JP2008041750A - Water-cooling heat sink and water-cooling system - Google Patents

Water-cooling heat sink and water-cooling system Download PDF

Info

Publication number
JP2008041750A
JP2008041750A JP2006210945A JP2006210945A JP2008041750A JP 2008041750 A JP2008041750 A JP 2008041750A JP 2006210945 A JP2006210945 A JP 2006210945A JP 2006210945 A JP2006210945 A JP 2006210945A JP 2008041750 A JP2008041750 A JP 2008041750A
Authority
JP
Japan
Prior art keywords
heat transfer
channel plate
water
transfer channel
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006210945A
Other languages
Japanese (ja)
Inventor
Jiro Nakajima
二郎 中島
Hitoshi Onishi
人司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2006210945A priority Critical patent/JP2008041750A/en
Priority to TW096123093A priority patent/TW200820404A/en
Priority to CN200710138248.4A priority patent/CN101119625A/en
Priority to US11/888,741 priority patent/US20080029251A1/en
Publication of JP2008041750A publication Critical patent/JP2008041750A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a water-cooling heat sink having an excellent workability, increasing no flow-path resistance, and having a superior heat-dissipating property. <P>SOLUTION: In the water-cooling heat sink, mutually laminated first and second heat-transfer flow-path boards are fitted, and a continuous recess opening the opposed surface side corresponding to a coolant flow path is formed on a surface opposed to the second heat-transfer flow-path board to the first heat-transfer flow-path board. In the water-cooling heat sink, a continuous projection fitted into the recess of the first heat-transfer flow-path board by openings is formed on the surface opposed to the first heat-transfer flow-path board to the second heat-transfer flow-path board. In the water-cooling heat sink, the first and second heat-transfer flow-path boards are laminated and coupled, and the coolant flow path is configured between the recess and the project. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発熱源の熱を放熱する水冷式ヒートシンク及び水冷システムに関する。   The present invention relates to a water-cooled heat sink and a water-cooling system for radiating heat from a heat source.

水冷式ヒートシンクは、例えば発熱するCPU(熱源)の放熱用に用いられており、いずれも、発熱源に熱的に接触する伝熱ブロック内に、冷却液流路を備えている。冷却液流路は有効長が長くなるように形状を渦巻き状にする等の工夫が施されている(特許文献1、2、3)が、水(冷却液)を流すことで、ヒートシンクに接する熱源の熱を奪い、冷却するという基本思想は共通である。
特開平8-97337号公報 特開平8-204079号公報 特開2003-234589号公報
The water-cooled heat sink is used, for example, for radiating heat from a CPU (heat source) that generates heat, and both include a coolant channel in a heat transfer block that is in thermal contact with the heat source. The cooling liquid flow path has been devised such as a spiral shape so that the effective length becomes long (Patent Documents 1, 2, and 3), but it contacts the heat sink by flowing water (cooling liquid). The basic idea of removing heat from the heat source and cooling is common.
JP-A-8-97337 JP-A-8-204079 JP 2003-234589 A

このような水冷式ヒートシンクでは、流路の断面積(冷却液との接触面積)を大きくすると、放熱効果が高くなる。しかし、流路断面積を増やすために、流路溝を微細にする(壁の数を多くする)と、加工性が悪化し、流路抵抗が増加する。   In such a water-cooled heat sink, when the cross-sectional area of the channel (contact area with the coolant) is increased, the heat dissipation effect is enhanced. However, if the channel groove is made fine (increasing the number of walls) in order to increase the channel cross-sectional area, the workability deteriorates and the channel resistance increases.

本発明は、加工性がよく、流路抵抗を抑え、放熱性に優れた水冷式ヒートシンク及び該水冷式ヒートシンクを用いた冷却システムを得ることを目的とする。   An object of the present invention is to obtain a water-cooled heat sink having good workability, suppressing flow path resistance, and excellent heat dissipation, and a cooling system using the water-cooled heat sink.

本発明は、発熱源に直接または間接的に接触する伝熱体内に、冷却液を流す冷却液流路を形成した水冷式ヒートシンクにおいて、形状の単純な積層結合される第一、第二の伝熱流路板によって水冷式ヒートシンクを構成するという着眼に基づいてなされたものであり、第一の伝熱流路板には、第二の伝熱流路板との対向面に、冷却液流路に対応する、該対向面側が開放された連続した凹部を設け、第二の伝熱流路板には、第一の伝熱流路板との対向面に、第一の伝熱流路板の凹部内に隙間をもって嵌まる連続した凸部を設け、この第一、第二の伝熱流路板を積層結合して、上記凹部と凸部との間に冷却液流路を構成したことを特徴としている。   The present invention is a water-cooled heat sink in which a coolant flow path for flowing a coolant is formed in a heat transfer body that is in direct or indirect contact with a heat generation source. It was made based on the viewpoint that a heat-cooled heat sink is composed of a heat flow path plate. The first heat transfer flow path plate corresponds to the coolant flow path on the surface facing the second heat transfer flow path plate. The second heat transfer channel plate is provided with a continuous recess that is open on the opposite surface side, and the second heat transfer channel plate is opposed to the first heat transfer channel plate with a gap in the recess of the first heat transfer channel plate. The first and second heat transfer flow path plates are stacked and joined to form a coolant flow path between the concave and convex portions.

本発明の水冷式ヒートシンクは、その冷却液流路入口孔に吐出穴が連通し、出口孔に吸入口が連通する液体ポンプ;及び出口孔と吸入穴とを結ぶ流路に形成した放熱部;を備えた水冷システムに用いることができる。   The water-cooled heat sink of the present invention has a liquid pump in which a discharge hole communicates with an inlet hole of the coolant flow path and a suction port communicates with an outlet hole; and a heat radiating portion formed in a flow path connecting the outlet hole and the suction hole; It can be used for a water cooling system equipped with

発熱源は、第二の伝熱流路板と熱的に直接または間接的に接触させるのがよい。   The heat source may be in direct or indirect thermal contact with the second heat transfer channel plate.

第一の伝熱流路板の凹部と第二の伝熱流路板の凸部の断面形状には自由度があるが、例えばそれぞれ断面矩形とし、あるいは断面半円形または長円形とすることができる。さらに、それぞれ断面三角形としてもよい。   There are degrees of freedom in the cross-sectional shapes of the concave portion of the first heat transfer channel plate and the convex portion of the second heat transfer channel plate, but for example, each may be a cross-sectional rectangle, or a semicircular or oval cross-section. Further, each may have a cross-sectional triangle.

本発明の水冷式ヒートシンクによれば、第一の伝熱流路板の凹部の断面形状、及び第二の伝熱流路板の凸部の断面形状を単純形状とできるため、加工性がよい。また第二の伝熱流路板の凸部が伝熱面積を増加させるため放熱性がよく、また流路抵抗の増加も抑えることができる。   According to the water-cooled heat sink of the present invention, since the cross-sectional shape of the concave portion of the first heat transfer channel plate and the cross-sectional shape of the convex portion of the second heat transfer channel plate can be made simple, workability is good. Moreover, since the convex part of the second heat transfer channel plate increases the heat transfer area, heat dissipation is good, and an increase in channel resistance can also be suppressed.

図1は、本発明による水冷式ヒートシンク10を備えた水冷システムの概念図である。水冷式ヒートシンク10は、伝熱性の金属材料からなるもので、内部に連続した冷却液流路11を備え、この冷却液流路11の両端部は、水冷式ヒートシンク10の外面に臨む入口孔(入口端)12と出口孔(出口端)13に連なっている。入口孔12は、吸入連通路14を介して液体ポンプ15の吐出口16に連通し、出口孔13は吐出連通路17を介して液体ポンプ15の吸入口18に連通している。吐出連通路17には、ラジエータ19aと冷却ファン19bとからなる放熱部19が備えられている。発熱源として例示するCPU20は、水冷式ヒートシンク10に熱的に接触している。液体ポンプ15を駆動すると、冷却液が吐出口16、吸入連通路14、入口孔12から水冷式ヒートシンク10の冷却液流路11に入り、同流路11を流れてCPU20からの熱を奪い、昇温した冷却液は、出口孔13、吐出連通路17、吸入口18から液体ポンプ15に戻る過程で、放熱部19により冷却される。   FIG. 1 is a conceptual diagram of a water cooling system including a water cooling heat sink 10 according to the present invention. The water-cooled heat sink 10 is made of a heat conductive metal material, and includes a continuous coolant flow path 11, and both ends of the coolant flow path 11 are inlet holes facing the outer surface of the water-cooled heat sink 10 ( An inlet end) 12 and an outlet hole (exit end) 13 are connected. The inlet hole 12 communicates with the discharge port 16 of the liquid pump 15 via the suction communication path 14, and the outlet hole 13 communicates with the suction port 18 of the liquid pump 15 via the discharge communication path 17. The discharge communication path 17 is provided with a heat radiating portion 19 composed of a radiator 19a and a cooling fan 19b. The CPU 20 exemplified as a heat source is in thermal contact with the water-cooled heat sink 10. When the liquid pump 15 is driven, the coolant enters the coolant channel 11 of the water-cooled heat sink 10 from the discharge port 16, the suction communication path 14, and the inlet hole 12, flows through the channel 11, and takes heat from the CPU 20. The heated coolant is cooled by the heat radiating unit 19 in the process of returning from the outlet hole 13, the discharge communication path 17, and the suction port 18 to the liquid pump 15.

水冷式ヒートシンク10は、図2ないし図4に示すように、互いに積層結合される第一の伝熱流路板101と、第二の伝熱流路板102を備え、第一の伝熱流路板101には、入口孔12と出口孔13を有する入出力ブロック103が固定されている。第一の伝熱流路板101には、図2に示すように、第二の伝熱流路板102との対向面に、該対向面側が開放された連続凹部11aが形成されている。連続凹部11aは、入口孔12から渦巻き状に第一の伝熱流路板101の中心部に達し、再び渦巻き状に第一の伝熱流路板101の外側に導かれて出口孔13に達するように形成されている。この連続凹部11aは、図4、図5に示すように、断面矩形に形成されている。連続凹部11aの平面形状には自由度があるが、図示例は、限られたスペース内に十分な有効長を確保するのに効果的な渦巻き状の平面形状例である。   As shown in FIGS. 2 to 4, the water-cooled heat sink 10 includes a first heat transfer channel plate 101 and a second heat transfer channel plate 102 that are stacked and bonded to each other, and the first heat transfer channel plate 101. An input / output block 103 having an inlet hole 12 and an outlet hole 13 is fixed. As shown in FIG. 2, the first heat transfer channel plate 101 is formed with a continuous recess 11 a that is open on the opposite surface side to the second heat transfer channel plate 102. The continuous recess 11a spirally reaches the center of the first heat transfer channel plate 101 from the inlet hole 12, and is again spirally guided to the outside of the first heat transfer channel plate 101 to reach the outlet hole 13. Is formed. As shown in FIGS. 4 and 5, the continuous recess 11a has a rectangular cross section. Although the planar shape of the continuous recess 11a has a degree of freedom, the illustrated example is an example of a spiral planar shape that is effective in securing a sufficient effective length in a limited space.

第二の伝熱流路板102には、図3に示すように、第一の伝熱流路板101との対向面に、連続凹部11a内に嵌まる連続凸部11bが形成されている。連続凸部11bは、図4、図5に示すように、連続凹部11aより小型の断面矩形をなしており、第一の伝熱流路板101と第二の伝熱流路板102を積層し、固定ボルト104で固定した状態では、連続凹部11aとの間に、断面コ字形の冷却液流路11を形成する。第一の伝熱流路板101と第二の伝熱流路板102との間には、凹部11aを除く部分にシール部材あるいは接着剤を介在させることができる。または、金属同士の接合(レーザー溶接、拡散接合)でも良い。   As shown in FIG. 3, the second heat transfer channel plate 102 is formed with a continuous convex portion 11 b that fits in the continuous concave portion 11 a on the surface facing the first heat transfer channel plate 101. As shown in FIGS. 4 and 5, the continuous convex portion 11 b has a smaller cross-sectional rectangle than the continuous concave portion 11 a, and the first heat transfer channel plate 101 and the second heat transfer channel plate 102 are laminated, In a state of being fixed by the fixing bolt 104, the coolant flow path 11 having a U-shaped cross section is formed between the continuous recess 11a. Between the first heat transfer channel plate 101 and the second heat transfer channel plate 102, a seal member or an adhesive can be interposed in a portion excluding the recess 11a. Alternatively, metal-to-metal bonding (laser welding, diffusion bonding) may be used.

このように、冷却液流路11は、単純な矩形形状の溝からなる連続凹部11aと、この連続凹部11a内に隙間をもって嵌まる連続凸部11bとから構成されており、第一の伝熱流路板101と第二の伝熱流路板102とを互いに積層するだけで形成されている。従って、加工性に優れている。なお、第一の伝熱流路板101または第二の伝熱流路板102は、例えば、連続凸部を別体で形成する等して、さらに2分割されていても良い。   As described above, the coolant flow path 11 includes the continuous concave portion 11a formed of a simple rectangular groove and the continuous convex portion 11b fitted with a gap in the continuous concave portion 11a. It is formed simply by laminating the path plate 101 and the second heat transfer channel plate 102 to each other. Therefore, it is excellent in workability. The first heat transfer channel plate 101 or the second heat transfer channel plate 102 may be further divided into two parts, for example, by forming a continuous convex portion separately.

また、連続凹部11aと連続凸部11bから冷却液流路11を構成すると、放熱性にも優れる。仮に、第二の伝熱流路板102が連続凹部11aを塞ぐ平面11c(図5)からなるとすると、このときの第二の伝熱流路板102側の伝熱面積は、連続凹部11aの開放側の幅sに対応する。これに対し、第二の伝熱流路板102に連続凸部11bが形成されていると、第二の伝熱流路板102側の伝熱面積は、連続凸部11bの連続凹部11a側への突出長さxの2倍(2x)に対応する量だけ、増える。このため、冷却液流路11を流れる冷却水は、第二の伝熱流路板102側の熱を効果的に奪うことができる。CPU20は、第二の伝熱流路板102に熱的に直接接触させても良いし、熱伝導グリースなどを介して間接的に接触させても良い。   Moreover, if the cooling fluid flow path 11 is comprised from the continuous recessed part 11a and the continuous convex part 11b, it is excellent also in heat dissipation. If the second heat transfer channel plate 102 is made of a flat surface 11c (FIG. 5) that closes the continuous recess 11a, the heat transfer area on the second heat transfer channel plate 102 side at this time is the open side of the continuous recess 11a. Corresponds to the width s. On the other hand, when the continuous convex part 11b is formed in the 2nd heat-transfer flow-path board 102, the heat-transfer area by the side of the 2nd heat-transfer flow-path board 102 is to the continuous recessed part 11a side of the continuous convex part 11b. It is increased by an amount corresponding to twice the protrusion length x (2x). For this reason, the cooling water flowing through the coolant channel 11 can effectively take the heat on the second heat transfer channel plate 102 side. The CPU 20 may be in direct thermal contact with the second heat transfer flow path plate 102 or may be in indirect contact with heat conduction grease or the like.

図6ないし図8は、連続凹部11aと連続凸部11b(従って冷却液流路11)の他の形状例を示している。図6は、連続凹部11aと連続凸部11bをともに三角形(正三角形)とした例、図7は、連続凹部11aと連続凸部11bをともに断面半円状とした例、図8は、連続凹部11aと連続凸部11bをともに断面長円状(平行部の外側に半円状部を有する)とした例である。これらの実施形態によっても同様に伝熱性を高めることができる。特に図6の三角形状によると、矩形形状とした場合よりもさらに伝熱性を高めることが可能である。また、連続凸部11bの大きさによっては、図5に鎖線で示すように、伝熱面積増加スリット11b’を形成することも可能である。
6 to 8 show other shape examples of the continuous concave portion 11a and the continuous convex portion 11b (therefore, the coolant flow path 11). 6 shows an example in which both the continuous concave portion 11a and the continuous convex portion 11b are triangular (regular triangle), FIG. 7 shows an example in which both the continuous concave portion 11a and the continuous convex portion 11b are semicircular, and FIG. This is an example in which both the concave portion 11a and the continuous convex portion 11b have an oval cross section (having a semicircular portion outside the parallel portion). Also in these embodiments, the heat transfer property can be improved. In particular, according to the triangular shape of FIG. 6, it is possible to further improve the heat transfer performance as compared with the case of the rectangular shape. Further, depending on the size of the continuous convex portion 11b, as shown by a chain line in FIG. 5, it is possible to form the heat transfer area increasing slit 11b ′.

本発明の水冷式ヒートシンクを備えた水冷システムの概念図である。It is a conceptual diagram of the water cooling system provided with the water cooling type heat sink of this invention. 図1の水冷システム中の水冷式ヒートシンクの一方の伝熱流路板の平面図と側面図である。It is the top view and side view of one heat-transfer flow-path board of the water cooling type heat sink in the water cooling system of FIG. 同他方の伝熱流路板の平面図と側面図である。It is the top view and side view of the other heat-transfer channel board. 図2と図3の伝熱流路板を積層した状態における、両図のIV-IV線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in both drawings in a state where the heat transfer flow path plates of FIGS. 2 and 3 are stacked. 冷却水流路の断面形状の詳細を示す図4の一部拡大断面図である。It is a partially expanded sectional view of FIG. 4 which shows the detail of the cross-sectional shape of a cooling water flow path. 冷却水流路の別の形状例を示す、図5に対応する拡大断面図である。It is an expanded sectional view corresponding to FIG. 5 which shows another example of a shape of a cooling water flow path. 冷却水流路のさらに別の形状例を示す、図5に対応する拡大断面図である。FIG. 6 is an enlarged cross-sectional view corresponding to FIG. 5, showing still another example of the shape of the cooling water channel. 冷却水流路のさらに他の形状例を示す、図5に対応する拡大断面図である。FIG. 6 is an enlarged cross-sectional view corresponding to FIG. 5, showing still another example of the shape of the cooling water channel.

符号の説明Explanation of symbols

10 水冷式ヒートシンク
101 第一の伝熱流路板
102 第二の伝熱流路板
11 冷却液流路
11a 連続凹部
11b 連続凸部
12 入口孔
13 出口孔
14 吸入連通路
15 液体ポンプ
16 吐出口
17 吐出連通路
18 吸入口
19 放熱部
20 CPU(発熱源)

DESCRIPTION OF SYMBOLS 10 Water-cooling type heat sink 101 1st heat-transfer flow-path board 102 2nd heat-transfer flow-path board 11 Coolant flow path 11a Continuous recessed part 11b Continuous convex part 12 Inlet hole 13 Outlet hole 14 Inlet communication path 15 Liquid pump 16 Outlet 17 Discharge Communication path 18 Suction port 19 Heat radiation part 20 CPU (Heat generation source)

Claims (10)

発熱源に直接または間接的に接触する伝熱体内に、冷却液を流す冷却液流路を形成した水冷式ヒートシンクにおいて、
積層結合される第一、第二の伝熱流路板を備え、
該第一の伝熱流路板は、第二の伝熱流路板との対向面に、上記冷却液流路に対応する、該対向面側が開放された連続した凹部を備え、
上記第二の伝熱流路板は、第一の伝熱流路板との対向面に、第一の伝熱流路板の凹部内に隙間をもって嵌まる連続した凸部を備え、
上記第一、第二の伝熱流路板を積層結合して、上記凹部と凸部との間に上記冷却液流路を構成したことを特徴とする水冷式ヒートシンク。
In a water-cooled heat sink in which a coolant flow path for flowing a coolant is formed in a heat transfer body that directly or indirectly contacts a heat source,
The first and second heat transfer flow path plates that are laminated and bonded,
The first heat transfer channel plate is provided with a continuous concave portion corresponding to the coolant channel and having the open surface side open, on the surface facing the second heat transfer channel plate,
The second heat transfer channel plate includes a continuous convex portion that fits with a gap in the concave portion of the first heat transfer channel plate on the surface facing the first heat transfer channel plate,
A water-cooled heat sink, wherein the first and second heat transfer flow path plates are stacked and joined to form the coolant flow path between the concave and convex portions.
請求項1記載の水冷ヒートシンクにおいて、発熱源は、第二の伝熱流路板と熱的に直接または間接的に接触する水冷式ヒートシンク。 The water-cooled heat sink according to claim 1, wherein the heat source is in direct or indirect contact with the second heat transfer channel plate. 請求項1または2記載の水冷ヒートシンクにおいて、凹部と凸部の断面形状はそれぞれ矩形である水冷式ヒートシンク。 3. The water-cooled heat sink according to claim 1, wherein the cross-sectional shapes of the concave portion and the convex portion are each rectangular. 請求項1または2記載の水冷ヒートシンクにおいて、凹部と凸部の断面形状はそれぞれ、半円形または長円形である水冷式ヒートシンク。 The water-cooled heat sink according to claim 1 or 2, wherein the cross-sectional shapes of the concave portion and the convex portion are semicircular or oval, respectively. 請求項1または2記載の水冷ヒートシンクにおいて、凹部と凸部の断面形状はそれぞれ、三角形である水冷式ヒートシンク。 The water-cooled heat sink according to claim 1 or 2, wherein each of the cross-sectional shapes of the concave portion and the convex portion is a triangle. 発熱源に直接または間接的に接触する伝熱体内に、冷却液を流す冷却液流路を形成した水冷式ヒートシンク;
この水冷式ヒートシンクの冷却液流路入口孔に吐出口が連通し、冷却液流路出口孔に吸入口が連通する液体ポンプ;及び
上記出口孔と吸入穴とを結ぶ流路に形成した放熱部;
を備えた水冷システムにおいて、
上記水冷式ヒートシンクは、
積層結合される第一、第二の伝熱流路板を備え、
該第一の伝熱流路板は、第二の伝熱流路板との対向面に、上記冷却液流路に対応する、該対向面側が開放された連続した凹部を備え、
上記第二の伝熱流路板は、第一の伝熱流路板との対向面に、第一の伝熱流路板の凹部内に隙間をもって嵌まる連続した凸部を備え、
上記第一、第二の伝熱流路板を積層結合して、上記凹部と凸部との間に上記冷却液流路を構成したことを特徴とする水冷システム。
A water-cooled heat sink in which a coolant channel is formed in the heat transfer body that is in direct or indirect contact with the heat source;
A liquid pump in which a discharge port communicates with a coolant flow path inlet hole of the water-cooled heat sink and a suction port communicates with a coolant flow path outlet hole; and a heat radiating portion formed in a flow path connecting the outlet hole and the suction hole ;
In the water cooling system with
The water-cooled heat sink
The first and second heat transfer flow path plates that are laminated and bonded,
The first heat transfer channel plate is provided with a continuous concave portion corresponding to the coolant channel and having the open surface side open, on the surface facing the second heat transfer channel plate,
The second heat transfer channel plate includes a continuous convex portion that fits with a gap in the concave portion of the first heat transfer channel plate on the surface facing the first heat transfer channel plate,
A water cooling system, wherein the first and second heat transfer channel plates are stacked and joined to form the coolant channel between the concave and convex portions.
請求項6記載の水冷システムにおいて、発熱源は、第二の伝熱流路板と熱的に直接または間接的に接触する水冷システム。 The water cooling system according to claim 6, wherein the heat generation source is in direct or indirect thermal contact with the second heat transfer channel plate. 請求項6または7記載の水冷システムにおいて、第一の伝熱流路板の凹部と第二の伝熱流路板の凸部の断面形状はそれぞれ矩形である水冷システム。 The water cooling system according to claim 6 or 7, wherein the cross-sectional shapes of the concave portion of the first heat transfer channel plate and the convex portion of the second heat transfer channel plate are each rectangular. 請求項6または7記載の水冷システムにおいて、第一の伝熱流路板の凹部と第二の伝熱流路板の凸部の断面形状はそれぞれ、半円形または長円形である水冷システム。 The water cooling system according to claim 6 or 7, wherein the cross-sectional shapes of the concave portion of the first heat transfer channel plate and the convex portion of the second heat transfer channel plate are semicircular or oval, respectively. 請求項5または6記載の水冷システムにおいて、第一の伝熱流路板の凹部と第二の伝熱流路板の凸部の断面形状はそれぞれ、三角形である水冷システム。


The water cooling system according to claim 5 or 6, wherein the cross-sectional shapes of the concave portion of the first heat transfer channel plate and the convex portion of the second heat transfer channel plate are triangular.


JP2006210945A 2006-08-02 2006-08-02 Water-cooling heat sink and water-cooling system Withdrawn JP2008041750A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006210945A JP2008041750A (en) 2006-08-02 2006-08-02 Water-cooling heat sink and water-cooling system
TW096123093A TW200820404A (en) 2006-08-02 2007-06-26 Water-cooled heat sink and water-cooled system
CN200710138248.4A CN101119625A (en) 2006-08-02 2007-07-31 Water-cooled heat sink and water-cooled system
US11/888,741 US20080029251A1 (en) 2006-08-02 2007-08-02 Water-cooled heat sink and water-cooled system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210945A JP2008041750A (en) 2006-08-02 2006-08-02 Water-cooling heat sink and water-cooling system

Publications (1)

Publication Number Publication Date
JP2008041750A true JP2008041750A (en) 2008-02-21

Family

ID=39028025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210945A Withdrawn JP2008041750A (en) 2006-08-02 2006-08-02 Water-cooling heat sink and water-cooling system

Country Status (4)

Country Link
US (1) US20080029251A1 (en)
JP (1) JP2008041750A (en)
CN (1) CN101119625A (en)
TW (1) TW200820404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185457A (en) * 2010-03-04 2011-09-22 Kiko Kagi Kofun Yugenkoshi Heat exchanger structure
KR102153475B1 (en) * 2019-06-14 2020-09-08 연세대학교 산학협력단 Flexible heat sink using channel flow and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038056A1 (en) * 2008-08-15 2010-02-18 Ellsworth Joseph R High performance compact heat exchanger
US7782616B1 (en) * 2009-04-23 2010-08-24 Delphi Technologies, Inc. Heat-dissipating component having stair-stepped coolant channels
TWI400421B (en) * 2010-01-14 2013-07-01 Asia Vital Components Co Ltd Heat exchanger structure
US9494370B2 (en) 2010-12-09 2016-11-15 GeramTec GmbH Homogeneous liquid cooling of LED array
JP5287919B2 (en) * 2011-04-01 2013-09-11 トヨタ自動車株式会社 Heat sink and electronic component with heat sink
GB2544979A (en) * 2015-12-01 2017-06-07 Rolls Royce Plc A heat sink of source apparatus and method
KR102442311B1 (en) * 2017-02-24 2022-09-13 다이니폰 인사츠 가부시키가이샤 Vapor chamber, electronic device, metal sheet for vapor chamber and manufacturing method of vapor chamber
CN109714935A (en) * 2018-12-28 2019-05-03 广西南宁凯得利电子科技有限公司 Controller for electric vehicle
DE102021212678A1 (en) 2021-11-11 2023-05-11 Zf Friedrichshafen Ag Temperature dissipation element for dissipating temperature from a circuit carrier with at least one electronic component, dissipation system, electronic switching device and method for operating a provided temperature dissipation element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185457A (en) * 2010-03-04 2011-09-22 Kiko Kagi Kofun Yugenkoshi Heat exchanger structure
KR102153475B1 (en) * 2019-06-14 2020-09-08 연세대학교 산학협력단 Flexible heat sink using channel flow and manufacturing method thereof

Also Published As

Publication number Publication date
US20080029251A1 (en) 2008-02-07
CN101119625A (en) 2008-02-06
TW200820404A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP2008041750A (en) Water-cooling heat sink and water-cooling system
US9291404B2 (en) Cooler and cooling device
JP2011091301A (en) Liquid cooling type cooling device
US20060021737A1 (en) Liquid cooling device
JP2008171840A (en) Liquid-cooling heat sink and design method thereof
JP2008186820A (en) Heat generation body cooling structure and drive
JP2017135181A (en) Semiconductor device
WO2015141714A1 (en) Cooler, and semiconductor module using same
TW200850137A (en) Cooling system
TW200841163A (en) Liquid cooling system
JP2013165298A (en) Liquid cooling device
JP2007184349A (en) Water-cooled heat sink
JP5332115B2 (en) Power element mounting unit
JP6322930B2 (en) Heat receiver, cooling unit, electronic equipment
JP2011192730A (en) Cooler, laminated cooler, and intermediate plate
JP4999146B2 (en) Inner fin and heat sink equipped with the inner fin
JP5114324B2 (en) Semiconductor device
JP2009099995A (en) Refrigerator and electronic apparatus
JP2019054224A (en) Liquid-cooled type cooling device
JP2017216293A (en) Fluid-cooling type cooling device
JP2008190775A (en) Brazed flow channel plate
JP7363446B2 (en) Cooling system
JP2008235572A (en) Electronic component cooling device
JP5251916B2 (en) Electronic equipment cooler
JP2010109016A (en) Cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090709