい。
ボデー部14bは、アルミニウム等の金属で形成されており、図2(a)に示すように、中央に細軸部を有する略円筒状の形状になっており、内部にノズル部14aを支持・固定するとともに、混合部14e、ディフューザ部14fが形成され、さらに、ボデー部14bの内外を貫通する冷媒吸引口14dが形成されている。
冷媒吸引口14dは後述する第2蒸発器17下流側冷媒をボデー部14b内部に吸引する吸引口であり、ノズル部14aの外周側に配置され、ノズル部14aの冷媒噴射孔14cと連通するように複数個(本実施形態では、8個)設けられている。
さらに、冷媒吸引口14dは、ボデー部14bの軸周りに均等な間隔で配置されている。具体的には、図2(b)に示すように、ボデー部14bの筒壁に周方向に沿って配置され、さらに、ボデー部14bの軸方向から見て放射状に配置されている。
混合部14eは、ボデー部14bの中央の細軸部内に形成され、冷媒噴射孔14cから噴射された高速度の噴射冷媒と複数の冷媒吸引口14dから吸引された吸引冷媒とを混合する空間で、ノズル部14aおよび冷媒吸引口14dの下流側に配置されている。
ディフューザ部14fは、混合部14eの下流側に配置されて冷媒流れを減速して冷媒圧力を上昇させる昇圧部である。ディフューザ部14fは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる機能、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する機能を有する。
さらに、ディフューザ部14f下流側には、図1に示すように、第1蒸発器15が配置されている。第1蒸発器15はエジェクタ14のノズル部14aで減圧された低圧冷媒と蒸発器用送風機(図示せず)によって送風された空気との間で熱交換を行って、低圧冷媒に吸熱させることで空気を冷却する熱交換器である。第1蒸発器15の冷媒流れ下流側は圧縮機11吸入側に接続される。
次に、分岐部Zで分岐された他方の冷媒が流入する絞り機構16は、第2蒸発器17に流入する冷媒を減圧する減圧手段であるとともに、第2蒸発器17に流入する冷媒の流量調整を行う流量調整手段でもある。なお、本実施形態では、後述するように絞り機構16をキャピラリチューブで構成しているが、オリフィス等の固定絞りで構成してもよい。
第2蒸発器17は、絞り機構16から流出した冷媒と第1熱交換器15にて熱交換された空気との間で熱交換を行って、低圧冷媒に吸熱させることで空気を冷却する熱交換器である。従って、第1蒸発器15は前述の蒸発器用送風機によって送風された空気の流れ方向の上流側(風上側)に配置され、第2蒸発器17は空気の流れ方向の下流側(風下側)に配置されている。
つまり、蒸発器用送風機より送風された空気は、矢印Y方向に流れ、まず、第1蒸発器15でディフューザ部14fから流出した冷媒と熱交換して冷却され、次に第2蒸発器17で絞り機構16から流出した冷媒と熱交換して冷却されるようになっている。これにより、第1蒸発器15と第2蒸発器17にて同一の冷却対象空間(図示せず)を冷却することができるようになっている。
ここで、図3により、第2蒸発器17の詳細について説明する。図3は、第2蒸発器17の模式的な正面図である。なお、図3の上下矢印の方向は、バス車両用空調装置として車両に搭載した状態における方向を示している。従って、図3の紙面前後方向が、蒸発器用送風機の送風空気流れ方向Yとなる。
第2蒸発器17は、低圧冷媒と前述の蒸発器用送風機から送風された空気との熱交換を促進させるプレート状のフィン17a、内部を冷媒が通過するチューブ17b、絞り機構16下流側冷媒を流入させる冷媒流入口17cおよび熱交換後の冷媒を流出させる複数の冷媒流出口17dを有して構成される。
フィン17aは、放熱性に優れる金属(本実施形態では、アルミニウム)で構成され、上下方向に細長く延びる平板状の形状になっており、その板面が送風空気流れ方向Yに平行となるように、左右方向に多数枚積層配置されている。
チューブ17bは、積層された各フィン17aの板面を串刺し状に貫通するように複数本積層配置されている。このチューブ17bは銅製の丸管によって構成されており、略水平方向に延びる形状になっている。従って、本実施形態の第2蒸発器17は、いわゆるフィンアンドチューブ型の熱交換器である。
なお、フィン17a(アルミニウム)とチューブ17b(銅)との接触部にはプレ・コーティングが施されているので、異金属の直接接触による電気化学的腐食(電食)は生じない。
また、各チューブ17bの端部は、適宜、1つの流入部と1つの流出部を有するUベント管および1つの流入部と複数の流入部を有する分岐管で接続されており、第2蒸発器17内部には、複数個(本実施形態では、エジェクタ14の冷媒吸引口14dと同数の8個)の独立した冷媒流路が構成されている。
