WO2020039835A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2020039835A1
WO2020039835A1 PCT/JP2019/029071 JP2019029071W WO2020039835A1 WO 2020039835 A1 WO2020039835 A1 WO 2020039835A1 JP 2019029071 W JP2019029071 W JP 2019029071W WO 2020039835 A1 WO2020039835 A1 WO 2020039835A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
solidified film
liquid
solid
nozzle
Prior art date
Application number
PCT/JP2019/029071
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 雅彦
直澄 藤原
正幸 尾辻
悠太 佐々木
佑 山口
弘明 ▲高▼橋
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019012448A external-priority patent/JP7300272B2/en
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020039835A1 publication Critical patent/WO2020039835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • the substrates to be processed include, for example, semiconductor wafers, flat panel display (FPD) substrates such as liquid crystal displays and organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, Substrates for masks, ceramic substrates, solar cells, and the like are included.
  • processing is performed on a substrate, such as a semiconductor wafer or an FPD glass substrate, as necessary.
  • a substrate such as a semiconductor wafer or an FPD glass substrate
  • processing includes supplying a processing liquid such as a chemical liquid or a rinsing liquid to the substrate. After the processing liquid is supplied, the processing liquid is removed from the substrate, and the substrate is dried.
  • a force due to the surface tension of the processing solution attached to the substrate is applied to the pattern, and the pattern may collapse.
  • a method of supplying a liquid having a low surface tension, such as IPA (isopropyl alcohol), to the substrate, or supplying a hydrophobizing agent for bringing the contact angle of the liquid to the pattern close to 90 degrees to the substrate is adopted.
  • IPA isopropyl alcohol
  • a hydrophobizing agent for bringing the contact angle of the liquid to the pattern close to 90 degrees to the substrate.
  • Patent Literature 1 and Patent Literature 2 disclose a substrate processing method and a substrate processing apparatus for performing sublimation drying.
  • sublimation drying described in Patent Document 1 a solution of a sublimable substance is supplied to the surface of a substrate, and the sublimable substance is precipitated from the solution of the sublimable substance on the substrate.
  • sublimation drying described in Patent Literature 2 a melt of a sublimable substance (liquid of a sublimable substance) is supplied to the surface of a substrate, and the melt of the sublimable substance on the substrate is solidified.
  • a solution or melt of a sublimable substance is discharged toward the upper surface of the substrate.
  • one of the objects of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of reducing collapse of a pattern generated when a substrate is dried while reducing energy consumption.
  • One embodiment of the present invention provides a solid substance transporting step of transporting a solid of the solidified film forming substance in a substrate processing apparatus, melting of the solidified film forming substance, and dissolving of the solidified film forming substance on the substrate.
  • a drying pretreatment liquid preparation step of preparing a transported pretreatment liquid containing the solidified film forming material, and solidifying the drying pretreatment liquid on the surface of the substrate by coagulation or precipitation.
  • a solidified film forming step of forming a solidified film containing the solidified film forming material on the surface of the substrate, and a solidified film removing step of removing the solidified film from the surface of the substrate by changing the solidified film to a gas A substrate processing method is provided.
  • the substrate processing apparatus not the melt of the solidified film forming substance but the solid of the solidified film forming substance is transported in the substrate processing apparatus. Then, the conveyed solidified film forming substance is melted or dissolved in a solvent. As a result, a dry pretreatment liquid containing the transported solidified film-forming substance is created. Thereafter, the pre-drying treatment liquid on the surface of the substrate is solidified, and a solidified film containing a solidified film forming substance is formed on the surface of the substrate. Thereafter, the solidified film is changed into a gas and removed from the surface of the substrate. Therefore, the substrate can be dried while suppressing the collapse of the pattern, as compared with the case of performing a conventional drying method such as spin drying in which the liquid is removed by high-speed rotation of the substrate.
  • a conventional drying method such as spin drying in which the liquid is removed by high-speed rotation of the substrate.
  • the solid matter transporting step is a step of transporting the solid of the solidified film-forming substance in a chamber containing the substrate.
  • the solid of the solidified film-forming substance is transported in the chamber containing the substrate. That is, the solidified film forming substance is transported as a solid to the substrate or to a position very close to the substrate. Therefore, even when a heater for melting the solidified film-forming substance is provided, the range in which the heater is provided can be extremely narrowed, and energy consumption can be reduced.
  • the solid transporting step is a step of transporting the solid of the solidified film forming substance to the surface of the substrate, and the drying pretreatment liquid creating step is performed by at least one of melting and dissolving the solidified film forming substance.
  • the solid of the solidified film forming substance is transported to the surface of the substrate.
  • the solidified film-forming substance is supplied to the surface of the substrate as a solid.
  • the temperature of the solidified film forming material when the solidified film forming material is supplied to the surface of the substrate is lower than the melting point of the solidified film forming material.
  • the solidified film-forming substance on the surface of the substrate is melted or dissolved in a solvent. Thereby, a pre-drying treatment liquid is prepared. At the same time, the pre-drying treatment liquid is supplied to the surface of the substrate.
  • the melting point of the solidified film forming substance is higher than room temperature
  • the solid transporting step includes a room temperature supplying step of supplying the solidified film forming substance at the room temperature to the surface of the substrate.
  • the solidified film forming substance at room temperature is supplied to the surface of the substrate.
  • the melting point of the solidified film forming substance is higher than room temperature. Therefore, the solid of the solidified film forming substance is supplied to the surface of the substrate.
  • the melting point of the solidified film forming material is equal to or lower than room temperature, it is necessary to continuously cool the solidified film forming material before supplying it to the substrate in order to maintain the solidified film forming material as a solid. If the melting point of the solidified film-forming substance is higher than room temperature, such cooling is not necessary.
  • the surface layer of the liquid film formed on the surface of the substrate that is, the liquid layer located in the range from the upper surface (liquid level) of the liquid film to the upper surface of the pattern, is first.
  • the liquid located between the patterns may remain in the liquid without solidifying. In this case, an interface between the solid and the liquid is formed in the vicinity of the pattern, and a collapse force that collapses the pattern may occur. If the pattern becomes more brittle due to the miniaturization of the pattern, the pattern collapses even with such a weak collapse force.
  • the freezing point before dropping is low and the freezing point drops significantly, the liquid on the substrate surface will not solidify unless the liquid on the substrate surface is cooled to a very low temperature.
  • the freezing point of the solidified film forming substance is equal to or substantially the same as the melting point of the solidified film forming substance. Therefore, when the melting point of the solidified film-forming substance is high, the solidification point of the solidified film-forming substance is also high. Even if the freezing point drops significantly, if the freezing point before the drop is high, the pretreatment liquid on the surface of the substrate can be solidified without extremely lowering the cooling temperature. Thus, the amount of energy consumed for processing the substrate can be reduced.
  • the powder of the solidified film forming material, the particles of the solidified film forming material, or a combination thereof is supplied to the surface of the substrate. That is, a small lump of the solidified film forming material is supplied to the surface of the substrate. If the mass supplied to the substrate is the same, the smaller the individual mass, the greater the total value of the solid surface area of the solidified film-forming substance.
  • the surface area is large, the solid of the solidified film-forming substance can be efficiently heated.
  • a drying pretreatment liquid can be efficiently prepared regardless of whether melting or dissolution is used.
  • the on-substrate forming step is a melting step of heating the solid of the solidified film-forming substance at a heating temperature equal to or higher than the melting point of the solidified film-forming substance, thereby melting the solid of the solidified film-forming substance on the surface of the substrate.
  • the solid of the solidified film-forming substance on the surface of the substrate is heated at a heating temperature equal to or higher than the melting point of the solidified film-forming substance.
  • the solid of the solidified film forming substance is changed to a liquid of the solidified film forming substance, and a pre-drying treatment liquid containing the solidified film forming substance, that is, a liquid of the solidified film forming substance is formed on the surface of the substrate.
  • the melting step includes a pre-heating step of heating the substrate before the solid of the solidified film-forming substance is supplied to the surface of the substrate.
  • the heating of the substrate is started before the solid of the solidified film forming substance is supplied to the substrate. Therefore, the solid of the solidified film forming material is supplied to the surface of the substrate which has been heated in advance.
  • the solid of the solidified film-forming substance comes into contact with the surface of the substrate, the solid of the solidified film-forming substance is simultaneously heated through the substrate. Therefore, the time until the solidified film forming material is melted can be reduced as compared with the case where the solidified film forming material is heated after the solidified film forming material is supplied to the substrate.
  • the melting step includes a post-heating step of heating the substrate after the solid of the solidified film-forming substance is supplied to the surface of the substrate.
  • the heating of the substrate is started after the solid of the solidified film forming substance is supplied to the substrate.
  • the solid of the solidified film-forming substance on the surface of the substrate is heated through the substrate and melts.
  • the substrate processing method may further include a substrate rotating step of rotating the substrate about a vertical rotation axis passing through a central portion of the substrate while holding the substrate horizontally, and the solid matter transporting step may include holding the substrate horizontally.
  • a heating fluid supply step of discharging a heating fluid at the heating temperature toward a center of a back surface of the substrate, which is a flat surface of the substrate opposite to the front surface of the substrate, in a state of being located at a center of the front surface of the substrate; including.
  • the heating fluid having a temperature equal to or higher than the melting point of the solidified film forming substance is discharged toward the center of the back surface of the substrate.
  • the discharged heating fluid comes into contact with the center of the back surface of the substrate.
  • the central part of the substrate is heated.
  • the heating fluid flows radially in all directions from the center of the back surface of the substrate to the back surface of the substrate after contacting the center portion of the back surface of the substrate.
  • the heating fluid comes into contact with an area on the back surface of the substrate other than the central portion, and the other portion of the substrate is also heated.
  • the center of the substrate is hotter than the rest of the substrate because the heating fluid first contacts the center of the back of the substrate.
  • the solid of the solidified film-forming substance comes into contact with the high temperature portion. Therefore, the solid of the solidified film forming substance on the surface of the substrate can be efficiently heated through the substrate. Thereby, the solid of the solidified film-forming substance can be efficiently melted, and the time required for preparing the pretreatment liquid for drying can be reduced.
  • the substrate when the heating fluid is being discharged toward the center of the back surface of the substrate, the substrate is rotating around a vertical rotation axis passing through the center of the substrate.
  • the drying pretreatment liquid created at the center of the surface of the substrate flows radially from the center of the surface of the substrate due to centrifugal force generated by the rotation of the substrate. This allows the pretreatment liquid to spread on the surface of the substrate.
  • the solidified film forming material before melting is discharged from between the solidified film forming material before melting and the surface of the substrate, the solidified film forming material before melting can be efficiently heated.
  • the substrate rotation step a deceleration step of reducing the rotation speed of the substrate from the pre-melting speed to the melting speed, the heating fluid is discharged toward the center of the back surface of the substrate, the solidified film forming material
  • a constant speed rotation step of maintaining the rotation speed of the substrate at the melting speed, at least the solid of the solidified film forming material on the center of the surface of the substrate
  • the method includes an accelerating step of increasing the rotation speed of the substrate from the melting speed to the diffusion speed.
  • the heating fluid is discharged toward the center of the back surface of the substrate, and the substrate is rotated at the melting rate in a state where the solid of the solidified film forming substance is at the center of the surface of the substrate.
  • the melting rate is lower than the pre-melting rate. Therefore, the centrifugal force applied to the solid of the solidified film forming substance on the substrate is relatively small, and the solid of the solidified film forming substance is unlikely to spread on the surface of the substrate. Thereby, the residence time of the solid of the solidified film-forming substance at the center of the surface of the substrate can be extended, and the solid of the solidified film-forming substance can be reliably melted.
  • the rotation speed of the substrate is increased from the melting speed to the diffusion speed after a part or all of the solid of the solidified film forming material on the center of the surface of the substrate is melted.
  • This increases the centrifugal force applied to the molten solidified film-forming substance, that is, the pretreatment liquid for drying, and the pretreatment liquid for drying flows radially from the center of the surface of the substrate along the surface of the substrate. Therefore, the liquid of the solidified film-forming substance can be spread on the surface of the substrate while liquefying the solid of the solidified film-forming substance.
  • the substrate is rotated at a relatively low melting rate.
  • the solid of the solidified film forming substance can be melted while suppressing or preventing the solid of the solidified film forming substance from spreading on the surface of the substrate.
  • the substrate is rotated at a relatively high diffusion speed. Therefore, even after the solid of the solidified film-forming substance is melted, the pretreatment liquid for drying can be spread in a shorter time than when the substrate is rotated at the melting speed.
  • the melting step is a heating gas supply step of discharging a heating gas having a temperature equal to or higher than the melting point of the solidified film forming material toward at least one of the front surface and the back surface of the substrate, and a temperature equal to or higher than the melting point of the solidified film forming material.
  • a contact heating step of bringing a heating member having a temperature equal to or higher than the melting point of the solidified film forming substance into contact with the back surface of the substrate and a light irradiation step of irradiating the drying pretreatment liquid on the surface of the substrate with light. At least one of them may be included.
  • the light irradiation step is a whole irradiation step of simultaneously irradiating the entire surface of the substrate with light, or the irradiation region while irradiating light only to an irradiation region representing a partial region in the surface of the substrate.
  • the method may include a partial irradiation step of moving within the surface of the substrate, or may include both the entire irradiation step and the partial irradiation step.
  • the on-substrate preparation step includes a solvent supply step of supplying a solvent that dissolves with the solidified film forming substance to the surface of the substrate.
  • the pretreatment liquid for drying can be prepared without melting the solid of the solidified film forming substance on the substrate.
  • the solvent supply step is a pre-solvent supply step of supplying the solvent to the surface of the substrate before the solid of the solidified film forming material is supplied to the surface of the substrate, and the solid of the solidified film forming material is After being supplied to the surface of the substrate, a post-solvent supply step of supplying the solvent to the surface of the substrate, and simultaneously with the solid of the solidified film forming material being supplied to the surface of the substrate, And a simultaneous solvent supply step of supplying the solvent to the surface, or may include two or more of these.
  • the solvent supply step includes a preliminary solvent supply step of supplying the solvent to the surface of the substrate before the solid of the solidified film forming material is supplied to the surface of the substrate.
  • the solid of the solidified film forming substance is supplied to the surface of the substrate. Accordingly, the dissolution of the solidified film-forming substance starts simultaneously with the supply of the solid of the solidified film-forming substance. Thereby, the time required for preparing the pretreatment liquid for drying can be reduced. Further, before the solid of the solidified film-forming substance is supplied to the substrate, the chemical solution on the substrate is usually washed away with a rinsing liquid, or the rinsing liquid on the substrate is replaced with a replacement liquid. When the solid of the solidified film forming substance is dissolved in the rinsing liquid or the replacement liquid, the rinsing liquid or the replacement liquid can be used as a solvent. That is, the solid of the solidified film-forming substance can be dissolved in the rinse liquid or the replacement liquid on the substrate to prepare the pre-drying treatment liquid. Therefore, it is not necessary to use a dedicated solvent.
  • the on-substrate preparation step includes a dissolution promoting step of heating the solvent to promote dissolution of the solid of the solidified film-forming substance in the solvent on the surface of the substrate.
  • the solvent is heated before or after supply to the substrate to increase the temperature of the solvent.
  • This increases the saturation concentration of the solidified film forming substance in the solvent, so that the solid of the solidified film forming substance is easily dissolved in the solvent. Therefore, it is possible to promote the dissolution of the solid of the solidified film-forming substance in the solvent on the surface of the substrate, and it is possible to shorten the time required for preparing the pre-drying liquid which is a solution containing the solidified film-forming substance and the solvent.
  • the dissolution accelerating step is at least one of a post-supply heating step of heating the solvent on the surface of the substrate and a pre-supply heating step of heating the solvent before the solvent is supplied to the surface of the substrate. May be included.
  • the post-supply heating step may include an indirect heating step of heating the solvent on the surface of the substrate via the substrate by heating the substrate.
  • the indirect heating step a pre-heating step of heating the substrate before the solvent is supplied to the surface of the substrate, and a post-heating step of heating the substrate after the solvent is supplied to the surface of the substrate And a simultaneous heating step of starting heating the substrate at the same time that the solvent is supplied to the surface of the substrate, or may include two or more of these.
  • the solid matter transporting step is a step of transporting the solid of the solidified film forming material in a fluid box adjacent to a chamber accommodating the substrate.
  • the solid of the solidified film forming substance is transported in the fluid box.
  • the fluid box is located near a chamber that houses the substrate, and at least a portion of the fluid box is located at the same height as the chamber. Therefore, the solidified film forming substance is transported to the vicinity of the substrate as a solid. Therefore, even when a heater for melting the solidified film forming material is provided, the range in which the heater is provided can be narrowed, and the amount of energy consumption can be reduced.
  • the solid matter transporting step is a step of transporting the solid of the solidified film forming substance to a position distant from the substrate, and the drying pretreatment liquid creating step is performed by melting the solidified film forming substance,
  • the method includes a pre-supply preparation step of preparing a liquid at a position away from the substrate, and the substrate processing method further includes a pre-drying liquid discharge step of discharging the pre-drying liquid to a nozzle.
  • the pre-drying treatment liquid is discharged to the nozzle. That is, the solid of the solidified film-forming substance is changed to a melt upstream of the discharge port of the nozzle. Thereafter, a pre-drying treatment liquid corresponding to a melt of the solidified film-forming substance is discharged from the nozzle toward the surface of the substrate. Therefore, the pre-drying liquid can be spread over the surface of the substrate more quickly than when the pre-drying liquid is prepared on the surface of the substrate.
  • the substrate processing method is characterized in that, after the nozzle discharges the pre-drying processing liquid toward the surface of the substrate, a cleaning liquid containing a solvent that dissolves with the solidified film forming substance is supplied into the nozzle, whereby the drying is performed.
  • a cleaning liquid supply step of discharging a pretreatment liquid and a cleaning liquid to the nozzle is further included.
  • the cleaning liquid is supplied to the nozzle after the nozzle discharges the pre-drying processing liquid toward the surface of the substrate.
  • the pre-drying treatment liquid remaining inside the nozzle is pushed downstream by the cleaning liquid, and is discharged from the discharge port of the nozzle. Thereafter, the cleaning liquid is discharged from the nozzle. As a result, the remaining pre-drying treatment liquid is discharged.
  • the cleaning liquid contains a solvent that dissolves with the solidified film forming substance, even if solidified film forming substance solids adhere to the inner surface of the nozzle, the solidified film forming substance solids dissolve in the cleaning liquid, It is discharged from the nozzle together with the cleaning liquid. Therefore, it is possible to remove not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle.
  • the cleaning liquid supply step may be a step of supplying a cleaning liquid into a liquid pipe for guiding the pre-drying treatment liquid to the nozzle in addition to the inside of the nozzle. It is preferable that the cleaning liquid supply step is a step of discharging the liquid to the nozzle at a position where the liquid (the pre-drying processing liquid or the cleaning liquid) discharged from the nozzle is not supplied to the substrate.
  • the cleaning liquid supply step may be a step of discharging liquid from the nozzle toward a pod disposed around the substrate when viewed from a direction perpendicular to the surface of the substrate.
  • the substrate processing method is characterized in that, after the nozzle discharges the pre-drying treatment liquid toward the surface of the substrate, a cleaning gas is supplied to the inside of the nozzle, whereby the pre-drying treatment liquid and the cleaning gas are supplied to the nozzle.
  • the method further includes a cleaning gas supply step of discharging the cleaning gas.
  • the nozzle discharges the pre-drying treatment liquid toward the surface of the substrate, not the liquid but the cleaning gas that is a gas is supplied to the nozzle.
  • the pre-drying treatment liquid remaining inside the nozzle is pushed downstream by the cleaning gas and is discharged from the discharge port of the nozzle. Thereafter, the cleaning gas is discharged from the nozzle.
  • all or almost all of the pretreatment liquid for drying is discharged from the nozzle.
  • the drying pretreatment liquid that is, the melt of the solidified film forming substance is cooled by the flow of the cleaning gas, and May change to a solid inside.
  • the cleaning gas flowing through the nozzle suppresses an increase in the partial pressure of the solidified film-forming substance and promotes the sublimation of the solidified film-forming substance. Therefore, the amount of the pre-drying treatment liquid remaining inside the nozzle can be reduced.
  • the cleaning gas supply step may be a step of supplying a cleaning gas into a liquid pipe that guides the pre-drying treatment liquid to the nozzle in addition to the inside of the nozzle. It is preferable that the cleaning gas supply step is a step of discharging the fluid to the nozzle at a position where the fluid (the pre-drying treatment liquid or the cleaning gas) discharged from the nozzle is not supplied to the substrate.
  • the cleaning gas supply step may be a step of discharging the fluid to the nozzle toward a pod disposed around the substrate when viewed from a direction perpendicular to the surface of the substrate.
  • the substrate processing method before forming the solidified film, by rotating the substrate about a vertical rotation axis while holding the substrate horizontally, the entire surface of the substrate is a liquid film of the drying pretreatment liquid
  • the method further includes a film thickness reducing step of removing a part of the pre-drying treatment liquid on the surface of the substrate by centrifugal force accompanying rotation of the substrate while maintaining the covered state.
  • the substrate before the solidified film is formed, the substrate is rotated about a vertical rotation axis while holding the substrate horizontally. Some of the pre-drying solution on the surface of the substrate is removed from the substrate by centrifugal force. Thereby, the film thickness of the pre-drying treatment liquid decreases in a state where the entire surface of the substrate is covered with the liquid film of the pre-drying treatment liquid. After that, a solidified film is formed. Since the thickness of the pretreatment liquid for drying is reduced, a solidified film can be formed in a short time, and the solidified film can be thinned. Therefore, the time required for forming the solidified film and the time required for removing the solidified film can be reduced. Thus, the amount of energy consumed for processing the substrate can be reduced.
  • the substrate processing method further includes a solidified film cooling step of cooling the solidified film on the surface of the substrate while removing the solidified film from the surface of the substrate.
  • the solidified film on the surface of the substrate is cooled.
  • the temperature of the solidified film increases with the removal of the solidified film, or when the melting point of the solidified film (the melting point of the solidified film forming substance) is close to room temperature, when the solidified film is removed from the surface of the substrate, Part of the solidified film may be liquefied. Therefore, the solidified film can be changed to gas while preventing a part of the solidified film from being liquefied.
  • the solidified film forming step by lowering the temperature of the pre-drying treatment liquid to a cooling temperature below the freezing point of the pre-drying treatment liquid, a coagulation step of solidifying the pre-drying treatment liquid on the surface of the substrate, A step of depositing the solidified film-forming substance from the pre-drying liquid on the surface of the substrate by reducing a solvent contained in the pre-drying liquid.
  • the coagulation step includes a natural cooling step in which the pre-drying treatment liquid is left at room temperature until the pre-drying treatment liquid solidifies, and a cooling gas supply that discharges the cooling gas at the cooling temperature toward the front surface or the back surface of the substrate.
  • a contact cooling step of bringing a cooling member having the cooling temperature into contact with the back surface of the substrate.
  • the deposition step includes a spontaneous evaporation step in which the drying pretreatment liquid is allowed to stand in a room at room temperature and normal pressure until the solidified film forming substance is precipitated by evaporation of a solvent contained in the drying pretreatment liquid, and on the surface of the substrate.
  • the solidified film removing step includes a sublimation step of sublimating the solidified film, a decomposition step of changing the solidified film from a solid or a liquid to a gas by decomposition (for example, thermal decomposition or photolysis) of the solidified film; (E.g., an oxidation reaction) to convert the solidified film from a solid or a liquid to a gas, and a plasma irradiation process of irradiating the solidified film with plasma.
  • decomposition for example, thermal decomposition or photolysis
  • the sublimation step includes: a substrate rotation step of rotating the substrate about a vertical rotation axis while holding the substrate horizontally; a gas supply step of blowing gas onto the solidified film; a heating step of heating the solidified film; At least one of a pressure reduction step of reducing the pressure of an atmosphere in contact with the film, a light irradiation step of irradiating the solidified film with light, and an ultrasonic vibration applying step of applying ultrasonic vibration to the solidified film is included. You may go out.
  • the decomposition step may include at least one of the heating step, the light irradiation step, and the ultrasonic vibration applying step.
  • the reaction step may include an oxidation step of oxidizing the solidified film by bringing an active gas such as ozone gas into contact with the solidified film.
  • Another embodiment of the present invention is a solid transporting means for transporting a solid of the solidified film-forming substance, melting of the solidified film-forming substance, and at least one of dissolution of the solidified film-forming substance on a substrate.
  • a drying pretreatment liquid preparation means for preparing a transported pretreatment liquid containing the solidified film forming substance, and the solidification film by solidifying the drying pretreatment liquid on the surface of the substrate by coagulation or precipitation.
  • a substrate processing apparatus comprising: a solidified film forming unit that forms a solidified film containing a forming substance on the surface of the substrate; and a solidified film removing unit that removes the solidified film from the surface of the substrate by changing the solidified film into a gas. I do. According to this configuration, the same effect as the above-described effect can be obtained.
  • FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. It is the schematic diagram which looked at the substrate processing apparatus from the side.
  • FIG. 3 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed horizontally.
  • FIG. 2 is a schematic diagram for describing a solid transport system that transports a solid to a nozzle. It is the schematic diagram which looked at the nozzle and the lid
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed.
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed.
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed.
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed.
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed.
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed.
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG.
  • FIG. 6 is performed.
  • FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed.
  • 5 is a graph illustrating an example of a change in the rotation speed of a substrate over time.
  • FIG. 9 is a process chart for describing an example (second processing example) of substrate processing performed by the substrate processing apparatus.
  • FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed.
  • FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed.
  • FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed.
  • FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed.
  • FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed.
  • FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed. It is the mimetic diagram which looked at a spin chuck, a blocking member, and a cooling plate concerning a 2nd embodiment of the present invention horizontally. It is the schematic diagram which looked at the spin chuck and cooling plate which concern on 2nd Embodiment of this invention from the upper part. It is a mimetic diagram for explaining conveyance of a substrate concerning a 3rd embodiment of the present invention from a wet processing unit to a dry processing unit.
  • FIG. 13B is a schematic view of the nozzle and the lid as viewed in the direction of arrow XIIIB shown in FIG. 13A. It is a process figure for explaining an example (the 3rd processing example) of substrate processing performed by a substrate processing device.
  • FIG. 15 is a schematic diagram illustrating a change in solid matter when the processing illustrated in FIG. 14 is performed.
  • FIG. 15 is a schematic diagram illustrating a change in solid matter when the processing illustrated in FIG. 14 is performed.
  • FIG. 15 is a schematic diagram illustrating a change in solid matter when the processing illustrated in FIG. 14 is performed.
  • FIG. 4 is a schematic view showing a state where the solidified film on the upper surface of the substrate is being cooled while the solidified film is being removed from the upper surface of the substrate.
  • the pressure in the substrate processing apparatus 1 is maintained at a pressure in a clean room in which the substrate processing apparatus 1 is installed (for example, 1 atm or a value close thereto) unless otherwise specified. .
  • FIG. 1A is a schematic view of the substrate processing apparatus 1 according to the first embodiment of the present invention as viewed from above.
  • FIG. 1B is a schematic view of the substrate processing apparatus 1 as viewed from the side.
  • the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes a load port LP that holds a carrier C containing a substrate W, a plurality of processing units 2 that process the substrate W transferred from the carrier C on the load port LP, and a carrier on the load port LP.
  • a transfer robot that transfers the substrate W between C and the processing unit 2 and a control device 3 that controls the substrate processing apparatus 1 are provided.
  • the transfer robot includes an indexer robot IR for loading and unloading the substrate W to and from the carrier C on the load port LP, and a center robot CR for loading and unloading the substrate W to and from the plurality of processing units 2.
  • the indexer robot IR transports the substrate W between the load port LP and the center robot CR
  • the center robot CR transports the substrate W between the indexer robot IR and the processing unit 2.
  • the center robot CR includes a hand H1 that supports the substrate W
  • the indexer robot IR includes a hand H2 that supports the substrate W.
  • each tower TW includes a plurality (for example, three) of processing units 2 stacked vertically.
  • the substrate processing apparatus 1 includes a plurality of fluid boxes FB that house fluid devices such as valves. As shown in FIG. 1A, the plurality of fluid boxes FB are arranged at four places separated in plan view. As shown in FIG. 1B, the fluid box FB is arranged on the side of the chamber 4. A substance used for processing the substrate W, such as a processing liquid, is supplied to the processing unit 2 via one of the fluid boxes FB.
  • FIG. 2 is a schematic view of the inside of the processing unit 2 provided in the substrate processing apparatus 1 as viewed horizontally.
  • the processing unit 2 is a wet processing unit 2 w that processes the substrate W with a processing liquid such as a chemical solution or a rinsing liquid.
  • the processing unit 2 includes a box-shaped chamber 4 having an internal space, and a spin chuck 10 that rotates about a vertical rotation axis A1 passing through a central portion of the substrate W while holding one substrate W in the chamber 4 horizontally. And a cylindrical processing cup 21 surrounding the spin chuck 10 around the rotation axis A1.
  • the chamber 4 includes a box-shaped partition wall 5 provided with a loading / unloading port 5b through which the substrate W passes, and a shutter 7 for opening and closing the loading / unloading port 5b.
  • the FFU 6 (fan filter unit) is arranged on a blower port 5 a provided above the partition wall 5.
  • the FFU 6 always supplies clean air (air filtered by a filter) to the inside of the chamber 4 from the blower port 5a.
  • the gas in the chamber 4 is exhausted from the chamber 4 through an exhaust duct 8 connected to the bottom of the processing cup 21. Thereby, a down flow of clean air is always formed in the chamber 4.
  • the flow rate of the exhaust gas discharged to the exhaust duct 8 is changed according to the opening of the exhaust valve 9 arranged in the exhaust duct 8.
  • the spin chuck 10 includes a disk-shaped spin base 12 held in a horizontal position, a plurality of chuck pins 11 for holding a substrate W in a horizontal position above the spin base 12, and a spin base 12 having a central portion. It includes a spin shaft 13 extending downward, and a spin motor 14 that rotates the spin base 12 and the plurality of chuck pins 11 by rotating the spin shaft 13.
  • the spin chuck 10 is not limited to a pinch type chuck in which the plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and causes the back surface (lower surface) of the substrate W, which is a non-device formation surface, to be attracted to the upper surface 12 u of the spin base 12.
  • a vacuum-type chuck that holds the substrate W horizontally may be used.
  • the processing cup 21 includes a plurality of guards 24 for receiving the processing liquid discharged outward from the substrate W, a plurality of cups 23 for receiving the processing liquid guided downward by the plurality of guards 24, a plurality of guards 24 and a plurality of guards. And a cylindrical outer wall member 22 surrounding the cup 23.
  • FIG. 2 shows an example in which four guards 24 and three cups 23 are provided, and the outermost cup 23 is integrated with the third guard 24 from the top.
  • the guard 24 includes a cylindrical portion 25 surrounding the spin chuck 10 and an annular ceiling portion 26 extending obliquely upward from the upper end of the cylindrical portion 25 toward the rotation axis A1.
  • the plurality of ceiling portions 26 are vertically overlapped, and the plurality of cylindrical portions 25 are arranged concentrically.
  • the annular upper end of the ceiling 26 corresponds to the upper end 24u of the guard 24 surrounding the substrate W and the spin base 12 in plan view.
  • the plurality of cups 23 are arranged below the plurality of cylindrical portions 25, respectively.
  • the cup 23 has an annular liquid receiving groove for receiving the processing liquid guided downward by the guard 24.
  • the processing unit 2 includes a guard elevating unit 27 for individually elevating and lowering the plurality of guards 24.
  • the guard elevating unit 27 positions the guard 24 at an arbitrary position from the upper position to the lower position.
  • FIG. 2 shows a state in which two guards 24 are arranged at the upper position and the remaining two guards 24 are arranged at the lower position.
  • the upper position is a position where the upper end 24u of the guard 24 is located above the holding position where the substrate W held by the spin chuck 10 is located.
  • the lower position is a position where the upper end 24u of the guard 24 is disposed below the holding position.
  • the processing unit 2 includes a plurality of nozzles for discharging the processing liquid toward the substrate W held by the spin chuck 10.
  • the plurality of nozzles include a chemical liquid nozzle 31 for discharging a chemical liquid toward the upper surface of the substrate W, a rinsing liquid nozzle 35 for discharging a rinsing liquid toward the upper surface of the substrate W, and a solid substance 100 ( 4A and 4B), and a replacement liquid nozzle 43 for discharging a replacement liquid toward the upper surface of the substrate W.
  • the chemical liquid nozzle 31 may be a scan nozzle that can move horizontally in the chamber 4 or a fixed nozzle fixed to the partition 5 of the chamber 4. The same applies to the rinsing liquid nozzle 35, the nozzle 39, and the replacement liquid nozzle 43.
  • FIG. 2 shows an example in which the chemical liquid nozzle 31, the rinsing liquid nozzle 35, the nozzle 39, and the replacement liquid nozzle 43 are scan nozzles, and four nozzle moving units respectively corresponding to these four nozzles are provided. I have.
  • the chemical liquid nozzle 31 is connected to a chemical liquid pipe 32 for guiding the chemical liquid to the chemical liquid nozzle 31.
  • a chemical liquid pipe 32 for guiding the chemical liquid to the chemical liquid nozzle 31.
  • the chemical discharged from the chemical nozzle 31 includes sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, an organic acid (for example, citric acid, oxalic acid, etc.), and an organic alkali (for example, TMAH: It may be a liquid containing at least one of tetramethylammonium hydroxide, a surfactant, and a corrosion inhibitor, or may be another liquid.
  • the chemical liquid valve 33 includes a valve body provided with an internal flow path through which a chemical liquid flows and an annular valve seat surrounding the internal flow path, a valve body movable with respect to the valve seat, and a valve body.
  • the actuator may be a pneumatic actuator or an electric actuator, or may be another actuator.
  • the control device 3 opens and closes the chemical liquid valve 33 by controlling the actuator.
  • the chemical liquid nozzle 31 is connected to a nozzle moving unit 34 that moves the chemical liquid nozzle 31 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 34 moves the chemical solution between the processing position where the chemical solution discharged from the chemical solution nozzle 31 is supplied to the upper surface of the substrate W and the standby position where the chemical solution nozzle 31 is positioned around the processing cup 21 in plan view.
  • the nozzle 31 is moved horizontally.
  • the rinsing liquid nozzle 35 is connected to a rinsing liquid pipe 36 for guiding the rinsing liquid to the rinsing liquid nozzle 35.
  • the rinsing liquid discharged from the rinsing liquid nozzle 35 is, for example, pure water (deionized water: DIW (Deionized Water)).
  • the rinsing liquid may be any of carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a dilute concentration (for example, about 10 to 100 ppm).
  • the rinse liquid nozzle 35 is connected to a nozzle moving unit 38 that moves the rinse liquid nozzle 35 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 38 includes a processing position where the rinsing liquid discharged from the rinsing liquid nozzle 35 is supplied to the upper surface of the substrate W, and a standby position where the rinsing liquid nozzle 35 is positioned around the processing cup 21 in a plan view. The rinse liquid nozzle 35 is moved horizontally between them.
  • the nozzle 39 is connected to a solid pipe 40 for guiding the solid 100 (see FIGS. 4A and 4B) to the nozzle 39.
  • the lid 95 corresponding to the tray for the solid 100 is opened, the solid 100 is continuously discharged downward from the discharge port 39p of the nozzle 39.
  • the replacement liquid nozzle 43 is connected to a replacement liquid pipe 44 that guides the replacement liquid to the replacement liquid nozzle 43.
  • the replacement liquid valve 45 interposed in the replacement liquid pipe 44 is opened, the replacement liquid is continuously discharged downward from the discharge port of the replacement liquid nozzle 43.
  • the replacement liquid is supplied to the upper surface of the substrate W covered with the liquid film of the rinsing liquid, and the solid matter 100 is supplied to the upper surface of the substrate W covered with the liquid film of the replacement liquid.
  • the replacement liquid is a liquid that dissolves in the rinsing liquid.
  • the replacement liquid may be a liquid that dissolves in the solid 100.
  • the replacement liquid is, for example, IPA.
  • IPA is a liquid that is compatible with both water and fluorohydrocarbon compounds.
  • the replacement liquid may be a mixed liquid of IPA and HFE (hydrofluoroether).
  • the replacement liquid When the replacement liquid is supplied to the upper surface of the substrate W covered with the rinsing liquid film, most of the rinsing liquid on the substrate W is washed away by the replacement liquid and discharged from the substrate W. The remaining trace amount of the rinse solution dissolves in the replacement solution and diffuses into the replacement solution. The diffused rinsing liquid is discharged from the substrate W together with the replacement liquid. Therefore, the rinsing liquid on the substrate W can be efficiently replaced with the replacement liquid. Thereby, the rinsing liquid contained in the replacement liquid on the substrate W can be reduced.
  • the nozzle 39 is connected to a nozzle moving unit 42 that moves the nozzle 39 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 42 moves the nozzle between a processing position where the solids 100 discharged from the nozzle 39 are supplied to the upper surface of the substrate W and a standby position where the nozzle 39 is positioned around the processing cup 21 in a plan view. 39 is moved horizontally.
  • the replacement liquid nozzle 43 is connected to a nozzle moving unit 46 that moves the replacement liquid nozzle 43 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 46 includes a processing position where the replacement liquid discharged from the replacement liquid nozzle 43 is supplied to the upper surface of the substrate W, and a standby position where the replacement liquid nozzle 43 is positioned around the processing cup 21 in a plan view. The replacement liquid nozzle 43 is moved horizontally between them.
  • the processing unit 2 includes the blocking member 51 disposed above the spin chuck 10.
  • FIG. 2 shows an example in which the blocking member 51 is a disk-shaped blocking plate.
  • the blocking member 51 includes a disk portion 52 horizontally arranged above the spin chuck 10.
  • the blocking member 51 is horizontally supported by a cylindrical support shaft 53 extending upward from the center of the disk portion 52.
  • the center line of the disk portion 52 is arranged on the rotation axis A1 of the substrate W.
  • the lower surface of the disk portion 52 corresponds to the lower surface 51L of the blocking member 51.
  • the lower surface 51L of the blocking member 51 is a facing surface facing the upper surface of the substrate W.
  • the lower surface 51L of the blocking member 51 is parallel to the upper surface of the substrate W and has an outer diameter equal to or larger than the diameter of the substrate W.
  • the blocking member 51 is connected to a blocking member elevating unit 54 that vertically moves the blocking member 51 up and down.
  • the blocking member elevating unit 54 positions the blocking member 51 at an arbitrary position from the upper position (the position shown in FIG. 2) to the lower position.
  • the lower position is a proximity position where the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W to a height at which a scan nozzle such as the chemical nozzle 31 cannot enter between the substrate W and the blocking member 51.
  • the upper position is a separated position where the blocking member 51 is retracted to a height at which the scan nozzle can enter between the blocking member 51 and the substrate W.
  • the plurality of nozzles include a central nozzle 55 that discharges a processing fluid, such as a processing liquid or a processing gas, downward through an upper central opening 61 that opens at the center of the lower surface 51L of the blocking member 51.
  • the center nozzle 55 extends vertically along the rotation axis A1.
  • the center nozzle 55 is disposed in a through hole vertically penetrating the center of the blocking member 51.
  • the inner peripheral surface of the blocking member 51 surrounds the outer peripheral surface of the central nozzle 55 at intervals in the radial direction (the direction orthogonal to the rotation axis A1).
  • the center nozzle 55 moves up and down together with the blocking member 51.
  • the discharge port of the center nozzle 55 that discharges the processing liquid is disposed above the upper central opening 61 of the blocking member 51.
  • the center nozzle 55 is connected to an upper gas pipe 56 for guiding the inert gas to the center nozzle 55.
  • the substrate processing apparatus 1 may include an upper temperature controller 59 for heating or cooling the inert gas discharged from the central nozzle 55.
  • the inert gas is discharged from the center nozzle 55 at a flow rate corresponding to the opening degree of the flow control valve 58 for changing the flow rate of the inert gas. Is continuously discharged downward.
  • the inert gas discharged from the center nozzle 55 is a nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the inner peripheral surface of the blocking member 51 and the outer peripheral surface of the center nozzle 55 form a cylindrical upper gas flow path 62 extending vertically.
  • the upper gas passage 62 is connected to an upper gas pipe 63 that guides the inert gas to the upper central opening 61 of the blocking member 51.
  • the substrate processing apparatus 1 may include an upper temperature controller 66 for heating or cooling the inert gas discharged from the upper central opening 61 of the blocking member 51.
  • the upper gas valve 64 interposed in the upper gas pipe 63 is opened, the inert gas flows in the upper center of the shut-off member 51 at a flow rate corresponding to the opening of the flow control valve 65 for changing the flow rate of the inert gas.
  • the liquid is continuously discharged downward from the opening 61.
  • the inert gas discharged from the upper central opening 61 of the blocking member 51 is a nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the plurality of nozzles include a lower surface nozzle 71 that discharges the processing liquid toward the center of the lower surface of the substrate W.
  • the lower surface nozzle 71 includes a nozzle disk portion disposed between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle cylindrical portion extending downward from the nozzle disk portion.
  • the discharge port of the lower nozzle 71 is open at the center of the upper surface of the nozzle disk. When the substrate W is held by the spin chuck 10, the discharge port of the lower surface nozzle 71 vertically faces the center of the lower surface of the substrate W.
  • the lower nozzle 71 is connected to a heating fluid pipe 72 that guides hot water (pure water higher than room temperature), which is an example of a heating fluid, to the lower nozzle 71. Pure water supplied to the lower nozzle 71 is heated by a lower heater 75 interposed in a heating fluid pipe 72.
  • the heating fluid valve 73 interposed in the heating fluid pipe 72 is opened, the hot water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 74 that changes the flow rate of the hot water. Is discharged. Thereby, the warm water is supplied to the lower surface of the substrate W.
  • the lower nozzle 71 is further connected to a cooling fluid pipe 76 that guides cold water (pure water having a temperature lower than room temperature), which is an example of a cooling fluid, to the lower nozzle 71.
  • the pure water supplied to the lower nozzle 71 is cooled by a cooler 79 interposed in the cooling fluid pipe 76.
  • the cooling fluid valve 77 interposed in the cooling fluid pipe 76 is opened, the cold water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 78 that changes the flow rate of the cold water. Is discharged. Thereby, the cold water is supplied to the lower surface of the substrate W.
  • the outer peripheral surface of the lower nozzle 71 and the inner peripheral surface of the spin base 12 form a cylindrical lower gas flow path 82 extending vertically.
  • the lower gas flow path 82 includes a lower central opening 81 that opens at the center of the upper surface 12u of the spin base 12.
  • the lower gas flow path 82 is connected to a lower gas pipe 83 that guides an inert gas to a lower central opening 81 of the spin base 12.
  • the substrate processing apparatus 1 may include a lower temperature controller 86 that heats or cools the inert gas discharged from the lower center opening 81 of the spin base 12.
  • the inert gas flows at the lower center of the spin base 12 at a flow rate corresponding to the opening of the flow rate adjustment valve 85 for changing the flow rate of the inert gas.
  • the liquid is continuously discharged upward from the opening 81.
  • the inert gas discharged from the lower center opening 81 of the spin base 12 is a nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the nitrogen gas flows between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in all directions. Flows radially. Thereby, the space between the substrate W and the spin base 12 is filled with the nitrogen gas.
  • FIG. 3A is a schematic diagram for explaining a solid transport system that transports the solid 100 to the nozzle 39.
  • FIG. 3B is a schematic view of the nozzle 39 and the lid 95 as viewed in the direction of arrow IIIB shown in FIG. 3A.
  • FIG. 4A is a schematic diagram showing an example of the form of the solid 100.
  • FIG. 4B is a schematic view showing another example of the form of the solid material 100.
  • the nozzle 39 extends vertically.
  • the solid matter pipe 40 extends horizontally from the nozzle 39.
  • the substrate processing apparatus 1 stores the solids 100 and supplies the solids to the solids pipe 40, the screw conveyor 91 disposed in the solids pipe 40, and the solids by rotating the screw conveyor 91.
  • a transport motor 92 that feeds the solids 100 in the product pipe 40 toward the nozzle 39 is provided.
  • the solid matter tank 94 is arranged above the solid matter piping 40. The bottom of the solid matter tank 94 is connected to the solid matter pipe 40 via a supply pipe 93 extending upward from the solid matter pipe 40.
  • the substrate processing apparatus 1 further includes a lid 95 disposed below the discharge port 39p of the nozzle 39, and an opening / closing motor 96 for horizontally moving the lid 95 between a closed position and an open position.
  • FIG. 3A shows an example in which the lid 95 can be opened and closed around a vertical opening and closing axis A2.
  • the closed position of the lid 95 (the position indicated by the solid line) is a position where the entire outlet 39 p of the nozzle 39 overlaps with the lid 95 when the nozzle 39 is viewed from below.
  • the open position (the position indicated by the two-dot chain line) is a position where none of the discharge ports 39p of the nozzle 39 overlaps the lid 95 when the nozzle 39 is viewed from below.
  • the opening / closing motor 96 moves the lid 95 to the open position.
  • the transport motor 92 rotates the screw conveyor 91.
  • the solid matter 100 in the solid matter pipe 40 is sent to the nozzle 39 by the rotation of the screw conveyor 91.
  • the solid 100 in the solid pipe 40 is supplied into the nozzle 39.
  • the solid matter 100 supplied to the nozzle 39 falls within the nozzle 39 by its own weight, and passes through the discharge port 39p of the nozzle 39.
  • the solid material 100 is discharged from the nozzle 39.
  • the amount of the solids 100 in the solid matter pipe 40 decreases, the solids 100 in the solid matter tank 94 are replenished into the solid matter pipe 40 via the supply pipe 93.
  • the solid matter pipe 40, the solid matter tank 94, the transport motor 92, and the opening / closing motor 96 are arranged in the housing 41. These are held by the housing 41.
  • the nozzle 39 and the lid 95 are also held by the housing 41.
  • the lower end of the nozzle 39 protrudes downward from the housing 41.
  • the nozzle 39 is connected to a nozzle moving unit 42 via a housing 41.
  • the nozzle moving unit 42 moves the housing 41 in at least one of the vertical direction and the horizontal direction. Thereby, the nozzle 39 moves.
  • the nozzle moving unit 42 moves the nozzle 39 between the processing position at which the solid 100 discharged from the nozzle 39 lands on the upper surface of the substrate W and the standby position at which the nozzle 39 is positioned around the processing cup 21 in plan view. Is moved horizontally.
  • the nozzle moving unit 42 may be a turning unit that horizontally moves the nozzle 39 along an arcuate path passing through the center of the substrate W in plan view, or a straight line passing through the center of the substrate W in plan view. It may be a slide unit that moves the nozzle 39 horizontally along the path of the shape.
  • the solid material 100 may be a powder, a collection of grains, or a collection of a combination of powder and grains.
  • one lump of the solid 100 may be cylindrical, prismatic, conical, pyramidal, or other.
  • FIG. 4A shows an example in which the solid 100 is a powder
  • FIG. 4B shows an example in which one lump of the solid 100 is a cylindrical pellet.
  • One lump of the solid 100 is smaller than the diameter of the substrate W.
  • the solids 100 may be as large as rice grains. If the pattern 100 (see FIG. 7E) formed on the surface of the substrate W or the substrate W itself does not cause any damage or damage when the solid 100 collides with the upper surface of the substrate W, one of the solids 100 may be used.
  • the chunks can be of any size.
  • the maximum value of the height, width, and depth of one lump of the solid object 100 may be larger or smaller than the distance G1 (see FIG. 7E) between two adjacent patterns P1, or may be two adjacent patterns. It may be equal to the interval G1 of P1.
  • the solid material 100 is a solid of a solidified film forming substance that forms the solidified film 101 (see FIG. 7F).
  • the freezing point of the solidified film-forming substance (freezing point at 1 atm. The same applies hereinafter) is higher than room temperature (23 ° C. or a value in the vicinity thereof).
  • room temperature 23 ° C. or a value in the vicinity thereof.
  • the substrate processing apparatus 1 is disposed in a clean room maintained at room temperature. Therefore, the solidified film-forming substance can be kept solid without cooling the solidified film-forming substance.
  • the solidification point of the solidified film forming substance may be lower than room temperature.
  • the solidified film-forming substance may be a sublimable substance that changes from a solid to a gas without passing through a liquid at normal temperature or normal pressure, or may be a substance other than the sublimable substance.
  • the solidified film forming substance may be a single substance or a mixed substance in which two or more substances are mixed.
  • the solid 100 may include a sublimable substance and a substance other than the sublimable substance.
  • the solid 100 may include solids of a plurality of different substances. In this case, the plurality of substances may be mixed after being separately solidified.
  • Sublimable substances include, for example, alcohols such as 2-methyl-2-propanol (alias: tert-butyl alcohol, t-butyl alcohol, tert-butyl alcohol) and cyclohexanol, fluorinated hydrocarbon compounds, 1,3, It may be any of 5-trioxane (alias: metaformaldehyde), camphor (alias: camphor, camphor), naphthalene, and iodine, or a substance other than these.
  • alcohols such as 2-methyl-2-propanol (alias: tert-butyl alcohol, t-butyl alcohol, tert-butyl alcohol) and cyclohexanol
  • fluorinated hydrocarbon compounds 1,3, It may be any of 5-trioxane (alias: metaformaldehyde), camphor (alias: camphor, camphor), naphthalene, and iodine, or a substance other than these.
  • the solidified film-forming substance may be a substance that does not dissolve in the solvent, may be a substance that hardly dissolves in the solvent (a substance having extremely low solubility), or may be a substance that dissolves in the solvent.
  • the solvent is, for example, pure water, IPA, HFE, acetone, PGMEA (propylene glycol monomethyl ether acetate), PGEE (propylene glycol monoethyl ether, 1-ethoxy-2-propanol), cyclohexane, ethylene glycol, hydrofluorocarbon (hydrofluorocarbon). ) May be at least one selected from the group consisting of: Alternatively, the sublimable substance may be a solvent.
  • IPA and HFE are substances having a lower surface tension than water and a higher vapor pressure than water.
  • the solidified film-forming substance may be camphor or cyclohexanol.
  • the solidified film forming substance may be camphor or cyclohexanol, and the solvent may be IPA or cyclohexane.
  • FIG. 5 is a block diagram showing hardware of the control device 3. As shown in FIG.
  • the control device 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a.
  • the computer main body 3a includes a CPU 3b (central processing unit) for executing various instructions, and a main storage device 3c for storing information.
  • the peripheral device 3d includes an auxiliary storage device 3e that stores information such as the program P, a reading device 3f that reads information from the removable medium RM, and a communication device 3g that communicates with another device such as a host computer.
  • the control device 3 is connected to the input device and the display device.
  • the input device is operated when an operator such as a user or a maintenance person inputs information to the substrate processing apparatus 1.
  • the information is displayed on the screen of the display device.
  • the input device may be any of a keyboard, a pointing device, and a touch panel, or may be other devices.
  • a touch panel display serving also as an input device and a display device may be provided in the substrate processing apparatus 1.
  • the CPU 3b executes the program P stored in the auxiliary storage device 3e.
  • the program P in the auxiliary storage device 3e may be installed in the control device 3 in advance, or may be transmitted from the removable medium RM to the auxiliary storage device 3e through the reading device 3f, It may be transmitted from an external device such as a host computer to the auxiliary storage device 3e through the communication device 3g.
  • the auxiliary storage device 3e and the removable medium RM are non-volatile memories that retain data even when power is not supplied.
  • the auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive.
  • the removable medium RM is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • the removable medium RM is an example of a computer-readable recording medium on which the program P is recorded.
  • the removable medium RM is a non-transitory tangible recording medium (non-transitory ⁇ tangible ⁇ recording ⁇ medium).
  • the auxiliary storage device 3e stores a plurality of recipes.
  • the recipe is information that defines processing contents, processing conditions, and processing procedures for the substrate W.
  • the plurality of recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W.
  • the control device 3 controls the substrate processing apparatus 1 so that the substrate W is processed according to the recipe specified by the host computer.
  • the control device 3 is programmed to execute the following steps.
  • the substrate W to be processed is, for example, a semiconductor wafer such as a silicon wafer.
  • the surface of the substrate W corresponds to a device formation surface on which devices such as transistors and capacitors are formed.
  • the substrate W may be a substrate W having a pattern P1 (see FIG. 7E) formed on the surface of the substrate W which is a pattern forming surface, or a substrate W having no pattern P1 formed on the surface of the substrate W. You may. In the latter case, the pattern P1 may be formed in a chemical solution supply step described later.
  • FIG. 6 is a process chart for describing an example (first processing example) of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 7A to 7G are schematic diagrams showing the state of the substrate W when the processing shown in FIG. 6 is being performed.
  • FIG. 8 is a graph illustrating an example of a change in the rotation speed of the substrate W over time.
  • FIG. 2, FIG. 3A, and FIG. 6 will be referred to.
  • the solidified film-forming substance may be a substance that dissolves in the replacement liquid.
  • Step S1 in FIG. 6 a loading step for loading the substrate W into the processing unit 2 is performed.
  • the center robot CR moves the hand H1 into the processing unit 2 while supporting the substrate W with the hand H1. Then, the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward. Thereafter, the plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped. After placing the substrate W on the spin chuck 10, the center robot CR retracts the hand H1 from inside the processing unit 2.
  • a chemical solution supply step of supplying the chemical solution to the upper surface of the substrate W and forming a liquid film of the chemical solution covering the entire upper surface of the substrate W is performed.
  • the guard lifting unit 27 raises at least one guard 24 from the lower position to the upper position in a state where the blocking member 51 is located at the upper position. Further, the spin motor 14 is driven, and the rotation of the substrate W is started (Step S2 in FIG. 6). Thereby, the substrate W rotates at the liquid supply speed. In this state, the nozzle moving unit 34 moves the chemical liquid nozzle 31 from the standby position to the processing position. Thereafter, the chemical liquid valve 33 is opened, and the chemical liquid nozzle 31 starts discharging the chemical liquid (Step S3 in FIG. 6).
  • the chemical discharged from the chemical nozzle 31 collides with the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the chemical solution is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical solution covering the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 34 may move the collision position so that the collision position of the chemical liquid with respect to the upper surface of the substrate W passes through the central part and the outer peripheral part, or the collision position May be stopped at the center.
  • the chemical liquid valve 33 is closed, and the discharge of the chemical liquid is stopped. Thereafter, the nozzle moving unit 34 moves the chemical liquid nozzle 31 to the standby position.
  • a rinsing liquid supply step (step S4 in FIG. 6) of supplying pure water, which is an example of a rinsing liquid, to the upper surface of the substrate W to wash out the chemical liquid on the substrate W.
  • the nozzle moving unit 38 moves the rinse liquid nozzle 35 from the standby position to the processing position with the blocking member 51 positioned at the upper position and at least one guard 24 positioned at the upper position. Let it. Thereafter, the rinsing liquid valve 37 is opened, and the rinsing liquid nozzle 35 starts discharging the rinsing liquid. Before the discharge of pure water is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the opening of the rinse liquid valve 37, the rinse liquid valve 37 is closed, and the discharge of the rinse liquid is stopped. Thereafter, the nozzle moving unit 38 moves the rinse liquid nozzle 35 to the standby position.
  • the pure water discharged from the rinsing liquid nozzle 35 collides with the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force.
  • the chemical on the substrate W is replaced with pure water discharged from the rinse liquid nozzle 35.
  • a liquid film of pure water covering the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 38 may move the collision position so that the collision position of the pure water with respect to the upper surface of the substrate W passes through the central portion and the outer peripheral portion. Alternatively, the collision position may be stopped at the center.
  • a replacement liquid supply step of supplying a replacement liquid that dissolves in the rinse liquid to the upper surface of the substrate W and replacing the pure water on the substrate W with the replacement liquid (Step S5 in FIG. 6) is performed.
  • the nozzle moving unit 46 moves the replacement liquid nozzle 43 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Let it. Thereafter, the replacement liquid valve 45 is opened, and the replacement liquid nozzle 43 starts discharging the replacement liquid. Before the discharge of the replacement liquid is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the replacement liquid valve 45 was opened, the replacement liquid valve 45 is closed, and the discharge of the replacement liquid is stopped. Thereafter, the nozzle moving unit 46 moves the replacement liquid nozzle 43 to the standby position.
  • the replacement liquid discharged from the replacement liquid nozzle 43 collides with the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force.
  • the pure water on the substrate W is replaced with the replacement liquid discharged from the replacement liquid nozzle 43.
  • a liquid film of the replacement liquid that covers the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 46 may move the collision position of the replacement liquid to the upper surface of the substrate W such that the collision position passes through the central portion and the outer peripheral portion. Alternatively, the collision position may be stopped at the center.
  • a solid supply step of supplying the solid 100 as the solid of the solidified film-forming substance to the upper surface of the substrate W is performed.
  • the heating fluid valve 73 is opened, and the lower surface nozzle 71 starts discharging hot water (step S6 in FIG. 6).
  • a heated liquid other than hot water may be discharged to the lower surface nozzle 71, or the nitrogen gas heated by the lower temperature controller 86 may be supplied to the lower part of the spin base 12.
  • the liquid may be discharged to the central opening 81.
  • the hot water discharged from the lower surface nozzle 71 collides with the central portion of the lower surface of the substrate W rotating at the liquid supply speed, and then flows outward along the lower surface of the substrate W. Thus, the entire area of the substrate W is heated by the hot water.
  • the nozzle moving unit 42 moves the nozzle 39 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Thereby, the nozzle 39 is arranged above the central portion of the substrate W.
  • the opening / closing motor 96 moves the lid 95 to the open position, and the transport motor 92 rotates the screw conveyor 91.
  • the nozzle 39 starts discharging the solid material 100 (Step S7 in FIG. 6).
  • the transport motor 92 stops rotating, and the opening / closing motor 96 moves the lid 95 to the closed position.
  • the nozzle moving unit 42 moves the nozzle 39 to the standby position.
  • FIG. 7A shows the solid 100 immediately after the start of the discharge of the solid 100
  • FIG. 7B shows the solid 100 that has begun to melt.
  • FIGS. 7A and 7B show a surface (upper surface) of the substrate W on which the pattern P1 is not formed, for easy understanding.
  • FIG. 7A when the discharge of the solid material 100 is started, the solid material 100 contacts the upper surface of the substrate W and is deposited on the substrate W.
  • the heating of the substrate W by the hot water is started before the discharge of the solid material 100 is started, so that the heating of the solid material 100 starts simultaneously with the contact of the solid material 100 with the upper surface of the substrate W.
  • the solid material 100 is softened and deformed by heating. Thereafter, the solid 100 changes to a liquid.
  • a liquid of the solid 100 that is, a pre-drying treatment liquid is created at the center of the upper surface of the substrate W (Step S8 in FIG. 6).
  • a substantially circular liquid film of the drying pretreatment liquid is formed at the center of the upper surface of the substrate W, as shown in FIG. It changes into a ring surrounding the liquid film of the drying pretreatment liquid.
  • the remaining solid matter 100 deposited on the central portion of the upper surface of the substrate W gradually changes to the pre-drying treatment liquid, and the amount of the pre-drying treatment liquid on the substrate W gradually increases. Further, the centrifugal force accompanying the rotation of the substrate W is applied to the pretreatment liquid on the substrate W.
  • the outer diameter of the liquid film of the pre-drying treatment liquid gradually increases, and the outer peripheral portion of the liquid film of the pre-drying treatment liquid reaches the outer peripheral portion of the upper surface of the substrate W.
  • the replacement liquid on the substrate W is replaced with the pre-drying treatment liquid, and a liquid film of the pre-drying treatment liquid covering the entire upper surface of the substrate W is formed.
  • the controller 3 may maintain the rotation speed of the substrate W constant from the start of the supply of the solids 100 to the time when the entire upper surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid. , May be changed.
  • FIG. 8 shows an example in which the rotation speed of the substrate W is changed after the supply of the solid material 100 is started.
  • the rotation speed of the substrate W decreases from the pre-melting speed to the melting speed before the supply of the solid material 100 is started, and then increases from the melting speed to the diffusion speed.
  • the supply of the solid 100 is started when the rotation speed of the substrate W is maintained at the melting speed.
  • FIG. 8 shows an example where the diffusion rate is equal to the pre-melting rate.
  • the diffusion rate may be different from the pre-melting rate.
  • the pre-melting rate and the diffusion rate may be equal to or different from the liquid supply rate described above.
  • the rotation speed of the substrate W gradually changes from the melting speed to the diffusion speed.
  • the absolute value of the rate of change of the rate from the melting rate to the diffusion rate may be smaller than the absolute value of the rate of change of the rate from the pre-melting rate to the melting rate.
  • warm water which is an example of the heating fluid
  • the solid 100 that is a solid of the solidified film forming material is The substrate W is rotated at the melting speed while being at the center of the upper surface.
  • the melting rate is lower than the pre-melting rate. Therefore, the centrifugal force applied to the solid material 100 on the substrate W is relatively small, and the solid material 100 is unlikely to spread on the upper surface of the substrate W. Thereby, the residence time of the solid 100 at the center of the upper surface of the substrate W can be lengthened, and the solid 100 can be reliably melted.
  • the rotation speed of the substrate W is increased from the melting speed to the diffusion speed after a part or all of the solid material 100 on the center of the upper surface of the substrate W is melted.
  • the centrifugal force applied to the molten solidified film-forming substance, that is, the pretreatment liquid for drying increases, and the pretreatment liquid for drying flows radially from the center of the upper surface of the substrate W along the upper surface of the substrate W. Therefore, the liquid of the solidified film forming substance can be spread on the surface of the substrate W while the solid 100 is liquefied.
  • the drying pretreatment liquid is not dissolved in the replacement liquid and has a specific gravity greater than that of the replacement liquid, and the substrate W is rotated at a diffusion speed, the replacement liquid on the substrate W is radially spread by the drying processing liquid.
  • the replacement liquid on the substrate W can be efficiently replaced with the pre-drying treatment liquid.
  • the substrate W is rotated at a relatively slow melting speed.
  • the solid 100 can be melted while suppressing or preventing the solid 100 from spreading on the upper surface of the substrate W.
  • the substrate W is rotated at a relatively high diffusion speed. Therefore, even after the solid 100 is melted, the pretreatment liquid for drying can be spread in a shorter time than when the substrate W is rotated at the melting speed.
  • the film thickness of the pre-drying treatment liquid on the substrate W (liquid A film thickness reduction process (step S10 in FIG. 6) for reducing the film thickness is performed.
  • the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position.
  • the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W.
  • the spin motor 14 rotates the substrate W at the film thickness decreasing speed.
  • the thickness reduction rate may be equal to or different from the liquid supply rate.
  • the pretreatment liquid on the substrate W is discharged outward from the substrate W by centrifugal force. Therefore, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W decreases.
  • the discharge amount of the pre-drying treatment liquid from the substrate W per unit time decreases to zero or almost zero. Thereby, as shown in FIG. 7E, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W is stabilized at a value corresponding to the rotation speed of the substrate W.
  • FIG. 7E shows an example in which the entire pattern P1 is in the pre-drying treatment liquid.
  • a solidified film forming step of solidifying the pre-drying treatment liquid on the substrate W by cooling to form a solidified film 101 (see FIG. 7F) containing a solidified film forming substance is performed.
  • the heating fluid valve 73 is closed, and the discharge of hot water from the lower surface nozzle 71 is stopped. (Step S11 in FIG. 6). Thereafter, the cooling fluid valve 77 is opened, and the lower surface nozzle 71 starts discharging cold water.
  • the temperature of the cold water is equal to or lower than the freezing point of the pretreatment liquid, that is, the freezing point of the solidified film-forming substance. As long as the solidification point is equal to or lower than the solidification point of the pretreatment liquid, room temperature pure water may be discharged to the lower surface nozzle 71.
  • the solidified film 101 corresponds to a sacrificial film that is finally removed from the substrate W.
  • FIG. 7F shows an example of a cross section of the pattern P1 and the solidified film 101.
  • the pattern P1 may be a structure formed of a single material, or may be a structure including a plurality of layers stacked in the thickness direction of the substrate W.
  • the surface of the pattern P1 has a side surface Ps perpendicular or substantially perpendicular to a plane Ws of the substrate W orthogonal to the thickness direction of the substrate W, and an upper surface parallel or substantially parallel to the plane Ws of the substrate W.
  • Pu the surface of the pattern P1 has a side surface Ps perpendicular or substantially perpendicular to a plane Ws of the substrate W orthogonal to the thickness direction of the substrate W, and an upper surface parallel or substantially parallel to the plane Ws of the substrate W.
  • the height Hp of the pattern P1 is larger than the width Wp of the pattern P1, and larger than the interval G1 between two adjacent patterns P1.
  • FIG. 7F shows an example in which the thickness T1 of the solidified film 101 is larger than the height Hp of the pattern P1.
  • Step S13 in FIG. 6 a sublimation step of sublimating the solidified film 101 on the substrate W and removing the solidified film 101 from the upper surface of the substrate W is performed.
  • the upper gas valve 57 is opened while the blocking member 51 is located at the lower position, and the center nozzle 55 starts discharging nitrogen gas. Further, the spin motor 14 rotates the substrate W at a sublimation speed. The sublimation rate may be equal to or different from the liquid supply rate. When a predetermined time elapses after the rotation of the substrate W at the sublimation speed is started, the spin motor 14 is stopped, and the rotation of the substrate W is stopped (Step S14 in FIG. 6). Further, the upper gas valve 57 is closed, and the discharge of the nitrogen gas from the central nozzle 55 is stopped.
  • the solidified film 101 on the substrate W changes into a gas without passing through a liquid.
  • the gas generated from the solidified film 101 flows radially in the space between the substrate W and the blocking member 51 and is discharged from above the substrate W.
  • the solidified film 101 is removed from the upper surface of the substrate W.
  • the liquid is removed from the substrate W by the rotation of the substrate W.
  • unnecessary substances such as the solidified film 101 are removed from the substrate W, and the substrate W is dried.
  • Step S15 in FIG. 6 an unloading step of unloading the substrate W from the chamber 4 (Step S15 in FIG. 6) is performed.
  • the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position.
  • the center robot CR causes the hand H1 to enter the chamber 4.
  • the center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W.
  • the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1.
  • the processed substrate W is carried out of the chamber 4.
  • FIG. 9 is a process diagram for describing an example (second processing example) of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 10A to 10F are schematic diagrams showing the state of the substrate W when the processing shown in FIG. 9 is being performed. In the following, reference is made to FIG. 2, FIG. 3A, and FIG. Reference is made to FIGS. 10A to 10F as appropriate.
  • the solid 100 is a solidified film-forming substance that forms the solidified film 101.
  • the solidified film forming substance used in the second processing example is a substance that dissolves in a replacement liquid that is an example of a solvent.
  • a solid supply step of supplying the solid 100, which is a solid of the solidified film forming substance, to the upper surface of the substrate W is performed.
  • the heating fluid valve 73 is opened, and the lower surface nozzle 71 starts discharging hot water (step S6 in FIG. 9).
  • the nitrogen gas heated by the lower temperature controller 86 may be discharged to the lower center opening 81 of the spin base 12.
  • the hot water discharged from the lower surface nozzle 71 collides with the central portion of the lower surface of the substrate W rotating at the liquid supply speed, and then flows outward along the lower surface of the substrate W. Thus, the entire area of the substrate W is heated by the hot water.
  • the nozzle moving unit 42 moves the nozzle 39 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Thereby, the nozzle 39 is arranged above the central portion of the substrate W.
  • the opening / closing motor 96 moves the lid 95 to the open position, and the transport motor 92 rotates the screw conveyor 91.
  • the nozzle 39 starts discharging the solid material 100 (Step S107 in FIG. 9).
  • the transport motor 92 stops rotating, and the opening / closing motor 96 moves the lid 95 to the closed position.
  • the nozzle moving unit 42 moves the nozzle 39 to the standby position.
  • FIG. 10A shows the solid 100 immediately after the discharge of the solid 100 is started, and FIG. 10B shows the solid 100 that has begun to dissolve.
  • FIGS. 10A and 10B show the surface (upper surface) of the substrate W on which the pattern P1 is not formed, for easy understanding.
  • FIG. 10A when the discharge of the solid material 100 is started, the solid material 100 comes into contact with the upper surface of the substrate W and is deposited on the substrate W. Further, in this processing example, since the solid 100 is supplied to the upper surface of the substrate W covered with the liquid film of the replacement liquid, the solid 100 is simultaneously supplied with the solid 100 on the substrate W. Start to dissolve in the liquid.
  • FIG. 10B shows a state in which one lump of the solid material 100 has dissolved in the replacement liquid and has become smaller.
  • a dry pretreatment liquid which is a solution of the solidified film forming substance and the replacement liquid, is formed at the center of the upper surface of the substrate W (Step S108 in FIG. 9).
  • the remaining solid matter 100 deposited on the central part of the upper surface of the substrate W also gradually dissolves in the replacement liquid.
  • the solid 100 (solidified film-forming substance) dissolved in the replacement liquid is uniformly dispersed in the replacement liquid. As a result, the solidified film-forming substance spreads to the outer peripheral portion of the liquid film of the replacement liquid, and the replacement liquid on the substrate W changes to a pre-drying treatment liquid. As a result, as shown in FIG.
  • the controller 3 may maintain the rotation speed of the substrate W constant from the start of the supply of the solids 100 to the time when the entire upper surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid. , May be changed.
  • the film thickness of the pre-drying treatment liquid on the substrate W (liquid A film thickness reduction process (step S10 in FIG. 9) for reducing the film thickness is performed.
  • the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position.
  • the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W.
  • the spin motor 14 rotates the substrate W at the film thickness decreasing speed.
  • the thickness reduction rate may be equal to or different from the liquid supply rate.
  • the pretreatment liquid on the substrate W is discharged outward from the substrate W by centrifugal force. Therefore, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W decreases.
  • the discharge amount of the pre-drying treatment liquid from the substrate W per unit time decreases to zero or almost zero. Thereby, as shown in FIG. 10D, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W is stabilized at a value corresponding to the rotation speed of the substrate W.
  • FIG. 10D shows an example in which the entire pattern P1 is in the pre-drying treatment liquid.
  • a solidified film forming step of depositing the solidified film forming material from the pre-drying treatment liquid on the substrate W to form the solidified film 101 (see FIG. 10E) containing the solidified film forming material is performed.
  • the lower surface nozzle 71 continuously discharges hot water.
  • the nitrogen gas heated by the lower temperature controller 86 may be discharged to the lower center opening 81 of the spin base 12. In any case, the pre-drying treatment liquid on the substrate W is heated via the substrate W.
  • the replacement liquid contained in the pretreatment liquid evaporates due to the heating of the pretreatment liquid. Further, the evaporation of the replacement liquid is promoted by the airflow generated by the rotation of the substrate W. As the replacement liquid evaporates, the concentration of the solidified film-forming substance in the pre-drying treatment liquid gradually increases. When the concentration of the solidified film forming substance in the drying pretreatment liquid reaches the saturation concentration, crystals of the solidified film forming substance precipitate from the drying pretreatment liquid.
  • the solidified film 101 containing the solidified film forming substance is formed on the surface of the substrate W, and the entire upper surface of the substrate W is covered with the solidified film 101 (Step S112 in FIG. 9). Thereafter, the heating fluid valve 73 is closed, and the discharge of the hot water from the lower surface nozzle 71 is stopped (Step S111 in FIG. 9).
  • Step S13 in FIG. 9 After the solidified film 101 is formed, a sublimation step (Step S13 in FIG. 9) of sublimating the solidified film 101 on the substrate W and removing it from the upper surface of the substrate W is performed.
  • the upper gas valve 57 is opened while the blocking member 51 is located at the lower position, and the center nozzle 55 starts discharging nitrogen gas. Further, the spin motor 14 rotates the substrate W at a sublimation speed. The sublimation rate may be equal to or different from the liquid supply rate. When a predetermined time elapses after the rotation of the substrate W at the sublimation speed is started, the spin motor 14 is stopped, and the rotation of the substrate W is stopped (Step S14 in FIG. 9). Further, the upper gas valve 57 is closed, and the discharge of the nitrogen gas from the central nozzle 55 is stopped.
  • the solidified film 101 on the substrate W changes to a gas without passing through a liquid.
  • the gas generated from the solidified film 101 flows radially in the space between the substrate W and the blocking member 51 and is discharged from above the substrate W.
  • the solidified film 101 is removed from the upper surface of the substrate W.
  • the liquid is removed from the substrate W by the rotation of the substrate W.
  • unnecessary substances such as the solidified film 101 are removed from the substrate W, and the substrate W is dried.
  • the solid of the solidified film forming substance is transported in the substrate processing apparatus 1. Then, the conveyed solidified film forming substance is melted or dissolved in a solvent. As a result, a dry pretreatment liquid containing the transported solidified film-forming substance is created. After that, the pre-drying treatment liquid on the surface of the substrate W is solidified to form a solidified film 101 containing a solidified film forming substance on the surface of the substrate W. After that, the solidified film 101 is changed into a gas and removed from the surface of the substrate W. Therefore, the substrate W can be dried while suppressing the collapse of the pattern P1 (see FIG. 7E), as compared with the case where a conventional drying method such as spin drying in which the liquid is removed by high-speed rotation of the substrate W is performed.
  • a conventional drying method such as spin drying in which the liquid is removed by high-speed rotation of the substrate W is performed.
  • the solid of the solidified film forming substance is transported in the chamber 4 accommodating the substrate W.
  • the solidified film forming substance is transported to the substrate W as a solid. Therefore, even when a heater (lower heater 75) for melting the solidified film forming substance is provided, the range in which the heater is provided can be extremely narrowed, and the energy consumption can be reduced.
  • the solid of the solidified film forming substance is transported to the surface of the substrate W.
  • the solidified film forming substance is supplied to the surface of the substrate W as a solid.
  • the temperature of the solidified film forming material when the solidified film forming material is supplied to the surface of the substrate W is lower than the melting point of the solidified film forming material.
  • the solidified film-forming substance on the surface of the substrate W is melted or dissolved in a solvent. Thereby, a pre-drying treatment liquid is prepared. At the same time, the pre-drying liquid is supplied to the surface of the substrate W.
  • the solidified film forming material at room temperature is supplied to the surface of the substrate W.
  • the melting point of the solidified film forming substance is higher than room temperature. Therefore, the solid of the solidified film forming substance is supplied to the surface of the substrate W.
  • the melting point of the solidified film forming material is equal to or lower than room temperature, the solidified film forming material needs to be continuously cooled before being supplied to the substrate W in order to maintain the solidified film forming material as a solid. If the melting point of the solidified film-forming substance is higher than room temperature, such cooling is not necessary.
  • the layer solidifies first and the liquid located between the patterns P1 is kept solid without solidifying. In this case, an interface between the solid and the liquid is formed near the pattern P1, and a collapse force that collapses the pattern P1 may occur. If the pattern P1 becomes weaker due to the miniaturization of the pattern P1, the pattern P1 collapses even with such a weak collapse force.
  • the freezing point before dropping is low and the freezing point drops significantly, the liquid on the surface of the substrate W will not solidify unless the liquid on the surface of the substrate W is cooled to an extremely low temperature.
  • the freezing point of the solidified film forming substance is equal to or substantially the same as the melting point of the solidified film forming substance. Therefore, when the melting point of the solidified film-forming substance is high, the solidification point of the solidified film-forming substance is also high. Even if the freezing point drops significantly, if the freezing point before the drop is high, the pre-drying treatment liquid on the surface of the substrate W can be solidified without extremely lowering the cooling temperature. Thereby, the amount of energy consumption required for processing the substrate W can be reduced.
  • the powder of the solidified film forming material, the particles of the solidified film forming material, or a combination thereof is supplied to the surface of the substrate W. That is, a small lump of the solidified film forming material is supplied to the surface of the substrate W. If the mass supplied to the substrate W is the same, the smaller the individual mass, the larger the total surface area of the solid of the solidified film forming material.
  • the surface area is large, the solid of the solidified film-forming substance can be efficiently heated.
  • a drying pretreatment liquid can be efficiently prepared regardless of whether melting or dissolution is used.
  • the solid of the solidified film forming material on the surface of the substrate W is heated at a heating temperature equal to or higher than the melting point of the solidified film forming material.
  • the solid of the solidified film-forming substance is changed to a liquid of the solidified film-forming substance, and a dry pretreatment liquid containing the solidified film-forming substance, that is, a liquid of the solidified film-forming substance is formed on the surface of the substrate W.
  • a pretreatment liquid containing a solidified film-forming substance as a main component, and to fill a space between two adjacent patterns P1 with the pretreatment liquid.
  • the heating of the substrate W is started before the solid of the solidified film forming substance is supplied to the substrate W. Therefore, the solid of the solidified film forming substance is supplied to the surface of the substrate W heated in advance.
  • the solid of the solidified film forming material contacts the surface of the substrate W, the solid of the solidified film forming material is heated via the substrate W at the same time. Therefore, the time until the solidified film-forming substance is melted can be reduced as compared with the case where the solidified film-forming substance is heated after the solid of the solidified film-forming substance is supplied to the substrate W.
  • a heating fluid having a temperature equal to or higher than the melting point of the solidified film forming material is discharged toward the center of the back surface of the substrate W.
  • the discharged heating fluid comes into contact with the center of the back surface of the substrate W.
  • the central portion of the substrate W is heated.
  • the heating fluid comes into contact with the center of the back surface of the substrate W, it flows radially from the center of the back surface of the substrate W in all directions along the back surface of the substrate W.
  • the heating fluid comes into contact with a region other than the center portion on the back surface of the substrate W, and the other portion of the substrate W is also heated.
  • the heating fluid contacts the center of the back surface of the substrate W first, the temperature of the center of the substrate W is higher than that of other portions of the substrate W.
  • the solid of the solidified film-forming substance comes into contact with the high temperature portion. Therefore, the solid of the solidified film forming substance on the surface of the substrate W can be efficiently heated via the substrate W. Thereby, the solid of the solidified film-forming substance can be efficiently melted, and the time required for preparing the pretreatment liquid for drying can be reduced.
  • the replacement liquid which is an example of a solvent that dissolves in the solidified film-forming substance
  • the replacement liquid which is an example of a solvent that dissolves in the solidified film-forming substance.
  • the solid of the solidified film forming substance is dissolved in the solvent on the surface of the substrate W.
  • a dry pretreatment liquid which is a solution containing the solidified film-forming substance and the solvent, is formed on the surface of the substrate W. Therefore, the drying pretreatment liquid can be prepared without melting the solid of the solidified film forming substance on the substrate W.
  • the solid of the solidified film forming substance is supplied to the surface of the substrate W. Accordingly, the dissolution of the solidified film-forming substance starts simultaneously with the supply of the solid of the solidified film-forming substance. Thereby, the time required for preparing the pretreatment liquid for drying can be reduced. Further, before the solid of the solidified film forming substance is supplied to the substrate W, the chemical solution on the substrate W is usually washed away with a rinsing liquid, or the rinsing liquid on the substrate W is replaced with a replacement liquid.
  • the rinsing liquid or the replacement liquid can be used as a solvent. That is, the solid of the solidified film forming substance can be dissolved in the rinsing liquid or the replacement liquid on the substrate W to prepare the pre-drying treatment liquid. Therefore, it is not necessary to use a dedicated solvent.
  • the solvent is heated to increase the temperature of the solvent.
  • This increases the saturation concentration of the solidified film forming substance in the solvent, so that the solid of the solidified film forming substance is easily dissolved in the solvent. Therefore, the solid of the solidified film-forming substance can be promoted to dissolve in the solvent on the surface of the substrate W, and the time required for preparing a dry pretreatment liquid as a solution containing the solidified film-forming substance and the solvent can be reduced.
  • the substrate W is rotated about the vertical rotation axis A1 while holding the substrate horizontally. Some of the pretreatment liquid on the surface of the substrate W is removed from the substrate W by centrifugal force. Accordingly, the film thickness of the pre-drying treatment liquid decreases in a state where the entire surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid. After that, the solidified film 101 is formed. Since the thickness of the pretreatment liquid for drying is reduced, the solidified film 101 can be formed in a short time, and the solidified film 101 can be thinned. Therefore, the time required for forming the solidified film 101 and the time required for removing the solidified film 101 can be reduced. Thereby, the amount of energy consumption required for processing the substrate W can be reduced.
  • a main difference between the first embodiment and the second embodiment is that the built-in heater 111 is built in the blocking member 51, and a cooling plate 112 is provided instead of the lower surface nozzle 71.
  • FIG. 11A is a schematic view of the spin chuck 10, the blocking member 51, and the cooling plate 112 according to the second embodiment of the present invention viewed horizontally.
  • FIG. 11B is a schematic view of the spin chuck 10 and the cooling plate 112 as viewed from above. 11A and 11B, the same components as those shown in FIGS. 1 to 10F are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • the built-in heater 111 is arranged inside the disk portion 52 of the blocking member 51.
  • the built-in heater 111 moves up and down together with the blocking member 51.
  • the substrate W is arranged below the built-in heater 111.
  • the built-in heater 111 is, for example, a heating wire that generates Joule heat when energized.
  • the temperature of the built-in heater 111 is changed by the control device 3 (see FIG. 1). When the control device 3 causes the built-in heater 111 to generate heat, the entire substrate W is uniformly heated.
  • the cooling plate 112 is arranged above the spin base 12.
  • the cooling plate 112 is horizontally supported by a support shaft 113 extending downward from the center of the cooling plate 112.
  • the cooling plate 112 is disposed between the substrate W and the spin base 12.
  • the cooling plate 112 includes an upper surface 112u parallel to the lower surface of the substrate W.
  • the cooling plate 112 may include a plurality of protrusions 112p projecting upward from the upper surface 112u.
  • the center line of the cooling plate 112 is arranged on the rotation axis A1 of the substrate W. Even if the spin chuck 10 rotates, the cooling plate 112 does not rotate.
  • the outer diameter of the cooling plate 112 is smaller than the diameter of the substrate W.
  • the plurality of chuck pins 11 are arranged around the cooling plate 112. The temperature of the cooling plate 112 is changed by the control device 3. When the control device 3 lowers the temperature of the cooling plate 112, the entire substrate W is uniformly cooled.
  • the cooling plate 112 can be moved up and down with respect to the spin base 12.
  • the cooling plate 112 is connected to a plate elevating unit 114 via a support shaft 113.
  • the plate elevating unit 114 vertically elevates the cooling plate 112 between an upper position (a position indicated by a solid line) and a lower position (a position indicated by a two-dot chain line).
  • the upper position is a contact position where the cooling plate 112 contacts the lower surface of the substrate W.
  • the lower position is a close position where the cooling plate 112 is arranged between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in a state where the cooling plate 112 is separated from the substrate W.
  • the plate lifting unit 114 positions the cooling plate 112 at an arbitrary position from the upper position to the lower position.
  • the cooling plate 112 is raised to the upper position in a state where the substrate W is supported by the plurality of chuck pins 11 and the gripping of the substrate W is released, the plurality of protrusions 112p of the cooling plate 112 The contact is made, and the substrate W is supported by the cooling plate 112. Thereafter, the substrate W is lifted by the cooling plate 112 and moves upward from the plurality of chuck pins 11.
  • the cooling plate 112 is lowered to the lower position, the substrate W on the cooling plate 112 is placed on the plurality of chuck pins 11, and the cooling plate 112 is separated from the substrate W downward.
  • the substrate W is transferred between the plurality of chuck pins 11 and the cooling plate 112.
  • the heating fluid such as the hot water and the nitrogen gas is discharged toward the central portion of the lower surface of the substrate W.
  • the built-in heater 111 may generate heat. For example, when melting the solid 100 (step S8 in FIG. 6), promoting the dissolution of the solid 100 (step S6 in FIG. 9), and depositing the solid 100 (step S111 in FIG. 9), A substance on the substrate W such as 100 may be heated by the built-in heater 111.
  • a cooling fluid such as cold water is discharged toward the center of the lower surface of the substrate W.
  • the control device 3 controls the cooling in addition to or instead of discharging the cooling fluid.
  • the temperature of the plate 112 may be reduced.
  • the pre-drying treatment liquid melt of the solidified film forming substance
  • the control device 3 may make the cooling plate 112 contact the lower surface of the substrate W, or may not make the cooling plate 112 contact the lower surface of the substrate W.
  • a hot plate having a built-in heating element that generates Joule heat when energized may be disposed between the substrate W and the spin base 12.
  • a substance on the substrate W such as the solid 100 may be heated by a hot plate which is an example of a heating member.
  • a coolant passage through which a cooling fluid such as cold water passes may be provided inside the blocking member 51. In this case, the pre-drying treatment liquid on the substrate W may be cooled by the blocking member 51.
  • the main difference between the first embodiment and the third embodiment is that the solidified film removing step of changing the solidified film 101 into a gas without passing through a liquid is not a sublimation step but a plasma irradiation step of irradiating the substrate W with plasma. That is, the plasma irradiation step is performed in another processing unit 2.
  • FIG. 12 is a schematic diagram for explaining the transfer of the substrate W from the wet processing unit 2w to the dry processing unit 2d. 12, the same components as those shown in FIGS. 1 to 11B are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • the plurality of processing units 2 provided in the substrate processing apparatus 1 include a wet processing unit 2w for supplying a processing liquid to the substrate W and a dry processing unit 2d for processing the substrate W without supplying the processing liquid to the substrate W.
  • FIG. 12 shows an example in which the dry processing unit 2d includes a processing gas pipe 121 for guiding a processing gas into the chamber 4d and a plasma generator 122 for converting the processing gas in the chamber 4d into plasma.
  • the plasma generator 122 includes an upper electrode 123 disposed above the substrate W, and a lower electrode 124 disposed below the substrate W.
  • Steps up to the solidified film forming step are performed in the chamber 4 of the wet processing unit 2w. Thereafter, as shown in FIG. 12, the substrate W is carried out of the chamber 4 of the wet processing unit 2w by the center robot CR, and carried into the chamber 4d of the dry processing unit 2d.
  • the solidified film 101 formed on the surface of the substrate W changes into a gas without passing through a liquid by a chemical reaction (eg, oxidation with ozone gas) and a physical reaction caused by plasma in the chamber 4d. Thus, the solidified film 101 is removed from the substrate W.
  • a chemical reaction eg, oxidation with ozone gas
  • the preparation of the pre-drying treatment liquid and the formation of the solidified film 101 are performed in the chamber 4 of the wet processing unit 2w, and the removal of the solidified film 101 is performed in the chamber of the dry processing unit 2d. 4d.
  • the steps from the preparation of the pre-drying treatment liquid to the formation of the solidified film 101 and the removal of the solidified film 101 are performed in the separate processing units 2, the structures of the wet processing unit 2w and the dry processing unit 2d are simplified. And the wet processing unit 2w and the dry processing unit 2d can be reduced in size.
  • the main difference between the fourth embodiment and the first embodiment is that a melting heater 131 for melting the solid material 100 in the nozzle 39 is provided.
  • FIGS. 13A to 13B, FIG. 14, and FIGS. 15A to 15C the same components as those shown in FIGS. 1 to 12 are denoted by the same reference numerals as those in FIG. Is omitted.
  • FIG. 13A is a schematic diagram for explaining a solid matter transport and melting system that transports the solid matter 100 and melts the transported solid matter 100.
  • FIG. 13B is a schematic view of the nozzle 39 and the lid 95 as viewed in the direction of arrow XIIIB shown in FIG. 13A.
  • the melting heater 131 is disposed in the housing 41.
  • the melting heater 131 has a cylindrical shape surrounding the entire circumference of the nozzle 39.
  • the length of the melting heater 131 in the axial direction of the nozzle 39 is set according to the amount of the pre-drying treatment liquid to be formed in the nozzle 39.
  • FIG. 13A shows an example in which the length of the melting heater 131 is larger than the diameter of the discharge port 39p of the nozzle 39.
  • the melting heater 131 is an electric heater including a heating wire that generates Joule heat when energized.
  • the melting heater 131 may be a heater other than an electric heater such as a lamp as long as the solid material 100 in the nozzle 39 can be melted.
  • the melting heater 131 may include a container that stores a liquid in contact with the outer surface of the nozzle 39, and a heat source that heats the liquid in the container.
  • the lid 95 for opening and closing the discharge port 39p of the nozzle 39 is rotatable around a horizontal straight line, not a vertical straight line.
  • the lid 95 is supported by two brackets 132 extending downward from the housing 41. As shown in FIG. 13B, the lid 95 is disposed between the two brackets 132.
  • the lid 95 is supported by two brackets 132 via a horizontally extending opening / closing shaft 133.
  • the lid 95 is rotatable around the open / close shaft 133 with respect to the two brackets 132.
  • the opening / closing motor 96 is disposed on the side opposite to the lid 95 with respect to one bracket 132.
  • the opening / closing shaft 133 passes through one bracket 132.
  • the tip of the opening / closing shaft 133 is arranged inside the extension 41 e of the housing 41.
  • the opening / closing motor 96 is arranged inside the extension 41 e of the housing 41.
  • a rotation shaft 96 s of the opening / closing motor 96 is connected to the opening / closing shaft 133.
  • the rotation shaft 96s and the opening / closing shaft 133 are arranged on the same straight line.
  • the opening / closing motor 96 rotates the rotation shaft 96s, the lid 95 rotates around the opening / closing shaft 133 together with the opening / closing shaft 133.
  • the opening / closing motor 96 moves the lid 95 around a horizontal opening / closing axis A2 between the open position and the closed position.
  • the open position of the lid 95 is a position where none of the discharge ports 39p of the nozzle 39 overlaps the lid 95 when the nozzle 39 is viewed from below.
  • the closed position of the lid 95 is a position where the upper surface of the lid 95 is in close contact with the entire area of the lower surface of the nozzle 39, and the discharge port 39p of the nozzle 39 is closed.
  • the lid 95 is located at the closed position, the liquid in the nozzle 39 is not discharged from the discharge port 39p of the nozzle 39 but stays in the nozzle 39.
  • FIG. 14 is a process diagram for describing an example (third processing example) of the processing of the substrate W performed by the substrate processing apparatus 1 (see FIG. 1A).
  • FIGS. 15A to 15C are schematic diagrams showing changes in the solid material 100 when the processing shown in FIG. 14 is performed.
  • the control device 3 is programmed to perform the following steps.
  • FIG. 13A, FIG. 13B, and FIG. 14 will be referred to.
  • 15A to 15C will be referred to as appropriate.
  • a drying pretreatment liquid is prepared by melting the solid substance 100, which is a solid of the solidified film forming substance.
  • a drying pretreatment liquid supply step of supplying the pretreatment liquid to the substrate W (Step S207 in FIG. 14) is performed. Steps other than the pre-drying treatment liquid supply step are the same as steps S1 to S5 and steps S10 to S15 of the first processing example. Therefore, the following describes the pre-drying treatment liquid supply step of the third processing example.
  • the transport motor 92 rotates the screw conveyor 91 with the lid 95 placed at the closed position.
  • the solid matter 100 in the solid matter pipe 40 is sent to the nozzle 39 by the rotation of the screw conveyor 91. Since the lid 95 is located at the closed position, the solid 100 that has dropped from the solid pipe 40 to the nozzle 39 does not pass through the discharge port 39p of the nozzle 39 and stays inside the nozzle 39. As a result, the solids 100 accumulate in the nozzle 39. The amount of the solids 100 stored in the nozzle 39 increases or decreases according to the number of times the screw conveyor 91 is rotated.
  • the solid substance 100 which is a solid of the solidified film-forming substance
  • the solid substance 100 in the nozzle 39 is melted to prepare a dry pretreatment liquid, which is a liquid of the solidified film-forming substance.
  • the temperature of the melting heater 131 is increased to a value equal to or higher than the melting point of the solidified film forming material (for example, 150 to 200 ° C. when the solidified film forming material is camphor).
  • the heat generation of the melting heater 131 may be started before or after the solid matter 100 is supplied into the nozzle 39, or may be started at the same time as the solid matter 100 is supplied into the nozzle 39.
  • FIG. 15B in all cases, all the solids 100 in the nozzle 39 are changed to liquid. Thereby, a pre-drying treatment liquid is prepared.
  • the pre-drying treatment liquid does not pass through the discharge port 39p of the nozzle 39 and stays in the nozzle 39.
  • the opening / closing motor 96 moves the lid 95 from the closed position to the open position.
  • the pre-drying treatment liquid in the nozzle 39 passes through the discharge port 39p of the nozzle 39 and is supplied to the upper surface of the substrate W.
  • the replacement liquid on the substrate W is replaced with the pre-drying treatment liquid, and a liquid film of the pre-drying treatment liquid covering the entire upper surface of the substrate W is formed.
  • a film thickness reduction step step S10 in FIG. 14
  • the pretreatment liquid does not remain at the nozzle 39 or hardly remains. Even if a small amount of the pre-drying treatment liquid remains in the nozzle 39 and returns to the solid matter 100 in the nozzle 39, when the pre-drying treatment liquid to be supplied to the next substrate W is created, the pre-drying treatment liquid is newly supplied to the nozzle 39. Not only the solids 100 but also the solids 100 remaining in the nozzle 39 are melted. Therefore, it is possible to prevent the nozzle 39 from being clogged with the solid matter 100.
  • the nozzle 39 is caused to discharge the pre-drying treatment liquid. That is, the solid of the solidified film-forming substance is changed into a molten liquid upstream of the discharge port of the nozzle 39. After that, the pre-drying treatment liquid corresponding to the melt of the solidified film forming substance is discharged from the nozzle 39 toward the surface of the substrate W. Therefore, the pre-drying treatment liquid can be spread over the surface of the substrate W more quickly than when the pre-drying treatment liquid is formed on the surface of the substrate W.
  • the main difference between the first embodiment and the fifth embodiment is that the transport and melting of the solids 100 are performed not in the chamber 4 but in the fluid box FB adjacent to the chamber 4.
  • FIGS. 16 and 17A to 17E the same components as those shown in FIGS. 1 to 15C are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • FIG. 16 is a schematic diagram for explaining a solids carrying and melting system that carries the solids 100 and melts the carried solids 100.
  • the solid matter transport / melting system includes a solid matter pipe 40, a screw conveyor 91, a transport motor 92, a supply pipe 93, and a solid matter tank 94. However, they are arranged not in the chamber 4 but in the fluid box FB.
  • the solid matter pipe 40 includes a horizontal portion 40h that accommodates the screw conveyor 91, and a vertical portion 40v that extends downward from the downstream end of the horizontal portion 40h. Both the horizontal part 40h and the vertical part 40v are arranged in the fluid box FB.
  • the solid matter transporting and melting system is connected to the solid matter valve 141 and the downstream end of the vertical part 40v of the solid matter pipe 40 in addition to the solid matter pipe 40 and the like.
  • a melting tank 142 and a melting heater 131 for melting the solid matter 100 in the melting tank 142 are provided.
  • the solid matter transport and melting system further includes a gas supply pipe 143 that increases the pressure in the melting tank 142 by supplying gas into the melting tank 142, a gas supply valve 144 interposed in the gas supply pipe 143, An exhaust pipe 145 for lowering the pressure in the melting tank 142 by discharging gas from the melting tank 142 and an exhaust valve 146 interposed in the exhaust pipe 145 are provided.
  • the solid matter valve 141, the melting tank 142, and the melting heater 131 are arranged in the fluid box FB.
  • the gas supply pipe 143, the gas supply valve 144, the exhaust pipe 145, and the exhaust valve 146 are arranged in the fluid box FB.
  • the nozzle 39 is arranged not in the fluid box FB but in the chamber 4.
  • the nozzle 39 is connected to the melting tank 142 by a liquid pipe 147 of the solids conveying and melting system.
  • a lid 95 (see FIG. 13A) for opening and closing the discharge port 39p of the nozzle 39 is not provided.
  • the pre-drying treatment liquid in the melting tank 142 is guided to the nozzle 39 by the liquid pipe 147.
  • the upstream end of the liquid pipe 147 is arranged not in the surface of the melting tank 142 but in the melting tank 142.
  • the downstream end of the liquid pipe 147 is connected to the nozzle 39.
  • the liquid pipe 147 extends upward from the melting tank 142.
  • FIG. 16 shows an example in which the entire melting tank 142 is disposed below the nozzle 39.
  • the entire melting tank 142 may be disposed above the nozzle 39, or a part of the melting tank 142 may be disposed at the same height as the nozzle 39.
  • FIGS. 17A to 17E are schematic diagrams showing changes in the solid 100 when the solid 100 is transported to the melting tank 142 and the transported solid 100 is melted.
  • open valves are filled with black.
  • FIG. 17A shows that the solids valve 141 is open and the gas supply valve 144 and the exhaust valve 146 are closed.
  • Step S207 in FIG. 14 A pre-drying treatment liquid supply step (step S207 in FIG. 14) of preparing a pre-drying treatment liquid and supplying the prepared pre-drying treatment liquid to the substrate W is performed.
  • the transport motor 92 rotates the screw conveyor 91 with the solid matter valve 141 opened.
  • the solid matter 100 in the horizontal part 40h of the solid matter pipe 40 is sent to the vertical part 40v of the solid matter pipe 40 by rotation of the screw conveyor 91, and falls in the vertical part 40v.
  • the solid matter 100 falls from the solid matter pipe 40 to the melting tank 142 and accumulates in the melting tank 142.
  • the amount of the solids 100 stored in the melting tank 142 increases or decreases according to the number of times the screw conveyor 91 is rotated.
  • the solids 100 which are solids of the solidified film forming substance
  • the solids 100 in the melting tank 142 are melted to become a liquid of the solidified film forming substance, as shown in FIG. 17B.
  • Prepare a pretreatment liquid for drying Specifically, the temperature of the melting heater 131 is increased to a value equal to or higher than the melting point of the solidified film forming material.
  • the heat generation of the melting heater 131 may be started before or after the solid matter 100 is supplied into the melting tank 142, or may be started at the same time as the solid matter 100 is supplied into the melting tank 142. In either case, all solids 100 in the melting tank 142 are turned into liquid. Thereby, a pre-drying treatment liquid is prepared.
  • the controller 3 closes the solid matter valve 141 and opens the gas supply valve 144 as shown in FIG. 17C. Accordingly, nitrogen gas, which is an example of a gas, is supplied from the gas supply pipe 143 into the melting tank 142, and the pressure in the melting tank 142 increases.
  • the pretreatment liquid for drying in the melting tank 142 is sent into the liquid pipe 147 due to an increase in the pressure in the melting tank 142 and flows through the liquid pipe 147 toward the nozzle 39. Thereby, the pre-drying treatment liquid in the melting tank 142 is supplied to the nozzle 39 located above the substrate W, and is discharged from the nozzle 39. Thereafter, a film thickness reduction step (step S10 in FIG. 14) is performed.
  • the control device 3 closes the gas supply valve 144 and opens the exhaust valve 146 as shown in FIG. 17D.
  • the gas in the melting tank 142 is exhausted to the exhaust pipe 145, and the pressure in the melting tank 142 decreases to the atmospheric pressure or a value lower than the atmospheric pressure.
  • the downstream end of the exhaust pipe 145 may be connected to an exhaust device such as an aspirator or an exhaust pump, or may be arranged in the atmosphere.
  • the nozzle 39 While the nozzle 39 is discharging the pre-drying treatment liquid, the inside of the liquid pipe 147 and the nozzle 39 is filled with the pre-drying treatment liquid. Further, the surface (liquid level) of the pre-drying treatment liquid in the melting tank 142 is disposed below the nozzle 39.
  • the gas supply valve 144 is closed and the exhaust valve 146 is opened, the pretreatment liquid in the liquid pipe 147 and the nozzle 39 flows back toward the melting tank 142 by the siphon principle and returns to the melting tank 142.
  • the surface of the pre-drying liquid in the liquid pipe 147 and the nozzle 39 is flush with the surface of the pre-drying liquid in the melting tank 142. Return to the melting tank 142 until it is positioned.
  • the drying pretreatment liquid does not remain at the nozzle 39 or hardly remains. Therefore, it is possible to prevent the droplet of the pre-drying treatment liquid remaining in the nozzle 39 from unintentionally dropping on the upper surface of the substrate W.
  • the gas supply valve 144 is closed and the exhaust valve 146 is opened, a small amount of the pre-drying liquid remains in the nozzle 39 and the liquid pipe 147, and forms a solid 100 in at least one of the nozzle 39 and the liquid pipe 147. May go back.
  • the solid matter 100 remaining in at least one of the nozzle 39 and the liquid pipe 147 is heated by the pre-drying treatment liquid flowing in the nozzle 39 and the liquid pipe 147 toward the next substrate W, and changes to a liquid. . Therefore, it is possible to prevent the nozzle 39 and the liquid pipe 147 from being clogged with the solid matter 100.
  • FIG. 17E shows an example in which the pre-drying liquid remains in the melting tank 142 even after the discharge of the pre-drying liquid is stopped.
  • the heating of the melting heater 131 is continued until the nozzle 39 discharges the pre-drying processing liquid toward the next substrate W.
  • the amount of the pre-drying treatment liquid created in the melting tank 142 may be equal to or more than the amount of the pre-drying treatment liquid supplied to a plurality of substrates W, or the amount of the drying pre-treatment liquid supplied to only one substrate W may be increased. It may be the same as or similar to the amount of the pretreatment liquid. In the latter case, the solid 100 may be transported to the melting tank 142 every time the substrate W to which the pre-drying treatment liquid is supplied changes.
  • the pre-drying treatment liquid is discharged from the nozzle 39. That is, the solid of the solidified film forming substance is changed to a melt upstream of the discharge port 39p of the nozzle 39. After that, the pre-drying treatment liquid corresponding to the melt of the solidified film forming substance is discharged from the nozzle 39 toward the surface of the substrate W. Therefore, the pre-drying treatment liquid can be spread over the surface of the substrate W more quickly than when the pre-drying treatment liquid is formed on the surface of the substrate W.
  • the solid of the solidified film forming substance is transported in the fluid box FB.
  • the fluid box FB is arranged near the chamber 4 that accommodates the substrate W, and at least a part of the fluid box FB is arranged at the same height as the chamber 4. Therefore, the solidified film forming substance is transported to the vicinity of the substrate W as a solid. Therefore, even when a heater for melting the solidified film forming material is provided, the range in which the heater is provided can be narrowed, and the amount of energy consumption can be reduced.
  • the main difference between the sixth embodiment and the fifth embodiment is that, after the pre-drying treatment liquid is supplied to the substrate W, the pre-drying treatment liquid does not flow backward to the melting tank 142, but instead includes a cleaning liquid or a cleaning gas.
  • the cleaning fluid is supplied to the nozzle 39 and the liquid pipe 147, and the pre-drying liquid remaining in the cleaning fluid is discharged from the nozzle 39.
  • FIG. 18 the same components as those shown in FIGS. 1 to 17E are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • FIG. 18 is a schematic diagram for explaining a solids carrying and melting system that carries the solids 100 and melts the carried solids 100.
  • the open valve is painted black.
  • the solid matter transport / melt system includes a liquid valve 148 interposed in the liquid pipe 147, a cleaning fluid pipe 149 connected to the liquid pipe 147 downstream of the liquid valve 148, and a cleaning fluid interposed in the cleaning fluid pipe 149.
  • a valve 150 is further provided.
  • FIG. 18 shows an example in which the cleaning fluid is an IPA liquid.
  • the IPA liquid is an example of a cleaning liquid containing a solvent that dissolves with the solidified film forming substance.
  • the cleaning fluid may be a cleaning gas such as nitrogen gas or air.
  • a pre-drying treatment liquid is prepared in the melting tank 142, and the prepared pre-drying treatment liquid is supplied to the substrate W.
  • the control device 3 opens the liquid valve 148 in advance.
  • the control device 3 closes the liquid valve 148 before opening the exhaust valve 146. Therefore, the pre-drying treatment liquid remains in the nozzle 39 and the liquid pipe 147.
  • the control device 3 After closing the liquid valve 148, the control device 3 moves the nozzle 39 to the nozzle moving unit 42. Thus, the nozzle 39 is located at the standby position. Below the standby position of the nozzle 39, a cylindrical pod 151 that receives the liquid discharged downward from the nozzle 39 is arranged. The control device 3 opens the cleaning fluid valve 150 while the nozzle 39 is located above the pod 151. As a result, the cleaning liquid or the cleaning gas is supplied to the liquid pipe 147 and flows through the liquid pipe 147 toward the nozzle 39.
  • the pre-drying treatment liquid remaining in the nozzle 39 and the liquid pipe 147 is pushed downstream by the cleaning liquid or the cleaning gas, and is discharged downward from the discharge port 39p of the nozzle 39 located at the standby position.
  • the inside of the nozzle 39 is filled with the cleaning liquid or the cleaning gas, and the cleaning liquid or the cleaning gas is discharged downward from the discharge port 39p of the nozzle 39.
  • the pre-drying processing liquid and the cleaning liquid discharged from the nozzle 39 are received not by the substrate W but by the pod 151 located around the processing cup 21.
  • the cleaning fluid is a cleaning liquid such as IPA
  • a solvent that dissolves with the solidified film forming substance is contained in the cleaning liquid. Therefore, even if the solid of the solidified film forming substance adheres to the inner surface of the nozzle 39, the solidified film forming substance Is dissolved in the cleaning liquid and discharged from the nozzle 39 together with the cleaning liquid. Therefore, not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle 39 can be removed.
  • the cleaning fluid is a cleaning gas such as nitrogen gas
  • the pre-drying liquid remaining on the inner surface of the nozzle 39 may be cooled by the flow of the cleaning gas and may change to a solid on the inner surface of the nozzle 39.
  • the cleaning gas flowing through the nozzle 39 and the liquid pipe 147 promotes sublimation of the solidified film forming substance. Therefore, not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle 39 can be removed.
  • the cleaning liquid is supplied to the nozzle 39 after the nozzle 39 discharges the pre-drying processing liquid toward the surface of the substrate W.
  • the pre-drying treatment liquid remaining inside the nozzle 39 is pushed downstream by the cleaning liquid, and is discharged from the discharge port 39p of the nozzle 39. Thereafter, the cleaning liquid is discharged from the nozzle 39. As a result, the remaining pre-drying treatment liquid is discharged.
  • the cleaning liquid contains a solvent that dissolves with the solidified film forming substance, even if the solid of the solidified film forming substance adheres to the inner surface of the nozzle 39, the solid of the solidified film forming substance dissolves in the cleaning liquid. Is discharged from the nozzle 39 together with the cleaning liquid. Therefore, not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle 39 can be removed.
  • a cleaning gas that is not a liquid but a gas is supplied to the nozzle 39.
  • the pre-drying treatment liquid remaining in the nozzle 39 is pushed downstream by the cleaning gas, and is discharged from the discharge port 39p of the nozzle 39. Thereafter, the cleaning gas is discharged from the nozzle 39.
  • all or almost all of the pretreatment liquid for drying is discharged from the nozzle 39.
  • the drying pretreatment liquid that is, the melt of the solidified film forming substance is cooled by the flow of the cleaning gas.
  • the inner surface of the nozzle 39 may change to a solid.
  • the cleaning gas flowing through the nozzle 39 suppresses an increase in the partial pressure of the solidified film-forming substance and promotes the sublimation of the solidified film-forming substance. Therefore, the amount of the pre-drying treatment liquid remaining inside the nozzle 39 can be reduced.
  • a main difference of the seventh embodiment from the fifth embodiment is that a melting pipe 152 is provided instead of the melting tank 142 (see FIG. 16).
  • FIGS. 19A and 19B the same components as those shown in FIGS. 1 to 18 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • FIG. 19A and FIG. 19B are schematic diagrams for explaining a solid transport and melting system that transports the solid 100 and melts the transported solid 100.
  • FIG. 19A shows a state in which the solids 100 are being transported to the melting pipe 152
  • FIG. 19B shows a state in which the solids 100 transported to the melting pipe 152 are being melted.
  • open valves are filled with black.
  • the solid matter transporting and melting system further includes a melting pipe 152 for connecting the solid matter pipe 40 and the liquid pipe 147.
  • the upstream end of the melting pipe 152 is connected to the downstream end of the vertical portion 40v of the solid matter pipe 40.
  • the downstream end of the melting pipe 152 is connected to the upstream end of the liquid pipe 147.
  • the flow passage cross-sectional area (the area of a cross section perpendicular to the flow direction of the fluid) of the melting pipe 152 is smaller than the horizontal cross-sectional area of the melting tank 142 (see FIG. 16).
  • the flow path cross-sectional area of the melting pipe 152 is equal to the flow path cross-sectional area of the solid matter pipe 40, and is equal to the flow path cross-sectional area of the liquid pipe 147.
  • the melting heater 131 surrounds the melting pipe 152.
  • the gas supply pipe 143 of the solid matter transport and melting system is connected to the melting pipe 152 instead of the melting tank 142.
  • the melting pipe 152 is, for example, U-shaped.
  • the melting pipe 152 includes a bottom 152b including the lowermost portion of the melting pipe 152, an upstream section 152u extending from the bottom 152b to the solid matter pipe 40, and a downstream section 152d extending from the bottom 152b to the liquid pipe 147.
  • 19A and 19B show an example in which the melting pipe 152 is connected to the upstream 152u of the melting pipe 152.
  • the drying pretreatment liquid is melted by melting the solid material 100 which is a solid of the solidified film forming material. Then, a pre-drying liquid supply step (see step S207 in FIG. 14) for supplying the prepared pre-drying liquid to the substrate W is performed.
  • the transport motor 92 rotates the screw conveyor 91 with the solid matter valve 141 opened.
  • the solid matter 100 in the horizontal part 40h of the solid matter pipe 40 is sent to the vertical part 40v of the solid matter pipe 40 by rotation of the screw conveyor 91, and falls in the vertical part 40v.
  • the solid substance 100 falls from the solid substance pipe 40 to the melting pipe 152 and accumulates in the melting pipe 152.
  • the amount of the solids 100 stored in the melting pipe 152 increases or decreases according to the number of times the screw conveyor 91 is rotated.
  • the solids 100 which are solids of the solidified film forming substance
  • the solids 100 in the melting pipe 152 are melted to prepare a dry pretreatment liquid which is a liquid of the solidified film forming substance.
  • the temperature of the melting heater 131 is increased to a value equal to or higher than the melting point of the solidified film forming material.
  • the heat generation of the melting heater 131 may be started before or after the solid matter 100 is supplied into the melting pipe 152, or may be started at the same time as the solid matter 100 is supplied into the melting pipe 152.
  • FIG. 19B in any case, all the solids 100 in the melting pipe 152 change to liquid. Thereby, a pre-drying treatment liquid is prepared.
  • the control device 3 closes the solid matter valve 141 and opens the gas supply valve 144. Accordingly, nitrogen gas, which is an example of a gas, is supplied from the gas supply pipe 143 into the melting pipe 152. As shown in FIG. 19B, since the solid matter valve 141 is closed, the pretreatment liquid for drying in the melting pipe 152 is pushed downstream by the nitrogen gas, and moves to the nozzle 39 in the melting pipe 152. Thereby, the pre-drying treatment liquid in the melting pipe 152 is supplied to the nozzle 39 located above the substrate W, and is discharged from the nozzle 39. Thereafter, a film thickness reduction step (step S10 in FIG. 14) is performed.
  • nitrogen gas which is an example of a gas
  • the pre-drying liquid in the melting pipe 152 is discharged from the nozzle 39 located above the substrate W. If a small amount of the pre-drying liquid remains on the inner surface of the nozzle 39, the pre-drying liquid may be cooled by the flow of the nitrogen gas and may change into a solid on the inner surface of the nozzle 39. The nitrogen gas flowing through the nozzle 39 and the liquid pipe 147 promotes the sublimation of the solidified film forming substance. Therefore, the pre-drying liquid remaining on the inner surface of the nozzle 39 can be removed.
  • the following effects can be obtained in addition to the effects according to the fifth embodiment.
  • the solid pipe 40 and the liquid pipe 147 are connected not by the melting tank 142 (see FIG. 16) but by the melting pipe 152.
  • the melting heater 131 heats the solid 100 in the melting pipe 152. Therefore, the heat of the melting heater 131 can be more efficiently transmitted to the solid material 100 than when the solid material 100 in the melting tank 142 is heated.
  • nitrogen gas which is an example of a gas
  • the pre-drying liquid in the nozzle 39 does not flow backward as in the fifth embodiment, the pre-drying liquid remaining in the nozzle 39 can be reduced, and the nozzle 39 is clogged with the solid matter 100. Can be prevented.
  • the solid 39 may be discharged from the nozzle 39 while moving the nozzle 39 in the radial direction of the substrate W.
  • the nozzle moving unit 42 includes a central processing position (a position indicated by a two-dot chain line) at which the solid 100 discharged from the nozzle 39 collides with the central portion of the upper surface of the substrate W,
  • the nozzle 39 may be moved between an outer peripheral processing position (a position indicated by a solid line) at which the solid 100 discharged from the substrate 100 collides with the outer peripheral portion of the upper surface of the substrate W.
  • the control device 3 may cool the solidified film 101 on the upper surface of the substrate W while removing the solidified film 101 from the upper surface of the substrate W. Cooling of the solidified film 101 may be performed by discharging a cooling fluid such as cold water toward the lower surface of the substrate W, or lowering the temperature of the cooling plate 112 (see FIG. 11A) disposed below the substrate W. This may be done by causing
  • the solidified film 101 on the surface of the substrate W is cooled.
  • the temperature of the solidified film 101 increases with the removal of the solidified film 101 or when the melting point of the solidified film 101 (the melting point of the solidified film forming substance) is close to room temperature, the solidified film 101 is removed from the surface of the substrate W.
  • a part of the solidified film 101 may be liquefied. Therefore, the solidified film 101 can be changed to a gas while preventing a part of the solidified film 101 from being liquefied.
  • the solid 100 in the solid pipe 40 is transported by supplying a gas such as nitrogen gas or air into the solid pipe 40 instead of transporting the solid 100 in the solid pipe 40 by the screw conveyor 91. May be.
  • the solids 100 may be transported outside the chamber 4 and the fluid box FB. That is, the solid 100 may be melted outside the chamber 4 and the fluid box FB.
  • the heating of the substrate W may be started after the supply of the solids 100 is started, not before the supply of the solids 100 is started.
  • a replacement liquid supply step of replacing pure water as an example of the rinsing liquid with IPA as an example of the replacement liquid may be performed without performing (step S5 in FIG. 6).
  • the heating of the substrate W may be started after the supply of the solids 100 is started, not before the supply of the solids 100 is started. In the second processing example, if it is not necessary to promote the dissolution of the solid matter 100, it is not necessary to supply a heating fluid such as hot water.
  • the solid 100 may be supplied to the substrate W before supplying the replacement liquid to the substrate W, not after supplying the replacement liquid to the substrate W. That is, the solid 100 may be supplied to the upper surface of the substrate W covered with the rinse liquid film, and then the replacement liquid may be supplied to the upper surface of the substrate W on which the solid 100 is deposited. In this case, even if the solid substance 100 does not dissolve in the rinsing liquid, it does dissolve in the substitution liquid, which is an example of the solvent, so that when the substitution liquid is supplied to the substrate W, a pre-drying treatment liquid is created.
  • the solidified film 101 may be formed on the upper surface of the substrate W (Step S12 in FIGS. 6 and 9) without performing the film thickness reducing step of reducing the film thickness (Step S10 in FIGS. 6 and 9).
  • the blocking member 51 may include a cylindrical portion extending downward from the outer peripheral portion of the disk portion 52 in addition to the disk portion 52. In this case, when the blocking member 51 is disposed at the lower position, the substrate W held by the spin chuck 10 is surrounded by the cylindrical portion.
  • the blocking member 51 may rotate around the rotation axis A1 together with the spin chuck 10.
  • the blocking member 51 may be placed on the spin base 12 so as not to contact the substrate W.
  • the blocking member 51 since the blocking member 51 is connected to the spin base 12, the blocking member 51 rotates in the same direction as the spin base 12 at the same speed.
  • the blocking member 51 may be omitted. However, when a liquid such as pure water is supplied to the lower surface of the substrate W, it is preferable that the blocking member 51 be provided. Droplets that travel along the outer peripheral surface of the substrate W from the lower surface of the substrate W toward the upper surface of the substrate W and droplets that bounce inward from the processing cup 21 can be blocked by the blocking member 51. This is because the amount of liquid mixed in the pre-drying treatment liquid can be reduced.
  • the wet processing unit 2w and the dry processing unit 2d may be provided in different substrate processing apparatuses instead of the same substrate processing apparatus. That is, the substrate processing apparatus 1 provided with the wet processing unit 2w and the substrate processing apparatus provided with the dry processing unit 2d are provided in the same substrate processing system, and the substrate is removed before the solidified film 101 is removed. The substrate W may be transferred from the processing apparatus 1 to another substrate processing apparatus.
  • a suck-back pipe for sucking the liquid in the liquid pipe 147 may be connected to the liquid pipe 147.
  • the pretreatment liquid for drying in the nozzle 39 and the liquid pipe 147 may be returned to the suck-back pipe.
  • the substrate processing apparatus 1 is not limited to an apparatus for processing a disk-shaped substrate W, but may be an apparatus for processing a polygonal substrate W.
  • the nozzle 39, the solid pipe 40, the screw conveyor 91, the transport motor 92, and the gas supply pipe 143 are examples of a solid transport means and a solid carrier.
  • the lower surface nozzle 71, the lower central opening 81 of the spin base 12, the replacement liquid nozzle 43, and the melting heater 131 are an example of a pre-drying liquid preparation unit and a pre-drying liquid maker.
  • the lower surface nozzle 71, the lower central opening 81 of the spin base 12, the built-in heater 111, and the cooling plate 112 are examples of a solidified film forming means and a solidified film maker.
  • the upper central opening 61 of the spin motor 14, the center nozzle 55, and the blocking member 51 is an example of a solidified film removing unit and a solidified film remover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

According to the present invention, solids 100 of a solidified film forming substance are carried in a substrate processing device and supplied to the surface of a substrate W. By melting or dissolving the solidified film forming substance, a processing solution, which is not yet dried and includes the solidified film forming substance on the surface of the substrate W, is prepared on the surface of the substrate W. By solidifying the processing solution, which is not yet dried and formed on the surface of the substrate W, through coagulation or precipitation, a solidified film including the solidified film forming substance is formed on the surface of the substrate W. The solidified film is removed from the surface of the substrate W by changing the solidified film to gas.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 この出願は、2018年8月24日提出の日本国特許出願2018-157536号と、2019年1月28日提出の日本国特許出願2019-012448号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。 This application claims priority based on Japanese Patent Application No. 2018-157536 filed on August 24, 2018 and Japanese Patent Application No. 2019-012448 filed on Jan. 28, 2019. Is incorporated herein by reference in its entirety.
 本発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象の基板には、たとえば、半導体ウエハ、液晶表示装置や有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate. The substrates to be processed include, for example, semiconductor wafers, flat panel display (FPD) substrates such as liquid crystal displays and organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, Substrates for masks, ceramic substrates, solar cells, and the like are included.
 半導体装置やFPDなどの製造工程では、半導体ウエハやFPD用ガラス基板などの基板に対して必要に応じた処理が行われる。このような処理には、薬液やリンス液などの処理液を基板に供給することが含まれる。処理液が供給された後は、処理液を基板から除去し、基板を乾燥させる。 (4) In a manufacturing process of a semiconductor device, an FPD, or the like, processing is performed on a substrate, such as a semiconductor wafer or an FPD glass substrate, as necessary. Such processing includes supplying a processing liquid such as a chemical liquid or a rinsing liquid to the substrate. After the processing liquid is supplied, the processing liquid is removed from the substrate, and the substrate is dried.
 基板の表面にパターンが形成されている場合、基板を乾燥させるときに、基板に付着している処理液の表面張力に起因する力がパターンに加わり、パターンが倒壊することがある。その対策として、IPA(イソプロピルアルコール)などの表面張力が低い液体を基板に供給したり、パターンに対する液体の接触角を90度に近づける疎水化剤を基板に供給したりする方法が採られる。しかしながら、IPAや疎水化剤を用いたとしても、パターンを倒壊させる倒壊力が零にはならないので、パターンの強度によっては、これらの対策を行ったとしても、十分にパターンの倒壊を防止できない場合がある。 場合 When a pattern is formed on the surface of the substrate, when the substrate is dried, a force due to the surface tension of the processing solution attached to the substrate is applied to the pattern, and the pattern may collapse. As a countermeasure, a method of supplying a liquid having a low surface tension, such as IPA (isopropyl alcohol), to the substrate, or supplying a hydrophobizing agent for bringing the contact angle of the liquid to the pattern close to 90 degrees to the substrate is adopted. However, even when IPA or a hydrophobizing agent is used, the collapse force for collapsing the pattern does not become zero. Therefore, depending on the strength of the pattern, even if these measures are taken, the collapse of the pattern cannot be sufficiently prevented. There is.
 近年、パターンの倒壊を防止する技術として昇華乾燥が注目されている。たとえば特許文献1および特許文献2には、昇華乾燥を行う基板処理方法および基板処理装置が開示されている。特許文献1に記載の昇華乾燥では、昇華性物質の溶液が基板の表面に供給され、基板上の昇華性物質の溶液から昇華性物質が析出する。特許文献2に記載の昇華乾燥では、昇華性物質の融液(昇華性物質の液体)が基板の表面に供給され、基板上の昇華性物質の融液が凝固する。特許文献1および特許文献2のいずれでも、昇華性物質の溶液または融液が基板の上面に向けて吐出される。 In recent years, sublimation drying has attracted attention as a technique for preventing the collapse of patterns. For example, Patent Literature 1 and Patent Literature 2 disclose a substrate processing method and a substrate processing apparatus for performing sublimation drying. In sublimation drying described in Patent Document 1, a solution of a sublimable substance is supplied to the surface of a substrate, and the sublimable substance is precipitated from the solution of the sublimable substance on the substrate. In sublimation drying described in Patent Literature 2, a melt of a sublimable substance (liquid of a sublimable substance) is supplied to the surface of a substrate, and the melt of the sublimable substance on the substrate is solidified. In both Patent Literature 1 and Patent Literature 2, a solution or melt of a sublimable substance is discharged toward the upper surface of the substrate.
特開2012-243869号公報JP 2012-243869 A 特開2015-142069号公報JP 2015-146969 A
 凝固点が室温以上の昇華性物質の融液を基板に供給する場合、昇華性物質を液体に維持するために昇華性物質を加熱し続ける必要がある。すなわち、タンク内の昇華性物質の融液をノズルから吐出させる場合は、タンクだけでなく、タンクからノズルに至る配管全体を、昇華性物質の凝固点を超える温度に維持する必要がある。そのため、多量のエネルギーが必要となる。それだけでなく、配管を加熱するヒータが故障すると、配管内の昇華性物質が固体に変化し、配管が昇華性物質の固体で詰まる。この場合、基板処理装置の復旧に長時間を要する。 供給 す る When supplying a melt of a sublimable substance having a freezing point of room temperature or higher to a substrate, it is necessary to keep heating the sublimable substance in order to maintain the sublimable substance as a liquid. That is, when discharging the melt of the sublimable substance in the tank from the nozzle, it is necessary to maintain not only the tank but also the entire pipe from the tank to the nozzle at a temperature higher than the freezing point of the sublimable substance. Therefore, a large amount of energy is required. In addition, when the heater for heating the pipe breaks down, the sublimable substance in the pipe changes to a solid, and the pipe is clogged with the solid of the sublimable substance. In this case, it takes a long time to recover the substrate processing apparatus.
 そこで、本発明の目的の一つは、エネルギーの消費量を減らしながら、基板を乾燥させたときに発生するパターンの倒壊を減らすことができる基板処理方法および基板処理装置を提供することである。 Therefore, one of the objects of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of reducing collapse of a pattern generated when a substrate is dried while reducing energy consumption.
 本発明の一実施形態は、固化膜形成物質の固体を基板処理装置内で運搬する固形物運搬工程と、前記固化膜形成物質の融解、および、前記基板上での前記固化膜形成物質の溶解、の少なくとも一方により、運搬された前記固化膜形成物質を含む乾燥前処理液を作成する乾燥前処理液作成工程と、前記基板の表面上の前記乾燥前処理液を凝固または析出により固化させることにより、前記固化膜形成物質を含む固化膜を前記基板の表面に形成する固化膜形成工程と、前記固化膜を気体に変化させることにより前記基板の表面から除去する固化膜除去工程とを含む、基板処理方法を提供する。 One embodiment of the present invention provides a solid substance transporting step of transporting a solid of the solidified film forming substance in a substrate processing apparatus, melting of the solidified film forming substance, and dissolving of the solidified film forming substance on the substrate. A drying pretreatment liquid preparation step of preparing a transported pretreatment liquid containing the solidified film forming material, and solidifying the drying pretreatment liquid on the surface of the substrate by coagulation or precipitation. Thus, a solidified film forming step of forming a solidified film containing the solidified film forming material on the surface of the substrate, and a solidified film removing step of removing the solidified film from the surface of the substrate by changing the solidified film to a gas, A substrate processing method is provided.
 この構成によれば、固化膜形成物質の融液ではなく、固化膜形成物質の固体を基板処理装置内で運搬する。そして、運搬された固化膜形成物質を融解させる、もしくは、溶媒に溶解させる。これにより、運搬された固化膜形成物質を含む乾燥前処理液が作成される。その後、基板の表面上の乾燥前処理液を固化させ、固化膜形成物質を含む固化膜を基板の表面に形成する。その後、固化膜を気体に変化させ、基板の表面から除去する。したがって、基板の高速回転によって液体を除去するスピンドライなどの従来の乾燥方法を行う場合に比べて、パターンの倒壊を抑制しながら、基板を乾燥させることができる。 According to this configuration, not the melt of the solidified film forming substance but the solid of the solidified film forming substance is transported in the substrate processing apparatus. Then, the conveyed solidified film forming substance is melted or dissolved in a solvent. As a result, a dry pretreatment liquid containing the transported solidified film-forming substance is created. Thereafter, the pre-drying treatment liquid on the surface of the substrate is solidified, and a solidified film containing a solidified film forming substance is formed on the surface of the substrate. Thereafter, the solidified film is changed into a gas and removed from the surface of the substrate. Therefore, the substrate can be dried while suppressing the collapse of the pattern, as compared with the case of performing a conventional drying method such as spin drying in which the liquid is removed by high-speed rotation of the substrate.
 タンク内の固化膜形成物質の融液をノズルから吐出させる場合は、タンクだけでなく、タンクからノズルに至る配管全体を、固化膜形成物質の凝固点を超える温度に維持する必要がある。これに対して、固化膜形成物質の固体を運搬する場合は、固化膜形成物質の固体が通る経路にはヒータが要らないので、ヒータを小型化もしくは省略できる。したがって、乾燥前処理液の作成に要するエネルギーを減らすことができる。 さ せ る When discharging the melt of the solidified film-forming substance in the tank from the nozzle, it is necessary to maintain not only the tank but also the entire pipe from the tank to the nozzle at a temperature higher than the solidification point of the solidified film-forming substance. On the other hand, when the solid of the solidified film forming substance is transported, a heater is not required in a path through which the solid of the solidified film forming substance passes, so that the heater can be reduced in size or omitted. Therefore, the energy required for preparing the pre-drying treatment liquid can be reduced.
 配管内の固化膜形成物質を液体に維持するために配管をヒータで加熱する場合、ヒータが故障すると、配管内の固化膜形成物質が固体に変化し、配管が固化膜形成物質の固体で詰まる可能性がある。ヒータを省略すれば、このような詰まりは発生しない。ヒータを設ける場合でも、ヒータを設ける範囲を狭くすれば、配管の詰まりが発生したとしても、基板処理装置の復旧に要する時間を短縮できる。 When heating a pipe with a heater to maintain the solidified film-forming substance in the pipe as a liquid, if the heater fails, the solidified film-forming substance in the pipe changes to a solid, and the pipe is clogged with the solidified film-forming substance. there is a possibility. If the heater is omitted, such clogging does not occur. Even in the case where the heater is provided, if the range in which the heater is provided is narrowed, the time required for restoring the substrate processing apparatus can be shortened even if the pipe is clogged.
 前記実施形態において、以下の特徴の少なくとも一つが、前記基板処理方法に加えられてもよい。 In the above embodiment, at least one of the following features may be added to the substrate processing method.
 前記固形物運搬工程は、前記基板を収容するチャンバーの中で前記固化膜形成物質の固体を運搬する工程である。 The solid matter transporting step is a step of transporting the solid of the solidified film-forming substance in a chamber containing the substrate.
 この構成によれば、基板を収容するチャンバーの中で固化膜形成物質の固体を運搬する。すなわち、固化膜形成物質は、基板まで、もしくは、基板に極めて近い位置まで固体のまま運搬される。そのため、固化膜形成物質を融解させるヒータを設ける場合でも、ヒータを設ける範囲を極めて狭くすることができ、エネルギーの消費量を減らすことができる。 According to this configuration, the solid of the solidified film-forming substance is transported in the chamber containing the substrate. That is, the solidified film forming substance is transported as a solid to the substrate or to a position very close to the substrate. Therefore, even when a heater for melting the solidified film-forming substance is provided, the range in which the heater is provided can be extremely narrowed, and energy consumption can be reduced.
 前記固形物運搬工程は、前記固化膜形成物質の固体を前記基板の表面まで運搬する工程であり、前記乾燥前処理液作成工程は、前記固化膜形成物質の融解および溶解の少なくとも一方により、前記基板の表面上の前記固化膜形成物質を含む前記乾燥前処理液を前記基板の表面で作成する基板上作成工程を含む。 The solid transporting step is a step of transporting the solid of the solidified film forming substance to the surface of the substrate, and the drying pretreatment liquid creating step is performed by at least one of melting and dissolving the solidified film forming substance. A step of forming on the surface of the substrate the drying pretreatment liquid containing the solidified film-forming substance on the surface of the substrate.
 この構成によれば、固化膜形成物質の固体を基板の表面まで運搬する。言い換えると、固化膜形成物質は、固体のまま基板の表面に供給される。固化膜形成物質が基板の表面に供給されたときの固化膜形成物質の温度は、固化膜形成物質の融点よりも低い。固化膜形成物質の固体が基板に供給された後は、基板の表面上の固化膜形成物質を融解させる、もしくは、溶媒に溶解させる。これにより、乾燥前処理液が作成される。それと同時に、乾燥前処理液が基板の表面に供給される。 According to this configuration, the solid of the solidified film forming substance is transported to the surface of the substrate. In other words, the solidified film-forming substance is supplied to the surface of the substrate as a solid. The temperature of the solidified film forming material when the solidified film forming material is supplied to the surface of the substrate is lower than the melting point of the solidified film forming material. After the solidified film-forming substance is supplied to the substrate, the solidified film-forming substance on the surface of the substrate is melted or dissolved in a solvent. Thereby, a pre-drying treatment liquid is prepared. At the same time, the pre-drying treatment liquid is supplied to the surface of the substrate.
 固化膜形成物質の溶液または融液を基板の表面に供給すると、一部の溶液や融液は基板の外周部を通じて基板の表面から排出される。固化膜形成物質の固体を基板の表面に供給する場合は、固化膜形成物質の固体が基板の表面にとどまり易い。したがって、固化膜形成物質の溶液または融液を基板の表面に供給する場合に比べて、固化膜形成物質を効率的に使用でき、固化膜形成物質の消費量を減らすことができる。 (4) When the solution or the melt of the solidified film-forming substance is supplied to the surface of the substrate, a part of the solution or the melt is discharged from the surface of the substrate through the outer periphery of the substrate. When the solid of the solidified film-forming substance is supplied to the surface of the substrate, the solid of the solidified film-forming substance tends to remain on the surface of the substrate. Therefore, compared with the case where the solution or the melt of the solidified film forming material is supplied to the surface of the substrate, the solidified film forming material can be used more efficiently, and the consumption of the solidified film forming material can be reduced.
 前記固化膜形成物質の融点は、室温よりも高く、前記固形物運搬工程は、前記室温の前記固化膜形成物質を前記基板の表面に供給する室温供給工程を含む。 The melting point of the solidified film forming substance is higher than room temperature, and the solid transporting step includes a room temperature supplying step of supplying the solidified film forming substance at the room temperature to the surface of the substrate.
 この構成によれば、室温の固化膜形成物質を基板の表面に供給する。固化膜形成物質の融点は室温よりも高い。したがって、固化膜形成物質の固体が基板の表面に供給される。固化膜形成物質の融点が室温以下である場合、固化膜形成物質を固体に維持するために、基板に供給する前に固化膜形成物質を冷却し続ける必要がある。固化膜形成物質の融点が室温よりも高ければ、このような冷却は必要ない。 According to this configuration, the solidified film forming substance at room temperature is supplied to the surface of the substrate. The melting point of the solidified film forming substance is higher than room temperature. Therefore, the solid of the solidified film forming substance is supplied to the surface of the substrate. When the melting point of the solidified film forming material is equal to or lower than room temperature, it is necessary to continuously cool the solidified film forming material before supplying it to the substrate in order to maintain the solidified film forming material as a solid. If the melting point of the solidified film-forming substance is higher than room temperature, such cooling is not necessary.
 また、液体が極めて狭い空間に配置されると、凝固点降下が発生する。半導体ウエハなどの基板では、隣り合う2つのパターンの間隔が狭いので、パターンの間に位置する液体の凝固点が降下してしまう。したがって、隣り合う2つの凸状パターンの間だけでなく、パターンの上方にも液体がある状態で、液体を凝固させるときは、パターンの間に位置する液体の凝固点が、パターンの上方に位置する液体の凝固点よりも低い。 凝固 If the liquid is placed in a very narrow space, freezing point depression occurs. In a substrate such as a semiconductor wafer, since the space between two adjacent patterns is narrow, the freezing point of the liquid located between the patterns drops. Therefore, when the liquid is solidified not only between two adjacent convex patterns but also above the pattern, the solidification point of the liquid located between the patterns is positioned above the pattern. Lower than the freezing point of the liquid.
 パターンの間に位置する液体の凝固点だけが低いと、基板の表面に形成された液膜の表層、つまり、液膜の上面(液面)からパターンの上面までの範囲に位置する液体層が先に凝固し、パターンの間に位置する液体が凝固せずに液体に維持される場合がある。この場合、固体と液体の界面がパターンの近傍に形成され、パターンを倒壊させる倒壊力が発生することがある。パターンの微細化によってパターンがさらに脆弱になると、このような弱い倒壊力でも、パターンが倒壊してしまう。 If only the freezing point of the liquid located between the patterns is low, the surface layer of the liquid film formed on the surface of the substrate, that is, the liquid layer located in the range from the upper surface (liquid level) of the liquid film to the upper surface of the pattern, is first. In some cases, and the liquid located between the patterns may remain in the liquid without solidifying. In this case, an interface between the solid and the liquid is formed in the vicinity of the pattern, and a collapse force that collapses the pattern may occur. If the pattern becomes more brittle due to the miniaturization of the pattern, the pattern collapses even with such a weak collapse force.
 さらに、降下前の凝固点が低い上に凝固点が大幅に降下すると、基板の表面上の液体を極めて低い温度まで冷却しないと、基板の表面上の液体が凝固しない。固化膜形成物質の凝固点は、固化膜形成物質の融点と等しいか、固化膜形成物質の融点と殆ど変わらない。したがって、固化膜形成物質の融点が高いと、固化膜形成物質の凝固点も高い。凝固点が大幅に降下したとしても、降下前の凝固点が高ければ、冷却温度を極端に低下させなくても、基板の表面上の乾燥前処理液を凝固させることができる。これにより、基板の処理に要するエネルギーの消費量を減らすことができる。 Furthermore, if the freezing point before dropping is low and the freezing point drops significantly, the liquid on the substrate surface will not solidify unless the liquid on the substrate surface is cooled to a very low temperature. The freezing point of the solidified film forming substance is equal to or substantially the same as the melting point of the solidified film forming substance. Therefore, when the melting point of the solidified film-forming substance is high, the solidification point of the solidified film-forming substance is also high. Even if the freezing point drops significantly, if the freezing point before the drop is high, the pretreatment liquid on the surface of the substrate can be solidified without extremely lowering the cooling temperature. Thus, the amount of energy consumed for processing the substrate can be reduced.
 固化膜形成物質の溶液を基板に供給する場合は、固化膜形成物質が分散した状態を維持するために、溶液を基板に供給しないときも攪拌し続ける必要がある。凝固点が室温以上の固化膜形成物質の融液を基板に供給する場合は、固化膜形成物質を液体に維持するために固化膜形成物質を加熱し続ける必要がある。すなわち、攪拌機構や加熱機構を設けなければ、配管詰まり等の問題が生じる。一方、凝固点が室温未満の固化膜形成物質の融液を用いる場合は、固化膜形成物質を加熱しなくても固化膜形成物質が液体に維持されるものの、前述のように、降下前の凝固点が低いので、極めて低い温度まで冷却しないと、基板の表面上の融液が凝固しない。したがって、融点および凝固点が室温よりも高い固化膜形成物質の固体を基板に供給すれば、これらの問題は発生しない。 供給 す る When supplying the solution of the solidified film-forming substance to the substrate, it is necessary to keep stirring even when the solution is not supplied to the substrate, in order to maintain the dispersed state of the solidified film-forming substance. When a solidified film-forming substance having a freezing point of room temperature or higher is supplied to a substrate, it is necessary to keep heating the solidified film-forming substance in order to maintain the solidified film-forming substance in a liquid state. That is, unless a stirring mechanism or a heating mechanism is provided, problems such as clogging of a pipe occur. On the other hand, when using a melt of the solidified film-forming substance having a freezing point lower than room temperature, the solidified film-forming substance is maintained in a liquid state without heating the solidified film-forming substance, but as described above, , The melt on the surface of the substrate will not solidify unless cooled to a very low temperature. Therefore, if a solid of the solidified film-forming substance having a melting point and a freezing point higher than room temperature is supplied to the substrate, these problems do not occur.
 前記固形物運搬工程は、粉末状の前記固化膜形成物質を前記基板の表面に供給する粉末供給工程と、粒状の前記固化膜形成物質を前記基板の表面に供給する粒供給工程と、粉末状の前記固化膜形成物質と粒状の前記固化膜形成物質とが結合した結合物を前記基板の表面に供給する結合物供給工程と、のうちの少なくとも一つを含む。 A step of supplying the solidified film-forming substance in powder form to the surface of the substrate; a step of supplying the solidified film-forming substance in granular form to the surface of the substrate; Supplying a combined product of the solidified film forming material and the granular solidified film forming material to the surface of the substrate.
 この構成によれば、固化膜形成物質の粉、固化膜形成物質の粒、またはこれらの結合物を基板の表面に供給する。つまり、固化膜形成物質の小さな塊を基板の表面に供給する。基板に供給される質量が同じであれば、個々の塊が小さいほど、固化膜形成物質の固体の表面積の合計値が増加する。固化膜形成物質の融解により乾燥前処理液を作成する場合、表面積が大きいと、固化膜形成物質の固体を効率的に加熱できる。固化膜形成物質の溶解により乾燥前処理液を作成する場合、表面積が大きいと、固化膜形成物質の固体を効率的に溶媒に溶かすことができる。したがって、融解および溶解のいずれを用いる場合でも、効率的に乾燥前処理液を作成できる。 According to this configuration, the powder of the solidified film forming material, the particles of the solidified film forming material, or a combination thereof is supplied to the surface of the substrate. That is, a small lump of the solidified film forming material is supplied to the surface of the substrate. If the mass supplied to the substrate is the same, the smaller the individual mass, the greater the total value of the solid surface area of the solidified film-forming substance. When preparing a pretreatment liquid for drying by melting a solidified film-forming substance, if the surface area is large, the solid of the solidified film-forming substance can be efficiently heated. When preparing a pretreatment liquid for drying by dissolving the solidified film-forming substance, if the surface area is large, the solid of the solidified film-forming substance can be efficiently dissolved in the solvent. Therefore, a drying pretreatment liquid can be efficiently prepared regardless of whether melting or dissolution is used.
 前記基板上作成工程は、前記固化膜形成物質の融点以上の加熱温度で前記固化膜形成物質の固体を加熱することにより、前記基板の表面上の前記固化膜形成物質の固体を融解させる融解工程を含む。 The on-substrate forming step is a melting step of heating the solid of the solidified film-forming substance at a heating temperature equal to or higher than the melting point of the solidified film-forming substance, thereby melting the solid of the solidified film-forming substance on the surface of the substrate. including.
 この構成によれば、基板の表面上の固化膜形成物質の固体を固化膜形成物質の融点以上の加熱温度で加熱する。これにより、固化膜形成物質の固体が固化膜形成物質の液体に変化し、固化膜形成物質を含む乾燥前処理液、つまり、固化膜形成物の液体が基板の表面で作成される。これにより、固化膜形成物質を主成分とする乾燥前処理液を作成でき、隣り合う2つのパターンの間の空間を乾燥前処理液で満たすことができる。 According to this configuration, the solid of the solidified film-forming substance on the surface of the substrate is heated at a heating temperature equal to or higher than the melting point of the solidified film-forming substance. As a result, the solid of the solidified film forming substance is changed to a liquid of the solidified film forming substance, and a pre-drying treatment liquid containing the solidified film forming substance, that is, a liquid of the solidified film forming substance is formed on the surface of the substrate. This makes it possible to prepare a pretreatment liquid containing a solidified film-forming substance as a main component, and to fill a space between two adjacent patterns with the pretreatment liquid.
 前記融解工程は、前記固化膜形成物質の固体が前記基板の表面に供給される前から前記基板を加熱する事前加熱工程を含む。 The melting step includes a pre-heating step of heating the substrate before the solid of the solidified film-forming substance is supplied to the surface of the substrate.
 この構成によれば、固化膜形成物質の固体を基板に供給する前に基板の加熱を開始する。したがって、固化膜形成物質の固体は、事前に加熱された基板の表面に供給される。固化膜形成物質の固体が基板の表面に接触すると、それと同時に、固化膜形成物質の固体が基板を介して加熱される。したがって、固化膜形成物質の固体が基板に供給された後に固化膜形成物質の加熱を開始する場合に比べて、固化膜形成物質が融解するまでの時間を短縮できる。 According to this configuration, the heating of the substrate is started before the solid of the solidified film forming substance is supplied to the substrate. Therefore, the solid of the solidified film forming material is supplied to the surface of the substrate which has been heated in advance. When the solid of the solidified film-forming substance comes into contact with the surface of the substrate, the solid of the solidified film-forming substance is simultaneously heated through the substrate. Therefore, the time until the solidified film forming material is melted can be reduced as compared with the case where the solidified film forming material is heated after the solidified film forming material is supplied to the substrate.
 前記融解工程は、前記固化膜形成物質の固体が前記基板の表面に供給された後から前記基板を加熱する事後加熱工程を含む。 The melting step includes a post-heating step of heating the substrate after the solid of the solidified film-forming substance is supplied to the surface of the substrate.
 この構成によれば、固化膜形成物質の固体を基板に供給した後に基板の加熱を開始する。基板の表面上の固化膜形成物質の固体は、基板を介して加熱され、融解する。固化膜形成物質の固体を基板に供給する前に基板の加熱を開始する場合、固化膜形成物質の固体が基板に供給される前に基板に与えられた熱の一部は、固化膜形成物質に伝達されることなく空気中に放出される。したがって、基板を事前に加熱する場合に比べて、熱損失を減らすことができる。 According to this configuration, the heating of the substrate is started after the solid of the solidified film forming substance is supplied to the substrate. The solid of the solidified film-forming substance on the surface of the substrate is heated through the substrate and melts. When heating the substrate before supplying the solid of the solidified film-forming substance to the substrate, a part of the heat given to the substrate before the solid of the solidified film-forming substance is supplied to the substrate, Released into the air without being transmitted to the air. Therefore, heat loss can be reduced as compared with the case where the substrate is heated in advance.
 前記基板処理方法は、前記基板を水平に保持しながら前記基板の中央部を通る鉛直な回転軸線まわりに回転させる基板回転工程をさらに含み、前記固形物運搬工程は、水平に保持されている前記基板の表面の中央部に前記固化膜形成物質の固体を供給する中央供給工程を含み、前記融解工程は、前記基板が前記回転軸線まわりに回転しており、前記固化膜形成物質の固体が前記基板の表面の中央部にある状態で、前記基板の表面とは反対側の前記基板の平面である前記基板の裏面の中央部に向けて、前記加熱温度の加熱流体を吐出する加熱流体供給工程を含む。 The substrate processing method may further include a substrate rotating step of rotating the substrate about a vertical rotation axis passing through a central portion of the substrate while holding the substrate horizontally, and the solid matter transporting step may include holding the substrate horizontally. A central supplying step of supplying the solid of the solidified film forming substance to a central portion of the surface of the substrate, wherein the melting step is such that the substrate is rotating around the rotation axis, and the solid of the solidified film forming substance is A heating fluid supply step of discharging a heating fluid at the heating temperature toward a center of a back surface of the substrate, which is a flat surface of the substrate opposite to the front surface of the substrate, in a state of being located at a center of the front surface of the substrate; including.
 この構成によれば、温度が固化膜形成物質の融点以上の加熱流体を基板の裏面の中央部に向けて吐出する。吐出された加熱流体は、基板の裏面の中央部に接触する。これにより、基板の中央部が加熱される。さらに、加熱流体は、基板の裏面の中央部に接触した後、基板の裏面の中央部から基板の裏面に沿ってあらゆる方向に放射状に流れる。これにより、中央部以外の基板の裏面内の領域にも加熱流体が接触し、基板の他の部分も加熱される。 According to this configuration, the heating fluid having a temperature equal to or higher than the melting point of the solidified film forming substance is discharged toward the center of the back surface of the substrate. The discharged heating fluid comes into contact with the center of the back surface of the substrate. Thereby, the central part of the substrate is heated. Further, the heating fluid flows radially in all directions from the center of the back surface of the substrate to the back surface of the substrate after contacting the center portion of the back surface of the substrate. As a result, the heating fluid comes into contact with an area on the back surface of the substrate other than the central portion, and the other portion of the substrate is also heated.
 加熱流体が最初に基板の裏面の中央部に接触するので、基板の中央部は、基板の他の部分よりも温度が高い。この温度が高い部分に固化膜形成物質の固体が接触する。したがって、基板の表面上の固化膜形成物質の固体を基板を介して効率的に加熱できる。これにより、固化膜形成物質の固体を効率的に融解させることができ、乾燥前処理液の作成に要する時間を短縮できる。 中央 The center of the substrate is hotter than the rest of the substrate because the heating fluid first contacts the center of the back of the substrate. The solid of the solidified film-forming substance comes into contact with the high temperature portion. Therefore, the solid of the solidified film forming substance on the surface of the substrate can be efficiently heated through the substrate. Thereby, the solid of the solidified film-forming substance can be efficiently melted, and the time required for preparing the pretreatment liquid for drying can be reduced.
 さらに、加熱流体が基板の裏面の中央部に向けて吐出されているときは、基板の中央部を通る鉛直な回転軸線まわりに基板が回転している。基板の表面の中央部で作成された乾燥前処理液は、基板の回転によって生じる遠心力で基板の表面の中央部から放射状に流れる。これにより、乾燥前処理液を基板の表面で広げることができる。しかも、融解前の固化膜形成物質と基板の表面との間から融解した固化膜形成物質が排出されるので、融解前の固化膜形成物質を効率的に加熱できる。 Further, when the heating fluid is being discharged toward the center of the back surface of the substrate, the substrate is rotating around a vertical rotation axis passing through the center of the substrate. The drying pretreatment liquid created at the center of the surface of the substrate flows radially from the center of the surface of the substrate due to centrifugal force generated by the rotation of the substrate. This allows the pretreatment liquid to spread on the surface of the substrate. In addition, since the solidified film forming material before melting is discharged from between the solidified film forming material before melting and the surface of the substrate, the solidified film forming material before melting can be efficiently heated.
 前記基板回転工程は、前記基板の回転速度を融解前速度から融解速度に減少させる減速工程と、前記加熱流体が前記基板の裏面の中央部に向けて吐出されており、前記固化膜形成物質の固体が前記基板の表面の中央部にある状態で、前記基板の回転速度を前記融解速度に維持する定速回転工程と、前記基板の表面の中央部上の前記固化膜形成物質の固体の少なくとも一部が融解した後に、前記基板の回転速度を前記融解速度から拡散速度に増加させる加速工程を含む。 The substrate rotation step, a deceleration step of reducing the rotation speed of the substrate from the pre-melting speed to the melting speed, the heating fluid is discharged toward the center of the back surface of the substrate, the solidified film forming material In the state where the solid is at the center of the surface of the substrate, a constant speed rotation step of maintaining the rotation speed of the substrate at the melting speed, at least the solid of the solidified film forming material on the center of the surface of the substrate After partially melting, the method includes an accelerating step of increasing the rotation speed of the substrate from the melting speed to the diffusion speed.
 この構成によれば、加熱流体が基板の裏面の中央部に向けて吐出されており、固化膜形成物質の固体が基板の表面の中央部にある状態で、基板を融解速度で回転させる。融解速度は融解前速度よりも遅い。したがって、基板上の固化膜形成物質の固体に加わる遠心力が相対的に小さく、固化膜形成物質の固体が基板の表面で広がり難い。これにより、基板の表面の中央部での固化膜形成物質の固体の滞在時間を長くすることができ、固化膜形成物質の固体を確実に融解させることができる。 According to this configuration, the heating fluid is discharged toward the center of the back surface of the substrate, and the substrate is rotated at the melting rate in a state where the solid of the solidified film forming substance is at the center of the surface of the substrate. The melting rate is lower than the pre-melting rate. Therefore, the centrifugal force applied to the solid of the solidified film forming substance on the substrate is relatively small, and the solid of the solidified film forming substance is unlikely to spread on the surface of the substrate. Thereby, the residence time of the solid of the solidified film-forming substance at the center of the surface of the substrate can be extended, and the solid of the solidified film-forming substance can be reliably melted.
 基板の回転速度は、基板の表面の中央部上の固化膜形成物質の固体の一部または全部が融解した後に、融解速度から拡散速度に高められる。これにより、融解した固化膜形成物質、つまり、乾燥前処理液に加わる遠心力が増加し、乾燥前処理液が基板の表面に沿って基板の表面の中央部から放射状に流れる。そのため、固化膜形成物質の固体を液化させながら、固化膜形成物質の液体を基板の表面で広げることができる。 回 転 The rotation speed of the substrate is increased from the melting speed to the diffusion speed after a part or all of the solid of the solidified film forming material on the center of the surface of the substrate is melted. This increases the centrifugal force applied to the molten solidified film-forming substance, that is, the pretreatment liquid for drying, and the pretreatment liquid for drying flows radially from the center of the surface of the substrate along the surface of the substrate. Therefore, the liquid of the solidified film-forming substance can be spread on the surface of the substrate while liquefying the solid of the solidified film-forming substance.
 このように、基板の表面の中央部上の固化膜形成物質の固体を融解させるときは、相対的に遅い融解速度で基板を回転させる。これにより、固化膜形成物質の固体が基板の表面で広がることを抑制または防止しながら、固化膜形成物質の固体を融解させることができる。そして、固化膜形成物質の固体が融解した後は、相対的に速い拡散速度で基板を回転させる。したがって、固化膜形成物質の固体が融解した後も融解速度で基板を回転させる場合に比べて短時間で乾燥前処理液を広げることができる。 (4) As described above, when the solid of the solidified film-forming substance on the central portion of the surface of the substrate is melted, the substrate is rotated at a relatively low melting rate. Thereby, the solid of the solidified film forming substance can be melted while suppressing or preventing the solid of the solidified film forming substance from spreading on the surface of the substrate. After the solid of the solidified film forming substance is melted, the substrate is rotated at a relatively high diffusion speed. Therefore, even after the solid of the solidified film-forming substance is melted, the pretreatment liquid for drying can be spread in a shorter time than when the substrate is rotated at the melting speed.
 前記融解工程は、温度が前記固化膜形成物質の融点以上の加熱ガスを前記基板の表面および裏面の少なくとも一方に向けて吐出する加熱ガス供給工程と、温度が前記固化膜形成物質の融点以上の加熱液を前記基板の裏面に向けて吐出する加熱液供給工程と、温度が前記固化膜形成物質の融点以上の加熱部材を、前記基板から離しながら前記基板の表面または裏面に対向させる近接加熱工程と、温度が前記固化膜形成物質の融点以上の加熱部材を前記基板の裏面に接触させる接触加熱工程と、前記基板の表面上の前記乾燥前処理液に光を照射する光照射工程と、のうちの少なくとも一つを含んでいてもよい。前記光照射工程は、前記基板の表面の全域に同時に光を照射する全体照射工程、または、前記基板の表面内の一部の領域を表す照射領域だけに光を照射しながら前記照射領域を前記基板の表面内で移動させる部分照射工程を含んでいてもよいし、前記全体照射工程および部分照射工程の両方を含んでいてもよい。 The melting step is a heating gas supply step of discharging a heating gas having a temperature equal to or higher than the melting point of the solidified film forming material toward at least one of the front surface and the back surface of the substrate, and a temperature equal to or higher than the melting point of the solidified film forming material. A heating liquid supply step of discharging a heating liquid toward the back surface of the substrate, and a proximity heating step of facing a heating member having a temperature equal to or higher than the melting point of the solidified film forming material to the front surface or the back surface of the substrate while separating from the substrate And a contact heating step of bringing a heating member having a temperature equal to or higher than the melting point of the solidified film forming substance into contact with the back surface of the substrate, and a light irradiation step of irradiating the drying pretreatment liquid on the surface of the substrate with light. At least one of them may be included. The light irradiation step is a whole irradiation step of simultaneously irradiating the entire surface of the substrate with light, or the irradiation region while irradiating light only to an irradiation region representing a partial region in the surface of the substrate. The method may include a partial irradiation step of moving within the surface of the substrate, or may include both the entire irradiation step and the partial irradiation step.
 前記基板上作成工程は、前記固化膜形成物質と溶け合う溶媒を前記基板の表面に供給する溶媒供給工程を含む。 The on-substrate preparation step includes a solvent supply step of supplying a solvent that dissolves with the solidified film forming substance to the surface of the substrate.
 この構成によれば、固化膜形成物質の固体だけでなく、固化膜形成物質と溶け合う溶媒も基板の表面に供給する。固化膜形成物質の固体は、基板の表面で溶媒に溶ける。これにより、固化膜形成物質および溶媒を含む溶液である乾燥前処理液が基板の表面で形成される。したがって、基板上の固化膜形成物質の固体を融解させなくても、乾燥前処理液を作成できる。 According to this configuration, not only the solid of the solidified film forming substance but also a solvent that dissolves in the solidified film forming substance is supplied to the surface of the substrate. The solid of the solidified film-forming substance dissolves in the solvent on the surface of the substrate. As a result, a dry pretreatment liquid, which is a solution containing the solidified film-forming substance and the solvent, is formed on the surface of the substrate. Therefore, the pretreatment liquid for drying can be prepared without melting the solid of the solidified film forming substance on the substrate.
 前記溶媒供給工程は、前記固化膜形成物質の固体が前記基板の表面に供給される前に、前記溶媒を前記基板の表面に供給する事前溶媒供給工程と、前記固化膜形成物質の固体が前記基板の表面に供給された後に、前記溶媒を前記基板の表面に供給する事後溶媒供給工程と、前記固化膜形成物質の固体が前記基板の表面に供給されるのと同時に前記溶媒を前記基板の表面に供給する同時溶媒供給工程と、のいずれかであってもよいし、これらの2つ以上を含んでいてもよい。 The solvent supply step is a pre-solvent supply step of supplying the solvent to the surface of the substrate before the solid of the solidified film forming material is supplied to the surface of the substrate, and the solid of the solidified film forming material is After being supplied to the surface of the substrate, a post-solvent supply step of supplying the solvent to the surface of the substrate, and simultaneously with the solid of the solidified film forming material being supplied to the surface of the substrate, And a simultaneous solvent supply step of supplying the solvent to the surface, or may include two or more of these.
 前記溶媒供給工程は、前記固化膜形成物質の固体が前記基板の表面に供給される前に、前記溶媒を前記基板の表面に供給する事前溶媒供給工程を含む。 The solvent supply step includes a preliminary solvent supply step of supplying the solvent to the surface of the substrate before the solid of the solidified film forming material is supplied to the surface of the substrate.
 この構成によれば、溶媒を基板の表面に供給した後に、固化膜形成物質の固体を基板の表面に供給する。したがって、固化膜形成物質の固体を供給するのと同時に、固化膜形成物質の溶解が始まる。これにより、乾燥前処理液の作成に要する時間を短縮できる。さらに、固化膜形成物質の固体を基板に供給する前は、通常、基板上の薬液をリンス液で洗い流したり、基板上のリンス液を置換液で置換したりする。固化膜形成物質の固体がリンス液または置換液に溶ける場合は、リンス液または置換液を溶媒として用いることができる。つまり、固化膜形成物質の固体を基板上のリンス液または置換液に溶かして、乾燥前処理液を作成することができる。したがって、専用の溶媒を用いなくてもよい。 According to this configuration, after the solvent is supplied to the surface of the substrate, the solid of the solidified film forming substance is supplied to the surface of the substrate. Accordingly, the dissolution of the solidified film-forming substance starts simultaneously with the supply of the solid of the solidified film-forming substance. Thereby, the time required for preparing the pretreatment liquid for drying can be reduced. Further, before the solid of the solidified film-forming substance is supplied to the substrate, the chemical solution on the substrate is usually washed away with a rinsing liquid, or the rinsing liquid on the substrate is replaced with a replacement liquid. When the solid of the solidified film forming substance is dissolved in the rinsing liquid or the replacement liquid, the rinsing liquid or the replacement liquid can be used as a solvent. That is, the solid of the solidified film-forming substance can be dissolved in the rinse liquid or the replacement liquid on the substrate to prepare the pre-drying treatment liquid. Therefore, it is not necessary to use a dedicated solvent.
 前記基板上作成工程は、前記溶媒を加熱することにより、前記固化膜形成物質の固体が前記基板の表面で前記溶媒に溶解することを促進する溶解促進工程を含む。 作成 The on-substrate preparation step includes a dissolution promoting step of heating the solvent to promote dissolution of the solid of the solidified film-forming substance in the solvent on the surface of the substrate.
 この構成によれば、基板に供給する前または後に溶媒を加熱して、溶媒の温度を上昇させる。これにより、溶媒における固化膜形成物質の飽和濃度が上昇するので、固化膜形成物質の固体が溶媒に溶け易くなる。したがって、固化膜形成物質の固体が基板の表面で溶媒に溶解することを促進でき、固化膜形成物質および溶媒を含む溶液である乾燥前処理液の作成に要する時間を短縮できる。 According to this configuration, the solvent is heated before or after supply to the substrate to increase the temperature of the solvent. This increases the saturation concentration of the solidified film forming substance in the solvent, so that the solid of the solidified film forming substance is easily dissolved in the solvent. Therefore, it is possible to promote the dissolution of the solid of the solidified film-forming substance in the solvent on the surface of the substrate, and it is possible to shorten the time required for preparing the pre-drying liquid which is a solution containing the solidified film-forming substance and the solvent.
 前記溶解促進工程は、前記基板の表面上の前記溶媒を加熱する供給後加熱工程と、前記溶媒が前記基板の表面に供給される前に前記溶媒を加熱する供給前加熱工程と、の少なくとも一方を含んでいてもよい。前記供給後加熱工程は、前記基板を加熱することにより前記基板を介して前記基板の表面上の前記溶媒を加熱する間接加熱工程を含んでいてもよい。 The dissolution accelerating step is at least one of a post-supply heating step of heating the solvent on the surface of the substrate and a pre-supply heating step of heating the solvent before the solvent is supplied to the surface of the substrate. May be included. The post-supply heating step may include an indirect heating step of heating the solvent on the surface of the substrate via the substrate by heating the substrate.
 前記間接加熱工程は、前記溶媒が前記基板の表面に供給される前から前記基板を加熱する事前加熱工程と、前記溶媒が前記基板の表面に供給された後から前記基板を加熱する事後加熱工程と、前記溶媒が前記基板の表面に供給されるのと同時に前記基板の加熱を開始する同時加熱工程と、のいずれかであってもよいし、これらの2つ以上を含んでいてもよい。 The indirect heating step, a pre-heating step of heating the substrate before the solvent is supplied to the surface of the substrate, and a post-heating step of heating the substrate after the solvent is supplied to the surface of the substrate And a simultaneous heating step of starting heating the substrate at the same time that the solvent is supplied to the surface of the substrate, or may include two or more of these.
 前記固形物運搬工程は、前記基板を収容するチャンバーに隣接する流体ボックスの中で前記固化膜形成物質の固体を運搬する工程である。 The solid matter transporting step is a step of transporting the solid of the solidified film forming material in a fluid box adjacent to a chamber accommodating the substrate.
 この構成によれば、固化膜形成物質の固体を流体ボックスの中で運搬する。流体ボックスは、基板を収容するチャンバーの近くに配置されており、流体ボックスの少なくとも一部は、チャンバーと同じ高さに配置されている。したがって、固化膜形成物質は、固体のまま基板の近くまで運搬される。そのため、固化膜形成物質を融解させるヒータを設ける場合でも、ヒータを設ける範囲を狭くすることができ、エネルギーの消費量を減らすことができる。 According to this configuration, the solid of the solidified film forming substance is transported in the fluid box. The fluid box is located near a chamber that houses the substrate, and at least a portion of the fluid box is located at the same height as the chamber. Therefore, the solidified film forming substance is transported to the vicinity of the substrate as a solid. Therefore, even when a heater for melting the solidified film forming material is provided, the range in which the heater is provided can be narrowed, and the amount of energy consumption can be reduced.
 前記固形物運搬工程は、前記基板から離れた位置まで前記固化膜形成物質の固体を運搬する工程であり、前記乾燥前処理液作成工程は、前記固化膜形成物質の融解により、前記乾燥前処理液を前記基板から離れた位置で作成する供給前作成工程を含み、前記基板処理方法は、ノズルに前記乾燥前処理液を吐出させる乾燥前処理液吐出工程をさらに含む。 The solid matter transporting step is a step of transporting the solid of the solidified film forming substance to a position distant from the substrate, and the drying pretreatment liquid creating step is performed by melting the solidified film forming substance, The method includes a pre-supply preparation step of preparing a liquid at a position away from the substrate, and the substrate processing method further includes a pre-drying liquid discharge step of discharging the pre-drying liquid to a nozzle.
 この構成によれば、ノズルに乾燥前処理液を吐出させる。つまり、ノズルの吐出口の上流で固化膜形成物質の固体を融液に変化させる。その後、固化膜形成物質の融液に相当する乾燥前処理液を基板の表面に向けてノズルから吐出する。したがって、乾燥前処理液を基板の表面で作成する場合に比べて、速やかに乾燥前処理液を基板の表面に行き渡らせることができる。 According to this configuration, the pre-drying treatment liquid is discharged to the nozzle. That is, the solid of the solidified film-forming substance is changed to a melt upstream of the discharge port of the nozzle. Thereafter, a pre-drying treatment liquid corresponding to a melt of the solidified film-forming substance is discharged from the nozzle toward the surface of the substrate. Therefore, the pre-drying liquid can be spread over the surface of the substrate more quickly than when the pre-drying liquid is prepared on the surface of the substrate.
 前記基板処理方法は、前記ノズルが前記基板の表面に向けて前記乾燥前処理液を吐出した後に、前記固化膜形成物質と溶け合う溶媒を含む洗浄液を前記ノズルの内部に供給することにより、前記乾燥前処理液および洗浄液を前記ノズルに吐出させる洗浄液供給工程をさらに含む。 The substrate processing method is characterized in that, after the nozzle discharges the pre-drying processing liquid toward the surface of the substrate, a cleaning liquid containing a solvent that dissolves with the solidified film forming substance is supplied into the nozzle, whereby the drying is performed. A cleaning liquid supply step of discharging a pretreatment liquid and a cleaning liquid to the nozzle is further included.
 この構成によれば、ノズルが基板の表面に向けて乾燥前処理液を吐出した後に、洗浄液をノズルに供給する。ノズルの内部に残留している乾燥前処理液は、洗浄液によって下流に押され、ノズルの吐出口から吐出される。その後、洗浄液がノズルから吐出される。これにより、残留している乾燥前処理液が排出される。さらに、洗浄液には、固化膜形成物質と溶け合う溶媒が含まれているので、ノズルの内面に固化膜形成物質の固体が付着していたとしても、固化膜形成物質の固体は、洗浄液に溶け、洗浄液と共にノズルから吐出される。したがって、残留している乾燥前処理液だけでなく、ノズルの内面に付着している固化膜形成物質の固体も除去できる。 According to this configuration, the cleaning liquid is supplied to the nozzle after the nozzle discharges the pre-drying processing liquid toward the surface of the substrate. The pre-drying treatment liquid remaining inside the nozzle is pushed downstream by the cleaning liquid, and is discharged from the discharge port of the nozzle. Thereafter, the cleaning liquid is discharged from the nozzle. As a result, the remaining pre-drying treatment liquid is discharged. Furthermore, since the cleaning liquid contains a solvent that dissolves with the solidified film forming substance, even if solidified film forming substance solids adhere to the inner surface of the nozzle, the solidified film forming substance solids dissolve in the cleaning liquid, It is discharged from the nozzle together with the cleaning liquid. Therefore, it is possible to remove not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle.
 前記洗浄液供給工程は、前記ノズルの内部に加えて、前記ノズルに前記乾燥前処理液を案内する液体配管の内部に洗浄液を供給する工程であってもよい。前記洗浄液供給工程は、前記ノズルから吐出された液体(前記乾燥前処理液または洗浄液)が前記基板に供給されない位置で前記ノズルに液体を吐出させる工程であることが好ましい。前記洗浄液供給工程は、前記基板の表面に垂直な方向から見たときに前記基板のまわりに配置されたポッドに向けて前記ノズルに液体を吐出させる工程であってもよい。 The cleaning liquid supply step may be a step of supplying a cleaning liquid into a liquid pipe for guiding the pre-drying treatment liquid to the nozzle in addition to the inside of the nozzle. It is preferable that the cleaning liquid supply step is a step of discharging the liquid to the nozzle at a position where the liquid (the pre-drying processing liquid or the cleaning liquid) discharged from the nozzle is not supplied to the substrate. The cleaning liquid supply step may be a step of discharging liquid from the nozzle toward a pod disposed around the substrate when viewed from a direction perpendicular to the surface of the substrate.
 前記基板処理方法は、前記ノズルが前記基板の表面に向けて前記乾燥前処理液を吐出した後に、洗浄ガスを前記ノズルの内部に供給することにより、前記乾燥前処理液および洗浄ガスを前記ノズルに吐出させる洗浄ガス供給工程をさらに含む。 The substrate processing method is characterized in that, after the nozzle discharges the pre-drying treatment liquid toward the surface of the substrate, a cleaning gas is supplied to the inside of the nozzle, whereby the pre-drying treatment liquid and the cleaning gas are supplied to the nozzle. The method further includes a cleaning gas supply step of discharging the cleaning gas.
 この構成によれば、ノズルが基板の表面に向けて乾燥前処理液を吐出した後に、液体ではなく、気体である洗浄ガスを、ノズルに供給する。ノズルの内部に残留している乾燥前処理液は、洗浄ガスによって下流に押され、ノズルの吐出口から吐出される。その後、洗浄ガスがノズルから吐出される。これにより、全てまたは殆ど全ての乾燥前処理液がノズルから排出される。 According to this configuration, after the nozzle discharges the pre-drying treatment liquid toward the surface of the substrate, not the liquid but the cleaning gas that is a gas is supplied to the nozzle. The pre-drying treatment liquid remaining inside the nozzle is pushed downstream by the cleaning gas and is discharged from the discharge port of the nozzle. Thereafter, the cleaning gas is discharged from the nozzle. As a result, all or almost all of the pretreatment liquid for drying is discharged from the nozzle.
 洗浄ガスの供給を開始した後に微量の乾燥前処理液がノズルの内部に残留していると、乾燥前処理液、つまり、固化膜形成物質の融液は、洗浄ガスの流れで冷却され、ノズルの内面で固体に変化するかもしれない。固化膜形成物質が昇華性物質である場合、ノズルを流れる洗浄ガスは、固化膜形成物質の分圧の上昇を抑え、固化膜形成物質の昇華を促進する。したがって、ノズルの内部に残留する乾燥前処理液を減らすことができる。 If a small amount of the drying pretreatment liquid remains inside the nozzle after starting the supply of the cleaning gas, the drying pretreatment liquid, that is, the melt of the solidified film forming substance is cooled by the flow of the cleaning gas, and May change to a solid inside. When the solidified film-forming substance is a sublimable substance, the cleaning gas flowing through the nozzle suppresses an increase in the partial pressure of the solidified film-forming substance and promotes the sublimation of the solidified film-forming substance. Therefore, the amount of the pre-drying treatment liquid remaining inside the nozzle can be reduced.
 前記洗浄ガス供給工程は、前記ノズルの内部に加えて、前記ノズルに前記乾燥前処理液を案内する液体配管の内部に洗浄ガスを供給する工程であってもよい。前記洗浄ガス供給工程は、前記ノズルから吐出された流体(前記乾燥前処理液または洗浄ガス)が前記基板に供給されない位置で前記ノズルに流体を吐出させる工程であることが好ましい。前記洗浄ガス供給工程は、前記基板の表面に垂直な方向から見たときに前記基板のまわりに配置されたポッドに向けて前記ノズルに流体を吐出させる工程であってもよい。 洗浄 The cleaning gas supply step may be a step of supplying a cleaning gas into a liquid pipe that guides the pre-drying treatment liquid to the nozzle in addition to the inside of the nozzle. It is preferable that the cleaning gas supply step is a step of discharging the fluid to the nozzle at a position where the fluid (the pre-drying treatment liquid or the cleaning gas) discharged from the nozzle is not supplied to the substrate. The cleaning gas supply step may be a step of discharging the fluid to the nozzle toward a pod disposed around the substrate when viewed from a direction perpendicular to the surface of the substrate.
 前記基板処理方法は、前記固化膜を形成する前に、前記基板を水平に保持しながら鉛直な回転軸線まわりに回転させることにより、前記基板の表面の全域が前記乾燥前処理液の液膜で覆われた状態を維持しながら、前記基板の表面上の一部の前記乾燥前処理液を前記基板の回転に伴う遠心力で除去する膜厚減少工程をさらに含む。 The substrate processing method, before forming the solidified film, by rotating the substrate about a vertical rotation axis while holding the substrate horizontally, the entire surface of the substrate is a liquid film of the drying pretreatment liquid The method further includes a film thickness reducing step of removing a part of the pre-drying treatment liquid on the surface of the substrate by centrifugal force accompanying rotation of the substrate while maintaining the covered state.
 この構成によれば、固化膜が形成される前に、基板を水平に保持しながら鉛直な回転軸線まわりに回転させる。基板の表面上の一部の乾燥前処理液は、遠心力で基板から除去される。これにより、基板の表面の全域が乾燥前処理液の液膜で覆われた状態で、乾燥前処理液の膜厚が減少する。その後、固化膜を形成する。乾燥前処理液の膜厚が減少しているので、固化膜を短時間で形成でき、固化膜を薄くできる。したがって、固化膜の形成に要する時間と固化膜の除去に要する時間を短縮できる。これにより、基板の処理に要するエネルギーの消費量を減らすことができる。 According to this configuration, before the solidified film is formed, the substrate is rotated about a vertical rotation axis while holding the substrate horizontally. Some of the pre-drying solution on the surface of the substrate is removed from the substrate by centrifugal force. Thereby, the film thickness of the pre-drying treatment liquid decreases in a state where the entire surface of the substrate is covered with the liquid film of the pre-drying treatment liquid. After that, a solidified film is formed. Since the thickness of the pretreatment liquid for drying is reduced, a solidified film can be formed in a short time, and the solidified film can be thinned. Therefore, the time required for forming the solidified film and the time required for removing the solidified film can be reduced. Thus, the amount of energy consumed for processing the substrate can be reduced.
 前記基板処理方法は、前記固化膜を前記基板の表面から除去しているときに、前記基板の表面上の前記固化膜を冷却する固化膜冷却工程をさらに含む。 The substrate processing method further includes a solidified film cooling step of cooling the solidified film on the surface of the substrate while removing the solidified film from the surface of the substrate.
 この構成によれば、固化膜を基板の表面から除去しているときに、基板の表面上の固化膜を冷却する。固化膜の除去に伴って固化膜の温度が上昇する場合や、固化膜の融点(固化膜形成物質の融点)が室温に近い場合は、固化膜を基板の表面から除去しているときに、固化膜の一部が液化する可能性がある。したがって、固化膜の一部が液化することを防止しながら、固化膜を気体に変化させることができる。 According to this configuration, while the solidified film is being removed from the surface of the substrate, the solidified film on the surface of the substrate is cooled. When the temperature of the solidified film increases with the removal of the solidified film, or when the melting point of the solidified film (the melting point of the solidified film forming substance) is close to room temperature, when the solidified film is removed from the surface of the substrate, Part of the solidified film may be liquefied. Therefore, the solidified film can be changed to gas while preventing a part of the solidified film from being liquefied.
 前記固化膜形成工程は、前記乾燥前処理液の温度を前記乾燥前処理液の凝固点以下の冷却温度まで低下させることにより、前記基板の表面上の前記乾燥前処理液を凝固させる凝固工程と、前記乾燥前処理液に含まれる溶媒を減らすことにより、前記基板の表面上の前記乾燥前処理液から前記固化膜形成物質を析出させる析出工程とを含む。 The solidified film forming step, by lowering the temperature of the pre-drying treatment liquid to a cooling temperature below the freezing point of the pre-drying treatment liquid, a coagulation step of solidifying the pre-drying treatment liquid on the surface of the substrate, A step of depositing the solidified film-forming substance from the pre-drying liquid on the surface of the substrate by reducing a solvent contained in the pre-drying liquid.
 前記凝固工程は、前記乾燥前処理液が凝固するまで前記乾燥前処理液を室温で放置する自然冷却工程と、前記冷却温度の冷却ガスを前記基板の表面または裏面に向けて吐出する冷却ガス供給工程と、前記冷却温度の冷却液を前記基板の裏面に向けて吐出する冷却液供給工程と、前記冷却温度の冷却部材を前記基板から離しながら前記基板の表面または裏面に対向させる近接冷却工程と、前記冷却温度の冷却部材を前記基板の裏面に接触させる接触冷却工程と、の少なくとも一つを含んでいてもよい。 The coagulation step includes a natural cooling step in which the pre-drying treatment liquid is left at room temperature until the pre-drying treatment liquid solidifies, and a cooling gas supply that discharges the cooling gas at the cooling temperature toward the front surface or the back surface of the substrate. A cooling liquid supply step of discharging the cooling liquid at the cooling temperature toward the back surface of the substrate, and a proximity cooling step of facing the front surface or the back surface of the substrate while separating the cooling member at the cooling temperature from the substrate. And a contact cooling step of bringing a cooling member having the cooling temperature into contact with the back surface of the substrate.
 前記析出工程は、前記乾燥前処理液に含まれる溶媒の蒸発によって前記固化膜形成物質が析出するまで前記乾燥前処理液を常温常圧の空間で放置する自然蒸発工程と、前記基板の表面上の前記乾燥前処理液を加熱することにより、前記乾燥前処理液に含まれる溶媒を蒸発させる加熱工程と、前記乾燥前処理液に含まれる溶媒を蒸発させる蒸発促進ガスを前記基板の表面上の前記乾燥前処理液に接触させる蒸発促進ガス供給工程と、前記基板の表面上の前記乾燥前処理液に接する雰囲気の圧力を低下させる減圧工程と、前記基板の表面上の前記乾燥前処理液に超音波振動を与える超音波振動付与工程と、の少なくとも一つを含んでいてもよい。 The deposition step includes a spontaneous evaporation step in which the drying pretreatment liquid is allowed to stand in a room at room temperature and normal pressure until the solidified film forming substance is precipitated by evaporation of a solvent contained in the drying pretreatment liquid, and on the surface of the substrate. A heating step of evaporating the solvent contained in the pre-drying liquid by heating the pre-drying liquid, and an evaporation promoting gas for evaporating the solvent contained in the pre-drying liquid on the surface of the substrate. An evaporation-promoting gas supply step of contacting the pre-drying treatment liquid, a pressure-reducing step of reducing the pressure of an atmosphere in contact with the pre-drying treatment liquid on the surface of the substrate, and Ultrasonic vibration applying step of applying ultrasonic vibration.
 前記固化膜除去工程は、前記固化膜を昇華させる昇華工程と、前記固化膜の分解(たとえば熱分解や光分解)により前記固化膜を固体または液体から気体に変化させる分解工程と、前記固化膜の反応(たとえば酸化反応)により前記固化膜を固体または液体から気体に変化させる反応工程と、前記固化膜にプラズマを照射するプラズマ照射工程と、のうちの少なくとも一つを含んでいてもよい。 The solidified film removing step includes a sublimation step of sublimating the solidified film, a decomposition step of changing the solidified film from a solid or a liquid to a gas by decomposition (for example, thermal decomposition or photolysis) of the solidified film; (E.g., an oxidation reaction) to convert the solidified film from a solid or a liquid to a gas, and a plasma irradiation process of irradiating the solidified film with plasma.
 前記昇華工程は、前記基板を水平に保持しながら鉛直な回転軸線まわりに回転させる基板回転工程と、気体を前記固化膜に吹き付ける気体供給工程と、前記固化膜を加熱する加熱工程と、前記固化膜に接する雰囲気の圧力を低下させる減圧工程と、前記固化膜に光を照射する光照射工程と、前記固化膜に超音波振動を与える超音波振動付与工程と、のうちの少なくとも一つを含んでいてもよい。前記分解工程は、前記加熱工程、光照射工程、および超音波振動付与工程の少なくとも一つを含んでいてもよい。前記反応工程は、オゾンガスなどの活性ガスを前記固化膜に接触させることにより、前記固化膜を酸化させる酸化工程を含んでいてもよい。 The sublimation step includes: a substrate rotation step of rotating the substrate about a vertical rotation axis while holding the substrate horizontally; a gas supply step of blowing gas onto the solidified film; a heating step of heating the solidified film; At least one of a pressure reduction step of reducing the pressure of an atmosphere in contact with the film, a light irradiation step of irradiating the solidified film with light, and an ultrasonic vibration applying step of applying ultrasonic vibration to the solidified film is included. You may go out. The decomposition step may include at least one of the heating step, the light irradiation step, and the ultrasonic vibration applying step. The reaction step may include an oxidation step of oxidizing the solidified film by bringing an active gas such as ozone gas into contact with the solidified film.
 本発明の他の実施形態は、固化膜形成物質の固体を運搬する固形物運搬手段と、前記固化膜形成物質の融解、および、基板上での前記固化膜形成物質の溶解、の少なくとも一方により、運搬された前記固化膜形成物質を含む乾燥前処理液を作成する乾燥前処理液作成手段と、前記基板の表面上の前記乾燥前処理液を凝固または析出により固化させることにより、前記固化膜形成物質を含む固化膜を前記基板の表面に形成する固化膜形成手段と、前記固化膜を気体に変化させることにより前記基板の表面から除去する固化膜除去手段とを備える、基板処理装置を提供する。この構成によれば、前述の効果と同様の効果を奏することができる。 Another embodiment of the present invention is a solid transporting means for transporting a solid of the solidified film-forming substance, melting of the solidified film-forming substance, and at least one of dissolution of the solidified film-forming substance on a substrate. A drying pretreatment liquid preparation means for preparing a transported pretreatment liquid containing the solidified film forming substance, and the solidification film by solidifying the drying pretreatment liquid on the surface of the substrate by coagulation or precipitation. A substrate processing apparatus comprising: a solidified film forming unit that forms a solidified film containing a forming substance on the surface of the substrate; and a solidified film removing unit that removes the solidified film from the surface of the substrate by changing the solidified film into a gas. I do. According to this configuration, the same effect as the above-described effect can be obtained.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above or other objects, features, and effects of the present invention will be apparent from the following description of embodiments with reference to the accompanying drawings.
本発明の第1実施形態に係る基板処理装置を上から見た模式図である。FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. 基板処理装置を側方から見た模式図である。It is the schematic diagram which looked at the substrate processing apparatus from the side. 基板処理装置に備えられた処理ユニットの内部を水平に見た模式図である。FIG. 3 is a schematic view of the inside of a processing unit provided in the substrate processing apparatus as viewed horizontally. ノズルに固形物を運搬する固形物運搬システムについて説明するための模式図である。FIG. 2 is a schematic diagram for describing a solid transport system that transports a solid to a nozzle. ノズルおよび蓋を図3Aに示す矢印IIIBの方向に見た模式図である。It is the schematic diagram which looked at the nozzle and the lid | cover in the direction of arrow IIIB shown in FIG. 3A. 固形物の形態の一例を示す模式図である。It is a schematic diagram which shows an example of the form of a solid. 固形物の形態の他の例を示す模式図である。It is a schematic diagram which shows another example of the form of a solid. 制御装装置のハードウェアを示すブロック図である。It is a block diagram showing hardware of a control equipment. 基板処理装置によって行われる基板の処理の一例(第1処理例)について説明するための工程図である。It is a process figure for explaining an example (the 1st processing example) of processing of a substrate performed by a substrate processing device. 図6に示す処理が行われているときの基板の状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed. 図6に示す処理が行われているときの基板の状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed. 図6に示す処理が行われているときの基板の状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed. 図6に示す処理が行われているときの基板の状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed. 図6に示す処理が行われているときの基板の状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed. 図6に示す処理が行われているときの基板の状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed. 図6に示す処理が行われているときの基板の状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 6 is performed. 時間の経過に伴う基板の回転速度の変化の一例を示すグラフである。5 is a graph illustrating an example of a change in the rotation speed of a substrate over time. 基板処理装置によって行われる基板の処理の一例(第2処理例)について説明するための工程図である。FIG. 9 is a process chart for describing an example (second processing example) of substrate processing performed by the substrate processing apparatus. 図9に示す処理が行われているときの基板の状態を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed. 図9に示す処理が行われているときの基板の状態を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed. 図9に示す処理が行われているときの基板の状態を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed. 図9に示す処理が行われているときの基板の状態を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed. 図9に示す処理が行われているときの基板の状態を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed. 図9に示す処理が行われているときの基板の状態を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 9 is performed. 本発明の第2実施形態に係るスピンチャック、遮断部材、およびクーリングプレートを水平に見た模式図である。It is the mimetic diagram which looked at a spin chuck, a blocking member, and a cooling plate concerning a 2nd embodiment of the present invention horizontally. 本発明の第2実施形態に係るスピンチャックおよびクーリングプレートを上から見た模式図である。It is the schematic diagram which looked at the spin chuck and cooling plate which concern on 2nd Embodiment of this invention from the upper part. ウェット処理ユニットからドライ処理ユニットへの本発明の第3実施形態に係る基板の搬送について説明するための模式図である。It is a mimetic diagram for explaining conveyance of a substrate concerning a 3rd embodiment of the present invention from a wet processing unit to a dry processing unit. 本発明の第4実施形態に係る固形物運搬融解システムについて説明するための模式図である。It is a mimetic diagram for explaining a solid thing conveyance melting system concerning a 4th embodiment of the present invention. ノズルおよび蓋を図13Aに示す矢印XIIIBの方向に見た模式図である。FIG. 13B is a schematic view of the nozzle and the lid as viewed in the direction of arrow XIIIB shown in FIG. 13A. 基板処理装置によって行われる基板の処理の一例(第3処理例)について説明するための工程図である。It is a process figure for explaining an example (the 3rd processing example) of substrate processing performed by a substrate processing device. 図14に示す処理が行われているときの固形物の変化を示す模式図である。FIG. 15 is a schematic diagram illustrating a change in solid matter when the processing illustrated in FIG. 14 is performed. 図14に示す処理が行われているときの固形物の変化を示す模式図である。FIG. 15 is a schematic diagram illustrating a change in solid matter when the processing illustrated in FIG. 14 is performed. 図14に示す処理が行われているときの固形物の変化を示す模式図である。FIG. 15 is a schematic diagram illustrating a change in solid matter when the processing illustrated in FIG. 14 is performed. 本発明の第5実施形態に係る固形物運搬融解システムについて説明するための模式図である。It is a mimetic diagram for explaining the solid matter transportation melting system concerning a 5th embodiment of the present invention. 固形物を融解タンクに運搬し、運搬された固形物を融解させるときの固形物の変化を示す模式図である。It is a schematic diagram which shows the change of a solid material when a solid material is conveyed to a melting tank and the conveyed solid material is melted. 固形物を融解タンクに運搬し、運搬された固形物を融解させるときの固形物の変化を示す模式図である。It is a schematic diagram which shows the change of a solid material when a solid material is conveyed to a melting tank and the conveyed solid material is melted. 固形物を融解タンクに運搬し、運搬された固形物を融解させるときの固形物の変化を示す模式図である。It is a schematic diagram which shows the change of a solid material when a solid material is conveyed to a melting tank and the conveyed solid material is melted. 固形物を融解タンクに運搬し、運搬された固形物を融解させるときの固形物の変化を示す模式図である。It is a schematic diagram which shows the change of a solid material when a solid material is conveyed to a melting tank and the conveyed solid material is melted. 固形物を融解タンクに運搬し、運搬された固形物を融解させるときの固形物の変化を示す模式図である。It is a schematic diagram which shows the change of a solid material when a solid material is conveyed to a melting tank and the conveyed solid material is melted. 本発明の第6実施形態に係る固形物運搬融解システムについて説明するための模式図である。It is a mimetic diagram for explaining a solid thing conveyance melting system concerning a 6th embodiment of the present invention. 本発明の第7実施形態に係る固形物運搬融解システムについて説明するための模式図である。It is a mimetic diagram for explaining the solid matter transportation melting system concerning a 7th embodiment of the present invention. 本発明の第7実施形態に係る固形物運搬融解システムについて説明するための模式図である。It is a mimetic diagram for explaining the solid matter transportation melting system concerning a 7th embodiment of the present invention. ノズルを移動させながら、ノズルに固形物を吐出させている状態を示す模式図である。It is a schematic diagram which shows the state which discharges a solid substance to a nozzle, moving a nozzle. 固化膜を基板の上面から除去しているときに、基板の上面上の固化膜を冷却している状態を示す模式図である。FIG. 4 is a schematic view showing a state where the solidified film on the upper surface of the substrate is being cooled while the solidified film is being removed from the upper surface of the substrate.
 以下の説明において、基板処理装置1内の気圧は、特に断りがない限り、基板処理装置1が設置されるクリーンルーム内の気圧(たとえば1気圧またはその近傍の値)に維持されているものとする。 In the following description, it is assumed that the pressure in the substrate processing apparatus 1 is maintained at a pressure in a clean room in which the substrate processing apparatus 1 is installed (for example, 1 atm or a value close thereto) unless otherwise specified. .
 図1Aは、本発明の第1実施形態に係る基板処理装置1を上から見た模式図である。図1Bは、基板処理装置1を側方から見た模式図である。 FIG. 1A is a schematic view of the substrate processing apparatus 1 according to the first embodiment of the present invention as viewed from above. FIG. 1B is a schematic view of the substrate processing apparatus 1 as viewed from the side.
 図1Aに示すように、基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板Wを収容するキャリアCを保持するロードポートLPと、ロードポートLP上のキャリアCから搬送された基板Wを処理する複数の処理ユニット2と、ロードポートLP上のキャリアCと処理ユニット2との間で基板Wを搬送する搬送ロボットと、基板処理装置1を制御する制御装置3とを備えている。 As shown in FIG. 1A, the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one. The substrate processing apparatus 1 includes a load port LP that holds a carrier C containing a substrate W, a plurality of processing units 2 that process the substrate W transferred from the carrier C on the load port LP, and a carrier on the load port LP. A transfer robot that transfers the substrate W between C and the processing unit 2 and a control device 3 that controls the substrate processing apparatus 1 are provided.
 搬送ロボットは、ロードポートLP上のキャリアCに対して基板Wの搬入および搬出を行うインデクサロボットIRと、複数の処理ユニット2に対して基板Wの搬入および搬出を行うセンターロボットCRとを含む。インデクサロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送し、センターロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。センターロボットCRは、基板Wを支持するハンドH1を含み、インデクサロボットIRは、基板Wを支持するハンドH2を含む。 The transfer robot includes an indexer robot IR for loading and unloading the substrate W to and from the carrier C on the load port LP, and a center robot CR for loading and unloading the substrate W to and from the plurality of processing units 2. The indexer robot IR transports the substrate W between the load port LP and the center robot CR, and the center robot CR transports the substrate W between the indexer robot IR and the processing unit 2. The center robot CR includes a hand H1 that supports the substrate W, and the indexer robot IR includes a hand H2 that supports the substrate W.
 複数の処理ユニット2は、平面視でセンターロボットCRのまわりに配置された複数のタワーTWを形成している。図1Aは、4つのタワーTWが形成されている例を示している。センターロボットCRは、いずれのタワーTWにもアクセス可能である。図1Bに示すように、各タワーTWは、上下に積層された複数(たとえば3つ)の処理ユニット2を含む。 (4) The plurality of processing units 2 form a plurality of towers TW arranged around the center robot CR in plan view. FIG. 1A shows an example in which four towers TW are formed. The center robot CR can access any of the towers TW. As shown in FIG. 1B, each tower TW includes a plurality (for example, three) of processing units 2 stacked vertically.
 基板処理装置1は、バルブ等の流体機器を収容する複数の流体ボックスFBを含む。図1Aに示すように、複数の流体ボックスFBは、平面視で離れた4つの場所に配置されている。図1Bに示すように、流体ボックスFBは、チャンバー4の側方に配置されている。処理液などの基板Wの処理に用いられる物質は、いずれかの流体ボックスFBを介して処理ユニット2に供給される。 The substrate processing apparatus 1 includes a plurality of fluid boxes FB that house fluid devices such as valves. As shown in FIG. 1A, the plurality of fluid boxes FB are arranged at four places separated in plan view. As shown in FIG. 1B, the fluid box FB is arranged on the side of the chamber 4. A substance used for processing the substrate W, such as a processing liquid, is supplied to the processing unit 2 via one of the fluid boxes FB.
 図2は、基板処理装置1に備えられた処理ユニット2の内部を水平に見た模式図である。 FIG. 2 is a schematic view of the inside of the processing unit 2 provided in the substrate processing apparatus 1 as viewed horizontally.
 処理ユニット2は、薬液やリンス液などの処理液で基板Wを処理するウェット処理ユニット2wである。処理ユニット2は、内部空間を有する箱型のチャンバー4と、チャンバー4内で1枚の基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに回転させるスピンチャック10と、回転軸線A1まわりにスピンチャック10を取り囲む筒状の処理カップ21とを含む。 The processing unit 2 is a wet processing unit 2 w that processes the substrate W with a processing liquid such as a chemical solution or a rinsing liquid. The processing unit 2 includes a box-shaped chamber 4 having an internal space, and a spin chuck 10 that rotates about a vertical rotation axis A1 passing through a central portion of the substrate W while holding one substrate W in the chamber 4 horizontally. And a cylindrical processing cup 21 surrounding the spin chuck 10 around the rotation axis A1.
 チャンバー4は、基板Wが通過する搬入搬出口5bが設けられた箱型の隔壁5と、搬入搬出口5bを開閉するシャッター7とを含む。FFU6(ファン・フィルター・ユニット)は、隔壁5の上部に設けられた送風口5aの上に配置されている。FFU6は、クリーンエアー(フィルターによってろ過された空気)を送風口5aからチャンバー4内に常時供給する。チャンバー4内の気体は、処理カップ21の底部に接続された排気ダクト8を通じてチャンバー4から排出される。これにより、クリーンエアーのダウンフローがチャンバー4内に常時形成される。排気ダクト8に排出される排気の流量は、排気ダクト8内に配置された排気バルブ9の開度に応じて変更される。 The chamber 4 includes a box-shaped partition wall 5 provided with a loading / unloading port 5b through which the substrate W passes, and a shutter 7 for opening and closing the loading / unloading port 5b. The FFU 6 (fan filter unit) is arranged on a blower port 5 a provided above the partition wall 5. The FFU 6 always supplies clean air (air filtered by a filter) to the inside of the chamber 4 from the blower port 5a. The gas in the chamber 4 is exhausted from the chamber 4 through an exhaust duct 8 connected to the bottom of the processing cup 21. Thereby, a down flow of clean air is always formed in the chamber 4. The flow rate of the exhaust gas discharged to the exhaust duct 8 is changed according to the opening of the exhaust valve 9 arranged in the exhaust duct 8.
 スピンチャック10は、水平な姿勢で保持された円板状のスピンベース12と、スピンベース12の上方で基板Wを水平な姿勢で保持する複数のチャックピン11と、スピンベース12の中央部から下方に延びるスピン軸13と、スピン軸13を回転させることによりスピンベース12および複数のチャックピン11を回転させるスピンモータ14とを含む。スピンチャック10は、複数のチャックピン11を基板Wの外周面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース12の上面12uに吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 The spin chuck 10 includes a disk-shaped spin base 12 held in a horizontal position, a plurality of chuck pins 11 for holding a substrate W in a horizontal position above the spin base 12, and a spin base 12 having a central portion. It includes a spin shaft 13 extending downward, and a spin motor 14 that rotates the spin base 12 and the plurality of chuck pins 11 by rotating the spin shaft 13. The spin chuck 10 is not limited to a pinch type chuck in which the plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and causes the back surface (lower surface) of the substrate W, which is a non-device formation surface, to be attracted to the upper surface 12 u of the spin base 12. Thus, a vacuum-type chuck that holds the substrate W horizontally may be used.
 処理カップ21は、基板Wから外方に排出された処理液を受け止める複数のガード24と、複数のガード24によって下方に案内された処理液を受け止める複数のカップ23と、複数のガード24および複数のカップ23を取り囲む円筒状の外壁部材22とを含む。図2は、4つのガード24と3つのカップ23とが設けられており、最も外側のカップ23が上から3番目のガード24と一体である例を示している。 The processing cup 21 includes a plurality of guards 24 for receiving the processing liquid discharged outward from the substrate W, a plurality of cups 23 for receiving the processing liquid guided downward by the plurality of guards 24, a plurality of guards 24 and a plurality of guards. And a cylindrical outer wall member 22 surrounding the cup 23. FIG. 2 shows an example in which four guards 24 and three cups 23 are provided, and the outermost cup 23 is integrated with the third guard 24 from the top.
 ガード24は、スピンチャック10を取り囲む円筒部25と、円筒部25の上端部から回転軸線A1に向かって斜め上に延びる円環状の天井部26とを含む。複数の天井部26は、上下に重なっており、複数の円筒部25は、同心円状に配置されている。天井部26の円環状の上端は、平面視で基板Wおよびスピンベース12を取り囲むガード24の上端24uに相当する。複数のカップ23は、それぞれ、複数の円筒部25の下方に配置されている。カップ23は、ガード24によって下方に案内された処理液を受け止める環状の受液溝を形成している。 The guard 24 includes a cylindrical portion 25 surrounding the spin chuck 10 and an annular ceiling portion 26 extending obliquely upward from the upper end of the cylindrical portion 25 toward the rotation axis A1. The plurality of ceiling portions 26 are vertically overlapped, and the plurality of cylindrical portions 25 are arranged concentrically. The annular upper end of the ceiling 26 corresponds to the upper end 24u of the guard 24 surrounding the substrate W and the spin base 12 in plan view. The plurality of cups 23 are arranged below the plurality of cylindrical portions 25, respectively. The cup 23 has an annular liquid receiving groove for receiving the processing liquid guided downward by the guard 24.
 処理ユニット2は、複数のガード24を個別に昇降させるガード昇降ユニット27を含む。ガード昇降ユニット27は、上位置から下位置までの任意の位置にガード24を位置させる。図2は、2つのガード24が上位置に配置されており、残り2つのガード24が下位置に配置されている状態を示している。上位置は、ガード24の上端24uがスピンチャック10に保持されている基板Wが配置される保持位置よりも上方に配置される位置である。下位置は、ガード24の上端24uが保持位置よりも下方に配置される位置である。 The processing unit 2 includes a guard elevating unit 27 for individually elevating and lowering the plurality of guards 24. The guard elevating unit 27 positions the guard 24 at an arbitrary position from the upper position to the lower position. FIG. 2 shows a state in which two guards 24 are arranged at the upper position and the remaining two guards 24 are arranged at the lower position. The upper position is a position where the upper end 24u of the guard 24 is located above the holding position where the substrate W held by the spin chuck 10 is located. The lower position is a position where the upper end 24u of the guard 24 is disposed below the holding position.
 回転している基板Wに処理液を供給するときは、少なくとも一つのガード24が上位置に配置される。この状態で、処理液が基板Wに供給されると、処理液が遠心力で基板Wから振り切られる。振り切られた処理液は、基板Wに水平に対向するガード24の内面に衝突し、このガード24に対応するカップ23に案内される。これにより、基板Wから排出された処理液が処理カップ21に集められる。 (4) When supplying the processing liquid to the rotating substrate W, at least one guard 24 is arranged at the upper position. In this state, when the processing liquid is supplied to the substrate W, the processing liquid is shaken off the substrate W by centrifugal force. The processing liquid shaken off collides with the inner surface of the guard 24 horizontally facing the substrate W, and is guided to the cup 23 corresponding to the guard 24. Thus, the processing liquid discharged from the substrate W is collected in the processing cup 21.
 処理ユニット2は、スピンチャック10に保持されている基板Wに向けて処理液を吐出する複数のノズルを含む。複数のノズルは、基板Wの上面に向けて薬液を吐出する薬液ノズル31と、基板Wの上面に向けてリンス液を吐出するリンス液ノズル35と、基板Wの上面に向けて固形物100(図4Aおよび図4B参照)を吐出するノズル39と、基板Wの上面に向けて置換液を吐出する置換液ノズル43とを含む。 The processing unit 2 includes a plurality of nozzles for discharging the processing liquid toward the substrate W held by the spin chuck 10. The plurality of nozzles include a chemical liquid nozzle 31 for discharging a chemical liquid toward the upper surface of the substrate W, a rinsing liquid nozzle 35 for discharging a rinsing liquid toward the upper surface of the substrate W, and a solid substance 100 ( 4A and 4B), and a replacement liquid nozzle 43 for discharging a replacement liquid toward the upper surface of the substrate W.
 薬液ノズル31は、チャンバー4内で水平に移動可能なスキャンノズルであってもよいし、チャンバー4の隔壁5に対して固定された固定ノズルであってもよい。リンス液ノズル35、ノズル39、および置換液ノズル43についても同様である。図2は、薬液ノズル31、リンス液ノズル35、ノズル39、および置換液ノズル43が、スキャンノズルであり、これら4つのノズルにそれぞれ対応する4つのノズル移動ユニットが設けられている例を示している。 The chemical liquid nozzle 31 may be a scan nozzle that can move horizontally in the chamber 4 or a fixed nozzle fixed to the partition 5 of the chamber 4. The same applies to the rinsing liquid nozzle 35, the nozzle 39, and the replacement liquid nozzle 43. FIG. 2 shows an example in which the chemical liquid nozzle 31, the rinsing liquid nozzle 35, the nozzle 39, and the replacement liquid nozzle 43 are scan nozzles, and four nozzle moving units respectively corresponding to these four nozzles are provided. I have.
 薬液ノズル31は、薬液ノズル31に薬液を案内する薬液配管32に接続されている。薬液配管32に介装された薬液バルブ33が開かれると、薬液が、薬液ノズル31の吐出口から下方に連続的に吐出される。薬液ノズル31から吐出される薬液は、硫酸、硝酸、塩酸、フッ酸、リン酸、酢酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、および腐食防止剤の少なくとも1つを含む液であってもよいし、これ以外の液体であってもよい。 The chemical liquid nozzle 31 is connected to a chemical liquid pipe 32 for guiding the chemical liquid to the chemical liquid nozzle 31. When the chemical liquid valve 33 interposed in the chemical liquid pipe 32 is opened, the chemical liquid is continuously discharged downward from the discharge port of the chemical liquid nozzle 31. The chemical discharged from the chemical nozzle 31 includes sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, an organic acid (for example, citric acid, oxalic acid, etc.), and an organic alkali (for example, TMAH: It may be a liquid containing at least one of tetramethylammonium hydroxide, a surfactant, and a corrosion inhibitor, or may be another liquid.
 図示はしないが、薬液バルブ33は、薬液が流れる内部流路と内部流路を取り囲む環状の弁座とが設けられたバルブボディと、弁座に対して移動可能な弁体と、弁体が弁座に接触する閉位置と弁体が弁座から離れた開位置との間で弁体を移動させるアクチュエータとを含む。他のバルブについても同様である。アクチュエータは、空圧アクチュエータまたは電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。制御装置3は、アクチュエータを制御することにより、薬液バルブ33を開閉させる。 Although not shown, the chemical liquid valve 33 includes a valve body provided with an internal flow path through which a chemical liquid flows and an annular valve seat surrounding the internal flow path, a valve body movable with respect to the valve seat, and a valve body. An actuator for moving the valve body between a closed position in contact with the valve seat and an open position where the valve body is away from the valve seat. The same applies to other valves. The actuator may be a pneumatic actuator or an electric actuator, or may be another actuator. The control device 3 opens and closes the chemical liquid valve 33 by controlling the actuator.
 薬液ノズル31は、鉛直方向および水平方向の少なくとも一方に薬液ノズル31を移動させるノズル移動ユニット34に接続されている。ノズル移動ユニット34は、薬液ノズル31から吐出された薬液が基板Wの上面に供給される処理位置と、薬液ノズル31が平面視で処理カップ21のまわりに位置する待機位置と、の間で薬液ノズル31を水平に移動させる。 The chemical liquid nozzle 31 is connected to a nozzle moving unit 34 that moves the chemical liquid nozzle 31 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 34 moves the chemical solution between the processing position where the chemical solution discharged from the chemical solution nozzle 31 is supplied to the upper surface of the substrate W and the standby position where the chemical solution nozzle 31 is positioned around the processing cup 21 in plan view. The nozzle 31 is moved horizontally.
 リンス液ノズル35は、リンス液ノズル35にリンス液を案内するリンス液配管36に接続されている。リンス液配管36に介装されたリンス液バルブ37が開かれると、リンス液が、リンス液ノズル35の吐出口から下方に連続的に吐出される。リンス液ノズル35から吐出されるリンス液は、たとえば、純水(脱イオン水:DIW(Deionized Water))である。リンス液は、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)の塩酸水のいずれかであってもよい。 The rinsing liquid nozzle 35 is connected to a rinsing liquid pipe 36 for guiding the rinsing liquid to the rinsing liquid nozzle 35. When the rinse liquid valve 37 interposed in the rinse liquid pipe 36 is opened, the rinse liquid is continuously discharged downward from the discharge port of the rinse liquid nozzle 35. The rinsing liquid discharged from the rinsing liquid nozzle 35 is, for example, pure water (deionized water: DIW (Deionized Water)). The rinsing liquid may be any of carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a dilute concentration (for example, about 10 to 100 ppm).
 リンス液ノズル35は、鉛直方向および水平方向の少なくとも一方にリンス液ノズル35を移動させるノズル移動ユニット38に接続されている。ノズル移動ユニット38は、リンス液ノズル35から吐出されたリンス液が基板Wの上面に供給される処理位置と、リンス液ノズル35が平面視で処理カップ21のまわりに位置する待機位置と、の間でリンス液ノズル35を水平に移動させる。 The rinse liquid nozzle 35 is connected to a nozzle moving unit 38 that moves the rinse liquid nozzle 35 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 38 includes a processing position where the rinsing liquid discharged from the rinsing liquid nozzle 35 is supplied to the upper surface of the substrate W, and a standby position where the rinsing liquid nozzle 35 is positioned around the processing cup 21 in a plan view. The rinse liquid nozzle 35 is moved horizontally between them.
 ノズル39は、ノズル39に固形物100(図4Aおよび図4B参照)を案内する固形物配管40に接続されている。固形物100用の受け皿に相当する蓋95が開かれると、固形物100が、ノズル39の吐出口39pから下方に連続的に吐出される。同様に、置換液ノズル43は、置換液ノズル43に置換液を案内する置換液配管44に接続されている。置換液配管44に介装された置換液バルブ45が開かれると、置換液が、置換液ノズル43の吐出口から下方に連続的に吐出される。 The nozzle 39 is connected to a solid pipe 40 for guiding the solid 100 (see FIGS. 4A and 4B) to the nozzle 39. When the lid 95 corresponding to the tray for the solid 100 is opened, the solid 100 is continuously discharged downward from the discharge port 39p of the nozzle 39. Similarly, the replacement liquid nozzle 43 is connected to a replacement liquid pipe 44 that guides the replacement liquid to the replacement liquid nozzle 43. When the replacement liquid valve 45 interposed in the replacement liquid pipe 44 is opened, the replacement liquid is continuously discharged downward from the discharge port of the replacement liquid nozzle 43.
 後述するように、置換液は、リンス液の液膜で覆われた基板Wの上面に供給され、固形物100は、置換液の液膜で覆われた基板Wの上面に供給される。置換液は、リンス液と溶け合う液体である。置換液は、固形物100と溶け合う液体であってもよい。置換液は、たとえば、IPAである。IPAは、水およびフッ化炭化水素化合物の両方と溶け合う液体である。置換液は、IPAおよびHFE(ハイドロフルオロエーテル)の混合液であってもよい。 As described later, the replacement liquid is supplied to the upper surface of the substrate W covered with the liquid film of the rinsing liquid, and the solid matter 100 is supplied to the upper surface of the substrate W covered with the liquid film of the replacement liquid. The replacement liquid is a liquid that dissolves in the rinsing liquid. The replacement liquid may be a liquid that dissolves in the solid 100. The replacement liquid is, for example, IPA. IPA is a liquid that is compatible with both water and fluorohydrocarbon compounds. The replacement liquid may be a mixed liquid of IPA and HFE (hydrofluoroether).
 リンス液の液膜で覆われた基板Wの上面に置換液が供給されると、基板W上の殆どのリンス液は、置換液によって押し流され、基板Wから排出される。残りの微量のリンス液は、置換液に溶け込み、置換液中に拡散する。拡散したリンス液は、置換液とともに基板Wから排出される。したがって、基板W上のリンス液を効率的に置換液に置換できる。これにより、基板W上の置換液に含まれるリンス液を減らすことができる。 When the replacement liquid is supplied to the upper surface of the substrate W covered with the rinsing liquid film, most of the rinsing liquid on the substrate W is washed away by the replacement liquid and discharged from the substrate W. The remaining trace amount of the rinse solution dissolves in the replacement solution and diffuses into the replacement solution. The diffused rinsing liquid is discharged from the substrate W together with the replacement liquid. Therefore, the rinsing liquid on the substrate W can be efficiently replaced with the replacement liquid. Thereby, the rinsing liquid contained in the replacement liquid on the substrate W can be reduced.
 ノズル39は、鉛直方向および水平方向の少なくとも一方にノズル39を移動させるノズル移動ユニット42に接続されている。ノズル移動ユニット42は、ノズル39から吐出された固形物100が基板Wの上面に供給される処理位置と、ノズル39が平面視で処理カップ21のまわりに位置する待機位置と、の間でノズル39を水平に移動させる。同様に、置換液ノズル43は、鉛直方向および水平方向の少なくとも一方に置換液ノズル43を移動させるノズル移動ユニット46に接続されている。ノズル移動ユニット46は、置換液ノズル43から吐出された置換液が基板Wの上面に供給される処理位置と、置換液ノズル43が平面視で処理カップ21のまわりに位置する待機位置と、の間で置換液ノズル43を水平に移動させる。 The nozzle 39 is connected to a nozzle moving unit 42 that moves the nozzle 39 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 42 moves the nozzle between a processing position where the solids 100 discharged from the nozzle 39 are supplied to the upper surface of the substrate W and a standby position where the nozzle 39 is positioned around the processing cup 21 in a plan view. 39 is moved horizontally. Similarly, the replacement liquid nozzle 43 is connected to a nozzle moving unit 46 that moves the replacement liquid nozzle 43 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 46 includes a processing position where the replacement liquid discharged from the replacement liquid nozzle 43 is supplied to the upper surface of the substrate W, and a standby position where the replacement liquid nozzle 43 is positioned around the processing cup 21 in a plan view. The replacement liquid nozzle 43 is moved horizontally between them.
 処理ユニット2は、スピンチャック10の上方に配置された遮断部材51を含む。図2は、遮断部材51が円板状の遮断板である例を示している。遮断部材51は、スピンチャック10の上方に水平に配置された円板部52を含む。遮断部材51は、円板部52の中央部から上方に延びる筒状の支軸53によって水平に支持されている。円板部52の中心線は、基板Wの回転軸線A1上に配置されている。円板部52の下面は、遮断部材51の下面51Lに相当する。遮断部材51の下面51Lは、基板Wの上面に対向する対向面である。遮断部材51の下面51Lは、基板Wの上面と平行であり、基板Wの直径以上の外径を有している。 The processing unit 2 includes the blocking member 51 disposed above the spin chuck 10. FIG. 2 shows an example in which the blocking member 51 is a disk-shaped blocking plate. The blocking member 51 includes a disk portion 52 horizontally arranged above the spin chuck 10. The blocking member 51 is horizontally supported by a cylindrical support shaft 53 extending upward from the center of the disk portion 52. The center line of the disk portion 52 is arranged on the rotation axis A1 of the substrate W. The lower surface of the disk portion 52 corresponds to the lower surface 51L of the blocking member 51. The lower surface 51L of the blocking member 51 is a facing surface facing the upper surface of the substrate W. The lower surface 51L of the blocking member 51 is parallel to the upper surface of the substrate W and has an outer diameter equal to or larger than the diameter of the substrate W.
 遮断部材51は、遮断部材51を鉛直に昇降させる遮断部材昇降ユニット54に接続されている。遮断部材昇降ユニット54は、上位置(図2に示す位置)から下位置までの任意の位置に遮断部材51を位置させる。下位置は、薬液ノズル31などのスキャンノズルが基板Wと遮断部材51との間に進入できない高さまで遮断部材51の下面51Lが基板Wの上面に近接する近接位置である。上位置は、スキャンノズルが遮断部材51と基板Wとの間に進入可能な高さまで遮断部材51が退避した離間位置である。 The blocking member 51 is connected to a blocking member elevating unit 54 that vertically moves the blocking member 51 up and down. The blocking member elevating unit 54 positions the blocking member 51 at an arbitrary position from the upper position (the position shown in FIG. 2) to the lower position. The lower position is a proximity position where the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W to a height at which a scan nozzle such as the chemical nozzle 31 cannot enter between the substrate W and the blocking member 51. The upper position is a separated position where the blocking member 51 is retracted to a height at which the scan nozzle can enter between the blocking member 51 and the substrate W.
 複数のノズルは、遮断部材51の下面51Lの中央部で開口する上中央開口61を介して処理液や処理ガスなどの処理流体を下方に吐出する中心ノズル55を含む。中心ノズル55は、回転軸線A1に沿って上下に延びている。中心ノズル55は、遮断部材51の中央部を上下に貫通する貫通穴内に配置されている。遮断部材51の内周面は、径方向(回転軸線A1に直交する方向)に間隔を空けて中心ノズル55の外周面を取り囲んでいる。中心ノズル55は、遮断部材51とともに昇降する。処理液を吐出する中心ノズル55の吐出口は、遮断部材51の上中央開口61の上方に配置されている。 The plurality of nozzles include a central nozzle 55 that discharges a processing fluid, such as a processing liquid or a processing gas, downward through an upper central opening 61 that opens at the center of the lower surface 51L of the blocking member 51. The center nozzle 55 extends vertically along the rotation axis A1. The center nozzle 55 is disposed in a through hole vertically penetrating the center of the blocking member 51. The inner peripheral surface of the blocking member 51 surrounds the outer peripheral surface of the central nozzle 55 at intervals in the radial direction (the direction orthogonal to the rotation axis A1). The center nozzle 55 moves up and down together with the blocking member 51. The discharge port of the center nozzle 55 that discharges the processing liquid is disposed above the upper central opening 61 of the blocking member 51.
 中心ノズル55は、中心ノズル55に不活性ガスを案内する上気体配管56に接続されている。基板処理装置1は、中心ノズル55から吐出される不活性ガスを加熱または冷却する上温度調節器59を備えていてもよい。上気体配管56に介装された上気体バルブ57が開かれると、不活性ガスの流量を変更する流量調整バルブ58の開度に対応する流量で、不活性ガスが、中心ノズル55の吐出口から下方に連続的に吐出される。中心ノズル55から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。 The center nozzle 55 is connected to an upper gas pipe 56 for guiding the inert gas to the center nozzle 55. The substrate processing apparatus 1 may include an upper temperature controller 59 for heating or cooling the inert gas discharged from the central nozzle 55. When the upper gas valve 57 interposed in the upper gas pipe 56 is opened, the inert gas is discharged from the center nozzle 55 at a flow rate corresponding to the opening degree of the flow control valve 58 for changing the flow rate of the inert gas. Is continuously discharged downward. The inert gas discharged from the center nozzle 55 is a nitrogen gas. The inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
 遮断部材51の内周面と中心ノズル55の外周面は、上下に延びる筒状の上気体流路62を形成している。上気体流路62は、不活性ガスを遮断部材51の上中央開口61に導く上気体配管63に接続されている。基板処理装置1は、遮断部材51の上中央開口61から吐出される不活性ガスを加熱または冷却する上温度調節器66を備えていてもよい。上気体配管63に介装された上気体バルブ64が開かれると、不活性ガスの流量を変更する流量調整バルブ65の開度に対応する流量で、不活性ガスが、遮断部材51の上中央開口61から下方に連続的に吐出される。遮断部材51の上中央開口61から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。 内 The inner peripheral surface of the blocking member 51 and the outer peripheral surface of the center nozzle 55 form a cylindrical upper gas flow path 62 extending vertically. The upper gas passage 62 is connected to an upper gas pipe 63 that guides the inert gas to the upper central opening 61 of the blocking member 51. The substrate processing apparatus 1 may include an upper temperature controller 66 for heating or cooling the inert gas discharged from the upper central opening 61 of the blocking member 51. When the upper gas valve 64 interposed in the upper gas pipe 63 is opened, the inert gas flows in the upper center of the shut-off member 51 at a flow rate corresponding to the opening of the flow control valve 65 for changing the flow rate of the inert gas. The liquid is continuously discharged downward from the opening 61. The inert gas discharged from the upper central opening 61 of the blocking member 51 is a nitrogen gas. The inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
 複数のノズルは、基板Wの下面の中央部に向けて処理液を吐出する下面ノズル71を含む。下面ノズル71は、スピンベース12の上面12uと基板Wの下面との間に配置されたノズル円板部と、ノズル円板部から下方に延びるノズル筒状部とを含む。下面ノズル71の吐出口は、ノズル円板部の上面中央部で開口している。基板Wがスピンチャック10に保持されているときは、下面ノズル71の吐出口が、基板Wの下面の中央部に上下に対向する。 The plurality of nozzles include a lower surface nozzle 71 that discharges the processing liquid toward the center of the lower surface of the substrate W. The lower surface nozzle 71 includes a nozzle disk portion disposed between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle cylindrical portion extending downward from the nozzle disk portion. The discharge port of the lower nozzle 71 is open at the center of the upper surface of the nozzle disk. When the substrate W is held by the spin chuck 10, the discharge port of the lower surface nozzle 71 vertically faces the center of the lower surface of the substrate W.
 下面ノズル71は、加熱流体の一例である温水(室温よりも高温の純水)を下面ノズル71に案内する加熱流体配管72に接続されている。下面ノズル71に供給される純水は、加熱流体配管72に介装された下ヒータ75によって加熱される。加熱流体配管72に介装された加熱流体バルブ73が開かれると、温水の流量を変更する流量調整バルブ74の開度に対応する流量で、温水が、下面ノズル71の吐出口から上方に連続的に吐出される。これにより、温水が基板Wの下面に供給される。 The lower nozzle 71 is connected to a heating fluid pipe 72 that guides hot water (pure water higher than room temperature), which is an example of a heating fluid, to the lower nozzle 71. Pure water supplied to the lower nozzle 71 is heated by a lower heater 75 interposed in a heating fluid pipe 72. When the heating fluid valve 73 interposed in the heating fluid pipe 72 is opened, the hot water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 74 that changes the flow rate of the hot water. Is discharged. Thereby, the warm water is supplied to the lower surface of the substrate W.
 下面ノズル71は、さらに、冷却流体の一例である冷水(室温よりも低温の純水)を下面ノズル71に案内する冷却流体配管76に接続されている。下面ノズル71に供給される純水は、冷却流体配管76に介装されたクーラー79によって冷却される。冷却流体配管76に介装された冷却流体バルブ77が開かれると、冷水の流量を変更する流量調整バルブ78の開度に対応する流量で、冷水が、下面ノズル71の吐出口から上方に連続的に吐出される。これにより、冷水が基板Wの下面に供給される。 The lower nozzle 71 is further connected to a cooling fluid pipe 76 that guides cold water (pure water having a temperature lower than room temperature), which is an example of a cooling fluid, to the lower nozzle 71. The pure water supplied to the lower nozzle 71 is cooled by a cooler 79 interposed in the cooling fluid pipe 76. When the cooling fluid valve 77 interposed in the cooling fluid pipe 76 is opened, the cold water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 78 that changes the flow rate of the cold water. Is discharged. Thereby, the cold water is supplied to the lower surface of the substrate W.
 下面ノズル71の外周面とスピンベース12の内周面は、上下に延びる筒状の下気体流路82を形成している。下気体流路82は、スピンベース12の上面12uの中央部で開口する下中央開口81を含む。下気体流路82は、不活性ガスをスピンベース12の下中央開口81に導く下気体配管83に接続されている。基板処理装置1は、スピンベース12の下中央開口81から吐出される不活性ガスを加熱または冷却する下温度調節器86を備えていてもよい。下気体配管83に介装された下気体バルブ84が開かれると、不活性ガスの流量を変更する流量調整バルブ85の開度に対応する流量で、不活性ガスが、スピンベース12の下中央開口81から上方に連続的に吐出される。 The outer peripheral surface of the lower nozzle 71 and the inner peripheral surface of the spin base 12 form a cylindrical lower gas flow path 82 extending vertically. The lower gas flow path 82 includes a lower central opening 81 that opens at the center of the upper surface 12u of the spin base 12. The lower gas flow path 82 is connected to a lower gas pipe 83 that guides an inert gas to a lower central opening 81 of the spin base 12. The substrate processing apparatus 1 may include a lower temperature controller 86 that heats or cools the inert gas discharged from the lower center opening 81 of the spin base 12. When the lower gas valve 84 interposed in the lower gas pipe 83 is opened, the inert gas flows at the lower center of the spin base 12 at a flow rate corresponding to the opening of the flow rate adjustment valve 85 for changing the flow rate of the inert gas. The liquid is continuously discharged upward from the opening 81.
 スピンベース12の下中央開口81から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。基板Wがスピンチャック10に保持されているときに、スピンベース12の下中央開口81が窒素ガスを吐出すると、窒素ガスは、基板Wの下面とスピンベース12の上面12uとの間をあらゆる方向に放射状に流れる。これにより、基板Wとスピンベース12との間の空間が窒素ガスで満たされる。 The inert gas discharged from the lower center opening 81 of the spin base 12 is a nitrogen gas. The inert gas may be a gas other than nitrogen gas such as helium gas or argon gas. When the substrate W is held by the spin chuck 10 and the lower central opening 81 of the spin base 12 discharges nitrogen gas, the nitrogen gas flows between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in all directions. Flows radially. Thereby, the space between the substrate W and the spin base 12 is filled with the nitrogen gas.
 図3Aは、ノズル39に固形物100を運搬する固形物運搬システムについて説明するための模式図である。図3Bは、ノズル39および蓋95を図3Aに示す矢印IIIBの方向に見た模式図である。図4Aは、固形物100の形態の一例を示す模式図である。図4Bは、固形物100の形態の他の例を示す模式図である。 A FIG. 3A is a schematic diagram for explaining a solid transport system that transports the solid 100 to the nozzle 39. FIG. 3B is a schematic view of the nozzle 39 and the lid 95 as viewed in the direction of arrow IIIB shown in FIG. 3A. FIG. 4A is a schematic diagram showing an example of the form of the solid 100. FIG. 4B is a schematic view showing another example of the form of the solid material 100.
 図3Aに示すように、ノズル39は、鉛直に延びている。固形物配管40は、ノズル39から水平に延びている。基板処理装置1は、固形物100を貯留すると共に固形物配管40に供給する固形物タンク94と、固形物配管40内に配置されたスクリューコンベア91と、スクリューコンベア91を回転させることにより、固形物配管40内の固形物100をノズル39の方に送る運搬モータ92とを備えている。固形物タンク94は、固形物配管40の上方に配置されている。固形物タンク94の底部は、固形物配管40から上方に延びる供給配管93を介して固形物配管40に接続されている。 ノ ズ ル As shown in FIG. 3A, the nozzle 39 extends vertically. The solid matter pipe 40 extends horizontally from the nozzle 39. The substrate processing apparatus 1 stores the solids 100 and supplies the solids to the solids pipe 40, the screw conveyor 91 disposed in the solids pipe 40, and the solids by rotating the screw conveyor 91. A transport motor 92 that feeds the solids 100 in the product pipe 40 toward the nozzle 39 is provided. The solid matter tank 94 is arranged above the solid matter piping 40. The bottom of the solid matter tank 94 is connected to the solid matter pipe 40 via a supply pipe 93 extending upward from the solid matter pipe 40.
 基板処理装置1は、さらに、ノズル39の吐出口39pの下方に配置される蓋95と、閉位置と開位置との間で蓋95を水平に移動させる開閉モータ96とを備えている。図3Aは、鉛直な開閉軸線A2まわりに蓋95が開閉可能である例を示している。図3Bに示すように、蓋95の閉位置(実線で示す位置)は、ノズル39を下から見たときに、ノズル39の吐出口39pの全体が蓋95に重なる位置であり、蓋95の開位置(二点鎖線で示す位置)は、ノズル39を下から見たときに、ノズル39の吐出口39pのいずれの部分も蓋95に重ならない位置である。 The substrate processing apparatus 1 further includes a lid 95 disposed below the discharge port 39p of the nozzle 39, and an opening / closing motor 96 for horizontally moving the lid 95 between a closed position and an open position. FIG. 3A shows an example in which the lid 95 can be opened and closed around a vertical opening and closing axis A2. As shown in FIG. 3B, the closed position of the lid 95 (the position indicated by the solid line) is a position where the entire outlet 39 p of the nozzle 39 overlaps with the lid 95 when the nozzle 39 is viewed from below. The open position (the position indicated by the two-dot chain line) is a position where none of the discharge ports 39p of the nozzle 39 overlaps the lid 95 when the nozzle 39 is viewed from below.
 ノズル39に固形物100を吐出させるときは、開閉モータ96が蓋95を開位置に移動させる。この状態で、運搬モータ92がスクリューコンベア91を回転させる。固形物配管40内の固形物100は、スクリューコンベア91の回転によりノズル39の方に送られる。これにより、固形物配管40内の固形物100がノズル39の内部に供給される。ノズル39に供給された固形物100は、自重でノズル39内を落下し、ノズル39の吐出口39pを通過する。これにより、固形物100がノズル39から吐出される。そして、固形物配管40内の固形物100が少なくなると、固形物タンク94内の固形物100が供給配管93を介して固形物配管40の内部に補充される。 When the solids 100 are discharged from the nozzle 39, the opening / closing motor 96 moves the lid 95 to the open position. In this state, the transport motor 92 rotates the screw conveyor 91. The solid matter 100 in the solid matter pipe 40 is sent to the nozzle 39 by the rotation of the screw conveyor 91. Thus, the solid 100 in the solid pipe 40 is supplied into the nozzle 39. The solid matter 100 supplied to the nozzle 39 falls within the nozzle 39 by its own weight, and passes through the discharge port 39p of the nozzle 39. Thus, the solid material 100 is discharged from the nozzle 39. Then, when the amount of the solids 100 in the solid matter pipe 40 decreases, the solids 100 in the solid matter tank 94 are replenished into the solid matter pipe 40 via the supply pipe 93.
 図3Aに示すように、固形物配管40、固形物タンク94、運搬モータ92、および開閉モータ96は、ハウジング41内に配置されている。これらはハウジング41に保持されている。ノズル39および蓋95もハウジング41に保持されている。ノズル39の下端部は、ハウジング41から下方に突出している。ノズル39は、ハウジング41を介してノズル移動ユニット42に接続されている。ノズル移動ユニット42は、鉛直方向および水平方向の少なくとも一方にハウジング41を移動させる。これにより、ノズル39が移動する。 AAs shown in FIG. 3A, the solid matter pipe 40, the solid matter tank 94, the transport motor 92, and the opening / closing motor 96 are arranged in the housing 41. These are held by the housing 41. The nozzle 39 and the lid 95 are also held by the housing 41. The lower end of the nozzle 39 protrudes downward from the housing 41. The nozzle 39 is connected to a nozzle moving unit 42 via a housing 41. The nozzle moving unit 42 moves the housing 41 in at least one of the vertical direction and the horizontal direction. Thereby, the nozzle 39 moves.
 ノズル移動ユニット42は、ノズル39から吐出された固形物100が基板Wの上面に着地する処理位置と、ノズル39が平面視で処理カップ21のまわりに位置する待機位置と、の間でノズル39を水平に移動させる。ノズル移動ユニット42は、平面視で基板Wの中央部を通る円弧状の経路に沿ってノズル39を水平に移動させる旋回ユニットであってもよいし、平面視で基板Wの中央部を通る直線状の経路に沿ってノズル39を水平に移動させるスライドユニットであってもよい。 The nozzle moving unit 42 moves the nozzle 39 between the processing position at which the solid 100 discharged from the nozzle 39 lands on the upper surface of the substrate W and the standby position at which the nozzle 39 is positioned around the processing cup 21 in plan view. Is moved horizontally. The nozzle moving unit 42 may be a turning unit that horizontally moves the nozzle 39 along an arcuate path passing through the center of the substrate W in plan view, or a straight line passing through the center of the substrate W in plan view. It may be a slide unit that moves the nozzle 39 horizontally along the path of the shape.
 固形物100は、粉であってもよいし、粒の集りであってもよいし、粉および粒が結合した結合物の集りであってもよい。固形物100が粒の集りである場合、固形物100の1つの塊は、円柱状、角柱状、円錐状、または角錐状であってもよいし、これら以外であってもよい。図4Aは、固形物100が粉である例を示しており、図4Bは、固形物100の1つの塊が円柱状のペレットである例を示している。固形物100が粒の集りである場合、隣り合う複数の粒の間に比較的大きな隙間が形成されるので、固形物100が粉である場合に比べて固形物配管40が詰まり難い。 The solid material 100 may be a powder, a collection of grains, or a collection of a combination of powder and grains. When the solid 100 is a cluster of particles, one lump of the solid 100 may be cylindrical, prismatic, conical, pyramidal, or other. FIG. 4A shows an example in which the solid 100 is a powder, and FIG. 4B shows an example in which one lump of the solid 100 is a cylindrical pellet. When the solid 100 is a collection of grains, a relatively large gap is formed between a plurality of adjacent grains, so that the solid pipe 40 is less likely to be clogged than when the solid 100 is a powder.
 固形物100の1つの塊は、基板Wの直径よりも小さい。固形物100は、米粒大であってもよい。固形物100が基板Wの上面に衝突したときに、基板Wの表面に形成されたパターンP1(図7E参照)や基板W自体に傷や損傷が生じないのであれば、固形物100の1つの塊は、どのような大きさであってもよい。固形物100の1つの塊の高さ、幅、および奥行きのうちの最大値は、隣り合う2つのパターンP1の間隔G1(図7E参照)より大きいまたは小さくてもよいし、隣り合う2つのパターンP1の間隔G1と等しくてもよい。 塊 One lump of the solid 100 is smaller than the diameter of the substrate W. The solids 100 may be as large as rice grains. If the pattern 100 (see FIG. 7E) formed on the surface of the substrate W or the substrate W itself does not cause any damage or damage when the solid 100 collides with the upper surface of the substrate W, one of the solids 100 may be used. The chunks can be of any size. The maximum value of the height, width, and depth of one lump of the solid object 100 may be larger or smaller than the distance G1 (see FIG. 7E) between two adjacent patterns P1, or may be two adjacent patterns. It may be equal to the interval G1 of P1.
 固形物100は、固化膜101(図7F参照)を形成する固化膜形成物質の固体である。固化膜形成物質の凝固点(1気圧での凝固点。以下同様。)は、室温(23℃またはその近傍の値)よりも高い。固化膜形成物質の温度が室温のとき、固化膜形成物質は固体である。基板処理装置1は、室温に維持されたクリーンルーム内に配置されている。したがって、固化膜形成物質を冷却しなくても、固化膜形成物質を固体に維持できる。固化膜形成物質の凝固点は、室温以下であってもよい。 The solid material 100 is a solid of a solidified film forming substance that forms the solidified film 101 (see FIG. 7F). The freezing point of the solidified film-forming substance (freezing point at 1 atm. The same applies hereinafter) is higher than room temperature (23 ° C. or a value in the vicinity thereof). When the temperature of the solidified film-forming substance is room temperature, the solidified film-forming substance is solid. The substrate processing apparatus 1 is disposed in a clean room maintained at room temperature. Therefore, the solidified film-forming substance can be kept solid without cooling the solidified film-forming substance. The solidification point of the solidified film forming substance may be lower than room temperature.
 固化膜形成物質は、常温または常圧で液体を経ずに固体から気体に変化する昇華性物質であってもよいし、昇華性物質以外の物質であってもよい。固化膜形成物質は、単一物質であってもよいし、2つ以上の物質が混ざり合った混合物質であってもよい。たとえば、昇華性物質と昇華性物質以外の物質とが固形物100に含まれていてもよい。固形物100は、互いに異なる複数の物質の固体を含んでいてもよい。この場合、複数の物質は、別々に固化された後に混合されてもよい。 The solidified film-forming substance may be a sublimable substance that changes from a solid to a gas without passing through a liquid at normal temperature or normal pressure, or may be a substance other than the sublimable substance. The solidified film forming substance may be a single substance or a mixed substance in which two or more substances are mixed. For example, the solid 100 may include a sublimable substance and a substance other than the sublimable substance. The solid 100 may include solids of a plurality of different substances. In this case, the plurality of substances may be mixed after being separately solidified.
 昇華性物質は、たとえば、2-メチル-2-プロパノール(別名:tert-ブチルアルコール、t-ブチルアルコール、ターシャリーブチルアルコール)やシクロヘキサノールなどのアルコール類、フッ化炭化水素化合物、1,3,5-トリオキサン(別名:メタホルムアルデヒド)、しょうのう(別名:カンフル、カンファー)、ナフタレン、およびヨウ素のいずれかであってもよいし、これら以外の物質であってもよい。 Sublimable substances include, for example, alcohols such as 2-methyl-2-propanol (alias: tert-butyl alcohol, t-butyl alcohol, tert-butyl alcohol) and cyclohexanol, fluorinated hydrocarbon compounds, 1,3, It may be any of 5-trioxane (alias: metaformaldehyde), camphor (alias: camphor, camphor), naphthalene, and iodine, or a substance other than these.
 固化膜形成物質は、溶媒に溶解しない物質であってもよいし、溶媒に殆ど溶解しない物質(溶解度が極めて小さい物質)であってもよいし、溶媒に溶解する物質であってもよい。溶媒は、たとえば、純水、IPA、HFE、アセトン、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGEE(プロピレングリコールモノエチルエーテル、1-エトキシ-2-プロパノール)、シクロヘキサン、およびエチレングリコール、ハイドロフルオロカーボン(hydrofluorocarbon)からなる群より選ばれた少なくとも1種であってもよい。もしくは、昇華性物質が溶媒であってもよい。IPAおよびHFEは、水よりも表面張力が低く、水よりも蒸気圧が高い物質である。 The solidified film-forming substance may be a substance that does not dissolve in the solvent, may be a substance that hardly dissolves in the solvent (a substance having extremely low solubility), or may be a substance that dissolves in the solvent. The solvent is, for example, pure water, IPA, HFE, acetone, PGMEA (propylene glycol monomethyl ether acetate), PGEE (propylene glycol monoethyl ether, 1-ethoxy-2-propanol), cyclohexane, ethylene glycol, hydrofluorocarbon (hydrofluorocarbon). ) May be at least one selected from the group consisting of: Alternatively, the sublimable substance may be a solvent. IPA and HFE are substances having a lower surface tension than water and a higher vapor pressure than water.
 後述する基板Wの処理では、固形物100を基板W上で融解させる例と、固形物100を基板W上で溶媒に溶解させる例とについて説明する。固形物100を基板W上で融解させる場合、固化膜形成物質は、しょうのう、または、シクロヘキサノールであってもよい。固形物100を基板W上で溶媒に溶解させる場合、固化膜形成物質が、しょうのう、または、シクロヘキサノールであり、溶媒が、IPAまたはシクロヘキサンであってもよい。 In the processing of the substrate W described below, an example in which the solid 100 is melted on the substrate W and an example in which the solid 100 is dissolved in the solvent on the substrate W will be described. When the solid 100 is melted on the substrate W, the solidified film-forming substance may be camphor or cyclohexanol. When the solid 100 is dissolved in a solvent on the substrate W, the solidified film forming substance may be camphor or cyclohexanol, and the solvent may be IPA or cyclohexane.
 図5は、制御装置3のハードウェアを示すブロック図である。 FIG. 5 is a block diagram showing hardware of the control device 3. As shown in FIG.
 制御装置3は、コンピュータ本体3aと、コンピュータ本体3aに接続された周辺装置3dとを含む、コンピュータである。コンピュータ本体3aは、各種の命令を実行するCPU3b(central processing unit:中央処理装置)と、情報を記憶する主記憶装置3cとを含む。周辺装置3dは、プログラムP等の情報を記憶する補助記憶装置3eと、リムーバブルメディアRMから情報を読み取る読取装置3fと、ホストコンピュータ等の他の装置と通信する通信装置3gとを含む。 The control device 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a. The computer main body 3a includes a CPU 3b (central processing unit) for executing various instructions, and a main storage device 3c for storing information. The peripheral device 3d includes an auxiliary storage device 3e that stores information such as the program P, a reading device 3f that reads information from the removable medium RM, and a communication device 3g that communicates with another device such as a host computer.
 制御装置3は、入力装置および表示装置に接続されている。入力装置は、ユーザーやメンテナンス担当者などの操作者が基板処理装置1に情報を入力するときに操作される。情報は、表示装置の画面に表示される。入力装置は、キーボード、ポインティングデバイス、およびタッチパネルのいずれかであってもよいし、これら以外の装置であってもよい。入力装置および表示装置を兼ねるタッチパネルディスプレイが基板処理装置1に設けられていてもよい。 The control device 3 is connected to the input device and the display device. The input device is operated when an operator such as a user or a maintenance person inputs information to the substrate processing apparatus 1. The information is displayed on the screen of the display device. The input device may be any of a keyboard, a pointing device, and a touch panel, or may be other devices. A touch panel display serving also as an input device and a display device may be provided in the substrate processing apparatus 1.
 CPU3bは、補助記憶装置3eに記憶されたプログラムPを実行する。補助記憶装置3e内のプログラムPは、制御装置3に予めインストールされたものであってもよいし、読取装置3fを通じてリムーバブルメディアRMから補助記憶装置3eに送られたものであってもよいし、ホストコンピュータなどの外部装置から通信装置3gを通じて補助記憶装置3eに送られたものであってもよい。 (4) The CPU 3b executes the program P stored in the auxiliary storage device 3e. The program P in the auxiliary storage device 3e may be installed in the control device 3 in advance, or may be transmitted from the removable medium RM to the auxiliary storage device 3e through the reading device 3f, It may be transmitted from an external device such as a host computer to the auxiliary storage device 3e through the communication device 3g.
 補助記憶装置3eおよびリムーバブルメディアRMは、電力が供給されていなくても記憶を保持する不揮発性メモリーである。補助記憶装置3eは、たとえば、ハードディスクドライブ等の磁気記憶装置である。リムーバブルメディアRMは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。リムーバブルメディアRMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の一例である。リムーバブルメディアRMは、一時的ではない有形の記録媒体(non-transitory tangible recording medium)である。 (4) The auxiliary storage device 3e and the removable medium RM are non-volatile memories that retain data even when power is not supplied. The auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive. The removable medium RM is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card. The removable medium RM is an example of a computer-readable recording medium on which the program P is recorded. The removable medium RM is a non-transitory tangible recording medium (non-transitory \ tangible \ recording \ medium).
 補助記憶装置3eは、複数のレシピを記憶している。レシピは、基板Wの処理内容、処理条件、および処理手順を規定する情報である。複数のレシピは、基板Wの処理内容、処理条件、および処理手順の少なくとも一つにおいて互いに異なる。制御装置3は、ホストコンピュータによって指定されたレシピにしたがって基板Wが処理されるように基板処理装置1を制御する。制御装置3は、以下の各工程を実行するようにプログラムされている。 The auxiliary storage device 3e stores a plurality of recipes. The recipe is information that defines processing contents, processing conditions, and processing procedures for the substrate W. The plurality of recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W. The control device 3 controls the substrate processing apparatus 1 so that the substrate W is processed according to the recipe specified by the host computer. The control device 3 is programmed to execute the following steps.
 次に、基板Wを処理する2つの例について説明する。 Next, two examples of processing the substrate W will be described.
 処理される基板Wは、たとえば、シリコンウエハなどの半導体ウエハである。基板Wの表面は、トランジスタやキャパシタ等のデバイスが形成されるデバイス形成面に相当する。基板Wは、パターン形成面である基板Wの表面にパターンP1(図7E参照)が形成された基板Wであってもよいし、基板Wの表面にパターンP1が形成されていない基板Wであってもよい。後者の場合、後述する薬液供給工程でパターンP1が形成されてもよい。 The substrate W to be processed is, for example, a semiconductor wafer such as a silicon wafer. The surface of the substrate W corresponds to a device formation surface on which devices such as transistors and capacitors are formed. The substrate W may be a substrate W having a pattern P1 (see FIG. 7E) formed on the surface of the substrate W which is a pattern forming surface, or a substrate W having no pattern P1 formed on the surface of the substrate W. You may. In the latter case, the pattern P1 may be formed in a chemical solution supply step described later.
 第1処理例
 最初に、固形物100を基板W上で融解させる例について説明する。
First Processing Example First, an example in which the solid material 100 is melted on the substrate W will be described.
 図6は、基板処理装置1によって行われる基板Wの処理の一例(第1処理例)について説明するための工程図である。図7A~図7Gは、図6に示す処理が行われているときの基板Wの状態を示す模式図である。図8は、時間の経過に伴う基板Wの回転速度の変化の一例を示すグラフである。以下では、図2、図3A、および、図6を参照する。図7A~図7Gおよび図8については適宜参照する。固形物100を融解させる前に全てまたは殆ど全ての固形物100が置換液に溶解しないのであれば、固化膜形成物質は、置換液に溶解する物質であってもよい。 FIG. 6 is a process chart for describing an example (first processing example) of the processing of the substrate W performed by the substrate processing apparatus 1. 7A to 7G are schematic diagrams showing the state of the substrate W when the processing shown in FIG. 6 is being performed. FIG. 8 is a graph illustrating an example of a change in the rotation speed of the substrate W over time. Hereinafter, FIG. 2, FIG. 3A, and FIG. 6 will be referred to. Reference is made to FIGS. 7A to 7G and FIG. 8 as appropriate. If all or almost all of the solids 100 do not dissolve in the replacement liquid before melting the solids 100, the solidified film-forming substance may be a substance that dissolves in the replacement liquid.
 基板処理装置1によって基板Wが処理されるときは、処理ユニット2内に基板Wを搬入する搬入工程(図6のステップS1)が行われる。 (4) When the substrate W is processed by the substrate processing apparatus 1, a loading step (Step S1 in FIG. 6) for loading the substrate W into the processing unit 2 is performed.
 具体的には、遮断部材51が上位置に位置しており、全てのガード24が下位置に位置しており、全てのスキャンノズルが待機位置に位置している状態で、センターロボットCR(図1A参照)が、基板WをハンドH1で支持しながら、ハンドH1を処理ユニット2内に進入させる。そして、センターロボットCRは、基板Wの表面が上に向けられた状態でハンドH1上の基板Wを複数のチャックピン11の上に置く。その後、複数のチャックピン11が基板Wの外周面に押し付けられ、基板Wが把持される。センターロボットCRは、基板Wをスピンチャック10の上に置いた後、ハンドH1を処理ユニット2の内部から退避させる。 Specifically, in a state where the blocking member 51 is located at the upper position, all the guards 24 are located at the lower position, and all the scan nozzles are located at the standby position, the center robot CR (FIG. 1A) moves the hand H1 into the processing unit 2 while supporting the substrate W with the hand H1. Then, the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward. Thereafter, the plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped. After placing the substrate W on the spin chuck 10, the center robot CR retracts the hand H1 from inside the processing unit 2.
 次に、薬液を基板Wの上面に供給し、基板Wの上面の全域を覆う薬液の液膜を形成する薬液供給工程が行われる。 Next, a chemical solution supply step of supplying the chemical solution to the upper surface of the substrate W and forming a liquid film of the chemical solution covering the entire upper surface of the substrate W is performed.
 具体的には、遮断部材51が上位置に位置している状態で、ガード昇降ユニット27が少なくとも一つのガード24を下位置から上位置に上昇させる。さらに、スピンモータ14が駆動され、基板Wの回転が開始される(図6のステップS2)。これにより、基板Wが液体供給速度で回転する。この状態で、ノズル移動ユニット34が薬液ノズル31を待機位置から処理位置に移動させる。その後、薬液バルブ33が開かれ、薬液ノズル31が薬液の吐出を開始する(図6のステップS3)。 Specifically, the guard lifting unit 27 raises at least one guard 24 from the lower position to the upper position in a state where the blocking member 51 is located at the upper position. Further, the spin motor 14 is driven, and the rotation of the substrate W is started (Step S2 in FIG. 6). Thereby, the substrate W rotates at the liquid supply speed. In this state, the nozzle moving unit 34 moves the chemical liquid nozzle 31 from the standby position to the processing position. Thereafter, the chemical liquid valve 33 is opened, and the chemical liquid nozzle 31 starts discharging the chemical liquid (Step S3 in FIG. 6).
 薬液ノズル31から吐出された薬液は、液体供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、薬液が基板Wの上面の全域に供給され、基板Wの上面の全域を覆う薬液の液膜が形成される。薬液ノズル31が薬液を吐出しているとき、ノズル移動ユニット34は、基板Wの上面に対する薬液の衝突位置が中央部と外周部とを通るように衝突位置を移動させてもよいし、衝突位置を中央部で静止させてもよい。薬液バルブ33が開かれてから所定時間が経過すると、薬液バルブ33が閉じられ、薬液の吐出が停止される。その後、ノズル移動ユニット34が薬液ノズル31を待機位置に移動させる。 (4) The chemical discharged from the chemical nozzle 31 collides with the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the chemical solution is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical solution covering the entire upper surface of the substrate W is formed. When the chemical liquid nozzle 31 is discharging the chemical liquid, the nozzle moving unit 34 may move the collision position so that the collision position of the chemical liquid with respect to the upper surface of the substrate W passes through the central part and the outer peripheral part, or the collision position May be stopped at the center. When a predetermined time elapses after the chemical liquid valve 33 is opened, the chemical liquid valve 33 is closed, and the discharge of the chemical liquid is stopped. Thereafter, the nozzle moving unit 34 moves the chemical liquid nozzle 31 to the standby position.
 次に、リンス液の一例である純水を基板Wの上面に供給して、基板W上の薬液を洗い流すリンス液供給工程(図6のステップS4)が行われる。 Next, a rinsing liquid supply step (step S4 in FIG. 6) of supplying pure water, which is an example of a rinsing liquid, to the upper surface of the substrate W to wash out the chemical liquid on the substrate W.
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット38がリンス液ノズル35を待機位置から処理位置に移動させる。その後、リンス液バルブ37が開かれ、リンス液ノズル35がリンス液の吐出を開始する。純水の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。リンス液バルブ37が開かれてから所定時間が経過すると、リンス液バルブ37が閉じられ、リンス液の吐出が停止される。その後、ノズル移動ユニット38がリンス液ノズル35を待機位置に移動させる。 Specifically, the nozzle moving unit 38 moves the rinse liquid nozzle 35 from the standby position to the processing position with the blocking member 51 positioned at the upper position and at least one guard 24 positioned at the upper position. Let it. Thereafter, the rinsing liquid valve 37 is opened, and the rinsing liquid nozzle 35 starts discharging the rinsing liquid. Before the discharge of pure water is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the opening of the rinse liquid valve 37, the rinse liquid valve 37 is closed, and the discharge of the rinse liquid is stopped. Thereafter, the nozzle moving unit 38 moves the rinse liquid nozzle 35 to the standby position.
 リンス液ノズル35から吐出された純水は、液体供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の薬液は、リンス液ノズル35から吐出された純水に置換される。これにより、基板Wの上面の全域を覆う純水の液膜が形成される。リンス液ノズル35が純水を吐出しているとき、ノズル移動ユニット38は、基板Wの上面に対する純水の衝突位置が中央部と外周部とを通るように衝突位置を移動させてもよいし、衝突位置を中央部で静止させてもよい。 (4) The pure water discharged from the rinsing liquid nozzle 35 collides with the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. The chemical on the substrate W is replaced with pure water discharged from the rinse liquid nozzle 35. As a result, a liquid film of pure water covering the entire upper surface of the substrate W is formed. When the rinse liquid nozzle 35 is discharging pure water, the nozzle moving unit 38 may move the collision position so that the collision position of the pure water with respect to the upper surface of the substrate W passes through the central portion and the outer peripheral portion. Alternatively, the collision position may be stopped at the center.
 次に、リンス液と溶け合う置換液を基板Wの上面に供給し、基板W上の純水を置換液に置換する置換液供給工程(図6のステップS5)が行われる。 Next, a replacement liquid supply step of supplying a replacement liquid that dissolves in the rinse liquid to the upper surface of the substrate W and replacing the pure water on the substrate W with the replacement liquid (Step S5 in FIG. 6) is performed.
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット46が置換液ノズル43を待機位置から処理位置に移動させる。その後、置換液バルブ45が開かれ、置換液ノズル43が置換液の吐出を開始する。置換液の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。置換液バルブ45が開かれてから所定時間が経過すると、置換液バルブ45が閉じられ、置換液の吐出が停止される。その後、ノズル移動ユニット46が置換液ノズル43を待機位置に移動させる。 Specifically, the nozzle moving unit 46 moves the replacement liquid nozzle 43 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Let it. Thereafter, the replacement liquid valve 45 is opened, and the replacement liquid nozzle 43 starts discharging the replacement liquid. Before the discharge of the replacement liquid is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the replacement liquid valve 45 was opened, the replacement liquid valve 45 is closed, and the discharge of the replacement liquid is stopped. Thereafter, the nozzle moving unit 46 moves the replacement liquid nozzle 43 to the standby position.
 置換液ノズル43から吐出された置換液は、液体供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の純水は、置換液ノズル43から吐出された置換液に置換される。これにより、基板Wの上面の全域を覆う置換液の液膜が形成される。置換液ノズル43が置換液を吐出しているとき、ノズル移動ユニット46は、基板Wの上面に対する置換液の衝突位置が中央部と外周部とを通るように衝突位置を移動させてもよいし、衝突位置を中央部で静止させてもよい。 The replacement liquid discharged from the replacement liquid nozzle 43 collides with the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. The pure water on the substrate W is replaced with the replacement liquid discharged from the replacement liquid nozzle 43. As a result, a liquid film of the replacement liquid that covers the entire upper surface of the substrate W is formed. When the replacement liquid nozzle 43 is discharging the replacement liquid, the nozzle moving unit 46 may move the collision position of the replacement liquid to the upper surface of the substrate W such that the collision position passes through the central portion and the outer peripheral portion. Alternatively, the collision position may be stopped at the center.
 次に、固化膜形成物質の固体である固形物100を基板Wの上面に供給する固形物供給工程が行われる。 Next, a solid supply step of supplying the solid 100 as the solid of the solidified film-forming substance to the upper surface of the substrate W is performed.
 具体的には、加熱流体バルブ73を開いて、下面ノズル71に温水の吐出を開始させる(図6のステップS6)。固形物100の融点が水の沸点より高い場合は、温水以外の加熱された液体を下面ノズル71に吐出させてもよいし、下温度調節器86によって加熱された窒素ガスをスピンベース12の下中央開口81に吐出させてもよい。下面ノズル71から吐出された温水は、液体供給速度で回転している基板Wの下面の中央部に衝突した後、基板Wの下面に沿って外方に流れる。これにより、基板Wの全域が温水で加熱される。 Specifically, the heating fluid valve 73 is opened, and the lower surface nozzle 71 starts discharging hot water (step S6 in FIG. 6). When the melting point of the solid 100 is higher than the boiling point of water, a heated liquid other than hot water may be discharged to the lower surface nozzle 71, or the nitrogen gas heated by the lower temperature controller 86 may be supplied to the lower part of the spin base 12. The liquid may be discharged to the central opening 81. The hot water discharged from the lower surface nozzle 71 collides with the central portion of the lower surface of the substrate W rotating at the liquid supply speed, and then flows outward along the lower surface of the substrate W. Thus, the entire area of the substrate W is heated by the hot water.
 その一方で、ノズル移動ユニット42は、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル39を待機位置から処理位置に移動させる。これにより、ノズル39が基板Wの中央部の上方に配置される。この状態で、開閉モータ96が蓋95を開位置に移動させ、運搬モータ92がスクリューコンベア91を回転させる。これにより、ノズル39が固形物100の吐出を開始する(図6のステップS7)。固形物100の吐出が開始されてから所定時間が経過すると、運搬モータ92が回転を停止し、開閉モータ96が蓋95を閉位置に移動させる。これにより、固形物100の吐出が停止される。その後、ノズル移動ユニット42がノズル39を待機位置に移動させる。 一方 で On the other hand, the nozzle moving unit 42 moves the nozzle 39 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Thereby, the nozzle 39 is arranged above the central portion of the substrate W. In this state, the opening / closing motor 96 moves the lid 95 to the open position, and the transport motor 92 rotates the screw conveyor 91. Thus, the nozzle 39 starts discharging the solid material 100 (Step S7 in FIG. 6). When a predetermined time has elapsed after the start of the ejection of the solids 100, the transport motor 92 stops rotating, and the opening / closing motor 96 moves the lid 95 to the closed position. Thus, the ejection of the solids 100 is stopped. Thereafter, the nozzle moving unit 42 moves the nozzle 39 to the standby position.
 図7Aは、固形物100の吐出が開始された直後の固形物100を示しており、図7Bは、融解し始めた固形物100を示している。図7Aおよび図7Bは、理解を容易にするために、パターンP1が形成されていない基板Wの表面(上面)を示している。図7Aに示すように、固形物100の吐出が開始されると、固形物100が基板Wの上面に接触し、基板W上に堆積する。この処理例では、固形物100の吐出が開始される前に温水による基板Wの加熱が開始されるので、固形物100が基板Wの上面に接触するのと同時に、固形物100の加熱が始まる。図7Bに示すように、固形物100は加熱によって軟化および変形する。その後、固形物100は液体に変化する。これにより、固形物100の液体、つまり、乾燥前処理液が基板Wの上面の中央部で作成される(図6のステップS8)。 FIG. 7A shows the solid 100 immediately after the start of the discharge of the solid 100, and FIG. 7B shows the solid 100 that has begun to melt. FIGS. 7A and 7B show a surface (upper surface) of the substrate W on which the pattern P1 is not formed, for easy understanding. As shown in FIG. 7A, when the discharge of the solid material 100 is started, the solid material 100 contacts the upper surface of the substrate W and is deposited on the substrate W. In this processing example, the heating of the substrate W by the hot water is started before the discharge of the solid material 100 is started, so that the heating of the solid material 100 starts simultaneously with the contact of the solid material 100 with the upper surface of the substrate W. . As shown in FIG. 7B, the solid material 100 is softened and deformed by heating. Thereafter, the solid 100 changes to a liquid. As a result, a liquid of the solid 100, that is, a pre-drying treatment liquid is created at the center of the upper surface of the substrate W (Step S8 in FIG. 6).
 固形物100が基板Wの上面の中央部で融解すると、図7Cに示すように、概ね円形の乾燥前処理液の液膜が基板Wの上面の中央部に形成され、置換液の液膜が乾燥前処理液の液膜を取り囲む環状に変化する。その一方で、基板Wの上面の中央部に堆積した残りの固形物100が徐々に乾燥前処理液に変化し、基板W上の乾燥前処理液の量が徐々に増える。さらに、基板Wの回転に伴う遠心力が基板W上の乾燥前処理液に加わる。そのため、乾燥前処理液の液膜の外径が徐々に大きくなり、乾燥前処理液の液膜の外周部が基板Wの上面の外周部に達する。これにより、図7Dに示すように、基板W上の置換液が乾燥前処理液で置換され、基板Wの上面の全域を覆う乾燥前処理液の液膜が形成される(図6のステップS9)。 When the solid 100 melts at the center of the upper surface of the substrate W, a substantially circular liquid film of the drying pretreatment liquid is formed at the center of the upper surface of the substrate W, as shown in FIG. It changes into a ring surrounding the liquid film of the drying pretreatment liquid. On the other hand, the remaining solid matter 100 deposited on the central portion of the upper surface of the substrate W gradually changes to the pre-drying treatment liquid, and the amount of the pre-drying treatment liquid on the substrate W gradually increases. Further, the centrifugal force accompanying the rotation of the substrate W is applied to the pretreatment liquid on the substrate W. Therefore, the outer diameter of the liquid film of the pre-drying treatment liquid gradually increases, and the outer peripheral portion of the liquid film of the pre-drying treatment liquid reaches the outer peripheral portion of the upper surface of the substrate W. Thus, as shown in FIG. 7D, the replacement liquid on the substrate W is replaced with the pre-drying treatment liquid, and a liquid film of the pre-drying treatment liquid covering the entire upper surface of the substrate W is formed. ).
 固形物100の供給が開始されてから基板Wの上面の全域が乾燥前処理液の液膜で覆われるまでの間、制御装置3は、基板Wの回転速度を一定に維持してもよいし、変化させてもよい。図8は、固形物100の供給が開始された後に、基板Wの回転速度を変化させる例を示している。基板Wの回転速度は、固形物100の供給を開始する前に融解前速度から融解速度まで減少し、その後、融解速度から拡散速度に増加する。固形物100の供給は、基板Wの回転速度が融解速度に維持されているときに開始される。 The controller 3 may maintain the rotation speed of the substrate W constant from the start of the supply of the solids 100 to the time when the entire upper surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid. , May be changed. FIG. 8 shows an example in which the rotation speed of the substrate W is changed after the supply of the solid material 100 is started. The rotation speed of the substrate W decreases from the pre-melting speed to the melting speed before the supply of the solid material 100 is started, and then increases from the melting speed to the diffusion speed. The supply of the solid 100 is started when the rotation speed of the substrate W is maintained at the melting speed.
 図8は、拡散速度が融解前速度と等しい例を示している。拡散速度は、融解前速度と異なっていてもよい。融解前速度および拡散速度は、前述の液体供給速度と等しくてもよいし、異なっていてもよい。図8に示す例では、基板Wの回転速度は、融解速度から拡散速度に緩やかに変化している。融解速度から拡散速度までの速度の変化率の絶対値は、融解前速度から融解速度までの速度の変化率の絶対値より小さくてもよい。 FIG. 8 shows an example where the diffusion rate is equal to the pre-melting rate. The diffusion rate may be different from the pre-melting rate. The pre-melting rate and the diffusion rate may be equal to or different from the liquid supply rate described above. In the example shown in FIG. 8, the rotation speed of the substrate W gradually changes from the melting speed to the diffusion speed. The absolute value of the rate of change of the rate from the melting rate to the diffusion rate may be smaller than the absolute value of the rate of change of the rate from the pre-melting rate to the melting rate.
 また、図8に示す例では、加熱流体の一例である温水が基板Wの裏面(下面)の中央部に向けて吐出されており、固化膜形成物質の固体である固形物100が基板Wの上面の中央部にある状態で、基板Wを融解速度で回転させる。融解速度は融解前速度よりも遅い。したがって、基板W上の固形物100に加わる遠心力が相対的に小さく、固形物100が基板Wの上面で広がり難い。これにより、基板Wの上面の中央部での固形物100の滞在時間を長くすることができ、固形物100を確実に融解させることができる。 In the example illustrated in FIG. 8, warm water, which is an example of the heating fluid, is discharged toward the center of the back surface (lower surface) of the substrate W, and the solid 100 that is a solid of the solidified film forming material is The substrate W is rotated at the melting speed while being at the center of the upper surface. The melting rate is lower than the pre-melting rate. Therefore, the centrifugal force applied to the solid material 100 on the substrate W is relatively small, and the solid material 100 is unlikely to spread on the upper surface of the substrate W. Thereby, the residence time of the solid 100 at the center of the upper surface of the substrate W can be lengthened, and the solid 100 can be reliably melted.
 基板Wの回転速度は、基板Wの上面の中央部上の固形物100の一部または全部が融解した後に、融解速度から拡散速度に高められる。これにより、融解した固化膜形成物質、つまり、乾燥前処理液に加わる遠心力が増加し、乾燥前処理液が基板Wの上面に沿って基板Wの上面の中央部から放射状に流れる。そのため、固形物100を液化させながら、固化膜形成物質の液体を基板Wの表面で広げることができる。乾燥前処理液が置換液に溶解せず、かつ置換液と比べ比重が大きければ、基板Wを拡散速度で回転させると、基板W上の置換液が乾燥処理液によって放射状に押し広げられるので、基板W上の置換液を効率良く乾燥前処理液に置換することができる。 The rotation speed of the substrate W is increased from the melting speed to the diffusion speed after a part or all of the solid material 100 on the center of the upper surface of the substrate W is melted. As a result, the centrifugal force applied to the molten solidified film-forming substance, that is, the pretreatment liquid for drying increases, and the pretreatment liquid for drying flows radially from the center of the upper surface of the substrate W along the upper surface of the substrate W. Therefore, the liquid of the solidified film forming substance can be spread on the surface of the substrate W while the solid 100 is liquefied. If the drying pretreatment liquid is not dissolved in the replacement liquid and has a specific gravity greater than that of the replacement liquid, and the substrate W is rotated at a diffusion speed, the replacement liquid on the substrate W is radially spread by the drying processing liquid. The replacement liquid on the substrate W can be efficiently replaced with the pre-drying treatment liquid.
 このように、基板Wの上面の中央部上の固形物100を融解させるときは、相対的に遅い融解速度で基板Wを回転させる。これにより、固形物100が基板Wの上面で広がることを抑制または防止しながら、固形物100を融解させることができる。そして、固形物100が融解した後は、相対的に速い拡散速度で基板Wを回転させる。したがって、固形物100が融解した後も融解速度で基板Wを回転させる場合に比べて短時間で乾燥前処理液を広げることができる。 (4) As described above, when the solid material 100 on the central portion of the upper surface of the substrate W is melted, the substrate W is rotated at a relatively slow melting speed. Thus, the solid 100 can be melted while suppressing or preventing the solid 100 from spreading on the upper surface of the substrate W. After the solid 100 is melted, the substrate W is rotated at a relatively high diffusion speed. Therefore, even after the solid 100 is melted, the pretreatment liquid for drying can be spread in a shorter time than when the substrate W is rotated at the melting speed.
 乾燥前処理液の液膜を形成した後は、基板Wの上面の全域が乾燥前処理液の液膜で覆われた状態を維持しながら、基板W上の乾燥前処理液の膜厚(液膜の厚み)を減少させる膜厚減少工程(図6のステップS10)が行われる。 After forming the liquid film of the pre-drying treatment liquid, the film thickness of the pre-drying treatment liquid on the substrate W (liquid A film thickness reduction process (step S10 in FIG. 6) for reducing the film thickness is performed.
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。これにより、遮断部材51の下面51Lが基板Wの上面に近接する。そして、遮断部材51が下位置に位置している状態で、スピンモータ14が基板Wを膜厚減少速度で回転させる。膜厚減少速度は、液体供給速度と等しくてもよいし、異なっていてもよい。 Specifically, the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position. Thus, the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W. Then, in a state where the blocking member 51 is located at the lower position, the spin motor 14 rotates the substrate W at the film thickness decreasing speed. The thickness reduction rate may be equal to or different from the liquid supply rate.
 基板W上の乾燥前処理液は、遠心力によって基板Wから外方に排出される。そのため、基板W上の乾燥前処理液の液膜の厚みが減少する。基板W上の乾燥前処理液がある程度排出されると、単位時間当たりの基板Wからの乾燥前処理液の排出量が零または概ね零に減少する。これにより、図7Eに示すように、基板W上の乾燥前処理液の液膜の厚みが基板Wの回転速度に応じた値で安定する。図7Eは、パターンP1の全体が乾燥前処理液中にある例を示している。 (4) The pretreatment liquid on the substrate W is discharged outward from the substrate W by centrifugal force. Therefore, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W decreases. When the pre-drying treatment liquid on the substrate W is discharged to some extent, the discharge amount of the pre-drying treatment liquid from the substrate W per unit time decreases to zero or almost zero. Thereby, as shown in FIG. 7E, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W is stabilized at a value corresponding to the rotation speed of the substrate W. FIG. 7E shows an example in which the entire pattern P1 is in the pre-drying treatment liquid.
 次に、基板W上の乾燥前処理液を冷却により凝固させて、固化膜形成物質を含む固化膜101(図7F参照)を形成する固化膜形成工程が行われる。 Next, a solidified film forming step of solidifying the pre-drying treatment liquid on the substrate W by cooling to form a solidified film 101 (see FIG. 7F) containing a solidified film forming substance is performed.
 具体的には、遮断部材51が下位置に位置しており、基板Wが液体供給速度で回転している状態で、加熱流体バルブ73が閉じられ、下面ノズル71からの温水の吐出が停止される(図6のステップS11)。その後、冷却流体バルブ77が開かれ、下面ノズル71が冷水の吐出を開始する。冷水の温度は、乾燥前処理液の凝固点、つまり、固化膜形成物質の凝固点以下である。乾燥前処理液の凝固点以下であれば、室温の純水を下面ノズル71に吐出させてもよい。 Specifically, in a state where the blocking member 51 is located at the lower position and the substrate W is rotating at the liquid supply speed, the heating fluid valve 73 is closed, and the discharge of hot water from the lower surface nozzle 71 is stopped. (Step S11 in FIG. 6). Thereafter, the cooling fluid valve 77 is opened, and the lower surface nozzle 71 starts discharging cold water. The temperature of the cold water is equal to or lower than the freezing point of the pretreatment liquid, that is, the freezing point of the solidified film-forming substance. As long as the solidification point is equal to or lower than the solidification point of the pretreatment liquid, room temperature pure water may be discharged to the lower surface nozzle 71.
 下面ノズル71から上方に吐出された冷水は、基板Wの下面の中央部に衝突した後、液体供給速度で回転している基板Wの下面に沿って外方に流れる。これにより、冷水が基板Wの下面の全域に供給され、基板W上の乾燥前処理液が基板Wを介して均一に冷却される。その結果、基板W上の乾燥前処理液の温度が乾燥前処理液の凝固点以下まで低下し、基板W上の乾燥前処理液が固体に変化する。つまり、固化膜形成物の液体が凝固し、基板Wの上面の全域を覆う固化膜101が形成される(図6のステップS12)。そして、冷却流体バルブ77が開かれてから所定時間が経過すると、冷却流体バルブ77が閉じられ、冷水の吐出が停止される。 (4) The cold water discharged upward from the lower surface nozzle 71 collides with the center of the lower surface of the substrate W, and then flows outward along the lower surface of the substrate W rotating at the liquid supply speed. As a result, the cold water is supplied to the entire lower surface of the substrate W, and the pre-drying treatment liquid on the substrate W is uniformly cooled through the substrate W. As a result, the temperature of the pre-drying treatment liquid on the substrate W drops below the freezing point of the pre-drying treatment liquid, and the pre-drying treatment liquid on the substrate W changes to a solid. That is, the liquid of the solidified film forming material solidifies, and the solidified film 101 covering the entire upper surface of the substrate W is formed (Step S12 in FIG. 6). Then, when a predetermined time has elapsed since the opening of the cooling fluid valve 77, the cooling fluid valve 77 is closed, and the discharge of the cold water is stopped.
 固化膜101は、最終的に基板Wから除去される犠牲膜に相当する。図7Fは、パターンP1および固化膜101の断面の一例を示している。パターンP1は、単一の材料で形成された構造物であってもよいし、基板Wの厚み方向に積層された複数の層を含む構造物であってもよい。図7Eに示すように、パターンP1の表面は、基板Wの厚み方向に直交する基板Wの平面Wsに対して垂直または概ね垂直な側面Psと、基板Wの平面Wsと平行または概ね平行な上面Puとを含む。パターンP1の高さHpは、パターンP1の幅Wpよりも大きく、隣り合う2つのパターンP1の間隔G1よりも大きい。図7Fは、固化膜101の厚みT1がパターンP1の高さHpよりも大きい例を示している。 (4) The solidified film 101 corresponds to a sacrificial film that is finally removed from the substrate W. FIG. 7F shows an example of a cross section of the pattern P1 and the solidified film 101. The pattern P1 may be a structure formed of a single material, or may be a structure including a plurality of layers stacked in the thickness direction of the substrate W. As shown in FIG. 7E, the surface of the pattern P1 has a side surface Ps perpendicular or substantially perpendicular to a plane Ws of the substrate W orthogonal to the thickness direction of the substrate W, and an upper surface parallel or substantially parallel to the plane Ws of the substrate W. Pu. The height Hp of the pattern P1 is larger than the width Wp of the pattern P1, and larger than the interval G1 between two adjacent patterns P1. FIG. 7F shows an example in which the thickness T1 of the solidified film 101 is larger than the height Hp of the pattern P1.
 固化膜101が形成された後は、基板W上の固化膜101を昇華させて、基板Wの上面から除去する昇華工程(図6のステップS13)が行われる。 (4) After the solidified film 101 is formed, a sublimation step (Step S13 in FIG. 6) of sublimating the solidified film 101 on the substrate W and removing the solidified film 101 from the upper surface of the substrate W is performed.
 具体的には、遮断部材51が下位置に位置している状態で、上気体バルブ57が開かれ、中心ノズル55が窒素ガスの吐出を開始する。さらに、スピンモータ14が基板Wを昇華速度で回転させる。昇華速度は、液体供給速度と等しくてもよいし、異なっていてもよい。昇華速度での基板Wの回転が開始されてから所定時間が経過すると、スピンモータ14が止まり、基板Wの回転が停止される(図6のステップS14)。さらに、上気体バルブ57が閉じられ、中心ノズル55から窒素ガスの吐出が停止される。 Specifically, the upper gas valve 57 is opened while the blocking member 51 is located at the lower position, and the center nozzle 55 starts discharging nitrogen gas. Further, the spin motor 14 rotates the substrate W at a sublimation speed. The sublimation rate may be equal to or different from the liquid supply rate. When a predetermined time elapses after the rotation of the substrate W at the sublimation speed is started, the spin motor 14 is stopped, and the rotation of the substrate W is stopped (Step S14 in FIG. 6). Further, the upper gas valve 57 is closed, and the discharge of the nitrogen gas from the central nozzle 55 is stopped.
 図7Gに示すように、昇華速度での基板Wの回転等が開始されると、基板W上の固化膜101は、液体を経ずに気体に変化する。固化膜101から発生した気体は、基板Wと遮断部材51との間の空間を放射状に流れ、基板Wの上方から排出される。これにより、固化膜101が基板Wの上面から除去される。さらに、固化膜101の昇華を開始する前に、純水などの液体が基板Wの下面に付着していたとしても、この液体は基板Wの回転によって基板Wから除去される。これにより、固化膜101などの不要な物質が基板Wから除去され、基板Wが乾燥する。 As shown in FIG. 7G, when the rotation of the substrate W at the sublimation speed or the like is started, the solidified film 101 on the substrate W changes into a gas without passing through a liquid. The gas generated from the solidified film 101 flows radially in the space between the substrate W and the blocking member 51 and is discharged from above the substrate W. Thereby, the solidified film 101 is removed from the upper surface of the substrate W. Further, even if a liquid such as pure water has adhered to the lower surface of the substrate W before the sublimation of the solidified film 101 is started, the liquid is removed from the substrate W by the rotation of the substrate W. Thus, unnecessary substances such as the solidified film 101 are removed from the substrate W, and the substrate W is dried.
 固化膜101を除去した後は、基板Wをチャンバー4から搬出する搬出工程(図6のステップS15)が行われる。 (4) After the removal of the solidified film 101, an unloading step of unloading the substrate W from the chamber 4 (Step S15 in FIG. 6) is performed.
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。 Specifically, the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. After that, the center robot CR causes the hand H1 to enter the chamber 4. The center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W. Thereafter, the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. Thus, the processed substrate W is carried out of the chamber 4.
 第2処理例
 次に、固形物100を基板W上で溶媒に溶解させる例について説明する。
Second Processing Example Next, an example in which the solid material 100 is dissolved in a solvent on the substrate W will be described.
 図9は、基板処理装置1によって行われる基板Wの処理の一例(第2処理例)について説明するための工程図である。図10A~図10Fは、図9に示す処理が行われているときの基板Wの状態を示す模式図である。以下では、図2、図3A、および、図9を参照する。図10A~図10Fについては適宜参照する。 FIG. 9 is a process diagram for describing an example (second processing example) of the processing of the substrate W performed by the substrate processing apparatus 1. 10A to 10F are schematic diagrams showing the state of the substrate W when the processing shown in FIG. 9 is being performed. In the following, reference is made to FIG. 2, FIG. 3A, and FIG. Reference is made to FIGS. 10A to 10F as appropriate.
 以下では、固形物供給工程が開始されてから昇華工程が終了するまでの流れを説明する。それ以外の工程は、第1処理例と同様であるので、その説明を省略する。固形物100は、固化膜101を形成する固化膜形成物質の固体である。第2処理例で用いられる固化膜形成物質は、溶媒の一例である置換液に溶解する物質である。 The following describes the flow from the start of the solid supply step to the end of the sublimation step. Other steps are the same as those in the first processing example, and thus description thereof will be omitted. The solid 100 is a solidified film-forming substance that forms the solidified film 101. The solidified film forming substance used in the second processing example is a substance that dissolves in a replacement liquid that is an example of a solvent.
 基板W上の純水を置換液に置換した後は、固化膜形成物質の固体である固形物100を基板Wの上面に供給する固形物供給工程が行われる。 After the replacement of the pure water on the substrate W with the replacement liquid, a solid supply step of supplying the solid 100, which is a solid of the solidified film forming substance, to the upper surface of the substrate W is performed.
 具体的には、加熱流体バルブ73を開いて、下面ノズル71に温水の吐出を開始させる(図9のステップS6)。温水の吐出に加えてまたは代えて、下温度調節器86によって加熱された窒素ガスをスピンベース12の下中央開口81に吐出させてもよい。下面ノズル71から吐出された温水は、液体供給速度で回転している基板Wの下面の中央部に衝突した後、基板Wの下面に沿って外方に流れる。これにより、基板Wの全域が温水で加熱される。 Specifically, the heating fluid valve 73 is opened, and the lower surface nozzle 71 starts discharging hot water (step S6 in FIG. 9). In addition to or instead of discharging the hot water, the nitrogen gas heated by the lower temperature controller 86 may be discharged to the lower center opening 81 of the spin base 12. The hot water discharged from the lower surface nozzle 71 collides with the central portion of the lower surface of the substrate W rotating at the liquid supply speed, and then flows outward along the lower surface of the substrate W. Thus, the entire area of the substrate W is heated by the hot water.
 その一方で、ノズル移動ユニット42は、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル39を待機位置から処理位置に移動させる。これにより、ノズル39が基板Wの中央部の上方に配置される。この状態で、開閉モータ96が蓋95を開位置に移動させ、運搬モータ92がスクリューコンベア91を回転させる。これにより、ノズル39が固形物100の吐出を開始する(図9のステップS107)。固形物100の吐出が開始されてから所定時間が経過すると、運搬モータ92が回転を停止し、開閉モータ96が蓋95を閉位置に移動させる。これにより、固形物100の吐出が停止される。その後、ノズル移動ユニット42がノズル39を待機位置に移動させる。 一方 で On the other hand, the nozzle moving unit 42 moves the nozzle 39 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Thereby, the nozzle 39 is arranged above the central portion of the substrate W. In this state, the opening / closing motor 96 moves the lid 95 to the open position, and the transport motor 92 rotates the screw conveyor 91. Thus, the nozzle 39 starts discharging the solid material 100 (Step S107 in FIG. 9). When a predetermined time has elapsed after the start of the ejection of the solids 100, the transport motor 92 stops rotating, and the opening / closing motor 96 moves the lid 95 to the closed position. Thus, the ejection of the solids 100 is stopped. Thereafter, the nozzle moving unit 42 moves the nozzle 39 to the standby position.
 図10Aは、固形物100の吐出が開始された直後の固形物100を示しており、図10Bは、溶解し始めた固形物100を示している。図10Aおよび図10Bは、理解を容易にするために、パターンP1が形成されていない基板Wの表面(上面)を示している。図10Aに示すように、固形物100の吐出が開始されると、固形物100が基板Wの上面に接触し、基板W上に堆積する。さらに、この処理例では、置換液の液膜で覆われた基板Wの上面に固形物100が供給されるので、固形物100が供給されるのと同時に、固形物100が基板W上の置換液に溶解し始める。図10Bは、固形物100の1つの塊が置換液に溶解し、小さくなった状態を示している。 FIG. 10A shows the solid 100 immediately after the discharge of the solid 100 is started, and FIG. 10B shows the solid 100 that has begun to dissolve. FIGS. 10A and 10B show the surface (upper surface) of the substrate W on which the pattern P1 is not formed, for easy understanding. As shown in FIG. 10A, when the discharge of the solid material 100 is started, the solid material 100 comes into contact with the upper surface of the substrate W and is deposited on the substrate W. Further, in this processing example, since the solid 100 is supplied to the upper surface of the substrate W covered with the liquid film of the replacement liquid, the solid 100 is simultaneously supplied with the solid 100 on the substrate W. Start to dissolve in the liquid. FIG. 10B shows a state in which one lump of the solid material 100 has dissolved in the replacement liquid and has become smaller.
 固形物100が基板W上の置換液に溶解すると、固化膜形成物質および置換液の溶液である乾燥前処理液が基板Wの上面の中央部で作成される(図9のステップS108)。基板Wの上面の中央部に堆積した残りの固形物100も徐々に置換液に溶解する。置換液に溶解した固形物100(固化膜形成物質)は、置換液中に均一に分散する。これにより、固化膜形成物質が置換液の液膜の外周部まで行き渡り、基板W上の置換液が乾燥前処理液に変化する。その結果、図10Cに示すように、基板Wの上面の全域が乾燥前処理液の液膜で覆われる(図9のステップS9)。固形物100の供給が開始されてから基板Wの上面の全域が乾燥前処理液の液膜で覆われるまでの間、制御装置3は、基板Wの回転速度を一定に維持してもよいし、変化させてもよい。 (4) When the solid material 100 is dissolved in the replacement liquid on the substrate W, a dry pretreatment liquid, which is a solution of the solidified film forming substance and the replacement liquid, is formed at the center of the upper surface of the substrate W (Step S108 in FIG. 9). The remaining solid matter 100 deposited on the central part of the upper surface of the substrate W also gradually dissolves in the replacement liquid. The solid 100 (solidified film-forming substance) dissolved in the replacement liquid is uniformly dispersed in the replacement liquid. As a result, the solidified film-forming substance spreads to the outer peripheral portion of the liquid film of the replacement liquid, and the replacement liquid on the substrate W changes to a pre-drying treatment liquid. As a result, as shown in FIG. 10C, the entire upper surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid (Step S9 in FIG. 9). The controller 3 may maintain the rotation speed of the substrate W constant from the start of the supply of the solids 100 to the time when the entire upper surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid. , May be changed.
 乾燥前処理液の液膜を形成した後は、基板Wの上面の全域が乾燥前処理液の液膜で覆われた状態を維持しながら、基板W上の乾燥前処理液の膜厚(液膜の厚み)を減少させる膜厚減少工程(図9のステップS10)が行われる。 After forming the liquid film of the pre-drying treatment liquid, the film thickness of the pre-drying treatment liquid on the substrate W (liquid A film thickness reduction process (step S10 in FIG. 9) for reducing the film thickness is performed.
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。これにより、遮断部材51の下面51Lが基板Wの上面に近接する。そして、遮断部材51が下位置に位置している状態で、スピンモータ14が基板Wを膜厚減少速度で回転させる。膜厚減少速度は、液体供給速度と等しくてもよいし、異なっていてもよい。 Specifically, the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position. Thus, the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W. Then, in a state where the blocking member 51 is located at the lower position, the spin motor 14 rotates the substrate W at the film thickness decreasing speed. The thickness reduction rate may be equal to or different from the liquid supply rate.
 基板W上の乾燥前処理液は、遠心力によって基板Wから外方に排出される。そのため、基板W上の乾燥前処理液の液膜の厚みが減少する。基板W上の乾燥前処理液がある程度排出されると、単位時間当たりの基板Wからの乾燥前処理液の排出量が零または概ね零に減少する。これにより、図10Dに示すように、基板W上の乾燥前処理液の液膜の厚みが基板Wの回転速度に応じた値で安定する。図10Dは、パターンP1の全体が乾燥前処理液中にある例を示している。 (4) The pretreatment liquid on the substrate W is discharged outward from the substrate W by centrifugal force. Therefore, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W decreases. When the pre-drying treatment liquid on the substrate W is discharged to some extent, the discharge amount of the pre-drying treatment liquid from the substrate W per unit time decreases to zero or almost zero. Thereby, as shown in FIG. 10D, the thickness of the liquid film of the pre-drying treatment liquid on the substrate W is stabilized at a value corresponding to the rotation speed of the substrate W. FIG. 10D shows an example in which the entire pattern P1 is in the pre-drying treatment liquid.
 次に、基板W上の乾燥前処理液から固化膜形成物質を析出させて、固化膜形成物質を含む固化膜101(図10E参照)を形成する固化膜形成工程が行われる。 Next, a solidified film forming step of depositing the solidified film forming material from the pre-drying treatment liquid on the substrate W to form the solidified film 101 (see FIG. 10E) containing the solidified film forming material is performed.
 具体的には、遮断部材51が下位置に位置しており、基板Wが液体供給速度で回転している状態で、引き続き、下面ノズル71に温水を吐出させる。温水の吐出に加えてまたは代えて、下温度調節器86によって加熱された窒素ガスをスピンベース12の下中央開口81に吐出させてもよい。いずれの場合でも、基板W上の乾燥前処理液が基板Wを介して加熱される。 Specifically, in a state where the blocking member 51 is located at the lower position and the substrate W is rotating at the liquid supply speed, the lower surface nozzle 71 continuously discharges hot water. In addition to or instead of discharging the hot water, the nitrogen gas heated by the lower temperature controller 86 may be discharged to the lower center opening 81 of the spin base 12. In any case, the pre-drying treatment liquid on the substrate W is heated via the substrate W.
 乾燥前処理液に含まれる置換液は、乾燥前処理液の加熱によって蒸発する。さらに、置換液の蒸発は、基板Wの回転によって生じる気流で促進される。置換液が蒸発すると、乾燥前処理液中の固化膜形成物質の濃度が徐々に高まる。乾燥前処理液中の固化膜形成物質の濃度が飽和濃度に達すると、固化膜形成物質の結晶が乾燥前処理液から析出する。これにより、図10Eに示すように、固化膜形成物質を含む固化膜101が基板Wの表面に形成され、基板Wの上面の全域が固化膜101で覆われる(図9のステップS112)。その後、加熱流体バルブ73が閉じられ、下面ノズル71からの温水の吐出が停止される(図9のステップS111)。 置換 The replacement liquid contained in the pretreatment liquid evaporates due to the heating of the pretreatment liquid. Further, the evaporation of the replacement liquid is promoted by the airflow generated by the rotation of the substrate W. As the replacement liquid evaporates, the concentration of the solidified film-forming substance in the pre-drying treatment liquid gradually increases. When the concentration of the solidified film forming substance in the drying pretreatment liquid reaches the saturation concentration, crystals of the solidified film forming substance precipitate from the drying pretreatment liquid. Thus, as shown in FIG. 10E, the solidified film 101 containing the solidified film forming substance is formed on the surface of the substrate W, and the entire upper surface of the substrate W is covered with the solidified film 101 (Step S112 in FIG. 9). Thereafter, the heating fluid valve 73 is closed, and the discharge of the hot water from the lower surface nozzle 71 is stopped (Step S111 in FIG. 9).
 固化膜101が形成された後は、基板W上の固化膜101を昇華させて、基板Wの上面から除去する昇華工程(図9のステップS13)が行われる。 After the solidified film 101 is formed, a sublimation step (Step S13 in FIG. 9) of sublimating the solidified film 101 on the substrate W and removing it from the upper surface of the substrate W is performed.
 具体的には、遮断部材51が下位置に位置している状態で、上気体バルブ57が開かれ、中心ノズル55が窒素ガスの吐出を開始する。さらに、スピンモータ14が基板Wを昇華速度で回転させる。昇華速度は、液体供給速度と等しくてもよいし、異なっていてもよい。昇華速度での基板Wの回転が開始されてから所定時間が経過すると、スピンモータ14が止まり、基板Wの回転が停止される(図9のステップS14)。さらに、上気体バルブ57が閉じられ、中心ノズル55から窒素ガスの吐出が停止される。 Specifically, the upper gas valve 57 is opened while the blocking member 51 is located at the lower position, and the center nozzle 55 starts discharging nitrogen gas. Further, the spin motor 14 rotates the substrate W at a sublimation speed. The sublimation rate may be equal to or different from the liquid supply rate. When a predetermined time elapses after the rotation of the substrate W at the sublimation speed is started, the spin motor 14 is stopped, and the rotation of the substrate W is stopped (Step S14 in FIG. 9). Further, the upper gas valve 57 is closed, and the discharge of the nitrogen gas from the central nozzle 55 is stopped.
 図10Fに示すように、昇華速度での基板Wの回転等が開始されると、基板W上の固化膜101は、液体を経ずに気体に変化する。固化膜101から発生した気体は、基板Wと遮断部材51との間の空間を放射状に流れ、基板Wの上方から排出される。これにより、固化膜101が基板Wの上面から除去される。さらに、固化膜101の昇華を開始する前に、純水などの液体が基板Wの下面に付着していたとしても、この液体は基板Wの回転によって基板Wから除去される。これにより、固化膜101などの不要な物質が基板Wから除去され、基板Wが乾燥する。 As shown in FIG. 10F, when the rotation of the substrate W at the sublimation speed is started, the solidified film 101 on the substrate W changes to a gas without passing through a liquid. The gas generated from the solidified film 101 flows radially in the space between the substrate W and the blocking member 51 and is discharged from above the substrate W. Thereby, the solidified film 101 is removed from the upper surface of the substrate W. Further, even if a liquid such as pure water has adhered to the lower surface of the substrate W before the sublimation of the solidified film 101 is started, the liquid is removed from the substrate W by the rotation of the substrate W. Thus, unnecessary substances such as the solidified film 101 are removed from the substrate W, and the substrate W is dried.
 以上のように本実施形態では、固化膜形成物質の融液ではなく、固化膜形成物質の固体を基板処理装置1内で運搬する。そして、運搬された固化膜形成物質を融解させる、もしくは、溶媒に溶解させる。これにより、運搬された固化膜形成物質を含む乾燥前処理液が作成される。その後、基板Wの表面上の乾燥前処理液を固化させ、固化膜形成物質を含む固化膜101を基板Wの表面に形成する。その後、固化膜101を気体に変化させ、基板Wの表面から除去する。したがって、基板Wの高速回転によって液体を除去するスピンドライなどの従来の乾燥方法を行う場合に比べて、パターンP1(図7E参照)の倒壊を抑制しながら、基板Wを乾燥させることができる。 As described above, in the present embodiment, not the melt of the solidified film forming substance, but the solid of the solidified film forming substance is transported in the substrate processing apparatus 1. Then, the conveyed solidified film forming substance is melted or dissolved in a solvent. As a result, a dry pretreatment liquid containing the transported solidified film-forming substance is created. After that, the pre-drying treatment liquid on the surface of the substrate W is solidified to form a solidified film 101 containing a solidified film forming substance on the surface of the substrate W. After that, the solidified film 101 is changed into a gas and removed from the surface of the substrate W. Therefore, the substrate W can be dried while suppressing the collapse of the pattern P1 (see FIG. 7E), as compared with the case where a conventional drying method such as spin drying in which the liquid is removed by high-speed rotation of the substrate W is performed.
 タンク内の固化膜形成物質の融液をノズル39から吐出させる場合は、タンクだけでなく、タンクからノズル39に至る配管全体を、固化膜形成物質の凝固点を超える温度に維持する必要がある。これに対して、固化膜形成物質の固体を運搬する場合は、固化膜形成物質の固体が通る経路にはヒータが要らないので、ヒータを小型化もしくは省略できる。したがって、乾燥前処理液の作成に要するエネルギーを減らすことができる。 In the case where the melt of the solidified film-forming substance in the tank is discharged from the nozzle 39, it is necessary to maintain not only the tank but also the entire pipe from the tank to the nozzle 39 at a temperature higher than the solidification point of the solidified film-forming substance. On the other hand, when the solid of the solidified film forming substance is transported, a heater is not required in a path through which the solid of the solidified film forming substance passes, so that the heater can be reduced in size or omitted. Therefore, the energy required for preparing the pre-drying treatment liquid can be reduced.
 配管内の固化膜形成物質を液体に維持するために配管をヒータで加熱する場合、ヒータが故障すると、配管内の固化膜形成物質が固体に変化し、配管が固化膜形成物質の固体で詰まる可能性がある。ヒータを省略すれば、このような詰まりは発生しない。ヒータを設ける場合でも、ヒータを設ける範囲を狭くすれば、配管の詰まりが発生したとしても、基板処理装置1の復旧に要する時間を短縮できる。 When heating a pipe with a heater to maintain the solidified film-forming substance in the pipe as a liquid, if the heater fails, the solidified film-forming substance in the pipe changes to a solid, and the pipe is clogged with the solidified film-forming substance. there is a possibility. If the heater is omitted, such clogging does not occur. Even in the case where the heater is provided, if the range in which the heater is provided is narrowed, the time required for restoring the substrate processing apparatus 1 can be reduced even if the pipe is clogged.
 本実施形態では、基板Wを収容するチャンバー4の中で固化膜形成物質の固体を運搬する。固化膜形成物質は、基板Wまで固体のまま運搬される。そのため、固化膜形成物質を融解させるヒータ(下ヒータ75)を設ける場合でも、ヒータを設ける範囲を極めて狭くすることができ、エネルギーの消費量を減らすことができる。 In the present embodiment, the solid of the solidified film forming substance is transported in the chamber 4 accommodating the substrate W. The solidified film forming substance is transported to the substrate W as a solid. Therefore, even when a heater (lower heater 75) for melting the solidified film forming substance is provided, the range in which the heater is provided can be extremely narrowed, and the energy consumption can be reduced.
 以上のように本実施形態では、固化膜形成物質の固体を基板Wの表面まで運搬する。言い換えると、固化膜形成物質は、固体のまま基板Wの表面に供給される。固化膜形成物質が基板Wの表面に供給されたときの固化膜形成物質の温度は、固化膜形成物質の融点よりも低い。固化膜形成物質の固体が基板Wに供給された後は、基板Wの表面上の固化膜形成物質を融解させる、もしくは、溶媒に溶解させる。これにより、乾燥前処理液が作成される。それと同時に、乾燥前処理液が基板Wの表面に供給される。 As described above, in the present embodiment, the solid of the solidified film forming substance is transported to the surface of the substrate W. In other words, the solidified film forming substance is supplied to the surface of the substrate W as a solid. The temperature of the solidified film forming material when the solidified film forming material is supplied to the surface of the substrate W is lower than the melting point of the solidified film forming material. After the solidified film-forming substance is supplied to the substrate W, the solidified film-forming substance on the surface of the substrate W is melted or dissolved in a solvent. Thereby, a pre-drying treatment liquid is prepared. At the same time, the pre-drying liquid is supplied to the surface of the substrate W.
 固化膜形成物質の溶液または融液を基板Wの表面に供給すると、一部の溶液や融液は基板Wの外周部を通じて基板Wの表面から排出される。固化膜形成物質の固体を基板Wの表面に供給する場合は、固化膜形成物質の固体が基板Wの表面にとどまり易い。したがって、固化膜形成物質の溶液または融液を基板Wの表面に供給する場合に比べて、固化膜形成物質を効率的に使用でき、固化膜形成物質の消費量を減らすことができる。 (4) When the solution or the melt of the solidified film forming material is supplied to the surface of the substrate W, a part of the solution or the melt is discharged from the surface of the substrate W through the outer peripheral portion of the substrate W. When the solid of the solidified film forming material is supplied to the surface of the substrate W, the solid of the solidified film forming material is likely to remain on the surface of the substrate W. Therefore, compared with the case where the solution or the melt of the solidified film forming material is supplied to the surface of the substrate W, the solidified film forming material can be used more efficiently, and the consumption of the solidified film forming material can be reduced.
 本実施形態では、室温の固化膜形成物質を基板Wの表面に供給する。固化膜形成物質の融点は室温よりも高い。したがって、固化膜形成物質の固体が基板Wの表面に供給される。固化膜形成物質の融点が室温以下である場合、固化膜形成物質を固体に維持するために、基板Wに供給する前に固化膜形成物質を冷却し続ける必要がある。固化膜形成物質の融点が室温よりも高ければ、このような冷却は必要ない。 In the present embodiment, the solidified film forming material at room temperature is supplied to the surface of the substrate W. The melting point of the solidified film forming substance is higher than room temperature. Therefore, the solid of the solidified film forming substance is supplied to the surface of the substrate W. When the melting point of the solidified film forming material is equal to or lower than room temperature, the solidified film forming material needs to be continuously cooled before being supplied to the substrate W in order to maintain the solidified film forming material as a solid. If the melting point of the solidified film-forming substance is higher than room temperature, such cooling is not necessary.
 また、液体が極めて狭い空間に配置されると、凝固点降下が発生する。半導体ウエハなどの基板Wでは、隣り合う2つのパターンP1の間隔G1が狭いので、パターンP1の間に位置する液体の凝固点が降下してしまう。したがって、隣り合う2つの凸状パターンP1の間だけでなく、パターンP1の上方にも液体がある状態で、液体を凝固させるときは、パターンP1の間に位置する液体の凝固点が、パターンP1の上方に位置する液体の凝固点よりも低い。 凝固 If the liquid is placed in a very narrow space, freezing point depression occurs. In the case of a substrate W such as a semiconductor wafer, the space G1 between two adjacent patterns P1 is narrow, so that the freezing point of the liquid located between the patterns P1 drops. Therefore, when the liquid is solidified not only between two adjacent convex patterns P1 but also above the pattern P1, the solidification point of the liquid located between the patterns P1 is It is lower than the freezing point of the liquid located above.
 パターンP1の間に位置する液体の凝固点だけが低いと、基板Wの表面に形成された液膜の表層、つまり、液膜の上面(液面)からパターンP1の上面までの範囲に位置する液体層が先に凝固し、パターンP1の間に位置する液体が凝固せずに液体に維持される場合がある。この場合、固体と液体の界面がパターンP1の近傍に形成され、パターンP1を倒壊させる倒壊力が発生することがある。パターンP1の微細化によってパターンP1がさらに脆弱になると、このような弱い倒壊力でも、パターンP1が倒壊してしまう。 If only the freezing point of the liquid located between the patterns P1 is low, the liquid located on the surface of the liquid film formed on the surface of the substrate W, that is, the liquid from the upper surface (liquid surface) of the liquid film to the upper surface of the pattern P1 There is a case where the layer solidifies first and the liquid located between the patterns P1 is kept solid without solidifying. In this case, an interface between the solid and the liquid is formed near the pattern P1, and a collapse force that collapses the pattern P1 may occur. If the pattern P1 becomes weaker due to the miniaturization of the pattern P1, the pattern P1 collapses even with such a weak collapse force.
 さらに、降下前の凝固点が低い上に凝固点が大幅に降下すると、基板Wの表面上の液体を極めて低い温度まで冷却しないと、基板Wの表面上の液体が凝固しない。固化膜形成物質の凝固点は、固化膜形成物質の融点と等しいか、固化膜形成物質の融点と殆ど変わらない。したがって、固化膜形成物質の融点が高いと、固化膜形成物質の凝固点も高い。凝固点が大幅に降下したとしても、降下前の凝固点が高ければ、冷却温度を極端に低下させなくても、基板Wの表面上の乾燥前処理液を凝固させることができる。これにより、基板Wの処理に要するエネルギーの消費量を減らすことができる。 Furthermore, if the freezing point before dropping is low and the freezing point drops significantly, the liquid on the surface of the substrate W will not solidify unless the liquid on the surface of the substrate W is cooled to an extremely low temperature. The freezing point of the solidified film forming substance is equal to or substantially the same as the melting point of the solidified film forming substance. Therefore, when the melting point of the solidified film-forming substance is high, the solidification point of the solidified film-forming substance is also high. Even if the freezing point drops significantly, if the freezing point before the drop is high, the pre-drying treatment liquid on the surface of the substrate W can be solidified without extremely lowering the cooling temperature. Thereby, the amount of energy consumption required for processing the substrate W can be reduced.
 固化膜形成物質の溶液を基板Wに供給する場合は、固化膜形成物質が分散した状態を維持するために、溶液を基板Wに供給しないときも攪拌し続ける必要がある。凝固点が室温以上の固化膜形成物質の融液を基板Wに供給する場合は、固化膜形成物質を液体に維持するために固化膜形成物質を加熱し続ける必要がある。すなわち、攪拌機構や加熱機構を設けなければ、配管詰まり等の問題が生じる。一方、凝固点が室温未満の固化膜形成物質の融液を用いる場合は、固化膜形成物質を加熱しなくても固化膜形成物質が液体に維持されるものの、前述のように、降下前の凝固点が低いので、極めて低い温度まで冷却しないと、基板Wの表面上の融液が凝固しない。したがって、融点および凝固点が室温よりも高い固化膜形成物質の固体を基板Wに供給すれば、これらの問題は発生しない。 (4) When supplying the solution of the solidified film forming substance to the substrate W, it is necessary to keep stirring even when the solution is not supplied to the substrate W in order to maintain the state where the solidified film forming substance is dispersed. When a solidified film-forming substance having a freezing point of room temperature or higher is supplied to the substrate W, it is necessary to continuously heat the solidified film-forming substance in order to maintain the solidified film-forming substance as a liquid. That is, unless a stirring mechanism or a heating mechanism is provided, problems such as clogging of a pipe occur. On the other hand, when using a melt of the solidified film-forming substance having a freezing point lower than room temperature, the solidified film-forming substance is maintained in a liquid state without heating the solidified film-forming substance, but as described above, , The melt on the surface of the substrate W does not solidify unless cooled to an extremely low temperature. Therefore, if a solid of a solidified film-forming substance having a melting point and a freezing point higher than room temperature is supplied to the substrate W, these problems do not occur.
 本実施形態では、固化膜形成物質の粉、固化膜形成物質の粒、またはこれらの結合物を基板Wの表面に供給する。つまり、固化膜形成物質の小さな塊を基板Wの表面に供給する。基板Wに供給される質量が同じであれば、個々の塊が小さいほど、固化膜形成物質の固体の表面積の合計値が増加する。固化膜形成物質の融解により乾燥前処理液を作成する場合、表面積が大きいと、固化膜形成物質の固体を効率的に加熱できる。固化膜形成物質の溶解により乾燥前処理液を作成する場合、表面積が大きいと、固化膜形成物質の固体を効率的に溶媒に溶かすことができる。したがって、融解および溶解のいずれを用いる場合でも、効率的に乾燥前処理液を作成できる。 In the present embodiment, the powder of the solidified film forming material, the particles of the solidified film forming material, or a combination thereof is supplied to the surface of the substrate W. That is, a small lump of the solidified film forming material is supplied to the surface of the substrate W. If the mass supplied to the substrate W is the same, the smaller the individual mass, the larger the total surface area of the solid of the solidified film forming material. When preparing a pretreatment liquid for drying by melting a solidified film-forming substance, if the surface area is large, the solid of the solidified film-forming substance can be efficiently heated. When preparing a pretreatment liquid for drying by dissolving the solidified film-forming substance, if the surface area is large, the solid of the solidified film-forming substance can be efficiently dissolved in the solvent. Therefore, a drying pretreatment liquid can be efficiently prepared regardless of whether melting or dissolution is used.
 第1処理例では、基板Wの表面上の固化膜形成物質の固体を固化膜形成物質の融点以上の加熱温度で加熱する。これにより、固化膜形成物質の固体が固化膜形成物質の液体に変化し、固化膜形成物質を含む乾燥前処理液、つまり、固化膜形成物の液体が基板Wの表面で作成される。これにより、固化膜形成物質を主成分とする乾燥前処理液を作成でき、隣り合う2つのパターンP1の間の空間を乾燥前処理液で満たすことができる。 In the first processing example, the solid of the solidified film forming material on the surface of the substrate W is heated at a heating temperature equal to or higher than the melting point of the solidified film forming material. As a result, the solid of the solidified film-forming substance is changed to a liquid of the solidified film-forming substance, and a dry pretreatment liquid containing the solidified film-forming substance, that is, a liquid of the solidified film-forming substance is formed on the surface of the substrate W. This makes it possible to prepare a pretreatment liquid containing a solidified film-forming substance as a main component, and to fill a space between two adjacent patterns P1 with the pretreatment liquid.
 第1処理例では、固化膜形成物質の固体を基板Wに供給する前に基板Wの加熱を開始する。したがって、固化膜形成物質の固体は、事前に加熱された基板Wの表面に供給される。固化膜形成物質の固体が基板Wの表面に接触すると、それと同時に、固化膜形成物質の固体が基板Wを介して加熱される。したがって、固化膜形成物質の固体が基板Wに供給された後に固化膜形成物質の加熱を開始する場合に比べて、固化膜形成物質が融解するまでの時間を短縮できる。 In the first processing example, the heating of the substrate W is started before the solid of the solidified film forming substance is supplied to the substrate W. Therefore, the solid of the solidified film forming substance is supplied to the surface of the substrate W heated in advance. When the solid of the solidified film forming material contacts the surface of the substrate W, the solid of the solidified film forming material is heated via the substrate W at the same time. Therefore, the time until the solidified film-forming substance is melted can be reduced as compared with the case where the solidified film-forming substance is heated after the solid of the solidified film-forming substance is supplied to the substrate W.
 第1処理例では、温度が固化膜形成物質の融点以上の加熱流体を基板Wの裏面の中央部に向けて吐出する。吐出された加熱流体は、基板Wの裏面の中央部に接触する。これにより、基板Wの中央部が加熱される。さらに、加熱流体は、基板Wの裏面の中央部に接触した後、基板Wの裏面の中央部から基板Wの裏面に沿ってあらゆる方向に放射状に流れる。これにより、中央部以外の基板Wの裏面内の領域にも加熱流体が接触し、基板Wの他の部分も加熱される。 In the first processing example, a heating fluid having a temperature equal to or higher than the melting point of the solidified film forming material is discharged toward the center of the back surface of the substrate W. The discharged heating fluid comes into contact with the center of the back surface of the substrate W. Thereby, the central portion of the substrate W is heated. Further, after the heating fluid comes into contact with the center of the back surface of the substrate W, it flows radially from the center of the back surface of the substrate W in all directions along the back surface of the substrate W. As a result, the heating fluid comes into contact with a region other than the center portion on the back surface of the substrate W, and the other portion of the substrate W is also heated.
 加熱流体が最初に基板Wの裏面の中央部に接触するので、基板Wの中央部は、基板Wの他の部分よりも温度が高い。この温度が高い部分に固化膜形成物質の固体が接触する。したがって、基板Wの表面上の固化膜形成物質の固体を基板Wを介して効率的に加熱できる。これにより、固化膜形成物質の固体を効率的に融解させることができ、乾燥前処理液の作成に要する時間を短縮できる。 (4) Since the heating fluid contacts the center of the back surface of the substrate W first, the temperature of the center of the substrate W is higher than that of other portions of the substrate W. The solid of the solidified film-forming substance comes into contact with the high temperature portion. Therefore, the solid of the solidified film forming substance on the surface of the substrate W can be efficiently heated via the substrate W. Thereby, the solid of the solidified film-forming substance can be efficiently melted, and the time required for preparing the pretreatment liquid for drying can be reduced.
 さらに、加熱流体が基板Wの裏面の中央部に向けて吐出されているときは、基板Wの中央部を通る鉛直な回転軸線A1まわりに基板Wが回転している。基板Wの表面の中央部で作成された乾燥前処理液は、基板Wの回転によって生じる遠心力で基板Wの表面の中央部から放射状に流れる。これにより、乾燥前処理液を基板Wの表面で広げることができる。しかも、融解前の固化膜形成物質と基板Wの表面との間から融解した固化膜形成物質が排出されるので、融解前の固化膜形成物質を効率的に加熱できる。 {Circle around (4)} When the heating fluid is discharged toward the center of the back surface of the substrate W, the substrate W is rotating around a vertical rotation axis A1 passing through the center of the substrate W. The pre-drying treatment liquid created at the center of the surface of the substrate W flows radially from the center of the surface of the substrate W due to the centrifugal force generated by the rotation of the substrate W. Thereby, the pre-drying treatment liquid can be spread on the surface of the substrate W. Moreover, since the melted solidified film forming material is discharged from between the solidified film forming material before melting and the surface of the substrate W, the solidified film forming material before melting can be efficiently heated.
 第2処理例では、固化膜形成物質の固体だけでなく、固化膜形成物質と溶け合う溶媒の一例である置換液も基板Wの表面に供給する。固化膜形成物質の固体は、基板Wの表面で溶媒に溶ける。これにより、固化膜形成物質および溶媒を含む溶液である乾燥前処理液が基板Wの表面で形成される。したがって、基板W上の固化膜形成物質の固体を融解させなくても、乾燥前処理液を作成できる。 In the second processing example, not only the solid of the solidified film-forming substance but also the replacement liquid, which is an example of a solvent that dissolves in the solidified film-forming substance, is supplied to the surface of the substrate W. The solid of the solidified film forming substance is dissolved in the solvent on the surface of the substrate W. As a result, a dry pretreatment liquid, which is a solution containing the solidified film-forming substance and the solvent, is formed on the surface of the substrate W. Therefore, the drying pretreatment liquid can be prepared without melting the solid of the solidified film forming substance on the substrate W.
 第2処理例では、溶媒の一例である置換液を基板Wの表面に供給した後に、固化膜形成物質の固体を基板Wの表面に供給する。したがって、固化膜形成物質の固体を供給するのと同時に、固化膜形成物質の溶解が始まる。これにより、乾燥前処理液の作成に要する時間を短縮できる。さらに、固化膜形成物質の固体を基板Wに供給する前は、通常、基板W上の薬液をリンス液で洗い流したり、基板W上のリンス液を置換液で置換したりする。固化膜形成物質の固体がリンス液または置換液に溶ける場合は、リンス液または置換液を溶媒として用いることができる。つまり、固化膜形成物質の固体を基板W上のリンス液または置換液に溶かして、乾燥前処理液を作成することができる。したがって、専用の溶媒を用いなくてもよい。 In the second processing example, after the replacement liquid as an example of the solvent is supplied to the surface of the substrate W, the solid of the solidified film forming substance is supplied to the surface of the substrate W. Accordingly, the dissolution of the solidified film-forming substance starts simultaneously with the supply of the solid of the solidified film-forming substance. Thereby, the time required for preparing the pretreatment liquid for drying can be reduced. Further, before the solid of the solidified film forming substance is supplied to the substrate W, the chemical solution on the substrate W is usually washed away with a rinsing liquid, or the rinsing liquid on the substrate W is replaced with a replacement liquid. When the solid of the solidified film forming substance is dissolved in the rinsing liquid or the replacement liquid, the rinsing liquid or the replacement liquid can be used as a solvent. That is, the solid of the solidified film forming substance can be dissolved in the rinsing liquid or the replacement liquid on the substrate W to prepare the pre-drying treatment liquid. Therefore, it is not necessary to use a dedicated solvent.
 第2処理例では、溶媒の一例である置換液を基板Wに供給した後に溶媒を加熱して、溶媒の温度を上昇させる。これにより、溶媒における固化膜形成物質の飽和濃度が上昇するので、固化膜形成物質の固体が溶媒に溶け易くなる。したがって、固化膜形成物質の固体が基板Wの表面で溶媒に溶解することを促進でき、固化膜形成物質および溶媒を含む溶液である乾燥前処理液の作成に要する時間を短縮できる。 In the second processing example, after supplying a replacement liquid, which is an example of the solvent, to the substrate W, the solvent is heated to increase the temperature of the solvent. This increases the saturation concentration of the solidified film forming substance in the solvent, so that the solid of the solidified film forming substance is easily dissolved in the solvent. Therefore, the solid of the solidified film-forming substance can be promoted to dissolve in the solvent on the surface of the substrate W, and the time required for preparing a dry pretreatment liquid as a solution containing the solidified film-forming substance and the solvent can be reduced.
 第1および第2処理例では、固化膜101が形成される前に、基板Wを水平に保持しながら鉛直な回転軸線A1まわりに回転させる。基板Wの表面上の一部の乾燥前処理液は、遠心力で基板Wから除去される。これにより、基板Wの表面の全域が乾燥前処理液の液膜で覆われた状態で、乾燥前処理液の膜厚が減少する。その後、固化膜101を形成する。乾燥前処理液の膜厚が減少しているので、固化膜101を短時間で形成でき、固化膜101を薄くできる。したがって、固化膜101の形成に要する時間と固化膜101の除去に要する時間を短縮できる。これにより、基板Wの処理に要するエネルギーの消費量を減らすことができる。 In the first and second processing examples, before the solidified film 101 is formed, the substrate W is rotated about the vertical rotation axis A1 while holding the substrate horizontally. Some of the pretreatment liquid on the surface of the substrate W is removed from the substrate W by centrifugal force. Accordingly, the film thickness of the pre-drying treatment liquid decreases in a state where the entire surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid. After that, the solidified film 101 is formed. Since the thickness of the pretreatment liquid for drying is reduced, the solidified film 101 can be formed in a short time, and the solidified film 101 can be thinned. Therefore, the time required for forming the solidified film 101 and the time required for removing the solidified film 101 can be reduced. Thereby, the amount of energy consumption required for processing the substrate W can be reduced.
 次に、第2実施形態について説明する。 Next, a second embodiment will be described.
 第1実施形態に対する第2実施形態の主な相違点は、内蔵ヒータ111が遮断部材51に内蔵されており、下面ノズル71の代わりにクーリングプレート112が設けられていることである。 主 A main difference between the first embodiment and the second embodiment is that the built-in heater 111 is built in the blocking member 51, and a cooling plate 112 is provided instead of the lower surface nozzle 71.
 図11Aは、本発明の第2実施形態に係るスピンチャック10、遮断部材51、およびクーリングプレート112を水平に見た模式図である。図11Bは、スピンチャック10およびクーリングプレート112を上から見た模式図である。図11Aおよび図11Bにおいて、図1~図10Fに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 FIG. 11A is a schematic view of the spin chuck 10, the blocking member 51, and the cooling plate 112 according to the second embodiment of the present invention viewed horizontally. FIG. 11B is a schematic view of the spin chuck 10 and the cooling plate 112 as viewed from above. 11A and 11B, the same components as those shown in FIGS. 1 to 10F are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
 図11Aに示すように、内蔵ヒータ111は、遮断部材51の円板部52の内部に配置されている。内蔵ヒータ111は、遮断部材51とともに昇降する。基板Wは、内蔵ヒータ111の下方に配置される。内蔵ヒータ111は、たとえば、通電によりジュール熱を発生する電熱線である。内蔵ヒータ111の温度は、制御装置3(図1参照)によって変更される。制御装置3が内蔵ヒータ111を発熱させると、基板Wの全体が均一に加熱される。 内 蔵 As shown in FIG. 11A, the built-in heater 111 is arranged inside the disk portion 52 of the blocking member 51. The built-in heater 111 moves up and down together with the blocking member 51. The substrate W is arranged below the built-in heater 111. The built-in heater 111 is, for example, a heating wire that generates Joule heat when energized. The temperature of the built-in heater 111 is changed by the control device 3 (see FIG. 1). When the control device 3 causes the built-in heater 111 to generate heat, the entire substrate W is uniformly heated.
 クーリングプレート112は、スピンベース12の上方に配置されている。クーリングプレート112は、クーリングプレート112の中央部から下方に延びる支軸113によって水平に支持されている。クーリングプレート112は、基板Wとスピンベース12との間に配置される。クーリングプレート112は、基板Wの下面と平行な上面112uを含む。クーリングプレート112は、上面112uから上方に突出した複数の突起112pを含んでいてもよい。 The cooling plate 112 is arranged above the spin base 12. The cooling plate 112 is horizontally supported by a support shaft 113 extending downward from the center of the cooling plate 112. The cooling plate 112 is disposed between the substrate W and the spin base 12. The cooling plate 112 includes an upper surface 112u parallel to the lower surface of the substrate W. The cooling plate 112 may include a plurality of protrusions 112p projecting upward from the upper surface 112u.
 図11Bに示すように、クーリングプレート112の中心線は、基板Wの回転軸線A1上に配置されている。スピンチャック10が回転しても、クーリングプレート112は回転しない。クーリングプレート112の外径は、基板Wの直径よりも小さい。複数のチャックピン11は、クーリングプレート112のまわりに配置されている。クーリングプレート112の温度は、制御装置3によって変更される。制御装置3がクーリングプレート112の温度を低下させると、基板Wの全体が均一に冷却される。 中心 As shown in FIG. 11B, the center line of the cooling plate 112 is arranged on the rotation axis A1 of the substrate W. Even if the spin chuck 10 rotates, the cooling plate 112 does not rotate. The outer diameter of the cooling plate 112 is smaller than the diameter of the substrate W. The plurality of chuck pins 11 are arranged around the cooling plate 112. The temperature of the cooling plate 112 is changed by the control device 3. When the control device 3 lowers the temperature of the cooling plate 112, the entire substrate W is uniformly cooled.
 図10Aに示すように、クーリングプレート112は、スピンベース12に対して上下に移動可能である。クーリングプレート112は、支軸113を介してプレート昇降ユニット114に接続されている。プレート昇降ユニット114は、上位置(実線で示す位置)と下位置(二点鎖線で示す位置)との間でクーリングプレート112を鉛直に昇降させる。上位置は、クーリングプレート112が基板Wの下面に接触する接触位置である。下位置は、クーリングプレート112が基板Wから離れた状態で基板Wの下面とスピンベース12の上面12uとの間に配置される近接位置である。 ク ー As shown in FIG. 10A, the cooling plate 112 can be moved up and down with respect to the spin base 12. The cooling plate 112 is connected to a plate elevating unit 114 via a support shaft 113. The plate elevating unit 114 vertically elevates the cooling plate 112 between an upper position (a position indicated by a solid line) and a lower position (a position indicated by a two-dot chain line). The upper position is a contact position where the cooling plate 112 contacts the lower surface of the substrate W. The lower position is a close position where the cooling plate 112 is arranged between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in a state where the cooling plate 112 is separated from the substrate W.
 プレート昇降ユニット114は、上位置から下位置までの任意の位置にクーリングプレート112を位置させる。基板Wが複数のチャックピン11に支持されており、基板Wの把持が解除されている状態で、クーリングプレート112が上位置まで上昇すると、クーリングプレート112の複数の突起112pが基板Wに下面に接触し、基板Wがクーリングプレート112に支持される。その後、基板Wは、クーリングプレート112によって持ち上げられ、複数のチャックピン11から上方に離れる。この状態で、クーリングプレート112が下位置まで下降すると、クーリングプレート112上の基板Wが複数のチャックピン11の上に置かれ、クーリングプレート112が基板Wから下方に離れる。これにより、基板Wは、複数のチャックピン11とクーリングプレート112との間で受け渡される。 The plate lifting unit 114 positions the cooling plate 112 at an arbitrary position from the upper position to the lower position. When the cooling plate 112 is raised to the upper position in a state where the substrate W is supported by the plurality of chuck pins 11 and the gripping of the substrate W is released, the plurality of protrusions 112p of the cooling plate 112 The contact is made, and the substrate W is supported by the cooling plate 112. Thereafter, the substrate W is lifted by the cooling plate 112 and moves upward from the plurality of chuck pins 11. In this state, when the cooling plate 112 is lowered to the lower position, the substrate W on the cooling plate 112 is placed on the plurality of chuck pins 11, and the cooling plate 112 is separated from the substrate W downward. Thus, the substrate W is transferred between the plurality of chuck pins 11 and the cooling plate 112.
 第1実施形態に係る第1処理例および第2処理例では、温水および窒素ガスなどの加熱流体が基板Wの下面の中央部に向けて吐出されるが、制御装置3は、加熱流体の吐出に加えてもしくは代えて、内蔵ヒータ111を発熱させてもよい。たとえば、固形物100の融解(図6のステップS8)、固形物100の溶解の促進(図9のステップS6)、および固形物100の析出(図9のステップS111)を行うときに、固形物100などの基板W上の物質を内蔵ヒータ111で加熱してもよい。 In the first processing example and the second processing example according to the first embodiment, the heating fluid such as the hot water and the nitrogen gas is discharged toward the central portion of the lower surface of the substrate W. In addition to or in place of the above, the built-in heater 111 may generate heat. For example, when melting the solid 100 (step S8 in FIG. 6), promoting the dissolution of the solid 100 (step S6 in FIG. 9), and depositing the solid 100 (step S111 in FIG. 9), A substance on the substrate W such as 100 may be heated by the built-in heater 111.
 第1実施形態に係る第1処理例では、冷水などの冷却流体が基板Wの下面の中央部に向けて吐出されるが、制御装置3は、冷却流体の吐出に加えてもしくは代えて、クーリングプレート112の温度を低下させてもよい。たとえば、固形物100の凝固(図6のステップS12)を行うときに、基板W上の乾燥前処理液(固化膜形成物質の融液)をクーリングプレート112で冷却してもよい。この場合、制御装置3は、クーリングプレート112を基板Wの下面に接触させてもよいし、クーリングプレート112を基板Wの下面に接触させなくてもよい。 In the first processing example according to the first embodiment, a cooling fluid such as cold water is discharged toward the center of the lower surface of the substrate W. However, the control device 3 controls the cooling in addition to or instead of discharging the cooling fluid. The temperature of the plate 112 may be reduced. For example, when the solid 100 is solidified (Step S12 in FIG. 6), the pre-drying treatment liquid (melt of the solidified film forming substance) on the substrate W may be cooled by the cooling plate 112. In this case, the control device 3 may make the cooling plate 112 contact the lower surface of the substrate W, or may not make the cooling plate 112 contact the lower surface of the substrate W.
 冷却部材の一例であるクーリングプレート112の代わりに、通電によりジュール熱を発生する発熱体が内蔵されたホットプレートを基板Wとスピンベース12との間に配置してもよい。この場合、固形物100などの基板W上の物質を加熱部材の一例であるホットプレートで加熱してもよい。また、内蔵ヒータ111を遮断部材51に内蔵する代わりに、冷水などの冷却流体が通る冷媒通路を遮断部材51の内部に設けてもよい。この場合、基板W上の乾燥前処理液を遮断部材51で冷却してもよい。 (4) Instead of the cooling plate 112, which is an example of a cooling member, a hot plate having a built-in heating element that generates Joule heat when energized may be disposed between the substrate W and the spin base 12. In this case, a substance on the substrate W such as the solid 100 may be heated by a hot plate which is an example of a heating member. Instead of incorporating the built-in heater 111 in the blocking member 51, a coolant passage through which a cooling fluid such as cold water passes may be provided inside the blocking member 51. In this case, the pre-drying treatment liquid on the substrate W may be cooled by the blocking member 51.
 次に、第3実施形態について説明する。 Next, a third embodiment will be described.
 第1実施形態に対する第3実施形態の主な相違点は、固化膜101を液体を経ずに気体に変化させる固化膜除去工程が、昇華工程ではなく、基板Wにプラズマを照射するプラズマ照射工程であり、プラズマ照射工程が、別の処理ユニット2で行われることである。 The main difference between the first embodiment and the third embodiment is that the solidified film removing step of changing the solidified film 101 into a gas without passing through a liquid is not a sublimation step but a plasma irradiation step of irradiating the substrate W with plasma. That is, the plasma irradiation step is performed in another processing unit 2.
 図12は、ウェット処理ユニット2wからドライ処理ユニット2dへの基板Wの搬送について説明するための模式図である。図12において、図1~図11Bに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 FIG. 12 is a schematic diagram for explaining the transfer of the substrate W from the wet processing unit 2w to the dry processing unit 2d. 12, the same components as those shown in FIGS. 1 to 11B are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
 基板処理装置1に設けられた複数の処理ユニット2は、基板Wに処理液を供給するウェット処理ユニット2wに加えて、基板Wに処理液を供給せずに基板Wを処理するドライ処理ユニット2dを含む。図12は、ドライ処理ユニット2dが、チャンバー4d内に処理ガスを案内する処理ガス配管121と、チャンバー4d内の処理ガスをプラズマに変化させるプラズマ発生装置122とを含む例を示している。プラズマ発生装置122は、基板Wの上方に配置される上電極123と、基板Wの下方に配置される下電極124とを含む。 The plurality of processing units 2 provided in the substrate processing apparatus 1 include a wet processing unit 2w for supplying a processing liquid to the substrate W and a dry processing unit 2d for processing the substrate W without supplying the processing liquid to the substrate W. including. FIG. 12 shows an example in which the dry processing unit 2d includes a processing gas pipe 121 for guiding a processing gas into the chamber 4d and a plasma generator 122 for converting the processing gas in the chamber 4d into plasma. The plasma generator 122 includes an upper electrode 123 disposed above the substrate W, and a lower electrode 124 disposed below the substrate W.
 固化膜形成工程(図6のステップS12および図9のステップS112)までの工程は、ウェット処理ユニット2wのチャンバー4内で行われる。その後、図12に示すように、基板Wは、センターロボットCRによって、ウェット処理ユニット2wのチャンバー4から搬出され、ドライ処理ユニット2dのチャンバー4dに搬入される。基板Wの表面に形成された固化膜101は、チャンバー4d内のプラズマに起因する化学反応(たとえばオゾンガスによる酸化)および物理反応により液体を経ずに気体に変化する。これにより、基板Wから固化膜101が除去される。 Steps up to the solidified film forming step (Step S12 in FIG. 6 and Step S112 in FIG. 9) are performed in the chamber 4 of the wet processing unit 2w. Thereafter, as shown in FIG. 12, the substrate W is carried out of the chamber 4 of the wet processing unit 2w by the center robot CR, and carried into the chamber 4d of the dry processing unit 2d. The solidified film 101 formed on the surface of the substrate W changes into a gas without passing through a liquid by a chemical reaction (eg, oxidation with ozone gas) and a physical reaction caused by plasma in the chamber 4d. Thus, the solidified film 101 is removed from the substrate W.
 第3実施形態では、第1実施形態に係る効果に加えて、次の効果を奏することができる。具体的には、第3実施形態では、乾燥前処理液の作成と固化膜101の形成とがウェット処理ユニット2wのチャンバー4の中で行われ、固化膜101の除去がドライ処理ユニット2dのチャンバー4dの中で行われる。このように、乾燥前処理液の作成から固化膜101の形成までの工程と固化膜101の除去とが別々の処理ユニット2で行われるので、ウェット処理ユニット2wおよびドライ処理ユニット2dの構造を簡素化でき、ウェット処理ユニット2wおよびドライ処理ユニット2dを小型化できる。 で は In the third embodiment, the following effects can be obtained in addition to the effects according to the first embodiment. Specifically, in the third embodiment, the preparation of the pre-drying treatment liquid and the formation of the solidified film 101 are performed in the chamber 4 of the wet processing unit 2w, and the removal of the solidified film 101 is performed in the chamber of the dry processing unit 2d. 4d. As described above, since the steps from the preparation of the pre-drying treatment liquid to the formation of the solidified film 101 and the removal of the solidified film 101 are performed in the separate processing units 2, the structures of the wet processing unit 2w and the dry processing unit 2d are simplified. And the wet processing unit 2w and the dry processing unit 2d can be reduced in size.
 次に、第4実施形態について説明する。 Next, a fourth embodiment will be described.
 第1実施形態に対する第4実施形態の主な相違点は、ノズル39内の固形物100を融解させる融解ヒータ131が設けられていることである。 The main difference between the fourth embodiment and the first embodiment is that a melting heater 131 for melting the solid material 100 in the nozzle 39 is provided.
 以下の図13A~図13B、図14、および図15A~図15Cにおいて、図1~図12に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 In the following FIGS. 13A to 13B, FIG. 14, and FIGS. 15A to 15C, the same components as those shown in FIGS. 1 to 12 are denoted by the same reference numerals as those in FIG. Is omitted.
 図13Aは、固形物100を運搬して、運搬された固形物100を融解させる固形物運搬融解システムについて説明するための模式図である。図13Bは、ノズル39および蓋95を図13Aに示す矢印XIIIBの方向に見た模式図である。 A FIG. 13A is a schematic diagram for explaining a solid matter transport and melting system that transports the solid matter 100 and melts the transported solid matter 100. FIG. 13B is a schematic view of the nozzle 39 and the lid 95 as viewed in the direction of arrow XIIIB shown in FIG. 13A.
 図13Aに示すように、融解ヒータ131は、ハウジング41内に配置されている。融解ヒータ131は、ノズル39の全周を取り囲む筒状である。ノズル39の軸方向への融解ヒータ131の長さは、ノズル39内に作成する乾燥前処理液の量に応じて設定される。図13Aは、融解ヒータ131の長さがノズル39の吐出口39pの直径よりも大きい例を示している。 融 As shown in FIG. 13A, the melting heater 131 is disposed in the housing 41. The melting heater 131 has a cylindrical shape surrounding the entire circumference of the nozzle 39. The length of the melting heater 131 in the axial direction of the nozzle 39 is set according to the amount of the pre-drying treatment liquid to be formed in the nozzle 39. FIG. 13A shows an example in which the length of the melting heater 131 is larger than the diameter of the discharge port 39p of the nozzle 39.
 融解ヒータ131は、通電によりジュール熱を発生する電熱線を含む電気ヒータである。ノズル39内の固形物100を融解できるのであれば、融解ヒータ131は、ランプなどの電気ヒータ以外のヒータであってもよい。たとえば、融解ヒータ131は、ノズル39の外表面に接する液体を収容する容器と、容器内の液体を加熱する熱源とを備えていてもよい。 The melting heater 131 is an electric heater including a heating wire that generates Joule heat when energized. The melting heater 131 may be a heater other than an electric heater such as a lamp as long as the solid material 100 in the nozzle 39 can be melted. For example, the melting heater 131 may include a container that stores a liquid in contact with the outer surface of the nozzle 39, and a heat source that heats the liquid in the container.
 ノズル39の吐出口39pを開閉する蓋95は、鉛直な直線ではなく、水平な直線まわりに回転可能である。蓋95は、ハウジング41から下方に延びる2つのブラケット132に支持されている。図13Bに示すように、蓋95は、2つのブラケット132の間に配置されている。蓋95は、水平に延びる開閉シャフト133を介して2つのブラケット132に支持されている。蓋95は、2つのブラケット132に対して開閉シャフト133まわりに回転可能である。 The lid 95 for opening and closing the discharge port 39p of the nozzle 39 is rotatable around a horizontal straight line, not a vertical straight line. The lid 95 is supported by two brackets 132 extending downward from the housing 41. As shown in FIG. 13B, the lid 95 is disposed between the two brackets 132. The lid 95 is supported by two brackets 132 via a horizontally extending opening / closing shaft 133. The lid 95 is rotatable around the open / close shaft 133 with respect to the two brackets 132.
 開閉モータ96は、一方のブラケット132に対して蓋95とは反対側に配置されている。開閉シャフト133は、一方のブラケット132を貫通している。開閉シャフト133の先端部は、ハウジング41の延長部41e内に配置されている。開閉モータ96は、ハウジング41の延長部41e内に配置されている。開閉モータ96の回転軸96sは、開閉シャフト133に連結されている。回転軸96sと開閉シャフト133は、同一の直線上に配置されている。 The opening / closing motor 96 is disposed on the side opposite to the lid 95 with respect to one bracket 132. The opening / closing shaft 133 passes through one bracket 132. The tip of the opening / closing shaft 133 is arranged inside the extension 41 e of the housing 41. The opening / closing motor 96 is arranged inside the extension 41 e of the housing 41. A rotation shaft 96 s of the opening / closing motor 96 is connected to the opening / closing shaft 133. The rotation shaft 96s and the opening / closing shaft 133 are arranged on the same straight line.
 開閉モータ96が回転軸96sを回転させると、蓋95は、開閉シャフト133と共に開閉シャフト133まわりに回転する。開閉モータ96は、開位置と閉位置との間で水平な開閉軸線A2まわりに蓋95を移動させる。蓋95の開位置は、ノズル39を下から見たときに、ノズル39の吐出口39pのいずれの部分も蓋95に重ならない位置である。蓋95の閉位置は、蓋95の上面がノズル39の下面の全域に密着し、ノズル39の吐出口39pが塞がれる位置である。蓋95が閉位置に配置されているとき、ノズル39内の液体は、ノズル39の吐出口39pから排出されず、ノズル39内に留まる。 (4) When the opening / closing motor 96 rotates the rotation shaft 96s, the lid 95 rotates around the opening / closing shaft 133 together with the opening / closing shaft 133. The opening / closing motor 96 moves the lid 95 around a horizontal opening / closing axis A2 between the open position and the closed position. The open position of the lid 95 is a position where none of the discharge ports 39p of the nozzle 39 overlaps the lid 95 when the nozzle 39 is viewed from below. The closed position of the lid 95 is a position where the upper surface of the lid 95 is in close contact with the entire area of the lower surface of the nozzle 39, and the discharge port 39p of the nozzle 39 is closed. When the lid 95 is located at the closed position, the liquid in the nozzle 39 is not discharged from the discharge port 39p of the nozzle 39 but stays in the nozzle 39.
 図14は、基板処理装置1(図1A参照)によって行われる基板Wの処理の一例(第3処理例)について説明するための工程図である。図15A~図15Cは、図14に示す処理が行われているときの固形物100の変化を示す模式図である。制御装置3は、以下のステップを実行するようにプログラムされている。以下では、図13A、図13B、および図14を参照する。図15A~図15Cについては適宜参照する。 FIG. 14 is a process diagram for describing an example (third processing example) of the processing of the substrate W performed by the substrate processing apparatus 1 (see FIG. 1A). FIGS. 15A to 15C are schematic diagrams showing changes in the solid material 100 when the processing shown in FIG. 14 is performed. The control device 3 is programmed to perform the following steps. Hereinafter, FIG. 13A, FIG. 13B, and FIG. 14 will be referred to. 15A to 15C will be referred to as appropriate.
 第3処理例では、図6に示す第1処理例のステップS6~ステップS9に代えて、固化膜形成物質の固体である固形物100の融解によって乾燥前処理液を作成し、作成された乾燥前処理液を基板Wに供給する乾燥前処理液供給工程(図14のステップS207)が行われる。乾燥前処理液供給工程以外のステップは、第1処理例のステップS1~ステップS5およびステップS10~ステップS15と同様である。したがって、以下では、第3処理例の乾燥前処理液供給工程について説明する。 In the third processing example, instead of steps S6 to S9 of the first processing example shown in FIG. 6, a drying pretreatment liquid is prepared by melting the solid substance 100, which is a solid of the solidified film forming substance, A drying pretreatment liquid supply step of supplying the pretreatment liquid to the substrate W (Step S207 in FIG. 14) is performed. Steps other than the pre-drying treatment liquid supply step are the same as steps S1 to S5 and steps S10 to S15 of the first processing example. Therefore, the following describes the pre-drying treatment liquid supply step of the third processing example.
 第3処理例の乾燥前処理液供給工程では、蓋95が閉位置に配置されている状態で、運搬モータ92がスクリューコンベア91を回転させる。図15Aに示すように、固形物配管40内の固形物100は、スクリューコンベア91の回転によりノズル39の方に送られる。蓋95が閉位置に配置されているので、固形物配管40からノズル39に落下した固形物100は、ノズル39の吐出口39pを通過せずに、ノズル39内に留まる。これにより、固形物100がノズル39内に溜まる。ノズル39内に溜められる固形物100の量は、スクリューコンベア91を回転させる回数に応じて増減する。 で は In the pre-drying treatment liquid supply step of the third treatment example, the transport motor 92 rotates the screw conveyor 91 with the lid 95 placed at the closed position. As shown in FIG. 15A, the solid matter 100 in the solid matter pipe 40 is sent to the nozzle 39 by the rotation of the screw conveyor 91. Since the lid 95 is located at the closed position, the solid 100 that has dropped from the solid pipe 40 to the nozzle 39 does not pass through the discharge port 39p of the nozzle 39 and stays inside the nozzle 39. As a result, the solids 100 accumulate in the nozzle 39. The amount of the solids 100 stored in the nozzle 39 increases or decreases according to the number of times the screw conveyor 91 is rotated.
 固化膜形成物質の固体である固形物100をノズル39内に溜めた後は、ノズル39内の固形物100を融解させて、固化膜形成物質の液体である乾燥前処理液を作成する。具体的には、融解ヒータ131の温度を固化膜形成物質の融点以上の値(固化膜形成物質がしょうのうである場合は、たとえば、150~200℃)まで上昇させる。融解ヒータ131の発熱は、固形物100がノズル39内に供給される前または後に開始されてもよいし、固形物100がノズル39内に供給されるのと同時に開始されてもよい。図15Bに示すように、いずれの場合も、ノズル39内の全ての固形物100が液体に変化する。これにより、乾燥前処理液が作成される。 (4) After the solid substance 100, which is a solid of the solidified film-forming substance, is stored in the nozzle 39, the solid substance 100 in the nozzle 39 is melted to prepare a dry pretreatment liquid, which is a liquid of the solidified film-forming substance. Specifically, the temperature of the melting heater 131 is increased to a value equal to or higher than the melting point of the solidified film forming material (for example, 150 to 200 ° C. when the solidified film forming material is camphor). The heat generation of the melting heater 131 may be started before or after the solid matter 100 is supplied into the nozzle 39, or may be started at the same time as the solid matter 100 is supplied into the nozzle 39. As shown in FIG. 15B, in all cases, all the solids 100 in the nozzle 39 are changed to liquid. Thereby, a pre-drying treatment liquid is prepared.
 図15Bに示すように、ノズル39の吐出口39pが蓋95で閉じられているので、乾燥前処理液は、ノズル39の吐出口39pを通過せずに、ノズル39内に留まる。この状態で、開閉モータ96は、蓋95を閉位置から開位置に移動させる。図15Cに示すように、ノズル39の吐出口39pが開かれると、ノズル39内の乾燥前処理液が、ノズル39の吐出口39pを通過し、基板Wの上面に供給される。これにより、基板W上の置換液が乾燥前処理液で置換され、基板Wの上面の全域を覆う乾燥前処理液の液膜が形成される。その後、膜厚減少工程(図14のステップS10)が行われる。 As shown in FIG. 15B, since the discharge port 39p of the nozzle 39 is closed by the lid 95, the pre-drying treatment liquid does not pass through the discharge port 39p of the nozzle 39 and stays in the nozzle 39. In this state, the opening / closing motor 96 moves the lid 95 from the closed position to the open position. As shown in FIG. 15C, when the discharge port 39p of the nozzle 39 is opened, the pre-drying treatment liquid in the nozzle 39 passes through the discharge port 39p of the nozzle 39 and is supplied to the upper surface of the substrate W. As a result, the replacement liquid on the substrate W is replaced with the pre-drying treatment liquid, and a liquid film of the pre-drying treatment liquid covering the entire upper surface of the substrate W is formed. Thereafter, a film thickness reduction step (step S10 in FIG. 14) is performed.
 ノズル39の吐出口39pが開かれると、全てまたは殆ど全ての乾燥前処理液がノズル39から排出される。したがって、乾燥前処理液は、ノズル39に残らない、もしくは、殆ど残らない。少量の乾燥前処理液がノズル39に残り、ノズル39内で固形物100に戻ったとしても、次の基板Wに供給される乾燥前処理液を作成するときには、ノズル39に新たに供給された固形物100だけでなく、ノズル39に残留する固形物100も融解する。したがって、ノズル39が固形物100で詰まることを防止できる。 When the discharge port 39p of the nozzle 39 is opened, all or almost all of the pretreatment liquid for drying is discharged from the nozzle 39. Therefore, the pretreatment liquid does not remain at the nozzle 39 or hardly remains. Even if a small amount of the pre-drying treatment liquid remains in the nozzle 39 and returns to the solid matter 100 in the nozzle 39, when the pre-drying treatment liquid to be supplied to the next substrate W is created, the pre-drying treatment liquid is newly supplied to the nozzle 39. Not only the solids 100 but also the solids 100 remaining in the nozzle 39 are melted. Therefore, it is possible to prevent the nozzle 39 from being clogged with the solid matter 100.
 第4実施形態では、第1実施形態に係る効果に加えて、次の効果を奏することができる。具体的には、第4実施形態では、ノズル39に乾燥前処理液を吐出させる。つまり、ノズル39の吐出口の上流で固化膜形成物質の固体を融液に変化させる。その後、固化膜形成物質の融液に相当する乾燥前処理液を基板Wの表面に向けてノズル39から吐出する。したがって、乾燥前処理液を基板Wの表面で作成する場合に比べて、速やかに乾燥前処理液を基板Wの表面に行き渡らせることができる。 で は In the fourth embodiment, the following effects can be obtained in addition to the effects according to the first embodiment. Specifically, in the fourth embodiment, the nozzle 39 is caused to discharge the pre-drying treatment liquid. That is, the solid of the solidified film-forming substance is changed into a molten liquid upstream of the discharge port of the nozzle 39. After that, the pre-drying treatment liquid corresponding to the melt of the solidified film forming substance is discharged from the nozzle 39 toward the surface of the substrate W. Therefore, the pre-drying treatment liquid can be spread over the surface of the substrate W more quickly than when the pre-drying treatment liquid is formed on the surface of the substrate W.
 次に、第5実施形態について説明する。 Next, a fifth embodiment will be described.
 第1実施形態に対する第5実施形態の主な相違点は、固形物100の運搬および融解がチャンバー4の中ではなく、チャンバー4に隣接する流体ボックスFBの中で行われることである。 主 The main difference between the first embodiment and the fifth embodiment is that the transport and melting of the solids 100 are performed not in the chamber 4 but in the fluid box FB adjacent to the chamber 4.
 以下の図16および図17A~図17Eにおいて、図1~図15Cに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 お よ び In the following FIGS. 16 and 17A to 17E, the same components as those shown in FIGS. 1 to 15C are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
 図16は、固形物100を運搬して、運搬された固形物100を融解させる固形物運搬融解システムについて説明するための模式図である。 FIG. 16 is a schematic diagram for explaining a solids carrying and melting system that carries the solids 100 and melts the carried solids 100.
 固形物運搬融解システムは、固形物配管40と、スクリューコンベア91と、運搬モータ92と、供給配管93と、固形物タンク94とを備えている。ただし、これらは、チャンバー4の中ではなく、流体ボックスFBの中に配置されている。固形物配管40は、スクリューコンベア91を収容する水平部40hと、水平部40hの下流端から下方に延びる鉛直部40vとを含む。水平部40hおよび鉛直部40vは、いずれも、流体ボックスFBの中に配置されている。 The solid matter transport / melting system includes a solid matter pipe 40, a screw conveyor 91, a transport motor 92, a supply pipe 93, and a solid matter tank 94. However, they are arranged not in the chamber 4 but in the fluid box FB. The solid matter pipe 40 includes a horizontal portion 40h that accommodates the screw conveyor 91, and a vertical portion 40v that extends downward from the downstream end of the horizontal portion 40h. Both the horizontal part 40h and the vertical part 40v are arranged in the fluid box FB.
 固形物運搬融解システムは、固形物配管40等に加えて、固形物配管40の鉛直部40vに介装された固形物バルブ141と、固形物配管40の鉛直部40vの下流端に接続された融解タンク142と、融解タンク142内の固形物100を融解させる融解ヒータ131とを備えている。固形物運搬融解システムは、さらに、融解タンク142内に気体を供給することにより融解タンク142内の気圧を上昇させるガス供給配管143と、ガス供給配管143に介装されたガス供給バルブ144と、融解タンク142内の気体を排出することにより融解タンク142内の気圧を低下させる排気配管145と、排気配管145に介装された排気バルブ146とを備えている。 The solid matter transporting and melting system is connected to the solid matter valve 141 and the downstream end of the vertical part 40v of the solid matter pipe 40 in addition to the solid matter pipe 40 and the like. A melting tank 142 and a melting heater 131 for melting the solid matter 100 in the melting tank 142 are provided. The solid matter transport and melting system further includes a gas supply pipe 143 that increases the pressure in the melting tank 142 by supplying gas into the melting tank 142, a gas supply valve 144 interposed in the gas supply pipe 143, An exhaust pipe 145 for lowering the pressure in the melting tank 142 by discharging gas from the melting tank 142 and an exhaust valve 146 interposed in the exhaust pipe 145 are provided.
 固形物バルブ141、融解タンク142、および融解ヒータ131は、流体ボックスFBの中に配置されている。同様に、ガス供給配管143、ガス供給バルブ144、排気配管145、および排気バルブ146は、流体ボックスFBの中に配置されている。ノズル39は、流体ボックスFBの中ではなく、チャンバー4の中に配置されている。ノズル39は、固形物運搬融解システムの液体配管147によって融解タンク142に接続されている。ノズル39の吐出口39pを開閉する蓋95(図13A参照)は設けられていない。 The solid matter valve 141, the melting tank 142, and the melting heater 131 are arranged in the fluid box FB. Similarly, the gas supply pipe 143, the gas supply valve 144, the exhaust pipe 145, and the exhaust valve 146 are arranged in the fluid box FB. The nozzle 39 is arranged not in the fluid box FB but in the chamber 4. The nozzle 39 is connected to the melting tank 142 by a liquid pipe 147 of the solids conveying and melting system. A lid 95 (see FIG. 13A) for opening and closing the discharge port 39p of the nozzle 39 is not provided.
 融解タンク142内の乾燥前処理液は、液体配管147によってノズル39に案内される。液体配管147の上流端は、融解タンク142の表面ではなく、融解タンク142の中に配置されている。液体配管147の下流端は、ノズル39に接続されている。液体配管147は、融解タンク142から上方に延びている。図16は、融解タンク142の全体がノズル39よりも下方に配置されている例を示している。融解タンク142の全体が、ノズル39よりも上方に配置されていてもよいし、融解タンク142の一部がノズル39と等しい高さに配置されていてもよい。 処理 The pre-drying treatment liquid in the melting tank 142 is guided to the nozzle 39 by the liquid pipe 147. The upstream end of the liquid pipe 147 is arranged not in the surface of the melting tank 142 but in the melting tank 142. The downstream end of the liquid pipe 147 is connected to the nozzle 39. The liquid pipe 147 extends upward from the melting tank 142. FIG. 16 shows an example in which the entire melting tank 142 is disposed below the nozzle 39. The entire melting tank 142 may be disposed above the nozzle 39, or a part of the melting tank 142 may be disposed at the same height as the nozzle 39.
 図17A~図17Eは、固形物100を融解タンク142に運搬し、運搬された固形物100を融解させるときの固形物100の変化を示す模式図である。図17A~図17Eでは、開いているバルブを黒色で塗りつぶしている。たとえば、図17Aは、固形物バルブ141が開いており、ガス供給バルブ144および排気バルブ146が閉じていることを示している。 FIGS. 17A to 17E are schematic diagrams showing changes in the solid 100 when the solid 100 is transported to the melting tank 142 and the transported solid 100 is melted. In FIGS. 17A to 17E, open valves are filled with black. For example, FIG. 17A shows that the solids valve 141 is open and the gas supply valve 144 and the exhaust valve 146 are closed.
 第5実施形態では、図14に示す第3処理例と同様に、図3に示す第1処理例のステップS6~ステップS9に代えて、固化膜形成物質の固体である固形物100の融解によって乾燥前処理液を作成し、作成された乾燥前処理液を基板Wに供給する乾燥前処理液供給工程(図14のステップS207)が行われる。 In the fifth embodiment, similarly to the third processing example shown in FIG. 14, instead of Steps S6 to S9 of the first processing example shown in FIG. 3, the solid 100 which is a solid of the solidified film forming substance is melted. A pre-drying treatment liquid supply step (step S207 in FIG. 14) of preparing a pre-drying treatment liquid and supplying the prepared pre-drying treatment liquid to the substrate W is performed.
 具体的には、図17Aに示すように、固形物バルブ141が開いた状態で、運搬モータ92がスクリューコンベア91を回転させる。固形物配管40の水平部40h内の固形物100は、スクリューコンベア91の回転により固形物配管40の鉛直部40vに送られ、鉛直部40v内を落下する。これにより、固形物100が、固形物配管40から融解タンク142に落下し、融解タンク142内に溜まる。融解タンク142内に溜められる固形物100の量は、スクリューコンベア91を回転させる回数に応じて増減する。 Specifically, as shown in FIG. 17A, the transport motor 92 rotates the screw conveyor 91 with the solid matter valve 141 opened. The solid matter 100 in the horizontal part 40h of the solid matter pipe 40 is sent to the vertical part 40v of the solid matter pipe 40 by rotation of the screw conveyor 91, and falls in the vertical part 40v. As a result, the solid matter 100 falls from the solid matter pipe 40 to the melting tank 142 and accumulates in the melting tank 142. The amount of the solids 100 stored in the melting tank 142 increases or decreases according to the number of times the screw conveyor 91 is rotated.
 固化膜形成物質の固体である固形物100を融解タンク142内に溜めた後は、図17Bに示すように、融解タンク142内の固形物100を融解させて、固化膜形成物質の液体である乾燥前処理液を作成する。具体的には、融解ヒータ131の温度を固化膜形成物質の融点以上の値まで上昇させる。融解ヒータ131の発熱は、固形物100が融解タンク142内に供給される前または後に開始されてもよいし、固形物100が融解タンク142内に供給されるのと同時に開始されてもよい。いずれの場合も、融解タンク142内の全ての固形物100が液体に変化する。これにより、乾燥前処理液が作成される。 After the solids 100, which are solids of the solidified film forming substance, are stored in the melting tank 142, the solids 100 in the melting tank 142 are melted to become a liquid of the solidified film forming substance, as shown in FIG. 17B. Prepare a pretreatment liquid for drying. Specifically, the temperature of the melting heater 131 is increased to a value equal to or higher than the melting point of the solidified film forming material. The heat generation of the melting heater 131 may be started before or after the solid matter 100 is supplied into the melting tank 142, or may be started at the same time as the solid matter 100 is supplied into the melting tank 142. In either case, all solids 100 in the melting tank 142 are turned into liquid. Thereby, a pre-drying treatment liquid is prepared.
 乾燥前処理液が作成された後は、図17Cに示すように、制御装置3が固形物バルブ141を閉じ、ガス供給バルブ144を開く。これにより、気体の一例である窒素ガスが、ガス供給配管143から融解タンク142内に供給され、融解タンク142内の気圧が上昇する。融解タンク142内の乾燥前処理液は、融解タンク142内の気圧の上昇により液体配管147内に送られ、ノズル39に向かって液体配管147内を流れる。これにより、融解タンク142内の乾燥前処理液が、基板Wの上方に位置するノズル39に供給され、ノズル39から吐出される。その後、膜厚減少工程(図14のステップS10)が行われる。 After the pre-drying treatment liquid is prepared, the controller 3 closes the solid matter valve 141 and opens the gas supply valve 144 as shown in FIG. 17C. Accordingly, nitrogen gas, which is an example of a gas, is supplied from the gas supply pipe 143 into the melting tank 142, and the pressure in the melting tank 142 increases. The pretreatment liquid for drying in the melting tank 142 is sent into the liquid pipe 147 due to an increase in the pressure in the melting tank 142 and flows through the liquid pipe 147 toward the nozzle 39. Thereby, the pre-drying treatment liquid in the melting tank 142 is supplied to the nozzle 39 located above the substrate W, and is discharged from the nozzle 39. Thereafter, a film thickness reduction step (step S10 in FIG. 14) is performed.
 レシピで規定された量の乾燥前処理液がノズル39から吐出されると、図17Dに示すように、制御装置3は、ガス供給バルブ144を閉じ、排気バルブ146を開く。これにより、融解タンク142内の気体が排気配管145に排出され、融解タンク142内の気圧が大気圧または大気圧未満の値まで低下する。排気配管145の下流端は、アスピレータや排気ポンプなどの排気装置に接続されていてもよいし、大気中に配置されていてもよい。 When the amount of the pre-drying treatment liquid specified in the recipe is discharged from the nozzle 39, the control device 3 closes the gas supply valve 144 and opens the exhaust valve 146 as shown in FIG. 17D. As a result, the gas in the melting tank 142 is exhausted to the exhaust pipe 145, and the pressure in the melting tank 142 decreases to the atmospheric pressure or a value lower than the atmospheric pressure. The downstream end of the exhaust pipe 145 may be connected to an exhaust device such as an aspirator or an exhaust pump, or may be arranged in the atmosphere.
 ノズル39が乾燥前処理液を吐出している間は、液体配管147およびノズル39の内部が乾燥前処理液で満たされている。さらに、融解タンク142内の乾燥前処理液の表面(液面)は、ノズル39よりも下方に配置されている。ガス供給バルブ144が閉じられ、排気バルブ146が開かれると、液体配管147およびノズル39内の乾燥前処理液は、サイフォンの原理により融解タンク142の方に逆流し、融解タンク142に戻る。 While the nozzle 39 is discharging the pre-drying treatment liquid, the inside of the liquid pipe 147 and the nozzle 39 is filled with the pre-drying treatment liquid. Further, the surface (liquid level) of the pre-drying treatment liquid in the melting tank 142 is disposed below the nozzle 39. When the gas supply valve 144 is closed and the exhaust valve 146 is opened, the pretreatment liquid in the liquid pipe 147 and the nozzle 39 flows back toward the melting tank 142 by the siphon principle and returns to the melting tank 142.
 図17Eに示すように、液体配管147およびノズル39内の乾燥前処理液は、液体配管147内の乾燥前処理液の表面が、融解タンク142内の乾燥前処理液の表面と同じ高さに配置されるまで融解タンク142の方に戻る。乾燥前処理液は、ノズル39に残らない、もしくは、殆ど残らない。したがって、ノズル39内に残留する乾燥前処理液の液滴が、意図せず、基板Wの上面に落下することを防止できる。 As shown in FIG. 17E, the surface of the pre-drying liquid in the liquid pipe 147 and the nozzle 39 is flush with the surface of the pre-drying liquid in the melting tank 142. Return to the melting tank 142 until it is positioned. The drying pretreatment liquid does not remain at the nozzle 39 or hardly remains. Therefore, it is possible to prevent the droplet of the pre-drying treatment liquid remaining in the nozzle 39 from unintentionally dropping on the upper surface of the substrate W.
 ガス供給バルブ144が閉じられ、排気バルブ146が開かれた後に、少量の乾燥前処理液がノズル39や液体配管147内に残り、ノズル39および液体配管147の少なくとも一方の内部で固形物100に戻るかもしれない。このような場合、ノズル39および液体配管147の少なくとも一方に残留する固形物100は、次の基板Wに向かってノズル39および液体配管147内を流れる乾燥前処理液に加熱され、液体に変化する。したがって、ノズル39および液体配管147が固形物100で詰まることを防止できる。 After the gas supply valve 144 is closed and the exhaust valve 146 is opened, a small amount of the pre-drying liquid remains in the nozzle 39 and the liquid pipe 147, and forms a solid 100 in at least one of the nozzle 39 and the liquid pipe 147. May go back. In such a case, the solid matter 100 remaining in at least one of the nozzle 39 and the liquid pipe 147 is heated by the pre-drying treatment liquid flowing in the nozzle 39 and the liquid pipe 147 toward the next substrate W, and changes to a liquid. . Therefore, it is possible to prevent the nozzle 39 and the liquid pipe 147 from being clogged with the solid matter 100.
 図17Eは、乾燥前処理液の吐出が停止された後も、乾燥前処理液が融解タンク142内に残る例を示している。この例では、ノズル39が次の基板Wに向けて乾燥前処理液を吐出するまで融解ヒータ131の発熱が継続される。融解タンク142内に作成される乾燥前処理液の量は、複数枚の基板Wに供給される乾燥前処理液の量以上であってもよいし、1枚の基板Wだけに供給される乾燥前処理液の量と同じまたは同程度であってもよい。後者の場合、乾燥前処理液が供給される基板Wが変わるごとに、固形物100を融解タンク142に運搬すればよい。 FIG. 17E shows an example in which the pre-drying liquid remains in the melting tank 142 even after the discharge of the pre-drying liquid is stopped. In this example, the heating of the melting heater 131 is continued until the nozzle 39 discharges the pre-drying processing liquid toward the next substrate W. The amount of the pre-drying treatment liquid created in the melting tank 142 may be equal to or more than the amount of the pre-drying treatment liquid supplied to a plurality of substrates W, or the amount of the drying pre-treatment liquid supplied to only one substrate W may be increased. It may be the same as or similar to the amount of the pretreatment liquid. In the latter case, the solid 100 may be transported to the melting tank 142 every time the substrate W to which the pre-drying treatment liquid is supplied changes.
 第5実施形態では、第1実施形態に係る効果に加えて、次の効果を奏することができる。具体的には、第5実施形態では、ノズル39に乾燥前処理液を吐出させる。つまり、ノズル39の吐出口39pの上流で固化膜形成物質の固体を融液に変化させる。その後、固化膜形成物質の融液に相当する乾燥前処理液を基板Wの表面に向けてノズル39から吐出する。したがって、乾燥前処理液を基板Wの表面で作成する場合に比べて、速やかに乾燥前処理液を基板Wの表面に行き渡らせることができる。 5In the fifth embodiment, the following effects can be obtained in addition to the effects of the first embodiment. Specifically, in the fifth embodiment, the pre-drying treatment liquid is discharged from the nozzle 39. That is, the solid of the solidified film forming substance is changed to a melt upstream of the discharge port 39p of the nozzle 39. After that, the pre-drying treatment liquid corresponding to the melt of the solidified film forming substance is discharged from the nozzle 39 toward the surface of the substrate W. Therefore, the pre-drying treatment liquid can be spread over the surface of the substrate W more quickly than when the pre-drying treatment liquid is formed on the surface of the substrate W.
 第5実施形態では、固化膜形成物質の固体を流体ボックスFBの中で運搬する。流体ボックスFBは、基板Wを収容するチャンバー4の近くに配置されており、流体ボックスFBの少なくとも一部は、チャンバー4と同じ高さに配置されている。したがって、固化膜形成物質は、固体のまま基板Wの近くまで運搬される。そのため、固化膜形成物質を融解させるヒータを設ける場合でも、ヒータを設ける範囲を狭くすることができ、エネルギーの消費量を減らすことができる。 In the fifth embodiment, the solid of the solidified film forming substance is transported in the fluid box FB. The fluid box FB is arranged near the chamber 4 that accommodates the substrate W, and at least a part of the fluid box FB is arranged at the same height as the chamber 4. Therefore, the solidified film forming substance is transported to the vicinity of the substrate W as a solid. Therefore, even when a heater for melting the solidified film forming material is provided, the range in which the heater is provided can be narrowed, and the amount of energy consumption can be reduced.
 次に、第6実施形態について説明する。 Next, a sixth embodiment will be described.
 第5実施形態に対する第6実施形態の主な相違点は、乾燥前処理液が基板Wに供給された後に、乾燥前処理液を融解タンク142まで逆流させるのではなく、洗浄液や洗浄ガスなどの洗浄流体をノズル39および液体配管147に供給して、これらに残留する乾燥前処理液をノズル39から吐出させることである。 The main difference between the sixth embodiment and the fifth embodiment is that, after the pre-drying treatment liquid is supplied to the substrate W, the pre-drying treatment liquid does not flow backward to the melting tank 142, but instead includes a cleaning liquid or a cleaning gas. The cleaning fluid is supplied to the nozzle 39 and the liquid pipe 147, and the pre-drying liquid remaining in the cleaning fluid is discharged from the nozzle 39.
 以下の図18において、図1~図17Eに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 In the following FIG. 18, the same components as those shown in FIGS. 1 to 17E are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
 図18は、固形物100を運搬して、運搬された固形物100を融解させる固形物運搬融解システムについて説明するための模式図である。図18では、開いているバルブを黒色で塗りつぶしている。 FIG. 18 is a schematic diagram for explaining a solids carrying and melting system that carries the solids 100 and melts the carried solids 100. In FIG. 18, the open valve is painted black.
 固形物運搬融解システムは、液体配管147に介装された液体バルブ148と、液体バルブ148の下流で液体配管147に接続された洗浄流体配管149と、洗浄流体配管149に介装された洗浄流体バルブ150とをさらに備えている。図18は、洗浄流体がIPAの液体である例を示している。IPAの液体は、固化膜形成物質と溶け合う溶媒を含む洗浄液の一例である。洗浄流体は、窒素ガスや空気などの洗浄ガスであってもよい。 The solid matter transport / melt system includes a liquid valve 148 interposed in the liquid pipe 147, a cleaning fluid pipe 149 connected to the liquid pipe 147 downstream of the liquid valve 148, and a cleaning fluid interposed in the cleaning fluid pipe 149. A valve 150 is further provided. FIG. 18 shows an example in which the cleaning fluid is an IPA liquid. The IPA liquid is an example of a cleaning liquid containing a solvent that dissolves with the solidified film forming substance. The cleaning fluid may be a cleaning gas such as nitrogen gas or air.
 第6実施形態では、第5実施形態と同様に、融解タンク142内で乾燥前処理液を作成し、作成された乾燥前処理液を基板Wに供給する。ただし、ノズル39に乾燥前処理液を吐出させるときは、制御装置3が予め液体バルブ148を開く。レシピで規定された量の乾燥前処理液がノズル39から吐出されると、制御装置3は、排気バルブ146を開く前に、液体バルブ148を閉じる。そのため、乾燥前処理液が、ノズル39および液体配管147内に残る。 In the sixth embodiment, similarly to the fifth embodiment, a pre-drying treatment liquid is prepared in the melting tank 142, and the prepared pre-drying treatment liquid is supplied to the substrate W. However, when discharging the pre-drying treatment liquid to the nozzle 39, the control device 3 opens the liquid valve 148 in advance. When the amount of the pre-drying treatment liquid specified in the recipe is discharged from the nozzle 39, the control device 3 closes the liquid valve 148 before opening the exhaust valve 146. Therefore, the pre-drying treatment liquid remains in the nozzle 39 and the liquid pipe 147.
 制御装置3は、液体バルブ148を閉じた後、ノズル移動ユニット42にノズル39を移動させる。これにより、ノズル39は、待機位置に配置される。ノズル39の待機位置の下方には、ノズル39から下方に吐出された液体を受け止める筒状のポッド151が配置されている。制御装置3は、ノズル39がポッド151の上方に位置している状態で、洗浄流体バルブ150を開く。これにより、洗浄液または洗浄ガスが、液体配管147に供給され、液体配管147内をノズル39に向かって流れる。 After closing the liquid valve 148, the control device 3 moves the nozzle 39 to the nozzle moving unit 42. Thus, the nozzle 39 is located at the standby position. Below the standby position of the nozzle 39, a cylindrical pod 151 that receives the liquid discharged downward from the nozzle 39 is arranged. The control device 3 opens the cleaning fluid valve 150 while the nozzle 39 is located above the pod 151. As a result, the cleaning liquid or the cleaning gas is supplied to the liquid pipe 147 and flows through the liquid pipe 147 toward the nozzle 39.
 ノズル39および液体配管147内に残留している乾燥前処理液は、洗浄液または洗浄ガスによって下流に押され、待機位置に位置するノズル39の吐出口39pから下方に吐出される。全てまたは殆ど全ての乾燥前処理液がノズル39から吐出されると、ノズル39の内部が洗浄液または洗浄ガスで満たされ、洗浄液または洗浄ガスがノズル39の吐出口39pから下方に吐出される。ノズル39から吐出された乾燥前処理液および洗浄液は、基板Wではなく、処理カップ21のまわりに位置するポッド151に受け止められる。 (5) The pre-drying treatment liquid remaining in the nozzle 39 and the liquid pipe 147 is pushed downstream by the cleaning liquid or the cleaning gas, and is discharged downward from the discharge port 39p of the nozzle 39 located at the standby position. When all or almost all the drying pretreatment liquid is discharged from the nozzle 39, the inside of the nozzle 39 is filled with the cleaning liquid or the cleaning gas, and the cleaning liquid or the cleaning gas is discharged downward from the discharge port 39p of the nozzle 39. The pre-drying processing liquid and the cleaning liquid discharged from the nozzle 39 are received not by the substrate W but by the pod 151 located around the processing cup 21.
 洗浄流体がIPAなどの洗浄液である場合、固化膜形成物質と溶け合う溶媒が洗浄液に含まれているので、ノズル39の内面に固化膜形成物質の固体が付着していたとしても、固化膜形成物質の固体は、洗浄液に溶け、洗浄液と共にノズル39から吐出される。したがって、残留している乾燥前処理液だけでなく、ノズル39の内面に付着している固化膜形成物質の固体も除去できる。 When the cleaning fluid is a cleaning liquid such as IPA, a solvent that dissolves with the solidified film forming substance is contained in the cleaning liquid. Therefore, even if the solid of the solidified film forming substance adheres to the inner surface of the nozzle 39, the solidified film forming substance Is dissolved in the cleaning liquid and discharged from the nozzle 39 together with the cleaning liquid. Therefore, not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle 39 can be removed.
 洗浄流体が窒素ガスなどの洗浄ガスである場合、ノズル39の内面に残る乾燥前処理液は、洗浄ガスの流れで冷却され、ノズル39の内面で固体に変化するかもしれない。ノズル39および液体配管147を流れる洗浄ガスは、固化膜形成物質の昇華を促進する。したがって、残留している乾燥前処理液だけでなく、ノズル39の内面に付着している固化膜形成物質の固体も除去できる。 When the cleaning fluid is a cleaning gas such as nitrogen gas, the pre-drying liquid remaining on the inner surface of the nozzle 39 may be cooled by the flow of the cleaning gas and may change to a solid on the inner surface of the nozzle 39. The cleaning gas flowing through the nozzle 39 and the liquid pipe 147 promotes sublimation of the solidified film forming substance. Therefore, not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle 39 can be removed.
 第6実施形態では、第5実施形態に係る効果に加えて、次の効果を奏することができる。具体的には、第6実施形態では、ノズル39が基板Wの表面に向けて乾燥前処理液を吐出した後に、洗浄液をノズル39に供給する。ノズル39の内部に残留している乾燥前処理液は、洗浄液によって下流に押され、ノズル39の吐出口39pから吐出される。その後、洗浄液がノズル39から吐出される。これにより、残留している乾燥前処理液が排出される。さらに、洗浄液には、固化膜形成物質と溶け合う溶媒が含まれているので、ノズル39の内面に固化膜形成物質の固体が付着していたとしても、固化膜形成物質の固体は、洗浄液に溶け、洗浄液と共にノズル39から吐出される。したがって、残留している乾燥前処理液だけでなく、ノズル39の内面に付着している固化膜形成物質の固体も除去できる。 で は The sixth embodiment has the following advantages in addition to the advantages of the fifth embodiment. Specifically, in the sixth embodiment, the cleaning liquid is supplied to the nozzle 39 after the nozzle 39 discharges the pre-drying processing liquid toward the surface of the substrate W. The pre-drying treatment liquid remaining inside the nozzle 39 is pushed downstream by the cleaning liquid, and is discharged from the discharge port 39p of the nozzle 39. Thereafter, the cleaning liquid is discharged from the nozzle 39. As a result, the remaining pre-drying treatment liquid is discharged. Further, since the cleaning liquid contains a solvent that dissolves with the solidified film forming substance, even if the solid of the solidified film forming substance adheres to the inner surface of the nozzle 39, the solid of the solidified film forming substance dissolves in the cleaning liquid. Is discharged from the nozzle 39 together with the cleaning liquid. Therefore, not only the remaining pre-drying treatment liquid but also the solid of the solidified film forming substance adhering to the inner surface of the nozzle 39 can be removed.
 第6実施形態では、ノズル39が基板Wの表面に向けて乾燥前処理液を吐出した後に、液体ではなく、気体である洗浄ガスを、ノズル39に供給する。ノズル39の内部に残留している乾燥前処理液は、洗浄ガスによって下流に押され、ノズル39の吐出口39pから吐出される。その後、洗浄ガスがノズル39から吐出される。これにより、全てまたは殆ど全ての乾燥前処理液がノズル39から排出される。 In the sixth embodiment, after the nozzle 39 discharges the pre-drying treatment liquid toward the surface of the substrate W, a cleaning gas that is not a liquid but a gas is supplied to the nozzle 39. The pre-drying treatment liquid remaining in the nozzle 39 is pushed downstream by the cleaning gas, and is discharged from the discharge port 39p of the nozzle 39. Thereafter, the cleaning gas is discharged from the nozzle 39. As a result, all or almost all of the pretreatment liquid for drying is discharged from the nozzle 39.
 洗浄ガスの供給を開始した後に微量の乾燥前処理液がノズル39の内部に残留していると、乾燥前処理液、つまり、固化膜形成物質の融液は、洗浄ガスの流れで冷却され、ノズル39の内面で固体に変化するかもしれない。固化膜形成物質が昇華性物質である場合、ノズル39を流れる洗浄ガスは、固化膜形成物質の分圧の上昇を抑え、固化膜形成物質の昇華を促進する。したがって、ノズル39の内部に残留する乾燥前処理液を減らすことができる。 If a small amount of the drying pretreatment liquid remains inside the nozzle 39 after starting the supply of the cleaning gas, the drying pretreatment liquid, that is, the melt of the solidified film forming substance is cooled by the flow of the cleaning gas, The inner surface of the nozzle 39 may change to a solid. When the solidified film-forming substance is a sublimable substance, the cleaning gas flowing through the nozzle 39 suppresses an increase in the partial pressure of the solidified film-forming substance and promotes the sublimation of the solidified film-forming substance. Therefore, the amount of the pre-drying treatment liquid remaining inside the nozzle 39 can be reduced.
 次に、第7実施形態について説明する。 Next, a seventh embodiment will be described.
 第5実施形態に対する第7実施形態の主な相違点は、融解タンク142(図16参照)に代えて、融解配管152が設けられていることである。 主 A main difference of the seventh embodiment from the fifth embodiment is that a melting pipe 152 is provided instead of the melting tank 142 (see FIG. 16).
 以下の図19Aおよび図19Bにおいて、図1~図18に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 In the following FIGS. 19A and 19B, the same components as those shown in FIGS. 1 to 18 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
 図19Aおよび図19Bは、固形物100を運搬して、運搬された固形物100を融解させる固形物運搬融解システムについて説明するための模式図である。図19Aは、固形物100を融解配管152に運搬している状態を示しており、図19Bは、融解配管152に運搬された固形物100が融解した状態を示している。図19Aおよび図19Bでは、開いているバルブを黒色で塗りつぶしている。 FIG. 19A and FIG. 19B are schematic diagrams for explaining a solid transport and melting system that transports the solid 100 and melts the transported solid 100. FIG. 19A shows a state in which the solids 100 are being transported to the melting pipe 152, and FIG. 19B shows a state in which the solids 100 transported to the melting pipe 152 are being melted. In FIGS. 19A and 19B, open valves are filled with black.
 固形物運搬融解システムは、固形物配管40と液体配管147とを接続する融解配管152をさらに備えている。融解配管152の上流端は、固形物配管40の鉛直部40vの下流端に接続されている。融解配管152の下流端は、液体配管147の上流端に接続されている。融解配管152の流路断面積(流体の流れ方向に垂直な断面の面積)は、融解タンク142(図16参照)の水平断面の面積よりも小さい。融解配管152の流路断面積は、固形物配管40の流路断面積と等しく、液体配管147の流路断面積と等しい。融解ヒータ131は、融解配管152を取り囲んでいる。 The solid matter transporting and melting system further includes a melting pipe 152 for connecting the solid matter pipe 40 and the liquid pipe 147. The upstream end of the melting pipe 152 is connected to the downstream end of the vertical portion 40v of the solid matter pipe 40. The downstream end of the melting pipe 152 is connected to the upstream end of the liquid pipe 147. The flow passage cross-sectional area (the area of a cross section perpendicular to the flow direction of the fluid) of the melting pipe 152 is smaller than the horizontal cross-sectional area of the melting tank 142 (see FIG. 16). The flow path cross-sectional area of the melting pipe 152 is equal to the flow path cross-sectional area of the solid matter pipe 40, and is equal to the flow path cross-sectional area of the liquid pipe 147. The melting heater 131 surrounds the melting pipe 152.
 固形物運搬融解システムのガス供給配管143は、融解タンク142ではなく、融解配管152に接続されている。融解配管152は、たとえばU字状である。融解配管152は、融解配管152の最下部を含む底部152bと、底部152bから固形物配管40に延びる上流部152uと、底部152bから液体配管147に延びる下流部152dとを含む。図19Aおよび図19Bは、融解配管152が、融解配管152の上流部152uに接続されている例を示している。 ガ ス The gas supply pipe 143 of the solid matter transport and melting system is connected to the melting pipe 152 instead of the melting tank 142. The melting pipe 152 is, for example, U-shaped. The melting pipe 152 includes a bottom 152b including the lowermost portion of the melting pipe 152, an upstream section 152u extending from the bottom 152b to the solid matter pipe 40, and a downstream section 152d extending from the bottom 152b to the liquid pipe 147. 19A and 19B show an example in which the melting pipe 152 is connected to the upstream 152u of the melting pipe 152.
 第7実施形態では、第5実施形態と同様に、図6に示す第1処理例のステップS6~ステップS9に代えて、固化膜形成物質の固体である固形物100の融解によって乾燥前処理液を作成し、作成された乾燥前処理液を基板Wに供給する乾燥前処理液供給工程(図14のステップS207参照)が行われる。 In the seventh embodiment, similarly to the fifth embodiment, instead of steps S6 to S9 of the first processing example shown in FIG. 6, the drying pretreatment liquid is melted by melting the solid material 100 which is a solid of the solidified film forming material. Then, a pre-drying liquid supply step (see step S207 in FIG. 14) for supplying the prepared pre-drying liquid to the substrate W is performed.
 第7実施形態の乾燥前処理液供給工程では、固形物バルブ141が開いた状態で、運搬モータ92がスクリューコンベア91を回転させる。固形物配管40の水平部40h内の固形物100は、スクリューコンベア91の回転により固形物配管40の鉛直部40vに送られ、鉛直部40v内を落下する。これにより、図19Aに示すように、固形物100が、固形物配管40から融解配管152に落下し、融解配管152内に溜まる。融解配管152内に溜められる固形物100の量は、スクリューコンベア91を回転させる回数に応じて増減する。 で は In the pre-drying treatment liquid supply step of the seventh embodiment, the transport motor 92 rotates the screw conveyor 91 with the solid matter valve 141 opened. The solid matter 100 in the horizontal part 40h of the solid matter pipe 40 is sent to the vertical part 40v of the solid matter pipe 40 by rotation of the screw conveyor 91, and falls in the vertical part 40v. As a result, as shown in FIG. 19A, the solid substance 100 falls from the solid substance pipe 40 to the melting pipe 152 and accumulates in the melting pipe 152. The amount of the solids 100 stored in the melting pipe 152 increases or decreases according to the number of times the screw conveyor 91 is rotated.
 固化膜形成物質の固体である固形物100を融解配管152内に溜めた後は、融解配管152内の固形物100を融解させて、固化膜形成物質の液体である乾燥前処理液を作成する。具体的には、融解ヒータ131の温度を固化膜形成物質の融点以上の値まで上昇させる。融解ヒータ131の発熱は、固形物100が融解配管152内に供給される前または後に開始されてもよいし、固形物100が融解配管152内に供給されるのと同時に開始されてもよい。図19Bに示すように、いずれの場合も、融解配管152内の全ての固形物100が液体に変化する。これにより、乾燥前処理液が作成される。 After the solids 100, which are solids of the solidified film forming substance, are stored in the melting pipe 152, the solids 100 in the melting pipe 152 are melted to prepare a dry pretreatment liquid which is a liquid of the solidified film forming substance. . Specifically, the temperature of the melting heater 131 is increased to a value equal to or higher than the melting point of the solidified film forming material. The heat generation of the melting heater 131 may be started before or after the solid matter 100 is supplied into the melting pipe 152, or may be started at the same time as the solid matter 100 is supplied into the melting pipe 152. As shown in FIG. 19B, in any case, all the solids 100 in the melting pipe 152 change to liquid. Thereby, a pre-drying treatment liquid is prepared.
 乾燥前処理液が作成された後は、制御装置3が固形物バルブ141を閉じ、ガス供給バルブ144を開く。これにより、気体の一例である窒素ガスが、ガス供給配管143から融解配管152内に供給される。図19Bに示すように、固形物バルブ141が閉じられているので、融解配管152内の乾燥前処理液は、窒素ガスによって下流に押され、融解配管152内をノズル39の方に移動する。これにより、融解配管152内の乾燥前処理液が、基板Wの上方に位置するノズル39に供給され、ノズル39から吐出される。その後、膜厚減少工程(図14のステップS10)が行われる。 (4) After the pretreatment liquid is prepared, the control device 3 closes the solid matter valve 141 and opens the gas supply valve 144. Accordingly, nitrogen gas, which is an example of a gas, is supplied from the gas supply pipe 143 into the melting pipe 152. As shown in FIG. 19B, since the solid matter valve 141 is closed, the pretreatment liquid for drying in the melting pipe 152 is pushed downstream by the nitrogen gas, and moves to the nozzle 39 in the melting pipe 152. Thereby, the pre-drying treatment liquid in the melting pipe 152 is supplied to the nozzle 39 located above the substrate W, and is discharged from the nozzle 39. Thereafter, a film thickness reduction step (step S10 in FIG. 14) is performed.
 ガス供給配管143が開かれると、融解配管152内の全てまたは殆ど全ての乾燥前処理液が、基板Wの上方に位置するノズル39から吐出される。少量の乾燥前処理液がノズル39の内面に残っていると、この乾燥前処理液が、窒素ガスの流れで冷却され、ノズル39の内面で固体に変化するかもしれない。ノズル39および液体配管147を流れる窒素ガスは、固化膜形成物質の昇華を促進する。したがって、ノズル39の内面に残留している乾燥前処理液を除去できる。 When the gas supply pipe 143 is opened, all or almost all of the drying pretreatment liquid in the melting pipe 152 is discharged from the nozzle 39 located above the substrate W. If a small amount of the pre-drying liquid remains on the inner surface of the nozzle 39, the pre-drying liquid may be cooled by the flow of the nitrogen gas and may change into a solid on the inner surface of the nozzle 39. The nitrogen gas flowing through the nozzle 39 and the liquid pipe 147 promotes the sublimation of the solidified film forming substance. Therefore, the pre-drying liquid remaining on the inner surface of the nozzle 39 can be removed.
 第7実施形態では、第5実施形態に係る効果に加えて、次の効果を奏することができる。具体的には、第7実施形態では、融解タンク142(図16参照)ではなく、融解配管152で、固形物配管40と液体配管147とを接続する。融解ヒータ131は、融解配管152内の固形物100を加熱する。したがって、融解タンク142内の固形物100を加熱する場合に比べて、融解ヒータ131の熱を効率的に固形物100に伝達できる。 で は In the seventh embodiment, the following effects can be obtained in addition to the effects according to the fifth embodiment. Specifically, in the seventh embodiment, the solid pipe 40 and the liquid pipe 147 are connected not by the melting tank 142 (see FIG. 16) but by the melting pipe 152. The melting heater 131 heats the solid 100 in the melting pipe 152. Therefore, the heat of the melting heater 131 can be more efficiently transmitted to the solid material 100 than when the solid material 100 in the melting tank 142 is heated.
 第7実施形態では、気体の一例である窒素ガスを融解配管152内に供給し、融解配管152内の全てまたは殆ど全ての乾燥前処理液をノズル39に吐出させる。したがって、第5実施形態のように、ノズル39内の乾燥前処理液を逆流させなくても、ノズル39内に残留する乾燥前処理液を減らすことができ、ノズル39が固形物100で詰まることを防止できる。 In the seventh embodiment, nitrogen gas, which is an example of a gas, is supplied into the melting pipe 152, and all or almost all of the pretreatment liquid in the melting pipe 152 is discharged from the nozzle 39. Therefore, even if the pre-drying liquid in the nozzle 39 does not flow backward as in the fifth embodiment, the pre-drying liquid remaining in the nozzle 39 can be reduced, and the nozzle 39 is clogged with the solid matter 100. Can be prevented.
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。
Other Embodiments The present invention is not limited to the contents of the above-described embodiments, and various modifications are possible.
 たとえば、ノズル39を静止させながら、ノズル39に固形物100を吐出させるのではなく、ノズル39を基板Wの径方向に移動させながら、ノズル39に固形物100を吐出させてもよい。 For example, instead of discharging the solid 100 from the nozzle 39 while keeping the nozzle 39 stationary, the solid 39 may be discharged from the nozzle 39 while moving the nozzle 39 in the radial direction of the substrate W.
 たとえば、図20に示すように、ノズル移動ユニット42は、ノズル39から吐出された固形物100が基板Wの上面の中央部に衝突する中央処理位置(二点鎖線で示す位置)と、ノズル39から吐出された固形物100が基板Wの上面の外周部に衝突する外周処理位置(実線で示す位置)との間で、ノズル39を移動させてもよい。 For example, as shown in FIG. 20, the nozzle moving unit 42 includes a central processing position (a position indicated by a two-dot chain line) at which the solid 100 discharged from the nozzle 39 collides with the central portion of the upper surface of the substrate W, The nozzle 39 may be moved between an outer peripheral processing position (a position indicated by a solid line) at which the solid 100 discharged from the substrate 100 collides with the outer peripheral portion of the upper surface of the substrate W.
 図21に示すように、制御装置3は、固化膜101を基板Wの上面から除去しているときに、基板Wの上面上の固化膜101を冷却してもよい。固化膜101の冷却は、冷水などの冷却流体を基板Wの下面に向けて吐出することにより行ってもよいし、基板Wの下方に配置されたクーリングプレート112(図11A参照)の温度を低下させることにより行ってもよい。 As shown in FIG. 21, the control device 3 may cool the solidified film 101 on the upper surface of the substrate W while removing the solidified film 101 from the upper surface of the substrate W. Cooling of the solidified film 101 may be performed by discharging a cooling fluid such as cold water toward the lower surface of the substrate W, or lowering the temperature of the cooling plate 112 (see FIG. 11A) disposed below the substrate W. This may be done by causing
 この構成によれば、固化膜101を基板Wの表面から除去しているときに、基板Wの表面上の固化膜101を冷却する。固化膜101の除去に伴って固化膜101の温度が上昇する場合や、固化膜101の融点(固化膜形成物質の融点)が室温に近い場合は、固化膜101を基板Wの表面から除去しているときに、固化膜101の一部が液化する可能性がある。したがって、固化膜101の一部が液化することを防止しながら、固化膜101を気体に変化させることができる。 According to this configuration, while the solidified film 101 is being removed from the surface of the substrate W, the solidified film 101 on the surface of the substrate W is cooled. When the temperature of the solidified film 101 increases with the removal of the solidified film 101 or when the melting point of the solidified film 101 (the melting point of the solidified film forming substance) is close to room temperature, the solidified film 101 is removed from the surface of the substrate W. During the operation, a part of the solidified film 101 may be liquefied. Therefore, the solidified film 101 can be changed to a gas while preventing a part of the solidified film 101 from being liquefied.
 固形物配管40内の固形物100をスクリューコンベア91で運搬するのではなく、窒素ガスや空気などの気体を固形物配管40内に供給することにより、固形物配管40内の固形物100を運搬してもよい。 The solid 100 in the solid pipe 40 is transported by supplying a gas such as nitrogen gas or air into the solid pipe 40 instead of transporting the solid 100 in the solid pipe 40 by the screw conveyor 91. May be.
 固形物100をチャンバー4または流体ボックスFBの中で運搬するのではなく、チャンバー4および流体ボックスFBの外で運搬してもよい。つまり、チャンバー4および流体ボックスFBの外で固形物100を融解させてもよい。 Instead of transporting the solids 100 inside the chamber 4 or the fluid box FB, the solids 100 may be transported outside the chamber 4 and the fluid box FB. That is, the solid 100 may be melted outside the chamber 4 and the fluid box FB.
 第1処理例において、固形物100の供給を開始する前ではなく、固形物100の供給を開始した後に、基板Wの加熱を開始してもよい。 In the first processing example, the heating of the substrate W may be started after the supply of the solids 100 is started, not before the supply of the solids 100 is started.
 固化膜形成物質の固体を基板Wに供給する前に基板Wの加熱を開始する場合、固化膜形成物質の固体が基板Wに供給される前に基板Wに与えられた熱の一部は、固化膜形成物質に伝達されることなく空気中に放出される。したがって、基板Wを事前に加熱する場合に比べて、熱損失を減らすことができる。 When the heating of the substrate W is started before the solid of the solidified film forming material is supplied to the substrate W, a part of the heat given to the substrate W before the solid of the solidified film forming material is supplied to the substrate W, It is released into the air without being transmitted to the solidified film forming substance. Therefore, heat loss can be reduced as compared with the case where the substrate W is heated in advance.
 第1処理例において、純水などの基板W上のリンス液を乾燥前処理液で置換できる場合は、リンス液の一例である純水を置換液の一例であるIPAで置換する置換液供給工程(図6のステップS5)を行わずに、固形物供給工程(図9のステップS7)を行ってもよい。 In the first processing example, when the rinsing liquid on the substrate W such as pure water can be replaced with the pre-drying processing liquid, a replacement liquid supply step of replacing pure water as an example of the rinsing liquid with IPA as an example of the replacement liquid. The solid material supply step (step S7 in FIG. 9) may be performed without performing (step S5 in FIG. 6).
 第2処理例において、固形物100の供給を開始する前ではなく、固形物100の供給を開始した後に、基板Wの加熱を開始してもよい。第2処理例において、固形物100の溶解の促進が必要なければ、温水などの加熱流体の供給を行わなくてもよい。 In the second processing example, the heating of the substrate W may be started after the supply of the solids 100 is started, not before the supply of the solids 100 is started. In the second processing example, if it is not necessary to promote the dissolution of the solid matter 100, it is not necessary to supply a heating fluid such as hot water.
 第2処理例において、置換液を基板Wに供給した後ではなく、置換液を基板Wに供給する前に、固形物100を基板Wに供給してもよい。つまり、リンス液の液膜で覆われた基板Wの上面に固形物100を供給し、その後、固形物100が堆積した基板Wの上面に置換液を供給してもよい。この場合、固形物100がリンス液に溶けなくても、溶媒の一例である置換液には溶けるので、置換液が基板Wに供給されると、乾燥前処理液が作成される。 In the second processing example, the solid 100 may be supplied to the substrate W before supplying the replacement liquid to the substrate W, not after supplying the replacement liquid to the substrate W. That is, the solid 100 may be supplied to the upper surface of the substrate W covered with the rinse liquid film, and then the replacement liquid may be supplied to the upper surface of the substrate W on which the solid 100 is deposited. In this case, even if the solid substance 100 does not dissolve in the rinsing liquid, it does dissolve in the substitution liquid, which is an example of the solvent, so that when the substitution liquid is supplied to the substrate W, a pre-drying treatment liquid is created.
 第1および第2処理例において、乾燥前処理液を基板Wの上面の全域に行き渡らせた後Wに(図6のステップS9および図9のステップS109)、基板W上の乾燥前処理液の膜厚を減少させる膜厚減少工程(図6および図9のステップS10)を行わずに、基板Wの上面に固化膜101を形成してもよい(図6および図9のステップS12)。 In the first and second processing examples, after the pre-drying treatment liquid has spread over the entire upper surface of the substrate W (step S9 in FIG. 6 and step S109 in FIG. 9), The solidified film 101 may be formed on the upper surface of the substrate W (Step S12 in FIGS. 6 and 9) without performing the film thickness reducing step of reducing the film thickness (Step S10 in FIGS. 6 and 9).
 遮断部材51は、円板部52に加えて、円板部52の外周部から下方に延びる筒状部を含んでいてもよい。この場合、遮断部材51が下位置に配置されると、スピンチャック10に保持されている基板Wは、円筒部に取り囲まれる。 The blocking member 51 may include a cylindrical portion extending downward from the outer peripheral portion of the disk portion 52 in addition to the disk portion 52. In this case, when the blocking member 51 is disposed at the lower position, the substrate W held by the spin chuck 10 is surrounded by the cylindrical portion.
 遮断部材51は、スピンチャック10とともに回転軸線A1まわりに回転してもよい。たとえば、遮断部材51が基板Wに接触しないようにスピンベース12上に置かれてもよい。この場合、遮断部材51がスピンベース12に連結されるので、遮断部材51は、スピンベース12と同じ方向に同じ速度で回転する。 The blocking member 51 may rotate around the rotation axis A1 together with the spin chuck 10. For example, the blocking member 51 may be placed on the spin base 12 so as not to contact the substrate W. In this case, since the blocking member 51 is connected to the spin base 12, the blocking member 51 rotates in the same direction as the spin base 12 at the same speed.
 遮断部材51が省略されてもよい。ただし、基板Wの下面に純水などの液体を供給する場合は、遮断部材51が設けられることが好ましい。基板Wの外周面を伝って基板Wの下面から基板Wの上面の方に回り込んだ液滴や、処理カップ21から内方に跳ね返った液滴を遮断部材51で遮断でき、基板W上の乾燥前処理液に混入する液体を減らすことができるからである。 The blocking member 51 may be omitted. However, when a liquid such as pure water is supplied to the lower surface of the substrate W, it is preferable that the blocking member 51 be provided. Droplets that travel along the outer peripheral surface of the substrate W from the lower surface of the substrate W toward the upper surface of the substrate W and droplets that bounce inward from the processing cup 21 can be blocked by the blocking member 51. This is because the amount of liquid mixed in the pre-drying treatment liquid can be reduced.
 ウェット処理ユニット2wおよびドライ処理ユニット2dは、同じ基板処理装置ではなく、別々の基板処理装置に設けられていてもよい。つまり、ウェット処理ユニット2wが備えられた基板処理装置1と、ドライ処理ユニット2dが備えられた基板処理装置とが、同じ基板処理システムに設けられており、固化膜101を除去する前に、基板処理装置1から別の基板処理装置に基板Wを搬送してもよい。 (4) The wet processing unit 2w and the dry processing unit 2d may be provided in different substrate processing apparatuses instead of the same substrate processing apparatus. That is, the substrate processing apparatus 1 provided with the wet processing unit 2w and the substrate processing apparatus provided with the dry processing unit 2d are provided in the same substrate processing system, and the substrate is removed before the solidified film 101 is removed. The substrate W may be transferred from the processing apparatus 1 to another substrate processing apparatus.
 第6実施形態の洗浄流体配管149(図18参照)の代わりに、液体配管147内の液体を吸引するサックバック配管を液体配管147に接続してもよい。この場合、液体バルブ148(図18参照)を閉じた後に、ノズル39および液体配管147内の乾燥前処理液をサックバック配管に逆流させてもよい。 サ Instead of the cleaning fluid pipe 149 of the sixth embodiment (see FIG. 18), a suck-back pipe for sucking the liquid in the liquid pipe 147 may be connected to the liquid pipe 147. In this case, after closing the liquid valve 148 (see FIG. 18), the pretreatment liquid for drying in the nozzle 39 and the liquid pipe 147 may be returned to the suck-back pipe.
 基板処理装置1は、円板状の基板Wを処理する装置に限らず、多角形の基板Wを処理する装置であってもよい。 The substrate processing apparatus 1 is not limited to an apparatus for processing a disk-shaped substrate W, but may be an apparatus for processing a polygonal substrate W.
 前述の全ての構成の2つ以上が組み合わされてもよい。前述の全ての工程の2つ以上が組み合わされてもよい。 2Two or more of all the above-described configurations may be combined. Two or more of all the steps described above may be combined.
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made within the scope of the matters described in the claims.
 ノズル39、固形物配管40、スクリューコンベア91、運搬モータ92、およびガス供給配管143は、固形物運搬手段および固形物キャリアの一例である。下面ノズル71、スピンベース12の下中央開口81、置換液ノズル43、および融解ヒータ131は、乾燥前処理液作成手段および乾燥前処理液メーカーの一例である。下面ノズル71、スピンベース12の下中央開口81、内蔵ヒータ111、およびクーリングプレート112は、固化膜形成手段および固化膜メーカーの一例である。スピンモータ14、中心ノズル55、および遮断部材51の上中央開口61は、固化膜除去手段および固化膜リムーバーの一例である。 The nozzle 39, the solid pipe 40, the screw conveyor 91, the transport motor 92, and the gas supply pipe 143 are examples of a solid transport means and a solid carrier. The lower surface nozzle 71, the lower central opening 81 of the spin base 12, the replacement liquid nozzle 43, and the melting heater 131 are an example of a pre-drying liquid preparation unit and a pre-drying liquid maker. The lower surface nozzle 71, the lower central opening 81 of the spin base 12, the built-in heater 111, and the cooling plate 112 are examples of a solidified film forming means and a solidified film maker. The upper central opening 61 of the spin motor 14, the center nozzle 55, and the blocking member 51 is an example of a solidified film removing unit and a solidified film remover.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used for clarifying the technical contents of the present invention, and the present invention is interpreted by limiting to these specific examples. Instead, the spirit and scope of the invention is limited only by the appended claims.
1    :基板処理装置
2    :処理ユニット
3    :制御装置
10   :スピンチャック
14   :スピンモータ
39   :ノズル
39p  :ノズルの吐出口
40   :固形物配管
55   :中心ノズル
59   :上温度調節器
61   :遮断部材の上中央開口
66   :上温度調節器
71   :下面ノズル
75   :下ヒータ
79   :クーラー
81   :スピンベースの下中央開口
86   :下温度調節器
91   :スクリューコンベア
92   :運搬モータ
94   :固形物タンク
95   :蓋
96   :開閉モータ
100  :固形物
101  :固化膜
122  :プラズマ発生装置
131  :融解ヒータ
143  :ガス供給配管
A1   :基板の回転軸線
Hp   :パターンの高さ
P1   :パターン
T1   :固化膜の厚み
W    :基板
 
1: substrate processing apparatus 2: processing unit 3: control apparatus 10: spin chuck 14: spin motor 39: nozzle 39p: nozzle discharge port 40: solid material pipe 55: central nozzle 59: upper temperature controller 61: blocking member Upper central opening 66: Upper temperature controller 71: Lower nozzle 75: Lower heater 79: Cooler 81: Lower central opening 86 of spin base: Lower temperature controller 91: Screw conveyor 92: Transport motor 94: Solid matter tank 95: Lid Reference numeral 96: open / close motor 100: solid object 101: solidified film 122: plasma generator 131: melting heater 143: gas supply pipe A1: substrate rotation axis Hp: pattern height P1: pattern T1: solidified film thickness W: substrate

Claims (20)

  1.  固化膜形成物質の固体を基板処理装置内で運搬する固形物運搬工程と、
     前記固化膜形成物質の融解、および、前記基板上での前記固化膜形成物質の溶解、の少なくとも一方により、運搬された前記固化膜形成物質を含む乾燥前処理液を作成する乾燥前処理液作成工程と、
     前記基板の表面上の前記乾燥前処理液を凝固または析出により固化させることにより、前記固化膜形成物質を含む固化膜を前記基板の表面に形成する固化膜形成工程と、
     前記固化膜を気体に変化させることにより前記基板の表面から除去する固化膜除去工程とを含む、基板処理方法。
    A solid transporting step of transporting the solid of the solidified film forming substance in the substrate processing apparatus,
    Preparation of a dry pretreatment liquid for preparing a dry pretreatment liquid containing the conveyed solidified film forming substance by at least one of melting of the solidified film forming substance and dissolution of the solidified film forming substance on the substrate. Process and
    A solidified film forming step of forming a solidified film containing the solidified film forming material on the surface of the substrate by solidifying the pre-drying treatment liquid on the surface of the substrate by solidification or precipitation,
    Removing the solidified film from the surface of the substrate by changing the solidified film into a gas.
  2.  前記固形物運搬工程は、前記基板を収容するチャンバーの中で前記固化膜形成物質の固体を運搬する工程である、請求項1に記載の基板処理方法。 2. The substrate processing method according to claim 1, wherein the solid transporting step is a step of transporting the solid of the solidified film-forming substance in a chamber containing the substrate. 3.
  3.  前記固形物運搬工程は、前記固化膜形成物質の固体を前記基板の表面まで運搬する工程であり、
     前記乾燥前処理液作成工程は、前記固化膜形成物質の融解および溶解の少なくとも一方により、前記基板の表面上の前記固化膜形成物質を含む前記乾燥前処理液を前記基板の表面で作成する基板上作成工程を含む、請求項1または2に記載の基板処理方法。
    The solid transporting step is a step of transporting the solid of the solidified film-forming substance to the surface of the substrate,
    The drying pre-treatment liquid forming step includes a step of forming the dried pre-treatment liquid containing the solidified film forming substance on the surface of the substrate on the surface of the substrate by at least one of melting and dissolution of the solidified film forming substance. The substrate processing method according to claim 1, further comprising an upper forming step.
  4.  前記固化膜形成物質の融点は、室温よりも高く、
     前記固形物運搬工程は、前記室温の前記固化膜形成物質を前記基板の表面に供給する室温供給工程を含む、請求項3に記載の基板処理方法。
    The melting point of the solidified film forming material is higher than room temperature,
    4. The substrate processing method according to claim 3, wherein the solid transporting step includes a room temperature supplying step of supplying the solidified film forming material at the room temperature to a surface of the substrate. 5.
  5.  前記固形物運搬工程は、粉末状の前記固化膜形成物質を前記基板の表面に供給する粉末供給工程と、粒状の前記固化膜形成物質を前記基板の表面に供給する粒供給工程と、粉末状の前記固化膜形成物質と粒状の前記固化膜形成物質とが結合した結合物を前記基板の表面に供給する結合物供給工程と、のうちの少なくとも一つを含む、請求項3または4に記載の基板処理方法。 A step of supplying the solidified film-forming substance in powder form to the surface of the substrate; a step of supplying the solidified film-forming substance in granular form to the surface of the substrate; 5. The method according to claim 3, further comprising: supplying a combined product of the solidified film forming material and the granular solidified film forming material to a surface of the substrate. 6. Substrate processing method.
  6.  前記基板上作成工程は、前記固化膜形成物質の融点以上の加熱温度で前記固化膜形成物質の固体を加熱することにより、前記基板の表面上の前記固化膜形成物質の固体を融解させる融解工程を含む、請求項3~5のいずれか一項に記載の基板処理方法。 The on-substrate forming step is a melting step of heating the solid of the solidified film-forming substance at a heating temperature equal to or higher than the melting point of the solidified film-forming substance, thereby melting the solid of the solidified film-forming substance on the surface of the substrate. The substrate processing method according to any one of claims 3 to 5, comprising:
  7.  前記融解工程は、前記固化膜形成物質の固体が前記基板の表面に供給される前から前記基板を加熱する事前加熱工程を含む、請求項6に記載の基板処理方法。 7. The substrate processing method according to claim 6, wherein the melting step includes a pre-heating step of heating the substrate before the solid of the solidified film forming material is supplied to the surface of the substrate.
  8.  前記融解工程は、前記固化膜形成物質の固体が前記基板の表面に供給された後から前記基板を加熱する事後加熱工程を含む、請求項6に記載の基板処理方法。 7. The substrate processing method according to claim 6, wherein the melting step includes a post-heating step of heating the substrate after the solid of the solidified film-forming substance is supplied to the surface of the substrate.
  9.  前記基板処理方法は、前記基板を水平に保持しながら前記基板の中央部を通る鉛直な回転軸線まわりに回転させる基板回転工程をさらに含み、
     前記固形物運搬工程は、水平に保持されている前記基板の表面の中央部に前記固化膜形成物質の固体を供給する中央供給工程を含み、
     前記融解工程は、前記基板が前記回転軸線まわりに回転しており、前記固化膜形成物質の固体が前記基板の表面の中央部にある状態で、前記基板の表面とは反対側の前記基板の平面である前記基板の裏面の中央部に向けて、前記加熱温度の加熱流体を吐出する加熱流体供給工程を含む、請求項6~8のいずれか一項に記載の基板処理方法。
    The substrate processing method further includes a substrate rotating step of rotating around a vertical rotation axis passing through a central portion of the substrate while holding the substrate horizontally,
    The solid matter transporting step includes a central supply step of supplying a solid of the solidified film-forming substance to a central part of the surface of the substrate held horizontally,
    In the melting step, in a state where the substrate is rotating around the rotation axis and the solid of the solidified film-forming substance is at the center of the surface of the substrate, the substrate is opposite to the surface of the substrate. The substrate processing method according to any one of claims 6 to 8, further comprising a heating fluid supply step of discharging a heating fluid at the heating temperature toward a central portion of the back surface of the substrate that is a flat surface.
  10.  前記基板回転工程は、前記基板の回転速度を融解前速度から融解速度に減少させる減速工程と、前記加熱流体が前記基板の裏面の中央部に向けて吐出されており、前記固化膜形成物質の固体が前記基板の表面の中央部にある状態で、前記基板の回転速度を前記融解速度に維持する定速回転工程と、前記基板の表面の中央部上の前記固化膜形成物質の固体の少なくとも一部が融解した後に、前記基板の回転速度を前記融解速度から拡散速度に増加させる加速工程を含む、請求項9に記載の基板処理方法。 The substrate rotation step, a deceleration step of reducing the rotation speed of the substrate from the pre-melting speed to the melting speed, the heating fluid is discharged toward the center of the back surface of the substrate, the solidified film forming material In the state where the solid is at the center of the surface of the substrate, a constant speed rotation step of maintaining the rotation speed of the substrate at the melting speed, at least the solid of the solidified film forming material on the center of the surface of the substrate 10. The substrate processing method according to claim 9, further comprising an accelerating step of increasing a rotation speed of the substrate from the melting speed to a diffusion speed after a part is melted.
  11.  前記基板上作成工程は、前記固化膜形成物質と溶け合う溶媒を前記基板の表面に供給する溶媒供給工程を含む、請求項3~5のいずれか一項に記載の基板処理方法。 6. The substrate processing method according to claim 3, wherein the on-substrate preparation step includes a solvent supply step of supplying a solvent that dissolves with the solidified film forming substance to the surface of the substrate.
  12.  前記溶媒供給工程は、前記固化膜形成物質の固体が前記基板の表面に供給される前に、前記溶媒を前記基板の表面に供給する事前溶媒供給工程を含む、請求項11に記載の基板処理方法。 The substrate processing according to claim 11, wherein the solvent supply step includes a pre-solvent supply step of supplying the solvent to the surface of the substrate before the solid of the solidified film forming material is supplied to the surface of the substrate. Method.
  13.  前記基板上作成工程は、前記溶媒を加熱することにより、前記固化膜形成物質の固体が前記基板の表面で前記溶媒に溶解することを促進する溶解促進工程を含む、請求項11または12に記載の基板処理方法。 The said preparation process on a board | substrate contains the dissolution promotion process which promotes that the solid of the said solidification film | membrane formation material is melt | dissolved in the said solvent on the surface of the said board | substrate by heating the said solvent, The said claim | item 11. Substrate processing method.
  14.  前記固形物運搬工程は、前記基板を収容するチャンバーに隣接する流体ボックスの中で前記固化膜形成物質の固体を運搬する工程である、請求項1に記載の基板処理方法。 2. The substrate processing method according to claim 1, wherein the solid transporting step is a step of transporting the solid of the solidified film forming substance in a fluid box adjacent to a chamber accommodating the substrate. 3.
  15.  前記固形物運搬工程は、前記基板から離れた位置まで前記固化膜形成物質の固体を運搬する工程であり、
     前記乾燥前処理液作成工程は、前記固化膜形成物質の融解により、前記乾燥前処理液を前記基板から離れた位置で作成する供給前作成工程を含み、
     前記基板処理方法は、ノズルに前記乾燥前処理液を吐出させる乾燥前処理液吐出工程をさらに含む、請求項1、2、および14のいずれか一項に記載の基板処理方法。
    The solid transporting step is a step of transporting the solid of the solidified film forming substance to a position away from the substrate,
    The drying pretreatment liquid preparation step includes a pre-supply preparation step of preparing the drying pretreatment liquid at a position away from the substrate by melting the solidified film forming material,
    15. The substrate processing method according to claim 1, wherein the substrate processing method further includes a pre-drying processing liquid discharging step of discharging the pre-drying processing liquid to a nozzle. 16.
  16.  前記ノズルが前記基板の表面に向けて前記乾燥前処理液を吐出した後に、前記固化膜形成物質と溶け合う溶媒を含む洗浄液を前記ノズルの内部に供給することにより、前記乾燥前処理液および洗浄液を前記ノズルに吐出させる洗浄液供給工程をさらに含む、請求項15に記載の基板処理方法。 After the nozzle discharges the pre-drying treatment liquid toward the surface of the substrate, by supplying a cleaning liquid containing a solvent that dissolves with the solidified film forming substance into the nozzle, the pre-drying treatment liquid and the cleaning liquid are supplied. The substrate processing method according to claim 15, further comprising a cleaning liquid supply step of discharging the cleaning liquid to the nozzle.
  17.  前記ノズルが前記基板の表面に向けて前記乾燥前処理液を吐出した後に、洗浄ガスを前記ノズルの内部に供給することにより、前記乾燥前処理液および洗浄ガスを前記ノズルに吐出させる洗浄ガス供給工程をさらに含む、請求項15に記載の基板処理方法。 A cleaning gas supply for discharging the pre-drying treatment liquid and the cleaning gas to the nozzle by supplying a cleaning gas to the inside of the nozzle after the nozzle discharges the pre-drying processing liquid toward the surface of the substrate. 16. The substrate processing method according to claim 15, further comprising a step.
  18.  前記固化膜を形成する前に、前記基板を水平に保持しながら鉛直な回転軸線まわりに回転させることにより、前記基板の表面の全域が前記乾燥前処理液の液膜で覆われた状態を維持しながら、前記基板の表面上の一部の前記乾燥前処理液を前記基板の回転に伴う遠心力で除去する膜厚減少工程をさらに含む、請求項1~17のいずれか一項に記載の基板処理方法。 Before forming the solidified film, by rotating the substrate about a vertical rotation axis while holding the substrate horizontally, a state where the entire surface of the substrate is covered with the liquid film of the drying pretreatment liquid is maintained. The method according to any one of claims 1 to 17, further comprising a film thickness reducing step of removing a part of the pretreatment liquid for drying on the surface of the substrate by centrifugal force accompanying rotation of the substrate. Substrate processing method.
  19.  前記固化膜を前記基板の表面から除去しているときに、前記基板の表面上の前記固化膜を冷却する固化膜冷却工程をさらに含む、請求項1~18のいずれか一項に記載の基板処理方法。 The substrate according to any one of claims 1 to 18, further comprising a solidified film cooling step of cooling the solidified film on the surface of the substrate while removing the solidified film from the surface of the substrate. Processing method.
  20.  固化膜形成物質の固体を運搬する固形物運搬手段と、
     前記固化膜形成物質の融解、および、基板上での前記固化膜形成物質の溶解、の少なくとも一方により、運搬された前記固化膜形成物質を含む乾燥前処理液を作成する乾燥前処理液作成手段と、
     前記基板の表面上の前記乾燥前処理液を凝固または析出により固化させることにより、前記固化膜形成物質を含む固化膜を前記基板の表面に形成する固化膜形成手段と、
     前記固化膜を気体に変化させることにより前記基板の表面から除去する固化膜除去手段とを備える、基板処理装置。
     
    Solid transport means for transporting the solid of the solidified film-forming substance,
    Dry pretreatment liquid preparation means for preparing a dry pretreatment liquid containing the conveyed solidified film forming substance by at least one of melting of the solidified film forming substance and dissolution of the solidified film forming substance on a substrate. When,
    Solidifying film forming means for forming a solidified film containing the solidified film forming substance on the surface of the substrate by solidifying the pre-drying treatment liquid on the surface of the substrate by coagulation or precipitation;
    A substrate processing apparatus, comprising: a solidified film removing unit that removes the solidified film from the surface of the substrate by changing the solidified film into a gas.
PCT/JP2019/029071 2018-08-24 2019-07-24 Substrate processing method and substrate processing device WO2020039835A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-157536 2018-08-24
JP2018157536 2018-08-24
JP2019-012448 2019-01-28
JP2019012448A JP7300272B2 (en) 2018-08-24 2019-01-28 Substrate processing method and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2020039835A1 true WO2020039835A1 (en) 2020-02-27

Family

ID=69592980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029071 WO2020039835A1 (en) 2018-08-24 2019-07-24 Substrate processing method and substrate processing device

Country Status (1)

Country Link
WO (1) WO2020039835A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010638A (en) * 2006-06-29 2008-01-17 Ulvac Seimaku Kk Method of manufacturing semiconductor device
JP2017037985A (en) * 2015-08-11 2017-02-16 東京エレクトロン株式会社 Substrate processing device and deposition prevention method for sublimable material
JP2018107426A (en) * 2016-12-26 2018-07-05 株式会社Screenホールディングス Substrate processing device and substrate processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010638A (en) * 2006-06-29 2008-01-17 Ulvac Seimaku Kk Method of manufacturing semiconductor device
JP2017037985A (en) * 2015-08-11 2017-02-16 東京エレクトロン株式会社 Substrate processing device and deposition prevention method for sublimable material
JP2018107426A (en) * 2016-12-26 2018-07-05 株式会社Screenホールディングス Substrate processing device and substrate processing method

Similar Documents

Publication Publication Date Title
CN110660641B (en) Substrate processing method and substrate processing apparatus
KR102322557B1 (en) Substrate drying method and substrate processing apparatus
WO2020241022A1 (en) Method for producing liquid containing sublimable substance, substrate drying method, and substrate processing apparatus
CN109427623B (en) Substrate drying method and substrate processing apparatus
TWI708339B (en) Substrate processing method and substrate processing device
TW201941304A (en) Substrate processing method and substrate processing apparatus
WO2020039835A1 (en) Substrate processing method and substrate processing device
JP7126429B2 (en) Substrate processing method and substrate processing apparatus
JP7265879B2 (en) SUBSTRATE DRYING METHOD AND SUBSTRATE PROCESSING APPARATUS
JP7300272B2 (en) Substrate processing method and substrate processing apparatus
TWI700740B (en) Substrate processing apparatus and substrate processing method
JP2015185756A (en) Substrate processing method and substrate processing apparatus
KR102504972B1 (en) Substrate processing method and substrate processing apparatus
JP7122251B2 (en) Substrate processing method and substrate processing apparatus
JP2022145824A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851931

Country of ref document: EP

Kind code of ref document: A1