JP2022145824A - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
JP2022145824A
JP2022145824A JP2022126560A JP2022126560A JP2022145824A JP 2022145824 A JP2022145824 A JP 2022145824A JP 2022126560 A JP2022126560 A JP 2022126560A JP 2022126560 A JP2022126560 A JP 2022126560A JP 2022145824 A JP2022145824 A JP 2022145824A
Authority
JP
Japan
Prior art keywords
substrate
liquid
drying treatment
treatment liquid
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022126560A
Other languages
Japanese (ja)
Other versions
JP7314373B2 (en
Inventor
悠太 佐々木
Yuta Sasaki
弘明 ▲高▼橋
Hiroaki Takahashi
直澄 藤原
Naozumi Fujiwara
正幸 尾辻
Masayuki Otsuji
雅彦 加藤
Masahiko Kato
佑 山口
Yu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018248018A external-priority patent/JP7122251B2/en
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2022126560A priority Critical patent/JP7314373B2/en
Publication of JP2022145824A publication Critical patent/JP2022145824A/en
Application granted granted Critical
Publication of JP7314373B2 publication Critical patent/JP7314373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce rate of pattern collapse occurring when removing a sublimable substance from a top face of a substrate by sublimation.
SOLUTION: Pre-drying process liquid which is solution in which a sublimable substance is dissolved into a solvent, is supplied onto a top face of a substrate in which a pattern is formed, and a liquid film of the pre-drying process liquid is formed on the top face of the substrate (pre-drying process liquid supply step). A solid of the sublimable substance is precipitated on the top face of the substrate by evaporating the solvent from the liquid film of the pre-drying process liquid (precipitation step). In the precipitation step, before the solid of the sublimable substance is precipitated, film thickness decrease speed is measured which is speed at which thickness of the liquid film of the pre-drying process liquid decreases due to evaporation of the solvent (film thickness decrease speed measuring step). It is determined whether the film thickness decrease speed is within reference speed range (decrease speed determining step). When it is determined that in the decrease speed determining step, the film thickness decrease speed is within the reference speed range. The solid of the sublimable substance is sublimated after ending the precipitation step (sublimation step).
SELECTED DRAWING: Figure 9
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、基板を処理する基板処理方法および基板処理装置に関する。基板には、たとえば、半導体ウエハ、液晶表示装置や有機EL(electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等が含まれる。 The present invention relates to a substrate processing method and substrate processing apparatus for processing a substrate. Substrates include, for example, semiconductor wafers, FPD (Flat Panel Display) substrates such as liquid crystal display devices and organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates. , ceramic substrates, solar cell substrates, and the like.

半導体装置やFPDなどの製造工程では、半導体ウエハやFPD用ガラス基板等の基板に対して必要に応じた処理が行われる。このような処理には、薬液やリンス液等の処理液を基板に供給することが含まれる。処理液が供給された後は、処理液が基板から除去され、基板が乾燥される。基板を1枚ずつ処理する枚葉式の基板処理装置では、基板の高速回転によって基板上の液体を除去することにより基板を乾燥させるスピンドライが行われる。 In the manufacturing process of semiconductor devices, FPDs, and the like, substrates such as semiconductor wafers and glass substrates for FPDs are processed as necessary. Such processing includes supplying a processing liquid such as a chemical liquid or a rinse liquid to the substrate. After the processing liquid is applied, the processing liquid is removed from the substrate and the substrate is dried. 2. Description of the Related Art In a single-wafer type substrate processing apparatus that processes substrates one by one, spin drying is performed in which a substrate is dried by removing liquid on the substrate by rotating the substrate at high speed.

基板の表面にパターンが形成されている場合、基板を乾燥させるときに、基板に付着している処理液の表面張力に起因する力がパターンに加わり、パターンが倒壊することがある。その対策として、IPA(イソプロピルアルコール)等の表面張力が低い液体を基板に供給したり、パターンに対する液体の接触角を90度に近づける疎水化剤を基板に供給したりする方法が採られる。しかしながら、IPAや疎水化剤を用いたとしても、パターンを倒壊させる倒壊力が零にはならないので、パターンの強度によっては、これらの対策を行ったとしても、十分にパターンの倒壊を防止できない場合がある。 When a pattern is formed on the surface of the substrate, the pattern may collapse when the substrate is dried due to the force caused by the surface tension of the processing liquid adhering to the substrate. As countermeasures, a method of supplying a liquid having a low surface tension such as IPA (isopropyl alcohol) to the substrate, or supplying a hydrophobizing agent to the substrate to bring the contact angle of the liquid to the pattern closer to 90 degrees is adopted. However, even if IPA or a hydrophobizing agent is used, the collapsing force for collapsing the pattern cannot be reduced to zero. There is

近年、パターンの倒壊を防止する技術として昇華乾燥が注目されている。たとえば、特許文献1には、昇華乾燥を行う基板処理方法および基板処理装置が開示されている。特許文献1に記載の昇華乾燥では、昇華性物質の溶液が基板の上面に供給され、基板上のDIW(脱イオン水)が昇華性物質の溶液に置換される。その後、昇華性物質の溶媒を蒸発させて、昇華性物質を析出させる。これにより、固体の昇華性物質からなる膜が基板の上面に形成される。その後、基板が加熱される。これにより、基板上の昇華性物質が昇華して、基板から除去される。 In recent years, sublimation drying has attracted attention as a technique for preventing pattern collapse. For example, Patent Literature 1 discloses a substrate processing method and a substrate processing apparatus that perform sublimation drying. In the sublimation drying described in Patent Document 1, a sublimation substance solution is supplied to the upper surface of the substrate, and DIW (deionized water) on the substrate is replaced with the sublimation substance solution. Thereafter, the solvent for the sublimable substance is evaporated to precipitate the sublimable substance. Thereby, a film made of a solid sublimable substance is formed on the upper surface of the substrate. The substrate is then heated. Thereby, the sublimable substance on the substrate is sublimated and removed from the substrate.

特開2012-243869号公報JP 2012-243869 A

一般的に、昇華乾燥は、基板の高速回転によって液体を除去するスピンドライやIPAを用いるIPA乾燥などの従来の乾燥方法に比べてパターンの倒壊率が低い。しかしながら、パターンの強度が極めて低いと、昇華乾燥を実施したとしても、十分にパターンの倒壊を防止できない場合がある。本願発明者らの研究によると、この原因の一つは、固体の昇華性物質からなる膜の厚みであることが分かった。 In general, sublimation drying has a lower pattern collapse rate than conventional drying methods such as spin drying that removes liquid by rotating the substrate at high speed and IPA drying that uses IPA. However, if the strength of the pattern is extremely low, even if sublimation drying is carried out, it may not be possible to sufficiently prevent the pattern from collapsing. According to research by the inventors of the present application, one of the causes for this is found to be the thickness of the film made of the solid sublimable substance.

昇華性物質の固体の厚みは、昇華性物質の飽和濃度に達したときの昇華性物質の溶液の厚みに対応する。昇華性物質の飽和濃度に達する前に、昇華性物質の溶液中の昇華性物質の濃度を知ることができれば、昇華性物質の固体の厚みを予測し、適切でない厚みの昇華性物質の固体の形成を避けることができる。 The solid thickness of the sublimable substance corresponds to the thickness of the solution of the sublimable substance when the saturation concentration of the sublimable substance is reached. If the concentration of the sublimable material in the solution of the sublimable material can be known before reaching the saturation concentration of the sublimable material, the solid thickness of the sublimable material can be predicted and the solid thickness of the sublimable material with an inappropriate thickness can be estimated. formation can be avoided.

一般に、液体中の物質の濃度を測定するためには、濃度測定用の機器を液体に接触させる必要がある。基板上に形成される昇華性物質の溶液は、比較的薄いため、濃度測定用の機器を基板の上面に接触させることなく液膜に接触させることは困難である。そのため、濃度測定用の機器の接触によってパターンが損傷し倒壊するおそれがある。 Generally, in order to measure the concentration of a substance in a liquid, it is necessary to bring the concentration measuring instrument into contact with the liquid. Since the solution of the sublimable substance formed on the substrate is relatively thin, it is difficult to bring the concentration measuring instrument into contact with the liquid film without contacting the upper surface of the substrate. Therefore, the pattern may be damaged and collapsed due to contact with a device for measuring density.

そこで、本発明の目的の一つは、昇華によって昇華性物質を基板の上面から除去する際に発生するパターンの倒壊率を低減することができる基板処理方法および基板処理装置を提供することである。 SUMMARY OF THE INVENTION Accordingly, one object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of reducing the rate of pattern collapse that occurs when a sublimable substance is removed from the upper surface of a substrate by sublimation. .

この発明の一実施形態は、昇華性物質が溶媒中に溶解した溶液である乾燥前処理液を、パターンが形成された基板の上面に供給して、前記乾燥前処理液の液膜を前記基板の前記上面に形成する乾燥前処理液供給工程と、前記液膜から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面に析出させる析出工程と、前記析出工程において、前記昇華性物質の固体が析出する前に、前記溶媒の蒸発によって前記液膜の厚みが減少する速度である膜厚減少速度を測定する膜厚減少速度測定工程と、前記膜厚減少速度測定工程において測定された前記膜厚減少速度が基準速度範囲内であるか否かを判定する減少速度判定工程と、前記減少速度判定工程において前記膜厚減少速度が前記基準速度範囲内であると判定された場合に、前記析出工程の終了後に、前記昇華性物質の固体を昇華させる昇華工程とを含む、基板処理方法を提供する。 In one embodiment of the present invention, a pre-drying treatment liquid, which is a solution in which a sublimation substance is dissolved in a solvent, is supplied to the upper surface of a substrate on which a pattern is formed, and a liquid film of the pre-drying treatment liquid is formed on the substrate. a pre-drying treatment liquid supplying step formed on the upper surface of the substrate, a deposition step of depositing a solid of the sublimable substance on the upper surface of the substrate by evaporating the solvent from the liquid film, and the deposition step, a film thickness reduction rate measuring step of measuring a film thickness reduction rate, which is a speed at which the thickness of the liquid film decreases due to evaporation of the solvent, before the solid of the sublimable substance precipitates; and the film thickness reduction rate measurement step. a reduction rate determination step of determining whether the film thickness reduction rate measured in the step is within the reference speed range, and a determination that the film thickness reduction rate is within the reference speed range in the reduction rate determination and a sublimation step of sublimating the solid of the sublimable substance after the precipitation step.

一つの実施形態では、前記基準速度範囲は、前記膜厚減少速度が前記基準速度範囲内となるときの前記液膜中の前記昇華性物質の濃度範囲を表す基準濃度範囲と、前記昇華性物質の濃度が異なる乾燥前処理液の液膜毎に前記膜厚減少速度を事前に測定して作成された基準データとに基づき定められる。 In one embodiment, the reference speed range includes: a reference concentration range representing a concentration range of the sublimable substance in the liquid film when the film thickness reduction speed is within the reference speed range; is determined based on reference data prepared by measuring the film thickness reduction rate in advance for each liquid film of the pre-drying treatment liquid having different concentrations of .

また、この発明の一実施形態は、昇華性物質が溶媒中に溶解した溶液である乾燥前処理液を、パターンが形成された基板の上面に供給して、前記乾燥前処理液の液膜を前記基板の前記上面に形成する乾燥前処理液供給工程と、前記液膜から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面に析出させる析出工程と、前記析出工程において、前記溶媒の蒸発によって前記昇華性物質の固体が析出する直前に、前記液膜の厚みを測定する膜厚測定工程と、前記膜厚測定工程において測定された前記液膜の厚みが前記昇華性物質の固体の基準厚み範囲内であるか否かを判定する厚み判定工程と、前記膜厚測定工程において測定された前記液膜の厚みが前記厚み判定工程において前記基準厚み範囲内であると判定された場合に、前記析出工程の終了後に、前記昇華性物質の固体を昇華させる昇華工程とを含む、基板処理方法を提供する。 In one embodiment of the present invention, a pre-drying treatment liquid, which is a solution in which a sublimation substance is dissolved in a solvent, is supplied to the upper surface of a substrate on which a pattern is formed, thereby forming a liquid film of the pre-drying treatment liquid. a pre-drying treatment liquid supplying step for forming the upper surface of the substrate; a deposition step for depositing a solid of the sublimable substance on the upper surface of the substrate by evaporating the solvent from the liquid film; a film thickness measuring step of measuring the thickness of the liquid film immediately before the solid of the sublimable substance precipitates due to evaporation of the solvent; a thickness determination step of determining whether or not the thickness of the liquid film is within a reference thickness range of a solid of a liquid substance; and a sublimation step of sublimating the solid of the sublimable substance after the deposition step is completed, if determined.

一つの実施形態では、前記基板処理方法は、前記液膜の厚みが前記厚み判定工程において前記基準厚み範囲内でないと判定された場合に、異常を報知する異常報知工程をさらに含む。 In one embodiment, the substrate processing method further includes an abnormality notification step of notifying an abnormality when the thickness of the liquid film is determined not to be within the reference thickness range in the thickness determination step.

一つの実施形態では、前記基板処理方法は、前記析出工程において、前記液膜の厚みが前記厚み判定工程において前記基準厚み範囲内であると判定された場合に、前記基板の前記上面の複数箇所において前記昇華性物質の固体の表面の高さ位置を測定することによって、前記昇華性物質の固体の表面の平坦度合を測定する平坦度合測定工程と、前記平坦度合測定工程において測定された平坦度合が基準平坦範囲内であるか否かを判定する平坦判定工程とをさらに含む。そして、前記昇華工程が、前記平坦度合測定工程において測定された平坦度合が前記平坦判定工程において前記基準平坦範囲内であると判定された場合に、前記析出工程の終了後に、実行される。 In one embodiment, in the substrate processing method, if the thickness of the liquid film is determined to be within the reference thickness range in the thickness determining step in the depositing step, a plurality of portions of the upper surface of the substrate are deposited. a flatness measuring step of measuring the flatness of the solid surface of the sublimable substance by measuring the height position of the solid surface of the sublimable substance in the flatness measuring step; and the flatness measured in the flatness measuring step is within the reference flat range. Then, the sublimation step is performed after the deposition step is completed when the flatness measured in the flatness measurement step is determined to be within the reference flatness range in the flatness determination step.

一つの実施形態では、前記基板処理方法は、前記平坦度合測定工程において前記平坦度合が前記基準平坦範囲でないと判定された場合に、前記基板の前記上面に除去液を供給することによって、前記基板の前記上面から前記昇華性物質の固体を除去する固体除去工程をさらに含む。 In one embodiment, in the substrate processing method, when it is determined in the flatness measuring step that the flatness is not within the reference flatness range, the substrate is treated by supplying a removing liquid to the upper surface of the substrate. and removing solids of the sublimable substance from the upper surface of the.

図1Aは、本発明の一実施形態に係る基板処理装置を上から見た模式図である。FIG. 1A is a schematic top view of a substrate processing apparatus according to an embodiment of the present invention. 図1Bは、前記基板処理装置を側方から見た模式図である。FIG. 1B is a schematic side view of the substrate processing apparatus. 図2は、前記基板処理装置に備えられた処理ユニットの内部を水平に見た模式図である。FIG. 2 is a schematic horizontal view of the inside of a processing unit provided in the substrate processing apparatus. 図3は、前記処理ユニットに備えられた膜厚測定ユニット、スピンチャック、遮断部材を水平に見た模式図である。FIG. 3 is a schematic horizontal view of a film thickness measuring unit, a spin chuck, and a blocking member provided in the processing unit. 図4は、前記膜厚測定ユニットおよび前記スピンチャックを上から見た模式図である。FIG. 4 is a schematic top view of the film thickness measurement unit and the spin chuck. 図5は、前記膜厚測定ユニットに備えられた発光素子を収容するハウジングの内部を示す断面図である。FIG. 5 is a cross-sectional view showing the inside of a housing containing a light-emitting element provided in the film thickness measurement unit. 図6は、図5に示すVI-VI線に沿う断面図である。FIG. 6 is a cross-sectional view along line VI-VI shown in FIG. 図7は、前記基板処理装置に備えられた乾燥前処理液供給装置を示す模式図である。FIG. 7 is a schematic diagram showing a pre-drying treatment liquid supply device provided in the substrate processing apparatus. 図8は、前記基板処理装置に備えられたコントローラのハードウェアを示すブロック図である。FIG. 8 is a block diagram showing hardware of a controller provided in the substrate processing apparatus. 図9は、前記基板処理装置による基板処理の一例を説明するための流れ図である。FIG. 9 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus. 図10Aは、樟脳およびIPAの溶液を用いたときの基板の状態を示す模式図である。FIG. 10A is a schematic diagram showing the state of the substrate when a solution of camphor and IPA is used. 図10Bは、樟脳およびIPAの溶液を用いたときの基板の状態を示す模式図である。FIG. 10B is a schematic diagram showing the state of the substrate when a solution of camphor and IPA is used. 図10Cは、樟脳およびIPAの溶液を用いたときの基板の状態を示す模式図である。FIG. 10C is a schematic diagram showing the state of the substrate when a solution of camphor and IPA is used. 図10Dは、樟脳およびIPAの溶液を用いたときの基板の状態を示す模式図である。FIG. 10D is a schematic diagram showing the state of the substrate when a solution of camphor and IPA is used. 図10Eは、樟脳およびIPAの溶液を用いたときの基板の状態を示す模式図である。FIG. 10E is a schematic diagram showing the state of the substrate when a solution of camphor and IPA is used. 図10Fは、樟脳およびIPAの溶液を用いたときの基板の状態を示す模式図である。FIG. 10F is a schematic diagram showing the state of the substrate when a solution of camphor and IPA is used. 図11は、樟脳およびIPAの平衡状態図である。FIG. 11 is an equilibrium diagram of camphor and IPA. 図12Aは、樟脳およびメタノールの溶液を用いたときの基板の状態を示す模式図である。FIG. 12A is a schematic diagram showing the state of the substrate when a solution of camphor and methanol is used. 図12Bは、樟脳およびメタノールの溶液を用いたときの基板の状態を示す模式図である。FIG. 12B is a schematic diagram showing the state of the substrate when a solution of camphor and methanol is used. 図12Cは、樟脳およびメタノールの溶液を用いたときの基板の状態を示す模式図である。FIG. 12C is a schematic diagram showing the state of the substrate when a solution of camphor and methanol is used. 図12Dは、樟脳およびメタノールの溶液を用いたときの基板の状態を示す模式図である。FIG. 12D is a schematic diagram showing the state of the substrate when a solution of camphor and methanol is used. 図13は、パターンの倒壊率を示すグラフである。FIG. 13 is a graph showing the pattern collapse rate. 図14は、乾燥前処理液から昇華性物質の固体が析出するまでの基板の上面上の乾燥前処理液の液膜の厚みの時間的変化を示すグラフである。FIG. 14 is a graph showing temporal changes in the thickness of the liquid film of the pre-drying treatment liquid on the upper surface of the substrate until the solid of the sublimable substance precipitates from the pre-drying treatment liquid. 図15は、膜厚監視工程の第1例の流れを示すフローチャートである。FIG. 15 is a flow chart showing the flow of the first example of the film thickness monitoring process. 図16は、前記膜厚監視工程の第1例における異常処理工程について説明するための模式図である。FIG. 16 is a schematic diagram for explaining the abnormality handling process in the first example of the film thickness monitoring process. 図17は、前記膜厚監視工程の第2例の流れを示すフローチャートである。FIG. 17 is a flow chart showing the flow of the second example of the film thickness monitoring process. 図18は、前記膜厚監視工程の第2例における溶媒蒸発抑制工程について説明するための模式図である。FIG. 18 is a schematic diagram for explaining the solvent evaporation suppression step in the second example of the film thickness monitoring step. 図19は、前記膜厚監視工程の第2例における溶媒蒸発促進工程について説明するための模式図である。FIG. 19 is a schematic diagram for explaining the solvent evaporation acceleration step in the second example of the film thickness monitoring step. 図20は、前記膜厚監視工程の第3例の流れを示すフローチャートである。FIG. 20 is a flow chart showing the flow of the third example of the film thickness monitoring process. 図21Aは、前記膜厚監視工程の第3例における薄膜化工程について説明するための模式図である。FIG. 21A is a schematic diagram for explaining the thinning process in the third example of the film thickness monitoring process. 図21Bは、前記膜厚監視工程の第3例における薄膜化工程について説明するための模式図である。FIG. 21B is a schematic diagram for explaining the thinning process in the third example of the film thickness monitoring process. 図22は、前記膜厚監視工程の第4例の流れを示すフローチャートである。FIG. 22 is a flow chart showing the flow of the fourth example of the film thickness monitoring process. 図23は、前記基板処理装置による基板処理の他の例を説明するための流れ図である。FIG. 23 is a flowchart for explaining another example of substrate processing by the substrate processing apparatus. 図24は、前記膜厚監視工程の第5例の流れを示すフローチャートである。FIG. 24 is a flow chart showing the flow of the fifth example of the film thickness monitoring process. 図25Aは、前記基板処理における平坦度合測定工程を説明するための模式図である。FIG. 25A is a schematic diagram for explaining a flatness degree measuring step in the substrate processing. 図25Bは、前記基板処理における固体除去工程を説明するための模式図である。FIG. 25B is a schematic diagram for explaining a solid removal step in the substrate processing. 図25Cは、前記基板処理における固体除去工程を説明するための模式図である。FIG. 25C is a schematic diagram for explaining a solid removal step in the substrate processing.

以下では、本発明の実施形態を、添付図面を参照して詳細に説明する。 Embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

以下の説明において、基板処理装置1内の気圧は、特に断りがない限り、基板処理装置1が設置されるクリーンルーム内の気圧(たとえば1気圧またはその近傍の値)に維持されているものとする。 In the following description, unless otherwise specified, the atmospheric pressure in the substrate processing apparatus 1 is maintained at the atmospheric pressure in the clean room in which the substrate processing apparatus 1 is installed (for example, 1 atmospheric pressure or a value in the vicinity thereof). .

図1Aは、本発明の一実施形態に係る基板処理装置1を上から見た模式図である。図1Bは、基板処理装置1を側方から見た模式図である。 FIG. 1A is a schematic top view of a substrate processing apparatus 1 according to an embodiment of the present invention. FIG. 1B is a schematic diagram of the substrate processing apparatus 1 viewed from the side.

図1Aに示すように、基板処理装置1は、半導体ウエハ等の円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板Wを収容するキャリアCAを保持するロードポートLPと、ロードポートLP上のキャリアCAから搬送された基板Wを処理液や処理ガス等の処理流体で処理する複数の処理ユニット2と、ロードポートLP上のキャリアCAと処理ユニット2との間で基板Wを搬送する搬送ロボットと、基板処理装置1を制御するコントローラ3とを備えている。 As shown in FIG. 1A, the substrate processing apparatus 1 is a single-wafer type apparatus that processes disk-shaped substrates W such as semiconductor wafers one by one. The substrate processing apparatus 1 includes a load port LP that holds a carrier CA that accommodates substrates W, and a plurality of processes that process the substrates W transported from the carrier CA on the load port LP with a processing fluid such as a processing liquid or a processing gas. It includes a unit 2 , a transport robot that transports substrates W between the carrier CA on the load port LP and the processing unit 2 , and a controller 3 that controls the substrate processing apparatus 1 .

搬送ロボットは、ロードポートLP上のキャリアCAに対して基板Wの搬入および搬出を行うインデクサロボットIRと、複数の処理ユニット2に対して基板Wの搬入および搬出を行うセンターロボットCRとを含む。インデクサロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送し、センターロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。センターロボットCRは、基板Wを支持するハンドH1を含み、インデクサロボットIRは、基板Wを支持するハンドH2を含む。 The transport robots include an indexer robot IR that loads and unloads substrates W into and out of carriers CA on load port LP, and a center robot CR that loads and unloads substrates W into and out of a plurality of processing units 2 . The indexer robot IR transports substrates W between the load port LP and the center robot CR, and the center robot CR transports the substrates W between the indexer robot IR and the processing units 2 . The center robot CR includes a hand H1 that supports the substrate W, and the indexer robot IR includes a hand H2 that supports the substrate W. As shown in FIG.

複数の処理ユニット2は、平面視でセンターロボットCRのまわりに配置された複数のタワーTWを形成している。図1Aは、4つのタワーTWが形成されている例を示している。センターロボットCRは、いずれのタワーTWにもアクセス可能である。図1Bに示すように、各タワーTWは、上下に積層された複数(たとえば3つ)の処理ユニット2を含む。 The plurality of processing units 2 form a plurality of towers TW arranged around the center robot CR in plan view. FIG. 1A shows an example in which four towers TW are formed. The center robot CR can access any tower TW. As shown in FIG. 1B, each tower TW includes a plurality (for example, three) of processing units 2 stacked one above the other.

図2は、基板処理装置1に備えられた処理ユニット2の内部を水平に見た模式図である。 FIG. 2 is a schematic horizontal view of the inside of the processing unit 2 provided in the substrate processing apparatus 1. As shown in FIG.

処理ユニット2は、基板Wに処理液を供給するウェット処理ユニット2wである。処理ユニット2は、内部空間を有する箱型のチャンバー4と、チャンバー4内で1枚の基板Wを水平に保持しながら基板Wの上面の中央部を通る鉛直な回転軸線A1まわりに回転させるスピンチャック10と、回転軸線A1まわりにスピンチャック10を取り囲む筒状の処理カップ21とを含む。 The processing unit 2 is a wet processing unit 2w that supplies the substrate W with processing liquid. The processing unit 2 includes a box-shaped chamber 4 having an internal space, and a spin device that horizontally holds one substrate W in the chamber 4 and rotates it around a vertical rotation axis A1 that passes through the center of the upper surface of the substrate W. It includes a chuck 10 and a cylindrical processing cup 21 surrounding the spin chuck 10 about the axis of rotation A1.

チャンバー4は、基板Wが通過する搬入搬出口5bが設けられた箱型の隔壁5と、搬入搬出口5bを開閉するシャッター7とを含む。FFU6(ファン・フィルター・ユニット)は、隔壁5の上部に設けられた送風口5aの上に配置されている。FFU6は、クリーンエアー(フィルターによってろ過された空気)を送風口5aからチャンバー4内に常時供給する。チャンバー4内の気体は、処理カップ21の底部に接続された排気ダクト8を通じてチャンバー4から排出される。これにより、クリーンエアーのダウンフローがチャンバー4内に常時形成される。排気ダクト8に排出される排気の流量は、排気ダクト8内に配置された排気バルブ9の開度に応じて変更される。 The chamber 4 includes a box-shaped partition wall 5 provided with a loading/unloading port 5b through which the substrate W passes, and a shutter 7 for opening and closing the loading/unloading port 5b. The FFU 6 (fan filter unit) is arranged above the blower port 5 a provided on the upper part of the partition wall 5 . The FFU 6 constantly supplies clean air (filtered air) into the chamber 4 from the blower port 5a. Gas in the chamber 4 is exhausted from the chamber 4 through an exhaust duct 8 connected to the bottom of the processing cup 21 . Thereby, a clean air downflow is always formed in the chamber 4 . The flow rate of the exhaust discharged to the exhaust duct 8 is changed according to the opening of the exhaust valve 9 arranged inside the exhaust duct 8 .

スピンチャック10は、水平な姿勢で保持された円板状のスピンベース12と、スピンベース12の上方で基板Wを水平な姿勢で保持する複数のチャックピン11と、スピンベース12の中央部から下方に延びるスピン軸13と、スピン軸13を回転させることによりスピンベース12および複数のチャックピン11を回転させるスピンモータ14とを含む。スピンチャック10は、複数のチャックピン11を基板Wの外周面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース12の上面12uに吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 The spin chuck 10 includes a disc-shaped spin base 12 held in a horizontal posture, a plurality of chuck pins 11 holding the substrate W in a horizontal posture above the spin base 12 , and It includes a spin shaft 13 extending downward, and a spin motor 14 that rotates the spin base 12 and the plurality of chuck pins 11 by rotating the spin shaft 13 . The spin chuck 10 is not limited to a clamping type chuck in which a plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and the back surface (lower surface) of the substrate W, which is a non-device forming surface, is attracted to the upper surface 12u of the spin base 12. Therefore, it may be a vacuum type chuck that holds the substrate W horizontally.

処理カップ21は、基板Wから外方に排出された処理液を受け止める複数のガード24と、複数のガード24によって下方に案内された処理液を受け止める複数のカップ23と、複数のガード24および複数のカップ23を取り囲む円筒状の外壁部材22とを含む。図2は、4つのガード24と3つのカップ23とが設けられており、最も外側のカップ23が上から3番目のガード24と一体である例を示している。 The processing cup 21 includes a plurality of guards 24 for receiving the processing liquid discharged outward from the substrate W, a plurality of cups 23 for receiving the processing liquid guided downward by the plurality of guards 24, a plurality of guards 24 and a plurality of cups 23 for receiving the processing liquid. and a cylindrical outer wall member 22 surrounding a cup 23 of the. FIG. 2 shows an example in which four guards 24 and three cups 23 are provided, and the outermost cup 23 is integrated with the third guard 24 from the top.

ガード24は、スピンチャック10を取り囲む円筒部25と、円筒部25の上端部から回転軸線A1に向かって斜め上に延びる円環状の天井部26とを含む。複数の天井部26は、上下に重なっており、複数の円筒部25は、同心円状に配置されている。天井部26の円環状の上端は、平面視で基板Wおよびスピンベース12を取り囲むガード24の上端24uに相当する。複数のカップ23は、それぞれ、複数の円筒部25の下方に配置されている。カップ23は、ガード24によって下方に案内された処理液を受け止める環状の受液溝を形成している。 The guard 24 includes a cylindrical portion 25 surrounding the spin chuck 10 and an annular ceiling portion 26 extending obliquely upward from the upper end of the cylindrical portion 25 toward the rotation axis A1. The plurality of ceiling portions 26 overlap vertically, and the plurality of cylindrical portions 25 are arranged concentrically. The annular upper end of the ceiling portion 26 corresponds to the upper end 24u of the guard 24 surrounding the substrate W and the spin base 12 in plan view. The plurality of cups 23 are arranged below the plurality of cylindrical portions 25, respectively. The cup 23 forms an annular liquid receiving groove that receives the processing liquid guided downward by the guard 24 .

処理ユニット2は、複数のガード24を個別に昇降させるガード昇降ユニット27を含む。ガード昇降ユニット27は、上位置から下位置までの任意の位置にガード24を位置させる。ガード昇降ユニット27は、ガードリフタともいう。図2は、2つのガード24が上位置に配置されており、残り2つのガード24が下位置に配置されている状態を示している。上位置は、ガード24の上端24uがスピンチャック10に保持されている基板Wが配置される保持位置よりも上方に配置される位置である。下位置は、ガード24の上端24uが保持位置よりも下方に配置される位置である。 The processing unit 2 includes a guard lifting unit 27 that lifts and lowers the plurality of guards 24 individually. The guard lifting unit 27 positions the guard 24 at any position from the upper position to the lower position. The guard lifting unit 27 is also called a guard lifter. FIG. 2 shows two guards 24 in the upper position and the remaining two guards 24 in the lower position. The upper position is a position where the upper end 24u of the guard 24 is arranged above the holding position where the substrate W held by the spin chuck 10 is arranged. The lower position is a position where the upper end 24u of the guard 24 is arranged below the holding position.

回転している基板Wに処理液を供給するときは、少なくとも一つのガード24が上位置に配置される。この状態で、処理液が基板Wに供給されると、基板Wに供給された処理液が基板Wの周囲に振り切られる。振り切られた処理液は、基板Wに水平に対向するガード24の内面に衝突し、このガード24に対応するカップ23に案内される。これにより、基板Wから排出された処理液が処理カップ21に集められる。 At least one guard 24 is placed in the upper position when supplying the processing liquid to the rotating substrate W. As shown in FIG. When the processing liquid is supplied to the substrate W in this state, the processing liquid supplied to the substrate W is shaken off around the substrate W. As shown in FIG. The shaken-off processing liquid collides with the inner surface of the guard 24 horizontally facing the substrate W and is guided to the cup 23 corresponding to the guard 24 . Thereby, the processing liquid discharged from the substrate W is collected in the processing cup 21 .

処理ユニット2は、スピンチャック10に保持されている基板Wに向けて処理液を吐出する複数のノズルを含む。複数のノズルは、基板Wの上面に向けて薬液を吐出する薬液ノズル31と、基板Wの上面に向けてリンス液を吐出するリンス液ノズル35と、基板Wの上面に向けて乾燥前処理液を吐出する乾燥前処理液ノズル39と、基板Wの上面に向けて置換液を吐出する置換液ノズル43とを含む。 The processing unit 2 includes a plurality of nozzles that eject processing liquid toward the substrate W held by the spin chuck 10 . The plurality of nozzles includes a chemical liquid nozzle 31 that discharges a chemical liquid toward the upper surface of the substrate W, a rinse liquid nozzle 35 that discharges a rinse liquid toward the upper surface of the substrate W, and a pre-drying treatment liquid toward the upper surface of the substrate W. and a replacement liquid nozzle 43 for ejecting a replacement liquid toward the upper surface of the substrate W. As shown in FIG.

薬液ノズル31は、チャンバー4内で水平に移動可能なスキャンノズルであってもよいし、チャンバー4の隔壁5に対して固定された固定ノズルであってもよい。リンス液ノズル35、乾燥前処理液ノズル39、および置換液ノズル43についても同様である。図2は、薬液ノズル31、リンス液ノズル35、乾燥前処理液ノズル39、および置換液ノズル43が、スキャンノズルであり、これら4つのノズルにそれぞれ対応する4つのノズル移動ユニットが設けられている例を示している。 The chemical liquid nozzle 31 may be a scan nozzle horizontally movable within the chamber 4 or a fixed nozzle fixed to the partition wall 5 of the chamber 4 . The same applies to the rinse liquid nozzle 35 , the pre-drying treatment liquid nozzle 39 , and the replacement liquid nozzle 43 . In FIG. 2, the chemical liquid nozzle 31, the rinse liquid nozzle 35, the pre-drying treatment liquid nozzle 39, and the replacement liquid nozzle 43 are scan nozzles, and four nozzle moving units corresponding to these four nozzles are provided. shows an example.

薬液ノズル31は、薬液ノズル31に薬液を案内する薬液配管32に接続されている。薬液配管32に介装された薬液バルブ33が開かれると、薬液が、薬液ノズル31の吐出口から下方に連続的に吐出される。薬液ノズル31から吐出される薬液は、硫酸、硝酸、塩酸、フッ酸、リン酸、酢酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸等)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイド等)、界面活性剤、および腐食防止剤の少なくとも1つを含む液であってもよいし、これ以外の液体であってもよい。 The chemical nozzle 31 is connected to a chemical pipe 32 that guides the chemical to the chemical nozzle 31 . When the chemical liquid valve 33 interposed in the chemical liquid pipe 32 is opened, the chemical liquid is continuously discharged downward from the discharge port of the chemical liquid nozzle 31 . The chemical liquid discharged from the chemical liquid nozzle 31 includes sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, ammonia water, hydrogen peroxide water, organic acids (eg, citric acid, oxalic acid, etc.), organic alkalis (eg, TMAH: tetramethylammonium hydroxide, etc.), a surfactant, and a corrosion inhibitor, or other liquids.

図示はしないが、薬液バルブ33は、薬液が通過する環状の弁座が設けられたバルブボディと、弁座に対して移動可能な弁体と、弁体が弁座に接触する閉位置と弁体が弁座から離れた開位置との間で弁体を移動させるアクチュエータとを含む。他のバルブについても同様である。アクチュエータは、空圧アクチュエータまたは電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。コントローラ3は、アクチュエータを制御することにより、薬液バルブ33を開閉させる。 Although not shown, the chemical valve 33 includes a valve body provided with an annular valve seat through which the chemical passes, a valve body movable with respect to the valve seat, a closed position where the valve body contacts the valve seat, and a valve body. an actuator for moving the valve body between an open position in which the body is away from the valve seat. The same is true for other valves. The actuator may be a pneumatic actuator, an electric actuator, or an actuator other than these. The controller 3 opens and closes the chemical valve 33 by controlling the actuator.

薬液ノズル31は、鉛直方向および水平方向の少なくとも一方に薬液ノズル31を移動させるノズル移動ユニット34に接続されている。ノズル移動ユニット34は、薬液ノズル31から吐出された薬液が基板Wの上面に供給される処理位置と、薬液ノズル31が平面視で処理カップ21のまわりに位置する待機位置との間で薬液ノズル31を水平に移動させる。 The chemical liquid nozzle 31 is connected to a nozzle moving unit 34 that moves the chemical liquid nozzle 31 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 34 moves the chemical liquid nozzle between a processing position where the chemical liquid discharged from the chemical liquid nozzle 31 is supplied to the upper surface of the substrate W and a standby position where the chemical liquid nozzle 31 is positioned around the processing cup 21 in plan view. 31 is moved horizontally.

