JP2008010638A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2008010638A
JP2008010638A JP2006179780A JP2006179780A JP2008010638A JP 2008010638 A JP2008010638 A JP 2008010638A JP 2006179780 A JP2006179780 A JP 2006179780A JP 2006179780 A JP2006179780 A JP 2006179780A JP 2008010638 A JP2008010638 A JP 2008010638A
Authority
JP
Japan
Prior art keywords
solvent
semiconductor device
substrate
pure water
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006179780A
Other languages
Japanese (ja)
Other versions
JP4833753B2 (en
Inventor
Koichi Kusuyama
幸一 楠山
Takashi Kato
隆史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Seimaku KK
Original Assignee
Ulvac Seimaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Seimaku KK filed Critical Ulvac Seimaku KK
Priority to JP2006179780A priority Critical patent/JP4833753B2/en
Publication of JP2008010638A publication Critical patent/JP2008010638A/en
Application granted granted Critical
Publication of JP4833753B2 publication Critical patent/JP4833753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device having irregularities on the surface and a movable part without causing the fixing or damage to the irregularities and the movable part. <P>SOLUTION: The method comprises a step of processing irregularities and a movable part of a semiconductor device with a liquid, substituting the liquid with pure water, substituting the pure water with a solvent, involving a sublimable substance in the solvent, evaporating the solvent to deposit the sublimable substance on the semiconductor device surface, and sublimating the sublimable substance to remove it. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面に凹凸部、或いは可動部を有する半導体装置の製造方法に係わり、特に表面の凹凸部、或いは稼働部に固着、損傷を生じることなく半導体装置を乾燥することができる、安価で信頼性の高い半導体装置の製造方法に関する。   The present invention relates to a method of manufacturing a semiconductor device having a concavo-convex portion or a movable portion on the surface, and in particular, can dry the semiconductor device without causing sticking or damage to the concavo-convex portion or operating portion of the surface. The present invention relates to a method for manufacturing a highly reliable semiconductor device.

従来、表面に凹凸部や可動部を有する半導体装置においては、その製造工程において使用する純水などの液体の表面張力によって、乾燥時にスティッキングと呼ばれる可動部と固定部との、ないしは可動部と可動部との固着現象が発生し、半導体装置の歩留まりの低下原因となっている。   Conventionally, in a semiconductor device having a concavo-convex part or a movable part on its surface, a movable part and a fixed part, or a movable part and a movable part, called sticking at the time of drying, depending on the surface tension of a liquid such as pure water used in the manufacturing process. As a result, a sticking phenomenon with a portion occurs, which causes a reduction in the yield of the semiconductor device.

この固着現象は、例えば、図1のステンシルマスクにおいて固着が発生した場合の断面模式図、図2(a)の表面側から見た外観写真及び図2(b)のこの外観写真で観察される固着状部分の模式的拡大図に示すような状態で発生する。図1に示すように、このステンシルマスクは、基板の表面側の単結晶Si(100)層101、中間層としての埋込シリコン酸化膜層102及び基板の裏面側の単結晶Si(100)層103からなり、表面側の単結晶Si(100)層101にはドライエッチングして形成された溝部122が設けられ、裏面側の単結晶Si(100)層103にはエッチングされて形成された開口部142が設けられている。図1に示すように、ステンシルマスクにおいて、粒子ビームの形状を整形するための梁部161が隣接する梁部161と固着している。また、図2(a)から明らかなように、3本ある梁部のうち写真の上から2本目と3本目の梁部が写真の右側で固着している様子が確認できる。この固着の状態を拡大して模式的に示すと、図2(b)に示すように、2本目の梁部161と3本目の梁部161とが固着している。   This sticking phenomenon is observed in, for example, a schematic cross-sectional view when sticking occurs in the stencil mask of FIG. 1, an appearance photograph viewed from the front side of FIG. 2A, and this appearance photograph of FIG. It occurs in a state as shown in the schematic enlarged view of the fixed portion. As shown in FIG. 1, this stencil mask includes a single-crystal Si (100) layer 101 on the front surface side of the substrate, a buried silicon oxide film layer 102 as an intermediate layer, and a single-crystal Si (100) layer on the back surface side of the substrate. 103, a groove portion 122 formed by dry etching is provided in the single crystal Si (100) layer 101 on the front surface side, and an opening formed by etching in the single crystal Si (100) layer 103 on the back surface side. A portion 142 is provided. As shown in FIG. 1, in the stencil mask, a beam portion 161 for shaping the shape of the particle beam is fixed to an adjacent beam portion 161. Further, as can be seen from FIG. 2A, it can be confirmed that among the three beam portions, the second and third beam portions from the top of the photograph are fixed on the right side of the photograph. When the state of this fixation is enlarged and schematically shown, as shown in FIG. 2B, the second beam portion 161 and the third beam portion 161 are fixed.

上記のような固着現象の対策ではないが、基板の表面に付着する異物量の低減を目的として、表面に凹凸部又は可動部を有する半導体装置に昇華性物質の溶液をスピンコートし、一時的に保護膜を形成することが知られている(例えば、特許文献1参照)。この場合、製造プロセスにおいて半導体装置に昇華性物質の溶液をスピンコートすると、半導体装置の回転を開始すると共に半導体装置の表面の凹凸部又は可動部に付着している水分が回転による遠心力によって振り切られ、この時点で乾燥してしまう。従って、固着が発生する可能性のある部分に昇華性物質からなる保護膜を塗布・形成する前に半導体装置が乾燥してしまうため、この時点で半導体装置の凹凸部や可動部に固着(スティッキング)が発生する可能性がある。また、スピンコートする場合の回転速度によっては、発生する遠心力によって半導体装置表面の凹凸部や可動部が破損する可能性もある。   Although it is not a countermeasure against the sticking phenomenon as described above, for the purpose of reducing the amount of foreign matter adhering to the surface of the substrate, a solution of a sublimable substance is spin-coated on a semiconductor device having a concavo-convex part or a movable part on the surface, It is known to form a protective film (see, for example, Patent Document 1). In this case, when a solution of a sublimable substance is spin-coated on the semiconductor device in the manufacturing process, the rotation of the semiconductor device is started, and moisture attached to the uneven portion or the movable portion of the surface of the semiconductor device is shaken off by the centrifugal force due to the rotation. It will dry at this point. Therefore, the semiconductor device dries before the protective film made of a sublimation material is applied and formed on the part where the sticking may occur. ) May occur. Further, depending on the rotational speed in the case of spin coating, there is a possibility that the uneven portion and the movable portion on the surface of the semiconductor device are damaged by the generated centrifugal force.

また、表面に凹凸部、若しくは可動部を有する半導体装置に水又は有機溶媒を塗布し、塗布した液滴を凍結した後、減圧下で凍結した物質を昇華することによるフリーズドライ法により、半導体装置表面の凹凸部や可動部を固着することなく乾燥することが知られている(例えば、非特許文献1参照)。この場合、有機溶媒を凍結した後は、有機溶媒が溶解しないで、かつ昇華することができる条件を維持する必要があるため、温度と圧力を制御するための高価な装置が必要であり、製造コスト上昇の原因となる。   Further, by applying water or an organic solvent to a semiconductor device having a concavo-convex part or a movable part on the surface, freezing the applied droplet, and then sublimating the frozen substance under reduced pressure, by a freeze-drying method, the semiconductor device It is known that drying is performed without fixing uneven portions and movable portions on the surface (see, for example, Non-Patent Document 1). In this case, after freezing the organic solvent, it is necessary to maintain the conditions that the organic solvent does not dissolve and can be sublimated, so an expensive device for controlling the temperature and pressure is necessary and manufactured. This causes an increase in cost.

さらに、表面に凹凸部や可動部を有する半導体装置を昇華性物質の溶融液に浸漬し、一時的に昇華性物質からなる保護膜を形成し、その後、昇華することにより保護膜を除去し、乾燥することが知られている(例えば、特許文献2参照)。この場合、表面に凹凸部や可動部を有する半導体装置を昇華性物質の溶融液に浸漬する際、短時間ではあるが、大気中で洗浄液槽から昇華性物質の溶融液槽に基板を移動する必要があり、この移動の間に基板が乾燥し、半導体装置の凹凸部や可動部に固着が発生する可能性がある。また、基板の一端が昇華性物質の高温の溶融液に接触すると基板の温度が上昇するため、この時点で昇華性物質に接触していない部分の乾燥が進む。従って、この溶融液に接触していない部分における半導体装置の凹凸部や可動部に固着が発生する可能性がある。
特開昭63−41855号公報(特許請求の範囲) ELECTROSTATIC PARALLELOGRAM ACTUATORS Transducers '91 (1991 International Conference on Solid-State Sensors and Actuators Digest of Technical Papers) pp. 63-66 特開平9−190996号公報(特許請求の範囲、段落0023及び段落0024)
Furthermore, a semiconductor device having a concavo-convex part and a movable part on the surface is immersed in a melt of a sublimable substance to temporarily form a protective film made of a sublimable substance, and then the protective film is removed by sublimation, It is known to dry (see, for example, Patent Document 2). In this case, when a semiconductor device having a concavo-convex part or a movable part on the surface is immersed in the sublimable substance melt, the substrate is moved from the cleaning liquid tank to the sublimable substance melt tank in the air for a short time. There is a possibility that the substrate dries during this movement, and there is a possibility that the uneven portion or the movable portion of the semiconductor device is fixed. Further, since the temperature of the substrate rises when one end of the substrate comes into contact with the high-temperature melt of the sublimable substance, drying of the portion not in contact with the sublimable substance proceeds at this point. Therefore, there is a possibility that sticking may occur in the concavo-convex portion or the movable portion of the semiconductor device in a portion not in contact with the melt.
JP 63-41855 (Claims) ELECTROSTATIC PARALLELOGRAM ACTUATORS Transducers '91 (1991 International Conference on Solid-State Sensors and Actuators Digest of Technical Papers) pp. 63-66 JP-A-9-190996 (Claims, paragraphs 0023 and 0024)

本発明の課題は、上述の従来技術の問題点を解決することにあり、表面に凹凸部、或いは可動部を有する半導体装置の製造方法、特に表面の凹凸部又は可動部に固着、損傷を生じることなく半導体装置を乾燥することができる、安価で信頼性の高い半導体装置の製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and a manufacturing method of a semiconductor device having an uneven portion or a movable portion on the surface, in particular, sticking or damage to the uneven portion or the movable portion on the surface. An object of the present invention is to provide an inexpensive and highly reliable manufacturing method of a semiconductor device that can dry the semiconductor device without any problem.

本発明の半導体装置の製造方法は、表面に凹凸部、或いは可動部を有する半導体装置の製造方法において、   A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device having an uneven portion or a movable portion on a surface thereof.

(1)前記の凹凸部或いは可動部を液体で処理した後、この液体を純水で置換する工程、   (1) A step of replacing the liquid with pure water after treating the uneven part or the movable part with a liquid,

(2)純水を溶剤によって置換する工程、   (2) replacing pure water with a solvent;

(3)昇華性物質を前記置換溶剤に混合・溶解する工程、又は昇華性物質を溶解した前記置換溶剤と同じ種類の溶剤若しくは昇華性物質を溶解した前記置換溶剤と混和しうる溶剤を前記置換溶剤に混合する工程、   (3) The step of mixing and dissolving the sublimation substance in the substitution solvent, or the same type of solvent as the substitution solvent dissolving the sublimation substance or the solvent miscible with the substitution solvent dissolving the sublimation substance Mixing with solvent,

(4)前記置換溶剤、前記置換溶剤と混和しうる溶剤を蒸発することによって前記半導体装置の表面に前記昇華性物質を析出せしめる工程、及び   (4) depositing the sublimable substance on the surface of the semiconductor device by evaporating the substitution solvent and a solvent miscible with the substitution solvent; and

(5)昇華により前記昇華性物質を除去する工程を含むことを特徴とする半導体装置の製造方法。   (5) A method for manufacturing a semiconductor device, comprising a step of removing the sublimable substance by sublimation.

上記工程(1)〜(5)を含むことにより、乾燥工程において半導体装置の表面の凹凸部や可動部が液体の表面張力によって固着することを防止することができる。また、昇華性物質の溶液をスピンコートすることもないので、半導体装置を回転する必要もないため、遠心力によって半導体装置の表面の凹凸部や可動部が破損することもなく、かつ回転中に乾燥する恐れもない。さらに、半導体装置を液体で処理した後、大気中に取り出すことなく半導体装置の表面の凹凸部や可動部に昇華性物質を析出せしめるため、大気中で半導体装置の表面の凹凸部や可動部が乾燥して、固着が発生するということもない。   By including the steps (1) to (5), it is possible to prevent the uneven portion and the movable portion on the surface of the semiconductor device from being fixed due to the surface tension of the liquid in the drying step. In addition, since the solution of the sublimation substance is not spin-coated, it is not necessary to rotate the semiconductor device, so that the concave and convex portions and the movable portion on the surface of the semiconductor device are not damaged by the centrifugal force, and during the rotation There is no fear of drying. Furthermore, after the semiconductor device is treated with a liquid, the sublimation material is deposited on the irregularities and movable parts of the surface of the semiconductor device without being taken out into the atmosphere. It does not dry out and sticking occurs.

前記昇華性物質として、ナフタレン、p−ジクロロベンゼン、テトラクロロジフルオロエタン及び樟脳から選ばれた少なくとも一種を用いることが好ましい。このような昇華性物質を用いることにより、常温、大気圧中で昇華することが可能になる。   It is preferable to use at least one selected from naphthalene, p-dichlorobenzene, tetrachlorodifluoroethane and camphor as the sublimable substance. By using such a sublimable substance, it becomes possible to sublime at room temperature and atmospheric pressure.

前記置換溶剤及びこの置換溶剤と混和し得る溶剤として、イソプロピルアルコール、メタノール、エタノール、ブタノール、アセトン、ベンゼン、二硫化炭素、四塩化炭素、クロロホルム、ヘキサン、デカリン、テトラリン、酢酸、シクロヘキサノール、トルエン及びエーテルから選ばれた少なくとも一種を用いることが好ましい。このような溶剤を用いることにより、純水を溶剤で置換することが容易になると共に、溶剤中に前記昇華性物質を混合・溶解することが容易になる。   Examples of the substitution solvent and a solvent miscible with the substitution solvent include isopropyl alcohol, methanol, ethanol, butanol, acetone, benzene, carbon disulfide, carbon tetrachloride, chloroform, hexane, decalin, tetralin, acetic acid, cyclohexanol, toluene and It is preferable to use at least one selected from ethers. By using such a solvent, it becomes easy to replace pure water with a solvent, and it becomes easy to mix and dissolve the sublimable substance in the solvent.

請求項1記載の半導体装置の製造方法によれば、水分(純水)を溶剤で置換した後、半導体装置を形成した基板を、大気中に暴露することなく、昇華性物質が溶解されている溶剤中に浸漬することができる。従って、基板を乾燥することなく、表面に凹凸部や可動部を有する半導体装置の表面を昇華性物質で保護することができるため、乾燥時に発生する液体の表面張力による半導体装置の表面の凹凸部や可動部の固着(スティッキング)を防止できるという効果を奏する。また、昇華性物質の溶液をスピンコートしないため、半導体装置を回転することがないので、遠心力によって半導体装置の表面の凹凸部や可動部が破損することもないという効果を奏する。   According to the method for manufacturing a semiconductor device according to claim 1, after substituting moisture (pure water) with a solvent, the sublimable substance is dissolved without exposing the substrate on which the semiconductor device is formed to the atmosphere. It can be immersed in a solvent. Therefore, since the surface of the semiconductor device having a concavo-convex portion or a movable portion on the surface can be protected with a sublimation substance without drying the substrate, the concavo-convex portion on the surface of the semiconductor device due to the surface tension of the liquid generated during drying. And the effect of preventing sticking (sticking) of the movable part. In addition, since the solution of the sublimable substance is not spin-coated, the semiconductor device is not rotated, so that the concave and convex portions and the movable portion on the surface of the semiconductor device are not damaged by the centrifugal force.

請求項2記載の半導体装置の製造方法によれば、前記昇華性物質として、ナフタレン、p−ジクロロベンゼン、テトラクロロジフルオロエタン及び樟脳といった、常温、大気圧下で固体であり、かつ昇華性を有する物質から選ばれた少なくとも一種を用いることによって、この昇華性物質を半導体装置の表面の凹凸部や可動部に析出した際に、常温、大気圧下で昇華することが可能になるという効果を奏する。   According to the method for manufacturing a semiconductor device according to claim 2, the sublimable substance is a substance that is solid at normal temperature and atmospheric pressure, such as naphthalene, p-dichlorobenzene, tetrachlorodifluoroethane, and camphor, and has sublimability. By using at least one selected from the above, it is possible to sublimate at room temperature and atmospheric pressure when this sublimable substance is deposited on the concavo-convex part or movable part of the surface of the semiconductor device.

請求項3記載の半導体装置の製造方法によれば、前記溶剤として、イソプロピルアルコール、メタノール、エタノール、ブタノール、アセトン、ベンゼン、二硫化炭素、四塩化炭素、クロロホルム、ヘキサン、デカリン、テトラリン、酢酸、シクロヘキサノール、トルエン及びエーテルから選ばれた少なくとも一種を用いることによって、純水を溶剤で置換することが容易になると共に、溶剤中に前記昇華性物質を混合・溶解することが可能になるという効果を奏する。また、これらの溶剤は昇華性物質より低い温度で蒸発するため、半導体装置の表面の凹凸部や可動部に昇華性物質を析出せしめることが可能になるという効果を奏する。   According to the method for manufacturing a semiconductor device according to claim 3, the solvent is isopropyl alcohol, methanol, ethanol, butanol, acetone, benzene, carbon disulfide, carbon tetrachloride, chloroform, hexane, decalin, tetralin, acetic acid, cyclohexane. By using at least one selected from hexanol, toluene, and ether, it becomes easy to replace pure water with a solvent, and it is possible to mix and dissolve the sublimable substance in the solvent. Play. Further, since these solvents evaporate at a temperature lower than that of the sublimable substance, there is an effect that the sublimable substance can be deposited on the concavo-convex part or the movable part of the surface of the semiconductor device.

一般に、表面に凹凸部や可動部を有する半導体装置を製造する場合には、その凹凸部や可動部を形成する際に、エッチング処理やその後の洗浄処理が行われるが、これらのエッチング液や洗浄液(例えば、純水などや、洗剤、レジストの剥離剤(KOH、TMAH(TetraMethyl Ammonium Hydroxide、(CH)NOH))などのアルカリ性液体や有機系薬剤))などからなる液体を除去して乾燥することが必要になる。そのために、本発明では、凹凸部や可動部が前記液体で処理された後、この液体を除去して乾燥するために、この液体を純水で置換する工程、純水を溶剤で置換する工程、常温、常圧下では固体である昇華性物質を前記置換溶剤に混合・溶解する工程、又は常温、常圧下では固体である昇華性物質を溶解した溶剤(前記した溶剤の範囲に入れば良い)、若しくは昇華性物質を溶解した、前記置換溶剤と混合することができる溶剤(前記した溶剤の範囲に入れば良い)を前記置換溶剤に混合する工程、これらの溶剤を蒸発することによって半導体装置の表面に昇華性物質を析出する工程、及び昇華により昇華性物質を除去する工程とを含む半導体装置の製造方法を提供することによって、目的を達成している。すなわち、乾燥工程において半導体装置の表面の凹凸部や可動部が液体の表面張力によって固着することを防止すると共に、半導体装置の表面の凹凸部や可動部を破損せしめることもなく、さらには、大気中で半導体装置の表面の凹凸部や可動部が乾燥して、固着が発生するということもない。 In general, when manufacturing a semiconductor device having a concavo-convex part or a movable part on the surface, an etching process or a subsequent cleaning process is performed when the concavo-convex part or the movable part is formed. (e.g., such as, pure water, detergent, resist stripper (KOH, TMAH (TetraMethyl Ammonium Hydroxide , (CH 3) 4 NOH)) alkaline liquid and organic drugs, etc.) to remove liquid made of) drying It becomes necessary to do. Therefore, in the present invention, after the uneven part and the movable part are treated with the liquid, in order to remove the liquid and dry, the process of replacing the liquid with pure water, the process of replacing the pure water with a solvent. A step of mixing and dissolving a sublimable substance that is solid under normal temperature and normal pressure in the substitution solvent, or a solvent that dissolves a sublimable substance that is solid under normal temperature and normal pressure (which may be in the range of the solvent described above). Or a step of mixing a solvent capable of being mixed with the substitution solvent in which the sublimation substance is dissolved (which may be in the range of the above-mentioned solvent) into the substitution solvent, and evaporating these solvents The object is achieved by providing a method for manufacturing a semiconductor device including a step of depositing a sublimable substance on the surface and a step of removing the sublimable substance by sublimation. That is, in the drying process, the uneven portion and the movable portion on the surface of the semiconductor device are prevented from being fixed by the surface tension of the liquid, and the uneven portion and the movable portion on the surface of the semiconductor device are not damaged. In particular, the irregularities and the movable parts on the surface of the semiconductor device are not dried and sticking does not occur.

本発明の半導体装置の製造方法において使用される基板は、通常半導体装置で用いる基板は全て使用でき、例えば、表面側の単結晶Si(100)層と、中間層としての埋め込みシリコン酸化膜層と、裏面側の単結晶Si(100)層との3層で構成されているSOI(Silicon On Insulator)基板、単結晶Si基板、単結晶Ge基板、単結晶GaAs基板、単結晶InSb基板等を挙げることができる。   As the substrate used in the method for manufacturing a semiconductor device of the present invention, any substrate that is normally used in a semiconductor device can be used. An SOI (Silicon On Insulator) substrate, a single crystal Si substrate, a single crystal Ge substrate, a single crystal GaAs substrate, a single crystal InSb substrate, etc. composed of three layers with a single crystal Si (100) layer on the back side be able to.

本発明の半導体装置製造方法の一実施の形態によれば、表面側Si層と、中間層としてのリコン酸化膜層と、裏面側Si層との3層で構成されている基板の表面側及び裏面側のSi層の両面に、それぞれ、シリコン酸化膜を形成し、基板の表面側のシリコン酸化膜上に金属膜を形成し、次いで、フォトリソグラフィー技術を用いて、この金属膜に開口パターンを形成し、この開口パターンをマスクとして、基板の表面側のSi層をエッチングして溝部を形成し、前記金属膜をエッチング除去し、基板の両面と前記溝部の側壁部とにシリコン酸化膜を形成した後、両面露光技術を用いて基板の裏面側のシリコン酸化膜に開口パターンを形成して裏面側のSi層を露出せしめ、次いでアルカリ性エッチング液を用いて、前記露出した基板の裏面側のSi層を結晶異方性エッチングして開口部を形成し、基板の表裏面にそれぞれ形成されているシリコン酸化膜及び前記溝部の側壁に形成されているシリコン酸化膜をエッチング除去し、その後純水で洗浄し、基板が浸漬されている純水を溶媒に置換し、この溶媒置換後、昇華性物質を前記置換溶剤に混合・溶解するか、又は昇華性物質を溶解した前記置換溶剤と同じ種類の溶剤若しくは昇華性物質を溶解した前記置換溶剤と混和しうる溶剤を前記置換溶剤に混合し、前記置換溶剤、前記置換溶剤と混和しうる溶剤を蒸発せしめることによって半導体装置の表面に昇華性物質を析出せしめ、昇華により昇華性物質を除去することにより半導体装置を製造することができ、これにより所期の目的を達成できる。この場合の昇華性物質及び溶剤は、前記した通りである。   According to one embodiment of the semiconductor device manufacturing method of the present invention, the surface side of the substrate composed of three layers of a front-side Si layer, a recon oxide film layer as an intermediate layer, and a back-side Si layer; A silicon oxide film is formed on both sides of the Si layer on the back surface side, a metal film is formed on the silicon oxide film on the front surface side of the substrate, and then an opening pattern is formed in the metal film using photolithography technology. Using this opening pattern as a mask, the Si layer on the surface side of the substrate is etched to form a groove, the metal film is etched away, and a silicon oxide film is formed on both sides of the substrate and the sidewall of the groove After that, an opening pattern is formed in the silicon oxide film on the back surface side of the substrate using a double-sided exposure technique to expose the Si layer on the back surface side, and then the back surface side of the exposed substrate using an alkaline etching solution Crystal Si is anisotropically etched to form openings, and the silicon oxide film formed on the front and back surfaces of the substrate and the silicon oxide film formed on the side walls of the groove are removed by etching. The pure water in which the substrate is immersed is replaced with a solvent, and after this solvent replacement, the sublimation substance is mixed and dissolved in the replacement solvent, or the same type as the replacement solvent in which the sublimation substance is dissolved. A solvent that is miscible with the substitution solvent in which the solvent or sublimation substance is dissolved is mixed with the substitution solvent, and the substitution solvent and the solvent that is miscible with the substitution solvent are evaporated. The semiconductor device can be manufactured by precipitating and removing the sublimable substance by sublimation, thereby achieving the intended purpose. The sublimable substance and the solvent in this case are as described above.

本発明の半導体装置製造方法の別の実施の形態によれば、基板上に第1シリコン酸化膜、シリコン窒化膜と犠牲層となる第2シリコン酸化膜を順次形成し、フォトリソグラフィー技術を用いて、第2シリコン酸化膜に開口パターンを形成し、この開口パターンを形成した基板上に多結晶シリコン膜を形成し、次いで、フォトリソグラフィー技術を用いて、前記多結晶シリコン膜に可動部、梁部、アンカー部、開口部及び電極部を形成し、その後純水で洗浄し、基板が浸漬されている純水を溶媒に置換し、この溶媒置換後、昇華性物質を前記置換溶剤に混合・溶解するか、又は昇華性物質を溶解した前記置換溶剤と同じ種類の溶剤若しくは昇華性物質を溶解した前記置換溶剤と混和しうる溶剤を前記置換溶剤に混合し、前記置換溶剤、前記置換溶剤と混和しうる溶剤を蒸発せしめることによって半導体装置の表面に昇華性物質を析出せしめ、昇華により昇華性物質を除去することにより半導体装置を製造することができ、これにより所期の目的を達成できる。この場合の昇華性物質及び溶剤は、前記した通りである。   According to another embodiment of the semiconductor device manufacturing method of the present invention, a first silicon oxide film, a silicon nitride film, and a second silicon oxide film serving as a sacrificial layer are sequentially formed on a substrate, and a photolithography technique is used. Then, an opening pattern is formed in the second silicon oxide film, a polycrystalline silicon film is formed on the substrate on which the opening pattern is formed, and then a movable portion and a beam portion are formed on the polycrystalline silicon film by using a photolithography technique. Then, the anchor part, the opening part and the electrode part are formed, then washed with pure water, the pure water in which the substrate is immersed is replaced with a solvent, and after substituting the solvent, the sublimation substance is mixed and dissolved in the substitution solvent. Or the solvent of the same type as the substitution solvent in which the sublimation substance is dissolved or the solvent miscible with the substitution solvent in which the sublimation substance is dissolved is mixed with the substitution solvent, and the substitution solvent, the substitution By evaporating a solvent that is miscible with the agent, a sublimable substance is deposited on the surface of the semiconductor device, and the sublimable substance is removed by sublimation, thereby producing a semiconductor device, thereby achieving the intended purpose. it can. The sublimable substance and the solvent in this case are as described above.

また、本発明の半導体装置製造方法を適用することによって、マイクロメカニカルスイッチ、振動ジャイロ、半導体圧力検出素子、MEMS共振器等の洗浄工程後の乾燥工程で純水、IPAなどの液体が乾燥する際にこれらの半導体装置を構成する薄膜構造体などが基板との間で構成する狭いギャップ部で、純水などの液体の表面張力に起因する力によって薄膜構造体と基板が付着するのを防止することができる。   In addition, by applying the semiconductor device manufacturing method of the present invention, when a liquid such as pure water or IPA is dried in a drying process after a cleaning process of a micromechanical switch, a vibration gyroscope, a semiconductor pressure detection element, a MEMS resonator, or the like. In addition, the thin film structure or the like constituting these semiconductor devices is a narrow gap portion formed between the substrate and the thin film structure and the substrate are prevented from adhering to each other due to the force caused by the surface tension of liquid such as pure water. be able to.

例えば、基板と、この基板上に所定ギャップをもって浮いた状態で機械的に変位可能に形成されたビームによって構成されるマイクロメカニカルスイッチの場合、基板とビーム(梁)が乾燥時の液体の表面張力に起因する力によって付着するのを防止することができるため、基板とビームの間隔をより狭めることが可能になるため、基板上に形成された駆動電極に印加するビーム駆動電圧を低減することも可能になる。   For example, in the case of a micromechanical switch composed of a substrate and a beam formed on the substrate so as to be mechanically displaceable in a state of floating with a predetermined gap, the surface tension of the liquid when the substrate and the beam (beam) are dried. Since it is possible to prevent adhesion due to the force caused by this, it becomes possible to further reduce the distance between the substrate and the beam, so that the beam drive voltage applied to the drive electrode formed on the substrate can be reduced. It becomes possible.

また、振動ジャイロの場合、基板から所定の狭いギャップで浮いた状態で機械的に変位可能に形成された多結晶シリコン薄膜振動子が、ギャップを形成するための犠牲層エッチング後の乾燥時に基板と多結晶シリコン薄膜振動子の間に存在する液体の表面張力で基板に固着するのを防止することが可能になる。この固着現象は液体の表面張力と共に薄膜構造体の機械的な強度に依存するため、薄膜構造体の面積が大きいほど剛性が低くなり、固着が発生しやすくなるため、従来は多結晶シリコン薄膜振動子の面積を大きくすることにより振動子の質量を大きくして振動ジャイロの角速度検出感度を向上することが難しかったが、本発明を用いることによって基板と多結晶シリコン薄膜振動子の乾燥時の固着を防止することが可能になったことにより、より大きな振動子を利用することも可能になり、したがって、振動ジャイロの角速度検出感度を向上することも可能になった。   In the case of a vibrating gyroscope, a polycrystalline silicon thin film vibrator formed so as to be mechanically displaceable in a state of being floated from a substrate with a predetermined narrow gap may be separated from a substrate during drying after etching a sacrificial layer for forming a gap. It is possible to prevent the liquid crystal existing between the polycrystalline silicon thin film vibrators from being fixed to the substrate. Since this sticking phenomenon depends on the liquid surface tension and the mechanical strength of the thin film structure, the larger the area of the thin film structure, the lower the rigidity and the easier the sticking occurs. Although it was difficult to increase the mass of the vibrator by increasing the area of the child and improve the angular velocity detection sensitivity of the vibratory gyroscope, the substrate and the polycrystalline silicon thin film vibrator can be fixed when dried by using the present invention. Therefore, it is possible to use a larger vibrator, and it is therefore possible to improve the angular velocity detection sensitivity of the vibration gyro.

また、振動型の半導体圧力検出素子の場合も、基板と振動子が犠牲層エッチング後の乾燥時に液体の表面張力によって固着するのを防止することが可能になるため、製造歩留まりを向上することが可能になる。   Also, in the case of a vibration type semiconductor pressure detection element, it becomes possible to prevent the substrate and the vibrator from being fixed due to the surface tension of the liquid during drying after etching the sacrificial layer, thereby improving the manufacturing yield. It becomes possible.

さらに、MEMS共振器の場合も、犠牲層エッチングやそれに伴う乾燥工程で発生する固着を防止することが可能になるため、機械的な剛性の低い大きな振動子を基板に対して近接して形成することができる。すなわち、機械的な剛性の低い大きな振動子を用いることによって、より低周波数の発振が可能になると共に、振動子と基板の間の距離を狭くすることが可能になるため、基板と振動子の間に働く静電気力を強くすることが可能になるため低電圧で共振器を駆動することが可能になる。   Further, in the case of the MEMS resonator, since it becomes possible to prevent the sticking generated in the sacrifice layer etching and the accompanying drying process, a large vibrator having low mechanical rigidity is formed close to the substrate. be able to. In other words, by using a large vibrator with low mechanical rigidity, it becomes possible to oscillate at a lower frequency and to reduce the distance between the vibrator and the substrate. Since the electrostatic force acting between them can be increased, the resonator can be driven with a low voltage.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

本実施例では、本発明の製造方法に従ってステンシルマスクを製造した。この製造工程を図3(a)〜(i)に示す。   In this example, a stencil mask was manufactured according to the manufacturing method of the present invention. This manufacturing process is shown in FIGS.

基板としてSOI(Silicon On Insulator)基板3を用いた(図3(a))。このSOI基板3は、表面側の単結晶Si(100)層301と、中間層としての埋め込みシリコン酸化膜層302と、裏面側の単結晶Si(100)層303との3層で構成されている。   An SOI (Silicon On Insulator) substrate 3 was used as the substrate (FIG. 3A). This SOI substrate 3 is composed of three layers of a single crystal Si (100) layer 301 on the front surface side, a buried silicon oxide film layer 302 as an intermediate layer, and a single crystal Si (100) layer 303 on the back surface side. Yes.

この多層構造のSOI基板3の表面側及び裏面側の両面に、それぞれ、熱酸化法によりシリコン酸化膜311a及び311bを形成すると共に、SOI基板3の表面側のシリコン酸化膜311a上にスパッタ法、蒸着法等によりCr膜312を形成した(図3(b))。   Silicon oxide films 311a and 311b are respectively formed by thermal oxidation on both the front and back sides of the SOI substrate 3 having a multilayer structure, and a sputtering method is performed on the silicon oxide film 311a on the front side of the SOI substrate 3. A Cr film 312 was formed by vapor deposition or the like (FIG. 3B).

次いで、一般のIC、LSI等の半導体装置の製造に用いられるフォトリソグラフィー技術を用いて、Cr膜312に開口パターン321を形成した(図3(c))。   Next, an opening pattern 321 was formed in the Cr film 312 by using a photolithography technique used for manufacturing a general semiconductor device such as an IC or LSI (FIG. 3C).

Cr膜312に開口した開口パターン321をマスクとして、SOI基板3の表面側のSi層301をドライエッチングし、溝部322を形成した(図3(d))。   Using the opening pattern 321 opened in the Cr film 312 as a mask, the Si layer 301 on the surface side of the SOI substrate 3 was dry-etched to form a groove 322 (FIG. 3D).

Cr膜312をエッチ除去した後、SOI基板3の両面とドライエッチングで形成された溝部322の側壁部とに熱酸化法によりシリコン酸化膜331を形成した(図3(e))。この場合、溝部の側壁部には新たなシリコン酸化膜331が形成され、基板の両面等の予めシリコン酸化膜が形成されていた部分では、シリコン酸化膜が成長し、シリコン酸化膜が厚くなる。なお、Cr膜312のみをエッチ除去する代わりに、Cr膜312及びシリコン酸化膜311a。311bを全てエッチ除去した後、基板3の両面と溝部322の側壁部とに熱酸化法によりシリコン酸化膜331を形成してもよい。   After the Cr film 312 was removed by etching, a silicon oxide film 331 was formed by thermal oxidation on both sides of the SOI substrate 3 and the side walls of the groove 322 formed by dry etching (FIG. 3E). In this case, a new silicon oxide film 331 is formed on the side wall portion of the groove, and the silicon oxide film grows in a portion where the silicon oxide film has been previously formed, such as both sides of the substrate, and the silicon oxide film becomes thick. Instead of etching away only the Cr film 312, the Cr film 312 and the silicon oxide film 311a. After all of 311b is removed by etching, silicon oxide films 331 may be formed on both surfaces of the substrate 3 and the side walls of the grooves 322 by a thermal oxidation method.

次いで、両面露光技術を用いて、SOI基板3の裏面側のシリコン酸化膜311bに開口パターン341を形成し、裏面側の単結晶Si(100)層303を露出せしめた(図3(f))。   Next, using a double-sided exposure technique, an opening pattern 341 was formed in the silicon oxide film 311b on the back surface side of the SOI substrate 3 to expose the single crystal Si (100) layer 303 on the back surface side (FIG. 3F). .

開口パターン341の形成後、KOH、TMAH等のアルカリ性エッチング液を用いて、で開口パターン341により露出したSOI基板3の裏面側の単結晶Si(100)層303を結晶異方性エッチングした(図3(g))。この場合、SOI基板3の表面側の単結晶Si(100)層301及び溝部322はアルカリ性エッチング液によるエッチング速度の遅いシリコン酸化膜311a、331によって保護されているため、エッチングされない。一方、裏面側の単結晶Si(100)層303のシリコン酸化膜の開口パターン341では単結晶Si(100)層303が露出しているため、アルカリ性エッチング液によりエッチングされて、Si(111)で構成される開口部342が形成された。   After the opening pattern 341 is formed, the single crystal Si (100) layer 303 on the back side of the SOI substrate 3 exposed by the opening pattern 341 is subjected to crystal anisotropic etching using an alkaline etching solution such as KOH or TMAH (FIG. 3 (g)). In this case, the single crystal Si (100) layer 301 and the groove 322 on the surface side of the SOI substrate 3 are not etched because they are protected by the silicon oxide films 311a and 331 having a low etching rate with an alkaline etchant. On the other hand, since the single crystal Si (100) layer 303 is exposed in the opening pattern 341 of the silicon oxide film of the single crystal Si (100) layer 303 on the back surface side, it is etched with an alkaline etching solution, and Si (111) is used. A configured opening 342 was formed.

開口部342の形成後、SOI基板3の表裏面にそれぞれ形成されているシリコン酸化膜311a(331)及び311b(331)、並びにドライエッチングで形成された溝部322の側壁に形成されているシリコン酸化膜331を、緩衝フッ酸、希釈フッ酸などのシリコン酸化膜エッチング液でエッチング除去した。   After the opening 342 is formed, silicon oxide films 311a (331) and 311b (331) respectively formed on the front and back surfaces of the SOI substrate 3, and silicon oxide formed on the side wall of the groove 322 formed by dry etching. The film 331 was removed by etching with a silicon oxide film etchant such as buffered hydrofluoric acid or diluted hydrofluoric acid.

次いで、純水で洗浄した。なお、SOI基板3を純水で洗浄するにあたって、SOI基板3の表面が乾燥しないように、エッチング液槽から純水槽にSOI基板3を速やかに移送することが重要である。この水洗は、SOI基板3をエッチング液槽に浸漬したままエッチング液を純水で希釈することを繰り返すことによって、エッチング液を純水で置換することにより行っても良い。この場合には、SOI基板3を全く大気に暴露することなく、純水で洗浄することが可能となり、従って半導体装置の表面の凹凸部や可動部に固着が発生することもない。   Then, it was washed with pure water. In cleaning the SOI substrate 3 with pure water, it is important to quickly transfer the SOI substrate 3 from the etching solution tank to the pure water tank so that the surface of the SOI substrate 3 is not dried. This water washing may be performed by replacing the etching solution with pure water by repeatedly diluting the etching solution with pure water while the SOI substrate 3 is immersed in the etching solution tank. In this case, it is possible to clean the SOI substrate 3 with pure water without exposing it to the atmosphere at all, and therefore no sticking occurs on the uneven portions and the movable portions on the surface of the semiconductor device.

純水による洗浄後、SOI基板3が浸漬されている純水をイソプロピルアルコール(IPA)で希釈することを繰り返す等によってIPAで置換した。なお、溶剤として、IPAの代わりに、メタノール、エタノール、ブタノール、アセトン、ベンゼン、二硫化炭素、四塩化炭素、クロロホルム、ヘキサン、デカリン、テトラリン、酢酸、シクロヘキサノール、トルエン又はエーテルも利用することができる。   After washing with pure water, the pure water in which the SOI substrate 3 was immersed was replaced with IPA by repeatedly diluting with isopropyl alcohol (IPA). In addition, instead of IPA, methanol, ethanol, butanol, acetone, benzene, carbon disulfide, carbon tetrachloride, chloroform, hexane, decalin, tetralin, acetic acid, cyclohexanol, toluene or ether can be used as the solvent. .

純水のIPA置換後、このIPAに昇華性物質としてのナフタレンを溶解した。この場合、IPAにナフタレンを溶解したIPA溶液を滴下、混合しても良い。勿論、ナフタレンの代わりに、昇華性物質として、p−ジクロロベンゼン、テトラクロロジフルオロエタン、樟脳を利用することも、また、溶剤として、IPAの代わりに上記溶剤を利用することもできる。   After IPA substitution of pure water, naphthalene as a sublimation substance was dissolved in this IPA. In this case, an IPA solution in which naphthalene is dissolved in IPA may be dropped and mixed. Of course, instead of naphthalene, p-dichlorobenzene, tetrachlorodifluoroethane, camphor can be used as a sublimable substance, and the above solvent can be used as a solvent instead of IPA.

昇華性物質の添加後、IPAを蒸発せしめ、ナフタレン膜351をSOI基板3の表面に析出せしめた(図3(h))。   After the sublimation substance was added, IPA was evaporated and a naphthalene film 351 was deposited on the surface of the SOI substrate 3 (FIG. 3 (h)).

ナフタレン膜の析出後、大気中でナフタレン膜351を昇華せしめ、梁部361を有するステンシルマスクを製造した(図3(i))。かくして得られたステンシルマスクの梁部361同士の固着は生じなかった。   After deposition of the naphthalene film, the naphthalene film 351 was sublimated in the atmosphere to manufacture a stencil mask having a beam portion 361 (FIG. 3 (i)). The beam portions 361 of the stencil mask thus obtained did not stick together.

本実施例では、本発明の製造方法に従って、表面マイクロマシン技術を利用した加速度センサを製造した。この製造工程を図4(a)〜(g)に示し、得られた加速度センサの平面図を図5に示す。   In this example, an acceleration sensor using surface micromachine technology was manufactured according to the manufacturing method of the present invention. This manufacturing process is shown in FIGS. 4A to 4G, and a plan view of the obtained acceleration sensor is shown in FIG.

基板としてSi基板401を用い、この基板401上に、熱酸化法でシリコン酸化膜402を形成し、次いでCVD法でシリコン窒化膜403と犠牲層となるシリコン酸化膜404とを形成した(図4(a))。   Using a Si substrate 401 as a substrate, a silicon oxide film 402 is formed on the substrate 401 by a thermal oxidation method, and then a silicon nitride film 403 and a silicon oxide film 404 as a sacrificial layer are formed by a CVD method (FIG. 4). (a)).

次いで、一般のIC、LSI等の半導体装置の製造に用いられるフォトリソグラフィー技術を用いて、シリコン酸化膜404に開口パターン405を形成した(図4(b))。なお、シリコン酸化膜404のエッチング法としては、緩衝フッ酸、希釈フッ酸などのエッチング液を用いるウェットエッチング技術や、CFガスなどのプラズマを用いるドライエッチング技術などを適宜選択して利用することができる。 Next, an opening pattern 405 was formed in the silicon oxide film 404 by using a photolithography technique used for manufacturing a semiconductor device such as a general IC or LSI (FIG. 4B). As a method for etching the silicon oxide film 404, a wet etching technique using an etching solution such as buffered hydrofluoric acid or diluted hydrofluoric acid, a dry etching technique using plasma such as CF 4 gas, or the like is appropriately selected and used. Can do.

開口パターン405を形成したSi基板401上に多結晶シリコン膜410をCVD法で形成した(図4(c))。   A polycrystalline silicon film 410 was formed by a CVD method on the Si substrate 401 on which the opening pattern 405 was formed (FIG. 4C).

次いで、フォトリソグラフィー技術を用いて多結晶シリコン膜410に可動部411、梁部412、アンカー部413a、413b、可動部411の下の犠牲層404をエッチングする時間を短縮するための開口部414、可動電極部415、固定電極部421を形成した(図4(d)及び図5)。なお、多結晶シリコン膜410のエッチング法としては、CFガスなどのプラズマを用いるドライエッチング技術などを適宜用いることができる。 Next, an opening 414 for shortening the time for etching the movable portion 411, the beam portion 412, the anchor portions 413a and 413b, and the sacrificial layer 404 under the movable portion 411 in the polycrystalline silicon film 410 by using a photolithography technique. A movable electrode portion 415 and a fixed electrode portion 421 were formed (FIGS. 4D and 5). As a method for etching the polycrystalline silicon film 410, a dry etching technique using plasma such as CF 4 gas can be used as appropriate.

犠牲層であるシリコン酸化膜404を緩衝フッ酸、希釈フッ酸などのシリコン酸化膜エッチング液でエッチング除去した。   The sacrificial silicon oxide film 404 was removed by etching with a silicon oxide film etchant such as buffered hydrofluoric acid or diluted hydrofluoric acid.

次いで、純水で洗浄した。なお、Si基板401を純水で洗浄するにあたって、Si基板401の表面を乾燥しないように、エッチング液槽から純水槽にSi基板401を速やかに移送することが重要である。この水洗は、Si基板401をエッチング液槽に浸漬したままエッチング液を純水で希釈することを繰り返すことによって、エッチング液を純水で置換することにより行っても良い。この場合には、Si基板401を全く大気に暴露することなく、純水で洗浄することが可能となり、従って半導体装置の表面の凹凸部や可動部に固着が発生することもない。   Then, it was washed with pure water. When cleaning the Si substrate 401 with pure water, it is important to quickly transfer the Si substrate 401 from the etching solution tank to the pure water tank so that the surface of the Si substrate 401 is not dried. This washing with water may be performed by replacing the etching solution with pure water by repeatedly diluting the etching solution with pure water while the Si substrate 401 is immersed in the etching solution tank. In this case, it is possible to clean the Si substrate 401 with pure water without exposing it to the atmosphere. Therefore, the unevenness and the movable part on the surface of the semiconductor device are not fixed.

純水による洗浄後、Si基板401が浸漬されている純水をIPAで希釈することを繰り返す等によってIPAで置換した。なお、溶剤として、IPAの代わりに、メタノール、エタノール、ブタノール、アセトン、ベンゼン、二硫化炭素、四塩化炭素、クロロホルム、ヘキサン、デカリン、テトラリン、酢酸、シクロヘキサノール、トルエン又はエーテルも利用することができる。   After washing with pure water, the pure water in which the Si substrate 401 was immersed was replaced with IPA by repeatedly diluting with IPA. As the solvent, methanol, ethanol, butanol, acetone, benzene, carbon disulfide, carbon tetrachloride, chloroform, hexane, decalin, tetralin, acetic acid, cyclohexanol, toluene, or ether can be used instead of IPA. .

純水のIPA置換後、このIPAに昇華性物質としてのナフタレンを溶解した。この場合、IPAにナフタレンを溶解したIPA溶液を滴下、混合しても良い。勿論、ナフタレンの代わりに、昇華性物質として、p−ジクロロベンゼン、テトラクロロジフルオロエタン、樟脳を利用することも、また、溶剤として、IPAの代わりに上記溶剤を利用することもできる。   After IPA substitution of pure water, naphthalene as a sublimation substance was dissolved in this IPA. In this case, an IPA solution in which naphthalene is dissolved in IPA may be dropped and mixed. Of course, instead of naphthalene, p-dichlorobenzene, tetrachlorodifluoroethane, camphor can be used as a sublimable substance, and the above solvent can be used as a solvent instead of IPA.

昇華性物質の添加後、IPAを蒸発せしめ、ナフタレン膜451aをSi基板401の表面に析出せしめた(図4(e))。   After the sublimation substance was added, IPA was evaporated, and a naphthalene film 451a was deposited on the surface of the Si substrate 401 (FIG. 4E).

ナフタレン膜451aの析出後、大気中でナフタレン膜451aを昇華せしめ(図4(f))、加速度センサーを製造した。かくして得られた加速度センサにおいて、表面の凹凸部や可動部の固着は生じていなかった。   After deposition of the naphthalene film 451a, the naphthalene film 451a was sublimated in the atmosphere (FIG. 4F) to manufacture an acceleration sensor. In the acceleration sensor thus obtained, the surface irregularities and the movable part were not fixed.

なお、図4(g)に示したように、IPAを蒸発し、ナフタレン膜を析出せしめる工程において、半導体装置の表面の凹凸部や可動部が機械的に丈夫で、取り扱い時に発生する振動、加速度などによって破損する恐れがない場合は、固着を防止する目的で薄いナフタレン膜451bをSi基板401の表面に析出せしめても良い。この場合、ナフタレン膜451bの厚さは、1分子層以上、好ましくは数分子層以上で、半導体装置の表面の凹凸部や可動部がお互いに直接的に接触しない間隔を保持できる厚さとする。   As shown in FIG. 4 (g), in the process of evaporating IPA and depositing a naphthalene film, the irregularities and movable parts on the surface of the semiconductor device are mechanically strong, and vibrations and accelerations generated during handling. If there is no risk of breakage due to, for example, a thin naphthalene film 451b may be deposited on the surface of the Si substrate 401 for the purpose of preventing sticking. In this case, the thickness of the naphthalene film 451b is one molecular layer or more, preferably several molecular layers or more, and can have a thickness that can maintain an interval at which the concave and convex portions and the movable portion of the surface of the semiconductor device do not directly contact each other.

本発明によれば、乾燥時に発生する液体の表面張力による半導体装置の表面の凹凸部や可動部の固着(スティッキング)を防止でき、また、半導体装置の表面の凹凸部や可動部が破損することもないので、本発明は、表面に凹凸部や可動部を有する半導体装置の分野で利用可能である。   According to the present invention, it is possible to prevent sticking (sticking) of uneven portions and movable parts of the surface of the semiconductor device due to the surface tension of the liquid generated during drying, and the uneven portions and movable parts of the surface of the semiconductor device are damaged. Therefore, the present invention can be used in the field of semiconductor devices having uneven portions and movable portions on the surface.

固着の発生したステンシルマスクの断面の模式図。The schematic diagram of the cross section of the stencil mask which sticking generate | occur | produced. 固着の発生を説明するための写真及び断面図であり、(a)は固着の発生したステンシルマスクの表面側から見た外観写真であり、(b)は固着の状態を模式的に示す拡大断面図。It is the photograph and sectional drawing for demonstrating generation | occurrence | production of sticking, (a) is an external appearance photograph seen from the surface side of the stencil mask which sticking generate | occur | produced, (b) is an expanded section which shows the state of fixation typically Figure. 実施例1の製造工程を基板断面の模式図を用いて説明する製造工程図((a)〜(i))。Manufacturing process drawing ((a)-(i)) explaining the manufacturing process of Example 1 using the schematic diagram of a board | substrate cross section. 実施例2の製造工程を基板断面の模式図を用いて説明する製造工程図((a)〜(g))。Manufacturing process figure ((a)-(g)) explaining the manufacturing process of Example 2 using the schematic diagram of a board | substrate cross section. 実施例2で得られた、加速度センサの模式的平面図。FIG. 6 is a schematic plan view of an acceleration sensor obtained in Example 2.

符号の説明Explanation of symbols

101 表面側の単結晶Si(100)層 102 埋込みシリコン酸化物層
103 裏面側の単結晶Si(100)層 121 開口パターン
142 裏面開口部 161 梁部
3 SOI基板 301 表面側の単結晶Si(100)層
302 埋込みシリコン酸化物層 303 裏面側の単結晶Si(100)層
311a、311b シリコン酸化膜 312 Cr膜
321 開口パターン 322 溝部
331 溝部側壁形成シリコン酸化膜 341 裏面シリコン酸化膜開口パターン
342 裏面開口部 351 ナフタレン膜
361 梁部 401 Si基板
402 シリコン酸化膜 403 シリコン窒化膜
404 シリコン酸化膜 405 開口パターン
410 多結晶シリコン膜 411 可動部
412 梁部 413a、413b アンカー部
414 開口部 415 可動電極部
421 固定電極部 451a、451b ナフタレン膜
DESCRIPTION OF SYMBOLS 101 Single crystal Si (100) layer on the surface side 102 Embedded silicon oxide layer 103 Single crystal Si (100) layer on the back surface 121 Opening pattern 142 Back surface opening 161 Beam portion 3 SOI substrate 301 Single crystal Si (100 on the front side) ) Layer 302 buried silicon oxide layer 303 single crystal Si (100) layers 311a and 311b on the back side silicon oxide film 312 Cr film 321 opening pattern 322 groove 331 groove side wall forming silicon oxide film 341 back side silicon oxide film opening pattern 342 back side opening Part 351 naphthalene film 361 beam part 401 Si substrate 402 silicon oxide film 403 silicon nitride film 404 silicon oxide film 405 opening pattern 410 polycrystalline silicon film 411 movable part 412 beam part 413a, 413b anchor part 414 opening part 415 movable electrode part 421 fixed electrode 451a, 451b Naphthalene film

Claims (3)

表面に凹凸部、或いは可動部有する半導体装置の製造方法において、
(1)前記の凹凸部或いは可動部を液体で処理した後、この液体を純水で置換する工程、 (2)純水を溶剤によって置換する工程、
(3)昇華性物質を前記置換溶剤に混合・溶解する工程、又は昇華性物質を溶解した、前記置換溶剤と同じ種類の溶剤若しくは昇華性物質を溶解した、前記置換溶剤と混和しうる溶剤を前記置換溶剤に混合する工程、
(4)前記置換溶剤、前記置換溶剤と混和しうる溶剤を蒸発することによって前記半導体装置の表面に前記昇華性物質を析出せしめる工程、及び
(5)昇華により前記昇華性物質を除去する工程を含むことを特徴とする半導体装置の製造方法。
In the method of manufacturing a semiconductor device having a concavo-convex part or a movable part on the surface,
(1) A process of replacing the concavo-convex part or the movable part with a liquid and then replacing the liquid with pure water. (2) A process of replacing the pure water with a solvent.
(3) A step of mixing and dissolving a sublimable substance in the substitution solvent, or a solvent miscible with the substitution solvent in which a sublimation substance is dissolved, a solvent of the same type as the substitution solvent or a sublimation substance is dissolved. Mixing with the substitution solvent,
(4) depositing the sublimable substance on the surface of the semiconductor device by evaporating the substitution solvent and a solvent miscible with the substitution solvent; and
(5) A method for manufacturing a semiconductor device, comprising a step of removing the sublimable substance by sublimation.
前記昇華性物質が、ナフタレン、p−ジクロロベンゼン、テトラクロロジフルオロエタン及び樟脳から選ばれた少なくとも一種であることを特徴とする請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the sublimable substance is at least one selected from naphthalene, p-dichlorobenzene, tetrachlorodifluoroethane, and camphor. 前記置換溶剤及びこの置換溶剤と混和し得る溶剤が、イソプロピルアルコール、メタノール、エタノール、ブタノール、アセトン、ベンゼン、二硫化炭素、四塩化炭素、クロロホルム、ヘキサン、デカリン、テトラリン、酢酸、シクロヘキサノール、トルエン及びエーテルから選ばれた少なくとも一種であることを特徴とする請求項1又は2記載の半導体装置の製造方法。 The substitution solvent and a solvent miscible with the substitution solvent are isopropyl alcohol, methanol, ethanol, butanol, acetone, benzene, carbon disulfide, carbon tetrachloride, chloroform, hexane, decalin, tetralin, acetic acid, cyclohexanol, toluene and 3. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is at least one selected from ethers.
JP2006179780A 2006-06-29 2006-06-29 Manufacturing method of semiconductor device Expired - Fee Related JP4833753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179780A JP4833753B2 (en) 2006-06-29 2006-06-29 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179780A JP4833753B2 (en) 2006-06-29 2006-06-29 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008010638A true JP2008010638A (en) 2008-01-17
JP4833753B2 JP4833753B2 (en) 2011-12-07

Family

ID=39068585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179780A Expired - Fee Related JP4833753B2 (en) 2006-06-29 2006-06-29 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4833753B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160682A (en) * 2011-02-03 2012-08-23 Dainippon Screen Mfg Co Ltd Substrate processing method
JP2012243869A (en) * 2011-05-17 2012-12-10 Tokyo Electron Ltd Substrate drying method and substrate processing apparatus
JP2013016699A (en) * 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
JP2013258272A (en) * 2012-06-12 2013-12-26 Toshiba Corp Dry method of substrate, manufacturing method of electronic apparatus, and dryer of substrate
JP2015092619A (en) * 2015-01-08 2015-05-14 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2015106645A (en) * 2013-11-29 2015-06-08 株式会社東芝 Semiconductor device manufacturing method
JP2016025233A (en) * 2014-07-22 2016-02-08 株式会社東芝 Substrate processing apparatus and board processing method
JP2017050575A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2017050576A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2017076817A (en) * 2017-01-05 2017-04-20 株式会社東芝 Method for manufacturing semiconductor device and chemicals
US9934958B2 (en) 2014-11-17 2018-04-03 Toshiba Memory Corporation Substrate treatment apparatus and substrate treatment method
JP2018139331A (en) * 2018-06-13 2018-09-06 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
US10199209B2 (en) 2015-06-11 2019-02-05 Toshiba Memory Corporation Substrate treatment apparatus and substrate treatment method
US10242861B2 (en) 2014-07-30 2019-03-26 Kabushiki Kaisha Toshiba Processing apparatus, processing method, and manufacturing method of electronic device
US10304704B2 (en) 2015-08-26 2019-05-28 Toshiba Memory Corporation Substrate processing method and substrate processing apparatus
WO2019125744A1 (en) * 2017-12-19 2019-06-27 Micron Technology, Inc. Sublimation in forming a semiconductor
KR20190082963A (en) * 2017-01-06 2019-07-10 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
WO2020039835A1 (en) * 2018-08-24 2020-02-27 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2020035995A (en) * 2018-08-24 2020-03-05 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2020047887A (en) * 2018-09-21 2020-03-26 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350842A (en) * 1986-08-20 1988-03-03 Mitsubishi Electric Corp Cleaning method for photomask
JPH08250464A (en) * 1995-02-23 1996-09-27 Siemens Ag Micromechanism constituent part drying method
JPH09190996A (en) * 1995-11-08 1997-07-22 Nikon Corp Manufacture of film structure
JPH10135180A (en) * 1996-10-30 1998-05-22 Tdk Corp Rinsing solution for drying treatment, method for drying treatment using the solution, and manufacture of small structure using the method
JP2003206497A (en) * 2002-01-11 2003-07-22 Sony Corp Method for cleansing and drying

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350842A (en) * 1986-08-20 1988-03-03 Mitsubishi Electric Corp Cleaning method for photomask
JPH08250464A (en) * 1995-02-23 1996-09-27 Siemens Ag Micromechanism constituent part drying method
JPH09190996A (en) * 1995-11-08 1997-07-22 Nikon Corp Manufacture of film structure
JPH10135180A (en) * 1996-10-30 1998-05-22 Tdk Corp Rinsing solution for drying treatment, method for drying treatment using the solution, and manufacture of small structure using the method
JP2003206497A (en) * 2002-01-11 2003-07-22 Sony Corp Method for cleansing and drying

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160682A (en) * 2011-02-03 2012-08-23 Dainippon Screen Mfg Co Ltd Substrate processing method
JP2012243869A (en) * 2011-05-17 2012-12-10 Tokyo Electron Ltd Substrate drying method and substrate processing apparatus
JP2013016699A (en) * 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
JP2013258272A (en) * 2012-06-12 2013-12-26 Toshiba Corp Dry method of substrate, manufacturing method of electronic apparatus, and dryer of substrate
US10192733B2 (en) 2013-11-29 2019-01-29 Toshiba Memory Corporation Method of manufacturing semiconductor device and chemical liquid
JP2015106645A (en) * 2013-11-29 2015-06-08 株式会社東芝 Semiconductor device manufacturing method
US9620353B2 (en) 2013-11-29 2017-04-11 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
US9536797B2 (en) 2014-07-22 2017-01-03 Kabushiki Kaisha Toshiba Substrate treatment apparatus and substrate treatment method
JP2016025233A (en) * 2014-07-22 2016-02-08 株式会社東芝 Substrate processing apparatus and board processing method
US10242861B2 (en) 2014-07-30 2019-03-26 Kabushiki Kaisha Toshiba Processing apparatus, processing method, and manufacturing method of electronic device
US9934958B2 (en) 2014-11-17 2018-04-03 Toshiba Memory Corporation Substrate treatment apparatus and substrate treatment method
JP2015092619A (en) * 2015-01-08 2015-05-14 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
US10199209B2 (en) 2015-06-11 2019-02-05 Toshiba Memory Corporation Substrate treatment apparatus and substrate treatment method
US10304704B2 (en) 2015-08-26 2019-05-28 Toshiba Memory Corporation Substrate processing method and substrate processing apparatus
JP2017050575A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2017050576A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2017076817A (en) * 2017-01-05 2017-04-20 株式会社東芝 Method for manufacturing semiconductor device and chemicals
KR20190082963A (en) * 2017-01-06 2019-07-10 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
KR102216497B1 (en) 2017-01-06 2021-02-16 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
CN111492461A (en) * 2017-12-19 2020-08-04 美光科技公司 Sublimation in forming semiconductors
WO2019125744A1 (en) * 2017-12-19 2019-06-27 Micron Technology, Inc. Sublimation in forming a semiconductor
US10964525B2 (en) 2017-12-19 2021-03-30 Micron Technology, Inc. Removing a sacrificial material via sublimation in forming a semiconductor
JP2018139331A (en) * 2018-06-13 2018-09-06 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2020035995A (en) * 2018-08-24 2020-03-05 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
WO2020039835A1 (en) * 2018-08-24 2020-02-27 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP7300272B2 (en) 2018-08-24 2023-06-29 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
WO2020059286A1 (en) * 2018-09-21 2020-03-26 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2020047887A (en) * 2018-09-21 2020-03-26 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
TWI722507B (en) * 2018-09-21 2021-03-21 日商斯庫林集團股份有限公司 Substrate processing method and substrate processing apparatus
JP7198618B2 (en) 2018-09-21 2023-01-04 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP4833753B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4833753B2 (en) Manufacturing method of semiconductor device
JP3616055B2 (en) Method for producing anti-adhesion microstructure
US20020070634A1 (en) Freestanding polymer MEMS structures with anti stiction
US6428713B1 (en) MEMS sensor structure and microfabrication process therefor
US7785913B2 (en) System and method for forming moveable features on a composite substrate
US20080230909A1 (en) Method for forming anti-stiction bumps on a micro-electro mechanical structure
JP4431502B2 (en) Method of forming a semiconductor device by epitaxy
Ghatnekar-Nilsson et al. Resonators with integrated CMOS circuitry for mass sensing applications, fabricated by electron beam lithography
Tiwari et al. Enabling fabrication of PZT based piezomems devices
JP2004066379A (en) Method for manufacturing micro structural body
JPH09190996A (en) Manufacture of film structure
JPH11294948A (en) Manufacture of minute device
US8613287B2 (en) Apparatus for preventing stiction of MEMS microstructure
EP3953716B1 (en) A method of providing a mems device comprising a pyramidal protrusion, and a mold
JP4353033B2 (en) Manufacturing method of microstructure
WO2004024619A1 (en) Method for processing substrate
Hwang et al. Fabrication process for integrating nanoparticles with released structures using photoresist replacement of sublimated p-dichlorobenzene for temporary support
CN114477072A (en) Method for manufacturing fine structure
KR100377454B1 (en) A method of removing sacrifice layer of the functional micro device
JP4049226B2 (en) Manufacturing method of microstructure
JPH06116752A (en) Production of microdriving element and its device
WO2023094673A1 (en) Fabrication method for a thin-film layer on a substrate
KR100727185B1 (en) Method for manufacture of silicon release structure using Silicon On Insulator
Zhang et al. The SOI micro-accelerometer fabricated by sacrificial process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Ref document number: 4833753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees