JPH11294948A - Manufacture of minute device - Google Patents

Manufacture of minute device

Info

Publication number
JPH11294948A
JPH11294948A JP9759098A JP9759098A JPH11294948A JP H11294948 A JPH11294948 A JP H11294948A JP 9759098 A JP9759098 A JP 9759098A JP 9759098 A JP9759098 A JP 9759098A JP H11294948 A JPH11294948 A JP H11294948A
Authority
JP
Japan
Prior art keywords
liquid
water
freezing
volume
volume change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9759098A
Other languages
Japanese (ja)
Inventor
Yasukazu Iwasaki
靖和 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9759098A priority Critical patent/JPH11294948A/en
Publication of JPH11294948A publication Critical patent/JPH11294948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent the fracture of a minute structure body caused by volume change on freezing, by using water and liquid that is soluble in water and at the same time has a negative volume change rate on freezing when performing freezing/drying. SOLUTION: A precursor for forming the self-supporting structure of a minute device is dipped into etching liquid 110 consisting of fluoric acid, an oxide film that is a sacrifice layer is eliminated, and a minute structure body 111 is formed, where the minute structure body is opposite to the main surface of a silicon substrate 100 that is a support substrate and is of free standing type while being separated by a minute gap 112. Then, the minute structure body 111 is sufficiently washed in pure water without drying, is rinsed in mixed liquid where water and tertiary butyl alcohol are mixed by a capacity ratio of 20% where volume change becomes smaller on freezing, and is frozen while a liquid film remains on the surface, thus effectively preventing fracture caused by the volume change on freezing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板のよう
な基板材料の上に機械的な微小構造を形成する方法に関
し、詳しくは犠牲エッチング工程後の凍結乾燥法に関す
る。
The present invention relates to a method for forming a mechanical microstructure on a substrate material such as a semiconductor substrate, and more particularly to a freeze-drying method after a sacrificial etching step.

【0002】[0002]

【従来の技術】半導体業界における凍結乾燥法の歴史は
比較的浅く、ウエハ乾燥時のウォータマーク発生を防止
する手法としての応用が出願されている(例えば、特開
昭54−113261号、特開昭60−165727
号、特開昭63−222433号、特開平1−9624
号など)。
2. Description of the Related Art The history of freeze-drying in the semiconductor industry is relatively short, and applications have been filed as a technique for preventing the occurrence of watermarks during wafer drying (see, for example, Japanese Patent Application Laid-Open Nos. Showa 60-165727
JP-A-63-222433, JP-A-1-96624
Issue).

【0003】一方、1982年に、Petersenは、“Sili
con as a Mechanical Material” (Proceeding of The
IEEE, vo1.70, No.5, pp.420-457, May1982)を発表
し、機械材料としてのシリコンの可能性を示した。それ
以来、微小機械を半導体プロセスを駆使して形成しよう
という、新たな潮流が半導体業界に形成された。この微
小機械を形成する際には犠牲エッチングと呼ばれる手法
を用いるが、その乾燥工程において微小構造体が支持基
板表面に固着してしまうという不具合が発生する。上記
のような固着を防ぐ手法として凍結乾燥法を応用するこ
とが、Guckelによって提案されている(特開平3−50
2268号、USP−5013693号)。その後、Fu
jitaは、水を、室温近傍に凍結点を有するtert−B
uOHに置き換える手法(Tranducers 1991, p.63)、
あるいは水を、室温で固体の昇華性物質であるパラジク
ロールベンゼンに置き換える手法(MEMS 1992, p.214)
を発表している。
[0003] On the other hand, in 1982, Petersen
con as a Mechanical Material ”(Proceeding of The
IEEE, vo1.70, No.5, pp.420-457, May1982), demonstrating the potential of silicon as a mechanical material. Since then, a new trend has been created in the semiconductor industry to form micromachines using semiconductor processes. Although a technique called sacrifice etching is used to form the micromachine, there occurs a problem that the microstructure adheres to the surface of the support substrate in the drying process. Guckel proposes to apply a freeze-drying method as a method for preventing such sticking (Japanese Patent Laid-Open No. 3-50 / 1990).
No. 2268, USP-5013693). Then Fu
jita converts water to tert-B having a freezing point near room temperature.
a method of replacing with uOH (Tranducers 1991, p.63),
Or a method to replace water with paradichlorobenzene, a sublimable substance that is solid at room temperature (MEMS 1992, p.214)
Has been announced.

【0004】その他、水をシクロヘキサンなどの有機溶
媒あるいはナフタレンなどの昇華性物質に置き換える手
法なども他の研究者らに発表されているが、液体を蒸発
させて除去するのではなく、凍結させた固体を昇華させ
て除去する、という点においては、いずれも同様のコン
セプトの手法と言える。
[0004] In addition, a method of replacing water with an organic solvent such as cyclohexane or a sublimable substance such as naphthalene has been reported to other researchers. However, instead of removing the liquid by evaporation, the liquid is frozen. In terms of sublimation and removal of solids, both can be said to be methods of the same concept.

