JP2008042963A - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
JP2008042963A
JP2008042963A JP2006209914A JP2006209914A JP2008042963A JP 2008042963 A JP2008042963 A JP 2008042963A JP 2006209914 A JP2006209914 A JP 2006209914A JP 2006209914 A JP2006209914 A JP 2006209914A JP 2008042963 A JP2008042963 A JP 2008042963A
Authority
JP
Japan
Prior art keywords
motor
electric motor
armature
current
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006209914A
Other languages
English (en)
Other versions
JP4781933B2 (ja
Inventor
Masashige Fukuchi
正成 福地
Hirobumi Shin
博文 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006209914A priority Critical patent/JP4781933B2/ja
Publication of JP2008042963A publication Critical patent/JP2008042963A/ja
Application granted granted Critical
Publication of JP4781933B2 publication Critical patent/JP4781933B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】電動機の作動中に電機子の抵抗を測定する範囲を拡大して、通電制御の精度を高めることができる電動機の制御装置を提供する。
【解決手段】PWM演算部55は、電動機1が回転しているときに、Highサイドのスイッチング素子を全てOFFすると共にLowサイドのトランジスタを全てONして3相短絡状態とする。電流測定部71は、3相短絡状態においてが異なるタイミングで3点の相電流I1,I2,I3を測定し、抵抗算出部73は、相電流の変化率とインダクタンス算出部72により算出されたインダクタンスLとに基いてコイル抵抗Rを算出する。コイル温度算出部74は、コイル抵抗Rに基いてコイル温度Tmを算出し、誘起電圧定数算出部75は、コイル抵抗Rに基いて誘起電圧定数Keを算出する。
【選択図】 図1

Description

本発明は、永久磁石界磁型の回転電動機の定数を求め、該定数を用いて該回転電動機の通電制御を行う電動機の制御装置に関する。
永久磁石界磁型の回転電動機において、電機子のコイル抵抗は電動機の温度に依存して変化する。そのため、良好なトルク制御を行うためには、電動機の通電量を制御する際に電機子の抵抗の変化分を補償する必要がある。
そこで、従来より、電動機の停止時や電動機を減速停止する際に、電機子に一定の直流電流が流れるように直流電圧を印加して、該直流電圧と直流電流との比から電機子のコイル抵抗を算出し、算出したコイル抵抗に基いて電動機の通電制御を行うようにする手法が提案されている(例えば、特許文献1参照)。
特開2000−312497号公報
上述した電動機の停止時や減速停止する際以外に、例えば電動機が高回転で作動しているときにも、電動機の電機子のコイル抵抗を算出することによって、通電制御の精度をさらに高めることができる。
そこで、本発明は、電動機の作動中に電機子のコイル抵抗を算出する範囲を拡大して、通電制御の精度を高めることができる電動機の制御装置を提供することを目的とする。
本発明は上記目的を達成するためになされたものであり、永久磁石型の回転電動機の各相の電機子に、回転磁界を生じさせるための多相交流電力を供給する電動機の制御装置であって、直流電源と、各相の電機子に対して個別に設けられた該直流電源の高電位側の出力部と電機子間の接続と遮断を切り換えるための第1のスイッチング素子及び該直流電源の低電位側の出力部と電機子間の接続と遮断を切り換えるための第2のスイッチング素子と、該第1のスイッチング素子及び該第2のスイッチング素子のON/OFFにより前記多相交流電力を生成して、前記電動機の通電制御を行う通電制御手段とを有する電動機の制御装置の改良に関する。
そして、前記電動機の電機子に流れる電流を検出する電流検出手段と、前記電動機が回転しているときに、前記第1のスイッチ素子を全ON状態とし且つ前記第2のスイッチング素子を全てOFF状態とするか又は前記第1のスイッチング素子を全てOFF状態とし且つ前記第2のスイッチング素子を全てON状態とする全相短絡状態とし、該全相短絡状態における前記電流検出手段の検出電流の変化率に基いて、前記電動機の電機子のコイル抵抗を算出する抵抗算出手段とを備え、前記通電制御手段は、該抵抗算出手段により算出された前記コイル抵抗に基いて、前記電動機の通電制御を行うことを特徴とする。
かかる本発明によれば、詳細は後述するが、前記電動機が高速で回転している状態においても、前記抵抗算出手段は、前記全相短絡状態として前記電動機の電機子に流れる電流の変化率を検出することによって、電機子のコイル抵抗を算出することができる。これにより、電機子のコイル抵抗を算出することができる前記電動機の動作範囲が広がるため、前記通電制御手段による電機子のコイル抵抗に基く前記通電制御の精度を向上させることができる。
また、詳細は後述するが、前記抵抗算出手段は、前記全相短絡状態における異なる時点での前記電流検出手段の検出電流の変化率の比に基いて、前記電動機の電機子のコイル抵抗を算出することができる。
また、予め設定された基準温度における電機子のコイル抵抗と、前記抵抗算出手段により算出されたコイル抵抗との比に基いて、前記電機子のコイル温度を算出するコイル温度算出手段を備え、前記通電制御手段は、前記コイル温度算出手段により算出されたコイル温度に基いて、前記電動機の通電制御を行うことを特徴とする。
かかる本発明によれば、前記電動機の電機子のコイル抵抗は、該電機子のコイル温度に応じて変化するため、前記コイル温度算出手段は、前記基準温度におけるコイル抵抗と前記抵抗算出手段により算出されたコイル抵抗との比に基いて、コイル抵抗算出時の電機子のコイル温度を算出することができる。そして、前記通電制御手段は、電機子のコイル温度に基いて前記通電制御を行うことによって、前記通電制御の精度を向上させることができる。
また、前記電動機の角速度を検出する角速度検出手段と、該角速度検出手段により検出された前記電動機の角速度と、前記電流検出手段の検出電流と、前記抵抗算出手段により算出されたコイル抵抗とに基いて、前記電動機の誘起電圧定数を算出する誘起電圧定数算出手段を備え、前記通電制御手段は、前記誘起電圧定数算出手段により算出された前記誘起電圧定数に基いて、前記電動機の通電制御を行うことを特徴とする。
かかる本発明によれば、詳細は後述するが、前記誘起電圧定数算出手段は、前記電動機の回転数と電機子に流れる電流と電機子の抵抗とに基いて、前記電動機の誘起電圧定数を算出することができる。そして、該誘起電圧定数の大きさにより、前記電動機の特性が変化するため、前記通電制御手段は、前記電動機の誘起電圧定数に基いて前記通電制御を行うことで、前記通電制御の精度を向上させることができる。
また、予め設定された基準温度における前記電動機の誘起電圧定数と、前記誘起電圧定数算出手段により算出された誘起電圧定数との比に基いて、前記電動機の界磁の磁石温度を算出する磁石温度算出手段を備え、前記通電制御手段は、前記磁石温度算出手段により算出された前記電動機の界磁の磁石温度に基いて、前記電動機の通電制御を行うことを特徴とする。
かかる本発明によれば、前記電動機の誘起電圧定数は界磁の磁石温度に応じて変化するため、前記磁石温度算出手段は、前記基準温度における誘起電圧定数と前記誘起電圧定数算出手段により算出された誘起電圧定数との比に基いて、誘起電圧定数算出時の界磁の磁石温度を算出することができる。そして、前記通電制御手段は、界磁の磁石温度に基いて前記通電制御を行うことによって、前記通電制御の精度を向上させることができる。
また、前記電動機は、永久磁石による界磁を複数個有する第1ロータ及び第2ロータを、回転軸の周囲に同心円状に配置した2重ロータ型の電動機であり、該第1ロータと該第2ロータ間の相対角度であるロータ位相差を変更するロータ位相差変更手段と、前記誘起電圧定数算出手段により算出された前記誘起電圧定数を用いて、該ロータ位相差を算出するロータ位相差算出手段とを備え、前記通電制御手段は、前記ロータ位相差算出手段により算出された前記ロータ位相差に基いて、前記電動機の通電制御を行うことを特徴とする。
かかる本発明によれば、前記ロータ位相差変更手段により前記ロータ位相差を変更すると、それに応じて前記電動機の誘起電圧定数が変化する。そのため、前記通電制御手段は、前記ロータ位相差算出手段により算出される現在の前記ロータ位相差に基いて前記通電制御を行うことで、前記電動機の誘起電圧定数の変化を考慮した精度の良い前記通電制御を行うことができる。
また、前記通電制御手段は、所定の目標トルクに応じて設定した目標電流と、前記電流検出手段の検出電流との偏差を減少させるように、前記電動機の電機子に出力する電圧のレベルを決定する電流フィードバック制御部と、前記相短絡状態が解除されて前記電動機の通電制御を再開するときに、前記電流フィードバック制御部により決定された前記電動機の電機子に出力する電圧のレベルを増加する補正を行う出力電圧補正手段とを備えたことを特徴とする。
かかる本発明において、前記全相短絡状態としている間は前記通電制御を行うことができないため、前記電動機の出力トルクが前記目標トルクから減少する。そこで、前記全相短絡状態が解除されて前記通電制御が再開されるときに、前記出力電圧補正手段により前記電流フィードバック制御部によって決定された前記電動機の電機子に出力する電圧のレベルを増加する補正を行うことで、前記電動機の出力トルクを速やかに前記目標トルクまで復帰させることができる。
また、前記電動機の回転数を検出する回転数検出手段を備え、前記抵抗算出手段は、前記電動機が、前記全相短絡状態としたときに前記電動機の各相の電機子に流れる電流のベクトル和である相電流が所定値以上となると想定される回転数で回転しているときに、前記全相短絡状態として電機子のコイル抵抗を算出することを特徴とする。
かかる本発明によれば、前記全相短絡状態としたときに、前記電動機の各相の電機子に流れる電流の変化率が安定するため、前記抵抗算出手段によるコイル抵抗の算出精度を高めることができる。
また、前記通電制御手段は、前記通電制御において、所定の目標トルクが得られるように前記電動機の電機子に対する通電量を制御し、前記抵抗算出手段は、前記電動機が、前記全相短絡状態としたときに前記相電流が前記所定値以上となり、且つ前記電動機の出力トルクと前記目標トルクとの差が所定範囲内になると想定される回転数で回転しているときに、前記全相短絡状態として前記電動機のコイル抵抗を算出することを特徴とする。
かかる本発明によれば、前記抵抗算出手段によるコイル抵抗の算出精度を高めることができると共に、前記全相短絡状態に移行したときに前記電動機の出力トルクが前記目標トルクから乖離する度合を小さくすることができる。
また、前記通電制御手段は、前記通電制御において、所定の目標トルクが得られるように前記電動機の電機子に対する通電量を制御し、前記抵抗算出手段は、前記電動機が、前記全相短絡状態としたときに前記電動機の出力トルクと前記目標トルクとの差が所定範囲内になると想定される回転数で回転しているときに、前記全相短絡状態として前記電動機の電機子のコイル抵抗を算出することを特徴とする。
かかる本発明によれば、前記全相短絡状態に移行したときに前記電動機の出力トルクが前記目標トルクから乖離する度合を小さくすることができる。
本発明の実施の形態について、図1〜図15を参照して説明する。図1は本発明の電動機の制御装置の全体構成図、図2は図1に示した2重ロータを備えたDCブラシレスモータの構成図、図3及び図4は外側ロータと内側ロータの位相差を変更することによる効果の説明図、図5は図1に示したPWM演算部のスイッチング回路の構成図、図6は図1に示したPWM演算部のデッドタイム及び3相短絡状態の設定回路の構成図、図7は図6に示した回路のタイミングチャート、図8及び図9は3相短絡状態として電動機の定数を算出する処理のフローチャート、図10は3相短絡の実行条件の説明図、図11は3点の電流測定を行うためのトリガ信号の出力回路及びサンプル・ホールド回路の構成図、図12は3点の電流測定を行うタイミングの説明図、図13は電機子のインダクタンスを算出する処理の説明図、図14は電機子の抵抗を算出する処理の説明図、図15はdq座標系における電圧ベクトル図である。
図1を参照して、本発明の電動機の制御装置(以下、電動機制御装置という)は、2重ロータを備えたDCブラシレスモータである電動機1の作動を制御するものである。先ず、図2〜図4を参照して、電動機1の構成について説明する。
図2に示したように、電動機1は、永久磁石11a,11bの界磁が周方向に沿って等間隔に配置された内側ロータ11と、永久磁石12a,12bの界磁が周方向に沿って等間隔に配置された外側ロータ12と、内側ロータ11及び外側ロータ13に対する回転磁界を発生させるための電機子10aを有するステータ10とを備えたDCブラシレスモータである。なお、内側ロータ11と外側ロータ12のうちの一方が本発明の第1ロータに相当し、他方が本発明の第2ロータに相当する。
内側ロータ11と外側ロータ12は、共に回転軸が電動機1の回転軸2と同軸となるように同心円状に配置されている。そして、内側ロータ11においては、S極を回転軸2側とする永久磁石11aとN極を回転軸2側とする永久磁石11bが交互に配置されている。同様に、外側ロータ12においても、S極を回転軸2側とする永久磁石12aとN極を回転軸2側とする永久磁石12bが交互に配置されている。
そして、電動機1は、外側ロータ12と内側ロータ11の位相差であるロータ位相差を変更するために、遊星歯車機構等の相対回転機構(図示しない)を備えており、該相対回転機構をアクチュエータ25(図1参照)により作動させることによって、ロータ位相差を変更することができる。なお、アクチュエータ25としては、例えば電動機や油圧によるものを用いることができる。
また、外側ロータ12と内側ロータ11の位相差は、少なくとも電気角で180度の範囲で進角側又は遅角側に変更可能に構成され、電動機1の状態は、外側ロータ12の永久磁石12a,12bと内側ロータ11の永久磁石11a,11bが同極同士を対向して配置された界磁弱め状態と、外側ロータ12の永久磁石12a,12bと内側ロータ11の永久磁石11a,11bが異極同士を対向して配置された界磁強め状態との間で、適宜設定可能となっている。
図3(a)は界磁強め状態を示しており、外側ロータ12の永久磁石12a,12bの磁束Q2と内側ロータ11の永久磁石11a,11bの磁束Q1の向きが同一であるため、合成された磁束Q3が大きくなる。一方、図3(b)は界磁弱め状態を示しており、外側ロータ12の永久磁石12a,12bの磁束Q2と内側ロータ11の永久磁石11a,11bの磁束Q1の向きが逆であるため、合成された磁束Q3が小さくなる。
図4は、図3(a)の状態と図3(b)の状態において、電動機1を所定回転数で作動させた場合にステータ10の電機子に生じる誘起電圧を比較したグラフであり、縦軸が誘起電圧(V)に設定され、横軸が電気角(度)に設定されている。図中aが図3(a)の状態(界磁強め状態)であり、bが図3(b)の状態(界磁弱め状態)である。図4から、外側ロータ12と内側ロータ11の位相差を変更することで、生じる誘起電圧のレベルが大幅に変化していることがわかる。
そして、このように、外側ロータ12と内側ロータ11の位相差を変更して、界磁の磁束を増減させることにより、電動機1の誘起電圧定数Keを変化させることができる。これにより、誘起電圧定数Keが一定である場合に比べて、電動機1の出力及び回転数に対する運転可能領域を拡大することができる。また、dq座標変換により、d軸(界磁軸)側の電機子に通電して界磁弱め制御を行う場合に比べて、電動機1の損失が減少するため、電動機の効率を高めることができる。
次に、図1を参照して、電動機制御装置の構成について説明する。電動機制御装置は、電動機1を界磁方向をd軸としd軸と直交する方向をq軸とした2相直流の回転座標系による等価回路に変換して扱い、外部から与えられるトルク指令値Tr_cに応じたトルクが電動機1から出力されるように、電動機1に対する通電量を制御するものである。
電動機制御装置はCPU、メモリ等により構成される電子ユニットであり、トルク指令値Tr_cと電動機1の回転数ωと電動機1のロータ位相差の検出値θd_eとに基いて、d軸側の電機子(以下、d軸電機子という)の通電量(以下、d軸電流という)の指令値Id_cとq軸側の電機子(以下、q軸電機子という)の通電量(以下、q軸電流という)の指令値Iq_cとを算出する電流指令算出部50、電流センサ60,61(本発明の電流検出手段に相当する)により検出されてBP(バンドパスフィルタ)57により不要成分が除去された電流検出信号と、レゾルバ62により検出される外側ロータ12のロータ角度θmとに基いて、3相/dq変換によりd軸電流の検出値Id_sとq軸電流の検出値Iq_sとを算出する3相/dq変換部56、電動機1の電機子のコイル温度Tcと界磁磁石の温度Tmの上昇による出力トルクの減少を補償するためのq軸補償電流Iq_aを算出する電力制御部91、電動機1の相電圧(各相の電機子の端子間電圧の合成ベクトル)が電源電圧Vdcに応じて設定された電圧円内に入るように、d軸電流を流すためのd軸補償電流Id_aを算出する第1の界磁制御部92、ロータ位相差の指令値θd_cと検出値θd_eとの偏差による界磁弱めの不足分を補うためのd軸補正電流ΔId_vol_2を決定する位相差追従判定部80を備えている。
また、電動機制御手段は、d軸電流の指令値Id_cと検出値Id_sとの偏差にd軸補償電流Id_aとd軸補正電流ΔId_vol_2を加算してΔIdを算出する加減算器52、q軸電流の指令値Iq_cと検出値Iq_sとの偏差にq軸補償電流Iq_aを加算してΔIqを算出する加減算器51、ΔId及びΔIqに基いてd軸電機子に印加する電圧(以下、d軸電圧という)の指令値Vd_cとq軸電機子に印加する電圧(以下、q軸電圧という)の指令値Vq_cを決定する電流FB(フィードバック)制御部53(本発明の電流フィードバック制御部、及び出力電圧補正部の機能を含む)、d軸指令電圧Vd_cとq軸指令電圧Vq_cを3相(U,V,W)交流電圧の指令値Vu_c,Vv_c,Vw_cに変換するdq/3相変換部54、Vu_c,Vv_c,Vw_cに基いて3相交流電圧Vu,Vv,Vwを生成し、電動機1に出力するPWM演算部55を備えている。
なお、電流指令算出部50、加減算器51、加減算器52、電流FB制御部53、dq/3相変換部54、PWM演算部55、BPフィルタ57、3相/dq変換部56、電力制御部91、及び第1の界磁制御部92により本発明の通電制御手段が構成される。
さらに、電動機制御装置は、相電圧のベクトル(Vd_cとVq_cの合成ベクトル)が直流電源電圧Vdcに応じて設定される電圧円c(後述する図15参照)の円周上をトレースするように、界磁弱めの必要電流ΔId_volを決定する第2の界磁制御部81、ΔId_volをd軸電機子に通電した場合と同等の界磁弱め効果を生じさせるためのロータ位相差の指令値θd_cを決定して、アクチュエータ25及び位相差追従判定部80に出力するId/θd_c置換部82、レゾルバ62により検出される電動機1のロータ角度θmを微分して角速度ωを出力する微分器63(本発明の角速度検出手段に相当する)、d軸電流の指令値Id_c及びq軸電流の指令値Iq_cからd軸電機子のインダクタンスLdとq軸電機子のインダクタンスLqを算出するLd,Lq算出部72aとLd,Lqからロータ角度θmにおける電機子のインダクタンスLを算出するL算出部72bとを有するインダクタンス算出部72、BPフィルタ57を介してU相の電流センサ60の電流検出信号Iuを入力し、後述する3相短絡状態で3点の電流I1,I2,I3を測定する電流測定部71、電流測定部71により測定された電流I1,I2,I3とインダクタンスLとから電機子の抵抗Rを算出するR算出部73と、抵抗Rから電機子のコイル温度Tcを算出するコイル温度算出部74、角速度ωとd軸電機子のインダクタンスLdと抵抗Rとd軸電流の指令値Id_cとq軸電流の指令値Iq_cとq軸電圧の指令値Vq_cとから誘起電圧定数Keを算出する誘起電圧定数算出部75、ロータ位相差を検出する位相差検出器77、及び位相差検出器77によるロータ位相差の検出値θd_eと誘起電圧定数Keから界磁の磁石温度Tmを算出する磁石温度算出部Tmを備えている。
図5を参照して、PWM演算部55は、電動機1の各相(U,V,W)の電機子230,231,232と直流電源210のHighサイド(高電位側)の出力部210aとの接続/遮断を切り換えるためのトランジスタ220,222,224(本発明の第1のスイッチング素子に相当する)と、電動機1の各相の電機子231,231,232と直流電源310のLowサイド(低電位側)の出力部210bとの接続/遮断を切り換えるためのトランジスタ221,223,225(本発明の第2のスイッチング素子に相当する)と、3相交流電圧を生成するための制御信号を出力するPWM回路241と、各トランジスタ220〜225のベースに駆動信号を出力するベースドライブ回路240とを備えている。
そして、各制御サイクルにおける直流電源210から各相の電機子230,231,232への通電方向の比率を変更するPWM制御により、電動機1への通電量が制御される。また、各電機子230,231,232への通電方向を切り換えるときには、HighサイドのトランジスタとLowサイドのトランジスタが共にON(導通状態)して、トランジスタに過電流が流れることを防止するために、HighサイドのトランジスタとLowサイドのトランジスタを共にOFF(遮断状態)とするデッドタイムが設定される。
例えば、U相電機子230については、ベースドライブ回路240の出力端子UHからトランジスタ220のベースへの出力をHighレベルにすると共に、ベースドライブ回路240の出力端子ULからトランジスタ221のベースへの出力をLowレベルとして、トランジスタ220,221を共にOFFにするデッドタイム期間を確保してから、トランジスタ220又はトランジスタ221をONしてU相電機子230への通電方向を切り換える。V相電機子231及びW相電機子232についても同様である。
そして、PWM演算部55は、デッドタイムの設定と3相の電機子を全てHighサイドに接続した状態又は全てLowサイドに接続した状態とする3相短絡状態(本発明の全相短絡状態に相当する)の設定をするために、図6に示した回路構成を備えている。
図6に示した回路構成はU相電機子用であり、電圧指令とPWM制御用の三角波とを比較してU相電機子への通電方向を判断するコンパレータ100、デッドタイムの時間が設定されたCTC(タイマカウンタ)回路104、3相短絡状態とする時間が設定されたCTC回路120、コンパレータ100の出力CMP_OUTとFF(フリップフロップ)回路102のQ端子出力FF1_Qとの排他的論理和により、U相電機子への通電方向の切り換えの有無を判断するためのEOR回路103等を備えている。
次に、図7に示したタイミングチャートに従って、図6の回路の作動を説明する。なお、以下の説明においては各論理回路のHighレベル出力を「1」、Lowレベル出力を「0」とする。先ずt10でコンパレータ100の出力CMP_OUTが0から1に切換わっている。このときCTC120の出力CTC1_OUTは0であるため、AND回路101の出力が0から1に切り換わる。そして、これにより、EOR回路103に入力されるFF回路102のQ端子出力FF1_Q(0)とAND回路101の出力AND1_OUT(1)の論理が異なる状態となるため、CTC回路104のTRG端子に入力されるEOR回路103の出力EOR_OUTが0から1に切換わり、次のCLKの立ち上がりからデッドタイム設定値に応じたCLKパルスがカウントされるまでCTC回路104の出力CTC2_OUTが1となる。
そして、CTC2_OUTが1であるときは、NOT回路105を介してAND回路106,110に0が入力されるため、AND回路106の出力AND2_OUTとAND回路110の出力AND3_OUTが共に0となり、FF回路107の出力S1とFF回路111の出力S2が共に0となる。
ここで、S1は図5に示したHighサイドのトランジスタ220のON/OFF指示信号であり、S2は図5に示したLowサイドのトランジスタ221のON/OFF指示信号である。そして、S1が0であるときはトランジスタ220がOFF状態に制御され、S1が1であるときにはトランジスタ220がON状態に制御される。同様に、S2が0であるときはトランジスタ221がOFF状態に制御され、S2が1であるときにはトランジスタ221がON状態に制御される。
そのため、デットタイムの設定時間が経過してCTC回路104の出力CTC2_OUTが1から0に切換わり、次のCLKによりFF回路107,111の出力S1,S2が1から0に切換わるまで(図中Dt:t11〜t12)、Highサイドのトランジスタ220とLowサイドのトランジスタ221が共にOFF状態に維持される。そして、t12からPWM制御が再開される。
また、短絡判断部90(図1参照)からの短絡指示信号Short_cがCTC回路120のTRG端子に入力されると(図中t13)、次のCLKの立ち上がりから短絡時間の設定値に応じた数のCLKが入力されるまで、CTC回路120の出力CTC1_OUTが1となる。そして、CTC1_OUTが1であるときは、NOT回路121を介してAND回路101に0が入力されるため、AND回路101の出力AND1_OUTが0となる。
その結果、CTC回路104のTRIG端子に入力されるEOR回路103の出力EOR_OUTが0から1に切り換わるため、上述したt11〜t12と同様に、デットタイム(図中Dt:t14〜t15)が設定される。
そして、デットタイムが終了してCTC回路104の出力CTC2_OUTが0になると、NOT回路105を介してAND回路106,110に1が入力される状態となるため、FF回路102のQ端子出力FF1_Qの論理がそのままFF回路107に入力され、反転Q端子出力FF1_Qの論理がそのままFF回路111に入力される。
その結果、デッドタイムが終了するt15から、S1が0、S2が1となって、Highサイドのトランジスタ220がOFF状態に制御されると共にLowサイドのトランジスタ221がON状態に制御され、3相短絡状態(図中St:t15〜t16)に移行する。そして、CTC回路120のタイマ計時が終了して出力CTC1_OUTが1から0に切り換わると、NOT回路121を介してAND回路101に1が入力される。
その結果、AND回路101の出力AND1_OUTが0から1に切り換るため、EOR回路103の出力EOR_OUTが0から1に切り換る。そのため、上述したt11〜t12及びt14〜t15と同様に、デットタイム(Dt:t16〜t17)が設定される。そして、デッドタイムが経過したt17からPWM制御が再開される。
なお、V相及びW相についても、同様に図6の示した回路構成が備えられている。但し、3相短絡状態とする時間の設定については、CTC120に出力(V_Short,W_Short)が共用される。
次に、図8〜図9に示したフローチャートに従って、電動機制御装置における電動機1の電機子の抵抗R、電機子のコイル温度Tc、誘起電圧定数Ke、及び界磁の磁石温度Tmの算出処理について説明する。
図8のフローチャートは短絡判断部90(図1参照)により実行され、短絡判断部90は電動機1が3相短絡状態に移行可能な状態であるか否かを判断する。短絡判断部90は、STEP1で電動機1の回転数Nm(角速度ωから算出される)が、3相短絡状態としたときに、電動機1の相電流(各相の電機子に流れる電流のベクトル和)がI10(本発明の所定値に相当する)以上となる回転数であるか否かを判断する。
図10は、電動機1を3相短絡状態としたときの回転数(Nm)とトルク(Tr)及び相電流(I)との関係を示したグラフであり、横軸が電動機1の回転数(Nm)に設定され、左側の縦軸がトルク(Tr)、右側の縦軸が電動機1の電機子に流れる電流(I)に設定されている。そして、図10中、αは電動機1を3相短絡状態としたときの回転数とトルクの関係を示し、βは3相短絡状態としたときの回転数と電流の関係を示している。