リンス液ノズル35は、リンス液ノズル35にリンス液を案内するリンス液配管36に接続されている。リンス液配管36に介装されたリンス液バルブ37が開かれると、リンス液が、リンス液ノズル35の吐出口から下方に連続的に吐出される。リンス液ノズル35から吐出されるリンス液は、たとえば、純水(脱イオン水:DIW(Deionized Water))である。リンス液は、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれかであってもよい。 The rinse liquid nozzle 35 is connected to a rinse liquid pipe 36 that guides the rinse liquid to the rinse liquid nozzle 35 . When the rinse liquid valve 37 interposed in the rinse liquid pipe 36 is opened, the rinse liquid is continuously discharged downward from the discharge port of the rinse liquid nozzle 35 . The rinse liquid discharged from the rinse liquid nozzle 35 is, for example, pure water (deionized water: DIW). The rinse liquid may be any one of carbonated water, electrolytic ion water, hydrogen water, ozone water, and diluted hydrochloric acid water (for example, about 10 ppm to 100 ppm).

リンス液ノズル35は、鉛直方向および水平方向の少なくとも一方にリンス液ノズル35を移動させるノズル移動ユニット38に接続されている。ノズル移動ユニット38は、リンス液ノズル35から吐出されたリンス液が基板Wの上面に供給される処理位置と、リンス液ノズル35が平面視で処理カップ21のまわりに位置する待機位置との間でリンス液ノズル35を水平に移動させる。 The rinse liquid nozzle 35 is connected to a nozzle moving unit 38 that moves the rinse liquid nozzle 35 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 38 is located between a processing position where the rinse liquid discharged from the rinse liquid nozzle 35 is supplied to the upper surface of the substrate W and a standby position where the rinse liquid nozzle 35 is positioned around the processing cup 21 in plan view. to move the rinse liquid nozzle 35 horizontally.

乾燥前処理液ノズル39は、乾燥前処理液ノズル39に処理液を案内する乾燥前処理液配管40に接続されている。乾燥前処理液配管40に介装された乾燥前処理液バルブ41が開かれると、乾燥前処理液が、乾燥前処理液ノズル39の吐出口から下方に連続的に吐出される。同様に、置換液ノズル43は、置換液ノズル43に置換液を案内する置換液配管44に接続されている。置換液配管44に介装された置換液バルブ45が開かれると、置換液が、置換液ノズル43の吐出口から下方に連続的に吐出される。 The pre-drying treatment liquid nozzle 39 is connected to a pre-drying treatment liquid pipe 40 that guides the treatment liquid to the pre-drying treatment liquid nozzle 39 . When the pre-drying treatment liquid valve 41 interposed in the pre-drying treatment liquid pipe 40 is opened, the pre-drying treatment liquid is continuously discharged downward from the outlet of the pre-drying treatment liquid nozzle 39 . Similarly, the substituting liquid nozzle 43 is connected to a substituting liquid pipe 44 that guides the substituting liquid to the substituting liquid nozzle 43 . When the substitution liquid valve 45 interposed in the substitution liquid pipe 44 is opened, the substitution liquid is continuously discharged downward from the discharge port of the substitution liquid nozzle 43 .

乾燥前処理液は、溶質としての昇華性物質と、昇華性物質を溶解する溶媒とを含む溶液である。昇華性物質は、常温(室温と同義)または常圧(基板処理装置1内の圧力。たとえば、1気圧またはその近傍の値)で液体を経ずに固体から気体に変化する物質であってもよい。 The drying pretreatment liquid is a solution containing a sublimable substance as a solute and a solvent that dissolves the sublimable substance. The sublimable substance may be a substance that changes from a solid to a gas at normal temperature (synonymous with room temperature) or normal pressure (the pressure in the substrate processing apparatus 1, for example, 1 atmosphere or a value in the vicinity thereof) without going through a liquid state. good.

乾燥前処理液の凝固点(1気圧での凝固点。以下同様。)は、室温(たとえば、23℃またはその近傍の値)よりも低い。基板処理装置1は、室温に維持されたクリーンルーム内に配置されている。したがって、乾燥前処理液を加熱しなくても、乾燥前処理液を液体に維持できる。昇華性物質の凝固点は、乾燥前処理液の凝固点よりも高い。昇華性物質の凝固点は、室温よりも高い。室温では、昇華性物質は固体である。昇華性物質の凝固点は、溶媒の沸点より高くてもよい。溶媒の蒸気圧は、昇華性物質の蒸気圧よりも高い。 The freezing point of the pre-drying treatment liquid (the freezing point at 1 atm; the same shall apply hereinafter) is lower than room temperature (for example, 23° C. or a value in the vicinity thereof). The substrate processing apparatus 1 is arranged in a clean room maintained at room temperature. Therefore, the pre-drying treatment liquid can be kept liquid without heating the pre-drying treatment liquid. The freezing point of the sublimable substance is higher than that of the drying pretreatment liquid. The freezing point of sublimable substances is above room temperature. At room temperature, sublimable substances are solid. The freezing point of the sublimable substance may be higher than the boiling point of the solvent. The vapor pressure of the solvent is higher than the vapor pressure of the sublimable substance.

昇華性物質は、たとえば、2-メチル-2-プロパノール(別名:tert-ブチルアルコール、t-ブチルアルコール)やシクロヘキサノールなどのアルコール類、フッ化炭化水素化合物、1,3,5-トリオキサン(別名:メタホルムアルデヒド)、樟脳(別名:カンフル、カンファー)、ナフタレン、およびヨウ素のいずれかであってもよいし、これら以外の物質であってもよい。 Examples of sublimable substances include alcohols such as 2-methyl-2-propanol (alias: tert-butyl alcohol, t-butyl alcohol) and cyclohexanol, fluorocarbon compounds, 1,3,5-trioxane (alias : metaformaldehyde), camphor (a.k.a. camphor, camphor), naphthalene, and iodine, or other substances.

溶媒は、たとえば、純水、IPA、メタノール、HFE(ハイドロフルオロエーテル)、アセトン、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGEE(プロピレングリコールモノエチルエーテル、1-エトキシ-2-プロパノール)、およびエチレングリコールからなる群より選ばれた少なくとも1種であってもよい。 Solvents include, for example, pure water, IPA, methanol, HFE (hydrofluoroether), acetone, PGMEA (propylene glycol monomethyl ether acetate), PGEE (propylene glycol monoethyl ether, 1-ethoxy-2-propanol), and ethylene glycol. At least one selected from the group consisting of may be used.

以下では、昇華性物質が樟脳であり、溶媒がIPAまたはメタノールである例について説明する。 An example in which the sublimable substance is camphor and the solvent is IPA or methanol will be described below.

樟脳の凝固点は、175℃~177℃である。溶媒がIPAおよびメタノールのいずれであっても、樟脳の凝固点は、溶媒の沸点よりも高い。IPAの蒸気圧は、樟脳の蒸気圧よりも高い。同様に、メタノールの蒸気圧は、樟脳の蒸気圧よりも高い。したがって、IPAおよびメタノールは、樟脳よりも蒸発し易い。IPAは、水よりも蒸気圧が高く、水よりも表面張力が低い。同様に、メタノールは、水よりも蒸気圧が高く、水よりも表面張力が低い。IPAおよびメタノールは、いずれも、水よりも分子量が大きい。メタノールは、IPAよりも分子量が小さい。 The freezing point of camphor is between 175°C and 177°C. The freezing point of camphor is higher than the boiling point of the solvent, whether the solvent is IPA or methanol. The vapor pressure of IPA is higher than that of camphor. Similarly, the vapor pressure of methanol is higher than that of camphor. Therefore, IPA and methanol are easier to evaporate than camphor. IPA has a higher vapor pressure than water and a lower surface tension than water. Similarly, methanol has a higher vapor pressure than water and a lower surface tension than water. Both IPA and methanol have higher molecular weights than water. Methanol has a lower molecular weight than IPA.

後述するように、置換液は、リンス液の液膜で覆われた基板Wの上面に供給され、乾燥前処理液は、置換液の液膜で覆われた基板Wの上面に供給される。リンス液および乾燥前処理液の両方と溶け合うのであれば、置換液は、どのような液体であってもよい。置換液は、たとえば、IPA(液体)である。置換液は、IPAおよびHFEの混合液であってもよいし、これら以外であってもよい。置換液は、溶媒等の乾燥前処理液の成分と同一名称の液体であってもよいし、乾燥前処理液のいずれの成分とも異なる名称の液体であってもよい。 As will be described later, the replacement liquid is supplied to the upper surface of the substrate W covered with the liquid film of the rinse liquid, and the pre-drying treatment liquid is supplied to the upper surface of the substrate W covered with the liquid film of the replacement liquid. The replacement liquid may be any liquid as long as it dissolves with both the rinse liquid and the pre-drying liquid. The replacement liquid is, for example, IPA (liquid). The replacement liquid may be a mixed liquid of IPA and HFE, or may be other than these. The replacement liquid may be a liquid with the same name as a component of the pre-drying treatment liquid such as a solvent, or may be a liquid with a different name from any component of the pre-drying treatment liquid.

リンス液の液膜で覆われた基板Wの上面に置換液が供給されると、基板W上の殆どのリンス液は、置換液によって押し流され、基板Wから排出される。残りの微量のリンス液は、置換液に溶け込み、置換液中に拡散する。拡散したリンス液は、置換液と共に基板Wから排出される。したがって、基板W上のリンス液を効率的に置換液に置換できる。同様の理由により、基板W上の置換液を効率的に乾燥前処理液に置換できる。これにより、基板W上の乾燥前処理液に含まれるリンス液を減らすことができる。 When the replacement liquid is supplied to the upper surface of the substrate W covered with the liquid film of the rinse liquid, most of the rinse liquid on the substrate W is washed away by the replacement liquid and discharged from the substrate W. FIG. A small amount of the remaining rinsing liquid dissolves in the replacement liquid and diffuses into the replacement liquid. The diffused rinse liquid is discharged from the substrate W together with the replacement liquid. Therefore, the rinse liquid on the substrate W can be efficiently replaced with the replacement liquid. For the same reason, the replacement liquid on the substrate W can be efficiently replaced with the pre-drying treatment liquid. Thereby, the rinse liquid contained in the pre-drying treatment liquid on the substrate W can be reduced.

乾燥前処理液ノズル39は、鉛直方向および水平方向の少なくとも一方に乾燥前処理液ノズル39を移動させるノズル移動ユニット42に接続されている。ノズル移動ユニット42は、乾燥前処理液ノズル39から吐出された乾燥前処理液が基板Wの上面に供給される処理位置と、乾燥前処理液ノズル39が平面視で処理カップ21のまわりに位置する待機位置との間で乾燥前処理液ノズル39を水平に移動させる。 The pre-drying treatment liquid nozzle 39 is connected to a nozzle moving unit 42 that moves the pre-drying treatment liquid nozzle 39 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 42 has a processing position where the pre-drying treatment liquid discharged from the pre-drying treatment liquid nozzle 39 is supplied to the upper surface of the substrate W, and a position where the pre-drying treatment liquid nozzle 39 is positioned around the processing cup 21 in plan view. The pre-drying treatment liquid nozzle 39 is moved horizontally between the standby position where the drying is performed.

同様に、置換液ノズル43は、鉛直方向および水平方向の少なくとも一方に置換液ノズル43を移動させるノズル移動ユニット46に接続されている。ノズル移動ユニット46は、置換液ノズル43から吐出された置換液が基板Wの上面に供給される処理位置と、置換液ノズル43が平面視で処理カップ21のまわりに位置する待機位置との間で置換液ノズル43を水平に移動させる。 Similarly, the replacement liquid nozzle 43 is connected to a nozzle moving unit 46 that moves the replacement liquid nozzle 43 in at least one of vertical and horizontal directions. The nozzle moving unit 46 is located between a processing position where the replacement liquid discharged from the replacement liquid nozzle 43 is supplied to the upper surface of the substrate W and a standby position where the replacement liquid nozzle 43 is positioned around the processing cup 21 in plan view. to move the substituting liquid nozzle 43 horizontally.

処理ユニット2は、スピンチャック10の上方に配置された遮断部材51を含む。図2は、遮断部材51が円板状の遮断板である例を示している。遮断部材51は、スピンチャック10の上方に水平に配置された円板部52を含む。遮断部材51は、円板部52の中央部から上方に延びる筒状の支軸53によって水平に支持されている。円板部52の中心線は、基板Wの回転軸線A1上に配置されている。円板部52の下面は、遮断部材51の下面51Lに相当する。遮断部材51の下面51Lは、基板Wの上面に対向する対向面である。遮断部材51の下面51Lは、基板Wの上面と平行であり、基板Wの直径以上の外径を有している。 The processing unit 2 includes a blocking member 51 arranged above the spin chuck 10 . FIG. 2 shows an example in which the blocking member 51 is a disk-shaped blocking plate. The blocking member 51 includes a disk portion 52 horizontally arranged above the spin chuck 10 . The blocking member 51 is horizontally supported by a cylindrical support shaft 53 extending upward from the central portion of the disk portion 52 . The center line of the disk portion 52 is arranged on the rotation axis A1 of the substrate W. As shown in FIG. The lower surface of the disc portion 52 corresponds to the lower surface 51L of the blocking member 51 . A lower surface 51L of the blocking member 51 is a surface facing the upper surface of the substrate W. As shown in FIG. The lower surface 51L of the blocking member 51 is parallel to the upper surface of the substrate W and has an outer diameter equal to or larger than the diameter of the substrate W. As shown in FIG.

遮断部材51は、遮断部材51を鉛直に昇降させる遮断部材昇降ユニット54に接続されている。遮断部材昇降ユニット54は、遮断部材リフタともいう。遮断部材昇降ユニット54は、上位置(図2に示す位置)から下位置までの任意の位置に遮断部材51を位置させる。下位置は、薬液ノズル31等のスキャンノズルが基板Wと遮断部材51との間に進入できない高さまで遮断部材51の下面51Lが基板Wの上面に近接する近接位置である。上位置は、スキャンノズルが遮断部材51と基板Wとの間に進入可能な高さまで遮断部材51が退避した離間位置である。 The blocking member 51 is connected to a blocking member elevating unit 54 that vertically moves the blocking member 51 up and down. The blocking member elevating unit 54 is also called a blocking member lifter. The blocking member elevating unit 54 positions the blocking member 51 at any position from the upper position (the position shown in FIG. 2) to the lower position. The lower position is a close position where the lower surface 51L of the shielding member 51 approaches the upper surface of the substrate W to a height at which the scan nozzle such as the chemical nozzle 31 cannot enter between the substrate W and the shielding member 51 . The upper position is a separated position where the blocking member 51 is retracted to a height at which the scan nozzle can enter between the blocking member 51 and the substrate W. FIG.

複数のノズルは、遮断部材51の下面51Lの中央部で開口する上中央開口61を介して処理液や処理ガス等の処理流体を下方に吐出する中心ノズル55を含む。中心ノズル55は、回転軸線A1に沿って上下に延びている。中心ノズル55は、遮断部材51の中央部を上下に貫通する貫通穴内に配置されている。遮断部材51の内周面は、径方向(回転軸線A1に直交する方向)に間隔を空けて中心ノズル55の外周面を取り囲んでいる。中心ノズル55は、遮断部材51と共に昇降する。処理流体を吐出する中心ノズル55の吐出口は、遮断部材51の上中央開口61の上方に配置されている。 The plurality of nozzles includes a central nozzle 55 that downwardly discharges a processing fluid such as a processing liquid or processing gas through an upper central opening 61 that opens at the center of the lower surface 51L of the blocking member 51 . The central nozzle 55 extends vertically along the rotation axis A1. The central nozzle 55 is arranged in a through-hole vertically penetrating the central portion of the blocking member 51 . The inner peripheral surface of the blocking member 51 surrounds the outer peripheral surface of the center nozzle 55 with a gap in the radial direction (direction orthogonal to the rotation axis A1). The center nozzle 55 moves up and down together with the blocking member 51 . A discharge port of the central nozzle 55 for discharging the processing fluid is arranged above the upper central opening 61 of the blocking member 51 .

中心ノズル55は、中心ノズル55に不活性ガスを案内する上気体配管56に接続されている。基板処理装置1は、中心ノズル55から吐出される不活性ガスを加熱または冷却する上温度調節器59を備えていてもよい。上気体配管56に介装された上気体バルブ57が開かれると、不活性ガスの流量を変更する流量調整バルブ58の開度に対応する流量で、不活性ガスが、中心ノズル55の吐出口から下方に連続的に吐出される。中心ノズル55から吐出される不活性ガスは、窒素ガスである。中心ノズル55から吐出される不活性ガスは、ヘリウムガスやアルゴンガス等の窒素ガス以外のガスであってもよい。 The center nozzle 55 is connected to an upper gas pipe 56 that guides inert gas to the center nozzle 55 . The substrate processing apparatus 1 may include an upper temperature controller 59 that heats or cools the inert gas discharged from the center nozzle 55 . When the upper gas valve 57 interposed in the upper gas pipe 56 is opened, the inert gas flows through the outlet of the central nozzle 55 at a flow rate corresponding to the degree of opening of the flow control valve 58 that changes the flow rate of the inert gas. is discharged continuously downward from the The inert gas discharged from the central nozzle 55 is nitrogen gas. The inert gas discharged from the center nozzle 55 may be gas other than nitrogen gas, such as helium gas or argon gas.

遮断部材51の内周面と中心ノズル55の外周面は、上下に延びる筒状の上気体流路62を形成している。上気体流路62は、不活性ガスを遮断部材51の上中央開口61に導く上気体配管63に接続されている。基板処理装置1は、遮断部材51の上中央開口61から吐出される不活性ガスを加熱または冷却する上温度調節器66を備えていてもよい。上気体配管63に介装された上気体バルブ64が開かれると、不活性ガスの流量を変更する流量調整バルブ65の開度に対応する流量で、不活性ガスが、遮断部材51の上中央開口61から下方に連続的に吐出される。遮断部材51の上中央開口61から吐出される不活性ガスは、窒素ガスである。遮断部材51の上中央開口61から吐出される不活性ガスは、ヘリウムガスやアルゴンガス等の窒素ガス以外のガスであってもよい。 The inner peripheral surface of the blocking member 51 and the outer peripheral surface of the center nozzle 55 form a cylindrical upper gas flow path 62 extending vertically. The upper gas flow path 62 is connected to an upper gas pipe 63 that guides the inert gas to the upper central opening 61 of the blocking member 51 . The substrate processing apparatus 1 may include an upper temperature controller 66 that heats or cools the inert gas discharged from the upper central opening 61 of the blocking member 51 . When the upper gas valve 64 interposed in the upper gas pipe 63 is opened, the inert gas flows at the upper center of the blocking member 51 at a flow rate corresponding to the opening degree of the flow control valve 65 that changes the flow rate of the inert gas. It is continuously discharged downward from the opening 61 . The inert gas discharged from the upper central opening 61 of the blocking member 51 is nitrogen gas. The inert gas discharged from the upper central opening 61 of the blocking member 51 may be gas other than nitrogen gas, such as helium gas or argon gas.

複数のノズルは、基板Wの下面中央部に向けて処理液を吐出する下面ノズル71を含む。下面ノズル71は、スピンベース12の上面12uと基板Wの下面との間に配置されたノズル円板部と、ノズル円板部から下方に延びるノズル筒状部とを含む。下面ノズル71の吐出口は、ノズル円板部の上面中央部で開口している。基板Wがスピンチャック10に保持されているときは、下面ノズル71の吐出口が、基板Wの下面中央部に上下に対向する。 The plurality of nozzles includes a lower surface nozzle 71 that discharges the processing liquid toward the central portion of the lower surface of the substrate W. As shown in FIG. The lower surface nozzle 71 includes a nozzle disk portion arranged between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle cylindrical portion extending downward from the nozzle disk portion. The discharge port of the lower surface nozzle 71 is open at the center of the upper surface of the nozzle disk portion. When the substrate W is held by the spin chuck 10, the ejection port of the lower surface nozzle 71 faces the central portion of the lower surface of the substrate W vertically.

下面ノズル71は、加熱流体の一例である温水(室温よりも高温の純水)を下面ノズル71に案内する加熱流体配管72に接続されている。下面ノズル71に供給される純水は、加熱流体配管72に介装されたヒータ75によって加熱される。加熱流体配管72に介装された加熱流体バルブ73が開かれると、温水の流量を変更する流量調整バルブ74の開度に対応する流量で、温水が、下面ノズル71の吐出口から上方に連続的に吐出される。これにより、温水が基板Wの下面に供給される。 The bottom nozzle 71 is connected to a heating fluid pipe 72 that guides hot water (pure water having a temperature higher than room temperature), which is an example of a heating fluid, to the bottom nozzle 71 . Pure water supplied to the lower surface nozzle 71 is heated by a heater 75 interposed in the heating fluid pipe 72 . When the heating fluid valve 73 interposed in the heating fluid pipe 72 is opened, the hot water flows continuously upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the degree of opening of the flow control valve 74 that changes the flow rate of the hot water. is ejected properly. As a result, hot water is supplied to the lower surface of the substrate W. As shown in FIG.

下面ノズル71は、さらに、冷却流体の一例である冷水(室温よりも低温の純水)を下面ノズル71に案内する冷却流体配管76に接続されている。下面ノズル71に供給される純水は、冷却流体配管76に介装されたクーラー79によって冷却される。冷却流体配管76に介装された冷却流体バルブ77が開かれると、冷水の流量を変更する流量調整バルブ78の開度に対応する流量で、冷水が、下面ノズル71の吐出口から上方に連続的に吐出される。これにより、冷水が基板Wの下面に供給される。 The lower surface nozzle 71 is further connected to a cooling fluid pipe 76 that guides cold water (pure water having a temperature lower than room temperature), which is an example of a cooling fluid, to the lower surface nozzle 71 . Pure water supplied to the lower surface nozzle 71 is cooled by a cooler 79 interposed in the cooling fluid pipe 76 . When the cooling fluid valve 77 interposed in the cooling fluid pipe 76 is opened, the cold water flows continuously upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening degree of the flow control valve 78 that changes the flow rate of the cold water. is ejected properly. Cold water is thereby supplied to the lower surface of the substrate W. As shown in FIG.

下面ノズル71の外周面とスピンベース12の内周面は、上下に延びる筒状の下気体流路82を形成している。下気体流路82は、スピンベース12の上面12uの中央部で開口する下中央開口81を含む。下気体流路82は、不活性ガスをスピンベース12の下中央開口81に導く下気体配管83に接続されている。基板処理装置1は、スピンベース12の下中央開口81から吐出される不活性ガスを加熱または冷却する下温度調節器86を備えていてもよい。下気体配管83に介装された下気体バルブ84が開かれると、不活性ガスの流量を変更する流量調整バルブ85の開度に対応する流量で、不活性ガスが、スピンベース12の下中央開口81から上方に連続的に吐出される。 The outer peripheral surface of the lower surface nozzle 71 and the inner peripheral surface of the spin base 12 form a tubular lower gas flow path 82 extending vertically. The lower gas channel 82 includes a lower central opening 81 that opens at the central portion of the upper surface 12 u of the spin base 12 . The lower gas flow path 82 is connected to a lower gas pipe 83 that guides the inert gas to the lower central opening 81 of the spin base 12 . The substrate processing apparatus 1 may include a lower temperature controller 86 that heats or cools the inert gas discharged from the lower central opening 81 of the spin base 12 . When the lower gas valve 84 interposed in the lower gas pipe 83 is opened, the inert gas flows at the lower center of the spin base 12 at a flow rate corresponding to the opening of the flow control valve 85 that changes the flow rate of the inert gas. It is continuously discharged upward from the opening 81 .

スピンベース12の下中央開口81から吐出される不活性ガスは、窒素ガスである。スピンベース12の下中央開口81から吐出される不活性ガスは、ヘリウムガスやアルゴンガス等の窒素ガス以外のガスであってもよい。基板Wがスピンチャック10に保持されているときに、スピンベース12の下中央開口81が窒素ガスを吐出すると、窒素ガスは、基板Wの下面とスピンベース12の上面12uとの間をあらゆる方向に放射状に流れる。これにより、基板Wとスピンベース12との間の空間が窒素ガスで満たされる。 The inert gas discharged from the lower central opening 81 of the spin base 12 is nitrogen gas. The inert gas discharged from the lower central opening 81 of the spin base 12 may be gas other than nitrogen gas, such as helium gas or argon gas. When the lower central opening 81 of the spin base 12 discharges nitrogen gas while the substrate W is held on the spin chuck 10, the nitrogen gas flows between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in all directions. flow radially into Thereby, the space between the substrate W and the spin base 12 is filled with nitrogen gas.

次に、膜厚測定ユニット91について説明する。 Next, the film thickness measurement unit 91 will be described.

図3は、膜厚測定ユニット91、スピンチャック10および遮断部材51を水平に見た模式図である。図4は、膜厚測定ユニット91およびスピンチャック10を上から見た模式図である。図5は、発光素子92を収容するハウジング93の内部を示す断面図である。図6は、図5に示すVI-VI線に沿う断面を示す断面図である。 FIG. 3 is a schematic diagram of the film thickness measuring unit 91, the spin chuck 10 and the blocking member 51 viewed horizontally. FIG. 4 is a schematic diagram of the film thickness measurement unit 91 and the spin chuck 10 viewed from above. FIG. 5 is a cross-sectional view showing the inside of a housing 93 that accommodates the light emitting element 92. As shown in FIG. FIG. 6 is a cross-sectional view showing a cross section taken along line VI-VI shown in FIG.

図3および図4に示すように、基板処理装置1は、基板Wの上面にある液膜の厚み(膜厚)を測定する膜厚測定ユニット91を備えている。膜厚測定ユニット91は、たとえば分光干渉法により膜厚を測定する。膜厚測定ユニット91は、スピンチャック10に保持されている基板Wの上面に向けて光を発する発光素子92と、基板Wの上面で反射した発光素子92の光を受ける受光素子97とを含む。発光素子92および受光素子97は、平面視でスピンチャック10および遮断部材51に重ならない位置に配置されている。 As shown in FIGS. 3 and 4, the substrate processing apparatus 1 includes a film thickness measurement unit 91 for measuring the thickness (film thickness) of the liquid film on the upper surface of the substrate W. As shown in FIGS. The film thickness measurement unit 91 measures the film thickness by spectral interferometry, for example. The film thickness measurement unit 91 includes a light emitting element 92 that emits light toward the upper surface of the substrate W held by the spin chuck 10, and a light receiving element 97 that receives the light from the light emitting element 92 reflected by the upper surface of the substrate W. . The light-emitting element 92 and the light-receiving element 97 are arranged at positions that do not overlap the spin chuck 10 and the blocking member 51 in plan view.

発光素子92は、ハウジング93内に配置されている。受光素子97は、ハウジング98内に配置されている。発光素子92の光は、透明な板94で塞がれたハウジング93の開口部からハウジング93の外に放出される。基板Wの上面で反射した発光素子92の光は、透明な板99で塞がれたハウジング98の開口部を通過し、ハウジング98内の受光素子97に入射する。図3および図4中の黒い点Piは、発光素子92の光が基板Wの上面に入射する入射位置を示している。基板W上の液膜の厚みは、受光素子97に入射した光に基づいて算出される。 The light emitting element 92 is arranged inside the housing 93 . The light receiving element 97 is arranged inside the housing 98 . Light from the light emitting element 92 is emitted outside the housing 93 through an opening of the housing 93 closed with a transparent plate 94 . The light from the light emitting element 92 reflected by the upper surface of the substrate W passes through the opening of the housing 98 closed with the transparent plate 99 and enters the light receiving element 97 inside the housing 98 . A black point Pi in FIGS. 3 and 4 indicates an incident position where the light from the light emitting element 92 is incident on the upper surface of the substrate W. As shown in FIG. The thickness of the liquid film on the substrate W is calculated based on the light incident on the light receiving element 97 .

図5および図6に示すように、膜厚測定ユニット91は、ハウジング93内で発光素子92を保持するホルダー95と、ハウジング93に対してホルダー95を移動させる電動モータ96とを含む。ホルダー95および電動モータ96は、ハウジング93内に収容されている。電動モータ96のローターおよびステータは、モータハウジング96aに収容されており、電動モータ96の回転軸96bは、モータハウジング96aの端面から電動モータ96の軸方向に突出している。回転軸96bは、ホルダー95に連結されており、モータハウジング96aは、ハウジング93に連結されている。 As shown in FIGS. 5 and 6 , the film thickness measurement unit 91 includes a holder 95 that holds the light emitting element 92 within the housing 93 and an electric motor 96 that moves the holder 95 with respect to the housing 93 . The holder 95 and electric motor 96 are accommodated within the housing 93 . A rotor and a stator of the electric motor 96 are housed in a motor housing 96a, and a rotating shaft 96b of the electric motor 96 protrudes in the axial direction of the electric motor 96 from an end surface of the motor housing 96a. The rotating shaft 96 b is connected to the holder 95 and the motor housing 96 a is connected to the housing 93 .

電動モータ96の回転角は、コントローラ3によって制御される。電動モータ96が回転軸96bを回転させると、ホルダー95は、発光素子92と共に、ハウジング93に対して水平な回動軸線A2まわりに回動する。図5中の白色の矢印は、発光素子92が回動軸線A2まわりに回動することを表している。これにより、発光素子92の光が基板Wの上面に入射する入射位置が基板Wの上面内で移動すると共に、基板Wの上面に対する発光素子92の光の入射角が変化する。したがって、電動モータ96を回転させれば、基板Wの上面内の複数の位置に発光素子92の光を入射させることができ、基板Wの上面内の複数の位置で膜厚を測定することができる。 A rotation angle of the electric motor 96 is controlled by the controller 3 . When the electric motor 96 rotates the rotating shaft 96 b , the holder 95 rotates together with the light emitting element 92 around the horizontal rotation axis A 2 with respect to the housing 93 . A white arrow in FIG. 5 indicates that the light emitting element 92 rotates around the rotation axis A2. As a result, the incident position where the light from the light emitting element 92 is incident on the upper surface of the substrate W moves within the upper surface of the substrate W, and the incident angle of the light from the light emitting element 92 with respect to the upper surface of the substrate W changes. Therefore, by rotating the electric motor 96, the light from the light emitting element 92 can be incident on a plurality of positions within the upper surface of the substrate W, and the film thickness can be measured at a plurality of positions within the upper surface of the substrate W. can.

入射位置および入射角が変化すると、基板Wの上面で反射した発光素子92の光を表す反射光が通る経路も変化する。受光素子97は、反射光の経路が変化しても反射光を受けられるように移動可能であってもよい。たとえば、発光素子92と同様に、ハウジング98に対して受光素子97を移動させる電動モータが設けられていてもよい。もしくは、1つの発光素子92に対応する複数の受光素子97が設けられていてもよい。これらの場合、入射位置および入射角が変化しても、反射光が受光素子97に受けられ、基板W上の液膜の厚みが測定される。 When the incident position and incident angle change, the path along which the reflected light representing the light from the light emitting element 92 reflected on the upper surface of the substrate W also changes. The light receiving element 97 may be movable so as to receive the reflected light even if the path of the reflected light changes. For example, an electric motor may be provided to move the light receiving element 97 with respect to the housing 98 as well as the light emitting element 92 . Alternatively, a plurality of light receiving elements 97 corresponding to one light emitting element 92 may be provided. In these cases, the reflected light is received by the light receiving element 97 and the thickness of the liquid film on the substrate W is measured even if the incident position and incident angle are changed.

基板W上の液膜の厚みを測定するとき、コントローラ3は、スピンチャック10に基板Wを回転させながら、回転軸線A1からの水平方向の距離が一定の位置に入射位置を位置させてもよいし、入射位置を基板Wの径方向(回転軸線A1に直交する水平方向)に移動させてもよい。後者の場合は、複数の測定値の平均を膜厚として扱ってもよい。 When measuring the thickness of the liquid film on the substrate W, the controller 3 may position the incident position at a constant horizontal distance from the rotation axis A1 while rotating the substrate W on the spin chuck 10. Alternatively, the incident position may be moved in the radial direction of the substrate W (horizontal direction orthogonal to the rotation axis A1). In the latter case, the average of multiple measured values may be treated as the film thickness.

次に、乾燥前処理液供給装置101について説明する。図7は、基板処理装置1に備えられた乾燥前処理液供給装置101を示す模式図である。 Next, the pre-drying treatment liquid supply device 101 will be described. FIG. 7 is a schematic diagram showing a pre-drying treatment liquid supply device 101 provided in the substrate processing apparatus 1. As shown in FIG.

基板処理装置1は、乾燥前処理液配管40を介して乾燥前処理液ノズル39に乾燥前処理液を供給する乾燥前処理液供給装置101を備えている。乾燥前処理液供給装置101は、乾燥前処理液の原液を貯留する原液タンクに相当する第1タンク102Aと、乾燥前処理液の溶媒を貯留する溶媒タンクに相当する第2タンク102Bとを含む。 The substrate processing apparatus 1 includes a pre-drying treatment liquid supply device 101 that supplies the pre-drying treatment liquid to the pre-drying treatment liquid nozzles 39 through a pre-drying treatment liquid pipe 40 . The pre-drying treatment liquid supply device 101 includes a first tank 102A corresponding to a stock solution tank storing the undiluted solution of the pre-drying treatment liquid, and a second tank 102B corresponding to a solvent tank storing the solvent of the pre-drying treatment liquid. .

乾燥前処理液の原液は、昇華性物質と溶媒とを含む。乾燥前処理液の原液は、基板Wに供給される乾燥前処理液よりも昇華性物質の濃度が高い。乾燥前処理液の原液は、第2タンク102Bから供給される溶媒で希釈された後、基板Wに供給される。昇華性物質が室温で液体である場合、乾燥前処理液の原液は、溶媒を含んでいなくてもよい。 The undiluted solution of the pre-drying treatment liquid contains a sublimable substance and a solvent. The undiluted solution of the pre-drying treatment liquid has a higher concentration of the sublimable substance than the pre-drying treatment liquid supplied to the substrate W. The undiluted solution of the pre-drying treatment liquid is supplied to the substrate W after being diluted with the solvent supplied from the second tank 102B. When the sublimable substance is liquid at room temperature, the stock solution of the pre-drying treatment liquid may not contain a solvent.

乾燥前処理液供給装置101は、第1タンク102A内の原液を循環させる第1循環配管103Aと、第1タンク102A内の原液を第1循環配管103Aに送る第1ポンプ104Aと、第1循環配管103A内の原液を乾燥前処理液配管40に案内する第1個別配管105Aとを含む。乾燥前処理液供給装置101は、第1個別配管105Aの内部を開閉する第1開閉バルブ106Aと、第1個別配管105Aから乾燥前処理液配管40に供給される乾燥前処理液の流量を変更する第1流量調整バルブ107Aとをさらに含む。 The pre-drying treatment liquid supply device 101 includes a first circulation pipe 103A for circulating the stock solution in the first tank 102A, a first pump 104A for sending the stock solution in the first tank 102A to the first circulation pipe 103A, a first circulation and a first individual pipe 105A that guides the undiluted solution in the pipe 103A to the drying pretreatment liquid pipe 40. The pre-drying treatment liquid supply device 101 changes the flow rate of the pre-drying treatment liquid supplied from the first individual piping 105A to the pre-drying treatment liquid piping 40, and the first on-off valve 106A that opens and closes the inside of the first individual piping 105A. It further includes a first flow control valve 107A.

同様に、乾燥前処理液供給装置101は、第2タンク102B内の溶媒を循環させる第2循環配管103Bと、第2タンク102B内の溶媒を第2循環配管103Bに送る第2ポンプ104Bと、第2循環配管103B内の溶媒を乾燥前処理液配管40に案内する第2個別配管105Bとを含む。乾燥前処理液供給装置101は、第2個別配管105Bの内部を開閉する第2開閉バルブ106Bと、第2個別配管105Bから乾燥前処理液配管40に供給される乾燥前処理液の流量を変更する第2流量調整バルブ107Bとをさらに含む。 Similarly, the pre-drying treatment liquid supply device 101 includes a second circulation pipe 103B that circulates the solvent in the second tank 102B, a second pump 104B that sends the solvent in the second tank 102B to the second circulation pipe 103B, and a second individual pipe 105B that guides the solvent in the second circulation pipe 103B to the drying pretreatment liquid pipe 40 . The pre-drying treatment liquid supply device 101 changes the flow rate of the pre-drying treatment liquid supplied from the second individual piping 105B to the pre-drying treatment liquid piping 40, and the second on-off valve 106B that opens and closes the inside of the second individual piping 105B. and a second flow control valve 107B.

第1個別配管105Aおよび第2個別配管105Bは、乾燥前処理液の原液と溶媒とを混合することにより乾燥前処理液を生成するミキシングバルブ108を介して乾燥前処理液配管40に接続されている。乾燥前処理液配管40には、乾燥前処理液バルブ41だけでなく、インラインミキサー109が介装されている。インラインミキサー109は、ミキシングバルブ108によって生成された乾燥前処理液をさらに混合する。これにより、昇華性物質と溶媒とが均一に混ざり合った乾燥前処理液が、乾燥前処理液ノズル39に供給される。 The first individual pipe 105A and the second individual pipe 105B are connected to the pre-drying treatment liquid pipe 40 via a mixing valve 108 that generates the pre-drying treatment liquid by mixing the undiluted solution of the pre-drying treatment liquid and the solvent. there is The pre-drying treatment liquid pipe 40 is provided not only with the pre-drying treatment liquid valve 41 but also with an in-line mixer 109 . In-line mixer 109 further mixes the dry pretreatment liquid produced by mixing valve 108 . As a result, the pre-drying treatment liquid in which the sublimable substance and the solvent are uniformly mixed is supplied to the pre-drying treatment liquid nozzle 39 .

第1タンク102Aから供給された乾燥前処理液の原液は、第1流量調整バルブ107Aの開度に対応する流量でミキシングバルブ108に供給される。第2タンク102Bから供給された溶媒は、第2流量調整バルブ107Bの開度に対応する流量でミキシングバルブ108に供給される。したがって、第1流量調整バルブ107Aおよび第2流量調整バルブ107Bの開度を変更することで、乾燥前処理液ノズル39に供給される乾燥前処理液における昇華性物質の濃度を変更できる。 The undiluted solution of the pre-drying treatment liquid supplied from the first tank 102A is supplied to the mixing valve 108 at a flow rate corresponding to the opening degree of the first flow rate control valve 107A. The solvent supplied from the second tank 102B is supplied to the mixing valve 108 at a flow rate corresponding to the degree of opening of the second flow control valve 107B. Therefore, by changing the opening degrees of the first flow rate control valve 107A and the second flow rate control valve 107B, the concentration of the sublimable substance in the pre-drying treatment liquid supplied to the pre-drying treatment liquid nozzle 39 can be changed.

乾燥前処理液供給装置101は、乾燥前処理液ノズル39に供給される乾燥前処理液の濃度を測定する濃度計110を備えている。乾燥前処理液供給装置101は、乾燥前処理液配管40から分岐した測定配管111を備えている。濃度計110は、測定配管111に介装されている。図7は、測定配管111が、インラインミキサー109の下流の位置で乾燥前処理液配管40に接続されている例を示している。したがって、この例では、ミキシングバルブ108およびインラインミキサー109の両方を通過した乾燥前処理液の濃度が濃度計110によって測定される。濃度計110は、測定配管111ではなく、乾燥前処理液バルブ41とインラインミキサー109との間で乾燥前処理液配管40に介装されていてもよい。 The pre-drying treatment liquid supply device 101 includes a densitometer 110 for measuring the concentration of the pre-drying treatment liquid supplied to the pre-drying treatment liquid nozzle 39 . The pre-drying treatment liquid supply device 101 includes a measurement pipe 111 branched from the pre-drying treatment liquid pipe 40 . A densitometer 110 is interposed in a measurement pipe 111 . FIG. 7 shows an example in which the measurement pipe 111 is connected to the drying pretreatment liquid pipe 40 at a position downstream of the in-line mixer 109 . Therefore, in this example, the concentration of the dry pretreatment liquid that has passed through both the mixing valve 108 and the in-line mixer 109 is measured by the densitometer 110 . The concentration meter 110 may be interposed in the pre-drying treatment liquid pipe 40 between the pre-drying treatment liquid valve 41 and the in-line mixer 109 instead of the measurement pipe 111 .

図8は、コントローラ3のハードウェアを示すブロック図である。 FIG. 8 is a block diagram showing the hardware of the controller 3. As shown in FIG.

コントローラ3は、コンピュータ本体3aと、コンピュータ本体3aに接続された周辺装置3dとを含む、コンピュータである。コンピュータ本体3aは、各種の命令を実行するCPU3b(central processing unit:中央処理装置)と、情報を記憶する主記憶装置3cとを含む。周辺装置3dは、プログラムP等の情報を記憶する補助記憶装置3eと、リムーバブルメディアRMから情報を読み取る読取装置3fと、ホストコンピュータ等の他の装置と通信する通信装置3gとを含む。 The controller 3 is a computer including a computer main body 3a and peripheral devices 3d connected to the computer main body 3a. The computer body 3a includes a CPU 3b (central processing unit) that executes various commands, and a main storage device 3c that stores information. The peripheral device 3d includes an auxiliary storage device 3e that stores information such as the program P, a reading device 3f that reads information from the removable medium RM, and a communication device 3g that communicates with other devices such as a host computer.

コントローラ3は、入力装置100A、表示装置100B、および警報装置100Cに接続されている。入力装置100Aは、ユーザーやメンテナンス担当者などの操作者が基板処理装置1に情報を入力するときに操作される。情報は、表示装置100Bの画面に表示される。入力装置100Aは、キーボード、ポインティングデバイス、およびタッチパネルのいずれかであってもよいし、これら以外の装置であってもよい。入力装置100Aおよび表示装置100Bを兼ねるタッチパネルディスプレイが基板処理装置1に設けられていてもよい。警報装置100Cは、光、音、文字、および図形のうちの1つ以上を用いて警報を発する。入力装置100Aがタッチパネルディスプレイの場合、入力装置100Aが、警報装置100Cを兼ねていてもよい。 The controller 3 is connected to the input device 100A, display device 100B, and alarm device 100C. The input device 100</b>A is operated when an operator such as a user or a person in charge of maintenance inputs information to the substrate processing apparatus 1 . Information is displayed on the screen of the display device 100B. The input device 100A may be one of a keyboard, pointing device, and touch panel, or may be a device other than these. The substrate processing apparatus 1 may be provided with a touch panel display that serves as both the input device 100A and the display device 100B. The alarm device 100C issues an alarm using one or more of light, sound, characters, and graphics. When the input device 100A is a touch panel display, the input device 100A may also serve as the alarm device 100C.

CPU3bは、補助記憶装置3eに記憶されたプログラムPを実行する。補助記憶装置3e内のプログラムPは、コントローラ3に予めインストールされたものであってもよいし、読取装置3fを通じてリムーバブルメディアRMから補助記憶装置3eに送られたものであってもよいし、ホストコンピュータなどの外部装置から通信装置3gを通じて補助記憶装置3eに送られたものであってもよい。 The CPU 3b executes the program P stored in the auxiliary storage device 3e. The program P in the auxiliary storage device 3e may be pre-installed in the controller 3, may be sent from the removable medium RM to the auxiliary storage device 3e through the reading device 3f, or may be stored in the host computer. It may be sent from an external device such as a computer to the auxiliary storage device 3e through the communication device 3g.

補助記憶装置3eおよびリムーバブルメディアRMは、電力が供給されていなくても記憶を保持する不揮発性メモリーである。補助記憶装置3eは、たとえば、ハードディスクドライブ等の磁気記憶装置である。リムーバブルメディアRMは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。リムーバブルメディアRMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の一例である。リムーバブルメディアRMは、一時的ではない有形の記録媒体である。 The auxiliary storage device 3e and removable media RM are non-volatile memories that retain data even when power is not supplied. The auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive. The removable medium RM is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card. The removable medium RM is an example of a computer-readable recording medium on which the program P is recorded. The removable medium RM is a tangible recording medium that is not temporary.

補助記憶装置3eは、複数のレシピを記憶している。レシピは、基板Wの処理内容、処理条件、および処理手順を規定する情報である。複数のレシピは、基板Wの処理内容、処理条件、および処理手順の少なくとも一つにおいて互いに異なる。コントローラ3は、ホストコンピュータによって指定されたレシピにしたがって基板Wが処理されるように基板処理装置1を制御する。以下の各工程は、コントローラ3が基板処理装置1を制御することにより実行される。言い換えると、コントローラ3は、以下の各工程を実行するようにプログラムされている。 The auxiliary storage device 3e stores a plurality of recipes. The recipe is information that defines the processing content, processing conditions, and processing procedure of the substrate W. FIG. The plurality of recipes differ from each other in at least one of the processing content of the substrate W, the processing conditions, and the processing procedure. The controller 3 controls the substrate processing apparatus 1 so that the substrate W is processed according to the recipe specified by the host computer. Each of the following steps is executed by the controller 3 controlling the substrate processing apparatus 1 . In other words, controller 3 is programmed to perform the following steps.

次に、基板処理の一例について説明する。 Next, an example of substrate processing will be described.

処理される基板Wは、たとえば、シリコンウエハなどの半導体ウエハである。基板Wの表面は、トランジスタやキャパシタ等のデバイスが形成されるデバイス形成面に相当する。基板Wは、デバイス形成面である基板Wの表面にパターンPA(図10A参照)が形成された基板Wであってもよいし、基板Wの表面にパターンPAが形成されていない基板Wであってもよい。後者の場合、後述する薬液供給工程でパターンPAが形成されてもよい。 The substrate W to be processed is, for example, a semiconductor wafer such as a silicon wafer. The surface of the substrate W corresponds to a device forming surface on which devices such as transistors and capacitors are formed. The substrate W may be the substrate W having the pattern PA (see FIG. 10A) formed on the surface of the substrate W, which is the device formation surface, or the substrate W having no pattern PA formed on the surface of the substrate W. may In the latter case, the pattern PA may be formed in the chemical solution supply step, which will be described later.

最初に、乾燥前処理液が樟脳およびIPAの溶液であるときの基板処理の一例(第1基板処理例)について説明する。 First, an example of substrate treatment (first substrate treatment example) in which the pre-drying treatment liquid is a solution of camphor and IPA will be described.

図9は、基板処理装置1によって行われる基板処理について説明するための工程図である。図10A~図10Fは、樟脳およびIPAの溶液を用いたときの基板Wの状態を示す模式図である。図11は、樟脳およびIPAの平衡状態図である。図11中のRTは、室温を意味している。以下では、図2および図9を参照する。図10A~図10Fおよび図11については適宜参照する。 FIG. 9 is a process chart for explaining substrate processing performed by the substrate processing apparatus 1. FIG. 10A to 10F are schematic diagrams showing the state of the substrate W when a solution of camphor and IPA is used. FIG. 11 is an equilibrium diagram of camphor and IPA. RT in FIG. 11 means room temperature. In the following, reference is made to FIGS. 2 and 9. FIG. 10A-10F and FIG. 11 will be referred to accordingly.

基板処理装置1によって基板Wを処理するときは、チャンバー4内に基板Wを搬入する搬入工程(図9のステップS1)が行われる。 When the substrate processing apparatus 1 processes the substrate W, a loading step (step S1 in FIG. 9) of loading the substrate W into the chamber 4 is performed.

具体的には、遮断部材51が上位置に位置しており、全てのガード24が下位置に位置しており、全てのスキャンノズルが待機位置に位置している状態で、センターロボットCR(図1参照)が、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4内に進入させる。そして、センターロボットCRは、基板Wの表面が上に向けられた状態でハンドH1上の基板Wを複数のチャックピン11の上に置く。その後、複数のチャックピン11が基板Wの外周面に押し付けられ、基板Wが把持される。これにより、スピンチャック10によって基板Wが保持される(基板保持工程)。基板保持工程は、後述する昇華工程(図9のステップS10)が終了するまで継続される。センターロボットCRは、基板Wをスピンチャック10の上に置いた後、ハンドH1をチャンバー4の内部から退避させる。 Specifically, the center robot CR (Fig. 1) moves the hand H1 into the chamber 4 while supporting the substrate W with the hand H1. Then, the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward. After that, a plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped. Thereby, the substrate W is held by the spin chuck 10 (substrate holding step). The substrate holding process is continued until the sublimation process (step S10 in FIG. 9), which will be described later, ends. After placing the substrate W on the spin chuck 10 , the center robot CR withdraws the hand H<b>1 from the interior of the chamber 4 .

次に、上気体バルブ64および下気体バルブ84が開かれ、遮断部材51の上中央開口61およびスピンベース12の下中央開口81が窒素ガスの吐出を開始する。これにより、基板Wと遮断部材51との間の空間が窒素ガスで満たされる。同様に、基板Wとスピンベース12との間の空間とが窒素ガスで満たされる。その一方で、ガード昇降ユニット27が少なくとも一つのガード24を下位置から上位置に上昇させる。その後、スピンモータ14が駆動され、所定の液体供給速度での基板Wの回転が開始される(基板回転工程)。基板回転工程は、後述する昇華工程(図9のステップS10)が終了するまで継続される。 Next, the upper gas valve 64 and the lower gas valve 84 are opened, and the upper central opening 61 of the blocking member 51 and the lower central opening 81 of the spin base 12 start discharging nitrogen gas. Thereby, the space between the substrate W and the blocking member 51 is filled with nitrogen gas. Similarly, the space between the substrate W and the spin base 12 is filled with nitrogen gas. Meanwhile, the guard lifting unit 27 lifts at least one guard 24 from the lower position to the upper position. Thereafter, the spin motor 14 is driven to start rotating the substrate W at a predetermined liquid supply speed (substrate rotating step). The substrate rotation process is continued until the sublimation process (step S10 in FIG. 9), which will be described later, ends.

次に、薬液を基板Wの上面に供給し、基板Wの上面全域を覆う薬液の液膜を形成する薬液供給工程(図9のステップS2)が行われる。 Next, a chemical liquid supply step (step S2 in FIG. 9) is performed for supplying the chemical liquid to the upper surface of the substrate W to form a liquid film of the chemical liquid covering the entire upper surface of the substrate W. FIG.

具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット34が薬液ノズル31を待機位置から処理位置に移動させる。その後、薬液バルブ33が開かれ、薬液ノズル31が薬液の吐出を開始する(薬液供給工程、薬液吐出工程)。薬液バルブ33が開かれてから所定時間が経過すると、薬液バルブ33が閉じられ、薬液の吐出が停止される。その後、ノズル移動ユニット34が、薬液ノズル31を待機位置に移動させる。 Specifically, the nozzle moving unit 34 moves the chemical liquid nozzle 31 from the standby position to the processing position in a state where the blocking member 51 is positioned at the upper position and at least one guard 24 is positioned at the upper position. . After that, the chemical liquid valve 33 is opened, and the chemical liquid nozzle 31 starts discharging the chemical liquid (chemical liquid supply process, chemical liquid discharging process). After a predetermined period of time has passed since the chemical valve 33 was opened, the chemical valve 33 is closed and the discharge of the chemical is stopped. After that, the nozzle moving unit 34 moves the liquid medicine nozzle 31 to the standby position.

薬液ノズル31から吐出された薬液は、所定の薬液体供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、薬液が基板Wの上面全域に供給され、基板Wの上面全域を覆う薬液の液膜が形成される。薬液ノズル31が薬液を吐出しているとき、ノズル移動ユニット34は、基板Wの上面に対する薬液の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。 The chemical liquid discharged from the chemical liquid nozzle 31 collides with the upper surface of the substrate W rotating at a predetermined chemical liquid supply speed, and then flows outward along the upper surface of the substrate W due to centrifugal force. Therefore, the chemical solution is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical solution covering the entire upper surface of the substrate W is formed. When the chemical liquid nozzle 31 is discharging the chemical liquid, the nozzle moving unit 34 may move the liquid landing position of the chemical liquid on the upper surface of the substrate W so that the liquid landing position passes through the central portion and the outer peripheral portion, The liquid landing position may be stationary at the central portion.

次に、リンス液の一例である純水を基板Wの上面に供給して、基板W上の薬液を洗い流すリンス工程(図9のステップS3)が行われる。 Next, a rinse step (step S3 in FIG. 9) is performed in which pure water, which is an example of a rinse liquid, is supplied to the upper surface of the substrate W to wash away the chemical liquid on the substrate W. FIG.

具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット38がリンス液ノズル35を待機位置から処理位置に移動させる。その後、リンス液バルブ37が開かれ、リンス液ノズル35がリンス液の吐出を開始する(リンス液供給工程、リンス液吐出工程)。純水の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。リンス液バルブ37が開かれてから所定時間が経過すると、リンス液バルブ37が閉じられ、リンス液の吐出が停止される。その後、ノズル移動ユニット38が、リンス液ノズル35を待機位置に移動させる。 Specifically, the nozzle moving unit 38 moves the rinse liquid nozzle 35 from the standby position to the processing position in a state where the blocking member 51 is positioned at the upper position and at least one guard 24 is positioned at the upper position. Let After that, the rinse liquid valve 37 is opened, and the rinse liquid nozzle 35 starts discharging the rinse liquid (rinse liquid supply process, rinse liquid discharge process). The guard elevating unit 27 may vertically move at least one guard 24 to switch the guard 24 that receives the liquid discharged from the substrate W before the pure water discharge is started. After a predetermined period of time has passed since the rinse liquid valve 37 was opened, the rinse liquid valve 37 is closed and the discharge of the rinse liquid is stopped. After that, the nozzle moving unit 38 moves the rinse liquid nozzle 35 to the standby position.

リンス液ノズル35から吐出された純水は、所定のリンス液供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の薬液は、リンス液ノズル35から吐出された純水に置換される。これにより、基板Wの上面全域を覆う純水の液膜が形成される。リンス液ノズル35が純水を吐出しているとき、ノズル移動ユニット38は、基板Wの上面に対する純水の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。 The pure water discharged from the rinse liquid nozzle 35 collides with the upper surface of the substrate W rotating at a predetermined rinse liquid supply speed, and then flows outward along the upper surface of the substrate W due to centrifugal force. The chemical liquid on the substrate W is replaced with pure water discharged from the rinse liquid nozzle 35 . As a result, a pure water liquid film covering the entire upper surface of the substrate W is formed. While the rinse liquid nozzle 35 is discharging pure water, the nozzle moving unit 38 moves the pure water landing position on the upper surface of the substrate W so that the pure water landing position passes through the central portion and the outer peripheral portion. Alternatively, the liquid landing position may be stationary at the central portion.

次に、リンス液および乾燥前処理液の両方と溶け合う置換液を基板Wの上面に供給し、基板W上の純水を置換液に置換する置換処理工程(図9のステップS4)が行われる。 Next, a replacement treatment step (step S4 in FIG. 9) is performed in which a replacement liquid that dissolves with both the rinsing liquid and the pre-drying treatment liquid is supplied to the upper surface of the substrate W to replace the pure water on the substrate W with the replacement liquid. .

具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット46が置換液ノズル43を待機位置から処理位置に移動させる。その後、置換液バルブ45が開かれ、置換液ノズル43が置換液の吐出を開始する(置換液供給工程、置換液吐出工程)。置換液の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。置換液バルブ45が開かれてから所定時間が経過すると、置換液バルブ45が閉じられ、置換液の吐出が停止される。その後、ノズル移動ユニット46が、置換液ノズル43を待機位置に移動させる。 Specifically, the nozzle moving unit 46 moves the replacement liquid nozzle 43 from the waiting position to the processing position while the blocking member 51 is positioned at the upper position and at least one guard 24 is positioned at the upper position. Let After that, the substitution liquid valve 45 is opened, and the substitution liquid nozzle 43 starts discharging the substitution liquid (substitution liquid supply process, substitution liquid discharge process). The guard elevating unit 27 may vertically move at least one guard 24 in order to switch the guard 24 that receives the liquid discharged from the substrate W before the discharge of the replacement liquid is started. After a predetermined period of time has passed since the substitution liquid valve 45 was opened, the substitution liquid valve 45 is closed and the discharge of the substitution liquid is stopped. After that, the nozzle moving unit 46 moves the replacement liquid nozzle 43 to the standby position.

置換液ノズル43から吐出された置換液は、所定の置換液供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の純水は、置換液ノズル43から吐出された置換液に置換される。これにより、基板Wの上面全域を覆う置換液の液膜が形成される。置換液ノズル43が置換液を吐出しているとき、ノズル移動ユニット46は、基板Wの上面に対する置換液の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。また、基板Wの上面全域を覆う置換液の液膜が形成された後、置換液ノズル43に置換液の吐出を停止させながら、基板Wをパドル速度(たとえば、0を超える20rpm以下の速度)で回転させてもよい。 The replacement liquid discharged from the replacement liquid nozzle 43 collides with the upper surface of the substrate W rotating at a predetermined replacement liquid supply speed, and then flows outward along the upper surface of the substrate W due to centrifugal force. The pure water on the substrate W is replaced with the replacement liquid discharged from the replacement liquid nozzle 43 . As a result, a liquid film of the replacement liquid covering the entire upper surface of the substrate W is formed. When the substituting liquid nozzle 43 is discharging the substituting liquid, the nozzle moving unit 46 moves the substituting liquid landing position on the upper surface of the substrate W so that the substituting liquid landing position passes through the central portion and the outer peripheral portion. Alternatively, the liquid landing position may be stationary at the central portion. Further, after the liquid film of the replacement liquid covering the entire upper surface of the substrate W is formed, the substrate W is moved at a paddle speed (for example, a speed exceeding 0 and 20 rpm or less) while stopping the ejection of the replacement liquid from the replacement liquid nozzle 43 . You can also rotate with .

次に、乾燥前処理液を基板Wの上面に供給して、乾燥前処理液の液膜を基板W上に形成する乾燥前処理液供給工程(図9のステップS5)が行われる。 Next, a pre-drying treatment liquid supply step (step S5 in FIG. 9) is performed to supply the pre-drying treatment liquid to the upper surface of the substrate W to form a liquid film of the pre-drying treatment liquid on the substrate W. FIG.

具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット42が乾燥前処理液ノズル39を待機位置から処理位置に移動させる。その後、乾燥前処理液バルブ41が開かれ、乾燥前処理液ノズル39が乾燥前処理液の吐出を開始する(乾燥前処理液供給工程、乾燥前処理液吐出工程)。乾燥前処理液の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。乾燥前処理液バルブ41が開かれてから所定時間が経過すると、乾燥前処理液バルブ41が閉じられ、乾燥前処理液の吐出が停止される。その後、ノズル移動ユニット42が、乾燥前処理液ノズル39を待機位置に移動させる。 Specifically, the blocking member 51 is positioned at the upper position and at least one guard 24 is positioned at the upper position, and the nozzle moving unit 42 moves the pre-drying treatment liquid nozzle 39 from the waiting position to the processing position. move to After that, the pre-drying treatment liquid valve 41 is opened, and the pre-drying treatment liquid nozzle 39 starts discharging the pre-drying treatment liquid (pre-drying treatment liquid supplying step, pre-drying treatment liquid discharging step). The guard elevating unit 27 may vertically move at least one guard 24 in order to switch the guard 24 that receives the liquid discharged from the substrate W before the discharge of the pre-drying treatment liquid is started. When a predetermined time has passed since the pre-drying treatment liquid valve 41 was opened, the pre-drying treatment liquid valve 41 is closed, and the discharge of the pre-drying treatment liquid is stopped. After that, the nozzle moving unit 42 moves the pre-drying treatment liquid nozzle 39 to the standby position.

乾燥前処理液ノズル39から吐出された乾燥前処理液は、所定の乾燥前処理液供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。乾燥前処理液供給速度は、たとえば、500rpmである。基板W上の置換液は、乾燥前処理液ノズル39から吐出された乾燥前処理液に置換される。これにより、基板Wの上面全域を覆う乾燥前処理液の液膜(乾燥前処理液膜120)が形成される(乾燥前処理液膜形成工程)。このように、乾燥前処理液ノズル39は、基板Wの上面に乾燥前処理液膜120が形成されるように基板Wの上面に乾燥前処理液を供給する乾燥前処理液供給ユニットの一例である。 After the pre-drying treatment liquid discharged from the pre-drying treatment liquid nozzle 39 collides with the upper surface of the substrate W rotating at a predetermined pre-drying treatment liquid supply speed, it is pushed outward along the upper surface of the substrate W by centrifugal force. flow to The drying pretreatment liquid supply speed is, for example, 500 rpm. The replacement liquid on the substrate W is replaced with the pre-drying treatment liquid discharged from the pre-drying treatment liquid nozzle 39 . As a result, a liquid film of the pre-drying treatment liquid (pre-drying treatment liquid film 120) covering the entire upper surface of the substrate W is formed (pre-drying treatment liquid film forming step). Thus, the pre-drying treatment liquid nozzle 39 is an example of a pre-drying treatment liquid supply unit that supplies the pre-drying treatment liquid onto the upper surface of the substrate W so that the pre-drying treatment liquid film 120 is formed on the upper surface of the substrate W. be.

乾燥前処理液ノズル39が乾燥前処理液を吐出しているとき、ノズル移動ユニット42は、基板Wの上面に対する乾燥前処理液の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。 When the pre-drying treatment liquid nozzle 39 is discharging the pre-drying treatment liquid, the nozzle moving unit 42 lands the pre-drying treatment liquid on the upper surface of the substrate W so that the position where the pre-drying treatment liquid lands passes through the central portion and the outer peripheral portion. The position may be moved, or the liquid landing position may be stationary at the central portion.

次に、基板Wの上面全域が乾燥前処理液の液膜で覆われた状態を維持しながら、基板W上の乾燥前処理液膜120の厚み(膜厚)を減少させる膜厚減少工程(図9のステップS6)が行われる。 Next, a film thickness reduction step of reducing the thickness (film thickness) of the pre-drying treatment liquid film 120 on the substrate W while maintaining the state where the entire upper surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid ( Step S6) in FIG. 9 is performed.

具体的には、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に移動させる。そして、遮断部材51が下位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、スピンモータ14が基板Wの回転速度を膜厚減少回転速度に維持する。膜厚減少回転速度は、乾燥前処理液供給速度と等しくてもよいし、異なっていてもよい。基板W上の乾燥前処理液は、乾燥前処理液の吐出が停止された後も、遠心力によって基板Wから外方に排出される。そのため、基板W上の乾燥前処理液膜120の厚みが減少する。基板W上の乾燥前処理液がある程度排出されると、単位時間当たりの基板Wからの乾燥前処理液の排出量が零または概ね零に減少する。これにより、基板W上の乾燥前処理液膜120の厚みが基板Wの回転速度に応じた値で安定する。 Specifically, the blocking member elevating unit 54 moves the blocking member 51 from the upper position to the lower position. The spin motor 14 maintains the rotation speed of the substrate W at the film thickness reduction rotation speed in a state where the blocking member 51 is positioned at the lower position and at least one guard 24 is positioned at the upper position. The film thickness reduction rotation speed may be equal to or different from the pre-drying treatment liquid supply speed. The pre-drying treatment liquid on the substrate W is discharged outward from the substrate W by centrifugal force even after the ejection of the pre-drying treatment liquid is stopped. Therefore, the thickness of the pre-drying treatment liquid film 120 on the substrate W is reduced. When the pre-drying treatment liquid on the substrate W is discharged to some extent, the amount of the pre-drying treatment liquid discharged from the substrate W per unit time is reduced to zero or substantially zero. As a result, the thickness of the pre-drying treatment liquid film 120 on the substrate W is stabilized at a value corresponding to the substrate W rotation speed.

膜厚減少工程(図9のステップS6)で乾燥前処理液膜120の厚みを減少させた後、昇華性物質の固体121(図10B参照)を基板W上の乾燥前処理液中に析出させる第1析出工程(析出工程)(図9のステップS7)が行われる。 After the thickness of the pre-drying treatment liquid film 120 is reduced in the film thickness reduction step (step S6 in FIG. 9), a sublimable solid 121 (see FIG. 10B) is precipitated in the pre-drying treatment liquid on the substrate W. A first deposition step (precipitation step) (step S7 in FIG. 9) is performed.

具体的には、遮断部材51が下位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、スピンモータ14が基板Wの回転速度を所定の第1析出速度に維持する。第1析出速度は、乾燥前処理液供給速度と等しくてもよいし、異なっていてもよい。第1析出速度は、たとえば、500rpmである。溶媒の蒸気圧が昇華性物質の蒸気圧よりも高いので、基板Wが第1析出速度で回転している間、溶媒は、昇華性物質の蒸発速度よりも大きい蒸発速度で乾燥前処理液の表面から蒸発する。図10Aは、乾燥前処理液の表面から溶媒が蒸発している状態を示している。 Specifically, in a state in which the blocking member 51 is positioned at the lower position and at least one guard 24 is positioned at the upper position, the spin motor 14 rotates the substrate W to a predetermined first deposition speed. maintain. The first deposition rate may be equal to or different from the drying pretreatment liquid supply rate. The first deposition speed is, for example, 500 rpm. Since the vapor pressure of the solvent is higher than the vapor pressure of the sublimation substance, while the substrate W is rotating at the first deposition speed, the solvent evaporates from the pre-drying treatment liquid at an evaporation speed higher than that of the sublimation substance. Evaporate from the surface. FIG. 10A shows a state in which the solvent evaporates from the surface of the pre-drying treatment liquid.

溶媒の蒸発が続くと、乾燥前処理液膜120の厚みが徐々に減少しながら、乾燥前処理液膜120の表面およびその近傍における昇華性物質の濃度が徐々に高まる。乾燥前処理液膜120からの溶媒の蒸発は、たとえば、基板W上の乾燥前処理液膜120を強制的に加熱せずに行われる。したがって、基板W上の乾燥前処理液膜120が室温か室温よりも少し低い温度に維持されたまま、乾燥前処理液から溶媒が蒸発する。乾燥前処理液膜120の表面およびその近傍における昇華性物質の濃度が、乾燥前処理液における昇華性物質の飽和濃度に達すると、図10Bに示すように、昇華性物質の固体121が乾燥前処理液膜120の表面に析出する(室温析出工程、液面析出工程)。第1析出工程において、スピンモータ14は、昇華性物質の固体121が析出するように、乾燥前処理液膜120から溶媒を蒸発させる溶媒蒸発ユニットとして機能する。 As the solvent continues to evaporate, the thickness of the pre-drying treatment liquid film 120 gradually decreases, and the concentration of the sublimable substance on the surface of the pre-drying treatment liquid film 120 and its vicinity gradually increases. Evaporation of the solvent from the pre-drying treatment liquid film 120 is performed without forcibly heating the pre-drying treatment liquid film 120 on the substrate W, for example. Therefore, the solvent evaporates from the pre-drying treatment liquid while the pre-drying treatment liquid film 120 on the substrate W is maintained at room temperature or slightly lower than room temperature. When the concentration of the sublimable substance on and near the surface of the pre-drying treatment liquid film 120 reaches the saturation concentration of the sublimable substance in the pre-drying treatment liquid, as shown in FIG. Deposits on the surface of the treatment liquid film 120 (room temperature deposition process, liquid surface deposition process). In the first deposition step, the spin motor 14 functions as a solvent evaporation unit that evaporates the solvent from the dry pretreatment liquid film 120 so that the sublimable substance solid 121 is deposited.

図10Bに示すように、昇華性物質の固体121が析出すると、乾燥前処理液のバルク、つまり、乾燥前処理液膜120の表面(液面)からパターンPAの上面までの範囲に位置する乾燥前処理液の全部または一部が昇華性物質の固体121に変化する。図10Bは、乾燥前処理液膜120のうち、乾燥前処理液膜120の表面側の乾燥前処理液だけが昇華性物質の固体121に変化しており、乾燥前処理液膜120の残りは液体に維持された例を示している。この例では、昇華性物質の固体121がパターンPAの上面に達しておらず、乾燥前処理液が、パターンPAの間だけでなく、昇華性物質の固体121とパターンPAの上面との間にも残っている。乾燥前処理液膜120の表面の全部または一部は、水平に広がる膜状の昇華性物質の固体121、つまり、固化膜(固体膜)で覆われる。 As shown in FIG. 10B, when the solid 121 of the sublimable substance is deposited, the bulk of the pre-drying treatment liquid, that is, the dry pre-treatment liquid located in the range from the surface (liquid surface) of the pre-drying treatment liquid film 120 to the upper surface of the pattern PA. All or part of the pretreatment liquid changes into a sublimable solid 121 . In FIG. 10B, only the pre-drying treatment liquid on the surface side of the pre-drying treatment liquid film 120 in the pre-drying treatment liquid film 120 has changed into a sublimable solid 121, and the rest of the pre-drying treatment liquid film 120 is It shows an example maintained in a liquid. In this example, the sublimable substance solid 121 does not reach the upper surface of the pattern PA, and the drying pretreatment liquid is not only between the patterns PA but also between the sublimable substance solid 121 and the upper surface of the pattern PA. is also left. All or part of the surface of the pre-drying treatment liquid film 120 is covered with a film-like sublimable substance solid 121 extending horizontally, that is, a solidified film (solid film).

次に、昇華性物質の固体121を基板W上の乾燥前処理液に溶解させる第1溶解工程(図9のステップS8)が行われる。 Next, a first dissolving step (step S8 in FIG. 9) of dissolving the sublimable solid 121 in the pre-drying treatment liquid on the substrate W is performed.

具体的には、遮断部材51が下位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、スピンモータ14が基板Wの回転速度を所定の第1溶解速度に維持する。第1溶解速度は、乾燥前処理液供給速度と等しくてもよいし、異なっていてもよい。第1溶解速度は、たとえば、500rpmである。さらに、加熱流体バルブ73が開かれ、下面ノズル71が温水(室温よりも高温の純水)の吐出を開始する。温水の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。 Specifically, with the blocking member 51 positioned at the lower position and at least one guard 24 positioned at the upper position, the spin motor 14 sets the rotational speed of the substrate W to the predetermined first melting speed. maintain. The first dissolution rate may be equal to or different from the drying pretreatment liquid supply rate. The first dissolution rate is, for example, 500 rpm. Furthermore, the heating fluid valve 73 is opened, and the lower surface nozzle 71 starts discharging hot water (pure water having a temperature higher than room temperature). The guard elevating unit 27 may vertically move at least one guard 24 to switch the guard 24 that receives the liquid discharged from the substrate W before hot water discharge is started.

下面ノズル71から吐出された温水は、第1溶解速度で回転している基板Wの下面の中央部に衝突した後、基板Wの下面に沿って外方に流れる。これにより、基板Wの全域が、室温よりも高い加熱温度で加熱される。温水の熱は、基板Wを介して基板W上の乾燥前処理液に伝達される。基板W上の乾燥前処理液膜120は、基板Wを介して間接的に加熱される(間接加熱工程)。これにより、基板W上の昇華性物質の固体121および乾燥前処理液膜120の温度が室温よりも高い温度に維持される。 The hot water discharged from the lower surface nozzle 71 flows outward along the lower surface of the substrate W after colliding with the central portion of the lower surface of the substrate W rotating at the first melting speed. Thereby, the entire area of the substrate W is heated at a heating temperature higher than the room temperature. The heat of the hot water is transferred to the pre-drying treatment liquid on the substrate W through the substrate W. FIG. The pre-drying treatment liquid film 120 on the substrate W is indirectly heated via the substrate W (indirect heating step). Thereby, the temperature of the sublimable substance solid 121 on the substrate W and the temperature of the pre-drying treatment liquid film 120 are maintained at a temperature higher than room temperature.

図10Cに示すように、基板W上の乾燥前処理液膜120の温度を上昇させると、乾燥前処理液における昇華性物質の飽和濃度が上昇し、昇華性物質の固体121が、基板W上の乾燥前処理液に溶解する。乾燥前処理液への昇華性物質の固体121の溶解は、乾燥前処理液の温度上昇によって促進される。これにより、昇華性物質の固体121の全部または大部分が基板W上の乾燥前処理液に溶解する。図10Dは、昇華性物質の固体121の全てが乾燥前処理液に溶解した例を示している。 As shown in FIG. 10C, when the temperature of the pre-drying treatment liquid film 120 on the substrate W is increased, the saturated concentration of the sublimation substance in the pre-drying treatment liquid rises, and the sublimation substance solid 121 on the substrate W increases. dissolved in the drying pretreatment liquid. The dissolution of the sublimable substance solid 121 in the pre-drying treatment liquid is promoted by the temperature rise of the pre-drying treatment liquid. As a result, all or most of the sublimable substance solid 121 dissolves in the drying pretreatment liquid on the substrate W. As shown in FIG. FIG. 10D shows an example in which all the sublimable substance solids 121 are dissolved in the drying pretreatment liquid.

昇華性物質の固体121を乾燥前処理液に溶解させた後は、再び昇華性物質の固体121を析出させ、析出した昇華性物質の固体121を再び乾燥前処理液に溶解させてもよい。つまり、第1析出工程(図9のステップS7)から第1溶解工程(図9のステップS8)までの1つの繰り返しサイクルを2回以上行ってもよい。 After dissolving the sublimable substance solid 121 in the pre-drying treatment liquid, the sublimable solid 121 may be precipitated again, and the precipitated sublimable substance solid 121 may be dissolved again in the pre-drying treatment liquid. That is, one repeating cycle from the first precipitation step (step S7 in FIG. 9) to the first dissolution step (step S8 in FIG. 9) may be performed twice or more.

図9における「N」は、0以上の整数を意味している。Nが1以上の場合、繰り返しサイクルが2回以上行われ、その後、最終析出工程(図9のステップS9)が行われる。Nが0の場合、第1析出工程(図9のステップS7)および第1溶解工程(図9のステップS8)が一回ずつ行われ、その後は、昇華性物質の固体121を再び析出させる最終析出工程(図9のステップS9)が行われる。 "N" in FIG. 9 means an integer of 0 or more. When N is 1 or more, the repeating cycle is performed two or more times, and then the final deposition step (step S9 in FIG. 9) is performed. When N is 0, the first precipitation step (step S7 in FIG. 9) and the first dissolution step (step S8 in FIG. 9) are performed once each, and after that, the sublimation substance solid 121 is precipitated again. A deposition step (step S9 in FIG. 9) is performed.

具体的には、遮断部材51が下位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、スピンモータ14が基板Wの回転速度を所定の最終析出速度に維持する。最終析出速度は、乾燥前処理液供給速度と等しくてもよいし、異なっていてもよい。最終析出速度は、たとえば、500rpmである。下面ノズル71からの温水の吐出は、第1溶解工程(図9のステップS8)から継続されている。したがって、基板W上の乾燥前処理液は、基板Wが最終析出速度で回転している間も、室温よりも高い温度に維持されている。 Specifically, the spin motor 14 maintains the rotation speed of the substrate W at a predetermined final deposition speed while the blocking member 51 is positioned at the lower position and at least one guard 24 is positioned at the upper position. do. The final deposition rate may be equal to or different from the dry pretreatment liquid feed rate. The final deposition speed is, for example, 500 rpm. The discharge of hot water from the lower surface nozzle 71 continues from the first dissolving step (step S8 in FIG. 9). Therefore, the dried pretreatment liquid on the substrate W is maintained at a temperature higher than room temperature while the substrate W is rotating at the final deposition speed.

図10Dに示すように、基板Wが最終析出速度で回転している間、溶媒は、乾燥前処理液膜120の表面から蒸発する。したがって、乾燥前処理液の表面が徐々にパターンPAの根本に近づきながら、乾燥前処理液膜120における昇華性物質の濃度が徐々に増加する。乾燥前処理液膜120における昇華性物質の濃度が、乾燥前処理液における昇華性物質の飽和濃度に達すると、昇華性物質の固体121が基板Wの上面に析出し、全てまたは殆ど全ての乾燥前処理液が基板Wからなくなる。最終析出工程において、スピンモータ14および下面ノズル71は、昇華性物質の固体121が析出するように、乾燥前処理液膜120から溶媒を蒸発させる溶媒蒸発ユニットとして機能する。 As shown in FIG. 10D, solvent evaporates from the surface of the dry pretreatment liquid film 120 while the substrate W is rotating at the final deposition speed. Therefore, as the surface of the pre-drying treatment liquid gradually approaches the base of the pattern PA, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 gradually increases. When the concentration of the sublimable substance in the pre-drying treatment liquid film 120 reaches the saturation concentration of the sublimable substance in the pre-drying treatment liquid, the solid 121 of the sublimable substance precipitates on the upper surface of the substrate W, and all or almost all of the drying is completed. The pretreatment liquid disappears from the substrate W. In the final deposition step, the spin motor 14 and the bottom nozzle 71 function as a solvent evaporation unit that evaporates the solvent from the dry pretreatment liquid film 120 so that the sublimable substance solid 121 is deposited.

図10Eは、全ての乾燥前処理液がなくなり、昇華性物質の固体121がパターンPAの間に析出した例を示している。図10Eは、昇華性物質の固体121の厚みがパターンPAの高さよりも大きい例を示している。 FIG. 10E shows an example in which all the drying pretreatment liquid is gone and a sublimable solid 121 is deposited between the patterns PA. FIG. 10E shows an example in which the thickness of the sublimable substance solid 121 is greater than the height of the pattern PA.

図11は、樟脳およびIPAの平衡状態図である。樟脳およびIPAの溶液は、乾燥前処理液に相当する。図11中の曲線(凝固曲線)は、樟脳およびIPAの溶液の凝固点を示している。図11中の太い折れ線は、第1析出工程(図9のステップS7)、第1溶解工程(図9のステップS8)、および最終析出工程(図9のステップS9)が一回ずつ行われているとき、すなわち、図9においてN=0のときの樟脳の濃度と溶液の温度との推移を示している。 FIG. 11 is an equilibrium diagram of camphor and IPA. A solution of camphor and IPA corresponds to the dry pretreatment liquid. The curve (clotting curve) in FIG. 11 indicates the freezing points of solutions of camphor and IPA. The thick polygonal line in FIG. 11 indicates that the first precipitation step (step S7 in FIG. 9), the first dissolution step (step S8 in FIG. 9), and the final precipitation step (step S9 in FIG. 9) were performed once each. 9 shows the transition of the concentration of camphor and the temperature of the solution when N=0 in FIG.

図11において、点P1から点P2までの太い直線は、第1析出工程(図9のステップS8)が行われていることを示している。第1析出工程(図9のステップS8)が行われているときは、乾燥前処理液に相当する樟脳およびIPAの溶液からIPAが蒸発し、樟脳の濃度が徐々に上昇する。このとき、乾燥前処理液の温度は、室温またはその近傍の温度に維持されている。樟脳の濃度が、図11中の点P2の濃度まで上昇すると、樟脳およびIPAを含む昇華性物質の固体121が、析出または凝固により形成される。 In FIG. 11, a thick straight line from point P1 to point P2 indicates that the first precipitation step (step S8 in FIG. 9) is being performed. When the first precipitation step (step S8 in FIG. 9) is performed, IPA evaporates from the solution of camphor and IPA corresponding to the dry pretreatment liquid, and the concentration of camphor gradually increases. At this time, the temperature of the pre-drying treatment liquid is maintained at or near room temperature. When the concentration of camphor increases to the concentration at point P2 in FIG. 11, a solid 121 of sublimable material containing camphor and IPA is formed by precipitation or solidification.

図11において、点P2から点P3までの太い直線は、第1溶解工程(図9のステップS8)が行われていることを示している。第1溶解工程(図9のステップS8)が行われているときは、樟脳およびIPAの溶液の温度が上昇し、昇華性物質の固体121の温度が、樟脳およびIPAの溶液の凝固点よりも高い温度まで上昇する。これにより、昇華性物質の固体121の少なくとも一部が融解または溶解し、樟脳およびIPAの溶液に戻る。 In FIG. 11, a thick straight line from point P2 to point P3 indicates that the first melting step (step S8 in FIG. 9) is being performed. When the first dissolving step (step S8 in FIG. 9) is being performed, the temperature of the solution of camphor and IPA rises, and the temperature of the sublimable substance solid 121 is higher than the freezing point of the solution of camphor and IPA. rise to temperature. This melts or dissolves at least a portion of the sublimable substance solid 121 back into the solution of camphor and IPA.

図11において、点P3から点P4までの太い直線は、最終析出工程(図9のステップS9)が行われていることを示している。前述のように、最終析出工程(図9のステップS9)が行われているときは、昇華性物質の固体121を再び析出させるために樟脳およびIPAの溶液の温度を低下させるのではなく、樟脳およびIPAの溶液を室温よりも高い温度に維持しながら、IPAをさらに蒸発させる。したがって、第1析出工程(図9のステップS7)で析出した昇華性物質の固体121よりもIPAの含有量が少ない昇華性物質の固体121が析出する。 In FIG. 11, the thick straight line from point P3 to point P4 indicates that the final precipitation step (step S9 in FIG. 9) is being performed. As previously mentioned, when the final precipitation step (step S9 in FIG. 9) is being performed, rather than lowering the temperature of the solution of camphor and IPA to re-precipitate the sublimable solids 121, camphor and IPA is further evaporated while maintaining the solution above room temperature. Therefore, the sublimable substance solid 121 having a lower IPA content than the sublimable substance solid 121 deposited in the first deposition step (step S7 in FIG. 9) is deposited.

昇華性物質の固体121がパターンPAの間に析出した後は、昇華性物質の固体121を昇華させて、基板Wの上面から除去する昇華工程(図9のステップS10)が行われる。 After the solid 121 of the sublimable substance is deposited between the patterns PA, the sublimation step (step S10 in FIG. 9) of sublimating the solid 121 of the sublimable substance and removing it from the upper surface of the substrate W is performed.

具体的には、遮断部材51が下位置に位置している状態で、スピンモータ14が基板Wの回転速度を所定の昇華速度に維持する。昇華速度は、乾燥前処理液供給速度と等しくてもよいし、異なっていてもよい。昇華速度は、たとえば、1500rpmである。さらに、上気体バルブ57が開かれ、中心ノズル55が窒素ガスの吐出を開始する。上気体バルブ57を開くことに加えてまたは代えて、流量調整バルブ65の開度を変更して、遮断部材51の上中央開口61から吐出される窒素ガスの流量を増加させてもよい。 Specifically, the spin motor 14 maintains the rotation speed of the substrate W at a predetermined sublimation speed while the blocking member 51 is positioned at the lower position. The sublimation rate may be equal to or different from the pre-drying treatment liquid supply rate. The sublimation speed is, for example, 1500 rpm. Further, the upper gas valve 57 is opened and the center nozzle 55 starts discharging nitrogen gas. In addition to or instead of opening the upper gas valve 57 , the degree of opening of the flow control valve 65 may be changed to increase the flow rate of nitrogen gas discharged from the upper central opening 61 of the blocking member 51 .

昇華速度での基板Wの回転等が開始されると、基板W上の昇華性物質の固体121の昇華が始まり、昇華性物質を含む気体が、基板W上の昇華性物質の固体121から発生する。昇華性物質の固体121から発生した気体(昇華性物質を含む気体)は、基板Wと遮断部材51との間の空間を放射状に流れ、基板Wの上方から排出される。そして、昇華が始まってからある程度の時間が経つと、図10Fに示すように、全ての昇華性物質の固体121が基板Wから除去される。その後、スピンモータ14が止まり、基板Wの回転が停止される。さらに、上気体バルブ57が閉じられ、中心ノズル55が窒素ガスの吐出を停止する。 When the rotation of the substrate W at the sublimation speed or the like is started, sublimation of the sublimation substance solid 121 on the substrate W starts, and gas containing the sublimation substance is generated from the sublimation substance solid 121 on the substrate W. do. The gas (gas containing the sublimable substance) generated from the sublimable substance solid 121 radially flows through the space between the substrate W and the blocking member 51 and is discharged from above the substrate W. FIG. Then, after a certain amount of time has passed since the sublimation started, all the sublimable substance solids 121 are removed from the substrate W, as shown in FIG. 10F. After that, the spin motor 14 is stopped and the rotation of the substrate W is stopped. Furthermore, the upper gas valve 57 is closed and the central nozzle 55 stops discharging nitrogen gas.

このように、中心ノズル55、遮断部材51の上中央開口61およびスピンモータ14は、基板Wの上面の昇華性物質の固体121を昇華させる昇華ユニットとして機能する。 In this manner, the central nozzle 55, the upper central opening 61 of the blocking member 51, and the spin motor 14 function as a sublimation unit for sublimating the sublimable substance solid 121 on the upper surface of the substrate W. FIG.

なお、前述の窒素ガスの吐出に代えて、基板Wの上方または下方に発熱体やランプ等の熱源を配し、これらの熱源による加熱によって昇華性物質を昇華させてもよい。 Instead of discharging the nitrogen gas described above, a heat source such as a heating element or a lamp may be arranged above or below the substrate W, and the sublimation substance may be sublimated by heating with these heat sources.

また、後述するが、基板W上の昇華性物質の固体121が析出すると、膜厚測定ユニット91の検出値が大幅に変化するので、コントローラ3は、膜厚測定ユニット91の検出値を監視することにより、昇華性物質の固体121が析出したか否かを判定できる。したがって、コントローラ3は、膜厚測定ユニット91が測定する基板Wの上面内の任意の位置おける膜厚に対して予め閾値を設定し、測定した膜厚が閾値以下になれば最終析出工程から昇華工程へ移行するように制御してもよい。 Further, as will be described later, when the sublimation substance solid 121 precipitates on the substrate W, the detection value of the film thickness measurement unit 91 changes significantly, so the controller 3 monitors the detection value of the film thickness measurement unit 91. Thus, it can be determined whether or not the solid 121 of the sublimable substance has precipitated. Therefore, the controller 3 preliminarily sets a threshold for the film thickness at an arbitrary position within the upper surface of the substrate W to be measured by the film thickness measurement unit 91. You may control so that it may shift to a process.

次に、基板Wをチャンバー4から搬出する搬出工程(図9のステップS11)が行われる。 Next, the unloading step (step S11 in FIG. 9) of unloading the substrate W from the chamber 4 is performed.

具体的には、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。さらに、上気体バルブ64および下気体バルブ84が閉じられ、遮断部材51の上中央開口61とスピンベース12の下中央開口81とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。 Specifically, the blocking member lifting unit 54 lifts the blocking member 51 to the upper position, and the guard lifting unit 27 lowers all the guards 24 to the lower position. Furthermore, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper central opening 61 of the blocking member 51 and the lower central opening 81 of the spin base 12 stop discharging nitrogen gas. After that, the center robot CR makes the hand H1 enter the chamber 4 . After the plurality of chuck pins 11 release the grip of the substrate W, the center robot CR supports the substrate W on the spin chuck 10 with the hand H1. After that, the center robot CR withdraws the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. Thereby, the processed substrate W is unloaded from the chamber 4 .

次に、乾燥前処理液が樟脳およびメタノールの溶液であるときの基板処理の一例(第2基板処理例)について説明する。 Next, an example of substrate treatment (second substrate treatment example) in which the pre-drying treatment liquid is a solution of camphor and methanol will be described.

第2基板処理例の大まかな流れは、第1基板処理例と同様であり、図9に示す通りである。第2基板処理例は、最初の第1溶解工程(図9のステップS8)から最終析出工程(図9のステップS9)までの工程が第1基板処理例とは異なっており、それ以外の工程は第1基板処理例と同様である。したがって、以下では、第2基板処理例における最初の第1溶解工程から最終析出工程までの工程について説明する。 The general flow of the second substrate processing example is similar to that of the first substrate processing example, and is shown in FIG. The second substrate processing example differs from the first substrate processing example in the steps from the first dissolving step (step S8 in FIG. 9) to the final deposition step (step S9 in FIG. 9), and the other steps are different. is the same as the first substrate processing example. Therefore, the steps from the first dissolution step to the final deposition step in the second substrate processing example will be described below.

図12A~図12Dは、樟脳およびメタノールの溶液を用いたときの基板Wの状態を示す模式図である。以下では、図2および図9を参照する。図12A~図12Dについては適宜参照する。 12A to 12D are schematic diagrams showing the state of the substrate W when a solution of camphor and methanol is used. In the following, reference is made to FIGS. 2 and 9. FIG. Reference will be made to FIGS. 12A to 12D as appropriate.

最初の第1析出工程(図9のステップS7)で昇華性物質の固体121が析出した後は、昇華性物質の固体121を基板W上の乾燥前処理液に溶解させる第1溶解工程(図9のステップS8)が行われる。 After the sublimation substance solid 121 is deposited in the initial first deposition step (step S7 in FIG. 9), the sublimation substance solid 121 is dissolved in the pre-drying treatment liquid on the substrate W in the first dissolution step (FIG. 9). 9 step S8) is performed.

具体的には、遮断部材51が下位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、スピンモータ14が基板Wの回転速度を所定の第1溶解速度に維持する。第1溶解速度は、乾燥前処理液供給速度と等しくてもよいし、異なっていてもよい。第1溶解速度は、たとえば、1500rpmである。基板Wが第1溶解速度で回転しているとき、遮断部材51の上中央開口61からの窒素ガスの吐出を停止するために、コントローラ3は、上気体バルブ64を閉じてもよい。もしくは、コントローラ3は、流量調整バルブ65の開度を変更することにより、遮断部材51の上中央開口61から吐出される窒素ガスの流量を減少させてもよい。 Specifically, with the blocking member 51 positioned at the lower position and at least one guard 24 positioned at the upper position, the spin motor 14 sets the rotational speed of the substrate W to the predetermined first melting speed. maintain. The first dissolution rate may be equal to or different from the drying pretreatment liquid supply rate. The first dissolution rate is, for example, 1500 rpm. When the substrate W is rotating at the first dissolution speed, the controller 3 may close the upper gas valve 64 to stop the discharge of nitrogen gas from the upper central opening 61 of the blocking member 51 . Alternatively, the controller 3 may reduce the flow rate of the nitrogen gas discharged from the upper central opening 61 of the blocking member 51 by changing the degree of opening of the flow control valve 65 .

第1析出工程(図9のステップS7)で溶媒が乾燥前処理液から蒸発するとき、気化熱に相当する乾燥前処理液の熱が溶媒と共にチャンバー4内の雰囲気中に放出され、乾燥前処理液の表面の温度が低下する。昇華性物質の固体121が形成されると、乾燥前処理液から蒸発する溶媒が減少するので、雰囲気中に放出される乾燥前処理液の熱も減少する。それと同時に、図12Aに示すように、雰囲気中の熱が昇華性物質の固体121を介して乾燥前処理液に伝達される。これにより、基板W上の昇華性物質の固体121および乾燥前処理液膜120の温度が上昇する。 When the solvent evaporates from the pre-drying treatment liquid in the first deposition step (step S7 in FIG. 9), the heat of the pre-drying treatment liquid corresponding to the heat of vaporization is released into the atmosphere in the chamber 4 together with the solvent, and the pre-drying treatment The surface temperature of the liquid drops. When the sublimable solid 121 is formed, less solvent evaporates from the pre-drying liquid, and thus less heat is released from the pre-drying liquid into the atmosphere. At the same time, as shown in FIG. 12A, heat in the atmosphere is transferred to the pre-drying liquid through the sublimable substance solid 121 . As a result, the temperatures of the sublimable substance solid 121 and the pre-drying treatment liquid film 120 on the substrate W rise.

基板W上の昇華性物質の固体121および乾燥前処理液膜120の温度が上昇すると、図12Bに示すように、昇華性物質の固体121の一部が乾燥前処理液に溶解する。乾燥前処理液は、樟脳およびメタノールの溶液である。昇華性物質の固体121には、樟脳が含まれる。メタノールに対する樟脳の溶解度は、IPAに対する樟脳の溶解度よりも大きく、樟脳は、メタノールに溶解し易い。樟脳の固体の一部がメタノールの液体に溶けると、残りの樟脳の固体も直ぐにメタノールの液体に溶ける。これにより、昇華性物質の固体121の全部または大部分が基板W上の乾燥前処理液に溶解する。図12Cは、昇華性物質の固体121の全てが乾燥前処理液に溶解した例を示している。 When the temperatures of the sublimable substance solid 121 on the substrate W and the drying pretreatment liquid film 120 rise, part of the sublimable substance solid 121 dissolves in the drying pretreatment liquid, as shown in FIG. 12B. The dry pretreatment liquid is a solution of camphor and methanol. Sublimable substance solid 121 includes camphor. The solubility of camphor in methanol is greater than the solubility of camphor in IPA, and camphor is easily soluble in methanol. As soon as a portion of the camphor solids dissolves in the methanol liquid, the rest of the camphor solids also dissolves in the methanol liquid. As a result, all or most of the sublimable substance solid 121 dissolves in the drying pretreatment liquid on the substrate W. As shown in FIG. FIG. 12C shows an example in which all of the sublimable substance solid 121 is dissolved in the drying pretreatment liquid.

昇華性物質の固体121が基板W上の乾燥前処理液に溶解すると、乾燥前処理液から蒸発する溶媒が増加し、乾燥前処理液の表面の温度が低下する。これにより、図12Dに示すように、乾燥前処理液の表面における昇華性物質の濃度が上昇し、昇華性物質の固体121が乾燥前処理液の表面に再び析出する(図9のステップS7)。昇華性物質の固体121が再び析出すると、前述のように昇華性物質の固体121および乾燥前処理液の温度が上昇し、昇華性物質の固体121が再び乾燥前処理液に溶解する(図9のステップS8)。 When the sublimable substance solid 121 dissolves in the pre-drying treatment liquid on the substrate W, the amount of solvent evaporated from the pre-drying treatment liquid increases, and the temperature of the surface of the pre-drying treatment liquid decreases. As a result, as shown in FIG. 12D, the concentration of the sublimable substance on the surface of the pre-drying treatment liquid increases, and the sublimable substance solid 121 precipitates again on the surface of the pre-drying treatment liquid (step S7 in FIG. 9). . When the sublimable substance solid 121 precipitates again, the temperatures of the sublimable substance solid 121 and the drying pretreatment liquid rise as described above, and the sublimable substance solid 121 dissolves in the drying pretreatment liquid again (FIG. 9). step S8).

このように、乾燥前処理液が樟脳およびメタノールの溶液である場合、乾燥前処理液の温度を強制的に変化させなくても、乾燥前処理液を基板Wの上面に放置するだけで、昇華性物質の固体121の析出および溶解が繰り返される(自然析出工程、自然溶解工程)。第1析出工程(図9のステップS7)から第1溶解工程(図9のステップS8)までの1つの繰り返しサイクルの繰り返し回数は、乾燥前処理液を放置する時間の増加に伴って増加する。したがって、許容される時間に応じて昇華性物質の固体121の析出および溶解の繰り返し回数を設定すればよい。 In this way, when the pre-drying treatment liquid is a solution of camphor and methanol, the pre-drying treatment liquid can be sublimated simply by leaving the pre-drying treatment liquid on the upper surface of the substrate W without forcibly changing the temperature of the pre-drying treatment liquid. Precipitation and dissolution of the solid substance 121 are repeated (natural precipitation process, natural dissolution process). The number of repetitions of one repetition cycle from the first precipitation step (step S7 in FIG. 9) to the first dissolution step (step S8 in FIG. 9) increases with an increase in the time for which the pre-drying treatment liquid is left. Therefore, the number of repetitions of precipitation and dissolution of the sublimable solid 121 may be set according to the allowable time.

昇華性物質の固体121を析出させるときは、基板W上の乾燥前処理液に接する雰囲気中の溶媒の蒸気圧を、雰囲気の温度における溶媒の飽和蒸気圧未満に維持する。昇華性物質の固体121を溶解させるときは、昇華性物質の固体121と乾燥前処理液膜120との界面の温度を、昇華性物質の固体121を溶解させるときの昇華性物質の濃度における乾燥前処理液の凝固点を超える値に維持する。このようにすれば、昇華性物質の固体121の析出および溶解が自然に繰り返される。 When depositing the sublimable substance solid 121, the vapor pressure of the solvent in the atmosphere in contact with the drying pretreatment liquid on the substrate W is maintained below the saturated vapor pressure of the solvent at the temperature of the atmosphere. When the sublimable solid 121 is dissolved, the temperature of the interface between the sublimable solid 121 and the drying pretreatment liquid film 120 is adjusted to the concentration of the sublimable substance when the sublimable solid 121 is dissolved. Maintain a value above the freezing point of the pretreatment liquid. In this way, deposition and dissolution of the sublimable solid 121 are naturally repeated.

昇華性物質の固体121を析出および溶解させるとき、コントローラ3は、中心ノズル55および遮断部材51の上中央開口61の少なくとも一方に、窒素ガスなどのガスを低流量で吐出させてもよい。この場合、溶媒の蒸気を速やかに基板Wの上方から排除でき、溶媒の蒸発を促進できる。さらに、基板Wの上面に向けてガスを低流量で吐出すれば、昇華性物質の固体121と乾燥前処理液膜120との界面の温度変化を最小限に抑えることができる。したがって、昇華性物質の固体121の溶解を妨げることなく、溶媒の蒸発を促進できる。 When the sublimable solid 121 is deposited and dissolved, the controller 3 may discharge a gas such as nitrogen gas at a low flow rate to at least one of the central nozzle 55 and the upper central opening 61 of the blocking member 51 . In this case, the vapor of the solvent can be quickly removed from above the substrate W, and the evaporation of the solvent can be accelerated. Furthermore, if the gas is discharged toward the upper surface of the substrate W at a low flow rate, the temperature change at the interface between the sublimable solid 121 and the pre-drying treatment liquid film 120 can be minimized. Therefore, the evaporation of the solvent can be accelerated without hindering the dissolution of the sublimable solid 121 .

FFU6は、クリーンエアーをチャンバー4内に常時供給する。基板Wの上面に向かって流れるクリーンエアーのダウンフローは、遮断部材51によって遮られる。これにより、基板W上の雰囲気の乱れを抑えることができる。コントローラ3は、昇華性物質の固体121を析出および溶解させるときに、FFU6にクリーンエアーの供給を一時的に停止させてもよい。また、基板W上の雰囲気の乱れを抑えるために、コントローラ3は、昇華性物質の固体121を析出および溶解させるときに、スピンモータ14に基板Wの回転を一時的に停止させてもよい。 The FFU 6 constantly supplies clean air into the chamber 4 . The downflow of clean air flowing toward the upper surface of the substrate W is blocked by the blocking member 51 . Thereby, disturbance of the atmosphere on the substrate W can be suppressed. The controller 3 may temporarily stop the supply of clean air to the FFU 6 when depositing and dissolving the sublimable solid 121 . In order to suppress the disturbance of the atmosphere on the substrate W, the controller 3 may cause the spin motor 14 to temporarily stop the rotation of the substrate W when the sublimable solid 121 is deposited and dissolved.

昇華性物質の固体121を乾燥前処理液に溶解させた後は、再び昇華性物質の固体121を析出させる最終析出工程(図9のステップS9)が行われる。 After the solid 121 of the sublimable substance is dissolved in the pre-drying treatment liquid, the final precipitation step (step S9 in FIG. 9) is performed to precipitate the solid 121 of the sublimable substance again.

具体的には、遮断部材51が下位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、スピンモータ14が基板Wの回転速度を所定の最終析出速度に維持する。最終析出速度は、乾燥前処理液供給速度と等しくてもよいし、異なっていてもよい。最終析出速度は、たとえば、1500rpmである。基板Wが最終析出速度で回転している間、溶媒は、乾燥前処理液の表面から蒸発する。乾燥前処理液における昇華性物質の濃度が、乾燥前処理液における昇華性物質の飽和濃度に達すると、昇華性物質の固体121が基板Wの上面に析出し、全てまたは殆ど全ての乾燥前処理液が基板Wから無くなる(図10E参照)。その後は、基板W上の昇華性物質の固体121を昇華させる昇華工程(図9のステップS10)が行われる。 Specifically, the spin motor 14 maintains the rotation speed of the substrate W at a predetermined final deposition speed while the blocking member 51 is positioned at the lower position and at least one guard 24 is positioned at the upper position. do. The final deposition rate may be equal to or different from the dry pretreatment liquid feed rate. The final deposition speed is, for example, 1500 rpm. While the substrate W is rotating at the final deposition speed, the solvent evaporates from the surface of the drying pretreatment liquid. When the concentration of the sublimable substance in the pre-drying treatment liquid reaches the saturation concentration of the sublimable substance in the pre-drying treatment liquid, the solid 121 of the sublimable substance precipitates on the upper surface of the substrate W, and all or almost all of the pre-drying treatment is carried out. The liquid is removed from the substrate W (see FIG. 10E). After that, a sublimation step (step S10 in FIG. 9) of sublimating the sublimable substance solid 121 on the substrate W is performed.

前述のように、乾燥前処理液が樟脳およびメタノールの溶液である場合、乾燥前処理液を基板Wの上面に放置するだけで、昇華性物質の固体121の析出および溶解が繰り返される。微量の乾燥前処理液が基板W上に残っている場合、昇華性物質の固体121を昇華させる前に、昇華性物質の固体121が乾燥前処理液に溶解するかもしれない。これを防止するために、基板W上の昇華性物質の固体121を冷却してもよい。たとえば、基板Wの回転速度を上昇させてもよいし、基板Wの上面に向けて吐出されるガスの流量を増加させてもよい。 As described above, when the pre-drying treatment liquid is a solution of camphor and methanol, the pre-drying treatment liquid is simply left on the upper surface of the substrate W to repeat precipitation and dissolution of the sublimable solid 121 . If a small amount of the pre-drying liquid remains on the substrate W, the sublimable solids 121 may dissolve in the pre-drying liquid before sublimating the sublimable solids 121 . In order to prevent this, the sublimable solid 121 on the substrate W may be cooled. For example, the rotation speed of the substrate W may be increased, or the flow rate of the gas discharged toward the upper surface of the substrate W may be increased.

図13は、パターンPAの倒壊率を示すグラフである。倒壊率Aおよび倒壊率Bは、乾燥前処理液が樟脳およびIPAの溶液であるときの値であり、倒壊率Cは、乾燥前処理液が樟脳およびメタノールの溶液であるときの値である。 FIG. 13 is a graph showing the collapse rate of pattern PA. Collapse rate A and collapse rate B are values when the dry pretreatment liquid is a solution of camphor and IPA, and collapse rate C is a value when the dry pretreatment liquid is a solution of camphor and methanol.

「倒壊率A」は、図9に示す基板処理とは異なり、昇華性物質の固体121を1回析出させ、その後、昇華性物質の固体121を昇華させたときの値である。「倒壊率B」は、昇華性物質の固体121を2回析出させ、その後、昇華性物質の固体121を昇華させたときの値である。すなわち、「倒壊率B」は、図9においてN=0の場合の倒壊率である。「倒壊率C」は、昇華性物質の固体121を2回以上析出させ、その後、昇華性物質の固体121を昇華させたときの値である。乾燥前処理液の組成と昇華性物質の固体121を析出させる回数とを除き、倒壊率A~倒壊率Cにおける基板Wの処理条件は同一である。 Unlike the substrate treatment shown in FIG. 9, the "collapse rate A" is a value when the sublimable solid 121 is precipitated once and then sublimated. The “collapse rate B” is a value when the sublimable solid 121 is precipitated twice and then sublimated. That is, the "collapse rate B" is the collapse rate when N=0 in FIG. The “collapse ratio C” is a value obtained when the sublimable solid 121 is precipitated two or more times and then the sublimable solid 121 is sublimated. Except for the composition of the pre-drying treatment liquid and the number of times the sublimable solid 121 is precipitated, the treatment conditions for the substrate W are the same for the collapse rates A to C. FIG.

倒壊率Aは、基板Wの高速回転によって基板W上のIPAを除去することにより基板Wを乾燥させるIPA乾燥を行ったときの値よりも低い。倒壊率Bは、倒壊率Aよりも低い。同様に、倒壊率Cは、倒壊率Aよりも低い。倒壊率Cは、倒壊率Bよりも低い。倒壊率Bは、倒壊率Aの半分以下である。倒壊率Cは、倒壊率Bの半分以下である。倒壊率Cは、1%未満であり、極めて低い。 The collapse rate A is lower than the value when IPA drying is performed to dry the substrate W by removing the IPA on the substrate W by rotating the substrate W at high speed. Collapse rate B is lower than collapse rate A. Similarly, collapse rate C is lower than collapse rate A. Collapse rate C is lower than collapse rate B. Collapse rate B is less than half of collapse rate A. Collapse rate C is less than half of collapse rate B. The collapse rate C is less than 1%, which is extremely low.

倒壊率Bが倒壊率Aよりも低いので、析出した昇華性物質の固体121を乾燥前処理液に溶解させた後に、再び昇華性物質の固体121を析出させれば、パターンPAの倒壊率を低下させることができる。倒壊率Cが倒壊率Bよりも低いので、昇華性物質が樟脳である場合、IPAではなく、メタノールを溶媒として用いれば、パターンPAの倒壊率をさらに低下させることができる。したがって、パターンPAの強度が極めて低い場合であっても、本実施形態のように、第1析出工程(図9のステップS7)および第1溶解工程(図9のステップS8)の繰り返しサイクルを1回以上行えば、パターンPAの倒壊率を低下させることができる。すなわち、図9においてN=0であっても、パターンPAの倒壊率を低下させることができる。 Since the collapse rate B is lower than the collapse rate A, the collapse rate of the pattern PA can be reduced by dissolving the precipitated sublimation solid 121 in the pre-drying treatment liquid and then precipitating the sublimation solid 121 again. can be lowered. Since the collapse rate C is lower than the collapse rate B, when the sublimable substance is camphor, the collapse rate of the pattern PA can be further reduced by using methanol instead of IPA as the solvent. Therefore, even if the strength of the pattern PA is extremely low, the repetition cycle of the first precipitation step (step S7 in FIG. 9) and the first dissolution step (step S8 in FIG. 9) is repeated by 1 as in the present embodiment. If it is performed more than once, the collapse rate of the pattern PA can be reduced. That is, even if N=0 in FIG. 9, the collapse rate of the pattern PA can be reduced.

本発明者らの研究によると、パターンPAの間隔G1(図10A参照)が30nm以下である場合、昇華乾燥を行っても良好なパターンPAの倒壊率が得られないことがあった。これは、昇華性物質の固体121がパターンPAの間に存在しないまたは殆ど存在しない不完全析出領域が基板Wの上面内に形成されたためであると考えられる。したがって、析出した昇華性物質の固体121を乾燥前処理液に溶解させた後に、再び昇華性物質の固体121を析出させれば、パターンPAの間隔G1が30nm以下の基板Wであっても、パターンPAの倒壊率を低下させることができる。 According to the studies of the present inventors, when the interval G1 (see FIG. 10A) between the patterns PA is 30 nm or less, even if sublimation drying is performed, a good collapse rate of the patterns PA may not be obtained. It is considered that this is because an incomplete deposition region in which the sublimable substance solid 121 does not exist or hardly exists between the patterns PA is formed in the upper surface of the substrate W. FIG. Therefore, by dissolving the precipitated sublimable substance solid 121 in the pre-drying treatment liquid and then depositing the sublimable substance solid 121 again, even if the substrate W has the pattern PA with the interval G1 of 30 nm or less, It is possible to reduce the collapse rate of the pattern PA.

次に、乾燥前処理液膜120の厚みの変化について説明する。 Next, changes in the thickness of the pre-drying treatment liquid film 120 will be described.

図14は、乾燥前処理液から昇華性物質の固体121が析出するまでの基板Wの上面上の乾燥前処理液膜120の厚みの時間的変化を示すグラフである。図14中の差し込み図は、図14中のその他の部分と縦横比が異なる。 FIG. 14 is a graph showing temporal changes in the thickness of the pre-drying treatment liquid film 120 on the upper surface of the substrate W until the sublimable solid 121 is deposited from the pre-drying treatment liquid. The inset in FIG. 14 has a different aspect ratio than the rest of FIG.

図14中の複数の曲線(実線の曲線、一点鎖線の曲線、破線の曲線)は、昇華性物質の濃度が異なる複数の乾燥前処理液を用いたときの測定値を示す膜厚曲線である。昇華性物質の濃度を除き、各測定の条件は同一である。図14に示すように、昇華性物質の濃度がいずれの値であっても、乾燥前処理液から昇華性物質の固体121を析出させるときは、乾燥前処理液膜120の厚みが時間の経過に伴って減少している。 A plurality of curves (a solid line curve, a dashed line curve, and a dashed line curve) in FIG. 14 are film thickness curves showing measured values when using a plurality of drying pretreatment liquids having different sublimation substance concentrations. . The conditions for each measurement were the same except for the concentration of the sublimable substance. As shown in FIG. 14, regardless of the concentration of the sublimable substance, when the solid 121 of the sublimable substance is deposited from the pre-drying treatment liquid, the thickness of the pre-drying treatment liquid film 120 increases with the passage of time. decreases with

図14では、乾燥前処理液膜120の厚みが時刻T1までしか測定されていない。これは、時刻T1で昇華性物質の固体121が析出したためである。つまり、乾燥前処理液は透明であるのに対して、昇華性物質の固体121の透明度は、乾燥前処理液の透明度よりも低い。そのため、昇華性物質の固体121が析出すると、膜厚測定ユニット91の検出値が大幅に変化し、乾燥前処理液膜120の厚みを測定できなくなる。 In FIG. 14, the thickness of the pre-drying treatment liquid film 120 is measured only up to time T1. This is because the sublimable solid 121 precipitated at time T1. In other words, while the pre-drying treatment liquid is transparent, the transparency of the sublimable solid 121 is lower than the transparency of the pre-drying treatment liquid. Therefore, when the sublimable solid 121 precipitates, the value detected by the film thickness measurement unit 91 changes significantly, and the thickness of the pre-drying treatment liquid film 120 cannot be measured.

昇華性物質の固体121が析出すると、膜厚測定ユニット91の検出値が大幅に変化するので、コントローラ3は、膜厚測定ユニット91の検出値を監視することにより、昇華性物質の固体121が析出したか否かを判定できる。さらに、昇華性物質の固体121が析出する直前の乾燥前処理液膜120の厚みは、昇華性物質の固体121が析出した直後の昇華性物質の固体121の厚みに実質的に等しい。したがって、コントローラ3は、乾燥前処理液膜120の厚みを測定することにより、昇華性物質の固体121の厚みも測定できる。 When the solid sublimation substance 121 precipitates, the value detected by the film thickness measurement unit 91 changes significantly. It can be determined whether or not it has precipitated. Further, the thickness of the dry pretreatment liquid film 120 immediately before the solid sublimation substance 121 precipitates is substantially equal to the thickness of the solid sublimation substance 121 immediately after the solid sublimation substance 121 precipitates. Therefore, by measuring the thickness of the pre-drying treatment liquid film 120 , the controller 3 can also measure the thickness of the sublimable substance solid 121 .

また、図14に示すように、乾燥前処理液の膜厚は、昇華性物質の濃度がいずれの値であっても、急激に減少し、その後、緩やかに減少している。乾燥前処理液膜120の厚みが急激に減少している期間は、乾燥前処理液膜120の厚みも膜厚減少速度も、昇華性物質の濃度が異なる複数の乾燥前処理液において殆ど差がない。つまり、経過時間が同じであれば、昇華性物質の濃度にかかわらず、概ね同じ減少速度で乾燥前処理液膜120の厚みが減少している。 Further, as shown in FIG. 14, the film thickness of the pre-drying treatment liquid rapidly decreased and then gradually decreased regardless of the concentration of the sublimable substance. During the period in which the thickness of the pre-drying treatment liquid film 120 is rapidly reduced, there is almost no difference in the thickness of the pre-drying treatment liquid film 120 and the film thickness reduction rate among a plurality of pre-drying treatment liquids having different sublimation substance concentrations. do not have. That is, if the elapsed time is the same, the thickness of the pre-drying treatment liquid film 120 decreases at approximately the same rate of decrease regardless of the concentration of the sublimable substance.

これに対して、図14中の差し込み図に示すように、乾燥前処理液膜120の厚みが緩やかに減少している期間は、膜厚減少速度は、昇華性物質の濃度が異なる複数の乾燥前処理液において差が見られる。これは、昇華性物質の濃度が変わると、乾燥前処理液の粘性が変わるためであると考えられる。 On the other hand, as shown in the inset in FIG. 14, during the period in which the thickness of the pre-drying treatment liquid film 120 is gradually decreasing, the film thickness reduction speed A difference is seen in the pretreatment liquid. It is considered that this is because the viscosity of the pre-drying treatment liquid changes when the concentration of the sublimable substance changes.

詳しくは、乾燥前処理液中の昇華性物質の濃度が高いほど、乾燥前処理液の粘度が高くなる。乾燥前処理液の粘度が高いほど、基板Wの回転による遠心力によって基板W外に排出されにくい。そのため、乾燥前処理液中の昇華性物質の濃度が高いほど、グラフの傾きが小さくなる。つまり、乾燥前処理液中の昇華性物質の濃度が高いほど、乾燥前処理液膜120の厚みが緩やかに減少している期間における膜厚減少速度は小さくなる。そのため、図14中の差し込み図では、実線に示す乾燥前処理液中の昇華性物質の濃度が最も低く、破線に示す乾燥前処理液中の昇華性物質の濃度が次に低く、一点鎖線に示す乾燥前処理液中の昇華性物質の濃度が最も高い。すなわち、膜厚減少速度と乾燥前処理液中の昇華性物質の濃度との間には相関関係がある。 Specifically, the higher the concentration of the sublimable substance in the pre-drying treatment liquid, the higher the viscosity of the pre-drying treatment liquid. The higher the viscosity of the pre-drying treatment liquid, the more difficult it is to be discharged to the outside of the substrate W due to the centrifugal force due to the rotation of the substrate W. Therefore, the higher the concentration of the sublimable substance in the pre-drying treatment liquid, the smaller the slope of the graph. That is, the higher the concentration of the sublimable substance in the pre-drying treatment liquid, the lower the film thickness reduction rate during the period in which the thickness of the pre-drying treatment liquid film 120 is gradually reduced. Therefore, in the inset of FIG. 14, the concentration of the sublimable substance in the pre-drying treatment liquid indicated by the solid line is the lowest, the concentration of the sublimable substance in the pre-drying treatment liquid indicated by the dashed line is the second lowest, and the one-dot chain line indicates The concentration of the sublimable substance in the drying pretreatment liquid shown is the highest. That is, there is a correlation between the film thickness reduction rate and the concentration of the sublimable substance in the pre-drying treatment liquid.

したがって、昇華性物質の濃度が異なる複数の乾燥前処理液膜120の膜厚減少速度を事前に測定し、基準データSDとして準備しておけば、基板W上の乾燥前処理液膜120の厚みを監視することで、膜厚減少速度に基づいて基板W上の乾燥前処理液中の昇華性物質の濃度を推定できる。基準データSDは、たとえば、コントローラ3の主記憶装置3cに記憶されている(図8を参照)。主記憶装置3cに記憶された基準データSDは、基板処理中に基板W上の乾燥前処理液膜120の厚みを監視して得られた膜厚減少速度と比較するために随時参照される。 Therefore, if the thickness reduction rates of a plurality of pre-drying treatment liquid films 120 having different sublimation substance concentrations are measured in advance and prepared as reference data SD, the thickness of the pre-drying treatment liquid film 120 on the substrate W is By monitoring , the concentration of the sublimable substance in the pre-drying treatment liquid on the substrate W can be estimated based on the film thickness reduction rate. The reference data SD is stored, for example, in the main storage device 3c of the controller 3 (see FIG. 8). The reference data SD stored in the main storage device 3c is referred to at any time for comparison with the thickness reduction rate obtained by monitoring the thickness of the pre-drying treatment liquid film 120 on the substrate W during substrate processing.

昇華性物質の固体121が析出する前の乾燥前処理液膜120の厚みが同じであれば、昇華性物質の固体121の厚みは、昇華性物質の濃度の上昇に伴って増加し、昇華性物質の濃度の低下に伴って減少する。したがって、乾燥前処理液膜120の厚みを測定すると共に、昇華性物質の実際の濃度を推定することにより、昇華性物質の固体121が析出する前に、昇華性物質の固体121の厚みを推定できる。 If the thickness of the pre-drying pretreatment liquid film 120 before deposition of the sublimable substance solid 121 is the same, the thickness of the sublimable substance solid 121 increases as the concentration of the sublimable substance increases. It decreases with decreasing concentration of the substance. Therefore, by measuring the thickness of the pre-drying treatment liquid film 120 and estimating the actual concentration of the sublimable substance, the thickness of the solid sublimable substance 121 is estimated before the solid sublimable substance 121 precipitates. can.

図15は、膜厚監視工程の第1例の流れを示すフローチャートである。以下では、図2および図15を参照する。膜厚監視工程は、たとえば、最初の第1析出工程(ステップS7)と並行して実行される(図9を参照)。すなわち、膜厚監視工程は、昇華性物質の固体121を最初に析出させるときだけに行われる。 FIG. 15 is a flow chart showing the flow of the first example of the film thickness monitoring process. In the following, reference is made to FIGS. 2 and 15. FIG. The film thickness monitoring step is executed in parallel with the first deposition step (step S7), for example (see FIG. 9). That is, the film thickness monitoring step is performed only when the sublimable solid 121 is deposited first.

乾燥前処理液膜120の厚みの測定を開始するとき、コントローラ3は、最初の第1析出工程(析出工程)が開始されているか否かを判定する(図15のステップS21)。最初の第1析出工程が開始されたか否かの判断は、たとえば、乾燥前処理液バルブ41が開いているか否か、すなわち、乾燥前処理液の吐出が停止されているか否かに基づいて行われる。 When starting to measure the thickness of the pre-drying treatment liquid film 120, the controller 3 determines whether or not the first deposition step (deposition step) has started (step S21 in FIG. 15). Whether or not the first deposition step has started is determined based on, for example, whether the pre-drying treatment liquid valve 41 is open, that is, whether the discharge of the pre-drying treatment liquid is stopped. will be

第1析出工程が開始されていない場合(図15のステップS21でNo)、すなわち、乾燥前処理液の吐出が停止されていない場合、コントローラ3は、所定時間経過後に、第1析出工程が開始されているか否かを判断する(図15のステップS21)。第1析出工程が開始されていれば(図15のステップS21でYes)、すなわち、乾燥前処理液の吐出が停止されていれば、コントローラ3は、膜厚測定ユニット91に乾燥前処理液膜120の膜厚の測定を開始させる(膜厚測定工程、図15のステップS22)。 When the first deposition process has not started (No in step S21 of FIG. 15), that is, when the discharge of the pre-drying treatment liquid has not been stopped, the controller 3 starts the first deposition process after a predetermined time has elapsed. It is determined whether or not it is set (step S21 in FIG. 15). If the first deposition step has started (Yes in step S21 of FIG. 15), that is, if the discharge of the pre-drying treatment liquid has been stopped, the controller 3 causes the film thickness measurement unit 91 to detect the film thickness of the pre-drying treatment liquid. Measurement of the film thickness of 120 is started (film thickness measurement step, step S22 in FIG. 15).

膜厚測定ユニット91が乾燥前処理液膜120の厚みを測定している間、コントローラ3は、乾燥前処理液膜120の厚みに基づいて乾燥前処理液膜120の膜厚減少速度も測定する(膜厚減少速度測定工程)。 While the film thickness measurement unit 91 is measuring the thickness of the pre-drying treatment liquid film 120, the controller 3 also measures the thickness reduction rate of the pre-drying treatment liquid film 120 based on the thickness of the pre-drying treatment liquid film 120. (Thickness reduction rate measurement step).

適切な膜厚減少速度の範囲を表す基準速度範囲は、乾燥前処理液の液膜中の適切な昇華性物質の濃度を表す基準濃度範囲および基準データSDに基づいて、レシピで指定されている。コントローラ3は、乾燥前処理液膜120中の昇華性物質の濃度が飽和濃度に達する前に、膜厚減少速度が適切であるか、つまり、膜厚減少速度が、基準速度範囲内であるか否かを判断する(減少速度判定工程、図15のステップS23)。これにより、実質的に、乾燥前処理液膜120中の昇華性物質の固体の濃度が基準濃度範囲内であるか否かを判断することができる(濃度判定工程)。 A reference speed range representing an appropriate film thickness reduction rate range is specified in the recipe based on a reference concentration range representing an appropriate concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid and the reference data SD. . The controller 3 determines whether the film thickness reduction rate is appropriate, that is, whether the film thickness reduction rate is within the reference rate range before the concentration of the sublimable substance in the pre-drying treatment liquid film 120 reaches the saturation concentration. It is determined whether or not (decreasing speed determination step, step S23 in FIG. 15). As a result, it is possible to substantially determine whether or not the solid concentration of the sublimable substance in the pre-drying treatment liquid film 120 is within the reference concentration range (concentration determination step).

膜厚減少速度が適切である場合、つまり、膜厚減少速度が、基準速度範囲の下限値以上であり、基準速度範囲の上限値以下である場合(図15のステップS23でYes)、コントローラ3は、昇華性物質の固体121が最初に析出する第1析出工程(図9のステップS8)で昇華性物質の固体121が析出したか否かを膜厚測定ユニット91の検出値に基づいて判断する(図15のステップS24)。昇華性物質の固体121が析出していなければ(図15のステップS24でNo)、コントローラ3は、所定時間経過後に、膜厚の減少速度が適切であるか否かを再び判断する(図15のステップS23)。 If the film thickness reduction rate is appropriate, that is, if the film thickness reduction rate is equal to or higher than the lower limit value of the reference speed range and equal to or lower than the upper limit value of the reference speed range (Yes in step S23 of FIG. 15), the controller 3 determines whether or not the solid sublimation substance 121 is deposited in the first deposition step (step S8 in FIG. 9) in which the solid sublimation substance 121 is deposited first, based on the detection value of the film thickness measurement unit 91. (step S24 in FIG. 15). If the solid sublimation substance 121 has not precipitated (No in step S24 of FIG. 15), the controller 3 determines again whether or not the rate of decrease in film thickness is appropriate after a predetermined period of time has passed (FIG. 15). step S23).

昇華性物質の固体121が析出していれば(図15のステップS24でYes)、コントローラ3は、昇華性物質の固体121が析出する直前の、すなわち乾燥前処理液膜120中の昇華性物質の濃度が飽和濃度に達したときの膜厚測定ユニット91の測定値に基づいて、昇華性物質の固体121の厚みが適切であるかを判定する。つまり、コントローラ3は、昇華性物質の固体121の厚みが、基準厚み範囲の下限値を超えており、基準厚み範囲の上限値未満であるか否かを判断する(厚み判定工程、図15のステップS25)。 If the sublimable substance solid 121 has precipitated (Yes in step S24 of FIG. 15), the controller 3 controls the sublimable substance in the pre-drying treatment liquid film 120 immediately before the sublimable substance solid 121 precipitates. It is determined whether the thickness of the sublimable solid 121 is appropriate based on the measurement value of the film thickness measurement unit 91 when the concentration of has reached the saturation concentration. That is, the controller 3 determines whether or not the thickness of the sublimable solid 121 exceeds the lower limit value of the reference thickness range and is less than the upper limit value of the reference thickness range (thickness determination step, in FIG. 15). step S25).

昇華性物質の固体121の厚みが適切であれば(図15のステップS25でYes)、コントローラ3は、膜厚測定ユニット91に乾燥前処理液膜120の厚みの測定を停止させる(図15のステップS26)。昇華性物質の固体121の厚みが適切でなければ(図15のステップS25でNo)、コントローラ3は、警報装置100C(図8参照)に警報を発生させる(第2異常報知工程、図15のステップS27)。その後、膜厚測定ユニット91による乾燥前処理液膜120の厚みの測定が停止される(図15のステップS26)。 If the thickness of the sublimable substance solid 121 is appropriate (Yes in step S25 in FIG. 15), the controller 3 causes the film thickness measurement unit 91 to stop measuring the thickness of the pre-drying treatment liquid film 120 (see FIG. 15). step S26). If the thickness of the sublimable substance solid 121 is not appropriate (No in step S25 of FIG. 15), the controller 3 causes the alarm device 100C (see FIG. 8) to generate an alarm (second abnormality notification step, FIG. 15 step S27). After that, the measurement of the thickness of the pre-drying treatment liquid film 120 by the film thickness measurement unit 91 is stopped (step S26 in FIG. 15).

第1流量調整バルブ107Aまたは第2流量調整バルブ107B(図7参照)の故障等の何らかの原因で、昇華性物質の濃度が基準濃度範囲外になっており、膜厚減少速度が基準速度範囲の上限値よりも大きい場合または膜厚減少速度が基準速度範囲の下限値よりも小さい場合(図15のステップS23でNo)、コントローラ3は、警報装置100C(図8参照)に警報を発生させる(第1異常報知工程、図15のステップS28)。 Due to some cause such as a failure of the first flow control valve 107A or the second flow control valve 107B (see FIG. 7), the concentration of the sublimation substance is outside the standard concentration range, and the film thickness reduction speed is outside the standard speed range. If it is larger than the upper limit or if the film thickness reduction rate is smaller than the lower limit of the reference speed range (No in step S23 of FIG. 15), the controller 3 causes the alarm device 100C (see FIG. 8) to generate an alarm (see FIG. 8). First abnormality notification step, step S28 in FIG. 15).

その後、コントローラ3は、昇華性物質の固体121が析出する前に基板Wの上面から乾燥前処理液を除去する乾燥前処理液除去工程を開始する(図15のステップS29)。乾燥前処理液除去工程の詳細は後述する。そして、コントローラ3は、膜厚測定ユニット91に乾燥前処理液の膜厚の測定を停止させる(図15のステップS26)。 After that, the controller 3 starts the pre-drying treatment liquid removing step of removing the pre-drying treatment liquid from the upper surface of the substrate W before the solid 121 of the sublimation substance precipitates (step S29 in FIG. 15). The details of the pre-drying treatment liquid removing step will be described later. Then, the controller 3 causes the film thickness measurement unit 91 to stop measuring the film thickness of the pre-drying treatment liquid (step S26 in FIG. 15).

基板処理が中断されない場合、第1析出工程(図9のステップS7)および膜厚監視工程が実行された後、第1溶解工程(図9のステップS8)が開始される。乾燥前処理液が昇華性物質およびIPAの溶液である場合、析出した昇華性物質の固体121を乾燥前処理液に溶解させるために、基板Wの加熱が開始される。そして、第1析出工程および第1溶解工程が所定回数繰り返された後、最終析出工程が実行され、最終的に昇華工程が実行される。図9においてN=0の場合、第1析出工程および第1溶解工程は繰り返されることなく、最終析出工程が実行され、最終的に昇華工程が実行される。 If the substrate processing is not interrupted, the first dissolving step (step S8 in FIG. 9) is started after the first deposition step (step S7 in FIG. 9) and the film thickness monitoring step are performed. When the pre-drying treatment liquid is a solution of the sublimable substance and IPA, the heating of the substrate W is started in order to dissolve the deposited solid 121 of the sublimable substance in the pre-drying treatment liquid. After the first precipitation step and the first dissolution step are repeated a predetermined number of times, the final precipitation step is performed, and finally the sublimation step is performed. When N=0 in FIG. 9, the final precipitation step is performed without repeating the first precipitation step and the first dissolution step, and finally the sublimation step is performed.

すなわち、濃度判定工程において乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内であると判定された場合に、最終析出工程の終了後に昇華工程が実行される。 That is, when it is determined in the concentration determination step that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is within the reference concentration range, the sublimation step is performed after the final precipitation step.

図16は、膜厚監視工程の第1例における乾燥前処理液除去工程の一例について説明するための模式図である。 FIG. 16 is a schematic diagram for explaining an example of the pre-drying treatment liquid removing process in the first example of the film thickness monitoring process.

前述のように、コントローラ3は、乾燥前処理液膜120に含まれる昇華性物質の濃度が適切であるか否かを判断するために、乾燥前処理液膜120の厚みの減少速度を測定する(図15のステップS23)。これは、乾燥前処理液膜120中の昇華性物質の濃度に異常が生じていると、すなわち、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲外であると、最終析出工程(図9のステップS9)で析出する昇華性物質の固体121の厚みが、意図する値よりも大きくまたは小さくなるからである。昇華させる直前の昇華性物質の固体121の厚みが、意図する値よりも大きいまたは小さいと、パターンPAの倒壊率が悪化し得る。 As described above, the controller 3 measures the rate of decrease in the thickness of the pre-drying treatment liquid film 120 in order to determine whether the concentration of the sublimable substance contained in the pre-drying treatment liquid film 120 is appropriate. (Step S23 in FIG. 15). This is because if there is an abnormality in the concentration of the sublimable substance in the pre-drying treatment liquid film 120, that is, if the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is outside the reference concentration range, the final deposition This is because the thickness of the sublimable substance solid 121 deposited in the step (step S9 in FIG. 9) is larger or smaller than the intended value. If the thickness of the sublimable substance solid 121 immediately before sublimation is larger or smaller than the intended value, the collapse rate of the pattern PA may deteriorate.

そこで、コントローラ3は、図16に示す乾燥前処理液除去工程(図15のステップS29)を実施する。図16は、置換液ノズル43が置換液に相当する溶媒を基板Wの上面に向けて吐出している状態を示している。図16は、乾燥前処理液が樟脳およびIPAの溶液であり、溶媒がIPAである例を示している。乾燥前処理液が樟脳およびメタノールの溶液である場合は、IPAに代えてメタノールが置換液ノズル43から吐出される。 Therefore, the controller 3 performs the pre-drying treatment liquid removing step (step S29 in FIG. 15) shown in FIG. FIG. 16 shows a state in which the replacement liquid nozzle 43 is discharging the solvent corresponding to the replacement liquid toward the upper surface of the substrate W. As shown in FIG. FIG. 16 shows an example in which the dry pretreatment liquid is a solution of camphor and IPA and the solvent is IPA. When the drying pretreatment liquid is a solution of camphor and methanol, methanol is discharged from the substitution liquid nozzle 43 instead of IPA.

乾燥前処理液膜120中の昇華性物質の濃度に異常が生じている場合、図16に示すように、コントローラ3は、置換液ノズル43に溶媒を吐出させてもよい。この場合、基板W上の乾燥前処理液が溶媒に置換され、基板Wの上面全域を覆う溶媒の液膜が形成される。したがって、昇華性物質の固体121が析出する前に、昇華性物質の濃度が適切でない乾燥前処理液を基板Wから除去できる。すなわち、濃度判定工程において乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内でないと判定された場合に、第1析出工程において昇華性物質の固体121が析出する前に除去液としての溶媒を基板Wの上面に供給することによって、基板Wの上面から乾燥前処理液を除去する乾燥前処理液除去工程が実行される。 If there is an abnormality in the concentration of the sublimable substance in the pre-drying treatment liquid film 120, the controller 3 may cause the replacement liquid nozzle 43 to eject the solvent, as shown in FIG. In this case, the pre-drying treatment liquid on the substrate W is replaced with the solvent, and a liquid film of the solvent covering the entire upper surface of the substrate W is formed. Therefore, it is possible to remove from the substrate W the pre-drying treatment liquid having an inappropriate concentration of the sublimable substance before the solid 121 of the sublimable substance is deposited. That is, when it is determined in the concentration determining step that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is not within the reference concentration range, the removal liquid is added before the solid 121 of the sublimable substance is precipitated in the first precipitation step. A pre-drying treatment liquid removing step of removing the pre-drying treatment liquid from the upper surface of the substrate W is performed by supplying the solvent as as to the upper surface of the substrate W. As shown in FIG.

このように、乾燥前処理液が樟脳およびIPAの溶液である場合は、乾燥前処理液除去工程において、IPAは、基板Wの上面から乾燥前処理液を除去する除去液としての役割を果たす。乾燥前処理液が樟脳およびメタノールの溶液である場合は、乾燥前処理液除去工程において、メタノールが除去液としての役割を果たす。除去液は、乾燥前処理液に用いられる溶媒と同種の液体であることが好ましいが、これに限られない。除去液は、乾燥前処理液と相溶性を有していれば、乾燥前処理液の溶媒と異なる種類の液体であってもよい。 Thus, when the pre-drying treatment liquid is a solution of camphor and IPA, IPA serves as a removal liquid for removing the pre-drying treatment liquid from the upper surface of the substrate W in the pre-drying treatment liquid removing step. When the pre-drying treatment liquid is a solution of camphor and methanol, methanol serves as the removal liquid in the pre-drying treatment liquid removing step. The removal liquid is preferably the same type of liquid as the solvent used in the pre-drying treatment liquid, but is not limited to this. The removing liquid may be a liquid different from the solvent of the pre-drying treatment liquid as long as it is compatible with the pre-drying treatment liquid.

コントローラ3は、第1析出工程を中断して乾燥前処理液除去工程(図15のステップS29)を開始した後、コントローラ3は、膜厚測定ユニット91に乾燥前処理液膜120の厚みの測定を停止させる(図15のステップS26)。 After the controller 3 interrupts the first deposition step and starts the pre-drying treatment liquid removing step (step S29 in FIG. 15), the controller 3 causes the film thickness measurement unit 91 to measure the thickness of the pre-drying treatment liquid film 120. is stopped (step S26 in FIG. 15).

本実施形態の基板処理では、第1析出工程において昇華性物質の固体121が析出し始めたときは、基板Wの上面に乾燥前処理液が残っている。第1溶解工程では、この乾燥前処理液に昇華性物質の固体121の少なくとも一部を溶解させる。その後、最終析出工程において、再び、乾燥前処理液から溶媒を蒸発させる。これにより、溶媒の含有量が減少し、昇華性物質の固体121が基板Wの上面上に析出する。その後、昇華性物質の固体121を昇華させ、基板Wから除去する。このようにして、乾燥前処理液が基板Wから除去され、基板Wが乾燥する。 In the substrate processing of this embodiment, the pre-drying treatment liquid remains on the upper surface of the substrate W when the sublimable solid 121 starts to precipitate in the first deposition step. In the first dissolving step, at least part of the sublimable substance solid 121 is dissolved in this drying pretreatment liquid. After that, in the final precipitation step, the solvent is again evaporated from the pre-drying treatment liquid. As a result, the content of the solvent is reduced, and a sublimable solid 121 is deposited on the upper surface of the substrate W. As shown in FIG. Thereafter, the sublimable substance solid 121 is sublimated and removed from the substrate W. FIG. In this manner, the pre-drying treatment liquid is removed from the substrate W, and the substrate W is dried.

昇華性物質の固体121を最初に析出させる前は、パターンPAの間だけでなく、パターンPAの上方にも乾燥前処理液が存在している。半導体ウエハやFPD用基板などの基板Wでは、パターンPAの間隔G1が狭い。パターンPAの間隔G1が狭い場合、パターンPAの間にある乾燥前処理液は、乾燥前処理液のバルク、つまり、乾燥前処理液膜120の表面(上面)からパターンPAの上面までの範囲に位置する乾燥前処理液とは性質が異なる。両者の性質の違いは、パターンPAの間隔G1が狭くなるにしたがって顕著になる。 Before the sublimable solid 121 is deposited for the first time, the drying pretreatment liquid exists not only between the patterns PA but also above the patterns PA. In a substrate W such as a semiconductor wafer or an FPD substrate, the interval G1 between the patterns PA is narrow. When the interval G1 between the patterns PA is narrow, the pre-drying treatment liquid between the patterns PA is in the bulk of the pre-drying treatment liquid, that is, in the range from the surface (upper surface) of the pre-drying treatment liquid film 120 to the upper surface of the pattern PA. It differs in properties from the drying pretreatment liquid located. The difference between the two properties becomes more pronounced as the interval G1 between the patterns PA becomes narrower.

パターンPAの間隔G1が狭いと、昇華性物質の固体121を最初に析出させたときに、乾燥前処理液のバルクだけに昇華性物質の固体121が析出し、昇華性物質の固体121がパターンPAの間に存在しないまたは殆ど存在しない不完全析出領域が基板Wの上面内に形成される場合がある。この場合、パターンPAの間の乾燥前処理液の表面張力がパターンPAの側面に加わるので、昇華性物質の固体121を昇華させているときに、不完全析出領域内のパターンPAが倒壊し得る。これは、パターンPAの倒壊率を上昇(悪化)させる原因となる。 When the interval G1 of the pattern PA is narrow, when the sublimable solid 121 is deposited first, the sublimable solid 121 is deposited only in the bulk of the drying pretreatment liquid, and the sublimable solid 121 is deposited in the pattern. A non-existent or almost non-existent under-deposited region between the PAs may form in the top surface of the substrate W. In this case, the surface tension of the dry pretreatment liquid between the patterns PA is applied to the side surfaces of the pattern PA, so the pattern PA in the incompletely precipitated region may collapse when sublimating the solid 121 of the sublimable substance. . This causes an increase (worsening) in the collapse rate of the pattern PA.

これに対して、析出した昇華性物質の固体121を乾燥前処理液に溶解させた後に、再び昇華性物質の固体121を析出させると、パターンPAの間の空間等の狭い空間にも昇華性物質の固体121の結晶核が形成される。したがって、析出した昇華性物質の固体121を乾燥前処理液に溶解させた後に、再び昇華性物質の固体121を析出させれば、パターンPAの間隔G1が狭い場合であっても、不完全析出領域の発生を防止したり、その面積を減らしたりすることができる。これにより、パターンPAの倒壊率を低下させることができる。 On the other hand, when the precipitated sublimable substance solid 121 is dissolved in the pre-drying treatment liquid, and then the sublimable substance solid 121 is precipitated again, sublimation is possible even in a narrow space such as the space between the patterns PA. Crystal nuclei of a solid 121 of matter are formed. Therefore, by dissolving the deposited sublimable substance solid 121 in the pre-drying treatment liquid and then depositing the sublimable substance solid 121 again, even if the interval G1 of the pattern PA is narrow, incomplete deposition can occur. It is possible to prevent the generation of the area or reduce the area. Thereby, the collapse rate of the pattern PA can be reduced.

昇華性物質の固体121の厚みは、昇華性物質の飽和濃度に達したときの乾燥前処理液膜120の厚みと実質的に同一である。乾燥前処理液膜120中の昇華性物質の濃度が昇華性物質の飽和濃度に達すると、その直後に昇華性物質の固体121が析出する。そのため、乾燥前処理液膜120中の昇華性物質の濃度が昇華性物質の飽和濃度に達する前に、乾燥前処理液膜120中の昇華性物質の濃度を知ることができれば、昇華性物質の固体121の厚みを予測し、適切でない厚みの昇華性物質の固体121の形成を避けることができる。 The thickness of the sublimable substance solid 121 is substantially the same as the thickness of the dry pretreatment liquid film 120 when the saturated concentration of the sublimable substance is reached. When the concentration of the sublimable substance in the dry pretreatment liquid film 120 reaches the saturation concentration of the sublimable substance, the sublimable substance solid 121 precipitates immediately after that. Therefore, if the concentration of the sublimable substance in the pre-drying treatment liquid film 120 can be known before the concentration of the sublimable substance in the pre-drying treatment liquid film 120 reaches the saturation concentration of the sublimable substance, The thickness of the solid 121 can be predicted and the formation of an improperly thick sublimable solid 121 can be avoided.

一般に、液体中の物質の濃度を測定するためには、濃度測定用の機器(図示せず)を液体に接触させる必要がある。基板W上に形成される乾燥前処理液膜120は、比較的薄いため、濃度測定用の機器を基板Wの上面に接触させることなく乾燥前処理液膜120に接触させることは困難である。そのため、基板の上面に形成されたパターンPAが損傷するおそれがある。 Generally, in order to measure the concentration of a substance in a liquid, it is necessary to bring a concentration measuring instrument (not shown) into contact with the liquid. Since the pre-drying treatment liquid film 120 formed on the substrate W is relatively thin, it is difficult to contact the pre-drying treatment liquid film 120 without contacting the upper surface of the substrate W with a device for measuring the concentration. Therefore, the pattern PA formed on the upper surface of the substrate may be damaged.

前述したように、本願発明者らは、膜厚減少速度と乾燥前処理液膜120中の昇華性物質の濃度との間には相関関係があることを見出した。本実施形態では、最初の第1析出工程において昇華性物質の固体121が析出する前に、乾燥前処理液膜120の膜厚減少速度に基づいて、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内であるか否かが判定される(濃度判定工程)。 As described above, the inventors of the present application have found that there is a correlation between the film thickness reduction rate and the concentration of the sublimable substance in the pre-drying treatment liquid film 120 . In the present embodiment, the sublimable substance in the pre-drying treatment liquid film 120 is determined based on the film thickness reduction rate of the pre-drying treatment liquid film 120 before the sublimable substance solid 121 precipitates in the first deposition step. is within the reference density range (density determination step).

詳しくは、膜厚測定ユニット91によって乾燥前処理液膜120の厚みを所定時間測定し続けることによって、第1析出工程における乾燥前処理液膜120の厚み減少速度を測定することができる。そのため、コントローラ3は、膜厚測定ユニット91が測定した膜厚減少速度が基準速度範囲内であるか否かを判定することによって、実質的に、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内であるか否かを判定することができる。これにより、困難な測定を回避しつつ、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内であるか否かを判定することができる。 Specifically, the thickness reduction rate of the pre-drying treatment liquid film 120 in the first deposition step can be measured by continuously measuring the thickness of the pre-drying treatment liquid film 120 by the film thickness measurement unit 91 for a predetermined time. Therefore, the controller 3 determines whether or not the film thickness reduction speed measured by the film thickness measurement unit 91 is within the reference speed range, thereby substantially reducing the amount of the sublimable substance in the pre-drying treatment liquid film 120. It can be determined whether the density is within the reference density range. This makes it possible to determine whether or not the concentration of the sublimable substance in the dry pretreatment liquid film 120 is within the reference concentration range while avoiding difficult measurements.

第1溶解工程および最終析出工程において蒸発する溶媒の量は、予測可能であるため、濃度判定工程が第1析出工程で実行された場合であっても、第1析出工程中の乾燥前処理液膜120中の昇華性物質の濃度に基づいて基板Wの上面に形成される昇華性物質の固体121の厚みが適切であるか否かを判定することが可能である。 Since the amount of solvent that evaporates in the first dissolving step and the final precipitation step is predictable, even if the concentration determination step is performed in the first precipitation step, the drying pretreatment liquid during the first precipitation step It is possible to determine whether the thickness of the sublimable substance solid 121 formed on the upper surface of the substrate W is appropriate based on the concentration of the sublimable substance in the film 120 .

そのため、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内であると判定された場合には、最終析出工程の終了後に適切な厚みの昇華性物質の固体121が形成される。したがって、基板処理を続行して昇華性物質の固体121を昇華させれば、基板Wの上面におけるパターンPAの倒壊率を低減することができる。 Therefore, when it is determined that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is within the reference concentration range, the sublimable substance solid 121 having an appropriate thickness is formed after the final precipitation step is completed. . Therefore, if the substrate processing is continued to sublimate the solid 121 of the sublimable substance, the collapsing rate of the pattern PA on the upper surface of the substrate W can be reduced.

一方、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内でないと判定された場合に、昇華性物質の固体121が析出する前に、除去液によって、基板Wの上面から昇華性物質を除去することができる(乾燥前処理液除去工程)。これにより、適切でない厚みの昇華性物質の固体121が基板Wの上面に形成されることを未然に防ぐことができる。よって、パターンPAの倒壊率の上昇を抑制することができる。また、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲内でないと判定された場合であっても、基板Wの上面上の乾燥前処理液が除去される。そのため、基板Wを再利用することができる。 On the other hand, when it is determined that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is not within the reference concentration range, the removing liquid sublimates from the upper surface of the substrate W before the solid 121 of the sublimable substance precipitates. substances can be removed (pre-drying treatment liquid removing step). As a result, it is possible to prevent the sublimable solid 121 having an inappropriate thickness from being formed on the upper surface of the substrate W in advance. Therefore, it is possible to suppress an increase in the collapse rate of the pattern PA. Further, even if it is determined that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is not within the reference concentration range, the pre-drying treatment liquid on the upper surface of the substrate W is removed. Therefore, the substrate W can be reused.

また、本実施形態では、基準データSDと、第1析出工程中に測定された膜厚減少速度とを比較することによって、乾燥前処理液膜120中の昇華性物質の濃度が推定される。そのため、第1析出工程中に、乾燥前処理液膜120中の昇華性物質の濃度を容易に推定することができる。 Further, in this embodiment, the concentration of the sublimable substance in the pre-drying pretreatment liquid film 120 is estimated by comparing the reference data SD with the film thickness reduction rate measured during the first deposition step. Therefore, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 can be easily estimated during the first precipitation step.

また、本実施形態では、濃度判定工程において乾燥前処理液膜120中の前記昇華性物質の濃度が基準濃度範囲内でないと判定された場合に、操作者に対して異常が報知される(第1異常報知工程)。そのため、操作者は、異常についての報知に基づいて、基板処理を続行するか否かの判断を適切なタイミングで行うことができる。 Further, in the present embodiment, when it is determined in the concentration determining step that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is not within the reference concentration range, an abnormality is notified to the operator (second 1 anomaly notification process). Therefore, the operator can determine at appropriate timing whether or not to continue the substrate processing based on the notification of the abnormality.

また、本実施形態では、溶媒の蒸発によって昇華性物質の固体121が析出する直前に、膜厚測定ユニット91によって、乾燥前処理液膜120の厚みが測定される(膜厚測定工程)。そして、コントローラ3は、膜厚測定工程において測定された乾燥前処理液膜120の厚みが昇華性物質の固体121の基準厚み範囲内であるか否かを判定する(厚み判定工程)。 Further, in the present embodiment, the thickness of the pre-drying treatment liquid film 120 is measured by the film thickness measurement unit 91 immediately before the solid 121 of the sublimation substance is precipitated by evaporation of the solvent (film thickness measurement step). Then, the controller 3 determines whether or not the thickness of the pre-drying treatment liquid film 120 measured in the film thickness measurement process is within the reference thickness range of the sublimable solid 121 (thickness determination process).

そのため、乾燥前処理液膜120中の昇華性物質の濃度が昇華性物質の飽和濃度に達したときの乾燥前処理液膜120の厚みが昇華性物質の固体121の基準厚み範囲内であるか否かを判定することによって、基板Wの上面に形成された昇華性物質の固体121の厚みが適切であるか否かを判定することができる。 Therefore, whether the thickness of the pre-drying treatment liquid film 120 when the concentration of the sublimation substance in the pre-drying treatment liquid film 120 reaches the saturation concentration of the sublimation substance is within the reference thickness range of the solid 121 of the sublimation substance. By determining whether or not, it is possible to determine whether or not the thickness of the sublimable substance solid 121 formed on the upper surface of the substrate W is appropriate.

基板Wの上面に形成された昇華性物質の固体121の厚みが適切である場合には、最終析出工程の終了後に、適切な厚みの昇華性物質の固体121が形成される。そのため、基板処理を続行して昇華性物質の固体121を昇華されば、パターンPAの倒壊率が低減された基板Wを得ることができる。 If the thickness of the sublimable solid 121 formed on the upper surface of the substrate W is appropriate, the appropriate thickness of the sublimable solid 121 is formed after the final deposition step is completed. Therefore, if the substrate processing is continued to sublimate the solid 121 of the sublimable substance, it is possible to obtain the substrate W in which the collapse rate of the pattern PA is reduced.

一方、基板Wの上面に形成された昇華性物質の固体121の厚みが適切でない場合には、基板処理を中断することで、パターンPAの倒壊率が上昇した基板Wの発生を抑制できる。 On the other hand, when the thickness of the solid sublimation substance 121 formed on the upper surface of the substrate W is not appropriate, the substrate processing is interrupted, thereby suppressing the generation of the substrate W in which the collapse rate of the pattern PA is increased.

本実施形態では、膜厚測定工程において測定された膜厚が厚み判定工程において前記基準厚み範囲内でないと判定された場合に、操作者に対して異常が報知される(第2異常報知工程)。そのため、操作者は、異常についての報知に基づいて、基板処理を続行するか否かの判断を適切なタイミングで行うことができる。 In the present embodiment, when the film thickness measured in the film thickness measuring step is determined not to be within the reference thickness range in the thickness determining step, an abnormality is notified to the operator (second abnormality notifying step). . Therefore, the operator can determine at appropriate timing whether or not to continue the substrate processing based on the notification of the abnormality.

本実施形態では、第1析出工程において、乾燥前処理液の加熱によって乾燥前処理液から溶媒を蒸発させるのではなく、乾燥前処理液を室温以下の温度に維持しながら、乾燥前処理液から溶媒を蒸発させる。この場合、乾燥前処理液の表面で昇華性物質の濃度が局所的に上昇し、乾燥前処理液の表面またはその近傍で昇華性物質の固体121が析出する(室温析出工程)。それと同時に、乾燥前処理液が昇華性物質の固体121とパターンPAの上面との間に残る。昇華性物質の固体121は、この乾燥前処理液に溶解する。 In the present embodiment, in the first precipitation step, instead of evaporating the solvent from the pre-drying treatment liquid by heating the pre-drying treatment liquid, while maintaining the temperature of the pre-drying treatment liquid at room temperature or lower, Evaporate the solvent. In this case, the concentration of the sublimable substance locally increases on the surface of the pre-drying treatment liquid, and solid 121 of the sublimable substance precipitates on or near the surface of the pre-drying treatment liquid (room temperature deposition step). At the same time, the dry pretreatment liquid remains between the sublimable substance solid 121 and the upper surface of the pattern PA. The sublimable substance solid 121 dissolves in this drying pretreatment liquid.

これに対して、第1析出工程において、乾燥前処理液の加熱によって乾燥前処理液から溶媒を蒸発させると、乾燥前処理液の温度が室温よりも高い値まで上昇すると共に、乾燥前処理液における昇華性物質の濃度が上昇する。昇華性物質の濃度を上昇させた後に、乾燥前処理液の自然冷却または強制冷却によって昇華性物質の固体121を析出させると、乾燥前処理液のバルクの大部分または全体が昇華性物質の固体121に変化する場合がある。 On the other hand, in the first deposition step, when the pre-drying treatment liquid is heated to evaporate the solvent from the pre-drying treatment liquid, the temperature of the pre-drying treatment liquid rises to a value higher than room temperature, and the pre-drying treatment liquid The concentration of sublimable substances in increases. After increasing the concentration of the sublimable substance, if the sublimable substance solid 121 is precipitated by natural cooling or forced cooling of the drying pretreatment liquid, most or all of the bulk of the drying pretreatment liquid becomes the sublimable substance solid. may change to 121.

パターンPAの上方に乾燥前処理液が残っていないと、昇華性物質の固体121が効率的に乾燥前処理液に溶解しない。パターンPAの間に乾燥前処理液が残っていたとしても、パターンPAの間の乾燥前処理液に昇華性物質の固体121が溶解する効率は、乾燥前処理液のバルクに昇華性物質の固体121が溶解する効率に劣る。したがって、乾燥前処理液のバルクの一部を液体に維持することにより、昇華性物質の固体121を効率的に乾燥前処理液に溶解させることができる。 If the pre-drying treatment liquid does not remain above the pattern PA, the sublimable substance solid 121 will not efficiently dissolve in the pre-drying treatment liquid. Even if the dry pretreatment liquid remains between the patterns PA, the efficiency of dissolving the sublimable substance solid 121 in the dry pretreatment liquid between the patterns PA is the same as the bulk of the dry pretreatment liquid. The efficiency of dissolving 121 is inferior. Therefore, by maintaining a portion of the bulk of the pre-drying treatment liquid in the liquid state, the sublimable solid 121 can be efficiently dissolved in the pre-drying treatment liquid.

また、本実施形態では、第1溶解工程において、基板Wの上面上の乾燥前処理液を加熱して、乾燥前処理液の温度を室温よりも高い値まで上昇させる。乾燥前処理液への昇華性物質の固体121の溶解は、乾燥前処理液の温度上昇によって促進される。これにより、昇華性物質の固体121を効率的に乾燥前処理液に溶解させることができる。さらに、昇華性物質の固体121の強制的な溶解は、加熱の開始に伴って開始されるので、加熱を開始するタイミングを変更することで、任意の時期に昇華性物質の固体121の強制的な溶解を開始できる。 Further, in the present embodiment, in the first dissolving step, the pre-drying treatment liquid on the upper surface of the substrate W is heated to raise the temperature of the pre-drying treatment liquid to a value higher than room temperature. The dissolution of the sublimable substance solid 121 in the pre-drying treatment liquid is promoted by the temperature rise of the pre-drying treatment liquid. Thereby, the solid 121 of the sublimable substance can be efficiently dissolved in the pre-drying treatment liquid. Furthermore, since the forcible melting of the sublimable solid 121 starts with the start of heating, by changing the timing of starting heating, the sublimable solid 121 can be forcibly melted at an arbitrary time. can initiate rapid dissolution.

また、本実施形態では、第1溶解工程において、昇華性物質の固体121および乾燥前処理液を、基板Wの上方から直接的に加熱するのではなく、基板Wを介して間接的に加熱する(間接加熱工程)。基板Wの上方から昇華性物質の固体121および乾燥前処理液を加熱すると、乾燥前処理液の表面にある昇華性物質の固体121の一部が昇華してしまう場合がある。この場合、昇華性物質の一部が無駄になる上に、最終的な昇華性物質の固体121の厚みが意図する値よりも小さくなる。基板Wを介して昇華性物質の固体121および乾燥前処理液を加熱すれば、このような昇華性物質の消失を減らすことができる。 Further, in the present embodiment, in the first dissolving step, the sublimable solid 121 and the pre-drying treatment liquid are not directly heated from above the substrate W, but are indirectly heated via the substrate W. (Indirect heating step). When the sublimable substance solid 121 and the pre-drying treatment liquid are heated from above the substrate W, part of the sublimable substance solid 121 on the surface of the pre-drying treatment liquid may sublimate. In this case, part of the sublimable material is wasted, and the thickness of the final sublimable material solid 121 becomes smaller than the intended value. By heating the solid 121 of the sublimable substance and the pre-drying treatment liquid through the substrate W, such disappearance of the sublimable substance can be reduced.

また、本実施形態では、最終析出工程において、基板W上に昇華性物質の固体121を析出させるために、乾燥前処理液を加熱しながら、乾燥前処理液から溶媒を蒸発させる。これにより、高温の乾燥前処理液から昇華性物質の固体121が析出する。乾燥前処理液における昇華性物質の飽和濃度は、乾燥前処理液の温度上昇に伴って上昇する。昇華性物質の固体121に含まれる溶媒の割合は、昇華性物質の飽和濃度の上昇に伴って減少する。昇華性物質の固体121を昇華させるとき、昇華性物質の固体121に含まれる溶媒は、パターンPAを倒壊させる倒壊力を発生させ得る。したがって、溶媒の含有量を減らすことで、パターンPAの倒壊率をさらに低下させることができる。 Further, in the present embodiment, in order to deposit the sublimable solid 121 on the substrate W in the final deposition step, the pre-drying treatment liquid is heated while the solvent is evaporated from the pre-drying treatment liquid. As a result, a sublimable solid 121 is precipitated from the high-temperature pretreatment liquid for drying. The saturation concentration of the sublimable substance in the pre-drying treatment liquid increases as the temperature of the pre-drying treatment liquid rises. The ratio of the solvent contained in the sublimable substance solid 121 decreases as the saturation concentration of the sublimable substance increases. When the solid 121 of the sublimable substance is sublimated, the solvent contained in the solid 121 of the sublimable substance can generate a collapsing force that collapses the pattern PA. Therefore, by reducing the solvent content, the collapse rate of the pattern PA can be further reduced.

また、本実施形態では、第1析出工程において、昇華性物質の固体121を乾燥前処理液膜120の表面に析出させる(液面析出工程)。溶媒が乾燥前処理液から蒸発するとき、気化熱に相当する乾燥前処理液の熱が溶媒と共に雰囲気中に放出され、乾燥前処理液の表面の温度が低下する。昇華性物質の固体121が形成されると、乾燥前処理液から蒸発する溶媒が減少するので、雰囲気中に放出される乾燥前処理液の熱も減少する。それと同時に、雰囲気中の熱が昇華性物質の固体121を介して乾燥前処理液に伝達される。これにより、昇華性物質の固体121と乾燥前処理液との界面の温度が上昇する。したがって、基板W上の乾燥前処理液を強制的に加熱しなくても、昇華性物質の固体121を乾燥前処理液に溶解させることができる(自然溶解工程)。 Further, in the present embodiment, in the first deposition step, the sublimable substance solid 121 is deposited on the surface of the pre-drying treatment liquid film 120 (liquid surface deposition step). When the solvent evaporates from the pre-drying treatment liquid, the heat of the pre-drying treatment liquid corresponding to the heat of vaporization is released into the atmosphere together with the solvent, and the temperature of the surface of the pre-drying treatment liquid decreases. When the sublimable solid 121 is formed, less solvent evaporates from the pre-drying liquid, and thus less heat is released from the pre-drying liquid into the atmosphere. At the same time, heat in the atmosphere is transferred to the pre-drying liquid through the sublimable solid 121 . As a result, the temperature of the interface between the sublimable solid 121 and the pre-drying treatment liquid rises. Therefore, the sublimable substance solid 121 can be dissolved in the pre-drying treatment liquid without forcibly heating the pre-drying treatment liquid on the substrate W (natural dissolution process).

膜厚監視工程は、図15に示すフローチャートに限られない。たとえば、図17には、膜厚監視工程の第2例の流れを示すフローチャートを示す。後述する図20には、膜厚監視工程の第3例の流れを示すフローチャートを示す。後述する図22には、膜厚監視工程の第4例の流れを示すフローチャートを示す。 The film thickness monitoring process is not limited to the flowchart shown in FIG. For example, FIG. 17 shows a flow chart showing the flow of a second example of the film thickness monitoring process. FIG. 20, which will be described later, shows a flowchart showing the flow of a third example of the film thickness monitoring process. FIG. 22, which will be described later, shows a flowchart showing the flow of a fourth example of the film thickness monitoring process.

図17に示す第2例の膜厚監視工程において、第1例の膜厚監視工程(図15を参照)と異なる点は、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高い場合と、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の下限値よりも低い場合とで、異なる工程が開始される点である。 The film thickness monitoring process of the second example shown in FIG. 17 differs from the film thickness monitoring process of the first example (see FIG. 15) in that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is within the reference concentration range. and when the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is lower than the lower limit of the reference concentration range, different processes are started.

第2例の膜厚監視工程では、膜厚減少速度が基準速度範囲の上限値よりも大きい場合または膜厚減少速度が基準速度範囲の下限値よりも小さい場合には(図17のステップS23でNo)、コントローラ3は、警報装置100C(図8参照)に警報を発生させる(第1異常報知工程、図17のステップS28)。その後、コントローラ3は、膜厚減少速度が基準速度範囲の下限値よりも小さいか否かを判定する(図17のステップS31)。 In the film thickness monitoring process of the second example, when the film thickness reduction rate is larger than the upper limit value of the reference speed range or when the film thickness reduction speed is smaller than the lower limit value of the reference speed range (at step S23 in FIG. 17 No), the controller 3 causes the alarm device 100C (see FIG. 8) to generate an alarm (first abnormality notification step, step S28 in FIG. 17). After that, the controller 3 determines whether or not the film thickness reduction speed is smaller than the lower limit of the reference speed range (step S31 in FIG. 17).

膜厚減少速度が基準速度範囲の下限値よりも小さい場合(図17のステップS31でYes)、すなわち、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高い場合、コントローラ3は、基板W上の液膜中からの溶媒の蒸発を抑制する溶媒蒸発抑制工程を開始する(図17のステップS32)。これにより、乾燥前処理液膜120中の昇華性物質の濃度が低減されて基準濃度範囲内に調整される。 If the film thickness reduction rate is smaller than the lower limit of the reference rate range (Yes in step S31 of FIG. 17), that is, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is higher than the upper limit of the reference concentration range. In this case, the controller 3 starts a solvent evaporation suppression process for suppressing evaporation of the solvent from the liquid film on the substrate W (step S32 in FIG. 17). As a result, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is reduced and adjusted within the reference concentration range.

一方、膜厚減少速度が基準速度範囲の上限値よりも大きい場合(図17のステップS31でNo)、すなわち、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の下限値よりも低い場合、コントローラ3は、乾燥前処理液膜120中からの溶媒の蒸発を促進させる溶媒蒸発促進工程を開始する(図17のステップS33)。これにより、乾燥前処理液膜120中の昇華性物質の濃度が増大されて基準濃度範囲内に調整される。 On the other hand, if the film thickness reduction rate is greater than the upper limit of the reference rate range (No in step S31 in FIG. 17), that is, the concentration of the sublimation substance in the pre-drying treatment liquid film 120 is higher than the lower limit of the reference concentration range. is also low, the controller 3 starts a solvent evaporation promotion process for promoting evaporation of the solvent from the pre-drying treatment liquid film 120 (step S33 in FIG. 17). As a result, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is increased and adjusted within the reference concentration range.

溶媒蒸発抑制工程または溶媒蒸発促進工程が開始された後は、図15に示す膜厚監視工程の第1例と同様に、コントローラ3は、膜厚測定ユニット91に乾燥前処理液膜120の厚みの測定を停止させる(図17のステップS26)。 After the solvent evaporation suppression process or the solvent evaporation promotion process is started, the controller 3 causes the film thickness measurement unit 91 to measure the thickness of the pre-drying treatment liquid film 120 in the same manner as in the first example of the film thickness monitoring process shown in FIG. is stopped (step S26 in FIG. 17).

図18は、溶媒蒸発抑制工程の一例について説明するための模式図である。溶媒蒸発抑制工程では、たとえば、基板Wの上面と遮断部材51の下面51Lとの間の空間に、溶媒のミストまたは蒸気が供給される。図18には、乾燥前処理液が樟脳およびIPAの溶液であり、基板Wの上面と遮断部材51の下面51Lとの間の空間が、IPAのミストまたは蒸気を含む窒素ガスで満たされている例を示している。乾燥前処理液が樟脳およびメタノールの溶液である場合は、メタノールのミストまたは蒸気を含む窒素ガスが基板Wの上面に向けて吐出される。窒素ガスは、溶媒のミストまたは蒸気を基板Wの方に運ぶキャリアガスに相当する。 FIG. 18 is a schematic diagram for explaining an example of the solvent evaporation suppression step. In the solvent evaporation suppression step, for example, solvent mist or vapor is supplied to the space between the upper surface of the substrate W and the lower surface 51L of the blocking member 51 . In FIG. 18, the dry pretreatment liquid is a solution of camphor and IPA, and the space between the upper surface of the substrate W and the lower surface 51L of the blocking member 51 is filled with nitrogen gas containing IPA mist or vapor. shows an example. When the drying pretreatment liquid is a solution of camphor and methanol, nitrogen gas containing mist or vapor of methanol is discharged toward the upper surface of the substrate W. As shown in FIG. Nitrogen gas represents a carrier gas that carries the solvent mist or vapor towards the substrate W. FIG.

基板Wの上面と遮断部材51の下面51Lとの間の空間に向けて吐出する場合、タンク内のIPA(液体)中に窒素ガスを供給すればよい(いわゆるバブリング)。このようにすれば、多数の窒素ガスの気泡がIPA中に形成され、IPAのミストまたは蒸気を含む窒素ガスがタンク内のIPAの表面から放出される。この窒素ガスを中心ノズル55および遮断部材51の上中央開口61の少なくとも一方に吐出させればよい。 When discharging toward the space between the upper surface of the substrate W and the lower surface 51L of the blocking member 51, nitrogen gas may be supplied into the IPA (liquid) in the tank (so-called bubbling). In this way, a large number of nitrogen gas bubbles are formed in the IPA and the nitrogen gas containing IPA mist or vapor is released from the surface of the IPA in the tank. This nitrogen gas may be discharged to at least one of the central nozzle 55 and the upper central opening 61 of the blocking member 51 .

溶媒のミストまたは蒸気を基板Wの上面と遮断部材51の下面51Lとの間の空間に供給すると、乾燥前処理液膜120に接する雰囲気中の溶媒の蒸気圧が上昇する。そのため、乾燥前処理液膜120からの溶媒の蒸発が抑制される。その一方で、雰囲気中の昇華性物質の蒸気圧は変わらないので、微量ではあるが、昇華性物質が乾燥前処理液から蒸発する。したがって、昇華性物質の濃度が基準濃度範囲の上限値よりも高いと想定されるとき、溶媒のミストまたは蒸気を基板Wの上面と遮断部材51の下面51Lとの間の空間に供給すれば、乾燥前処理液膜120中の昇華性物質の濃度を基準濃度範囲内の濃度にすることができ、意図する厚みの昇華性物質の固体121を析出させることができる。 When solvent mist or vapor is supplied to the space between the upper surface of the substrate W and the lower surface 51L of the blocking member 51, the vapor pressure of the solvent in the atmosphere in contact with the pre-drying treatment liquid film 120 increases. Therefore, evaporation of the solvent from the pre-drying treatment liquid film 120 is suppressed. On the other hand, since the vapor pressure of the sublimable substance in the atmosphere does not change, the sublimable substance evaporates from the pre-drying treatment liquid, albeit in a very small amount. Therefore, when the concentration of the sublimable substance is assumed to be higher than the upper limit of the reference concentration range, if mist or vapor of the solvent is supplied to the space between the upper surface of the substrate W and the lower surface 51L of the blocking member 51, The concentration of the sublimable substance in the pre-drying treatment liquid film 120 can be set within the reference concentration range, and the sublimable substance solid 121 can be deposited with an intended thickness.

図19は、溶媒蒸発促進工程の一例について説明するための模式図である。溶媒蒸発促進工程では、たとえば、基板Wの上面と遮断部材51の下面51Lとの間の空間に、IPAのミストまたは蒸気を含まない窒素ガス等のガスが供給される。コントローラ3は、中心ノズル55に窒素ガスを吐出させてもよいし、遮断部材51の上中央開口61に窒素ガスを吐出させてもよい。中心ノズル55が既に窒素ガスを吐出している場合、コントローラ3は、流量調整バルブ58(図2参照)の開度を増加させてもよい。遮断部材51の上中央開口61が既に窒素ガスを吐出している場合、コントローラ3は、流量調整バルブ65(図2参照)の開度を増加させてもよい。 FIG. 19 is a schematic diagram for explaining an example of the solvent evaporation promotion step. In the solvent evaporation acceleration step, for example, a gas such as nitrogen gas that does not contain IPA mist or vapor is supplied to the space between the upper surface of the substrate W and the lower surface 51L of the blocking member 51 . The controller 3 may cause the central nozzle 55 to discharge nitrogen gas, or may cause the upper central opening 61 of the blocking member 51 to discharge nitrogen gas. If the center nozzle 55 is already discharging nitrogen gas, the controller 3 may increase the opening of the flow control valve 58 (see FIG. 2). When the upper central opening 61 of the blocking member 51 is already discharging nitrogen gas, the controller 3 may increase the opening degree of the flow control valve 65 (see FIG. 2).

窒素ガスを基板Wの上面と遮断部材51の下面51Lとの間の空間に供給すると、乾燥前処理液膜120に接する雰囲気中の溶媒の蒸気圧が低下する。そのため、乾燥前処理液からの溶媒の蒸発が促進される。厳密には、雰囲気中の昇華性物質の蒸気圧も微量ではあるが低下する。しかし、昇華性物質の蒸気圧は溶媒の蒸気圧よりも遥かに小さいので、主に溶媒が乾燥前処理液から蒸発する。そのため、乾燥前処理液膜120中の昇華性物質の濃度を基準濃度範囲内の濃度にすることができ、意図する厚みの昇華性物質の固体121を析出させることができる。 When the nitrogen gas is supplied to the space between the upper surface of the substrate W and the lower surface 51L of the blocking member 51, the vapor pressure of the solvent in the atmosphere in contact with the pre-drying treatment liquid film 120 decreases. Therefore, evaporation of the solvent from the pre-drying treatment liquid is promoted. Strictly speaking, the vapor pressure of the sublimable substance in the atmosphere also decreases, although by a very small amount. However, since the vapor pressure of the sublimable substance is much lower than the vapor pressure of the solvent, mainly the solvent evaporates from the drying pretreatment liquid. Therefore, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 can be kept within the reference concentration range, and the solid substance 121 of the sublimable substance can be deposited with an intended thickness.

中心ノズル55および遮断部材51の上中央開口61から吐出される窒素ガスによって、昇華性物質の固体121の析出が促進されるので、中心ノズル55および遮断部材51の上中央開口61は、溶媒蒸発ユニットとして機能している。 Since the nitrogen gas discharged from the central nozzle 55 and the upper central opening 61 of the blocking member 51 promotes deposition of the sublimable substance solid 121, the central nozzle 55 and the upper central opening 61 of the blocking member 51 are effective for solvent evaporation. functioning as a unit.

溶媒蒸発抑制工程または溶媒蒸発促進工程を実行する直前の膜厚減少速度と、基準データSDに含まれる膜厚減少速度とを比較することで、乾燥前処理液膜120中の昇華性物質の濃度を基準濃度範囲内の濃度にするために乾燥前処理液膜120中からの溶媒の蒸発量をどの程度にすればよいかを算出することができる。溶媒の蒸発量が適切な蒸発量となるように溶媒蒸発抑制工程または溶媒蒸発促進工程を実行すれば、昇華性物質の濃度が飽和濃度に達したときの乾燥前処理液膜120の厚みを適切な厚みに容易に調整できる。ひいては、適切な厚みの昇華性物質の固体121を析出させることができる。 The concentration of the sublimable substance in the pre-drying treatment liquid film 120 is determined by comparing the film thickness reduction rate immediately before executing the solvent evaporation suppression process or the solvent evaporation promotion process with the film thickness reduction rate included in the reference data SD. It is possible to calculate the amount of evaporation of the solvent from the pre-drying treatment liquid film 120 in order to make the concentration within the reference concentration range. If the solvent evaporation suppression step or the solvent evaporation promotion step is executed so that the evaporation amount of the solvent becomes an appropriate amount, the thickness of the pre-drying treatment liquid film 120 can be appropriately adjusted when the concentration of the sublimable substance reaches the saturation concentration. thickness can be easily adjusted. As a result, a sublimable solid 121 having an appropriate thickness can be deposited.

膜厚監視工程の第2例では、濃度判定工程において乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高いと判定された場合に、乾燥前処理液膜120に接する雰囲気に溶媒の蒸気またはミストを供給することによって、乾燥前処理液膜120からの溶媒の蒸発が抑制される(溶媒蒸発抑制工程)。 In the second example of the film thickness monitoring process, when it is determined in the concentration determination process that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is higher than the upper limit value of the reference concentration range, the pre-drying treatment liquid film 120 Evaporation of the solvent from the pre-drying treatment liquid film 120 is suppressed by supplying vapor or mist of the solvent to the atmosphere in contact with (solvent evaporation suppression step).

乾燥前処理液膜120に接する雰囲気に溶媒の蒸気またはミストを供給することによって、乾燥前処理液膜120に接する雰囲気中に存在する溶媒の量(溶媒の蒸気圧)が増大する。これにより、乾燥前処理液膜120からの溶媒の蒸発を抑制することができる。乾燥前処理液膜120からの溶媒の蒸発が抑制されると、乾燥前処理液膜120から蒸発する物質中における昇華性物質の割合が増大する。したがって、乾燥前処理液膜120中の昇華性物質の濃度が低下する。これにより、乾燥前処理液膜120中の昇華性物質の濃度を基準濃度範囲内に調整することができる。 By supplying solvent vapor or mist to the atmosphere in contact with the pre-drying treatment liquid film 120, the amount of solvent (vapor pressure of the solvent) present in the atmosphere in contact with the pre-drying treatment liquid film 120 is increased. Thereby, evaporation of the solvent from the pre-drying treatment liquid film 120 can be suppressed. When the evaporation of the solvent from the pre-drying treatment liquid film 120 is suppressed, the proportion of sublimable substances in the substances evaporated from the pre-drying treatment liquid film 120 increases. Therefore, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is reduced. Thereby, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 can be adjusted within the reference concentration range.

したがって、濃度判定工程において乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高いと判定されたとしても、溶媒蒸発抑制工程が実行されるので、昇華工程後にパターンPAの倒壊率が低減された基板Wを得ることができる。 Therefore, even if it is determined in the concentration determination step that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is higher than the upper limit value of the reference concentration range, the solvent evaporation suppression step is executed. A substrate W with a reduced collapse rate of PA can be obtained.

また、膜厚監視工程の第2例では、濃度判定工程において乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の下限値よりも低いと判定された場合に、第1析出工程の実行中に乾燥前処理液膜120に接する雰囲気に向けて不活性ガスを供給することによって乾燥前処理液膜120からの溶媒の蒸発が促進される(溶媒蒸発促進工程)。 Further, in the second example of the film thickness monitoring process, when it is determined in the concentration determining process that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is lower than the lower limit of the reference concentration range, the first precipitation process is accelerated to evaporate the solvent from the pre-drying treatment liquid film 120 by supplying an inert gas toward the atmosphere in contact with the drying pre-treatment liquid film 120 (solvent evaporation promotion step).

乾燥前処理液膜120からの溶媒の蒸発を促進することによって、乾燥前処理液膜120中の昇華性物質の濃度が上昇する。これにより、乾燥前処理液膜120中の昇華性物質の濃度を基準濃度範囲内に調整することができる。したがって、濃度判定工程において乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の下限値よりも低いと判定されたとしても、溶媒蒸発促進工程が実行されるので、昇華工程後にパターンPAの倒壊率が低減された基板Wを得ることができる。 By accelerating the evaporation of the solvent from the pre-drying pretreatment liquid film 120, the concentration of the sublimable substance in the pre-drying pretreatment liquid film 120 is increased. Thereby, the concentration of the sublimable substance in the pre-drying treatment liquid film 120 can be adjusted within the reference concentration range. Therefore, even if it is determined in the concentration determination step that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is lower than the lower limit value of the reference concentration range, the solvent evaporation promotion step is executed. A substrate W with a reduced collapse rate of PA can be obtained.

図20に示す膜厚監視工程の第3例において、膜厚監視工程の第2例(図17を参照)と異なる点は、膜厚減少速度が基準速度範囲の下限値よりも小さい場合(図20のステップS31でYes)、すなわち、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高い場合には、コントローラ3は、基板W上の乾燥前処理液膜120を薄膜化する薄膜化工程を開始する(図20のステップS34)点である。 The third example of the film thickness monitoring process shown in FIG. 20 differs from the second example of the film thickness monitoring process (see FIG. 17) in that the film thickness reduction rate is smaller than the lower limit of the reference rate range (see FIG. 17). 20), that is, if the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is higher than the upper limit value of the reference concentration range, the controller 3 controls the pre-drying treatment liquid film on the substrate W This is the point at which the thinning process for thinning 120 is started (step S34 in FIG. 20).

膜厚減少速度が基準速度範囲の上限値よりも大きい場合(図20のステップS31でNo)、すなわち、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の下限値よりも低い場合には、コントローラ3は、膜厚監視工程の第2例と同様に、溶媒蒸発促進工程を開始する(図20のステップS33)。 If the film thickness reduction rate is greater than the upper limit of the reference rate range (No in step S31 of FIG. 20), that is, the concentration of the sublimation substance in the pre-drying treatment liquid film 120 is lower than the lower limit of the reference concentration range. In this case, the controller 3 starts the solvent evaporation promotion step (step S33 in FIG. 20), as in the second example of the film thickness monitoring step.

薄膜化工程では、コントローラ3は、スピンモータ14に基板Wの回転を加速させる。これにより、基板W上の乾燥前処理液膜120に作用する遠心力を増加させて、基板W外に排出される乾燥前処理液の量が増加する。 In the thinning process, the controller 3 causes the spin motor 14 to accelerate the rotation of the substrate W. FIG. As a result, the centrifugal force acting on the pre-drying treatment liquid film 120 on the substrate W is increased, and the amount of the pre-drying treatment liquid discharged to the outside of the substrate W is increased.

図21Aおよび図21Bは、薄膜化工程を説明するための模式図である。図21Aは、基板Wの回転を加速する前の状態を示しており、図21Bは、基板Wの回転を加速させた後の状態を示している。具体的には、基板Wの回転速度は、第1析出速度(たとえば、500rpm)から、第1析出速度よりも高速度である薄膜化速度(たとえば、1500rpm)に変更される。 21A and 21B are schematic diagrams for explaining the thinning process. 21A shows the state before the rotation of the substrate W is accelerated, and FIG. 21B shows the state after the rotation of the substrate W is accelerated. Specifically, the rotation speed of the substrate W is changed from the first deposition speed (eg, 500 rpm) to a thinning speed (eg, 1500 rpm) that is higher than the first deposition speed.

乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高い場合、昇華する直前の昇華性物質の固体121の厚みが、意図する値よりも大きくなる。基板W上の乾燥前処理液膜120の厚みを減少させると、乾燥前処理液膜120に含まれる昇華性物質の量が減少するので、昇華性物質の固体121の厚みも減少する。 When the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is higher than the upper limit of the reference concentration range, the thickness of the sublimable substance solid 121 immediately before sublimation becomes larger than the intended value. When the thickness of the dry pretreatment liquid film 120 on the substrate W is reduced, the amount of the sublimable substance contained in the dry pretreatment liquid film 120 is reduced, so the thickness of the sublimable substance solid 121 is also reduced.

そこで、膜厚監視工程の第3例では、乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高い場合に、基板Wの回転速度を増大させて乾燥前処理液膜120に遠心力を作用させることによって、昇華性物質の固体121が析出する前に乾燥前処理液膜120の厚みを減少させる。これにより、基板Wの上面に形成される昇華性物質の固体121の厚みを低減し、意図する厚みの昇華性物質の固体121を析出させることができる。したがって、濃度判定工程において乾燥前処理液膜120中の昇華性物質の濃度が基準濃度範囲の上限値よりも高いと判定されたとしても、薄膜化工程が実行されるので、昇華工程後にパターンPAの倒壊率が低減された基板Wを得ることができる。 Therefore, in the third example of the film thickness monitoring process, when the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is higher than the upper limit value of the reference concentration range, the rotation speed of the substrate W is increased to perform the pre-drying treatment. By exerting centrifugal force on the liquid film 120, the thickness of the pre-drying treatment liquid film 120 is reduced before the sublimable substance solid 121 is precipitated. As a result, the thickness of the sublimable substance solid 121 formed on the upper surface of the substrate W can be reduced, and the sublimable substance solid 121 having an intended thickness can be deposited. Therefore, even if it is determined in the concentration determining step that the concentration of the sublimable substance in the pre-drying treatment liquid film 120 is higher than the upper limit value of the reference concentration range, the thinning step is executed. It is possible to obtain a substrate W with a reduced collapse rate.

乾燥前処理液が樟脳およびIPAの溶液である場合には、図22に示す膜厚監視工程の第4例を実行することも可能である。膜厚監視工程の第4例が、膜厚監視工程の第1例(図15参照)と異なる点は、昇華性物質の固体121の厚みが基準厚み範囲内であると判定された場合(図22のステップS25でYes)、コントローラ3は、第1溶解工程を開始する点である(図22のステップS45)。すなわち、コントローラ3は、基板Wの下面への温水等の加熱液の供給を開始して、基板Wを介して基板Wの上面の乾燥前処理液の液膜の加熱を開始する。その後、膜厚測定ユニット91に乾燥前処理液の膜厚の測定を停止させる(図22のステップS26)。 If the dry pretreatment liquid is a solution of camphor and IPA, it is also possible to carry out the fourth example of the film thickness monitoring process shown in FIG. The fourth example of the film thickness monitoring process differs from the first example of the film thickness monitoring process (see FIG. 15) in that the thickness of the sublimable solid 121 is determined to be within the reference thickness range (see FIG. 15). 22 (Yes in step S25), the controller 3 is to start the first melting step (step S45 in FIG. 22). That is, the controller 3 starts supplying the heating liquid such as hot water to the lower surface of the substrate W, and starts heating the liquid film of the pre-drying treatment liquid on the upper surface of the substrate W through the substrate W. FIG. Thereafter, the film thickness measurement unit 91 is caused to stop measuring the film thickness of the pre-drying treatment liquid (step S26 in FIG. 22).

膜厚監視工程の第4例では、第1溶解工程が、適切な厚みの昇華性物質の固体121が形成されたことをきっかけとして開始される。そのため、適切な厚みの昇華性物質の固体121が形成された場合にのみ、第1溶解工程、最終析出工程、および昇華工程が実行される。昇華工程の終了後に、パターンPAの倒壊率が低減された基板Wを得ることができる。適切な厚みの昇華性物質の固体121が形成されていない場合には、第1析出工程よりも後の工程(第1溶解工程、最終析出工程、および昇華工程)を実行することなく、基板処理を早期に中断することができる。 In a fourth example of the film thickness monitoring process, the first dissolution process is triggered by the formation of a sublimable substance solid 121 having an appropriate thickness. Therefore, the first dissolution step, the final precipitation step, and the sublimation step are performed only when a sublimable substance solid 121 of appropriate thickness is formed. After the sublimation process is completed, a substrate W in which the collapse rate of the pattern PA is reduced can be obtained. If the sublimable substance solid 121 having an appropriate thickness is not formed, the substrate is processed without executing the steps after the first deposition step (the first dissolution step, the final deposition step, and the sublimation step). can be discontinued early.

昇華性物質の固体121が析出してから昇華するまでの時間が短い場合、昇華性物質の固体121を乾燥前処理液に溶解させる前に、つまり、乾燥前処理液の加熱を開始する前に、昇華性物質の固体121の一部または全部が昇華してしまうかもしれない。このような場合でも、昇華性物質の固体121が析出したか否かを監視すれば、最適な時期に乾燥前処理液の加熱を開始でき、意図せず昇華する昇華性物質の固体121を減らすことができる。 If the time from the deposition of the sublimable solid 121 to the sublimation is short, before the sublimable solid 121 is dissolved in the pre-drying treatment liquid, that is, before the heating of the pre-drying treatment liquid is started. , some or all of the sublimable solid 121 may sublimate. Even in such a case, by monitoring whether or not the sublimable solid 121 has precipitated, it is possible to start heating the pre-drying treatment liquid at an optimum time, and to reduce the unintended sublimation of the sublimable solid 121. be able to.

本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。 The present invention is not limited to the contents of the above-described embodiments, and various modifications are possible.

前述したように、上述の基板処理では、膜厚監視工程は、最初の第1析出工程(ステップS7)と並行して実行される。しかしながら、乾燥前処理液が樟脳およびIPAの溶液である場合、乾燥前処理液膜の厚みの監視は、昇華性物質の固体121を析出させるたびに行われてもよい。 As described above, in the substrate processing described above, the film thickness monitoring step is executed in parallel with the first deposition step (step S7). However, if the dry pretreatment liquid is a solution of camphor and IPA, monitoring the thickness of the dry pretreatment liquid film may be performed each time the sublimable solid 121 is deposited.

また、乾燥前処理液が樟脳およびIPAの溶液である場合、乾燥前処理液膜120の厚みの監視は、図9に二点鎖線で示すように、最終析出工程(図9のステップS9)と並行して行われてもよい。つまり、乾燥前処理液が樟脳およびIPAの溶液である場合、第1析出工程(図9のステップS7)および最終析出工程(図9のステップS9)の少なくとも一方と並行して、乾燥前処理液膜120の厚みを監視すればよい。 Moreover, when the pre-drying treatment liquid is a solution of camphor and IPA, the thickness of the pre-drying treatment liquid film 120 is monitored as indicated by the two-dot chain line in FIG. It may be done in parallel. That is, when the pre-drying treatment liquid is a solution of camphor and IPA, in parallel with at least one of the first precipitation step (step S7 in FIG. 9) and the final precipitation step (step S9 in FIG. 9), The thickness of membrane 120 may be monitored.

上述の実施形態に係る基板処理(図9参照)とは異なり、図23に示すように、乾燥前処理液膜120中に析出した昇華性物質の固体121を乾燥前処理液に溶解させることなく昇華させる基板処理も実行可能である。 Unlike the substrate processing according to the above-described embodiment (see FIG. 9), as shown in FIG. Sublimation substrate treatments are also feasible.

図23の基板処理では、膜厚減少工程(ステップS6)の後、基板Wの上面に昇華性物質の固体を析出させる析出工程(ステップS50)が実行され、その後、昇華工程(ステップS10)が実行される。そして、析出工程(ステップS50)と並行して、第1例~第3例のいずれかの膜厚監視工程が実行される。 In the substrate processing of FIG. 23, after the film thickness reduction step (step S6), a deposition step (step S50) of depositing a solid sublimable substance on the upper surface of the substrate W is performed, and then a sublimation step (step S10) is performed. executed. Then, in parallel with the deposition step (step S50), the film thickness monitoring step of any one of the first to third examples is performed.

昇華性物質の固体121を最初に析出させる第1析出工程(図9のステップS7)において、乾燥前処理液膜120を室温以下の温度に維持するのではなく、室温よりも高い加熱温度で加熱しながら、基板W上の乾燥前処理液から溶媒を蒸発させてもよい。 In the first deposition step (step S7 in FIG. 9) for first depositing the sublimable substance solid 121, the pre-drying treatment liquid film 120 is heated at a heating temperature higher than room temperature instead of being maintained at a temperature below room temperature. Meanwhile, the solvent may be evaporated from the pre-drying treatment liquid on the substrate W.

第1基板処理例の最終析出工程(図9のステップS9)において、基板W上の乾燥前処理液を加熱しながら、乾燥前処理液から溶媒を蒸発させるのではなく、基板W上の乾燥前処理液の強制的な加熱を停止しながら、乾燥前処理液から溶媒を蒸発させてもよい。 In the final deposition step (step S9 in FIG. 9) of the first substrate processing example, while heating the pre-drying treatment liquid on the substrate W, instead of evaporating the solvent from the pre-drying treatment liquid, the pre-drying treatment liquid on the substrate W is heated. The solvent may be evaporated from the pre-drying treatment liquid while the forced heating of the treatment liquid is stopped.

昇華性物質の固体121を乾燥前処理液に溶解させるときに、室温よりも高温の加熱液の一例である温水を基板Wの下面に供給するのではなく、室温よりも高温の加熱ガスを基板Wの上面または下面に向けて吐出してもよい。たとえば、室温よりも高温の窒素ガスを、中心ノズル55およびスピンベース12の下中央開口81の少なくとも一方に吐出させてもよい。通電によりジュール熱を発生する発熱体や、基板Wに向けて光を発するランプを、基板Wの上方および下方に少なくとも一方に配置してもよい。たとえば、発熱体をスピンベース12および遮断部材51の少なくとも一方に内蔵してもよい。 When dissolving the sublimable substance solid 121 in the pre-drying treatment liquid, instead of supplying hot water, which is an example of a heating liquid having a temperature higher than room temperature, to the lower surface of the substrate W, a heating gas having a temperature higher than room temperature is applied to the substrate. You may discharge toward the upper surface or the lower surface of W. For example, nitrogen gas having a temperature higher than room temperature may be discharged to at least one of the central nozzle 55 and the lower central opening 81 of the spin base 12 . A heating element that generates Joule heat when energized, or a lamp that emits light toward the substrate W may be arranged above or below the substrate W. FIG. For example, a heating element may be built in at least one of spin base 12 and blocking member 51 .

昇華性物質の固体121は、ウェット処理ユニット2wとは異なる処理ユニット2で除去されてもよい。昇華性物質の固体121を除去する処理ユニット2は、基板処理装置1の一部であってもよいし、基板処理装置1とは異なる基板処理装置1の一部であってもよい。つまり、ウェット処理ユニット2wが備えられた基板処理装置1と、昇華性物質の固体121を除去する処理ユニット2が備えられた基板処理装置1とが、同じ基板処理システムに設けられており、昇華性物質の固体121を除去する前に、基板処理装置1から別の基板処理装置1に基板Wを搬送してもよい。 Sublimable solids 121 may be removed in a treatment unit 2 different from the wet treatment unit 2w. The processing unit 2 that removes the sublimable solid 121 may be a part of the substrate processing apparatus 1 or a part of the substrate processing apparatus 1 different from the substrate processing apparatus 1 . That is, the substrate processing apparatus 1 provided with the wet processing unit 2w and the substrate processing apparatus 1 provided with the processing unit 2 for removing the sublimable solid 121 are provided in the same substrate processing system. The substrate W may be transferred from one substrate processing apparatus 1 to another substrate processing apparatus 1 before the solid 121 of the toxic substance is removed.

純水などの基板W上のリンス液を乾燥前処理液で置換できる場合は、基板W上のリンス液を置換液に置換する置換液供給工程を行わずに、乾燥前処理液供給工程を行ってもよい。 If the rinsing liquid such as pure water on the substrate W can be replaced with the pre-drying treatment liquid, the pre-drying treatment liquid supplying step is performed without performing the replacement liquid supplying step of replacing the rinsing liquid on the substrate W with the replacement liquid. may

遮断部材51は、円板部52に加えて、円板部52の外周部から下方に延びる筒状部を含んでいてもよい。この場合、遮断部材51が下位置に配置されると、スピンチャック10に保持されている基板Wは、円筒部25に取り囲まれる。 The blocking member 51 may include, in addition to the disc portion 52 , a cylindrical portion extending downward from the outer peripheral portion of the disc portion 52 . In this case, when the blocking member 51 is arranged at the lower position, the substrate W held by the spin chuck 10 is surrounded by the cylindrical portion 25 .

遮断部材51は、スピンチャック10と共に回転軸線A1まわりに回転してもよい。たとえば、遮断部材51が基板Wに接触しないようにスピンベース12上に置かれてもよい。この場合、遮断部材51がスピンベース12に連結されるので、遮断部材51は、スピンベース12と同じ方向に同じ速度で回転する。 The blocking member 51 may rotate around the rotation axis A<b>1 together with the spin chuck 10 . For example, the blocking member 51 may be placed on the spin base 12 so as not to contact the substrate W. FIG. In this case, since the blocking member 51 is connected to the spin base 12 , the blocking member 51 rotates in the same direction and at the same speed as the spin base 12 .

遮断部材51が省略されてもよい。ただし、基板Wの下面に純水などの液体を供給する場合は、遮断部材51が設けられていることが好ましい。基板Wの外周面を伝って基板Wの下面から基板Wの上面の方に回り込んだ液滴や、処理カップ21から内側に跳ね返った液滴を遮断部材51で遮断でき、基板W上の乾燥前処理液に混入する液体を減らすことができるからである。 The blocking member 51 may be omitted. However, when supplying a liquid such as pure water to the lower surface of the substrate W, it is preferable that the blocking member 51 is provided. The blocking member 51 can block droplets that have flowed along the outer peripheral surface of the substrate W from the lower surface of the substrate W to the upper surface of the substrate W, and droplets that have rebounded inward from the processing cup 21, so that drying on the substrate W can be prevented. This is because the liquid mixed in the pretreatment liquid can be reduced.

基板Wの上面に対する発光素子92の光の入射位置を変更する必要がなければ、膜厚測定ユニット91の電動モータ96を省略してもよい。 The electric motor 96 of the film thickness measurement unit 91 may be omitted if there is no need to change the incident position of the light of the light emitting element 92 with respect to the upper surface of the substrate W.

発光素子92の光を基板Wの上面に概ね垂直に入射させる場合、膜厚測定ユニット91のハウジング93は、発光素子92に加え、受光素子97を収容していてもよい。この場合、基板Wの上面で反射した発光素子92の光(反射光)は、透明な板94で塞がれたハウジング93の開口部を通過し、ハウジング93内の受光素子97に受けられる。 When the light from the light-emitting element 92 is incident on the upper surface of the substrate W substantially perpendicularly, the housing 93 of the film thickness measurement unit 91 may accommodate the light-receiving element 97 in addition to the light-emitting element 92 . In this case, the light (reflected light) of the light emitting element 92 reflected by the upper surface of the substrate W passes through the opening of the housing 93 closed with the transparent plate 94 and is received by the light receiving element 97 inside the housing 93 .

発光素子92および受光素子97の両方がハウジング93内に収容されている場合、コントローラ3は、ハウジング93を水平に移動させることにより、発光素子92の光が基板Wの上面に入射する入射位置を基板Wの径方向に移動させてもよい。具体的には、スピンチャック10に保持されている基板Wの上方でハウジング93を保持するスキャンアームと、チャンバー4内でスキャンアームを水平に移動させる電動アクチュエータとが、処理ユニット2に設けられてもよい。 When both the light-emitting element 92 and the light-receiving element 97 are accommodated in the housing 93, the controller 3 moves the housing 93 horizontally to determine the incident position at which the light from the light-emitting element 92 is incident on the upper surface of the substrate W. The substrate W may be moved in the radial direction. Specifically, the processing unit 2 is provided with a scan arm that holds the housing 93 above the substrate W held by the spin chuck 10 and an electric actuator that horizontally moves the scan arm within the chamber 4 . good too.

上述の実施形態では、膜厚測定ユニット91は、昇華性物質の固体121が析出した後は、乾燥前処理液の液膜を測定できなくなる。上述の実施形態とは異なり、膜厚測定ユニットとして、昇華性物質の固体121の厚みを測定できる膜厚測定ユニット191を用いてもよい(図25Aを参照)。膜厚測定ユニット191は、発光素子191Aと受光素子191Bとを同一ハウジング191C内に収容している。膜厚測定ユニット191は、移動ユニット192によって、たとえば、基板Wの回転径方向に沿って移動可能である。具体的には、スピンチャック10に保持されている基板Wの上方でハウジング191Cを保持するスキャンアームと、チャンバー4内でスキャンアームを水平に移動させる電動アクチュエータとが、処理ユニット2に設けられてもよい。 In the above-described embodiment, the film thickness measurement unit 91 cannot measure the liquid film of the pre-drying treatment liquid after the solid 121 of the sublimation substance is deposited. Unlike the above embodiments, a film thickness measurement unit 191 capable of measuring the thickness of the sublimable solid 121 may be used as the film thickness measurement unit (see FIG. 25A). The film thickness measurement unit 191 accommodates the light emitting element 191A and the light receiving element 191B in the same housing 191C. The film thickness measurement unit 191 can be moved, for example, along the radial direction of rotation of the substrate W by a moving unit 192 . Specifically, the processing unit 2 is provided with a scan arm that holds the housing 191C above the substrate W held by the spin chuck 10, and an electric actuator that horizontally moves the scan arm within the chamber 4. good too.

そのため、膜厚測定ユニット191は、基板Wの上方で移動しながら基板Wの上面に析出した昇華性物質の固体121(固体膜)の厚みを基板Wの上面の複数箇所において測定することができる。図25A中の複数の黒い点Piは、発光素子191Aの光が基板Wの上面に入射する入射位置を示している。 Therefore, the film thickness measurement unit 191 can measure the thickness of the sublimable substance solid 121 (solid film) deposited on the upper surface of the substrate W at a plurality of locations on the upper surface of the substrate W while moving above the substrate W. . A plurality of black points Pi in FIG. 25A indicate incident positions at which the light from the light emitting element 191A is incident on the upper surface of the substrate W. As shown in FIG.

膜厚測定ユニット191が基板Wの上面の複数箇所において測定することができる構成であれば、図24に示す膜厚監視工程の第5例を実行することができる。図24に示す膜厚監視工程の第5例が図15に示す膜厚監視工程の第1例と異なる点は、基板Wの上面上の昇華性物質の固体121の表面の平坦度合を測定する平坦度合測定工程、および、昇華性物質の固体121の表面が平坦であるか判定する平坦判定工程が実行される点である。 If the film thickness measurement unit 191 is configured to measure the film thickness at a plurality of locations on the upper surface of the substrate W, the fifth example of the film thickness monitoring process shown in FIG. 24 can be executed. The fifth example of the film thickness monitoring process shown in FIG. 24 differs from the first example of the film thickness monitoring process shown in FIG. The flatness measuring step and the flatness determination step of determining whether the surface of the sublimable solid 121 is flat are executed.

具体的には、昇華性物質の固体121の厚みが適切である場合に(図24のステップS25でYes)、膜厚測定ユニット191の基板Wの回転径方向への移動が開始される(図24のステップS51)。これにより、図25Aに示すように、昇華性物質の固体121の表面の平坦度合が測定される(平坦度合測定工程)。 Specifically, when the thickness of the sublimable substance solid 121 is appropriate (Yes in step S25 of FIG. 24), the movement of the film thickness measurement unit 191 in the rotational radial direction of the substrate W is started (see FIG. 24 step S51). Thereby, as shown in FIG. 25A, the flatness of the surface of the sublimable solid 121 is measured (flatness measuring step).

平坦度合とは、たとえば、複数箇所において測定した昇華性物質の固体121の表面の高さ位置のばらつき度合のことである。昇華性物質の固体121の表面の高さ位置は、昇華性物質の固体121の表面の高さ位置を膜厚測定ユニット191によって直接測定してもよいし、膜厚測定ユニット191によって測定された昇華性物質の固体121の厚みから算出してもよい。複数箇所において測定した昇華性物質の固体121の表面の高さ位置のばらつきが小さいほど、昇華性物質の固体121の表面が平坦である。 The degree of flatness is, for example, the degree of variation in the height position of the surface of the sublimable substance solid 121 measured at a plurality of locations. The height position of the surface of the sublimable solid 121 may be directly measured by the film thickness measurement unit 191, or may be measured by the film thickness measurement unit 191. It may be calculated from the thickness of the sublimable solid 121 . The surface of the solid sublimable substance 121 is flatter as the variation in height position of the surface of the solid sublimable substance 121 measured at a plurality of points is smaller.

そして、昇華性物質の固体121の表面が充分に平坦であるか否かが判定される(平坦判定工程、図24のステップS52)。これにより、基板Wの上面の全域において厚みが均等な昇華性物質の固体121が形成されているか否かを調べることができる。 Then, it is determined whether or not the surface of the sublimable solid 121 is sufficiently flat (flatness determination step, step S52 in FIG. 24). As a result, it is possible to check whether or not the sublimable substance solid 121 having a uniform thickness is formed over the entire upper surface of the substrate W or not.

具体的には、平坦度合測定工程において測定された平坦度合が基準平坦範囲内である場合(図24のステップS52でYes)、すなわち、昇華性物質の固体121の表面が充分に平坦である場合には、膜厚測定ユニット191による乾燥前処理液膜120の厚みの測定が停止される(図24のステップS26)。その後、通常通り、昇華工程(図9のステップS10)が実行される。そのため、パターンPAの倒壊率が低減された基板Wを得ることができる。 Specifically, when the flatness measured in the flatness measuring step is within the reference flatness range (Yes in step S52 of FIG. 24), that is, when the surface of the sublimable substance solid 121 is sufficiently flat. 24, the measurement of the thickness of the pre-drying treatment liquid film 120 by the film thickness measurement unit 191 is stopped (step S26 in FIG. 24). Thereafter, the sublimation step (step S10 in FIG. 9) is performed as usual. Therefore, it is possible to obtain the substrate W in which the collapse rate of the pattern PA is reduced.

平坦度合測定工程において測定された平坦度合が基準平坦範囲内でない場合には(図24のステップS52でNo)、すなわち、昇華性物質の固体121の表面が充分に平坦でない場合には、基板Wの上面から昇華性物質の固体121が除去される(固体除去工程、図24のステップS53)。固体除去工程では、図25Bに示すように、昇華性物質の固体121が形成された基板Wの上面に、置換液ノズル43から置換液に相当する溶媒が供給される。 If the flatness measured in the flatness measuring step is not within the reference flatness range (No in step S52 of FIG. 24), that is, if the surface of the sublimable solid 121 is not sufficiently flat, the substrate W solid 121 of the sublimable substance is removed from the upper surface of (solid removal step, step S53 in FIG. 24). In the solid removal step, as shown in FIG. 25B, a solvent corresponding to the replacement liquid is supplied from the replacement liquid nozzle 43 onto the upper surface of the substrate W on which the sublimable solid 121 is formed.

図25Bは、乾燥前処理液が樟脳およびIPAの溶液であり、溶媒がIPAである例を示している。乾燥前処理液が樟脳およびメタノールの溶液である場合は、IPAに代えてメタノールが置換液ノズル43から吐出される。これにより、図25Cに示すように、昇華性物質の固体121が除去される。その後、膜厚測定ユニット191による乾燥前処理液膜120の厚みの測定が停止される(図24のステップS26)。 FIG. 25B shows an example in which the dry pretreatment liquid is a solution of camphor and IPA and the solvent is IPA. When the drying pretreatment liquid is a solution of camphor and methanol, methanol is discharged from the substitution liquid nozzle 43 instead of IPA. As a result, as shown in FIG. 25C, the sublimable solid 121 is removed. After that, the measurement of the thickness of the pre-drying treatment liquid film 120 by the film thickness measurement unit 191 is stopped (step S26 in FIG. 24).

第5例の膜厚監視工程では、固体除去工程が実行されるため、昇華性物質の固体121の一部に厚みが薄すぎる部分や厚すぎる部分が存在する場合においてもパターンPAの倒壊を抑制することができる。また、基板Wの上面上の昇華性物質の固体121が除去されるので、基板Wを再利用することができる。 In the film thickness monitoring process of the fifth example, since the solid removal process is executed, even when a part of the solid 121 of the sublimation substance is too thin or too thick, collapse of the pattern PA is suppressed. can do. Further, since the sublimable substance solid 121 on the upper surface of the substrate W is removed, the substrate W can be reused.

このように、乾燥前処理液が樟脳およびIPAの溶液である場合は、固体除去工程において、IPAは、基板Wの上面から昇華性物質の固体121を除去する固体除去液としての役割を果たす。乾燥前処理液が樟脳およびメタノールの溶液である場合は、固体除去工程において、メタノールが固体除去液としての役割を果たす。固体除去液は、乾燥前処理液に用いられる溶媒と同種の液体であることが好ましいが、これに限られない。固体除去液は、昇華性物質の固体121を除去できれば、乾燥前処理液の溶媒と異なる種類の液体であってもよい。 Thus, when the dry pretreatment liquid is a solution of camphor and IPA, IPA serves as a solids removing liquid to remove sublimable solids 121 from the upper surface of the substrate W in the solids removing step. When the dry pretreatment liquid is a solution of camphor and methanol, methanol serves as the solid removal liquid in the solid removal step. The solid removal liquid is preferably the same type of liquid as the solvent used in the pre-drying treatment liquid, but is not limited to this. The solid removal liquid may be a liquid different from the solvent of the pre-drying treatment liquid as long as the solid 121 of the sublimable substance can be removed.

基板処理装置1は、クリーンルーム内に配置され、基板処理装置1内の温度は、クリーンルーム内の温度と同一または概ね同一の値に維持されるが、基板処理装置1内の温度は、クリーンルーム内の温度と異なっていてもよい。たとえば、基板処理装置1内の温度を調節するエアーコンディショナーが、基板処理装置1に備えられていてもよい。 The substrate processing apparatus 1 is arranged in a clean room, and the temperature in the substrate processing apparatus 1 is maintained at the same or substantially the same value as the temperature in the clean room. temperature may be different. For example, the substrate processing apparatus 1 may be provided with an air conditioner for adjusting the temperature inside the substrate processing apparatus 1 .

乾燥前処理液が樟脳およびメタノールの溶液である場合、基板処理装置1内の温度、より具体的には、チャンバー4内の温度が、昇華性物質が析出したときの乾燥前処理液の表面の温度(以下、「析出時表面温度」)よりも高ければ、乾燥前処理液を基板Wの上面に放置するだけで、昇華性物質の固体121と乾燥前処理液との界面の温度が上昇し、昇華性物質の固体121が乾燥前処理液に溶解する。これにより、昇華性物質の析出および溶解が自然に繰り返される。 When the pre-drying treatment liquid is a solution of camphor and methanol, the temperature in the substrate processing apparatus 1, more specifically, the temperature in the chamber 4 is the temperature of the surface of the pre-drying treatment liquid when the sublimable substance is deposited. If it is higher than the temperature (hereinafter referred to as "surface temperature at the time of deposition"), the temperature of the interface between the solid 121 of the sublimation substance and the pre-drying treatment liquid rises simply by leaving the pre-drying treatment liquid on the upper surface of the substrate W. , the sublimable substance solid 121 is dissolved in the drying pretreatment liquid. As a result, deposition and dissolution of the sublimable substance are naturally repeated.

クリーンルーム内の温度が析出時表面温度よりも低い場合、コントローラ3は、チャンバー4の内部空間が析出時表面温度よりも高い温度に維持されるように、エアーコンディショナーに基板処理装置1内の温度を調節させてもよい。同様に、クリーンルーム内の気圧が昇華性物質の析出および溶解に適さない値である場合、コントローラ3は、FFU6(図2参照)の出力と排気バルブ9(図2参照)の開度との少なくとも一方を変更してもよい。この場合、チャンバー4内に供給されるガスの流量と、チャンバー4から排出されるガスの流量と、の少なくとも一方が変化し、チャンバー4内の気圧が、昇華性物質の析出および溶解に適した値に維持される。 When the temperature in the clean room is lower than the surface temperature during deposition, the controller 3 causes the air conditioner to increase the temperature inside the substrate processing apparatus 1 so that the inner space of the chamber 4 is maintained at a temperature higher than the surface temperature during deposition. You may adjust. Similarly, when the air pressure in the clean room is a value unsuitable for deposition and dissolution of the sublimable substance, the controller 3 determines that at least the output of the FFU 6 (see FIG. 2) and the opening of the exhaust valve 9 (see FIG. 2) You can change one. In this case, at least one of the flow rate of the gas supplied into the chamber 4 and the flow rate of the gas discharged from the chamber 4 is changed, and the pressure inside the chamber 4 is adjusted to a level suitable for deposition and dissolution of the sublimable substance. value is maintained.

基板処理装置1は、チャンバー4内の温度を測定する温度計と、チャンバー4内の気圧を測定する気圧計と、の少なくとも一方を備えていてもよい。基板Wを処理ユニット2で処理している間、チャンバー4内の温度および気圧の少なくとも一方が大幅に変化した場合、コントローラ3は、チャンバー4内の温度および気圧の両方が昇華性物質の析出および溶解に適した値に維持されるまで、チャンバー4に対する次の基板Wの搬入を停止してもよい。 The substrate processing apparatus 1 may include at least one of a thermometer that measures the temperature inside the chamber 4 and a barometer that measures the pressure inside the chamber 4 . If at least one of the temperature and atmospheric pressure inside the chamber 4 changes significantly while the substrate W is being processed in the processing unit 2, the controller 3 detects that both the temperature and the atmospheric pressure inside the chamber 4 cause precipitation of the sublimable substance and Loading of the next substrate W into the chamber 4 may be stopped until the value suitable for dissolution is maintained.

基板処理装置1は、円板状の基板Wを処理する装置に限らず、多角形の基板Wを処理する装置であってもよい。 The substrate processing apparatus 1 is not limited to an apparatus for processing disk-shaped substrates W, and may be an apparatus for processing polygonal substrates W. FIG.

その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made within the scope of the matters described in the claims.

この明細書および添付図面から抽出され得る特徴を以下に例示する。 The following are examples of features that can be extracted from this specification and the accompanying drawings.

1.昇華性物質が溶媒中に溶解した溶液である乾燥前処理液を、パターンが形成された基板の上面に供給して、前記乾燥前処理液の液膜を前記基板の前記上面に形成する乾燥前処理液供給工程と、前記液膜から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面に析出させる析出工程と、前記析出工程において、前記昇華性物質の固体が析出する前に、前記溶媒の蒸発によって前記液膜の厚みが減少する速度である膜厚減少速度に基づいて、前記液膜中の前記昇華性物質の濃度が基準濃度範囲内であるか否かを判定する濃度判定工程と、前記濃度判定工程において前記液膜中の前記昇華性物質の濃度が基準濃度範囲内であると判定された場合に、前記析出工程の終了後に、前記昇華性物質の固体を昇華させる昇華工程とを含む、基板処理方法。 1. a pre-drying treatment liquid, which is a solution in which a sublimable substance is dissolved in a solvent, is supplied to the upper surface of a substrate having a pattern formed thereon to form a liquid film of the pre-drying treatment liquid on the upper surface of the substrate; a treatment liquid supplying step; a deposition step of depositing a solid of the sublimable substance on the upper surface of the substrate by evaporating the solvent from the liquid film; and a solid of the sublimable substance deposited in the deposition step. before the concentration of the sublimable substance in the liquid film is within the reference concentration range based on the film thickness reduction speed, which is the speed at which the thickness of the liquid film decreases due to the evaporation of the solvent. a concentration determination step for determining a solid state of the sublimation substance after the precipitation step when it is determined in the concentration determination step that the concentration of the sublimation substance in the liquid film is within the reference concentration range; A substrate processing method, comprising a sublimation step of sublimating

この方法によれば、昇華性物質が溶媒中に溶解した溶液を基板の上面に供給する。これにより、乾燥前処理液の液膜が基板の上面に形成される。その後、乾燥前処理液の液膜から溶媒を蒸発させる。乾燥前処理液の液膜中における昇華性物質の濃度は、溶媒の蒸発に伴って上昇する。昇華性物質の濃度が昇華性物質の飽和濃度に達すると、昇華性物質の固体が乾燥前処理液の液膜中に析出する。 According to this method, a solution in which a sublimable substance is dissolved in a solvent is supplied to the upper surface of the substrate. As a result, a liquid film of the pre-drying treatment liquid is formed on the upper surface of the substrate. After that, the solvent is evaporated from the liquid film of the pre-drying treatment liquid. The concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid increases as the solvent evaporates. When the concentration of the sublimable substance reaches the saturation concentration of the sublimable substance, the solid of the sublimable substance precipitates in the liquid film of the drying pretreatment liquid.

本願発明者らは、膜厚減少速度と、液膜中の昇華性物質の濃度との間に相関関係があることを見出した。そこで、析出工程における乾燥前処理液の液膜の厚みの減少速度に基づいて液膜中の昇華性物質の濃度が基準濃度範囲内であるか否かを判定すれば、前記昇華性物質の固体が析出する前に、すなわち、昇華性物質の濃度が昇華性物質の飽和濃度に達する前に、液膜中の昇華性物質の濃度が基準濃度範囲内であるか否かを判定することができる。液膜中の昇華性物質の濃度が基準濃度範囲内であると判定された場合には、適切な厚みの昇華性物質の固体が形成される。そして、析出工程の終了後に昇華性物質の固体が昇華されるので、パターンの倒壊率が低減された基板を得ることができる。 The inventors of the present application have found that there is a correlation between the film thickness reduction rate and the concentration of the sublimable substance in the liquid film. Therefore, if it is determined whether or not the concentration of the sublimable substance in the liquid film is within the reference concentration range based on the rate of decrease in the thickness of the liquid film of the pre-drying treatment liquid in the precipitation step, the solid state of the sublimable substance is deposited, that is, before the concentration of the sublimable substance reaches the saturated concentration of the sublimable substance, it is possible to determine whether the concentration of the sublimable substance in the liquid film is within the reference concentration range. . If the concentration of the sublimable substance in the liquid film is determined to be within the reference concentration range, a solid of the sublimable substance having an appropriate thickness is formed. Further, since the solid of the sublimable substance is sublimated after the deposition step is completed, a substrate with a reduced pattern collapse rate can be obtained.

一方、液膜中の昇華性物質の濃度が基準濃度範囲内でないと判定された場合には、基板処理を中断すれば、適切でない厚みの昇華性物質の固体が昇華されることを未然に防ぐことができる。これにより、パターンの倒壊率の上昇を抑制することができる。 On the other hand, when it is determined that the concentration of the sublimable substance in the liquid film is not within the standard concentration range, the substrate processing is interrupted to prevent sublimation of the solid sublimable substance having an inappropriate thickness. be able to. As a result, it is possible to suppress an increase in the pattern collapse rate.

2.前記濃度判定工程が、予め測定された基準データと、前記析出工程中に測定された前記膜厚減少速度とを比較することによって、前記液膜中の前記昇華性物質の濃度を推定する工程を含む、項1に記載の基板処理方法。この方法では、析出工程中に、液膜中の昇華性物質の濃度を容易に推定することができる。 2. wherein the concentration determining step estimates the concentration of the sublimable substance in the liquid film by comparing preliminarily measured reference data with the film thickness reduction rate measured during the deposition step; Item 1. The substrate processing method according to Item 1, comprising: With this method, the concentration of the sublimable substance in the liquid film can be easily estimated during the precipitation process.

3.前記濃度判定工程において前記液膜中の前記昇華性物質の濃度が前記基準濃度範囲内でないと判定された場合に、前記析出工程において前記昇華性物質の固体が析出する前に除去液を前記基板の前記上面に供給することによって、前記基板の前記上面から前記乾燥前処理液を除去する乾燥前処理液除去工程をさらに含む、項1または2に記載の基板処理方法。 3. When it is determined in the concentration determination step that the concentration of the sublimation substance in the liquid film is not within the reference concentration range, the removal liquid is applied to the substrate before the solid of the sublimation substance precipitates in the deposition step. Item 3. The substrate processing method according to Item 1 or 2, further comprising a pre-drying treatment liquid removing step of removing the pre-drying treatment liquid from the upper surface of the substrate by supplying the pre-drying treatment liquid to the upper surface of the substrate.

この方法によれば、液膜中の昇華性物質の濃度が基準濃度範囲内でない場合に、昇華性物質の固体が析出する前に、除去液によって、基板の上面から昇華性物質を除去することができる。これにより、適切でない厚みの昇華性物質の固体が基板の上面に形成されることを未然に防ぐことができる。よって、パターンの倒壊率の上昇を抑制することができる。また、基板の上面上の乾燥前処理液が除去されるので、基板を再利用することができる。 According to this method, when the concentration of the sublimable substance in the liquid film is not within the reference concentration range, the sublimable substance is removed from the upper surface of the substrate with the removal liquid before the solid of the sublimable substance precipitates. can be done. As a result, it is possible to prevent a sublimable substance solid having an inappropriate thickness from being formed on the upper surface of the substrate. Therefore, it is possible to suppress an increase in the pattern collapse rate. In addition, since the pre-drying treatment liquid on the upper surface of the substrate is removed, the substrate can be reused.

4.前記濃度判定工程において前記液膜中の前記昇華性物質の濃度が前記基準濃度範囲の下限値よりも低いと判定された場合に、前記析出工程の実行中に前記液膜からの前記溶媒の蒸発を促進する溶媒蒸発促進工程をさらに含む、項1または2に記載の基板処理方法。 4. Evaporation of the solvent from the liquid film during the deposition step when it is determined in the concentration determination step that the concentration of the sublimable substance in the liquid film is lower than the lower limit of the reference concentration range. Item 3. The substrate processing method according to Item 1 or 2, further comprising a solvent evaporation promoting step for promoting the

この方法によれば、濃度判定工程において乾燥前処理液の液膜中の昇華性物質の濃度が基準濃度範囲の下限値よりも低いと判定された場合に、乾燥前処理液の液膜からの溶媒の蒸発が促進される。乾燥前処理液の液膜からの溶媒の蒸発が促進されると、乾燥前処理液の液膜中の昇華性物質の濃度を上昇する。そのため、乾燥前処理液の液膜中の昇華性物質の濃度を基準濃度範囲内に調整することができる。したがって、濃度判定工程において乾燥前処理液の液膜中の昇華性物質の濃度が基準濃度範囲の下限値よりも低いと判定されたとしても、パターンの倒壊率が低減された基板を得ることができる。 According to this method, when it is determined in the concentration determining step that the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid is lower than the lower limit value of the reference concentration range, the concentration of the sublimable substance from the liquid film of the pre-drying treatment liquid Evaporation of the solvent is accelerated. When the evaporation of the solvent from the liquid film of the pre-drying treatment liquid is accelerated, the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid increases. Therefore, the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid can be adjusted within the reference concentration range. Therefore, even if it is determined in the concentration determining step that the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid is lower than the lower limit of the reference concentration range, it is possible to obtain a substrate with a reduced pattern collapse rate. can.

5.前記溶媒蒸発促進工程が、前記液膜に接する雰囲気に向けて不活性ガスを供給することによって前記液膜に接する雰囲気から前記溶媒の蒸気を除去する工程を含む、項4に記載の基板処理方法。 5. Item 5. The substrate processing method according to Item 4, wherein the solvent evaporation promoting step includes a step of removing vapor of the solvent from an atmosphere in contact with the liquid film by supplying an inert gas toward the atmosphere in contact with the liquid film. .

この方法によれば、不活性ガスを供給して基板の上面上の乾燥前処理液の液膜に接する雰囲気から溶媒の蒸気が除去される。そのため、乾燥前処理液の液膜からの溶媒の蒸発を促進することができる。 According to this method, the vapor of the solvent is removed from the atmosphere in contact with the liquid film of the pre-drying treatment liquid on the upper surface of the substrate by supplying an inert gas. Therefore, the evaporation of the solvent from the liquid film of the pre-drying treatment liquid can be promoted.

6.前記析出工程において、前記基板の前記上面を鉛直方向に沿う回転軸まわりに回転させる基板回転工程と、前記濃度判定工程において前記液膜中の前記昇華性物質の濃度が前記基準濃度範囲の上限値よりも高いと判定された場合に、前記析出工程の実行中に前記昇華性物質の固体が析出する前に、前記基板の回転速度を増大させることによって前記液膜を薄膜化する薄膜化工程とをさらに含む、項1~5のいずれか一項に記載の基板処理方法。 6. In the depositing step, the substrate rotating step of rotating the upper surface of the substrate about a rotation axis extending in a vertical direction; a thinning step of thinning the liquid film by increasing the rotation speed of the substrate before the solid of the sublimable substance is deposited during the deposition step, if the liquid film is determined to be higher than Item 6. The substrate processing method according to any one of Items 1 to 5, further comprising

乾燥前処理液の液膜中の昇華性物質の濃度が基準濃度範囲の上限値よりも高い場合、昇華する直前の昇華性物質の固体の厚みが、意図する値よりも大きくなる。基板上の乾燥前処理液の液膜の厚みを減少させると、乾燥前処理液の液膜中に含まれる昇華性物質の量が減少するので、昇華性物質の固体の厚みも減少する。 When the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid is higher than the upper limit of the reference concentration range, the solid thickness of the sublimable substance immediately before sublimation becomes larger than the intended value. When the thickness of the liquid film of the pre-drying treatment liquid on the substrate is reduced, the amount of the sublimable substance contained in the liquid film of the pre-drying treatment liquid is reduced, so the solid thickness of the sublimable substance is also reduced.

そこで、乾燥前処理液の液膜中の昇華性物質の濃度が基準濃度範囲の上限値よりも高い場合に、基板の回転速度を増大させて基板の上面上の乾燥前処理液の液膜に遠心力を作用させることによって、昇華性物質の固体が析出する前に乾燥前処理液の液膜の厚みを減少させることができる。これにより、意図する厚みの昇華性物質の固体を析出させることができる。そのため、濃度判定工程において乾燥前処理液の液膜中の昇華性物質の濃度が基準濃度範囲の上限値よりも高いと判定されたとしても、パターンの倒壊率が低減された基板を得ることができる。 Therefore, when the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid is higher than the upper limit of the reference concentration range, the rotation speed of the substrate is increased so that the liquid film of the pre-drying treatment liquid on the upper surface of the substrate is reduced. By applying centrifugal force, the thickness of the liquid film of the pre-drying treatment liquid can be reduced before the solid of the sublimable substance precipitates. As a result, a sublimable substance solid having an intended thickness can be deposited. Therefore, even if it is determined in the concentration determining step that the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid is higher than the upper limit value of the reference concentration range, it is possible to obtain a substrate with a reduced pattern collapse rate. can.

7.前記濃度判定工程において前記液膜中の前記昇華性物質の濃度が前記基準濃度範囲の上限値よりも高いと判定された場合に、前記析出工程の実行中に前記液膜からの前記溶媒の蒸発を抑制する溶媒蒸発抑制工程をさらに含む、項1~5のいずれか一項に記載の基板処理方法。 7. Evaporation of the solvent from the liquid film during the deposition step when it is determined in the concentration determining step that the concentration of the sublimable substance in the liquid film is higher than the upper limit value of the reference concentration range. Item 6. The substrate processing method according to any one of items 1 to 5, further comprising a solvent evaporation suppression step for suppressing the

この方法によれば、濃度判定工程において液膜中の昇華性物質の濃度が基準濃度範囲の上限値よりも高いと判定された場合に、乾燥前処理液の液膜からの溶媒の蒸発が抑制される。乾燥前処理液の液膜からの溶媒の蒸発が抑制されると、液膜から蒸発する物質中における昇華性物質の割合が増大する。これにより、乾燥前処理液の液膜中の昇華性物質の濃度が低下する。そのため、乾燥前処理液の液膜中の昇華性物質の濃度を基準濃度範囲内に調整することができる。 According to this method, when it is determined in the concentration determination step that the concentration of the sublimable substance in the liquid film is higher than the upper limit of the reference concentration range, evaporation of the solvent from the liquid film of the pre-drying treatment liquid is suppressed. be done. When the evaporation of the solvent from the liquid film of the pre-drying treatment liquid is suppressed, the proportion of sublimable substances in the substances evaporated from the liquid film increases. This reduces the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid. Therefore, the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid can be adjusted within the reference concentration range.

したがって、濃度判定工程において乾燥前処理液の液膜中の昇華性物質の濃度が基準濃度範囲の上限値よりも高いと判定されたとしても、パターンの倒壊率が低減された基板を得ることができる。 Therefore, even if it is determined in the concentration determination step that the concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid is higher than the upper limit of the reference concentration range, it is possible to obtain a substrate with a reduced pattern collapse rate. can.

8.前記溶媒蒸発抑制工程が、前記液膜に接する雰囲気に前記溶媒の蒸気またはミストを供給することによって、前記液膜からの前記溶媒の蒸発を抑制する工程を含む、項7に記載の基板処理方法。 8. Item 8. The substrate processing method according to Item 7, wherein the solvent evaporation suppressing step includes a step of suppressing evaporation of the solvent from the liquid film by supplying vapor or mist of the solvent to an atmosphere in contact with the liquid film. .

この方法によれば、基板の上面上の乾燥前処理液の液膜に接する雰囲気に溶媒の蒸気またはミストを供給することによって、乾燥前処理液の液膜に接する雰囲気中に存在する溶媒の量が増大する。そのため、乾燥前処理液の液膜からの溶媒の蒸発が抑制される。 According to this method, by supplying vapor or mist of the solvent to the atmosphere in contact with the liquid film of the pre-drying treatment liquid on the upper surface of the substrate, the amount of the solvent present in the atmosphere in contact with the liquid film of the pre-drying treatment liquid is determined. increases. Therefore, evaporation of the solvent from the liquid film of the pre-drying treatment liquid is suppressed.

9.前記濃度判定工程において前記液膜中の前記昇華性物質の濃度が前記基準濃度範囲内でないと判定された場合に、異常を報知する第1異常報知工程をさらに含む、項1~8のいずれか一項に記載の基板処理方法。そのため、異常についての報知に基づいて、基板処理を続行するか否かの判断を適切なタイミングで行うことができる。 9. Item 9. Any one of items 1 to 8, further comprising a first abnormality notification step of notifying an abnormality when it is determined in the concentration determination step that the concentration of the sublimable substance in the liquid film is not within the reference concentration range. 1. The substrate processing method according to item 1. Therefore, based on the notification of the abnormality, it is possible to determine at appropriate timing whether to continue the substrate processing.

10.前記析出工程において、前記溶媒の蒸発によって前記昇華性物質の固体が析出する直前に、前記液膜の厚みを測定する膜厚測定工程と、前記膜厚測定工程において測定された前記液膜の厚みが前記昇華性物質の固体の基準厚み範囲内であるか否かを判定する厚み判定工程とをさらに含む、項1~9のいずれか一項に記載の基板処理方法。 10. In the deposition step, a film thickness measurement step of measuring the thickness of the liquid film immediately before the solid of the sublimation substance is deposited by evaporation of the solvent, and the thickness of the liquid film measured in the film thickness measurement step. Item 10. The substrate processing method according to any one of Items 1 to 9, further comprising a thickness determination step of determining whether or not the thickness is within a reference thickness range of the solid of the sublimable substance.

この方法によれば、昇華性物質の固体が析出する直前の、すなわち、昇華性物質の濃度が昇華性物質の飽和濃度に達したときの液膜の厚みが昇華性物質の固体の基準厚み範囲内であるか否かが判定される。これにより、基板の上面に形成された昇華性物質の固体の厚みが適切であるか否かを判定することができる。 According to this method, the thickness of the liquid film immediately before the solid of the sublimable substance precipitates, that is, when the concentration of the sublimable substance reaches the saturation concentration of the sublimable substance, is within the reference thickness range of the solid of the sublimable substance. It is determined whether it is within This makes it possible to determine whether or not the solid thickness of the sublimable substance formed on the upper surface of the substrate is appropriate.

基板の上面に形成された昇華性物質の固体の厚みが適切である場合には、析出工程の終了後に、適切な厚みの昇華性物質の固体が形成される。そのため、パターンの倒壊率が低減された基板を得ることができる。 If the solid of sublimable material formed on the upper surface of the substrate has an appropriate thickness, a solid of sublimable material having an appropriate thickness is formed after the deposition step is completed. Therefore, a substrate with a reduced pattern collapse rate can be obtained.

一方、基板の上面に形成された昇華性物質の固体の厚みが適切でない場合には、基板処理を中断することで、パターンの倒壊率の上昇を抑制することができる。 On the other hand, when the solid thickness of the sublimation substance formed on the upper surface of the substrate is not appropriate, the substrate processing is interrupted, thereby suppressing an increase in the collapse rate of the pattern.

11.前記膜厚測定工程において測定された前記液膜の厚みが前記厚み判定工程において前記基準厚み範囲内でないと判定された場合に、異常を報知する第2異常報知工程をさらに含む、項10に記載の基板処理方法。この方法により、異常についての報知に基づいて、基板処理を続行するか否かの判断を適切なタイミングで行うことができる。 11. Item 11. The method according to Item 10, further comprising a second abnormality notification step of notifying an abnormality when the thickness of the liquid film measured in the film thickness measurement step is determined not to be within the reference thickness range in the thickness determination step. substrate processing method. With this method, it is possible to determine at appropriate timing whether or not to continue the substrate processing based on the notification of the abnormality.

12.前記基板の前記上面上の前記乾燥前処理液から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面上の前記乾燥前処理液中に析出させる第1析出工程と、前記第1析出工程において前記昇華性物質の固体の少なくとも一部を前記基板の前記上面上の前記乾燥前処理液に溶解させる第1溶解工程と、前記第1溶解工程において前記昇華性物質の固体が溶解した前記乾燥前処理液から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面上に析出させる最終析出工程とをさらに含み、前記析出工程が、前記第1析出工程であり、前記昇華工程が、前記最終析出工程の終了後に実行され、前記第1溶解工程が、前記厚み判定工程において、前記液膜の厚みが基準厚み範囲内であると判定された場合に実行される、項10または11に記載の基板処理方法。 12. a first deposition step of depositing a solid of the sublimable substance in the pre-drying treatment liquid on the upper surface of the substrate by evaporating the solvent from the pre-drying treatment liquid on the upper surface of the substrate; a first dissolving step of dissolving at least part of the solid of the sublimable substance in the pre-drying treatment liquid on the upper surface of the substrate in the first deposition step; and a solid of the sublimable substance in the first dissolving step. a final deposition step of depositing a solid of the sublimable substance on the upper surface of the substrate by evaporating the solvent from the pre-drying treatment liquid in which the wherein the sublimation step is performed after the final deposition step is completed, and the first dissolution step is performed when the thickness of the liquid film is determined to be within a reference thickness range in the thickness determination step. 12. The substrate processing method according to Item 10 or 11, which is performed.

第1析出工程において昇華性物質の固体が析出し始めたときは基板の上面に乾燥前処理液が残っている。第1溶解工程では、この乾燥前処理液に昇華性物質の固体の少なくとも一部が溶解される。その後、最終析出工程において、再び、乾燥前処理液から溶媒を蒸発させる。これにより、溶媒の含有量が減少し、昇華性物質の固体が基板の上面上に析出する。 When the solid of the sublimable substance starts to precipitate in the first precipitation step, the pre-drying treatment liquid remains on the upper surface of the substrate. In the first dissolving step, at least part of the solid of the sublimable substance is dissolved in this drying pretreatment liquid. After that, in the final precipitation step, the solvent is again evaporated from the pre-drying treatment liquid. This reduces the solvent content and deposits a solid sublimable substance on the upper surface of the substrate.

昇華性物質の固体を最初に析出させる前は、パターンの間だけでなく、パターンの上方にも乾燥前処理液が存在している。半導体ウエハやFPD用基板などの基板では、パターンの間隔が狭い。パターンの間隔が狭い場合、パターンの間にある乾燥前処理液は、乾燥前処理液のバルク、つまり、基板の上面の乾燥前処理液の表面からパターンの上面までの範囲に位置する乾燥前処理液とは性質が異なる。両者の性質の違いは、パターンの間隔が狭くなるにしたがって顕著になる。 Before the solid sublimable substance is deposited for the first time, the drying pretreatment liquid is present not only between the patterns but also above the patterns. Pattern intervals are narrow on substrates such as semiconductor wafers and FPD substrates. When the space between the patterns is narrow, the pre-drying treatment liquid between the patterns is the bulk of the pre-drying treatment liquid, that is, the pre-drying treatment located in the range from the surface of the pre-drying treatment liquid on the upper surface of the substrate to the upper surface of the pattern. It has different properties from liquid. The difference between the two properties becomes more pronounced as the pattern spacing becomes narrower.

パターンの間隔が狭いと、昇華性物質の固体を最初に析出させたときに、乾燥前処理液のバルクだけに昇華性物質の固体が析出し、昇華性物質の固体がパターンの間に存在しないまたは殆ど存在しない不完全析出領域が基板の上面内に形成される場合がある。この場合、パターンの間の乾燥前処理液の表面張力がパターンの側面に加わるので、昇華性物質の固体が昇華する際に、不完全析出領域内のパターンが倒壊し得る。これは、パターンの倒壊率を上昇(悪化)させる原因となる。 If the pattern spacing is narrow, when the solid sublimable substance is deposited first, the solid sublimable substance is deposited only in the bulk of the drying pretreatment liquid, and the solid sublimable substance does not exist between the patterns. Alternatively, almost non-existent under-deposited regions may form within the top surface of the substrate. In this case, since the surface tension of the dry pretreatment liquid between the patterns is applied to the sides of the pattern, the pattern in the incompletely precipitated region may collapse when the solid of the sublimable substance sublimes. This causes an increase (worsening) in the collapse rate of the pattern.

これに対して、析出した昇華性物質の固体を乾燥前処理液に溶解させた後に、再び昇華性物質の固体を析出させると、パターンの間の空間等の狭い空間にも昇華性物質の固体の結晶核が形成される。したがって、第1溶解工程において析出した昇華性物質の固体を乾燥前処理液に溶解させた後に、最終析出工程において再び昇華性物質の固体を析出させれば、パターンの間隔が狭い場合であっても、不完全析出領域の発生を防止したり、その面積を減らしたりすることができる。 On the other hand, if the deposited solid of the sublimable substance is dissolved in the pre-drying treatment liquid and then deposited again, the solid of the sublimable substance can be deposited even in a narrow space such as a space between patterns. crystal nuclei are formed. Therefore, if the solid of the sublimable substance deposited in the first dissolving step is dissolved in the pre-drying treatment liquid, and then the solid of the sublimable substance is deposited again in the final deposition step, even if the pattern spacing is narrow. Also, it is possible to prevent the occurrence of the incompletely precipitated region or reduce its area.

また、この方法によれば、第1溶解工程は、乾燥前処理液の液膜の厚みが厚み判定工程において基準厚み範囲内であると判定された場合に開始される。つまり、第1溶解工程は、適切な厚みの昇華性物質の固体が形成されたことをきっかけとして開始される。そのため、適切な厚みの昇華性物質の固体が形成された場合にのみ、第1溶解工程、最終析出工程、および昇華工程が実行される。昇華工程の終了後に、パターンの倒壊率が低減された基板を得ることができる。 Further, according to this method, the first dissolving step is started when the thickness of the liquid film of the pre-drying treatment liquid is determined to be within the reference thickness range in the thickness determination step. That is, the first dissolution step is triggered by the formation of a sublimable substance solid having an appropriate thickness. Therefore, the first dissolution step, the final precipitation step and the sublimation step are performed only when a solid of sublimable material of suitable thickness is formed. After the sublimation process is finished, a substrate with a reduced pattern collapse rate can be obtained.

適切な厚みの昇華性物質の固体が形成されていない場合には、第1析出工程よりも後の工程(第1溶解工程、最終析出工程、および昇華工程)を実行することなく、基板処理を早期に中断することができる。 If a sublimable substance solid having an appropriate thickness is not formed, the substrate is processed without executing the steps after the first deposition step (the first dissolution step, the final deposition step, and the sublimation step). Can be interrupted early.

13.前記基板の前記上面上の前記乾燥前処理液から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面上の前記乾燥前処理液中に析出させる第1析出工程と、前記昇華性物質の固体の少なくとも一部を前記基板の前記上面上の前記乾燥前処理液に溶解させる第1溶解工程と、前記昇華性物質の固体が溶解した前記乾燥前処理液から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面上に析出させる最終析出工程とをさらに含み、前記析出工程が、前記第1析出工程および前記最終析出工程の少なくとも一方を含み、前記昇華工程が前記最終析出工程の後に実行される、項1~11のいずれか一項に記載の基板処理方法。 13. a first deposition step of depositing a solid of the sublimable substance in the pre-drying treatment liquid on the upper surface of the substrate by evaporating the solvent from the pre-drying treatment liquid on the upper surface of the substrate; a first dissolving step of dissolving at least part of the solid of the sublimable substance in the pre-drying treatment liquid on the upper surface of the substrate; and removing the solvent from the pre-drying treatment liquid in which the solid of the sublimable substance is dissolved. a final deposition step of depositing a solid of the sublimable substance on the upper surface of the substrate by evaporation, wherein the deposition step includes at least one of the first deposition step and the final deposition step; Item 12. The substrate processing method according to any one of Items 1 to 11, wherein the sublimation step is performed after the final deposition step.

この方法によれば、析出した昇華性物質の固体を乾燥前処理液に溶解させた後に、昇華性物質の固体が再び析出する。そのため、パターンの間隔が狭い場合であっても、不完全析出領域の発生を防止したり、その面積を減らしたりすることができる。これにより、パターンの倒壊を減らすことができ、パターンの倒壊率を低下させることができる。 According to this method, after the precipitated solid of the sublimable substance is dissolved in the drying pretreatment liquid, the solid of the sublimable substance precipitates again. Therefore, even if the pattern spacing is narrow, it is possible to prevent the occurrence of an incomplete precipitation region or reduce its area. As a result, pattern collapse can be reduced, and the pattern collapse rate can be lowered.

また、この方法によれば、第1析出工程および最終析出工程の少なくともいずれかにおいて、昇華性物質の固体が析出する前に、すなわち、昇華性物質の濃度が昇華性物質の飽和濃度に達する前に、液膜中の昇華性物質の濃度が基準濃度範囲内であるか否かが判定される。液膜中の昇華性物質の濃度が基準濃度範囲内であると判定された場合には、適切な厚みの昇華性物質の固体が形成される。そして、最終析出工程の終了後に昇華性物質の固体が昇華されるので、パターンの倒壊率が低減された基板を得ることができる。 Further, according to this method, in at least one of the first precipitation step and the final precipitation step, before the solid of the sublimable substance precipitates, that is, before the concentration of the sublimable substance reaches the saturation concentration of the sublimable substance. First, it is determined whether or not the concentration of the sublimable substance in the liquid film is within the reference concentration range. If the concentration of the sublimable substance in the liquid film is determined to be within the reference concentration range, a solid of the sublimable substance having an appropriate thickness is formed. Further, since the solid of the sublimable substance is sublimated after the final deposition step is completed, it is possible to obtain a substrate with a reduced pattern collapse rate.

一方、液膜中の昇華性物質の濃度が基準濃度範囲内でないと判定された場合には、基板処理を中断すれば、適切でない厚みの昇華性物質の固体が昇華されることを未然に防ぐことができる。これにより、パターンの倒壊率の上昇を抑制することができる。 On the other hand, when it is determined that the concentration of the sublimable substance in the liquid film is not within the standard concentration range, the substrate processing is interrupted to prevent sublimation of the solid sublimable substance having an inappropriate thickness. be able to. As a result, it is possible to suppress an increase in the pattern collapse rate.

パターンの倒壊率は、基板の上面に最終的に形成される昇華性物質の固体の厚みに依存するため、濃度判定工程は、最終析出工程で実行されることが好ましい。しかしながら、第1溶解工程および最終析出工程において蒸発する溶媒の量は、予測可能である。そのため、濃度判定工程が第1析出工程で実行された場合であっても、第1析出工程中の液膜中の昇華性物質の濃度に基づいて基板の上面に形成される昇華性物質の固体の厚みが適切であるか否かを判定することが可能である。 Since the collapse rate of the pattern depends on the thickness of the sublimable substance solid finally formed on the upper surface of the substrate, the concentration determination step is preferably performed in the final deposition step. However, the amount of solvent evaporated in the first dissolution step and the final precipitation step is predictable. Therefore, even if the concentration determination step is executed in the first deposition step, the solid state of the sublimable substance formed on the upper surface of the substrate is determined based on the concentration of the sublimable substance in the liquid film during the first deposition step. It is possible to determine whether the thickness of is appropriate.

14.昇華性物質が溶媒中に溶解した溶液である乾燥前処理液を、パターンが形成された基板の上面に供給して、前記乾燥前処理液の液膜を前記基板の前記上面に形成する乾燥前処理液供給工程と、前記液膜から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面に析出させる析出工程と、前記析出工程において、前記溶媒の蒸発によって前記昇華性物質の固体が析出した後、前記基板の前記上面の複数箇所において前記昇華性物質の固体の高さ位置を測定することによって、前記昇華性物質の固体の表面の平坦度合を測定する平坦度合測定工程と、前記平坦度合測定工程において測定された平坦度合が基準平坦範囲内であるか否かを判定する平坦判定工程と、前記平坦判定工程において前記平坦度合が前記基準平坦範囲内であると判定された場合に、前記昇華性物質の固体を昇華させる昇華工程とを含む、基板処理方法。 14. a pre-drying treatment liquid, which is a solution in which a sublimable substance is dissolved in a solvent, is supplied to the upper surface of a substrate having a pattern formed thereon to form a liquid film of the pre-drying treatment liquid on the upper surface of the substrate; a treatment liquid supplying step; a deposition step of depositing a solid of the sublimable substance on the upper surface of the substrate by evaporating the solvent from the liquid film; flatness measurement for measuring the flatness of the surface of the solid of the sublimable substance by measuring the height positions of the solid of the sublimable substance at a plurality of locations on the upper surface of the substrate after the solid of the substance is deposited; a flatness determining step of determining whether the flatness measured in the flatness measuring step is within a reference flatness range; and determining that the flatness is within the reference flatness range in the flatness determining step. and a sublimation step of sublimating the solid of the sublimable substance when the substrate is processed.

この方法によれば、昇華性物質が溶媒中に溶解した溶液を基板の上面に供給する。これにより、乾燥前処理液の液膜が基板の上面に形成される。その後、乾燥前処理液の液膜から溶媒を蒸発させる。乾燥前処理液の液膜中における昇華性物質の濃度は、溶媒の蒸発に伴って上昇する。昇華性物質の濃度が昇華性物質の飽和濃度に達すると、昇華性物質の固体が乾燥前処理液の液膜中に析出する。 According to this method, a solution in which a sublimable substance is dissolved in a solvent is supplied to the upper surface of the substrate. As a result, a liquid film of the pre-drying treatment liquid is formed on the upper surface of the substrate. After that, the solvent is evaporated from the liquid film of the pre-drying treatment liquid. The concentration of the sublimable substance in the liquid film of the pre-drying treatment liquid increases as the solvent evaporates. When the concentration of the sublimable substance reaches the saturation concentration of the sublimable substance, the solid of the sublimable substance precipitates in the liquid film of the drying pretreatment liquid.

昇華性物質の固体の一部に厚みが薄すぎる部分や厚すぎる部分が存在する場合には、その部分におけるパターンの倒壊率が増加するおそれがある。そこで、基板の上面に析出した昇華性物質の固体の表面の平坦度合を測定し、測定した平坦度合が基準平坦範囲内であるか否かが判定される。これにより、基板の上面の全域において厚みが均等な昇華性物質の固体が形成されているか否かを調べることができる。 If the solid of the sublimable substance has a portion that is too thin or a portion that is too thick, the collapse rate of the pattern in that portion may increase. Therefore, the degree of flatness of the solid surface of the sublimation substance deposited on the upper surface of the substrate is measured, and it is determined whether or not the measured degree of flatness is within the reference flatness range. As a result, it is possible to check whether or not a sublimable solid having a uniform thickness is formed over the entire upper surface of the substrate.

昇華性物質の固体の平坦度合が基準平坦範囲内であると判定された場合には、昇華性物質の固体が昇華されるので、パターンの倒壊率が低減された基板を得ることができる。一方、昇華性物質の固体の平坦度合が基準平坦範囲内でないと判定された場合には、基板処理を中断することで、パターンの倒壊率が上昇した基板の発生を抑制できる。 When the degree of flatness of the solid of the sublimable substance is determined to be within the reference flatness range, the solid of the sublimable substance is sublimated, so that a substrate with a reduced pattern collapse rate can be obtained. On the other hand, when it is determined that the flatness of the sublimable substance solid is not within the reference flatness range, the substrate processing is interrupted, thereby suppressing the generation of the substrate with an increased pattern collapse rate.

15.前記平坦度合測定工程において前記平坦度合が前記基準平坦範囲でないと判定された場合に、除去液を前記基板の前記上面に供給することによって、前記基板の前記上面から前記昇華性物質の固体を除去する固体除去工程をさらに含む、項14に記載の基板処理方法。 15. When it is determined in the flatness measuring step that the flatness is not within the reference flatness range, a removal liquid is supplied to the upper surface of the substrate to remove the sublimable substance solid from the upper surface of the substrate. Item 15. The substrate processing method according to Item 14, further comprising a solid removal step.

この方法によれば、昇華性物質の固体の平坦度合が基準平坦範囲内でない場合に、除去液によって、基板の上面から昇華性物質の固体が除去される。そのため、昇華性物質の固体の一部に厚みが薄すぎる部分や厚すぎる部分が存在する場合においてもパターンの倒壊を抑制することができる。また、基板の上面上の昇華性物質の固体が除去されるので、基板を再利用することができる。 According to this method, when the degree of flatness of the solid of the sublimable substance is not within the reference flatness range, the solid of the sublimable substance is removed from the upper surface of the substrate by the removal liquid. Therefore, it is possible to suppress the pattern from collapsing even when the solid of the sublimation substance has a portion that is too thin or a portion that is too thick. In addition, since the sublimable substance solid on the upper surface of the substrate is removed, the substrate can be reused.

16.昇華性物質が溶媒中に溶解した溶液である乾燥前処理液を、パターンが形成された基板の上面に液膜が形成されるように前記基板の前記上面に供給する乾燥前処理液供給ユニットと、前記昇華性物質の固体が析出するように、前記液膜から前記溶媒を蒸発させる溶媒蒸発ユニットと、前記液膜の厚みを測定する膜厚測定ユニットと、前記基板上に形成された前記昇華性物質の固体を昇華させる昇華ユニットと、前記液膜中の前記昇華性物質の濃度が基準濃度範囲内であるか否かを判定するコントローラとを含む、基板処理装置。この構成によれば、前述の基板処理方法と同様の効果を奏する。 16. a pre-drying treatment liquid supply unit for supplying a pre-drying treatment liquid, which is a solution in which a sublimable substance is dissolved in a solvent, to the upper surface of the patterned substrate so as to form a liquid film on the upper surface of the substrate; a solvent evaporating unit for evaporating the solvent from the liquid film so that the solid of the sublimable substance is deposited; a film thickness measuring unit for measuring the thickness of the liquid film; and the sublimation formed on the substrate. and a controller for determining whether the concentration of the sublimable substance in the liquid film is within a reference concentration range. According to this configuration, the same effects as those of the substrate processing method described above can be obtained.

1 :基板処理装置
3 :コントローラ
10 :スピンチャック
14 :スピンモータ(溶媒蒸発ユニット、昇華ユニット)
39 :乾燥前処理液ノズル(乾燥前処理液供給ユニット)
55 :中心ノズル(溶媒蒸発ユニット、昇華ユニット)
61 :遮断部材の上中央開口(溶媒蒸発ユニット、昇華ユニット)
71 :下面ノズル(溶媒蒸発ユニット)
91 :膜厚測定ユニット
120 :乾燥前処理液膜(乾燥前処理液の液膜)
121 :昇華性物質の固体
191 :膜厚測定ユニット
PA :パターン
W :基板
Reference Signs List 1: substrate processing apparatus 3: controller 10: spin chuck 14: spin motor (solvent evaporation unit, sublimation unit)
39: pre-drying treatment liquid nozzle (pre-drying treatment liquid supply unit)
55: center nozzle (solvent evaporation unit, sublimation unit)
61: Upper central opening of blocking member (solvent evaporation unit, sublimation unit)
71: bottom nozzle (solvent evaporation unit)
91: film thickness measurement unit 120: pre-drying treatment liquid film (liquid film of pre-drying treatment liquid)
121: solid of sublimation substance 191: film thickness measurement unit PA: pattern W: substrate

Claims (6)

昇華性物質が溶媒中に溶解した溶液である乾燥前処理液を、パターンが形成された基板の上面に供給して、前記乾燥前処理液の液膜を前記基板の前記上面に形成する乾燥前処理液供給工程と、
前記液膜から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面に析出させる析出工程と、
前記析出工程において、前記昇華性物質の固体が析出する前に、前記溶媒の蒸発によって前記液膜の厚みが減少する速度である膜厚減少速度を測定する膜厚減少速度測定工程と、
前記膜厚減少速度測定工程において測定された前記膜厚減少速度が基準速度範囲内であるか否かを判定する減少速度判定工程と、
前記減少速度判定工程において前記膜厚減少速度が前記基準速度範囲内であると判定された場合に、前記析出工程の終了後に、前記昇華性物質の固体を昇華させる昇華工程とを含む、基板処理方法。
a pre-drying treatment liquid, which is a solution in which a sublimable substance is dissolved in a solvent, is supplied to the upper surface of a substrate having a pattern formed thereon to form a liquid film of the pre-drying treatment liquid on the upper surface of the substrate; a treatment liquid supply step;
a deposition step of depositing a solid of the sublimable substance on the upper surface of the substrate by evaporating the solvent from the liquid film;
In the precipitation step, a film thickness reduction rate measuring step of measuring a film thickness reduction rate, which is a speed at which the thickness of the liquid film decreases due to evaporation of the solvent, before the solid of the sublimable substance precipitates;
a reduction rate determination step of determining whether the film thickness reduction rate measured in the film thickness reduction rate measurement step is within a reference rate range;
a sublimation step of sublimating a solid of the sublimable substance after the precipitation step when the film thickness reduction speed is determined to be within the reference speed range in the reduction speed determination step. Method.
前記基準速度範囲は、前記膜厚減少速度が前記基準速度範囲内となるときの前記液膜中の前記昇華性物質の濃度範囲を表す基準濃度範囲と、前記昇華性物質の濃度が異なる乾燥前処理液の液膜毎に前記膜厚減少速度を事前に測定して作成された基準データとに基づき定められる、請求項1に記載の基板処理方法。 The reference speed range is a reference concentration range representing the concentration range of the sublimation substance in the liquid film when the film thickness reduction speed is within the reference speed range, and 2. The substrate processing method according to claim 1, wherein said film thickness reduction rate is determined based on reference data created by measuring said film thickness reduction rate for each liquid film of said processing liquid in advance. 昇華性物質が溶媒中に溶解した溶液である乾燥前処理液を、パターンが形成された基板の上面に供給して、前記乾燥前処理液の液膜を前記基板の前記上面に形成する乾燥前処理液供給工程と、
前記液膜から前記溶媒を蒸発させることにより、前記昇華性物質の固体を前記基板の前記上面に析出させる析出工程と、
前記析出工程において、前記溶媒の蒸発によって前記昇華性物質の固体が析出する直前に、前記液膜の厚みを測定する膜厚測定工程と、
前記膜厚測定工程において測定された前記液膜の厚みが前記昇華性物質の固体の基準厚み範囲内であるか否かを判定する厚み判定工程と、
前記膜厚測定工程において測定された前記液膜の厚みが前記厚み判定工程において前記基準厚み範囲内であると判定された場合に、前記析出工程の終了後に、前記昇華性物質の固体を昇華させる昇華工程とを含む、基板処理方法。
a pre-drying treatment liquid, which is a solution in which a sublimable substance is dissolved in a solvent, is supplied to the upper surface of a substrate having a pattern formed thereon to form a liquid film of the pre-drying treatment liquid on the upper surface of the substrate; a treatment liquid supply step;
a deposition step of depositing a solid of the sublimable substance on the upper surface of the substrate by evaporating the solvent from the liquid film;
In the deposition step, a film thickness measurement step of measuring the thickness of the liquid film immediately before the solid of the sublimable substance is deposited by evaporation of the solvent;
a thickness determination step of determining whether the thickness of the liquid film measured in the film thickness measurement step is within a reference thickness range of the solid of the sublimable substance;
When the thickness of the liquid film measured in the film thickness measuring step is determined to be within the reference thickness range in the thickness determining step, the solid of the sublimable substance is sublimated after the deposition step is completed. A substrate processing method, comprising a sublimation step.
前記液膜の厚みが前記厚み判定工程において前記基準厚み範囲内でないと判定された場合に、異常を報知する異常報知工程をさらに含む、請求項3に記載の基板処理方法。 4. The substrate processing method according to claim 3, further comprising an anomaly reporting step of reporting an anomaly when the thickness of said liquid film is determined not to be within said reference thickness range in said thickness determining step. 前記析出工程において、前記液膜の厚みが前記厚み判定工程において前記基準厚み範囲内であると判定された場合に、前記基板の前記上面の複数箇所において前記昇華性物質の固体の表面の高さ位置を測定することによって、前記昇華性物質の固体の表面の平坦度合を測定する平坦度合測定工程と、
前記平坦度合測定工程において測定された平坦度合が基準平坦範囲内であるか否かを判定する平坦判定工程とをさらに含み、
前記昇華工程が、前記平坦度合測定工程において測定された平坦度合が前記平坦判定工程において前記基準平坦範囲内であると判定された場合に、前記析出工程の終了後に、実行される、請求項3または4に記載の基板処理方法。
In the deposition step, when the thickness of the liquid film is determined to be within the reference thickness range in the thickness determination step, the height of the solid surface of the sublimable substance at a plurality of locations on the upper surface of the substrate a flatness measuring step of measuring the flatness of the solid surface of the sublimable substance by measuring the position;
a flatness determination step of determining whether the flatness measured in the flatness measurement step is within a reference flatness range;
4. The sublimation step is performed after the deposition step is completed when the flatness measured in the flatness measurement step is determined to be within the reference flatness range in the flatness determination step. 5. The substrate processing method according to 4.
前記平坦度合測定工程において前記平坦度合が前記基準平坦範囲でないと判定された場合に、前記基板の前記上面に除去液を供給することによって、前記基板の前記上面から前記昇華性物質の固体を除去する固体除去工程をさらに含む、請求項5に記載の基板処理方法。 When it is determined in the flatness measuring step that the flatness is not within the reference flatness range, the solid sublimation substance is removed from the upper surface of the substrate by supplying a removing liquid to the upper surface of the substrate. 6. The substrate processing method of claim 5, further comprising a solids removal step.
JP2022126560A 2018-12-28 2022-08-08 Substrate processing method and substrate processing apparatus Active JP7314373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022126560A JP7314373B2 (en) 2018-12-28 2022-08-08 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018248018A JP7122251B2 (en) 2018-12-28 2018-12-28 Substrate processing method and substrate processing apparatus
JP2022126560A JP7314373B2 (en) 2018-12-28 2022-08-08 Substrate processing method and substrate processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018248018A Division JP7122251B2 (en) 2018-12-28 2018-12-28 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2022145824A true JP2022145824A (en) 2022-10-04
JP7314373B2 JP7314373B2 (en) 2023-07-25

Family

ID=87428112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022126560A Active JP7314373B2 (en) 2018-12-28 2022-08-08 Substrate processing method and substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP7314373B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029455A (en) * 2009-07-27 2011-02-10 Shibaura Mechatronics Corp Apparatus and method for processing substrate
JP2013033817A (en) * 2011-08-01 2013-02-14 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2016096317A (en) * 2014-11-17 2016-05-26 株式会社東芝 Substrate processing apparatus and substrate processing method
WO2018030516A1 (en) * 2016-08-12 2018-02-15 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029455A (en) * 2009-07-27 2011-02-10 Shibaura Mechatronics Corp Apparatus and method for processing substrate
JP2013033817A (en) * 2011-08-01 2013-02-14 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2016096317A (en) * 2014-11-17 2016-05-26 株式会社東芝 Substrate processing apparatus and substrate processing method
WO2018030516A1 (en) * 2016-08-12 2018-02-15 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium

Also Published As

Publication number Publication date
JP7314373B2 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
JP7100564B2 (en) Substrate drying method and substrate processing equipment
JP7541150B2 (en) Substrate processing method
JP7122251B2 (en) Substrate processing method and substrate processing apparatus
JP7163248B2 (en) Method for producing liquid containing sublimable substance, method for drying substrate, and substrate processing apparatus
KR102273984B1 (en) Substrate processing method and substrate processing apparatus
JP2010129809A (en) Substrate processing method, and substrate processing apparatus
WO2020166136A1 (en) Substrate drying method and substrate processing device
JP2020035986A (en) Method and device for substrate processing
JP7208091B2 (en) Substrate processing method and substrate processing apparatus
JP7314373B2 (en) Substrate processing method and substrate processing apparatus
KR102585601B1 (en) Substrate processing method and substrate processing apparatus
JP7511422B2 (en) SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS
WO2024084850A1 (en) Substrate processing method and substrate processing device
WO2020039835A1 (en) Substrate processing method and substrate processing device
JP2024078250A (en) Substrate processing method and substrate processing apparatus
KR20210021572A (en) Substrate processing method and substrate processing apparatus
JP2020035995A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230712

R150 Certificate of patent or registration of utility model

Ref document number: 7314373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150