【0005】上記のような凍結乾燥を行わず、犠牲エッ
チング後に洗浄に用いた純水などの液体を蒸発させて乾
燥させた場合、微小構造体と支持基板との間隔が極めて
微小(数μm程度)なので、微小構造体が支持基板の表
面に固着し、自立した構造体を安定して形成することが
できない、という問題点があった。これは濡れ落ち葉が
乾くとかたく固着してしまうこと、濡れてしまった本や
お札を重なったまま乾かしてしまうと固着してしまうこ
と、生体組織を乾燥させるとミイラや干物のように微細
組織が相互に固着し全体としては収縮してしまうこと、
など日常的に観察される現象と類似の現象である。
When the liquid such as pure water used for cleaning is evaporated and dried after the sacrificial etching without performing the freeze-drying as described above, the distance between the microstructure and the supporting substrate is extremely small (about several μm). Therefore, there is a problem that the microstructure adheres to the surface of the support substrate and a self-standing structure cannot be formed stably. This is due to the fact that wet fallen leaves stick firmly when dried, that when wet books and bills are dried while overlapping, they stick together. To stick to and shrink as a whole,
It is a phenomenon similar to the phenomenon observed on a daily basis.

【0006】上記の問題を解決するためになされた従来
の凍結乾燥法においても、水を凍結するさせる方法で
は、凍結時に微小構造体が破損し、歩留りを低下させ
る、という問題点があった。これは寒い日に水道管内部
の水が凍結して水道管が破裂する、など日常的に良く経
験する現象と類似の現象であり、凍結時に水の体積が1
0%近くも膨張し、構造体に大きな応力を与えてしまう
ためである。微小構造体の破損の傾向は、微小構造体の
構造あるいは凍結乾燥時の凍結のされ方に大きく依存す
る。間隙が大きく開放されているほうが破損しにくく、
間隙が閉ざされているほど破損しやすい。また凍結した
液体が間隙の開放部を閉塞してから間隙内が凍結するよ
うな凍結のされかたをした場合も破損されやすい。ま
た、応力の印加に対して弱い構造体ほど破損しやすい。
[0006] In the conventional freeze-drying method for solving the above-mentioned problems, the method of freezing water has a problem that the microstructure is damaged at the time of freezing and the yield is reduced. This phenomenon is similar to the phenomenon often experienced on a cold day, such as the water inside the water pipe freezes and the water pipe ruptures.
This is because the structure expands by almost 0% and gives a large stress to the structure. The tendency of the microstructure to break largely depends on the structure of the microstructure or the manner of freezing during freeze-drying. The more open the gap, the less likely it is to break,
The closer the gap is, the more likely it is to break. Also, when the frozen liquid is frozen in such a manner that the inside of the gap is frozen after the opening of the gap is closed, the liquid is easily damaged. Further, a structure that is weaker to the application of stress is more likely to be damaged.

【0007】また、水の代わりにtert−BuOHや
パラジクロールベンゼンなどを用いた場合においても、
凍結した液体にひび割れが発生するとともに、微小構造
体が破損し、歩留りを低下させる、という問題点があっ
た。これは凍結時に体積が10〜20%も収縮し、引き
込まれるか或いは裂かれるといった応力が微小構造体に
加わるためである。凍結した液体にひび割れが発生する
傾向ならびに微小構造体が破損する傾向は、微小構造体
の構造や凍結する液膜の厚さなどに依存する。凍結した
液膜の体積収縮時のずりを防止するアンカー構造が支持
基板表面に多いほどひび割れが発生しにくく、平坦であ
るほど、あるいは液膜が厚いほど発生しやすい傾向にあ
る。また、応力の印加に対して弱い構造体ほど破損しや
すい。
Further, when tert-BuOH or paradichlorobenzene is used instead of water,
Cracks are generated in the frozen liquid, and the microstructure is damaged, resulting in a problem of lowering the yield. This is because the volume shrinks by 10 to 20% during freezing, and a stress such as being pulled or torn is applied to the microstructure. The tendency of the frozen liquid to crack and the tendency to break the microstructure depend on the structure of the microstructure, the thickness of the liquid film to be frozen, and the like. Cracking is less likely to occur as the number of anchor structures for preventing shearing of the frozen liquid film at the time of volume shrinkage on the surface of the support substrate, and tends to occur more easily as the surface becomes flatter or the liquid film becomes thicker. Further, a structure that is weaker to the application of stress is more likely to be damaged.

【0008】[0008]

【発明が解決しようとする課題】上記のように、犠牲エ
ッチング後に凍結乾燥法を用いずに水を蒸発させて乾燥
させる方法では、微小構造体が支持基板の表面に固着す
るという問題があり、その問題を解決する凍結乾燥法に
おいては、凍結乾燥する液体として水を用いた場合には
凍結時の体積膨張により、また有機溶媒等を用いた場合
には凍結時の体積収縮により、微小構造体が破損するこ
とがある、という問題があった。
As described above, in the method of evaporating water and drying without using the freeze-drying method after the sacrificial etching, there is a problem that the microstructure adheres to the surface of the supporting substrate. In the freeze-drying method that solves this problem, microstructures are formed by volume expansion during freezing when water is used as the liquid to be freeze-dried, or by volume shrinkage during freezing when an organic solvent is used. May be damaged.

【0009】本発明は、上記のごとき従来技術の問題を
解決するためになされたものであり、微小構造体が支持
基板の表面に固着することがなく、かつ凍結時の体積変
化による破損を有効に防止することの出来る微小装置の
製造方法を提供することを目的とする。
The present invention has been made in order to solve the problems of the prior art as described above, and the microstructure does not adhere to the surface of the support substrate, and the damage due to the volume change during freezing is effectively prevented. It is an object of the present invention to provide a method for manufacturing a micro device which can be prevented from occurring.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
な構成をとる。すなわち請求項1に記載の発明において
は、凍結乾燥の際に凍結ならびに昇華による除去がなさ
れる液体として、水と、水に溶解し、かつ凍結時の体積
変化率が負の液体(凍結時に体積が収縮する液体)と、
を混合した液体を用いるように構成している。上記のよ
うに凍結時に体積が膨張する水と体積が収縮する液体と
の混合液を用いることにより、凍結時における液体の体
積変化が非常に小さくなるので、体積変化による微小構
造体の破壊を防止することが出来る。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention has a structure as described in the claims. That is, in the invention described in claim 1, water and a liquid that dissolves in water and has a negative rate of volume change during freezing (volume during freezing) are used as the liquid that is frozen and removed by sublimation during lyophilization. Liquid that shrinks)
Is used. By using a mixture of water that expands volume during freezing and liquid that contracts volume as described above, the volume change of the liquid during freezing becomes very small, preventing the destruction of the microstructure due to the volume change. You can do it.

【0011】また、請求項2に記載の発明においては、
凍結ならびに昇華による除去がなされる液体が、水を主
とし、凍結時の体積変化率が負の液体の割合が、20乃
至40容量%であるように構成している。後記実施の形
態で詳述するように、水と凍結時の体積変化率が負の液
体とを混合した液体における凍結時の体積変化率は、水
と体積変化率が負の液体とのそれぞれが単独で凍結する
際の体積変化率から単純に算出することは出来ない。す
なわち混合液が凍結する際の堆積変化率は容量比に対し
て直線的な相関を有しないので、体積変化率が小さくな
る容量比を算出するのは容易ではない。そして本発明者
による考察と実験の結果、水と体積変化率が負の液体と
の混合液が凍結する際の体積変化率が非常に小さくなる
組成は、体積変化率が負の液体の種類によらずその割合
が20〜40容量%の範囲であることを見出した。この
割合を用いれば容易に有効な混合比を求めることが出来
る。
Further, in the invention according to claim 2,
The liquid to be removed by freezing and sublimation is mainly water, and the ratio of the liquid having a negative volume change rate during freezing is 20 to 40% by volume. As will be described in detail in an embodiment described below, the volume change rate at the time of freezing in a liquid obtained by mixing water and a liquid having a negative volume change rate at the time of freezing is as follows. It cannot be simply calculated from the volume change rate when frozen alone. That is, since the rate of change in deposition when the mixed solution is frozen does not have a linear correlation with the volume ratio, it is not easy to calculate the volume ratio at which the volume change rate decreases. As a result of consideration and experiments by the present inventor, a composition in which the volume change rate when a mixture of water and a liquid having a negative volume change rate freezes is extremely small is a type of liquid having a negative volume change rate. Regardless, the ratio was found to be in the range of 20 to 40% by volume. By using this ratio, an effective mixing ratio can be easily obtained.

【0012】また、請求項3に記載の発明は、水に溶解
し、かつ凍結時の体積変化率が負の液体として、水に任
意の容量%で溶解する、いわゆる相溶性の有機溶媒を用
いている。また、請求項4〜請求項6に記載の発明は、
水に溶解し、かつ凍結時の体積変化率が負の液体の例を
上げたものであり、これらは上記請求項3に記載の相溶
性の有機溶媒でもある。
The invention according to claim 3 uses a so-called compatible organic solvent which dissolves in water and dissolves in water at an arbitrary volume% as a liquid having a negative volume change rate during freezing. ing. Further, the invention according to claims 4 to 6 is:
Examples of liquids that dissolve in water and have a negative rate of change in volume during freezing are given, and these are also compatible organic solvents according to the third aspect.

【0013】[0013]

【発明の効果】本発明によれば、凍結乾燥法を用いてい
るので微小構造体が支持基板の表面に固着することがな
く、かつ凍結乾燥における液体が凍結する際の体積変化
率を抑えることができるので、微小構造体の破損を防止
し、歩留りを高い水準に維持することができ、ひいては
最終的なコストを低減することができる、という効果が
得られる。
According to the present invention, since the freeze-drying method is used, the microstructure does not adhere to the surface of the supporting substrate, and the rate of volume change when the liquid freezes during freeze-drying is suppressed. Therefore, the microstructure can be prevented from being damaged, the yield can be maintained at a high level, and the final cost can be reduced.

【0014】[0014]

【発明の実施の形態】図1および図2は、本発明による
一実施の形態の製造工程を示す断面図および平面図であ
り、図1の工程の後に図2の工程が続く。図1において
は(A)および(C)が断面図、(B)および(D)が
平面図を示し、図2においては(E)〜(G)が断面
図、(H)が平面図を示す。以下、各工程に従って説明
する。
1 and 2 are a sectional view and a plan view, respectively, showing a manufacturing process of an embodiment according to the present invention. The process shown in FIG. 2 is followed by the process shown in FIG. 1, (A) and (C) show cross-sectional views, (B) and (D) show plan views, and in FIG. 2, (E) to (G) show cross-sectional views, and (H) shows a plan view. Show. Hereinafter, each step will be described.

【0015】まず、図1の(A)および(B)に示すよ
うに、シリコン基板100の主面に、犠牲層となる酸化
膜101をプラズマCVDの手法により成膜し、フォト
ならびにドライエッチングの手法により、酸化膜101
をパターニングする。
First, as shown in FIGS. 1A and 1B, an oxide film 101 serving as a sacrificial layer is formed on a main surface of a silicon substrate 100 by a plasma CVD method, and photolithography and dry etching are performed. By the method, the oxide film 101
Is patterned.

【0016】次に、(C)および(D)に示すように、
上記構造体の主面に多結晶シリコン膜102をLP−C
VDの手法により成膜し、フォトならびにドライエッチ
ングの手法により、多結晶シリコン膜102をパターニ
ングする。
Next, as shown in (C) and (D),
A polycrystalline silicon film 102 is formed on the main surface of the above structure by LP-C.
The polycrystalline silicon film 102 is formed by a VD technique, and is patterned by photo and dry etching techniques.

【0017】以上の工程により、支持基板であるシリコ
ン基板100、犠牲層である酸化膜101、微小構造体
を形成する多結晶シリコン膜102からなる、微小装置
の自立構造を形成する前駆体が形成される。本発明にお
いて以上の工程は従来例と同様であり、パターンルール
など設計の変更も必要としない。
Through the above steps, a precursor for forming a self-supporting structure of a micro device, comprising a silicon substrate 100 as a supporting substrate, an oxide film 101 as a sacrificial layer, and a polycrystalline silicon film 102 for forming a micro structure, is formed. Is done. In the present invention, the above steps are the same as those in the conventional example, and do not require a change in design such as a pattern rule.

【0018】次に、図2の(E)に示すように、図1で
形成された前駆体を、フッ酸からなるエッチング液11
0に浸漬し、犠牲層である酸化膜101を除去すると、
支持基板であるシリコン基板100の主面に対向し、酸
化膜101の厚さと同じ微小間隙112(例えば十分の
数μm〜十数μm程度)を隔てて、自立した微小構造体
111が形成される。間隙112はフッ酸からなるエッ
チング液110(打点した部分)によって満たされてい
る。なお、間隙112の間隔は例えば1μm程度であ
り、微小構造体111の厚さは数〜10μm程度、長さ
は100〜400μm程度である。
Next, as shown in FIG. 2E, the precursor formed in FIG. 1 is replaced with an etching solution 11 made of hydrofluoric acid.
0, and the oxide film 101 serving as the sacrificial layer is removed.
A self-supporting microstructure 111 is formed opposite to the main surface of the silicon substrate 100 serving as a support substrate, and separated by a minute gap 112 (for example, about 10 μm to about 10 μm), which is the same as the thickness of the oxide film 101. . The gap 112 is filled with an etching solution 110 (dotted portion) made of hydrofluoric acid. The interval between the gaps 112 is, for example, about 1 μm, the thickness of the microstructure 111 is about several to 10 μm, and the length is about 100 to 400 μm.

【0019】次に(F)に示すように、上記構造体を、
乾燥させることなく引き続き純水中にて十分に洗浄し、
引き続き、水:tert−BuOH=4:1(容量
比)、すなわち水にtert−BuOHを容量比20%
混合した混合液にてリンスし、表面に液膜が残存した状
態で凍結させる。113(打点した部分)は凍結した混
合液である。液膜が完全に凍結する完全凍結温度は、氷
点下10℃である。
Next, as shown in FIG.
Continue to wash thoroughly in pure water without drying,
Subsequently, water: tert-BuOH = 4: 1 (volume ratio), that is, tert-BuOH was added to water at a volume ratio of 20%.
Rinse with the mixed liquid mixture, and freeze with the liquid film remaining on the surface. 113 (dotted portion) is a frozen liquid mixture. The complete freezing temperature at which the liquid film completely freezes is 10 ° C. below freezing.

【0020】次に(G)、(H)に示すように、上記構
造体を、真空中あるいは乾燥空気などの水の蒸気分圧の
低い環境に保持し、凍結した液体113を昇華により除
去することにより、シリコン基板100の表面に微小間
隙を隔てて、自立した微小構造体111が得られる。こ
の例では微小構造体111は両持ち梁構造を示してい
る。また間隙112内は、微小構造体を設置する周囲の
雰囲気やパッケージ内の状態に応じて、空気やガスが充
填されるか、あるいは真空に保持される。
Next, as shown in (G) and (H), the above structure is held in an environment having a low vapor partial pressure of water such as vacuum or dry air, and the frozen liquid 113 is removed by sublimation. As a result, a free-standing microstructure 111 is obtained on the surface of the silicon substrate 100 with a minute gap therebetween. In this example, the microstructure 111 has a doubly supported structure. Further, the inside of the gap 112 is filled with air or gas or kept in a vacuum depending on the surrounding atmosphere where the microstructure is installed and the state of the package.

【0021】本実施の形態においては、上記工程(F)
の凍結工程において混合液を凍結する際に、混合液の体
積は殆ど膨張も収縮もせず、凍結前後で体積が維持さ
れ、また凍結した液膜にひび割れも発生しない。従って
微小構造体は、押される、引き込まれるあるいは裂かれ
る、といった応力を受けることがない。そのため、応力
に対して弱い構造の微小構造体であっても、或いは間隙
が閉ざされた構造でも、微小構造体が破損を免れること
が可能であり、従って歩留りを高い水準に維持すること
が可能となる。
In the present embodiment, the above step (F)
When the mixed solution is frozen in the freezing step, the volume of the mixed solution hardly expands or contracts, the volume is maintained before and after freezing, and no crack occurs in the frozen liquid film. Therefore, the microstructure is not subjected to stress such as being pushed, pulled or torn. Therefore, even in the case of a microstructure having a structure that is weak against stress or a structure in which a gap is closed, the microstructure can be prevented from being damaged, and the yield can be maintained at a high level. Becomes

【0022】次に、上記の製造工程で用いる混合液につ
いて説明する。第一の液体である水と、第二の液体との
混合液が凍結する際の体積変化率は、第一の液体である
水と、第二の液体とのそれぞれが単独で凍結する際の体
積変化率から単純に算出することは出来ない。すなわち
混合液が凍結する際の堆積変化率は容量比に対して直線
的な相関を有しないので、体積変化率が膨張も収縮もし
ない容量比を算出するのは容易ではない。本発明者は種
々の考察と実験の結果、第一の液体である水と、第二の
液体との混合液が凍結する際の体積変化率が、膨張も収
縮もしない組成が、第二の液体(有機溶媒)の種類によ
らず、20〜40容量%にあることを発見するに至っ
た。
Next, the mixed solution used in the above-described manufacturing process will be described. Water that is the first liquid, and the volume change rate when the liquid mixture of the second liquid is frozen, the water that is the first liquid, and when each of the second liquid is frozen alone It cannot be simply calculated from the volume change rate. That is, since the rate of change in deposition when the mixture is frozen has no linear correlation with the volume ratio, it is not easy to calculate the volume ratio at which the volume change does not expand or contract. As a result of various considerations and experiments, the inventor has found that the volume change rate when the mixture of the first liquid water and the second liquid is frozen, the composition that does not expand or contract, It has been found that the amount is 20 to 40% by volume regardless of the type of liquid (organic solvent).

【0023】以下、行った実験について説明する。ま
ず、凍結時に体積が膨張する液体Aとして水を選定し
た。次に凍結時に体積が収縮する液体で、かつ液体Aに
溶解する液体Bとして、MeOH(メタノール)、IP
A(イソプロピルアルコール)、tert−BuOH
(ダーシャルブチルアルコール)そしてTEGB(トリ
エチレングリコールモノブチルエーテル)を選定した。
上記のMeOHは水に分子構造が最も近い有機溶媒の代
表として、TEGBは分子量が大きく水酸基を一つしか
有しておらず、水と分子構造が大きくかけ離れた有機溶
媒の代表として、IPAは半導体業界で多量に使用さ
れ、かつ高純度で価格の低い有機溶媒の代表として、t
ert−BuOHは混合液の完全凍結点が氷点よりもあ
まり下がらないと期待される有機溶媒の代表として、そ
れぞれ選定した。
Hereinafter, the experiments performed will be described. First, water was selected as the liquid A whose volume expands during freezing. Next, MeOH (methanol), IP as a liquid whose volume shrinks during freezing and which dissolves in the liquid A
A (isopropyl alcohol), tert-BuOH
(Dartal butyl alcohol) and TEGB (Triethylene glycol monobutyl ether).
The above-mentioned MeOH is representative of an organic solvent whose molecular structure is closest to water, TEGB is a semiconductor having a large molecular weight and only one hydroxyl group, and IPA is a representative of an organic solvent whose molecular structure is far apart from water. As a representative of organic solvents used in large quantities in the industry and having high purity and low cost, t
ert-BuOH was selected as a representative of the organic solvents in which the complete freezing point of the mixed solution is not expected to be much lower than the freezing point.

【0024】図3は上記の実験結果を示す特性図であ
り、横軸は有機溶媒の占める容量%、縦軸は凍結時の体
積変化率(%)を示す。図3から判るように、いずれの
液体B(有機溶媒)との混合液においても、凍結時に体
積変化が小さくなる最適組成は、20〜40容量%の範
囲にある。このように、用いた有機溶媒が水に分子構造
が非常に近いものから、非常にかけ離れたものまで、殆
どこの範囲内に収まると言える。水に分子構造の最も近
い代表のMeOHは1次の相関が高い。一方、その他の
有機溶媒は2次あるいは3次の相関があり、高濃度側で
フラットないしはむしろ下に凸の傾向が見られる。従っ
て液体A(水)と液体B(有機溶媒)の体積変化率から
単純に1次で推定される組成比よりも低濃度側に最適組
成があることが判る。
FIG. 3 is a characteristic diagram showing the results of the above experiment, in which the horizontal axis represents the volume percentage occupied by the organic solvent, and the vertical axis represents the volume change rate (%) during freezing. As can be seen from FIG. 3, in any of the mixed liquids with the liquid B (organic solvent), the optimum composition that reduces the volume change during freezing is in the range of 20 to 40% by volume. Thus, it can be said that the organic solvent used almost completely falls within this range, from those having a molecular structure very close to that of water to those very far apart. Representative MeOH having a molecular structure closest to water has a high first-order correlation. On the other hand, other organic solvents have a secondary or tertiary correlation, and tend to be flat or rather convex downward on the high concentration side. Therefore, it can be understood from the volume change rates of the liquid A (water) and the liquid B (organic solvent) that the optimum composition is on the lower concentration side than the composition ratio simply estimated from the first order.

【0025】なお、有機溶剤でも分子数のあまり大きな
ものは水に溶けにくいため、本発明には不適であり、本
発明では水に任意の容量%で溶解する、いわゆる相溶性
の有機溶媒が好適である。図3に記載した各有機溶媒は
それに該当する物質である。図3に記載していないもの
ではアセトン、ホルムアルデヒドなどを用いることが出
来る。纏めると、メタノール、エタノール、プロパノー
ル、ブタノールなどの−OH基を有するアルコール類、
アセトンなどの−COOH基を有するカルボン酸類、ホ
ルムアルデヒドなどの−CO−結合あるいは−CHO基
を有するカルボニル化合物類、ジエチルエーテルなどの
−O−結合を有するエーテル類およびtert−BuO
Hなどを用いることが出来る。
It is to be noted that an organic solvent having a too large number of molecules is not suitable for the present invention because it is difficult to dissolve in water. In the present invention, a so-called compatible organic solvent which dissolves in water at an arbitrary volume% is preferable. It is. Each organic solvent shown in FIG. 3 is a corresponding substance. Those not shown in FIG. 3 can use acetone, formaldehyde, and the like. To summarize, alcohols having -OH group such as methanol, ethanol, propanol and butanol,
Carboxylic acids having a -COOH group such as acetone, carbonyl compounds having a -CO-bond or -CHO group such as formaldehyde, ethers having a -O- bond such as diethyl ether, and tert-BuO
H or the like can be used.

【0026】次に、凍結温度について説明する。凍結温
度があまり低い物質は、前記(F)の凍結工程が複雑に
なるので、出来るだけ簡単に凍結できる物質が望まし
い。そのため混合液の完全凍結点が氷点よりもあまり下
がらないと期待される有機溶媒の代表として前記ter
t−BuOHを用いて完全凍結温度を測定した。
Next, the freezing temperature will be described. A substance having a very low freezing temperature complicates the freezing step (F), and thus a substance that can be frozen as easily as possible is desirable. Therefore, the above tertiary organic solvent is expected to have a complete freezing point of the mixed solution that is not expected to be much lower than the freezing point.
The complete freezing temperature was measured using t-BuOH.

【0027】図4は上記の測定結果を示す特性図であ
り、水にtert−BuOHを混合した混合液における
完全凍結温度の測定結果を示す。図4において、横軸は
tert−BuOHの混合比(容量%)、縦軸は完全凍
結温度(℃)を示す。図4から判るように、凍結時の体
積変化率が小さくなる混合比(20〜40容量%)の範
囲では、完全凍結温度が−10℃程度であり、氷点に比
べてさほど低下しておらず、凍結させやすい混合液であ
ることがわかる。また凍結点での蒸気圧もさほど低下せ
ず、昇華による乾燥も行いやすい。
FIG. 4 is a characteristic diagram showing the above measurement results, and shows the measurement results of the complete freezing temperature of a mixed solution obtained by mixing tert-BuOH with water. In FIG. 4, the horizontal axis indicates the tert-BuOH mixture ratio (% by volume), and the vertical axis indicates the complete freezing temperature (° C.). As can be seen from FIG. 4, in the range of the mixing ratio (20 to 40% by volume) where the rate of volume change during freezing is small, the complete freezing temperature is about −10 ° C., which is not much lower than the freezing point. It can be seen that the mixture is easy to freeze. Also, the vapor pressure at the freezing point does not decrease so much, and drying by sublimation is easy to perform.

【0028】以上の実施の形態の説明において、具体的
な例を用いて説明してきたが、本発明はこれらの数値や
文言、あるいは図に限定される訳ではなく、種々の微小
装置の凍結乾燥工程に適用可能である。
In the above description of the embodiments, specific examples have been described. However, the present invention is not limited to these numerical values, words, or figures, and lyophilization of various micro devices is performed. Applicable to the process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施の形態の製造工程の一部を
示す断面図および平面図。
FIG. 1 is a cross-sectional view and a plan view illustrating a part of a manufacturing process according to an embodiment of the present invention.

【図2】本発明による一実施の形態の製造工程の他の一
部を示す断面図および平面図。
FIGS. 2A and 2B are a cross-sectional view and a plan view illustrating another part of the manufacturing process according to one embodiment of the present invention; FIGS.

【図3】種々の混合液の凍結時における体積変化率の測
定結果を示す特性図。
FIG. 3 is a characteristic diagram showing measurement results of a volume change rate when various mixed solutions are frozen.

【図4】混合液(水/tert−BuOH)の完全凍結
温度の測定結果を示す特性図。
FIG. 4 is a characteristic diagram showing measurement results of a complete freezing temperature of a mixed solution (water / tert-BuOH).

【符号の説明】[Explanation of symbols]

100…シリコン基板 101…酸化膜 102…多結晶シリコン膜 110…エッチ
ング液 111…微小構造体 112…微小間
隙 113…凍結した混合液
DESCRIPTION OF SYMBOLS 100 ... Silicon substrate 101 ... Oxide film 102 ... Polycrystalline silicon film 110 ... Etching liquid 111 ... Microstructure 112 ... Micro gap 113 ... Frozen mixed liquid

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも支持基板と犠牲層と構造膜とが
積層された多層構造基板を用い、上記犠牲層の少なくと
も一部をエッチング除去した後、上記支持基板と上記構
造膜間の空隙部分に存在する液体を凍結させた後に昇華
させて除去する、いわゆる凍結乾燥を行なうことによ
り、上記構造膜に上記支持基板と微小間隔を隔てて対向
する構造体を形成する微小装置の製造方法であって、 上記凍結乾燥の際に凍結ならびに昇華による除去がなさ
れる液体が、水と、水に溶解し、かつ凍結時の体積変化
率が負の液体と、を混合した液体であることを特徴とす
る微小装置の製造方法。
1. A multi-layer substrate having at least a support substrate, a sacrifice layer, and a structure film laminated thereon, and after at least a part of the sacrifice layer is removed by etching, a gap between the support substrate and the structure film is formed. A method for manufacturing a microdevice, wherein a substructure is formed by opposing the supporting substrate at a minute interval with the support substrate on the structural film by performing so-called freeze drying by sublimating and removing an existing liquid after the liquid is frozen. The liquid to be removed by freezing and sublimation during the freeze-drying is a liquid obtained by mixing water and a liquid that dissolves in water and has a negative rate of change in volume during freezing. Manufacturing method of micro device.
【請求項2】上記凍結ならびに昇華による除去がなされ
る液体が、水を主とし、上記水に溶解し、かつ凍結時の
体積変化率が負の液体の割合が、20乃至40容量%で
あることを特徴とする請求項1に記載の微小装置の製造
方法。
2. The liquid to be removed by freezing and sublimation is mainly water, and the ratio of the liquid that is dissolved in the water and has a negative volume change rate during freezing is 20 to 40% by volume. The method for manufacturing a microdevice according to claim 1, wherein:
【請求項3】上記水に溶解し、かつ凍結時の体積変化率
が負の液体が、水に任意の容量%で溶解する、いわゆる
相溶性の有機溶媒からなることを特徴とする請求項1ま
たは請求項2に記載の微小装置の製造方法。
3. The so-called compatible organic solvent, wherein the liquid soluble in water and having a negative rate of change in volume during freezing is dissolved in water at an arbitrary volume%. A method for manufacturing a microdevice according to claim 2.
【請求項4】上記水に溶解し、かつ凍結時の体積変化率
が負の液体が、−OH基を有するアルコール類、−CO
OH基を有するカルボン酸類、−CO−結合あるいは−
CHO基を有するカルボニル化合物類、−O−結合を有
するエーテル類、のうちの少なくとも一つを含むことを
特徴とする請求項1乃至請求項3の何れかに記載の微小
装置の製造方法。
4. A liquid which is dissolved in water and has a negative rate of change in volume upon freezing is an alcohol having an --OH group, --CO
Carboxylic acids having an OH group, -CO-bond or-
The method for producing a microdevice according to any one of claims 1 to 3, comprising at least one of a carbonyl compound having a CHO group and an ether having an -O- bond.
【請求項5】上記−OH基を有するアルコール類はメタ
ノール、エタノール、プロパノール、ブタノールの何れ
かであり、−COOH基を有するカルボン酸類はアセト
ンであり、−CO−結合あるいは−CHO基を有するカ
ルボニル化合物類はホルムアルデヒドであり、−O−結
合を有するエーテル類はジエチルエーテルである、こと
を特徴とする請求項4に記載の微小装置の製造方法。
5. The alcohol having a -OH group is any one of methanol, ethanol, propanol and butanol, the carboxylic acid having a -COOH group is acetone, and a carbonyl having a -CO- bond or a -CHO group. The method according to claim 4, wherein the compound is formaldehyde, and the ether having an -O- bond is diethyl ether.
【請求項6】上記水に溶解し、かつ凍結時の体積変化率
が負の液体が、tert−BuOHであることを特徴と
する請求項1乃至請求項5の何れかに記載の微小装置の
製造方法。
6. The microdevice according to claim 1, wherein the liquid dissolved in water and having a negative rate of change in volume during freezing is tert-BuOH. Production method.
JP9759098A 1998-04-09 1998-04-09 Manufacture of minute device Pending JPH11294948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9759098A JPH11294948A (en) 1998-04-09 1998-04-09 Manufacture of minute device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9759098A JPH11294948A (en) 1998-04-09 1998-04-09 Manufacture of minute device

Publications (1)

Publication Number Publication Date
JPH11294948A true JPH11294948A (en) 1999-10-29

Family

ID=14196463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9759098A Pending JPH11294948A (en) 1998-04-09 1998-04-09 Manufacture of minute device

Country Status (1)

Country Link
JP (1) JPH11294948A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199261A (en) * 2009-02-25 2010-09-09 Dainippon Screen Mfg Co Ltd Substrate drier and substrate drying method
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2012175036A (en) * 2011-02-24 2012-09-10 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2013201302A (en) * 2012-03-26 2013-10-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2014523636A (en) * 2011-05-31 2014-09-11 ラム リサーチ コーポレーション Substrate freeze-drying apparatus and method
JP2015142069A (en) * 2014-01-30 2015-08-03 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2017050576A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2017050575A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
US9620353B2 (en) 2013-11-29 2017-04-11 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199261A (en) * 2009-02-25 2010-09-09 Dainippon Screen Mfg Co Ltd Substrate drier and substrate drying method
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US9922848B2 (en) 2010-09-29 2018-03-20 SCREEN Holdings Co., Ltd. Apparatus for and method of processing substrate
JP2012175036A (en) * 2011-02-24 2012-09-10 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
JP2014523636A (en) * 2011-05-31 2014-09-11 ラム リサーチ コーポレーション Substrate freeze-drying apparatus and method
JP2013201302A (en) * 2012-03-26 2013-10-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US9620353B2 (en) 2013-11-29 2017-04-11 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
US10192733B2 (en) 2013-11-29 2019-01-29 Toshiba Memory Corporation Method of manufacturing semiconductor device and chemical liquid
JP2015142069A (en) * 2014-01-30 2015-08-03 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2017050576A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP2017050575A (en) * 2016-12-15 2017-03-09 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus

Similar Documents

Publication Publication Date Title
JP4833753B2 (en) Manufacturing method of semiconductor device
Bagolini et al. Polyimide sacrificial layer and novel materials for post-processing surface micromachining
WO2002024466A1 (en) Freestanding polymer mems structures with anti stiction
US6815361B1 (en) Method of fabricating anti-stiction micromachined structures
US20120107562A1 (en) Methods for graphene-assisted fabrication of micro-and nanoscale structures and devices featuring the same
US7563633B2 (en) Microelectromechanical systems encapsulation process
JPH07505743A (en) How to make microstructures
JPH03502268A (en) Formation of microstructures by removing liquid by freezing and sublimation
JPH11294948A (en) Manufacture of minute device
Nastaushev et al. A technique for fabricating Au/Ti micro-and nanotubes
CN100368786C (en) Method for producing heat shear stress sensor device based on new sacrifice layer process
TWI574911B (en) Method for mems device fabrication and device formed
US5766367A (en) Method for preventing micromechanical structures from adhering to another object
EP3282474B1 (en) Method for performing a wet treatment of a substrate
JP5643007B2 (en) Method for drying surface structure
US7138672B2 (en) Apparatus and method for making a tensile diaphragm with an insert
JP2002538974A (en) IC-compatible parylene MEMS technology and its use in integrated sensors
JPH10135180A (en) Rinsing solution for drying treatment, method for drying treatment using the solution, and manufacture of small structure using the method
CN101559915A (en) Process for preparing sacrifice layer of MEMS device
JPH09190996A (en) Manufacture of film structure
Likhite et al. Mems stiction suppression using low-stress camphor sublimation
US7041611B2 (en) Enhancement of fabrication yields of nanomechanical devices by thin film deposition
Saravanan et al. Surface micromachining process for the integration of AlN piezoelectric microstructures
Courcimault et al. A sacrificial-polymer-based trench refill process for post-DRIE surface micromachining
Yeh et al. Fabrication of mechanical microstructures using amorphous silicon films on glass substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130