そして、電動機1の回転数が、3相短絡状態としたときに相電流がI10以上となるNm1以上であるときはSTEP10に分岐し、Nm1よりも低いときにはSTEP2に進む。STEP2で、短絡判断部90はトルク指令値Tr_cの変化率が予め設定された上限値以下であるかを判断する。そして、トルク指令値Tr_cが該上限値以下であるときはSTEP10に分岐する。一方、トルク指令値Tr_cが該上限値を超えているときにはSTEP3に進み、この場合は3相短絡状態に移行する処理は実行されない。
STEP10で、短絡判断部90は、以下の式(1)により3相短絡状態としたときの電動機1のトルク(以下、短絡トルクという)TRQ1を算出する。
Figure 2008042963
但し、TRQ1:短絡トルク(Nm)、R0:予め設定された電機子の抵抗の基準値(Ω)、ω:電動機の電気角速度の測定値(erad/sec)、Ke0:予め設定された誘起電圧定数(V/(erad・sec))、Ld0:予め設定されたd軸電機子のインダクタンスの基準値(H)、Lq0:予め設定されたq軸電機子のインダクタンスの基準値(H)。
そして、続くSTEP11で、短絡判断部90は、トルク指令値Tr_cが短絡トルクTRC1±Thの範囲内(TRQ1−Th≦Tr_c≦TRQ1+Th)であるか否かを判断する。そして、トルク指令値Tr_cが短絡トルクTRC1±Thの範囲内にあるときは、STEP12に進み、短絡判断部90は短絡指示信号Short_cを出力する。一方、STEP11で、トルク指令値Tr_c短絡トルクTRC1±Th内でないときにはSTEP3に分岐し、短絡判断部90は短絡指示信号Short_cを出力しない。
ここで、図10のAの範囲は、電動機の回転数がNm1以上であり(STEP1)、且つトルク指令値Tr_cが短絡トルクTRC1±Th内である(STEP11)範囲を示しており、短絡判断部90は、(1)電動機1の回転数Nmとトルク指令値Tr_cが図10のAの範囲内にあるとき、及び(2)トルク指令値Tr_cの変化率が上限値以下であり(STEP2)、且つトルク指令値Tr_cが短絡トルクTRC1±Th内である(STEP11)ときに、短絡指示信号Short_cを出力する。そして、これにより、3相短絡状態としたときに電動機1の出力トルクの変動が大きくなることを防止している。
次に、図9を参照して、STEP50で短絡指示信号Short_cを入力すると、電流FB制御部53(図1参照)、PWM演算部55(図1参照)、及び電流測定部71(図1参照)が、STEP51以下の処理を実行する。
STEP51はPWM演算部55による処理であり、PWM演算部55は、図6に示した回路により図5に示したHighサイドのトランジスタ220,222,224を全てOFF(遮断)状態とし、且つLowサイドのトランジスタ221,223,225を全てON(導通)状態として、電動機1を3相短絡状態に移行させる。
続くSTEP52は電流測定部71による処理であり、電流測定部71は、図11(a)に示したFF回路300,301,302からなる3段のシフト回路により、3点の電流測定点のトリガ信号TRG1,TRG2,TRG3を出力する。具体的には、リセット信号を1(ロジックHighレベル)とし、GATE信号を0(ロジックLowレベル)とすることで、CLKに同期してトリガ信号TRG1,TRG2,TRG3が順次出力される。
そして、電流測定部71は、図11(b)に示したサンプル・ホールド回路により、電流センサ60(図1参照)から出力される電流検出信号Iu_sをデジタルデータに変換して取り込む。図11(b)において、オペアンプ310,311、スイッチS1、及びコンデンサ312からなるサンプル・ホールド回路とADコンバータ313は、TRG1用であり、TRG1が出力されていないときにはS1が閉じられてコンデンサ312が電流検出信号Iu_sのレベルまで充電される。そして、TRG1が出力されるとスイッチS1が開いてコンデンサ312の充電レベルが維持され、オペアンプ311を介してADコンバータ312に入力されたコンデンサ312の充電レベルが、TRG1出力時の検出電流I1としてデジタルデータに変換されて取り込まれる。
また、同様にして、オペアンプ320,321、スイッチS2、及びコンデンサ322からなるサンプル・ホールド回路とADコンバータ323により、TRG2の出力時の電流I2が取り込まれる。また、オペアンプ330,331、スイッチS3、及びコンデンサ332からなるサンプル・ホールド回路とADコンバータ333により、TRG3の出力時の電流I3が取り込まれる。
図12は、トリガ信号TRG1,TRG2,TRG3による電流測定のタイミングを時系列的に示したものであり、横軸を共通の時間軸(t)に設定し、縦軸を上段からU相電機子に流れる電流(I)、Highサイドのトランジスタ(図5の220,222,224)のON/OFF状態、Lowサイドのトランジスタ(図5の221,223,225)のON/OFF状態)に設定したものである。
図12中、t20〜t21とt24〜t25がPWM制御の実行期間、t22〜t23とt26〜t27が3相短絡状態の期間である。そして、3相短絡状態の期間中に、TRG1,TRG2,TRG3が出力されて、3点の電流I1,I2,I3が測定される。ここで、3相短絡状態では電流が安定して変化するため、電流の変化率の取得に適している。
続くSTEP53はインダクタンス算出部72による処理であり、インダクタンス算出部72に備えられたLd,Lq算出部72aは、図13に示したLd/Idマップ400にId電流の指令値Id_cを適用して対応するLdを取得し、Lq/Iqマップ401にIq電流の指令値Iq_cを適用して対応するLqを取得する。なお、Ld/Idマップ400とLq/Iqマップ401は、実験やコンピュータシミュレーションにより作成され、こららのマップのデータは予めメモリ(図示しない)に記憶されている。
また、インダクタンス算出手段72に備えられたL算出部72bは、図13の402に示した正弦波曲線で近似した以下の式(2)により、電動機1のインダクタンスLを算出する。
Figure 2008042963
但し、L:電動機のインダクタンス、Ld:d軸電機子のインダクタンス、Lq:q軸電機子のインダクタンス、θm:電動機のロータ角度。
続くSTEP55は抵抗算出部73による処理であり、抵抗算出部73は、図14(a)に示した電動機1の等価回路に基いて、電動機1の電機子のコイル抵抗Rを算出する。図14において、500は電機子の端子間に印加される電圧、501は電機子のコイル抵抗、502は電機子のインダクタンス、503は電機子に生じる誘起電圧である。図14(a)の回路における電流の過渡的な推移は、瞬時的な電位差をEとおくと、以下の式(3)で表すことができる。
Figure 2008042963
但し、I(t):時点tにおける電機子に流れる電流、E:瞬時的な電位差、R:電機子のコイル抵抗、L:電機子のインダクタンス。
上記式(3)を時間tで微分して対数をとると、以下の式(4)が得られる。
Figure 2008042963
そして、図14(b)に示したように、STEP52における電流I1,I2,I3の測定時点がt1,t2,t3であるときには、時刻t=(t1+t2)/2及びt=(t2+t3)/2での上記式(4)の左辺を以下の式(5)、式(6)で近似することができる。
Figure 2008042963
Figure 2008042963
そのため、時刻t=(t1+t2)/2及びt=(t2+t3)/2での上記式(4)は、以下の式(7)及び式(8)の形で表すことができる。
Figure 2008042963
Figure 2008042963
そして、上記式(7)と式(8)を辺々減じると以下の式(9)が得られ、式(9)を変形した以下の式(10)により、電機子の抵抗Rを算出することができる。
Figure 2008042963
Figure 2008042963
なお、上記式(10)におけるI3−I2及びI2−I1は、一定時間Δt(トリガ信号の出力間隔)あたりの電流の変化率を示している。また、PWM演算部55により3相短絡状態とする構成と、電流測定部71により3点の電流I1,I2,I3を測定する構成と、抵抗算出部73によりコイル抵抗Rを算出する構成とにより、本発明の抵抗算出手段が構成される。
次に、STEP55はコイル温度算出部74による処理である。基準温度T0における電機子のコイル抵抗をR0とし、コイル抵抗がRであるときの電機子のコイル温度をTcとすると、Rは以下の式(11)で表すことができる。
Figure 2008042963
但し、R:電機子のコイル温度、T0:基準温度、Tc:抵抗がRであるときの電機子のコイル温度、R0:基準温度T0における電機子のコイル抵抗、αc:コイル抵抗の温度特性に応じた係数。
したがって、電機子のコイル抵抗がRであるときの電機子のコイル温度Tcは、以下の式(12)で算出することができる。なお、R0とα0のデータは、予めメモリ(図示しない)に記憶されている。
また、以上説明したSTEP52〜STEP55と並行して、STEP60〜STEP63の処理が実行される。STEP60は電流FB制御部53による処理であり、電流FB制御部53は、3相短絡状態とすることで減少した電動機1のトルクを増加させるように、q軸電圧の指令値Vq_cを増分する補正を行う。そして、これにより、3相短絡状態が解除されてPWM制御が再開される際に、電動機1の出力トルクをトルク指令値Tr_cに速やかに追従させることができる。
続くSTEP61は誘起電圧定数算出部75による処理である。誘起電圧定数算出部75は、図15に示したdq軸の電圧ベクトル図による以下のd軸電圧の式(12)を変形した以下の式(13)によって、誘起電圧定数Keを算出する。図15は縦軸をq軸、横軸をd軸に設定してd軸電圧Vdとq軸電圧Vqと示したものであり、図中cは直流電源電圧Vdc(図1参照)に応じて設定される電圧円である。
Figure 2008042963
但し、Ke:誘起電圧定数、ω:角速度、R:電機子のコイル抵抗、Iq:q軸電流、Id:d軸電流、Vq:q軸電圧。
Figure 2008042963
誘起電圧定数算出部75は、上記式13のVqにq軸電圧の指令値Vq_cを代入し、Idにd軸電流の検出値Id_sを代入し、Iqにq軸電流の検出値Iq_sを代入し、Ldにインダクタンス算出部72により算出されたd軸電機子のインダクタンスLdを代入し、Rに抵抗算出部73により算出されたコイル抵抗Rを代入して、誘起電圧定数Keを算出する。
続くSTEP62〜STEP63は磁石温度算出部76による処理である。磁石温度算出部76は、STEP62で位相差検出器77によるロータ位相差の検出値θd_eを取得する。ここで、基準温度T0におけるθd_eに対応した誘起電圧定数をKe0とし、誘起電圧定数がKeであるときの界磁磁石の温度をTmとおくと、Keは以下の式(14)で表される。
Figure 2008042963
但し、Ke:温度Tmにおける誘起電圧定数、Ke0:基準温度T0におけるθd_eに対応した誘起電圧定数、αm:界磁磁石の温度特性を示す係数。
したがって、誘起電圧定数がKeであるときの界磁磁石の温度Tmは、以下の式(15)によって算出することができる。
Figure 2008042963
磁石温度算出部76は、STEP63で、上記式(15)のKeに、誘起電圧定数算出部75で算出された誘起電圧定数Keと、基準温度T0におけるθd_eに対応した誘起電圧定数Ke0を代入して、界磁磁石の温度Tmを算出する。なお、αm,各ロータ角度に対応したKe0,T0のデータは予めメモリに記憶されている。
以上説明した図9のフローチャートによる処理によって、電動機1の電機子のコイル抵抗R、コイル温度Tc、誘起電圧定数Ke、界磁の磁石温度Tm、ロータ位相差θdが算出される。そして、図1を参照して、電流指令算出部50は、ロータ位相差の検出値θd_eに基いてd軸電流の指令値Id_c及びq軸電流の指令値Iq_cを算出する。
また、電力制御部91は、コイル温度の算出値Tc及び界磁の磁石温度の算出値Tmに基いて、q軸補償電流Iq_aを算出する。また、第1の界磁制御部92は、誘起電圧定数の算出値Keに基いてd軸補償電流Id_aを算出する。
そして、これにより、電動機1の運転状況に応じて変化するコイル温度Tc、誘起電圧定数Ke、磁石温度Tmの影響を考慮して電動機1の通電制御が実行されるため、通電制御の精度を向上させることができる。
なお、本実施の形態では、本発明の電動機として、2重ロータを備えたDCブラシレスモータである第1電動機1a及び第2電動機1bを示したが、ロータを1つ備えた一般的な永久磁石型の回転電動機に対しても、本発明の適用が可能である。この場合には、位相差検出器77は備えられず、上記式(14)及び式(15)の基準温度T0における誘起電圧定数Ke0は固定値となる。
また、本実施の形態では、抵抗算出部73によるコイル抵抗Rの算出処理と、コイル温度算出部74によるコイル温度Tcの算出処理と、誘起電圧定数算出部75による誘起電圧定数Keの算出処理と、磁石温度算出部76による磁石温度Tmの算出処理とを実行したが、これらの処理の一部のみを実行する場合にも本発明の効果を得ることができる。
また、本実施の形態では、図5を参照して、Highサイドのトランジスタ220,222,224を全てOFF状態とし、且つLowサイドのトランジスタ221,223,225を全てON状態として3相短絡状態としたが、Highサイドのトランジスタ220,222,224を全てON状態とし、且つLowサイドのトランジスタ221,223,225を全てOFF状態として3相短絡状態としてもよい。
また、本実施の形態では、本発明の電動機の制御装置として、電動機1を2相直流の回転座標であるdq座標系による等価回路に変換して扱うものを示したが、2相交流の固定座標系であるαβ座標系による等価回路に変換して扱う場合や、3相交流のまま扱う場合においても、本発明の適用が可能である。
本発明の電動機の制御装置の全体構成図。 図1に示した2重ロータを備えたDCブラシレスモータの構成図。 外側ロータと内側ロータの位相差を変更することによる効果の説明図。 外側ロータと内側ロータの位相差を変更することによる効果の説明図。 図1に示したPWM演算部のスイッチング回路の構成図。 図1に示したPWM演算部のデッドタイム及び3相短絡状態の設定回路の構成図。 図6に示した回路のタイミングチャート。 3相短絡状態として電動機の定数を算出する処理のフローチャート。 3相短絡状態として電動機の定数を算出する処理のフローチャート。 3相短絡の実行条件の説明図。 3点の電流測定を行うためのトリガ信号の出力回路及びサンプル・ホールド回路の構成図。 点の電流測定を行うタイミングの説明図。 電機子のインダクタンスを算出する処理の説明図。 電機子の抵抗を算出する処理の説明図。 dq座標系における電圧ベクトル図。
符号の説明
1…電動機、10…ステータ、11…内側ロータ、11a,11b…永久磁石、12…外側ロータ、12a,12b…永久磁石、25…アクチュエータ、55…PWM演算部、60,61…電流センサ、71…電流測定部、72…インダクタンス算出部、73…抵抗算出部、74…コイル温度算出部、75…誘起電圧定数算出部、76…磁石温度算出部、77…位相差検出器、220,222,224…Highサイドのトランジスタ、221,223,225…Lowサイドのトランジスタ

Claims (10)

  1. 永久磁石型の回転電動機の各相の電機子に、回転磁界を生じさせるための多相交流電力を供給する電動機の制御装置であって、
    直流電源と、各相の電機子に対して個別に設けられた該直流電源の高電位側の出力部と電機子間の接続と遮断を切り換えるための第1のスイッチング素子及び該直流電源の低電位側の出力部と電機子間の接続と遮断を切り換えるための第2のスイッチング素子と、該第1のスイッチング素子及び該第2のスイッチング素子のON/OFFにより前記多相交流電力を生成して、前記電動機の通電制御を行う通電制御手段とを有する電動機の制御装置において、
    前記電動機の電機子に流れる電流を検出する電流検出手段と、
    前記電動機が回転しているときに、前記第1のスイッチ素子を全ON状態とし且つ前記第2のスイッチング素子を全てOFF状態とするか又は前記第1のスイッチング素子を全てOFF状態とし且つ前記第2のスイッチング素子を全てON状態とする全相短絡状態とし、該全相短絡状態における前記電流検出手段の検出電流の変化率に基いて、前記電動機の電機子のコイル抵抗を算出する抵抗算出手段とを備え、
    前記通電制御手段は、該抵抗算出手段により算出された前記コイル抵抗に基いて、前記電動機の通電制御を行うことを特徴とする電動機の制御装置。
  2. 前記抵抗算出手段は、前記全相短絡状態における異なる時点での前記電流検出手段の検出電流の変化率の比を用いて、前記コイル抵抗を算出することを特徴とする請求項1記載の電動機の制御装置。
  3. 予め設定された基準温度における電機子のコイル抵抗と、前記抵抗算出手段により算出されたコイル抵抗との比に基いて、前記電機子のコイル温度を算出するコイル温度算出手段を備え、
    前記通電制御手段は、前記コイル温度算出手段により算出されたコイル温度に基いて、前記電動機の通電制御を行うことを特徴とする請求項1又は請求項2記載の電動機の制御装置。
  4. 前記電動機の角速度を検出する角速度検出手段と、
    該角速度検出手段により検出された前記電動機の角速度と、前記電流検出手段の検出電流と、前記抵抗算出手段により算出されたコイル抵抗とに基いて、前記電動機の誘起電圧定数を算出する誘起電圧定数算出手段を備え、
    前記通電制御手段は、前記誘起電圧定数算出手段により算出された前記誘起電圧定数に基いて、前記電動機の通電制御を行うことを特徴とする請求項1から請求項3のうちいずれか1項記載の電動機の制御装置。
  5. 予め設定された基準温度における前記電動機の誘起電圧定数と、前記誘起電圧定数算出手段により算出された誘起電圧定数との比に基いて、前記電動機の界磁の磁石温度を算出する磁石温度算出手段を備え、
    前記通電制御手段は、前記磁石温度算出手段により算出された前記電動機の界磁の磁石温度に基いて、前記電動機の通電制御を行うことを特徴とする請求項4記載の電動機の制御装置。
  6. 前記電動機は、永久磁石による界磁を複数個有する第1ロータ及び第2ロータを、回転軸の周囲に同心円状に配置した2重ロータ型の電動機であり、
    該第1ロータと該第2ロータ間の相対角度であるロータ位相差を変更するロータ位相差変更手段と、前記誘起電圧定数算出手段により算出された前記誘起電圧定数を用いて、該ロータ位相差を算出するロータ位相差算出手段とを備え、
    前記通電制御手段は、前記ロータ位相差算出手段により算出された前記ロータ位相差に基いて、前記電動機の通電制御を行うことを特徴とする請求項4記載の電動機の制御装置。
  7. 前記通電制御手段は、所定の目標トルクに応じて設定した目標電流と、前記電流検出手段の検出電流との偏差を減少させるように、前記電動機の電機子に出力する電圧のレベルを決定する電流フィードバック制御部と、
    前記相短絡状態が解除されて前記電動機の通電制御を再開するときに、前記電流フィードバック制御部により決定された前記電動機の電機子に出力する電圧のレベルを増加する補正を行う出力電圧補正手段とを備えたこと特徴とする請求項1から請求項6のうちいずれか1項記載の電動機の制御装置。
  8. 前記電動機の回転数を検出する回転数検出手段を備え、
    前記抵抗算出手段は、前記電動機が、前記全相短絡状態としたときに前記電動機の各相の電機子に流れる電流のベクトル和である相電流が所定値以上となると想定される回転数で回転しているときに、前記全相短絡状態として電機子のコイル抵抗を算出することを特徴とする請求項1から請求項7のうちいずれか1項記載の電動機の制御装置。
  9. 前記通電制御手段は、前記通電制御において、所定の目標トルクが得られるように前記電動機の電機子に対する通電量を制御し、
    前記抵抗算出手段は、前記電動機が、前記全相短絡状態としたときに前記相電流が前記所定値以上となり、且つ前記電動機の出力トルクと前記目標トルクとの差が所定範囲内になると想定される回転数で回転しているときに、前記全相短絡状態として前記電動機のコイル抵抗を算出することを特徴とする請求項8記載の電動機の制御装置。
  10. 前記通電制御手段は、前記通電制御において、所定の目標トルクが得られるように前記電動機の電機子に対する通電量を制御し、
    前記抵抗算出手段は、前記電動機が、前記全相短絡状態としたときに前記電動機の出力トルクと前記目標トルクとの差が所定範囲内になると想定される回転数で回転しているときに、前記全相短絡状態として前記電動機の電機子のコイル抵抗を算出することを特徴とする請求項1から請求項7のうちいずれか1項記載の電動機の制御装置。
JP2006209914A 2006-08-01 2006-08-01 電動機の制御装置 Expired - Fee Related JP4781933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209914A JP4781933B2 (ja) 2006-08-01 2006-08-01 電動機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209914A JP4781933B2 (ja) 2006-08-01 2006-08-01 電動機の制御装置

Publications (2)

Publication Number Publication Date
JP2008042963A true JP2008042963A (ja) 2008-02-21
JP4781933B2 JP4781933B2 (ja) 2011-09-28

Family

ID=39177384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209914A Expired - Fee Related JP4781933B2 (ja) 2006-08-01 2006-08-01 電動機の制御装置

Country Status (1)

Country Link
JP (1) JP4781933B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116769A1 (ja) * 2009-04-10 2010-10-14 三菱電機株式会社 回転電機の制御装置
GB2473803A (en) * 2009-07-02 2011-03-30 Pg Drives Technology Ltd Prevention of motor overload by calculation of motor resitance and temperature
CN102301570A (zh) * 2009-01-29 2011-12-28 罗尔夫·施特罗特曼 具有两个定子和两个转子的电气驱动装置的位置确定
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统
JP2017055927A (ja) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 洗濯機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062266A (ja) * 1996-08-23 1998-03-06 Toyota Motor Corp サーミスタ状態検出装置
JPH10146090A (ja) * 1996-11-12 1998-05-29 Toshiba Corp インバータ装置
JP2001178182A (ja) * 1999-12-17 2001-06-29 Toshiba Corp 永久磁石形同期電動機の制御装置
JP2004007924A (ja) * 2002-05-31 2004-01-08 Mitsubishi Electric Corp 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062266A (ja) * 1996-08-23 1998-03-06 Toyota Motor Corp サーミスタ状態検出装置
JPH10146090A (ja) * 1996-11-12 1998-05-29 Toshiba Corp インバータ装置
JP2001178182A (ja) * 1999-12-17 2001-06-29 Toshiba Corp 永久磁石形同期電動機の制御装置
JP2004007924A (ja) * 2002-05-31 2004-01-08 Mitsubishi Electric Corp 永久磁石電動機の駆動装置及び密閉形圧縮機及び冷凍サイクル装置及び永久磁石発電機の駆動装置
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301570A (zh) * 2009-01-29 2011-12-28 罗尔夫·施特罗特曼 具有两个定子和两个转子的电气驱动装置的位置确定
CN102301570B (zh) * 2009-01-29 2014-12-10 罗尔夫·施特罗特曼 电气驱动装置
WO2010116769A1 (ja) * 2009-04-10 2010-10-14 三菱電機株式会社 回転電機の制御装置
JP5385374B2 (ja) * 2009-04-10 2014-01-08 三菱電機株式会社 回転電機の制御装置
GB2473803A (en) * 2009-07-02 2011-03-30 Pg Drives Technology Ltd Prevention of motor overload by calculation of motor resitance and temperature
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统
JP2017055927A (ja) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 洗濯機

Also Published As

Publication number Publication date
JP4781933B2 (ja) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5155344B2 (ja) 電動機の磁極位置推定装置
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
US9112436B2 (en) System for controlling controlled variable of rotary machine
US7576511B2 (en) Motor control device and motor control method
JP2004187407A (ja) モータ制御装置
US20140225540A1 (en) Control apparatus for ac motor
JP2009038921A (ja) ブラシレスモータのセンサレス制御装置
JP2010200430A (ja) 電動機の駆動制御装置
JP4010195B2 (ja) 永久磁石式同期モータの制御装置
JP4781933B2 (ja) 電動機の制御装置
JP5499965B2 (ja) 交流回転機の制御装置
WO2013035382A1 (ja) 同期電動機の制御システム
JP2010142046A (ja) 電動機の温度推定装置
JP2011004538A (ja) インバータ装置
JP2013141345A (ja) モータ制御装置及び空気調和機
JP2013146155A (ja) 巻線温度推定装置及び巻線温度推定方法
JP2015171302A (ja) 電動機の制御装置
JP2017205017A (ja) 空気調和機のモータ制御装置及び空気調和機
JP5186352B2 (ja) 電動機の磁極位置推定装置
JP2009112104A (ja) ブラシレスモータのセンサレス制御装置
JP2004064837A (ja) モータ駆動制御装置
JP5854057B2 (ja) 脱調検出装置および電動機駆動システム
JP2005039912A (ja) 交流電動機の制御装置
JP2009100600A (ja) インバータ制御装置とその制御方法
JP6923801B2 (ja) 誘導電動機のオブザーバ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees