JP2008034081A - 半導体記憶装置 - Google Patents
半導体記憶装置 Download PDFInfo
- Publication number
- JP2008034081A JP2008034081A JP2007111436A JP2007111436A JP2008034081A JP 2008034081 A JP2008034081 A JP 2008034081A JP 2007111436 A JP2007111436 A JP 2007111436A JP 2007111436 A JP2007111436 A JP 2007111436A JP 2008034081 A JP2008034081 A JP 2008034081A
- Authority
- JP
- Japan
- Prior art keywords
- data
- test
- memory device
- semiconductor memory
- terminals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/48—Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/1201—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1087—Data input latches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/18—Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
- G11C29/26—Accessing multiple arrays
- G11C2029/2602—Concurrent test
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/10—Aspects relating to interfaces of memory device to external buses
- G11C2207/108—Wide data ports
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
- Dram (AREA)
Abstract
【課題】動作試験において用いるプローブカードの配線数や端子数を削減可能な半導体記憶装置を提供する。
【解決手段】 メモリセルアレイと、複数のデータ入出力端子と、データ入出力端子に供給されたデータをメモリセルアレイに対して並列に書き込むための複数の信号経路と、複数の信号経路上のデータをそれぞれ一時的に保持するラッチ回路と、テスト動作時においてテストデータ端子からラッチ回路へデータを選択的に供給するセレクタとを備える。これにより、テスト動作時においてテストデータ端子からラッチ回路へデータをシリアルに供給できることから、動作試験において使用する端子の数を大幅に削減することが可能となる。
【選択図】図1
【解決手段】 メモリセルアレイと、複数のデータ入出力端子と、データ入出力端子に供給されたデータをメモリセルアレイに対して並列に書き込むための複数の信号経路と、複数の信号経路上のデータをそれぞれ一時的に保持するラッチ回路と、テスト動作時においてテストデータ端子からラッチ回路へデータを選択的に供給するセレクタとを備える。これにより、テスト動作時においてテストデータ端子からラッチ回路へデータをシリアルに供給できることから、動作試験において使用する端子の数を大幅に削減することが可能となる。
【選択図】図1
Description
本発明は半導体記憶装置に関し、特に、データ入出力端子数が比較的多い半導体記憶装置に関する。
DRAM(Dynamic Random Access Memory)に代表される半導体記憶装置の製造プロセスにおいては、ウェハ状態で各種の動作試験が行われることが多い。動作試験では、例えばデータの読み出しや書き込みができない不良アドレスの検出が行われ、検出された不良アドレスは冗長セルによって救済される。不良セルから冗長セルへの置換は、主にヒューズのトリミングにより行われる。
通常、ウェハ状態での動作試験はチップごとに行うのではなく、プローブカードを用いることにより複数個のチップに対して並列に行われる。つまり、テスト対象となる複数のチップのクロック端子、アドレス端子及びコマンド端子をプローブカード内でそれぞれ共通接続することにより、これらチップに共通のクロック信号、アドレス信号及びコマンドを与え、この状態で実際にデータの読み出しや書き込みを行う。したがって、プローブカード内で必要なクロック配線、アドレス配線及びコマンド配線の数は、1つのチップのクロック端子、アドレス端子及びコマンド端子に等しい。このため、プローブカード上におけるこれら配線の数は、同時にテストされるチップ数にかかわらず、比較的少数で足りる。
これに対し、少なくとも出力データに関してはチップごとに個別である必要があることから、当然ながら、データ配線についてはプローブカード内で共通接続することはできない。したがって、プローブカードに必要なデータ配線の数は、並列に試験されるチップのデータ入出力端子の総数に等しくなる。このため、1チップ当たりのデータ入出力端子数が多い場合、つまり、データの入出力幅(ビット数)が大きいチップを試験する場合においては、プローブカードに必要なデータ配線数は非常に多くなる。しかも、1チップ当たりのデータ入出力端子数が多いと、その分、プローブカードに必要な端子数も増えることになる。
しかしながら、プローブカードに形成可能な配線数や端子数には限りがあるため、データの入出力幅が例えば32ビットと比較的大きいチップを試験する場合、並列に試験可能なチップ数を削減する必要が生じてしまう。このような場合、結果的に1チップ当たりの動作試験時間が増大することから、製造コストの増大を招くという問題が生じてしまう。
その他、半導体記憶装置の動作試験に関する従来技術としては、特許文献1に記載された技術が知られている。
特開2000−182398号公報
このように、従来の半導体記憶装置では、データ入出力端子の数が多くなるほど並列に試験可能なチップ数が減り、製造コストが増大するという問題があった。したがって、本発明は、動作試験において用いるプローブカードの配線数や端子数を削減可能な半導体記憶装置を提供することを目的とする。
本発明による半導体記憶装置は、メモリセルアレイと、複数のデータ入出力端子と、複数のデータ入出力端子に供給されたデータをメモリセルアレイに対して並列に書き込むための複数の信号経路と、複数の信号経路上のデータをそれぞれ一時的に保持する複数のラッチ回路と、テスト動作時において所定の外部端子から複数のラッチ回路へデータを選択的に供給する手段とを備えることを特徴とする。
本発明によれば、テスト動作時において所定の外部端子から複数のラッチ回路へデータを選択的に供給可能であることから、動作試験において使用する端子の数が大幅に削減される。これにより、並列に試験可能なチップ数が増大することから、1チップ当たりの動作試験時間を短縮することが可能となる。しかも、各信号経路上にはラッチ回路が設けられており、ラッチ回路にテストデータを保持しておくことが可能であることから、複数のラッチ回路に保持された所定のデータパターンを異なるアドレスに連続的に書き込むことが可能となる。これにより、テストデータをテスタから毎回入力する必要がなくなることから、データを入力するための時間についても短縮することが可能となる。
このように、本発明によれば、動作試験において用いるプローブカードの端子数を削減することができることから、データ入出力端子の数が多い場合であっても、並列に試験可能なチップ数を多く確保することが可能となる。これにより、結果的に1チップ当たりの動作試験時間を短縮することが可能となり、製造コストを低減することが可能となる。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の好ましい実施形態による半導体記憶装置の構成を概略的に示すブロック図である。
図1に示すように、本実施形態による半導体記憶装置は、メモリセルアレイ10と、メモリセルアレイ10に対するアクセスを行うロウ系回路11、カラム系回路12及び入出力系回路15を備えている。メモリセルアレイ10は、多数のメモリセルがマトリクス状に配置された領域であり、本実施形態による半導体記憶装置が例えばDRAMである場合には、DRAMセルが多数個配置される。
ロウ系回路11は、メモリセルアレイ10に対するアクセスにおいてロウ側の選択を行うための各種回路であり、ロウデコーダやサブワードドライバなどによって構成される。ロウ系回路11には、アドレスバッファ13を介してロウアドレスX0〜Xmが供給される。アドレスバッファ13は、m+1個のアドレス端子ADD0〜ADDmを介して外部から供給されるアドレス信号を受ける回路である。
一方、カラム系回路12は、メモリセルアレイ10に対するアクセスにおいてカラム側の選択を行うための各種回路であり、カラムデコーダやカラムスイッチなどによって構成される。カラム系回路12には、アドレスバッファ13を介してカラムアドレスY0〜Ynが供給される。カラム系回路12とメモリセルアレイ10との間には入出力系回路15が設けられている。入出力系回路15は、リードライトアンプやセンスアンプなどによって構成される。
本実施形態においては、ロウアドレスX0〜Xmのアドレス幅(m+1)よりもカラムアドレスY0〜Ynのアドレス幅(n+1)の方が短く設定されている。つまり、m>nである。このようにアドレス幅の異なるロウアドレスX0〜Xm及びカラムアドレスY0〜Ynは、アドレス端子ADD0〜ADDmに順次供給される。具体的には、まずロウアドレスX0〜Xmがアドレス端子ADD0〜ADDmに供給され、その後、カラムアドレスY0〜Ynがアドレス端子ADD0〜ADDnに供給される。
したがって、カラムアドレスY0〜Ynを供給する際には、アドレス端子ADDn+1〜ADDmは使用されない端子となる。後述するように、本実施形態ではこのような使用されないアドレス端子をテスト動作時において利用することにより、並列に書き込まれるライトデータをシリアルに入力可能としている。
図1に示すように、本実施形態による半導体記憶装置は、アドレス端子ADD0〜ADDmの他、データ入出力端子DQ0〜DQ7、テストデータ端子TDQ、コマンド端子CMD、クロック端子CLKなどを備えている。コマンド端子CMDは、RAS端子、CAS端子、WE端子などを含む端子群であり、これらを介して供給される信号の組み合わせによって、半導体記憶装置全体の動作が定められる。コマンド端子CMD及びクロック端子CLKを介して供給される信号は、図1に示すコントローラ14に供給される。コントローラ14は、これらの端子を介して供給される信号に基づき、少なくともテスト信号TEST、内部クロックICLK1,ICLK2を生成する。テスト信号TESTは、通常動作時においてローレベル、テスト動作時においてハイレベルとなる信号である。
一方、データ入出力端子DQ0〜DQ7は、メモリセルアレイ10との間で8ビットのデータを入出力する端子であり、それぞれ独立した8本の信号経路によって入出力系回路15と接続されている。この場合、データの入出力幅は8ビットとなるが、このようなデータ入出力端子DQ0〜DQ7及び信号経路を複数セット設けることにより、データの入出力幅を増やすことができる。例えば、図1に示すデータ入出力端子DQ0〜DQ7及び信号経路を4セット設ければ、データの入出力幅は32ビットとなる。
図1に示すように、データ入出力端子DQ0〜DQ7と入出力系回路15とを接続する信号経路上には、第1のセレクタ回路20〜27、第2のセレクタ回路30〜37、ラッチ回路40〜47、並びに、ドライバ回路50〜57がそれぞれ設けられている。セレクタ回路20〜27には、対応する入出力端子DQ0〜DQ7からのライトデータ(入出力端子DQ0〜DQ7に供給されるライトデータについてもDQ0〜DQ7と表記する)の他、テストデータ端子TDQからのライトデータ(テストデータ端子TDQに供給されるライトデータについてもTDQと表記する)、テスト信号TEST及び内部クロックICLK1が共通に供給される。一方、セレクタ回路30〜37には、対応するセレクタ回路20〜27の出力であるライトデータDWFIFO0〜DWFIFO7の他、選択信号Yn+1〜Yn+3及び内部クロックICLK2が共通に供給される。
図2はセレクタ回路20〜27の回路図である。
図2に示すように、セレクタ回路20〜27は、ライトデータDQk(k=0〜7)を通過させるトランスファゲート101と、ライトデータTDQを通過させるトランスファゲート102と、ANDゲート103と、インバータ104〜106とを備えている。
上述の通り、通常動作時においてはテスト信号TESTがローレベルとなっていることから、トランスファゲート102はオフ状態に固定される。一方、トランスファゲート101は、内部クロックICLK1に連動してオン状態となることから、通常動作時において供給されるライトデータDQkは、クロックICLK1に同期してセレクタ回路20〜27を通過することになる。
これに対し、テスト動作時においてはテスト信号TESTがハイレベルとなっていることから、トランスファゲート101はオフ状態となり、トランスファゲート102はオン状態となる。これにより、テスト動作時においては、内部クロックICLK1に関わらず、ライトデータTDQがセレクタ回路20〜27を通過することになる。
セレクタ回路20〜27を通過したライトデータDWFIFOkは、次のセレクタ回路30〜37にそれぞれ供給される。
図3はセレクタ回路30〜37の回路図である。
図3に示すように、セレクタ回路30〜37は、ライトデータDWFIFOkを受けるクロックトインバータ111と、クロックトインバータ111の動作を制御するNANDゲート112,113、ANDゲート114及びインバータ115と、クロックトインバータ111の出力を受けるフリップフロップ116と、フリップフロップ116の出力を受けるNANDゲート117及びNORゲート118と、NANDゲート117及びNORゲート118の出力を受けるインバータ119とを備えている。
このうち、NANDゲート112は3入力のNANDゲートであり、各入力端には、選択信号Yn+1及びYn+1B(Yn+1の反転信号)の一方、選択信号Yn+2及びYn+2B(Yn+2の反転信号)の一方、並びに、選択信号Yn+3及びYn+3B(Yn+3の反転信号)の一方がそれぞれ供給される。NANDゲート112に供給されるこれら選択信号の組み合わせはセレクタ回路30〜37ごとに全て異なり、このため、3ビットの選択信号(Yn+1,Yn+2,Yn+3)の論理値に応じて、セレクタ回路30〜37に含まれるいずれか一つのNANDゲート112の出力がローレベルとなる。他のセレクタ回路30〜37に含まれるNANDゲート112の出力は、全てハイレベルである。
また、通常動作時においてはテスト信号TESTがローレベルとなっていることから、NANDゲート113の出力は、選択信号の論理値にかかわらずハイレベルに固定される。これにより、内部クロックICLK2に連動してクロックトインバータ111がオン状態となることから、通常動作時において供給されるライトデータDWFIFOkは、クロックICLK2に同期してクロックトインバータ111を(反転して)通過することになる。
クロックトインバータ111を通過した信号は、フリップフロップ116を介してNANDゲート117及びNORゲート118に供給される。図3に示すように、NANDゲート117にはANDゲート114の出力が供給され、NORゲート118にはインバータ115の出力が供給されている。このため、ANDゲート114の出力がハイレベルである場合には、フリップフロップ116の出力はインバータ119を介して通過するものの、ANDゲート114の出力がローレベルである場合には、インバータ119の出力はハイインピーダンス状態となる。
セレクタ回路30〜37を通過したライトデータDRWBSkは、対応するドライバ回路50〜57にそれぞれ供給される。
これに対し、テスト動作時においてはテスト信号TESTがハイレベルとなっていることから、NANDゲート112の出力がローレベルである場合に限り、内部クロックICLK2に同期してライトデータDRWBSkが出力される。つまり、選択信号の論理値に基づき、セレクタ回路30〜37のいずれか一つに対応するライトデータDRWBSkのみが出力されることになる。その他のセレクタ回路30〜37においては、NANDゲート113の出力がローレベルに固定されることから、ライトデータDWFIFOkはセレクタ回路30〜37を通過することができない。その他のセレクタ回路30〜37においては、インバータ119の出力はハイインピーダンス状態に固定される。
図1に示すように、セレクタ回路30〜37とドライバ回路50〜57とを接続する信号経路上には、各信号経路上のライトデータDRWBS0〜DRWBS7をそれぞれ一時的に保持するラッチ回路40〜47が設けられている。図4はラッチ回路40〜47の回路図であり、インバータ121,122が循環接続されたフリップフロップ構成を有している。
ラッチ回路40〜47によってラッチされたライトデータDRWBS0〜DRWBS7は、対応するドライバ回路50〜57にそれぞれ供給され、それぞれの信号線路を介して入出力系回路15に供給される。これにより、8ビットのライトデータをメモリセルアレイ10に対して並列に書き込むことができる。上述の通り、図1に示すデータ入出力端子DQ0〜DQ7及び信号経路は複数セット設けることができ、例えばこれらを4セット設ければ、32ビットのライトデータをメモリセルアレイ10に対して並列に書き込むことが可能となる。
以上が本実施形態による半導体記憶装置の構成である。次に、本実施形態による半導体記憶装置の動作について説明する。
通常動作時における動作は一般的なDRAMと同様であり、アクティブコマンド(ACT)に同期してアドレス端子ADD0〜ADDmからロウアドレス(X0〜Xm)を入力し、次いで、ライトコマンド(WRIT)に同期してアドレス端子ADD0〜ADDnからカラムアドレス(Y0〜Yn)を入力する。その後、所定のタイミングでデータ入出力端子DQ0〜DQ7に対して所望のライトデータを供給すれば、データ入出力端子DQ0〜DQ7に供給されたライトデータは、内部クロックICLK1,ICLK2に同期してそれぞれの信号経路を進み、メモリセルアレイ10に対して並列に書き込まれる。
図5は、本実施形態による半導体記憶装置のテスト動作時における動作を説明するためのタイミング図である。
テスト動作を行う場合、テストモードにエントリーした後、図5に示すように、アクティブコマンド(ACT)に同期してアドレス端子ADD0〜ADDmからロウアドレスX0〜Xm(=A)を入力し、次いで、ライトコマンド(WRIT)に同期してアドレス端子ADD0〜ADDnからカラムアドレスY0〜Yn(=B)を入力する。ここで、カラムアドレスY0〜Ynを入力する際、通常動作時においては使用しないアドレス端子(ADDn+1〜ADDm)を介して、選択信号Yn+1〜Yn+3を入力する。図6に示す例では、まず選択信号Yn+1〜Yn+3を全てローレベル(論理値:000)に設定している。
これにより、セレクタ回路30〜37のうち、例えばセレクタ回路30が選択状態となるため、その後、所定のタイミングでテストデータ端子TDQに対して所望のライトデータを供給すると、対応するラッチ回路40に当該ライトデータが保持されるとともに、ドライバ回路50を介してメモリセルアレイ10に供給される。他のセレクタ回路31〜37の出力はハイインピーダンス状態であることから、ラッチ回路41〜47の値は変化しない。したがって、ドライバ回路51〜57の出力はラッチ回路41〜47がそれぞれ現在保持している値のままとなる。このように、テスト動作時においては、選択信号Yn+1〜Yn+3の値に基づき、テストデータ端子TDQより供給されるライトデータを任意のラッチ回路40〜47に選択的に供給することが可能となる。
次に、選択信号Yn+1〜Yn+3の値をインクリメントした後(論理値:001)、テストデータ端子TDQに所望のライトデータを供給する。これにより、当該ライトデータは対応するラッチ回路41に保持されるとともに、ドライバ回路51を介してメモリセルアレイ10に供給される。この時、上述したラッチ回路40に保持されているライトデータも並列に書き込まれる。
このようにして選択信号Yn+1〜Yn+3のインクリメントを進めながら、ライトデータをテストデータ端子TDQに次々と供給すれば、ラッチ回路40〜47にはそれぞれ所望のライトデータが格納されることになる。つまり、データ入出力端子DQ0〜DQ7を用いることなく、テストデータ端子TDQを介してライトデータをシリアルに供給することが可能となる。したがって、図1に示すデータ入出力端子DQ0〜DQ7及び信号経路を例えば4セット設けておけば、32個のデータ入出力端子(DQ0〜DQ7×4)を用いることなく、わずか4個のテストデータ端子TDQを用いることによって、32ビットのライトデータをメモリセルアレイ10に対して並列に書き込むことが可能となる。
その後は、カラムアドレスY0〜YnをC,D,E・・・と変化させれば、ラッチ回路40〜47に保持された8ビットのライトデータは、メモリセルアレイ10内の対応する8つのメモリセルに次々と並列に書き込まれる。つまり、書き込み動作の度にライトデータを再入力することなく、アドレスを変化させるだけで連続的に書き込みを行うことが可能となる。変化させるアドレスはカラムアドレスに限らず、ロウアドレスX0〜Xmを変化させることもできる。
以上説明したように、本実施形態においては、ライトデータをメモリセルアレイ10に対して並列に書き込むための複数の信号経路上にそれぞれラッチ回路を設け、テスト動作時において、これらラッチ回路に対しライトデータをシリアルに供給可能としている。これにより、プローブカードに必要な配線数や端子数を大幅に削減することが可能となることから、データ入出力端子が多い場合であっても、並列に試験可能なチップ数を十分に確保することが可能となる。その結果、1チップ当たりの試験時間を短縮することが可能となる。
しかも、本実施形態では、信号経路に設けられたラッチ回路40〜47によってライトデータが保持されることから、同じテストパターンを繰り返し書き込む場合には、ライトデータを入力し直す必要がない。このため、動作試験において行われる繰り返しのライト動作を高速に実行することも可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施形態では、データ入出力端子DQ0〜DQ7とは別にテストデータ端子TDQを設けているが、データ入出力端子とテストデータ端子が別個の端子であることは必須でなく、テスト動作時において一部のデータ入出力端子をテストデータ端子として用いても構わない。
さらに、上記実施形態では、使用されないカラムアドレスを選択信号として利用しているが、選択信号が使用されないカラムアドレスに限定されるものではない。したがって、ロウアドレスのビット長がカラムアドレスのビット長よりも短いケースにおいては、使用されないロウアドレスを選択信号として利用しても構わないし、アドレス端子以外の端子から選択信号を入力可能に構成しても構わない。さらには、選択信号を内部で自動生成可能に構成しても構わない。
Claims (6)
- メモリセルアレイと、複数のデータ入出力端子と、前記複数のデータ入出力端子に供給されたデータを前記メモリセルアレイに対して並列に書き込むための複数の信号経路と、前記複数の信号経路上のデータをそれぞれ一時的に保持する複数のラッチ回路と、テスト動作時において所定の外部端子から前記複数のラッチ回路へデータを選択的に供給する手段とを備えることを特徴とする半導体記憶装置。
- 前記所定の外部端子が前記複数のデータ入出力端子とは異なる外部端子であることを特徴とする請求項1に記載の半導体記憶装置。
- 前記手段は、通常動作時において使用されない選択信号に基づいて、前記テスト動作時における前記複数のラッチ回路の選択を行うことを特徴とする請求項1又は2に記載の半導体記憶装置。
- アドレス幅の異なるロウアドレス及びカラムアドレスが順次供給される複数のアドレス端子をさらに備え、
前記選択信号は、前記複数のアドレス端子のうち、前記ロウアドレスの入力及び前記カラムアドレスの入力の一方において使用しない端子を介して供給されることを特徴とする請求項3に記載の半導体記憶装置。 - 前記手段は、前記複数の信号経路上にそれぞれ設けられ、対応する前記データ入出力端子及び前記所定の外部端子のいずれか一方を、対応する信号経路に接続する複数の第1のセレクタ回路を含んでいることを特徴とする請求項3又は4に記載の半導体記憶装置。
- 前記手段は、前記複数の信号経路上にそれぞれ設けられ、前記テスト動作時において前記第1のセレクタ回路から前記信号経路上に供給されたデータを、前記選択信号に基づいて選択的に前記ラッチ回路に供給する複数の第2のセレクタ回路をさらに含んでいることを特徴とする請求項5に記載の半導体記憶装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007111436A JP2008034081A (ja) | 2006-07-07 | 2007-04-20 | 半導体記憶装置 |
US11/825,240 US7743291B2 (en) | 2006-07-07 | 2007-07-05 | Semiconductor memory device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006187694 | 2006-07-07 | ||
JP2007111436A JP2008034081A (ja) | 2006-07-07 | 2007-04-20 | 半導体記憶装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008034081A true JP2008034081A (ja) | 2008-02-14 |
Family
ID=38918999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007111436A Pending JP2008034081A (ja) | 2006-07-07 | 2007-04-20 | 半導体記憶装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7743291B2 (ja) |
JP (1) | JP2008034081A (ja) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2604468B2 (ja) | 1989-05-31 | 1997-04-30 | 富士通株式会社 | 半導体集積回路装置 |
JP2768175B2 (ja) | 1992-10-26 | 1998-06-25 | 日本電気株式会社 | 半導体メモリ |
JP3816560B2 (ja) * | 1995-12-25 | 2006-08-30 | 株式会社ルネサステクノロジ | 連想メモリ回路のテスト方法及び連想メモリ回路のテスト回路 |
US5987635A (en) * | 1996-04-23 | 1999-11-16 | Matsushita Electric Industrial Co., Ltd. | Semiconductor integrated circuit device capable of simultaneously performing self-test on memory circuits and logic circuits |
US5787097A (en) * | 1996-07-22 | 1998-07-28 | Micron Technology, Inc. | Output data compression scheme for use in testing IC memories |
US5968192A (en) * | 1997-05-09 | 1999-10-19 | Artisan Components, Inc. | Programmable universal test interface and method for making the same |
JP2000182398A (ja) | 1998-12-15 | 2000-06-30 | Nec Corp | 半導体装置及び半導体装置の試験方法 |
JP2001006396A (ja) * | 1999-06-16 | 2001-01-12 | Fujitsu Ltd | 半導体集積回路 |
US6574762B1 (en) * | 2000-03-31 | 2003-06-03 | Lsi Logic Corporation | Use of a scan chain for configuration of BIST unit operation |
US6865702B2 (en) * | 2001-04-09 | 2005-03-08 | Micron Technology, Inc. | Synchronous flash memory with test code input |
US7032142B2 (en) * | 2001-11-22 | 2006-04-18 | Fujitsu Limited | Memory circuit having parity cell array |
US7149942B2 (en) * | 2002-12-16 | 2006-12-12 | Renesas Technology Corp. | Semiconductor integrated circuit with test circuit |
JP2004280926A (ja) * | 2003-03-14 | 2004-10-07 | Renesas Technology Corp | 半導体記憶装置 |
JP4400081B2 (ja) * | 2003-04-08 | 2010-01-20 | エルピーダメモリ株式会社 | 半導体記憶装置 |
JP4622443B2 (ja) * | 2004-10-15 | 2011-02-02 | ソニー株式会社 | 半導体集積回路 |
JP4578226B2 (ja) * | 2004-12-17 | 2010-11-10 | 富士通セミコンダクター株式会社 | 半導体メモリ |
-
2007
- 2007-04-20 JP JP2007111436A patent/JP2008034081A/ja active Pending
- 2007-07-05 US US11/825,240 patent/US7743291B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US7743291B2 (en) | 2010-06-22 |
US20080008016A1 (en) | 2008-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070268762A1 (en) | Semiconductor memory and method for testing the same | |
JP3708641B2 (ja) | 半導体メモリ装置のテスト方法 | |
US20030116763A1 (en) | Semiconductor integrated circuit device | |
JP2000149600A (ja) | 半導体記憶装置 | |
US7668028B2 (en) | Dual in-line memory module, memory test system, and method for operating the dual in-line memory module | |
US9618575B2 (en) | Semiconductor device having plural data input/output terminals configured for write test and read test operations | |
US8717838B1 (en) | Method and apparatus for memory redundancy | |
KR100822980B1 (ko) | 압축 테스트 기능을 갖는 메모리 회로 | |
JP3797810B2 (ja) | 半導体装置 | |
US20080013389A1 (en) | Random access memory including test circuit | |
US8441832B2 (en) | Semiconductor device and test method thereof | |
US6591384B1 (en) | Comparable circuits for parallel testing DRAM device | |
US6528817B1 (en) | Semiconductor device and method for testing semiconductor device | |
KR100371047B1 (ko) | 메모리시험회로와메모리시험회로가포함되어있는반도체집적회로및반도체메모리장치의불량검출방법 | |
US20120131397A1 (en) | Semiconductor device having test mode and method of controlling the same | |
US6684355B2 (en) | Memory testing apparatus and method | |
JP2006120250A (ja) | 半導体装置およびその試験方法 | |
JPH04212776A (ja) | 半導体記憶装置のテスト回路 | |
KR100673147B1 (ko) | 반도체메모리소자의 입출력라인 공유장치 | |
US6704229B2 (en) | Semiconductor test circuit for testing a semiconductor memory device having a write mask function | |
KR20080001604A (ko) | 테스트용 듀얼 인 라인 메모리 모듈 및 그 테스트시스템 | |
JP2008034081A (ja) | 半導体記憶装置 | |
JP2008159168A (ja) | 半導体記憶装置 | |
JP2014186785A (ja) | 半導体装置 | |
US7085974B2 (en) | Semiconductor device, method of testing the same and electronic instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090512 |