ここで、独立した冷媒流路とは、冷媒流入口17cから第2蒸発器17に流入した冷媒が、分岐管で分岐されて各冷媒流路に流入した後、混ざり合うことなく各冷媒流路に設けられた冷媒流出口17dから流出する流路構成になっていることを意味する。従って、本実施形態では、冷媒流出口17dも冷媒吸引口14dと同数の8個設けられている。
つまり、本実施形態の第2蒸発器17は、冷媒流入口17cから流入した冷媒を8つの冷媒回路に分岐する、いわゆる8パスタイプの熱交換器である。このように8パスタイプの熱交換器を採用することで、冷媒流入口17cから流入した液相冷媒が各冷媒回路を通過しながら蒸発して気相冷媒となって体積膨張しても、第2蒸発器17内部における圧力損失が増大することを抑制している。
そして、第2蒸発器17の各冷媒流路に設けられた冷媒流出口17dは、対応する冷媒吸引口14dに、それぞれ異なる冷媒通路18(冷媒配管)で接続されている。
ここで、本実施形態では、前述の如く、第1蒸発器15および第2蒸発器17が同一の冷却対象空間を冷却するようになっているので、第1蒸発器15および第2蒸発器17を一体に構成してもよい。
例えば、第1蒸発器15もフィンアンドチューブ型の熱交換器で構成し、プレートフィン17aに第1蒸発器15用のプレートフィンを兼用させ、第1蒸発器15用のチューブを第2蒸発器17用のチューブ17bに対して送風空気流れ方向Yの風上側に配置する構成にすればよい。もちろん、第1蒸発器15および第2蒸発器17を別体で構成して、接着、溶接、ボルト締め等の接合手段で一体に構成してもよい。
次に、上記の構成において本実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は放熱器12の凝縮用熱交換部12aに流入する。凝縮用熱交換部12aでは高温の冷媒が外気により冷却されて凝縮する。
凝縮用熱交換部12aから流出した高圧冷媒はレシーバ12b内に流入し、このレシーバ12b内にて気相冷媒と液相冷媒に分離される。レシーバ12bで分離された飽和液相冷媒は過冷却用熱交換部12cへ流入して、さらに冷却されて過冷却状態の液相冷媒となって温度式膨張弁13へ流入する。
この温度式膨張弁13では、第1蒸発器15の出口冷媒(圧縮機吸入冷媒)の過熱度が所定値となるように弁開度(冷媒流量)が調整され、高圧冷媒が減圧される。そして、温度式膨張弁13通過後の冷媒(中間圧冷媒)は分岐部Zで分岐されてエジェクタ14側への流れおよび絞り機構16側への流れに分流される。
分岐部Zからエジェクタ14に流入した冷媒流れはノズル部14aで減圧され膨張する。従って、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、冷媒はノズル部14aの冷媒噴射孔14cから高速度となって噴射する。この際の冷媒の圧力低下により、各冷媒吸引口14dから第2蒸発器17流出冷媒が吸引される。
冷媒噴射孔14cから噴射した噴射冷媒と各冷媒吸引口14dから吸引された吸引冷媒は、ノズル部14a下流側の混合部14eで混合してディフューザ部14fに流入する。このディフューザ部14fでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
そして、エジェクタ14のディフューザ部14fから流出した流出冷媒は第1蒸発器15を通過し、この間に、冷媒は蒸発器用送風機より送風された送風空気(矢印Y)から吸熱して蒸発する。この蒸発後の気相冷媒は、圧縮機11に吸入され、再び圧縮される。
一方、絞り機構16へ流入して低圧冷媒となった冷媒は第2蒸発器17を通過する。この間に、蒸発器用送風機より送風されて第1蒸発器15を通過した送風空気(矢印Y)から吸熱して蒸発する。蒸発後の気相冷媒は各冷媒流出口17dから流出して、各冷媒通路18を介して、各冷媒吸引口14dよりエジェクタ14内に吸引される。
以上の如く、本実施形態のサイクルでは、エジェクタ14のディフューザ部14fの下流側冷媒を第1蒸発器15に供給するとともに、分岐通路16b側の冷媒を絞り機構16を介して第2蒸発器17に供給しているので、第1蒸発器15および第2蒸発器17で同時に冷却作用を発揮できる。
さらに、蒸発器用送風機から送風された空気を第1蒸発器15→第2蒸発器17の順に通過させて同一の冷却対象空間を冷却できる。その際に、第1蒸発器15の冷媒蒸発圧力をディフューザ部14fで昇圧した後の圧力として、一方、第2蒸発器17は冷媒吸引口14dに接続されるので、第2蒸発器17の冷媒蒸発圧力をノズル部14a減圧直後の最も低い圧力とすることができる。
従って、第1蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器17の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。その結果、第1蒸発器15および第2蒸発器17の冷媒蒸発温度と送風空気との温度差を確保して、効率的に送風空気を冷却できる。
さらに、第1蒸発器15下流側を圧縮機11吸入側に接続しているので、ディフューザ部14fで昇圧された冷媒を圧縮機11に吸入させることができる。その結果、圧縮機11の吸入圧を上昇させることができるので、圧縮機11の駆動動力を低減させてサイクル効率(COP)を向上させることができる。
さらに、本実施形態では、エジェクタ14の冷媒吸引口14dが複数個設けられているので、冷媒吸引口14dを1個のみ設ける場合に対して、冷媒吸引口14dの冷媒通路面積の合計値を容易に増加させることができる。さらに、対応する冷媒吸引口14dおよび冷媒流出口17dを、それぞれ異なる冷媒通路18で接続しているので、第2蒸発器17流出冷媒を適切に分配して、それぞれの冷媒吸引口14dから吸引させることができる。
その結果、バス車両用空調装置のように、冷媒循環流量が多いエジェクタ式冷凍サイクルにおいて、冷媒吸引口14dから吸引される吸引冷媒流量が増加しても、いずれかの冷媒吸引口14dへ第2蒸発器17流出冷媒が集中して吸引圧損を増大させるという不具合を発生させることなく、吸引圧損の増加を抑制できる。
しかも、複数個の冷媒吸引口14dが、エジェクタ14の筒状のボデー部14bの軸周りに均等な間隔で配置されているので、エジェクタ14のノズル部14aの全周から冷媒を均等に吸引させることができる。その結果、吸引冷媒流れの偏在を防止して、より一層、吸引圧損の増加を抑制できる。
また、第2蒸発器17が、複数の独立した冷媒流路を有するフィンアンドチューブ型熱交換器で構成されており、各冷媒流出口17dは、それぞれの冷媒流路に設けられているので、冷媒流出口17dから冷媒通路18に均等に冷媒を流入させることができる。その結果、冷媒吸引口17dから均等に冷媒を吸引できるので、より一層、吸引圧損の増加を抑制できる。
(第2実施形態)
第1実施形態では、温度式膨張弁13の下流側に冷媒の流れを分岐する分岐部Zを設けたエジェクタ式冷凍サイクル10について説明しているが、本実施形態では図4に示すように、温度式膨張弁13および分岐部Zを廃止するとともに、第1蒸発器15出口側にアキュムレータ20を配置している。
第1実施形態では、温度式膨張弁13の下流側に冷媒の流れを分岐する分岐部Zを設けたエジェクタ式冷凍サイクル10について説明しているが、本実施形態では図4に示すように、温度式膨張弁13および分岐部Zを廃止するとともに、第1蒸発器15出口側にアキュムレータ20を配置している。
このアキュムレータ20は、冷媒の気液を分離してサイクル内の余剰液相冷媒を溜める気液分離器であり、アキュムレータ20の気相冷媒出口20aは圧縮機11吸入側に接続され、液相冷媒出口20bは絞り機構16の上流側に接続されている。その他の構成は、第1実施形態と同様である。
次に、上記の構成において本実施形態の作動を説明する。圧縮機11で圧縮され吐出された高温高圧状態の冷媒は、放熱器12で冷却され、エジェクタ14のノズル部14aへ流入して減圧膨張され、各冷媒吸引口14bから吸引された第2蒸発器17流出冷媒と混合されてディフューザ部14fにて昇圧される。そして、第1蒸発器15にて吸熱作用を発揮して、アキュムレータ20へ流入する。
そして、アキュムレータ20にて分離された気相冷媒は再び圧縮機11に吸引され、液相冷媒は、絞り機構16へ流入して減圧されて第2蒸発器17にて吸熱作用を発揮して、エジェクタ14の各冷媒吸引口14dから吸引される。
従って、本実施形態のサイクルにおいても、第1実施形態と同様に、第1蒸発器15および第2蒸発器17で同時に冷却作用を発揮できるとともに、圧縮機11の駆動動力を低減させてサイクル効率(COP)を向上させることができる。さらに、冷媒吸引口14dから吸引される吸引冷媒流量が増加しても、吸引圧損の増加を抑制できる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
(1)上述の各実施形態では、エジェクタ14の冷媒吸引口14dおよび第2蒸発器17の冷媒流出口17dをそれぞれ8個設けているが、冷媒吸引口14dおよび冷媒流出口17dの数はこれに限定されない。
さらに、冷媒吸引口14dおよび冷媒流出口17dの数を複数化することによって、冷媒通路18の各配管径を細くすることができるので、冷媒吸引口14dの冷媒通路面積(冷媒吸引口14dの開口面積)を充分確保した上で、各配管の取り回しが容易となる。そのため、例えば、ノズル部14aを通過する噴射冷媒の流れ方向と吸引冷媒の流れ方向とを近づけることが可能となり、より一層、吸引圧損を低減できる。
(2)上述の各実施形態では、第2蒸発器17として、フィンアンドチューブ型の熱交換器を採用して、各チューブ17bの端部を適宜Uベント管および分岐管で接続することによって、熱交換器内部に複数個の冷媒流路を構成しているが、第2蒸発器17の構成はこれに限定されない。
例えば、冷媒が連通する複数本のチューブと、冷媒の分配および集合を行うヘッダタンクとを有して構成される、いわゆるタンクアンドチューブ型の熱交換器を採用してもよい。この場合は、ヘッダタンク内部にセパレータを配置することで、複数個の独立した冷媒流路が構成し、それぞれの冷媒流路に冷媒流出口を設ければよい。
(3)上述の各実施形態では、エジェクタ14として、冷媒通路面積が一定のノズル部14aを有する固定エジェクタを例示しているが、エジェクタ14として、通路面積を調整可能な可変ノズル部を有する可変エジェクタを用いてもよい。この可変ノズル部の具体例としては、可変ノズル部の通路内にニードルを挿入し、このニードルの位置を電気的アクチュエータにより制御して通路面積を調整する機構とすればよい。
(4)上述の各実施形態では、絞り機構16として、キャピラリチューブやオリフィス等の固定絞り機構を採用しているが、電気的、機械的に冷媒通路面積を変更できる可変絞り機構を採用してもよい。また、絞り機構16を固定絞り機構と可変絞り機構とのとの組み合わせで構成してもよい。
(5)上述の各実施形態では、冷媒として高圧圧力が臨界圧力を超えないフロン系冷媒を用いる蒸気圧縮式の亜臨界サイクルについて説明したが、冷媒として二酸化炭素のように高圧圧力が臨界圧力を超える冷媒を採用してもよい。
但し、超臨界サイクルでは、放熱器12において圧縮機吐出冷媒が超臨界状態のまま放熱し、凝縮しないのでレシーバ12bでは冷媒の気液を分離できない。そこで、レシーバ12bを廃止して、第1蒸発器15下流側かつ圧縮機11吸入側に第2実施形態と同様のアキュムレータ20を配置するサイクル構成とすればよい。
(6)上記の各実施形態では、第1蒸発器15および第2蒸発器17を室内側熱交換器として構成し、放熱器12を大気側へ放熱する室外熱交換器として構成しているが、逆に、第1蒸発器15および第2蒸発器17を大気等の熱源から吸熱する室外側熱交換器として構成し、放熱器12を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成するヒートポンプサイクルに本発明を適用してもよい。
(7)上述の各実施形態では、バス車両用空調装置に適用した例について説明したが、車両用に限らず、定置用等の冷凍サイクルに対しても本発明を同様に適用できることはもちろんである。
11…圧縮機、12…放熱器、14…エジェクタ、14a…ノズル部、
14d…冷媒吸引口、16…絞り機構、17…第2蒸発器、17d…冷媒流出口、
18…冷媒通路、20…アキュムレータ。
14d…冷媒吸引口、16…絞り機構、17…第2蒸発器、17d…冷媒流出口、
18…冷媒通路、20…アキュムレータ。
Claims (5)
- 冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、
前記放熱器(12)にて放熱された冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14d)から吸引するエジェクタ(14)と、
冷媒を蒸発させて、冷媒流出口(17d)から前記冷媒吸引口(14d)上流側へ流出する蒸発器(17)とを備え、
前記冷媒吸引口(14d)および前記冷媒流出口(17d)は複数個設けられており、
さらに、対応する前記冷媒吸引口(14d)および前記冷媒流出口(17d)が、それぞれ異なる冷媒通路(18)で接続されていることを特徴とするエジェクタ式冷凍サイクル。 - 前記放熱器(12)にて放熱された冷媒の流れを分岐する分岐部(Z)と、
前記分岐部(Z)で分岐された一方の冷媒を減圧膨張させる絞り機構(16)とを備え、
前記ノズル部(14a)は、前記分岐部(Z)で分岐された他方の冷媒を減圧膨張させ、
前記蒸発器(17)は、前記絞り機構(16)下流側の低圧冷媒を蒸発させるようになっていることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。 - 前記エジェクタ(14)下流側冷媒を気相冷媒と液相冷媒とに分離する気液分離器(20)を備え、
前記蒸発器(17)は、前記気液分離器(20)で分離された液相冷媒を蒸発させるようになっていることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。 - 前記エジェクタ(14)は、前記ノズル部(14a)を収容する筒状のボデー部(14b)を有し、
前記複数個の冷媒吸引口(14d)は、前記ボデー部(14b)の軸周りに均等な間隔で配置されていることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタ式冷凍サイクル。 - 前記蒸発器(17)は、複数の独立した冷媒流路を有する熱交換器で構成されており、
前記複数個の冷媒流出口(17d)は、それぞれの冷媒流路に設けられていることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006227578A JP2008051395A (ja) | 2006-08-24 | 2006-08-24 | エジェクタ式冷凍サイクル |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006227578A JP2008051395A (ja) | 2006-08-24 | 2006-08-24 | エジェクタ式冷凍サイクル |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008051395A true JP2008051395A (ja) | 2008-03-06 |
Family
ID=39235626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006227578A Withdrawn JP2008051395A (ja) | 2006-08-24 | 2006-08-24 | エジェクタ式冷凍サイクル |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008051395A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180117161A (ko) * | 2016-02-29 | 2018-10-26 | 존슨 컨트롤스 테크놀러지 컴퍼니 | 저압 냉매에 적합한 열교환 장치 |
-
2006
- 2006-08-24 JP JP2006227578A patent/JP2008051395A/ja not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180117161A (ko) * | 2016-02-29 | 2018-10-26 | 존슨 컨트롤스 테크놀러지 컴퍼니 | 저압 냉매에 적합한 열교환 장치 |
US10739047B2 (en) | 2016-02-29 | 2020-08-11 | Johnson Controls Technology Company | Heat exchange device suitable for low pressure refrigerant |
KR102193293B1 (ko) * | 2016-02-29 | 2020-12-24 | 존슨 컨트롤스 테크놀러지 컴퍼니 | 저압 냉매에 적합한 열교환 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4622960B2 (ja) | エジェクタ式冷凍サイクル | |
JP4779928B2 (ja) | エジェクタ式冷凍サイクル | |
JP5050563B2 (ja) | エジェクタ及びエジェクタ式冷凍サイクル用ユニット | |
JP4600200B2 (ja) | エジェクタ式冷凍サイクル | |
JP4737001B2 (ja) | エジェクタ式冷凍サイクル | |
JP6384374B2 (ja) | エジェクタ式冷凍サイクル | |
JP4765828B2 (ja) | エジェクタ式冷凍サイクル | |
JP2007333292A (ja) | エジェクタ式冷凍サイクル | |
JP2011058422A (ja) | エジェクタ | |
JP2007051811A (ja) | エジェクタ式冷凍サイクルおよびエジェクタ式冷凍サイクルの分岐部 | |
JP2009097771A (ja) | エジェクタ式冷凍サイクル | |
WO2016021141A1 (ja) | 蒸発器 | |
JP4915250B2 (ja) | エジェクタ式冷凍サイクル | |
JP2007040612A (ja) | 蒸気圧縮式サイクル | |
JP2008304077A (ja) | エジェクタ式冷凍サイクル | |
JP6720933B2 (ja) | エジェクタ式冷凍サイクル | |
JP2008256240A (ja) | エジェクタ式冷凍サイクル | |
JP4725449B2 (ja) | エジェクタ式冷凍サイクル | |
JP4888050B2 (ja) | 冷凍サイクル装置 | |
JP2009300027A (ja) | エジェクタおよびエジェクタ式冷凍サイクル | |
JP5021326B2 (ja) | エジェクタ式冷凍サイクル | |
JP2008051395A (ja) | エジェクタ式冷凍サイクル | |
JP2009058179A (ja) | エジェクタ式冷凍サイクル用ユニット | |
JP2008075926A (ja) | エジェクタ式冷凍サイクル | |
JP6327088B2 (ja) | エジェクタ式冷凍サイクル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20091110 |