JP2008034271A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2008034271A
JP2008034271A JP2006207404A JP2006207404A JP2008034271A JP 2008034271 A JP2008034271 A JP 2008034271A JP 2006207404 A JP2006207404 A JP 2006207404A JP 2006207404 A JP2006207404 A JP 2006207404A JP 2008034271 A JP2008034271 A JP 2008034271A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
hydrogen separation
cathode
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207404A
Other languages
English (en)
Inventor
Hiroyuki Kawai
博之 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006207404A priority Critical patent/JP2008034271A/ja
Publication of JP2008034271A publication Critical patent/JP2008034271A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】電解質膜の水素分離膜からの剥離の抑制。
【解決手段】燃料電池セル10は、水素分離膜100、第1の電解質膜120、第2の電解質膜130およびカソード110の順に積層されており、積層された部材(電極部材)の両側からセパレータ150、160により狭持されている。第1の電解質膜は、プロトン伝導性を有するペロブスカイト型構造を有する化合物により形成されている。第2の電解質膜は、プロトン伝導性を有し、かつ、第1の電解質膜よりも低い酸化物イオン伝導性を有する層状ペロブスカイト構造を有する化合物により形成されている。このような構成とることにより、カソード110で発生した酸素イオンの第1の電解質膜120への伝導を抑制できる。よって、水素分離膜100と第1の電解質膜120との界面における水の生成を抑制でき、水素分離膜100と第1の電解質膜120との界面剥離を抑制できる。
【選択図】図1

Description

本発明は、水素分離膜およびプロトン伝導性の電解質膜を有する燃料電池に関するものである。
近年、水素分離膜を有する燃料電池が用いられている。水素分離膜は、供給された水素をプロトンと電子に分離し、燃料電池のアノードとして機能する。水素分離膜を用いた燃料電池では、水素分離膜上にプロトン伝導性を有する電解質膜が形成され、電解質膜上にカソードが形成されている。プロトン伝導性の電解質膜は、例えば、ペロブスカイト型化合物を用いて形成されている。このような燃料電池において、水素分離膜で分離されたプロトンはプロトン伝導性の電解質膜中を通って、また、水素分離膜で分離された電子は外部回路を通ってカソードに移動する。カソードでは、アノードから移動してきたプロトンと電子とカソードに供給された酸素と反応して水が生成される。このとき、電流はカソード側からアノード側に流れ、燃料電池は発電する。
特開2004−146337号公報
しかしながら、ペロブスカイト型化合物を用いて形成されている電解質膜は、良好なプロトン伝導性を有する一方、動作環境が高温・長時間になるにつれて、酸化物イオンも伝導する性質を有する。その結果、アノードである水素分離膜で分離されたプロトンと電解質膜を伝導した酸化物イオンとが反応して水素分離膜と電解質膜との界面で水が生成され、生成された水により電解質膜が水素分離膜とが剥離し、プロトン伝導効率が低下してしまうという問題がある。プロトン伝導効率の低下に伴い、燃料電池の発電効率の低下を招く。
上述の課題は、ペロブスカイト型複合酸化物を用いて形成されている電解質膜を用いた燃料電池に特有の課題ではなく、酸化物イオン伝導性を有している電解質膜を用いた燃料電池に共通する課題である。
本発明は、上述した課題に鑑みてなされたものであり、燃料電池の発電効率の向上を目的とする。
本発明は、上述した課題の少なくとも一部を解決するために、燃料電池を提供する。本発明の燃料電池は、水素分離膜と、カソードと、第1の電解質膜と、第2の電解質膜とを備える。第1の電解質膜は、プロトン伝導性および酸化物イオン伝導性を有し、水素分離膜とカソードとの間に配置されており、第2の電解質膜は、プロトン伝導性および第1の電解質膜よりも低い酸化物イオン伝導性を有し、かつ、水素分離膜とカソードとの間に配置されている。
本発明の燃料電池によれば、プロトンをカソードへ移動させながら、カソードで発生した酸化物イオンの水素分離膜への移動を抑制できる。従って、水素分離膜と電解質膜との界面における水の生成を抑制でき、水素分離膜と電解質膜との剥離を抑制できる。
本発明の燃料電池において、第2の電解質膜は、層状ペロブスカイト型構造を有する化合物により形成されていてもよい。
層状ペロブスカイト型構造を有する化合物は、酸素イオンの伝導性が低い構造となっている。従って、本発明の燃料電池によれば、カソードと水素分離膜との間に層状ペロブスカイト型構造を有する化合物により形成された第2の電解質膜を配置することにより、酸素イオンとプロトンとの反応を抑制でき、水の生成を抑制できる。
本発明の燃料電池において、第2の電解質膜は、カソードと第1の電解質膜との間に配置され、第1の電解質は、第2の電解質膜と水素分離膜との間に配置されてもよい。
本発明の燃料電池によれば、第2の電解質膜をカソードに隣接させることにより、酸化物イオンが第1の電解質膜に到達することを高い精度で抑制できる。従って、水素分離膜と第1の電解質膜と界面で水が生成されることを抑制でき、水素分離膜と第1の電解質膜との剥離を高い精度で抑制できる。
本発明の燃料電池において、第2の電解質膜は、水素分離膜と第1の電解質膜との間に配置され、第1の電解質膜は、第2の電解質膜とカソードとの間に配置されてもよい。
本発明の燃料電池によれば、第2の電解質膜を水素分離膜と第1の電解質膜との間に配置することにより、カソードで生成された酸化物イオンが第1の電解質膜を伝導してしまっても、第2の電解質膜で、酸化物イオンの伝導を抑制できるため、水素分離膜と第2の電解質膜との界面における水の生成を抑制でき、界面剥離を抑制できる。
本発明の燃料電池において、燃料電池は、第1の電解質膜を2つ有しており、2つの第1の電解質膜の一方は、第2の電解質膜とカソードとの間に配置されており、他方の第1の電解質膜は、第2の電解質膜と水素分離膜との間に配置されていてもよい。
本発明の燃料電池によれば、第2の電解質膜が、カソードと水素分離膜との間に配置されているため、カソードで生成された酸化物イオンの伝導を抑制できる。従って、水素分離膜と第1の電解質膜との界面における水の生成を抑制し、水素分離膜と第1の電解質膜との剥離を抑制できる。
本発明の燃料電池によれば、第1の電解質膜は、組成式ABOによって表されるペロブスカイト型化合物により形成されていてもよい。
組成式ABOによって表されるペロブスカイト型化合物は、電気陰性度が高い。従って、本発明の燃料電池によれば、プロトンの伝導効率を向上できる。
本発明において、上述した種々の態様は、適宜、組み合わせたり、一部を省略したりして適用することができる。
以下、本発明の実施の形態について、実施例に基づき、適宜図面を参照しながら説明する。
A.第1実施例:
A1.燃料電池の概略構成:
第1実施例の燃料電池の構成について、図1および図2を参照して説明する。図1は、本実施例における燃料電池の単セルの断面を表す模式図である。図2は、第1実施例における電解質膜を形成する化合物を示す一覧表である。第1実施例の燃料電池は、図1に示す単セルを複数積層して構成されている。以降、第1実施例における燃料電池の単セルを、燃料電池セル10と呼ぶ。燃料電池セル10は、図1に示すように、水素分離膜100、第1の電解質膜120、第2の電解質膜130およびカソード110の順に積層されており、積層された部材(以降、本実施例では電極部材と呼ぶ)の両側からセパレータ150、160により狭持されている。
セパレータ150には、カソード110に酸化ガスを供給するための流路151が形成されており、セパレータ160には、水素分離膜100に水素を含む燃料ガスを供給するための流路161が形成されている。
カソード110は、電気化学反応を促進する触媒活性を有する材料から形成された薄膜状の電極である。触媒活性を有する材料としては、例えば、ランタンストロンチウムマンガネート(La0.6Sr0.4MnO3)、ランタンストロンチウムコバルタイト(La0.6Sr0.4CoO3)が用いられる。カソード110の膜厚は、例えば、30μm程度である。
水素分離膜100は、水素透過性金属からなる薄膜である。水素分離膜100は、燃料電池セル10のアノードとして機能する。水素分離膜100は、パラジウム(Pd)またはPd合金により、あるいは、バナジウム(V)等の5族金属(Vの他、ニオブ、タンタル等)、または、5族金属の合金の表面にPdやPd合金層が被膜された構造を有する。本実施例では、水素分離膜100は、図1に示すように、バナジウム101上にパラジウム102が被膜されている。水素分離膜100の膜厚は、例えば、40μm程度である。水素分離膜100を構成する金属は、水素透過性を有していれば良く、上述した金属に限定されない。
第1の電解質膜120は、高いプロトン伝導性を有する金属酸化物により形成されている。第1実施例では、第1の電解質膜120は、組成式ABOにより表されるペロブスカイト型構造を有する金属酸化物により形成されている。ペロブスカイト型構造とは、結晶構造の一種であり、灰チタン石(CaTiO3)と類似の結晶構造を指す。以降、ペロブスカイト型構造の金属酸化物を、ペロブスカイト型化合物と呼ぶ。図2に示すように、第1の電解質膜を形成するペロブスカイト型化合物には、例えば、SrZrLnO、BaCeY等が含まれる。ペロブスカイト型化合物は、燃料電池セル10の動作環境下で、高いプロトン伝導性を示す一方、燃料電池セル10が長時間に亘って動作すると、若干の酸化物イオン伝導性も示す。なお、第1の電解質膜120の膜厚は、数μm程度が好ましい。
第2の電解質膜130は、プロトン伝導性を有し、かつ、第1の電解質膜120よりも低い酸化物イオン伝導性を有する化合物により形成されている。第1実施例では、第2の電解質膜130を形成する化合物は、層状ペロブスカイト型構造を有している。
層状ペロブスカイト型構造とは、ペロブスカイト型構造を基本骨格とした層状構造を表す。岩塩型・ホタル石型構造ブロックが共有された組成式An+1BnO3n+1で表される構造や、ペロブスカイト型骨格を3層積層した3層ペロブスカイト型構造などが含まれる。層状ペロブスカイト型構造を有する化合物は、層間元素や中心元素が変化されることにより様々な物性を示す。以降、層状ペロブスカイト型構造を有する酸化物を、層状ペロブスカイト型化合物と呼ぶ。図2に示すように、第2の電解質膜130を形成する層状ペロブスカイト型化合物には、例えば、HLnTiO10、HlaNb、KCaNb10、SrTiO、SrTiO等が含まれる。
層状ペロブスカイト型化合物は、プロトン伝導率がそれほど高くないため、第2の電解質膜130をできる限り薄く形成する必要がある。第2の電解質膜130の膜厚は、膜として正常に機能する数nm〜数十nm程度とすることが好ましい。
ところで、イオン伝導性を示すペロブスカイト型化合物、層状ペロブスカイト型化合物では、酸素イオンO2−は、結晶の格子点のうち、酸化物イオンの一部が抜けて形成された酸素空格子点を介して伝導する。第2の電解質膜130を形成する層状ペロブスカイト型化合物として上記した各複合酸化物は、その構造上、種々の要因により積層方向に対して垂直な方向への酸化物イオンの伝導性が低い。酸化物イオンの伝導性が低い要因の一つは、例えば、層状ペロブスカイト型構造の結晶構造を有する化合物には、ある酸素格子点から酸素空格子点への移動距離が長いためであると考えられている。また、酸化物イオンの伝導性が低い要因としては、他にも、層状ペロブスカイトは、既述のとおり構造が層状になっているため、酸化物イオンが別の層の酸素空格子点へ移動するのに、同一層内の酸素空格子点へ移動するよりも大きなエネルギーが必要となるためであると考えられている。
従って、層状ペロブスカイト型化合物により形成された第2の電解質膜130は、酸素イオンが伝導しにくいため、カソード110で生成された酸素イオンが、第1の電解質膜120へ伝導することを抑制できる。
A2.燃料電池の動作
燃料電池セル10の動作について、図3を参照して説明する。図3は、第1実施例における燃料電池セル10の動作を模式的に示す模式図である。図3では、燃料電池セル10を構成する各部材のうちセパレータ150、160を除く電極部材(水素分離膜100、カソード110、第1の電解質膜120および第2の電解質膜130)が分離された状態を示しているが、勿論、実際には、図1に示すようにこれらの部材は積層されている。
水素を含有する燃料ガスが水素分離膜100に供給されると、水素分離膜100に供給された燃料ガスに含まれている水素はプロトン(H)と電子(e)に分離され、プロトンは第1の電解質膜120、第2の電解質膜内を移動して、電子は外部の電気回路を通ってそれぞれカソード110に到達する。一方、カソード110には、酸素を含有する酸化ガスが供給される。酸化ガスに含まれる酸素が外部回路からカソード110に移動してきた電子と反応して酸素イオン(O2−)が生成される。カソード110では、生成された酸素イオンと第1の電解質膜120、第2の電解質膜130内を移動してきたプロトンとが反応して水(HO)が生成される。
第1の電解質膜の酸素イオン伝導率は、既述のように、低いが0%ではない。仮に、第2の電解質膜が配置されていない場合、カソード110で発生した酸素イオンは、第1の電解質膜内を伝導する。酸素イオンが第1の電解質膜120を伝導すると、水素分離膜100で分離されたプロトンと反応して、水素分離膜100と第1の電解質膜120との界面で水が生成され、水素分離膜100と第1の電解質膜120とが剥離してしまう恐れがある。
そのため、第1実施例では、第1の電解質膜120とカソード110との間に、プロトン伝導性を有し、かつ、第1の電解質膜よりも酸化物イオン伝導性の低い第2の電解質膜を配置する。こうすることにより、カソード110で生成された酸素イオンが第1の電解質膜120を伝導して、水素分離膜100と第1の電解質膜120との界面で水が生成されることを抑制できる。
A3.燃料電池の製造工程:
図4および図5を参照して、第1実施例の燃料電池の製造工程について説明する。図4は。第1実施例における燃料電池セル10の製造工程を説明する工程図である。図5は、第1実施例における燃料電池セル10の製造工程における電極部材を模式的に示す説明図である。
第1実施例の製造工程では、まず、表面にPdを被膜した水素分離膜100を準備する(ステップS10)(図5(a))。次に、水素分離膜100上に、第1の電解質膜120を形成する(ステップS11)。具体的には、図5(b)に示すように、第1の電解質膜120を形成するペロブスカイト型化合物300を、種々の金属薄膜生成法、例えば、物理気相成長法(PVD法)、化学気相成長法(CVD法)により形成する。
次に、第1の電解質膜120上に、第2の電解質膜130を形成する(ステップS12)。具体的には、図5(c)に示すように、第1の電解質膜の形成方法と同様に、第2の電解質膜を形成する層状ペロブスカイト型化合物310を、種々の金属薄膜生成法、例えば、PVD法、CVD法により形成する。
次に、第2の電解質膜130上に、カソード110を形成する(ステップS13)。具体的には、図5(d)に示すように、カソード110を形成する材料がペースト状にされたカソードペースト320を、種々の成膜法、例えば、PVD法、ゾルゲル法、スクリーン印刷法等により付着させた後、乾燥させる。以上の製造工程により、燃料電池セル10が製造される。
以上説明したように、第1実施例の燃料電池セル10によれば、第1の電解質膜120とカソード110との間に、第1の電解質膜120よりも酸化物イオン伝導性の低い層状ペロブスカイト型化合物により形成された第2の電解質膜130を配置することにより、第1の電解質膜120へのカソード110で発生した酸素イオンO2−の伝導を抑制できる。従って、水素分離膜100と第1の電解質膜120との界面における水の生成を抑制でき、水素分離膜100と第1の電解質膜120との界面剥離を抑制できる。よって、燃料電池セル10の発電効率を向上できる。
また、本発明の燃料電池セル10によれば、第2の電解質膜130で、酸素イオンの伝導が抑制されるため、第1の電解質膜120に伝導する酸素イオンを高い確率で抑制できる。第1の電解質膜120を形成するペロブスカイト型化合物は、イオン含有率が、陽イオン、陰イオン合わせて「1」であり、第1の電解質膜120に到達する陰イオン(酸素イオン)は非常に少ないため、第1の電解質膜120では、陽イオンであるプロトンの含有率を高くでき、燃料電池セル10の発電効率を向上できる。
B.第2実施例
上述の第1実施例では、水素分離膜100上に第1の電解質膜120を成膜し、第1の電解質膜120上に、第2の電解質膜130を成膜することにより、酸素イオンの伝導を抑制している。第2実施例では、水素分離膜100上に第2の電解質膜130を成膜し、第2の電解質膜130上に、第1の電解質膜120を成膜して、酸素イオンの伝導を抑制する。
B1.燃料電池の概略構成:
図6を参照して、第2実施例における燃料電池について説明する。図6は、第2実施例における燃料電池の模式を表す断面図である。第2実施例の燃料電池13は、第1実施例と同様に、水素分離膜100、第1の電解質膜120、第2の電解質膜130およびとカソード110が積層された電極部材をセパレータ150,160で狭持した構造を有している。ただし、図6に示すように、水素分離膜100上に第2の電解質膜130が積層され、第2の電解質膜130上に第1の電解質膜120が積層されている。更に、第1の電解質膜120上にカソード110が積層されている。
水素分離膜100、カソード110、第1の電解質膜120および第2の電解質膜130、セパレータ150、160は、それぞれ、第1実施例と同様の構造を備える。
B2.燃料電池の動作
第2実施例の燃料電池における酸素イオンの伝導について説明する。カソード110では、酸化ガスに含まれる酸素が外部回路からカソード110に移動してきた電子と反応して酸素イオン(O2−)が生成される。カソード110では、更に、生成された酸素イオンと第1の電解質膜120、第2の電解質膜130内を伝導してきたプロトンとが反応して水(HO)が生成される。
第2実施例では、水素分離膜100と第1の電解質膜120との間に、プロトン伝導性を有し、かつ、第1の電解質膜120よりも酸化物イオン伝導性の低い第2の電解質膜130を配置する。こうすることにより、カソード110で生成された酸素イオンが第1の電解質膜120を伝導しても、第2の電解質膜130により、第1の電解質膜120から第2の電解質膜130へ酸素イオンが伝導することを抑制する。
以上説明した第2実施例の燃料電池によれば、水素分離膜100と第2の電解質膜130との界面における酸素イオン、プロトン、および電子の反応を抑制できるため、水素分離膜100と第2の電解質膜130との界面での水の生成を抑制できる。従って、水素分離膜100からの第2の電解質膜130の剥離を抑制でき、燃料電池セル13の発電性能を向上できる。
C.変形例:
(1)上述の第1実施例および第2実施例では、第1の電解質膜120および第2の電解質膜130は、水素分離膜100とカソード110との間にそれぞれ1層ずつ形成されているが、例えば、水素分離膜100とカソード110との間に、第1の電解質膜120および第2の電解質膜130を複数層形成してもよい。
図7を用いて変形例における燃料電池セル10について説明する。図7は、変形例における燃料電池セル10を模式的に示す断面図である。変形例の燃料電池15は、第1実施例と同様に、水素分離膜100とカソード110とで、第1の電解質膜120a、120bと第2の電解質膜130を挟んだ構造となっている。ただし、図7に示すように、第2の電解質膜130を第1の電解質膜120a、120bで挟んだサンドウィッチ構造の電解質層が水素分離膜100とカソード110との間に配置されている。水素分離膜100、カソード110、第1の電解質膜120および第2の電解質膜130のそれぞれは、第1実施例と同様の構造を備える。
変形例の燃料電池における酸素イオンの伝導について説明する。カソード110では、酸化ガスに含まれる酸素と外部回路からカソード110に移動してきた電子との反応により酸素イオン(O2−)が生成される。カソード110では、酸素イオンと、第1の電解質膜120a、120bおよび第2の電解質膜130を伝導してカソード110に移動してきたプロトンとが反応し、水(HO)が生成される。
図7に示すように、水素分離膜100とカソード110との間に、第2の電解質膜130を第1の電解質膜120a、120bで挟んだサンドウィッチ構造の電解質層150を配置することにより、カソード110で生成された酸素イオンの電解質層150への伝導を抑制できる。
以上説明した変形例の燃料電池によれば、水素分離膜100と電解質層150との界面Sにおける酸素イオンとプロトンの反応を抑制でき、水素分離膜100と電解質層150との界面での水の生成を抑制できる。従って、水素分離膜100からの第1の電解質膜120aの剥離を抑制できる。
以上、本発明の種々の実施例について説明したが、本発明はこれらの実施例に限定されず、その趣旨を逸脱しない範囲で種々の構成をとることができることは言うまでもない。
第1実施例における燃料電池の断面図。 第1実施例における電解質膜を形成する化合物の一覧表。 第1実施例における燃料電池の動作を模式的に示した説明図。 第1実施例における燃料電池の製造工程を説明する工程図。 第1実施例における燃料電池の製造工程を説明する説明図。 第2実施例における燃料電池の断面図。 変形例における燃料電池の断面図。
符号の説明
10、13、15...燃料電池
100...水素分離膜
101...バナジウム層
102...パラジウム層
110...カソード
120、120a、120b...第1の電解質膜
130...第2の電解質膜
150...電解質層
300...ペロブスカイト型化合物
310...層状ペロブスカイト型化合物
320...カソードペースト

Claims (6)

  1. 燃料電池であって、
    水素分離膜と、
    カソードと、
    プロトン伝導性および酸化物イオン伝導性を有し、前記水素分離膜と前記カソードとの間に配置されている第1の電解質膜と、
    プロトン伝導性および前記第1の電解質膜よりも低い酸化物イオン伝導性を有し、かつ、前記水素分離膜と前記カソードとの間に配置されている第2の電解質膜と、を備える燃料電池。
  2. 請求項1記載の燃料電池であって、
    前記第2の電解質膜は、層状ペロブスカイト型構造を有する化合物により形成されている、燃料電池。
  3. 請求項1または請求項2記載の燃料電池であって、
    前記第2の電解質膜は、前記カソードと前記第1の電解質膜との間に配置され、
    前記第1の電解質膜は、前記第2の電解質膜と前記水素分離膜との間に配置される、燃料電池。
  4. 請求項1または請求項2記載の燃料電池であって、
    前記第2の電解質膜は、前記水素分離膜と前記第1の電解質膜との間に配置され、
    前記第1の電解質膜は、前記第2の電解質膜と前記カソードとの間に配置される、燃料電池。
  5. 請求項1ないし請求項4いずれか記載の燃料電池であって、
    前記燃料電池は、前記第1の電解質膜を2つ有しており、
    前記2つの第1の電解質膜の一方は、前記第2の電解質膜と前記カソードとの間に配置されており、
    他方の前記第1の電解質膜は、前記第2の電解質膜と前記水素分離膜との間に配置されている、燃料電池。
  6. 請求項1ないし請求項5いずれか記載の燃料電池であって、
    前記第1の電解質膜は、組成式ABOによって表されるペロブスカイト型化合物により形成されている、燃料電池。
JP2006207404A 2006-07-31 2006-07-31 燃料電池 Pending JP2008034271A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207404A JP2008034271A (ja) 2006-07-31 2006-07-31 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207404A JP2008034271A (ja) 2006-07-31 2006-07-31 燃料電池

Publications (1)

Publication Number Publication Date
JP2008034271A true JP2008034271A (ja) 2008-02-14

Family

ID=39123466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207404A Pending JP2008034271A (ja) 2006-07-31 2006-07-31 燃料電池

Country Status (1)

Country Link
JP (1) JP2008034271A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164610A (ja) * 2011-02-09 2012-08-30 Toyota Motor Corp 層状金属酸化物を含む固体電解質及びその製造方法
JP2012164609A (ja) * 2011-02-09 2012-08-30 Toyota Motor Corp 層状金属酸化物を含む電極及び固体電解質層を備える燃料電池
US8986894B2 (en) 2011-02-09 2015-03-24 Toyota Jidosha Kabushiki Kaisha Solid electrolyte including layered metal oxide, fuel cell including thereof, production method for solid electrolyte, and production method for electrode catalyst
KR101763722B1 (ko) 2014-08-25 2017-08-14 창원대학교 산학협력단 고 신뢰성 연료전지의 적층을 위한 프로톤 전도성 세라믹 전해질
CN111819721A (zh) * 2018-02-27 2020-10-23 国立大学法人北海道大学 质子陶瓷燃料电池及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164610A (ja) * 2011-02-09 2012-08-30 Toyota Motor Corp 層状金属酸化物を含む固体電解質及びその製造方法
JP2012164609A (ja) * 2011-02-09 2012-08-30 Toyota Motor Corp 層状金属酸化物を含む電極及び固体電解質層を備える燃料電池
US8986894B2 (en) 2011-02-09 2015-03-24 Toyota Jidosha Kabushiki Kaisha Solid electrolyte including layered metal oxide, fuel cell including thereof, production method for solid electrolyte, and production method for electrode catalyst
KR101763722B1 (ko) 2014-08-25 2017-08-14 창원대학교 산학협력단 고 신뢰성 연료전지의 적층을 위한 프로톤 전도성 세라믹 전해질
CN111819721A (zh) * 2018-02-27 2020-10-23 国立大学法人北海道大学 质子陶瓷燃料电池及其制造方法

Similar Documents

Publication Publication Date Title
Su et al. Cation-deficient perovskites for clean energy conversion
JP4079016B2 (ja) 中温域で作動可能な燃料電池
KR20140016947A (ko) 낮은 pO2 분위기에서 얻을 수 있는 세라믹 장치를 위한 소결 첨가제
He et al. A critical review of key materials and issues in solid oxide cells
JP2008034271A (ja) 燃料電池
KR101290577B1 (ko) 고체 산화물 연료전지용 전해질막, 그 제조방법 및 이를 채용한 연료전지
US20160156058A1 (en) Composite material for fuel cell, method for producing composite material for fuel cell, and fuel cell
JP4771327B2 (ja) 固体酸化物型燃料電池
JP4390530B2 (ja) 電解質・電極接合体及びその製造方法
JP7088776B2 (ja) 燃料電池および燃料電池の製造方法
US20090233151A1 (en) Proton conducting oxidic electrolyte for intermediate temperature fuel cell
JP2006079888A (ja) 燃料電池の製造方法および燃料電池
JP2009245654A (ja) 固体酸化物形燃料電池の製造方法、及び固体酸化物形燃料電池
JP2008034130A (ja) 燃料電池
JP2005166531A (ja) 燃料電池
JP2004355814A (ja) 固体酸化物形燃料電池用セル及びその製造方法
JP4910966B2 (ja) 中温域で作動可能な燃料電池
JP2008171775A (ja) 水素透過構造体およびそれを用いた燃料電池
JP2007090132A (ja) 水素透過膜、及びこれを用いた燃料電池
JP4341454B2 (ja) 固体電解質型燃料電池の製造方法
JP2007172848A (ja) 燃料電池およびその製造方法
JP2006164821A (ja) 燃料電池
JP2005302424A (ja) 燃料電池用電解質膜、燃料電池、およびそれらの製造方法
JP5412534B2 (ja) 複合基板の製造方法および固体酸化物形燃料電池セルの製造方法
JP5217126B2 (ja) 燃料電池およびその製造方法