WO2020059286A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2020059286A1
WO2020059286A1 PCT/JP2019/028854 JP2019028854W WO2020059286A1 WO 2020059286 A1 WO2020059286 A1 WO 2020059286A1 JP 2019028854 W JP2019028854 W JP 2019028854W WO 2020059286 A1 WO2020059286 A1 WO 2020059286A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
drying auxiliary
mixed
auxiliary substance
Prior art date
Application number
PCT/JP2019/028854
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 尾辻
弘明 ▲高▼橋
加藤 雅彦
直澄 藤原
佑 山口
悠太 佐々木
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020217008262A priority Critical patent/KR102518117B1/en
Priority to CN201980061313.9A priority patent/CN112740370A/en
Publication of WO2020059286A1 publication Critical patent/WO2020059286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus.
  • substrates to be processed include semiconductor wafers, substrates for liquid crystal displays, substrates for flat panel displays (FPDs) such as organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks.
  • FPDs flat panel displays
  • organic EL electro-electron emission
  • substrates for optical disks substrates for optical disks
  • substrates for magnetic disks substrates for magnetic disks
  • magneto-optical disks substrates for magneto-optical disks.
  • Substrates, photomask substrates, ceramic substrates, solar cell substrates and the like are included.
  • a wet type substrate processing is performed.
  • etching residues, metal impurities, organic contaminants, and the like adhere to the surface (pattern forming surface) of the substrate on which a fine pattern having irregularities has been formed through a dry etching process or the like.
  • a chemical treatment using a chemical such as an etching liquid or a cleaning liquid
  • a rinsing treatment for removing the chemical with a rinsing liquid is performed.
  • a typical rinse solution is deionized water or the like.
  • a drying process for drying the substrate by removing the rinsing liquid from the surface of the substrate is performed.
  • the aspect ratio (the ratio of the height to the width of the projection) of the projection tends to increase. Therefore, at the time of the drying process, adjacent convex portions are caused by surface tension acting on the liquid surface of the rinsing liquid (the interface between the rinsing liquid and the gas thereon) that has entered the concave portions between the convex portions of the pattern. May be pulled down and collapse.
  • Patent Literature 1 a rinsing liquid present on the surface of a substrate inside a chamber is replaced with a liquid of tertiary butyl alcohol as a sublimable substance, and then a tertiary butyl alcohol film-like solidified film is formed. It is disclosed. Further, Patent Document 1 below discloses that the surface of a substrate is dried by changing tertiary butyl alcohol contained in a solidified film from a solid phase to a gas phase without passing through a liquid phase. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-142069
  • the freezing point of tertiary butyl alcohol is slightly higher (about 25.6 ° C.) than room temperature used in general substrate processing (in the range of 22 ° C. to 25 ° C., for example, about 23 ° C.). Therefore, when a sublimable substance having a freezing point higher than room temperature, such as tertiary butyl alcohol, is used, it is necessary to apply heat to the sublimable substance in the pipe in order to prevent solidification in the pipe. Specifically, it is conceivable to provide a temperature control mechanism in the pipe. In this case, it is desirable to provide a temperature control mechanism in the entire area of the pipe through which the sublimable substance flows. Therefore, the cost may increase significantly.
  • sublimable materials having a freezing point lower than room temperature are generally very expensive. Therefore, when such a sublimable substance is used for drying the substrate, the cost may be greatly increased. Sublimable materials having a freezing point below room temperature do not solidify spontaneously at room temperature. Therefore, it is necessary to use a cooling device or the like inside the chamber to solidify the sublimable substance. Also in this case, the cost may increase significantly.
  • drying auxiliary substance (sublimable substance) supplied to the surface of the substrate be solidified well without a large increase in cost.
  • an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of satisfactorily processing the surface of a substrate while avoiding unintentional solidification of a drying auxiliary substance without a large increase in cost. It is.
  • Another object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of coagulating a drying auxiliary substance on a surface of a substrate without increasing the cost.
  • a first aspect of the present invention is a substrate processing method for processing a substrate having a pattern on a surface, the method comprising a non-polar drying auxiliary substance and an amphipathic solvent mixed with each other.
  • a mixing / drying aid for supplying a mixed / drying auxiliary substance having a freezing point lower than the freezing point of the drying / auxiliary substance to the surface of the substrate to form a liquid film of the mixed / drying auxiliary substance on the surface of the substrate;
  • a substance supply step, a coagulation film forming step of forming a coagulation film containing the drying auxiliary substance by coagulating the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance, and the coagulation film included in the coagulation film Removing the drying auxiliary substance from the surface of the substrate by changing the drying auxiliary substance into a gas without passing through a liquid state, wherein the coagulation film forming step differs in type from the drying auxiliary substance and the solvent.
  • the present invention further provides a substrate processing method including a supply liquid contacting step of forming the solidified film by depositing the drying auxiliary substance by increasing the concentration of the drying auxiliary substance in the liquid film.
  • room temperature refers to a temperature in an air-conditioning environment in which a substrate processing apparatus is installed, regardless of whether it is in Japan or overseas. Generally, it is in the range of 22 ° C. to 25 ° C., for example about 23 ° C.
  • polar substance refers to a substance containing a polar molecule.
  • non-polar substance refers to a substance composed of non-polar molecules.
  • the “non-polar substance” is intended to include not only a substance that is completely insoluble in a polar substance (polar solvent) but also a substance that is slightly soluble in a polar substance (polar solvent).
  • having amphipathic properties refers to including amphiphilic molecules.
  • the mixed drying auxiliary substance in which the drying auxiliary substance and the solvent are mixed is supplied to the surface of the substrate.
  • the drying auxiliary substance has a freezing point higher than room temperature
  • a part or the whole thereof may be in a solid state at room temperature.
  • the freezing point of the mixed drying auxiliary substance is lower than the freezing point of the drying auxiliary substance due to the freezing point drop due to the mixing of the drying auxiliary substance and the solvent. That is, even when the freezing point of the mixed drying auxiliary substance is higher than room temperature, the freezing point of the mixed drying auxiliary substance is low. Therefore, it is possible to reduce the heat energy for keeping the mixed drying auxiliary substance in a liquid state. As a result, it is possible to satisfactorily treat the surface of the substrate while avoiding unintentional solidification of the drying aid without increasing the cost.
  • a liquid film of the mixed drying auxiliary substance in which the non-polar drying auxiliary substance and the amphiphilic solvent are mixed is formed on the surface of the substrate. Then, a supply liquid which is a polar substance is supplied to the liquid film of the mixed drying auxiliary substance.
  • the feed liquid, which is a polar substance is (almost) insoluble in the drying aid, which is a non-polar substance. Therefore, even if the supply liquid comes into contact with the mixed drying auxiliary substance, the drying auxiliary substance and the supply liquid do not mix with each other.
  • the solvent will be applied to the drying auxiliary substance and the supplied liquid.
  • the melting ratio becomes a unique value (a value determined by the distribution coefficient). Therefore, for example, when the distribution coefficient of the solvent to the drying auxiliary substance and the supply liquid is small, when the supply liquid comes into contact with the liquid film of the mixed drying auxiliary substance, the solvent contained in the mixed drying auxiliary substance is changed from the mixed drying auxiliary substance to Move to feed. As the solvent moves, the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases.
  • the concentration of the drying auxiliary substance increases, the freezing point of the mixed drying auxiliary substance increases, and when this freezing point reaches room temperature, the precipitation of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is reduced. Be started. Thereby, a solidified film is formed. Since the drying auxiliary substance contained in the mixed drying auxiliary substance is solidified by utilizing the increase in the freezing point of the mixed drying auxiliary substance, it is not always necessary to cool the mixed drying auxiliary substance for coagulating the mixed drying auxiliary substance. Therefore, it is possible to satisfactorily solidify the drying auxiliary substance supplied to the surface of the substrate without increasing the cost.
  • the drying auxiliary substance may include a sublimable substance having sublimability.
  • the mixed drying auxiliary substance includes a mixed sublimation agent.
  • the drying auxiliary substance since the drying auxiliary substance has sublimability, it can be removed from the surface of the substrate by sublimating the drying auxiliary substance contained in the solidified film.
  • the supply liquid contacting step includes a step of supplying the supply liquid to the surface of the substrate while maintaining a liquid film of the mixed and dried auxiliary substance in a film form.
  • the supply liquid is supplied to the surface of the substrate while the liquid film of the mixed and dried auxiliary substance is kept in a film shape. Therefore, a coagulated film obtained by coagulation of the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance can be provided in a good film shape.
  • the substrate processing method further includes a supply liquid removing step of removing the supply liquid existing on the surface of the substrate before the removing step.
  • the supply liquid existing on the surface of the substrate is removed from the surface of the substrate.
  • the feed liquid to be removed also contains the solvent transferred from the mixed drying aid. Therefore, the mixed drying auxiliary substance and the solvent can be favorably removed from the surface of the substrate.
  • the supply liquid removing step comprises: rotating the substrate around a predetermined rotation axis to shake off the supply liquid present on the surface of the substrate; At least one of a gas blowing step of blowing a gas to the substrate.
  • the supply liquid can be shaken off from the surface of the substrate by rotating the substrate around the rotation axis. Thereby, the supply liquid can be favorably removed from the surface of the substrate.
  • the supply liquid adhering to the surface of the substrate can be blown off. Thereby, the supply liquid can be favorably removed from the surface of the substrate.
  • the supply liquid supplied to the surface of the substrate in the supply liquid contacting step has a liquid temperature lower than room temperature.
  • the temperature of the supply liquid is lower than room temperature. Therefore, the surface of the substrate can be cooled by supplying the supply liquid to the surface of the substrate. Thereby, the temperature of the mixed drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance on the surface of the substrate can be lowered.
  • the temperature of the mixed drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance on the surface of the substrate falls below the freezing point of the mixed drying auxiliary substance, the drying auxiliary substance contained in the mixed drying auxiliary substance starts to solidify. Thereby, a solidified film is formed.
  • the coagulation of the mixed drying auxiliary substance is simultaneously performed by two mechanisms, that is, coagulation using an increase in the freezing point of the mixed drying auxiliary substance and coagulation due to a decrease in the temperature of the mixed drying auxiliary substance. Can be performed in a short period of time.
  • the solvent has a higher vapor pressure than the vapor pressure of the drying auxiliary substance.
  • the supply liquid supplied to the surface of the substrate in the supply liquid contacting step has a liquid temperature higher than room temperature.
  • the solvent since the solvent has a vapor pressure higher than the vapor pressure of the drying auxiliary substance, the solvent is preferentially evaporated from the mixed drying auxiliary substance present on the surface of the substrate in the supply liquid contacting step. Let me do. As the solvent evaporates from the mixed drying auxiliary substance, the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases. Accordingly, the freezing point of the mixed drying auxiliary substance increases, and when the solidification point reaches room temperature, solidification of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is started. Thereby, in the supply liquid contacting step, the formation of the solidified film can be further promoted.
  • the solvent has a higher vapor pressure than the vapor pressure of the drying auxiliary substance.
  • the coagulation film forming step further includes a solvent evaporation step of evaporating the solvent from the mixed and dried auxiliary substance present on the surface of the substrate before the coagulation film formation step.
  • the solvent since the solvent has a vapor pressure higher than the vapor pressure of the drying auxiliary substance, the solvent is preferentially evaporated from the mixed drying auxiliary substance present on the surface of the substrate.
  • the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases. Accordingly, the freezing point of the mixed drying auxiliary substance increases, and when the solidification point reaches room temperature, solidification of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is started. Thereby, the formation of a solidified film can be further promoted.
  • the solvent evaporating step includes a heating step of heating the mixed drying auxiliary substance, a gas blowing step of blowing a gas to the mixed drying auxiliary substance, and reducing a space around the solidified film.
  • the method includes at least one of a pressure reduction step and a substrate high rotation step of rotating the substrate around a predetermined rotation axis at a high speed without supplying a liquid to the surface of the substrate.
  • the heating step may include a step of supplying a heating fluid to the back surface of the substrate.
  • the solvent may have a vapor pressure equal to or lower than the vapor pressure of the drying auxiliary substance.
  • the supply liquid contacting step includes, in parallel with the supply of the supply liquid to the surface of the substrate, the supply position of the supply liquid on the surface of the substrate from the central portion of the substrate.
  • a solidified film can be formed on the entire surface of the substrate in a short period of time.
  • the removing step includes a sublimation step of sublimating the drying auxiliary substance contained in the coagulated film from a solid to a gas, and the drying included in the coagulated film by decomposition of the coagulated film.
  • a decomposition step of changing the auxiliary substance into a gas without passing through a liquid state, and a reaction step of changing the drying auxiliary substance contained in the coagulated film into a gas without passing through a liquid state by a reaction of the coagulated film. At least one of the following.
  • the sublimation step includes a gas blowing step of blowing gas to the solidified film, a heating step of heating the solidified film, a depressurizing step of reducing the space around the solidified film, and light for irradiating the solidified body with light.
  • the method may include at least one of an irradiation step and an ultrasonic vibration applying step of applying ultrasonic vibration to the solidified body.
  • the mixed drying auxiliary substance supplying step includes a step of immersing the substrate in a first tank in which the mixed drying auxiliary substance is stored, and wherein the supply liquid contacting step includes the supply liquid contacting step.
  • a solidified film can be favorably formed even in a batch method.
  • the supply liquid may contain water.
  • a second aspect of the present invention is a substrate processing method for processing a substrate having a pattern on a surface, the method comprising a non-polar drying auxiliary substance and an amphipathic solvent mixed with each other.
  • a mixing / drying aid for supplying a mixed / drying auxiliary substance having a freezing point lower than the freezing point of the drying / auxiliary substance to the surface of the substrate to form a liquid film of the mixed / drying auxiliary substance on the surface of the substrate;
  • a substance supply step, a coagulation film forming step of forming a coagulation film containing the drying auxiliary substance by coagulating the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance, and the coagulation film included in the coagulation film Removing the drying auxiliary substance from the surface of the substrate by changing the drying auxiliary substance into a gas without passing through a liquid state, wherein the coagulation film forming step includes a step of increasing the concentration of the drying auxiliary substance in the liquid film.
  • the mixed drying auxiliary substance in which the drying auxiliary substance and the solvent are mixed is supplied to the surface of the substrate.
  • the drying auxiliary substance has a freezing point higher than room temperature
  • a part or the whole thereof may be in a solid state at room temperature.
  • the freezing point of the mixed drying auxiliary substance is lower than the freezing point of the drying auxiliary substance due to the freezing point drop due to the mixing of the drying auxiliary substance and the solvent. That is, even when the freezing point of the mixed drying auxiliary substance is higher than room temperature, the freezing point of the mixed drying auxiliary substance is low. Therefore, it is possible to reduce the heat energy for keeping the mixed drying auxiliary substance in a liquid state. As a result, it is possible to satisfactorily treat the surface of the substrate while avoiding unintentional solidification of the drying aid without increasing the cost.
  • the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance is increased. Then, as the concentration of the drying auxiliary substance increases, the freezing point of the mixed drying auxiliary substance increases, and when this freezing point reaches room temperature, the precipitation of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is reduced. Be started. Thereby, a solidified film is formed. Since the drying auxiliary substance contained in the mixed drying auxiliary substance is solidified by utilizing the increase in the freezing point of the mixed drying auxiliary substance, it is not always necessary to cool the mixed drying auxiliary substance for coagulating the mixed drying auxiliary substance. Therefore, it is possible to satisfactorily solidify the drying auxiliary substance supplied to the surface of the substrate without increasing the cost.
  • a substrate holding unit for holding a substrate having a pattern on a surface thereof, a non-polar drying auxiliary substance on a surface of the substrate held by the substrate holding unit,
  • a mixed drying auxiliary substance supply unit for supplying a mixed drying auxiliary substance having a lower freezing point than the freezing point of the drying auxiliary substance, and a mixed drying auxiliary substance mixed with a solvent having the following formula:
  • a supply liquid supply unit for supplying a supply liquid, which is a liquid different in type from the drying auxiliary substance and the solvent, and a polar substance, on the surface of the substrate held by the substrate holding unit;
  • a removing unit for removing the drying auxiliary substance from the surface of the substrate by converting the drying auxiliary substance into a gas without passing through a liquid state, and supplying the mixed drying auxiliary substance Knit, and a control device for controlling the feed supply unit and the removal unit.
  • the control device supplies the mixed drying auxiliary substance to the surface of the substrate by the mixed drying auxiliary substance supply unit, and forms a liquid film of the mixed drying auxiliary substance on the surface of the substrate.
  • a supply step, a coagulation film forming step of forming a coagulation film containing the drying auxiliary substance by coagulating the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance, and the drying included in the coagulation film Removing the auxiliary substance from the surface of the substrate by changing the auxiliary substance into a gas without passing through a liquid state by the removing unit, wherein the control device performs the mixing and drying assistance in the coagulated film forming step.
  • the supply liquid is supplied to the liquid film of the substance by the supply liquid supply unit, and the solvent dissolved in the mixed drying auxiliary substance is supplied from the mixed drying auxiliary substance to the supply liquid.
  • a substrate processing apparatus which performs a supply liquid contacting step of forming the coagulated film by depositing the drying auxiliary substance by increasing the concentration of the drying auxiliary substance in the liquid film accompanying the transfer to a liquid. .
  • the mixed drying auxiliary substance in which the drying auxiliary substance and the solvent are mixed is supplied to the surface of the substrate.
  • the drying auxiliary substance has a freezing point higher than room temperature
  • a part or the whole thereof may be in a solid state at room temperature.
  • the freezing point of the mixed drying auxiliary substance is lower than the freezing point of the drying auxiliary substance due to the freezing point drop due to the mixing of the drying auxiliary substance and the solvent. That is, even when the freezing point of the mixed drying auxiliary substance is higher than room temperature, the freezing point of the mixed drying auxiliary substance is low. Therefore, it is possible to reduce the heat energy for keeping the mixed drying auxiliary substance in a liquid state. As a result, it is possible to satisfactorily treat the surface of the substrate while avoiding unintentional solidification of the drying aid without increasing the cost.
  • a liquid film of the mixed drying auxiliary substance in which the non-polar drying auxiliary substance and the amphiphilic solvent are mixed is formed on the surface of the substrate. Then, a supply liquid which is a polar substance is supplied to the liquid film of the mixed drying auxiliary substance.
  • the feed liquid, which is a polar substance is (almost) insoluble in the drying aid, which is a non-polar substance. Therefore, even if the supply liquid comes into contact with the mixed drying auxiliary substance, the drying auxiliary substance and the supply liquid do not mix with each other.
  • the solvent will be applied to the drying auxiliary substance and the supplied liquid.
  • the melting ratio becomes a unique value (a value determined by the distribution coefficient). Therefore, for example, when the distribution coefficient of the solvent to the drying auxiliary substance and the supply liquid is small, when the supply liquid comes into contact with the liquid film of the mixed drying auxiliary substance, the solvent contained in the mixed drying auxiliary substance is changed from the mixed drying auxiliary substance to Move to feed. As the solvent moves, the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases.
  • the concentration of the drying auxiliary substance increases, the freezing point of the mixed drying auxiliary substance increases, and when this freezing point reaches room temperature, the precipitation of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is reduced. Be started. Thereby, a solidified film is formed. Since the drying auxiliary substance contained in the mixed drying auxiliary substance is solidified by utilizing the increase in the freezing point of the mixed drying auxiliary substance, it is not always necessary to cool the mixed drying auxiliary substance for coagulating the mixed drying auxiliary substance. Therefore, it is possible to satisfactorily solidify the drying auxiliary substance supplied to the surface of the substrate without increasing the cost.
  • FIG. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • FIG. 2 is an illustrative sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a state equilibrium diagram of a mixed sublimant containing a sublimable substance and a solvent.
  • FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 5 is an enlarged sectional view showing the surface of a substrate to be processed by the substrate processing apparatus.
  • FIG. 6 is a flowchart for explaining the contents of a substrate processing example executed in the processing unit.
  • FIGS. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • FIG. 2 is an illustrative sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a state equilibrium diagram of
  • FIG. 7A to 7C are schematic diagrams showing the state of the periphery of the substrate when the substrate processing example is executed.
  • 7D and 7E are schematic views showing the next step of FIG. 7C.
  • 7F and 7G are schematic views showing the next step of FIG. 7E.
  • FIG. 8A is an illustrative sectional view for explaining a configuration example of a processing unit according to the second embodiment of the present invention.
  • FIG. 8B is a schematic view showing a removing step (S10) performed in the processing unit.
  • 9A and 9B are schematic diagrams showing a modification of the supply liquid contacting step (S8).
  • FIG. 10 is a schematic diagram showing a modification of the supply liquid nozzle.
  • FIG. 11 is a schematic diagram illustrating an example of a cooling unit.
  • FIG. 12 is a schematic diagram illustrating an example of a cooling unit.
  • FIG. 13 is a schematic diagram illustrating an example of a heating unit.
  • FIG. 14 is a schematic diagram illustrating an example of a heating unit.
  • FIG. 15 is a schematic diagram for explaining a wet processing unit and a dry processing unit.
  • FIG. 16 is a schematic diagram for explaining the configuration of the substrate processing apparatus according to the third embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing a state of lifting in the substrate processing apparatus.
  • FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a substrate W such as a silicon wafer one by one.
  • the substrate W is a disk-shaped substrate.
  • a plurality of processing units 2 for processing a substrate W with a processing liquid including a chemical solution and a rinsing liquid, and a substrate container for storing a plurality of substrates W to be processed by the processing unit 2 are placed.
  • the substrate processing apparatus 1 includes a load port LP, an indexer robot IR and a substrate transfer robot CR for transferring a substrate W between the load port LP and the processing unit 2, and a control device 3 for controlling the substrate processing apparatus 1.
  • the indexer robot IR transports the substrate W between the substrate container and the substrate transport robot CR.
  • the substrate transfer robot CR transfers the substrate W between the indexer robot IR and the processing unit 2.
  • the plurality of processing units 2 have, for example, a similar configuration.
  • the substrate processing apparatus 1 is installed under an environment of normal pressure (atmospheric pressure) and room temperature (for example, about 23 ° C.).
  • FIG. 2 is an illustrative sectional view for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a box-shaped chamber 4 and a spin chuck that holds one substrate W in a horizontal position in the chamber 4 and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W.
  • (Substrate holding unit) 5 a chemical solution supply unit 6 for supplying a chemical solution to the upper surface of substrate W (surface Wa of substrate W (see FIG. 5)) held by spin chuck 5, and a chemical solution supply unit 6 held by spin chuck 5.
  • a rinsing liquid supply unit 7 for supplying a rinsing liquid to the upper surface of the substrate W (the surface Wa of the substrate W (see FIG. 5)), and the upper surface of the substrate W held by the spin chuck 5 (the surface Wa of the substrate W (see FIG.
  • substitution solvent a replacement solvent (hereinafter, referred to as “substitution solvent”), and an upper surface of the substrate W held by the spin chuck 5 (a surface Wa ( (See Fig. 5))
  • a supply liquid supply unit 10 for supplying a supply liquid, and a gas blowing unit (removal unit) for blowing gas onto the upper surface of the substrate W (the surface Wa of the substrate W (see FIG.
  • no blocking member is provided to block the space above the substrate W from the surrounding atmosphere. This is because it is not always necessary to supply the cooling fluid to the back surface Wb of the substrate W in the solidified film forming step (supplied liquid contacting step S8 described later). Since the cooling fluid rebounded by the peripheral members (the processing cup 13 and the like) does not contaminate the surface Wa of the substrate W, no blocking member is provided.
  • the chamber 4 includes a box-shaped partition 14 that accommodates the spin chuck 5 and the nozzle, and an FFU (fan filter filter) as a blowing unit that sends clean air (air filtered by a filter) into the partition 14 from above the partition 14.
  • Unit) 15, an exhaust duct 16 for exhausting gas in the chamber 4 from below the partition 14, and an exhaust device 17 connected to the other end of the exhaust duct 16.
  • the FFU 15 is disposed above the partition 14 and is attached to the ceiling of the partition 14.
  • the FFU 15 sends clean air downward from the ceiling of the partition wall 14 into the chamber 4.
  • the exhaust device 17 sucks the inside of the processing cup 13 via an exhaust duct 16 connected to the bottom of the processing cup 13.
  • the FFU 15 and the exhaust device 17 form a downflow (downflow) in the chamber 4.
  • the processing of the substrate W is performed in a state where a downflow is formed in the chamber 4.
  • the spin chuck 5 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally while sandwiching the substrate W in the horizontal direction is employed.
  • the spin chuck 5 includes a spin motor (removal unit) 18, a spin shaft 19 integrated with a drive shaft of the spin motor 18, and a disk attached substantially horizontally to an upper end of the spin shaft 19. And a spin base 20 in the shape of a circle.
  • the spin base 20 includes a horizontal circular upper surface 20a having an outer diameter larger than the outer diameter of the substrate W.
  • a plurality (three or more, for example, six) of holding members 21 are arranged on a peripheral portion thereof.
  • the plurality of sandwiching members 21 are arranged at, for example, equal intervals on a circumference corresponding to the outer peripheral shape of the substrate W at a peripheral portion of the upper surface 20a.
  • the chemical solution supply unit 6 includes a chemical solution nozzle 31, a nozzle arm 32 having the chemical solution nozzle 31 attached to a distal end thereof, and a nozzle movement for moving the chemical solution nozzle 31 by moving the nozzle arm 32.
  • Unit 33 (see FIG. 4).
  • the nozzle moving unit 33 horizontally moves the chemical liquid nozzle 31 by horizontally moving the nozzle arm 32 around the swing axis.
  • the nozzle moving unit 33 has a configuration including a motor and the like.
  • the nozzle moving unit 33 moves the chemical liquid nozzle between a processing position where the chemical liquid discharged from the chemical liquid nozzle 31 lands on the surface Wa of the substrate W and a retracted position set around the spin chuck 5 in plan view. 31 is moved horizontally.
  • the processing position is a position where the chemical solution discharged from the chemical solution nozzle 31 is supplied to the front surface Wa of the substrate W.
  • the nozzle moving unit 33 includes a central position where the chemical liquid discharged from the chemical liquid nozzle 31 lands on a central portion of the surface Wa of the substrate W, and a peripheral portion of the chemical liquid discharged from the chemical liquid nozzle 31 on the surface Wa of the substrate W.
  • the chemical liquid nozzle 31 is moved horizontally between the peripheral position where the liquid is applied to the liquid.
  • the center position and the peripheral position are both processing positions.
  • the chemical supply unit 6 includes a chemical pipe 34 for guiding the chemical to the chemical nozzle 31, and a chemical valve 35 for opening and closing the chemical pipe 34.
  • a chemical valve 35 for opening and closing the chemical pipe 34.
  • the chemical supplied to the chemical piping 34 includes a cleaning liquid and an etching liquid.
  • the chemicals include sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, aqueous hydrogen peroxide, organic acids (such as citric acid and oxalic acid), and organic alkalis (such as TMAH: tetramethylammonium hydrochloride).
  • the rinsing liquid supply unit 7 includes a rinsing liquid nozzle 36.
  • the rinse liquid nozzle 36 is, for example, a straight nozzle that discharges the liquid in a continuous flow state, and is fixedly disposed above the spin chuck 5 with its discharge port facing the center of the upper surface of the substrate W.
  • a rinse liquid pipe 37 to which a rinse liquid is supplied from a rinse liquid supply source is connected to the rinse liquid nozzle 36.
  • a rinsing liquid valve 38 for switching between supplying / stopping the supply of the rinsing liquid from the rinsing liquid nozzle 36 is provided at an intermediate portion of the rinsing liquid pipe 37.
  • the rinsing liquid is water.
  • the water is, for example, deionized water (DIW), but is not limited to DIW, and may be any of carbonated water, electrolytic ionized water, hydrogen water, ozone water, ammonia water, and hydrochloric acid water having a dilute concentration (for example, about 10 ppm to 100 ppm). Or it may be.
  • DIW deionized water
  • the rinsing liquid supply unit 7 may include a rinsing liquid nozzle moving device that moves the rinsing liquid nozzle 36 to scan the rinsing liquid landing position on the upper surface of the substrate W within the surface of the substrate W. .
  • the replacement solvent supply unit 8 includes a replacement solvent nozzle 41, a nozzle arm 42 having the replacement solvent nozzle 41 attached to a tip end thereof, and a nozzle arm 42 that is moved to thereby perform the replacement solvent nozzle 41.
  • a nozzle moving unit 43 (see FIG. 4) for moving the solvent nozzle 41.
  • the nozzle moving unit 43 horizontally moves the replacement solvent nozzle 41 by horizontally moving the nozzle arm 42 around the swing axis.
  • the nozzle moving unit 43 has a configuration including a motor and the like.
  • the nozzle moving unit 43 moves between the processing position where the replacement solvent discharged from the replacement solvent nozzle 41 lands on the surface Wa of the substrate W and the retreat position set around the spin chuck 5 in plan view. Then, the replacement solvent nozzle 41 is moved horizontally.
  • the processing position is a position at which the replacement solvent discharged from the replacement solvent nozzle 41 is supplied to (for example, the center of) the surface Wa of the substrate W.
  • the replacement solvent supply unit 8 includes a replacement solvent pipe 44 for guiding the replacement solvent to the replacement solvent nozzle 41, and a replacement solvent valve 45 for opening and closing the replacement solvent pipe 44. Including. When the replacement solvent valve 45 is opened, the replacement solvent from the replacement solvent supply source is supplied to the replacement solvent nozzle 41 from the replacement solvent pipe 44. As a result, the replacement solvent is discharged from the replacement solvent nozzle 41.
  • the replacement solvent supplied to the replacement solvent piping 44 has solubility (miscibility) with the mixed sublimation agent supplied by the mixed sublimation agent supply unit 9. That is, the replacement solvent has solubility (miscibility) with respect to the sublimable substance and the mixing solvent contained in the mixed sublimation agent.
  • the replacement solvent is used as a pre-supply liquid to be supplied to the front surface Wa prior to the supply of the mixed sublimation agent to the front surface Wa of the substrate W.
  • the replacement solvent is supplied to the surface Wa prior to the supply of the mixed sublimation agent to the surface Wa of the substrate W. Therefore, it is desirable that the replacement solvent further has solubility (miscibility) in the rinsing liquid (water).
  • a specific example of the replacement solvent supplied to the replacement solvent pipe 44 is an organic solvent represented by, for example, IPA (isopropyl alcohol).
  • organic solvents include, in addition to IPA, methanol, ethanol, acetone, EG (ethylene glycol), HFE (hydrofluoroether), n-butyl alcohol, t-butyl alcohol, isobutyl alcohol and 2-butyl alcohol.
  • the organic solvent is not limited to the case where the organic solvent is composed of only a single component, and may be a liquid mixed with another component.
  • a solvent other than the organic solvent can be used as the replacement solvent.
  • the mixed sublimation supply unit 9 moves and moves the mixed sublimation nozzle 46, the nozzle arm 47 having the mixed sublimation nozzle 46 attached to the tip, and the nozzle arm 47.
  • a nozzle moving unit 48 (see FIG. 4) for moving the agent nozzle 46.
  • the nozzle moving unit 48 horizontally moves the mixed sublimation agent nozzle 46 by horizontally moving the nozzle arm 47 around the swing axis.
  • the nozzle moving unit 48 is configured to include a motor and the like.
  • the nozzle moving unit 48 moves between the processing position where the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 lands on the surface Wa of the substrate W and the retreat position set around the spin chuck 5 in plan view.
  • the mixed sublimation agent nozzle 46 is moved horizontally.
  • the processing position is a position where the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 is supplied to (for example, the center of) the surface Wa of the substrate W.
  • the mixed sublimation supply unit 9 includes a mixed sublimation pipe 49 that guides the mixed sublimation agent to the mixing sublimation nozzle 46, and a mixed sublimation valve 50 that opens and closes the mixed sublimation pipe 49.
  • the mixed sublimation valve 50 When the mixed sublimation valve 50 is opened, the mixed sublimation from the mixed sublimation supply source is supplied from the mixed sublimation piping 49 to the mixed sublimation nozzle 46. Thereby, the mixed sublimation agent is discharged from the mixed sublimation agent nozzle 46.
  • the mixed sublimation agent supplied to the mixed sublimation pipe 49 is a mixed substance in which a sublimable substance having a sublimability (drying auxiliary substance) and a solvent for mixing (solvent) are mixed.
  • the sublimable substance has a freezing point T F1 (see FIG. 3) equal to or higher than room temperature (RT).
  • the room temperature (RT) is not necessarily constant but is generally set to 23 ° C. because it is affected by the temperature of the outside air.
  • the sublimable substance and the solvent for mixing are in a state of being mutually dissolved. Therefore, in the mixed sublimation agent, the sublimable substance and the mixing solvent are uniformly mixed without bias.
  • Non-polar substance refers to a substance composed of non-polar molecules. Camphor (freezing point under atmospheric pressure: about 175 ° C.
  • the mixing solvent contained in the mixed sublimation agent has amphiphilicity. "Having amphipathic” refers to including amphiphilic molecules.
  • the solvent for mixing is, for example, an organic solvent represented by IPA (isopropyl alcohol). Examples of the organic solvent used as the solvent for mixing include, for example, ethanol and acetone in addition to IPA.
  • the organic solvent used as the mixing solvent is not limited to the case where the organic solvent includes only a single component, and may be a liquid mixed with another component.
  • a solvent other than the organic solvent can be used as the mixing solvent.
  • examples of suitable combinations of the sublimable substance and the solvent for mixing include camphor and IPA, cyclohexanol and IPA, and 1,3,5-Trioxane and IPA, respectively.
  • the mixing solvent is IPA
  • its vapor pressure is 6.05 kPa at room temperature and atmospheric pressure.
  • Camphor, cyclohexanol and 1,3,5-Trioxane have a significantly lower vapor pressure than IPA.
  • camphor, cyclohexanol, 1,3,5-Trioxane or the like is used as a sublimable substance, and when IPA is used as a solvent for mixing, the mixing solvent contained in the mixed sublimation agent is more than the sublimation substance.
  • the freezing point T F1 sublimable substance is at atmospheric pressure, for example about 175 ° C. ⁇ about 180 ° C.. Further, the freezing point T F2 of the mixed solvent is at atmospheric pressure is less than or equal to about -80 ° C..
  • the mixing solvent is IPA having a freezing point TF2 lower than room temperature
  • the freezing point T F2 of the mixed solvent may be higher than room temperature
  • FIG. 3 is a state equilibrium diagram of a mixed sublimant containing a sublimable substance and a mixing solvent.
  • the freezing point T FM of the mixed sublimation agent is lower than the freezing point T F1 of the sublimable substance due to the freezing point drop due to the mixing of the sublimable substance and the mixing solvent.
  • the freezing point TFM of the mixed sublimation agent depends on the concentration of the sublimable substance in the mixed sublimation agent.
  • FIG. 3 shows a freezing point curve FPC of the mixed sublimation agent.
  • the concentration of the sublimable substance in the mixed sublimation agent, freezing point T FM mixtures sublimation agent decreases to a temperature below room temperature (RT), mix sublimation agent forms a liquid at room temperature environment.
  • RT room temperature
  • the concentration of the sublimable substance in the mixed sublimation agent, freezing point T FM mixtures sublimation agent is appropriately set in a range to a temperature below room temperature (RT).
  • RT room temperature
  • the concentration of the mixing solvent in the mixed sublimant is not too high, that is, the mixed sublimant is used. It is necessary that the concentration of the sublimable substance is not too low.
  • a chemical solution supply device is provided integrally with the substrate processing apparatus 1 or separately from the substrate processing apparatus 1.
  • This chemical supply device is also installed in an environment of room temperature and normal pressure (atmospheric pressure).
  • This chemical solution supply device is provided with a storage tank for storing the mixed sublimation agent.
  • the mixed sublimation agent is in a liquid state at room temperature. Therefore, a heating device or the like for keeping the sublimable substance in a liquid state is unnecessary. Even when such a heating device is provided, it is not necessary to constantly heat the mixed sublimation agent. Therefore, the required heat amount can be reduced, and as a result, the cost can be reduced.
  • the supply liquid supply unit 10 controls the supply liquid nozzle 51 by moving the supply liquid nozzle 51, the nozzle arm 52 having the supply liquid nozzle 51 attached to the distal end thereof, and the nozzle arm 52. And a nozzle moving unit 53 (see FIG. 4) for moving.
  • the nozzle moving unit 53 horizontally moves the supply liquid nozzle 51 by horizontally moving the nozzle arm 52 around the swing axis.
  • the nozzle moving unit 53 has a configuration including a motor and the like.
  • the nozzle moving unit 53 moves between the processing position where the mixed sublimation agent discharged from the supply liquid nozzle 51 lands on the surface Wa of the substrate W and the retracted position set around the spin chuck 5 in plan view. Then, the supply liquid nozzle 51 is moved horizontally.
  • the processing position is a position where the supply liquid discharged from the supply liquid nozzle 51 is supplied to (for example, a central portion of) the surface Wa of the substrate W.
  • the supply liquid supply unit 10 further includes a supply liquid pipe 54 for guiding the mixed sublimation agent to the supply liquid nozzle 51, and a supply liquid valve 55 for opening and closing the supply liquid pipe 54.
  • a supply liquid valve 55 for opening and closing the supply liquid pipe 54.
  • the supply liquid supplied to the supply liquid pipe 54 is a liquid different from the above-described sublimable substance and the mixing solvent.
  • the supply liquid supplied to the supply liquid pipe 54 is a polar substance. “Polar substance” refers to a substance containing a polar molecule.
  • the supply liquid supplied to the supply liquid pipe 54 has a liquid temperature lower than room temperature. In this embodiment, the liquid temperature of the supply liquid is set to be 5 ° C. to 10 ° C. lower than room temperature. That is, the supply liquid also functions as a cooling liquid.
  • a specific example of the supply liquid supplied to the supply liquid pipe 54 is a water-containing liquid containing water.
  • a representative example of a water-containing liquid is water, such as deionized water (DIW).
  • DIW deionized water
  • Such a water-containing liquid is not limited to DIW, and examples thereof include carbonated water, electrolytic ionic water, hydrogen water, ozone water, ammonia water, and hydrochloric acid water.
  • an organic solvent can be used as the supply liquid.
  • examples of such an organic solvent include methanol, ethanol, acetone, methanol, n-butanol and the like.
  • the gas blowing unit 11 includes a gas nozzle 56, a nozzle arm 57 having the gas nozzle 56 attached to a distal end thereof, and a nozzle movement for moving the gas nozzle 56 by moving the nozzle arm 57.
  • a unit 58 (see FIG. 4).
  • the nozzle moving unit 58 horizontally moves the gas nozzle 56 by horizontally moving the nozzle arm 57 around the swing axis.
  • the nozzle moving unit 53 has a configuration including a motor and the like.
  • the nozzle moving unit 58 is provided between a processing position where the mixed sublimation agent discharged from the gas nozzle 56 lands on the surface Wa of the substrate W and a retreat position set around the spin chuck 5 in a plan view. The gas nozzle 56 is moved horizontally.
  • the processing position is a position where the gas blown from the supply liquid nozzle 51 is supplied to the surface Wa of the substrate W.
  • the processing position is a central position where the gas blown out from the gas nozzle 56 lands on the center of the upper surface of the substrate W.
  • the gas blowing unit 11 further includes a gas pipe 59 for guiding the gas to the gas nozzle 56, and a gas valve 60 for opening and closing the gas pipe 59.
  • a gas valve 60 for opening and closing the gas pipe 59.
  • the gas supplied to the gas pipe 59 is a dehumidified gas, particularly an inert gas.
  • the inert gas includes, for example, nitrogen gas and argon gas.
  • the gas may be an active gas such as air.
  • the gas nozzle 56 has a cylindrical nozzle body 64 having a flange 63 at the lower end.
  • An upper gas discharge port 65 and a lower gas discharge port 66 are formed in the outer peripheral surface, which is the side surface of the flange portion 63, and open outward in a ring shape.
  • On the lower surface of the nozzle body 64 a central gas discharge port 67 is arranged. Therefore, the radial gas flow formed by the inert gas discharged from the center gas discharge port 67 and the two-layer radial gas flow discharged from the upper gas discharge port 65 and the lower gas discharge port 66 are combined into three layers. Is formed above the substrate W.
  • the lower surface nozzle 12 has a single discharge port 12 a facing the center of the lower surface of the substrate W held by the spin chuck 5.
  • the discharge port 12a discharges the liquid vertically upward.
  • the discharged liquid is incident almost perpendicularly to the center of the lower surface of the substrate W held by the spin chuck 5.
  • a lower surface supply pipe 71 is connected to the lower surface nozzle 12.
  • the lower surface supply pipe 71 is inserted into the inside of a spin shaft 19 composed of a hollow shaft arranged vertically.
  • a heating fluid pipe 72 is connected to the lower surface supply pipe 71.
  • the heating fluid pipe 72 is provided with a heating fluid valve 73 for opening and closing the heating fluid pipe 72.
  • the heating fluid may be a heating liquid such as hot water or a heating gas. Heating fluid has a higher liquid temperature than the freezing point T FM mixtures sublimation agent.
  • the heating fluid from the heating fluid supply source is supplied to the lower nozzle 12 via the heating fluid pipe 72 and the lower supply pipe 71.
  • the heating fluid supplied to the lower nozzle 12 is discharged almost vertically upward from the discharge port 12a.
  • the heating liquid discharged from the lower surface nozzle 12 is incident on the substrate W held by the spin chuck 5 substantially perpendicularly to the center of the lower surface.
  • a heating unit is configured by the lower nozzle 12, the lower supply pipe 71, the heating fluid pipe 72, and the heating fluid valve 73.
  • the processing cup 13 is disposed outside (in a direction away from the rotation axis A1) the substrate W held by the spin chuck 5.
  • the processing cup 13 surrounds the spin base 20.
  • a liquid such as a processing liquid, a rinsing liquid, a replacement solvent, or a mixed sublimation agent is supplied to the substrate W while the spin chuck 5 is rotating the substrate W, the liquid supplied to the substrate W Shake off around.
  • the upper end 13 a of the processing cup 13 is disposed above the spin base 20. Therefore, the liquid discharged around the substrate W is received by the processing cup 13. Then, the liquid received by the processing cup 13 is sent to a not-shown recovery device or waste liquid device.
  • FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus 1.
  • the control device 3 is configured using, for example, a microcomputer.
  • the control device 3 has an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit.
  • the storage unit stores a program executed by the arithmetic unit.
  • the control device 3 is connected with the spin motor 18, the nozzle moving units 33, 43, 48, 53, 58, etc. as control objects.
  • the control device 3 controls the operations of the spin motor 18, the nozzle moving units 33, 43, 48, 53, 58 and the like according to a predetermined program.
  • the control device 3 also controls the gas valve 225, the chemical liquid valve 35, the rinsing liquid valve 38, the replacement solvent valve 45, the mixed sublimator valve 50, the supply liquid valve 55, the gas valve 60, and the heating fluid according to a predetermined program.
  • the valve 73 and the like are opened and closed.
  • FIG. 5 is an enlarged cross-sectional view showing the surface Wa of the substrate W to be processed by the substrate processing apparatus 1.
  • the substrate W to be processed is, for example, a silicon wafer, and a pattern 100 is formed on a surface Wa, which is a pattern forming surface thereof.
  • the pattern 100 is, for example, a fine pattern.
  • the structures 101 having a convex shape may be arranged in a matrix.
  • the line width W1 of the structure 101 is set to, for example, about 3 nm to 45 nm
  • the gap W2 of the pattern 100 is set to, for example, about 10 nm to several ⁇ m.
  • the height T of the pattern 100 is, for example, about 0.2 ⁇ m to 1.0 ⁇ m. Further, pattern 100 may have, for example, an aspect ratio (ratio of height T to line width W1) of, for example, about 5 to 500 (typically about 5 to 50).
  • the pattern 100 may be a pattern in which linear patterns formed by fine trenches are repeatedly arranged.
  • the pattern 100 may be formed by providing a plurality of fine holes (voids or pores) in a thin film.
  • Pattern 100 includes, for example, an insulating film. Further, the pattern 100 may include a conductive film. More specifically, the pattern 100 is formed of a stacked film in which a plurality of films are stacked, and may further include an insulating film and a conductive film. The pattern 100 may be a pattern composed of a single layer film.
  • the insulating film may be a silicon oxide film (SiO2 film) or a silicon nitride film (SiN film).
  • the conductor film may be an amorphous silicon film into which an impurity for lowering the resistance is introduced, or a metal film (for example, a TiN film).
  • the pattern 100 may be a hydrophilic film.
  • the hydrophilic film include a TEOS film (a type of silicon oxide film).
  • FIG. 6 is a flowchart for explaining an example of substrate processing by the processing unit 2.
  • 7A to 7G are schematic diagrams showing the state of the periphery of the substrate W when this substrate processing example is being executed.
  • the unprocessed substrate W is loaded into the chamber 4 (Step S1 in FIG. 6).
  • the control device 3 causes the hand H of the substrate transfer robot CR (see FIG. 1) holding the substrate W to enter the inside of the chamber 4 with all the nozzles and the like retracted from above the spin chuck 5. As a result, the substrate W is transferred to the spin chuck 5 with the surface Wa facing upward, and is held by the spin chuck 5.
  • the control device 3 controls the spin motor 18 to increase the rotation speed of the spin base 20 to a predetermined liquid processing speed (for example, within a range of about 10 rpm to about 1500 rpm, for example, about 500 rpm) to maintain the liquid processing speed.
  • a predetermined liquid processing speed for example, within a range of about 10 rpm to about 1500 rpm, for example, about 500 rpm
  • Step S2 in FIG. 6 the control device 3 starts executing the chemical liquid process. Specifically, the control device 3 controls the nozzle moving unit 33 to move the chemical liquid nozzle 31 from the retracted position to the processing position. The control device 3 opens the chemical liquid valve 35. As a result, the chemical is supplied to the chemical nozzle 31 through the chemical pipe 34, and the chemical discharged from the discharge port of the chemical nozzle 31 lands on the surface Wa of the substrate W.
  • the control device 3 controls the nozzle moving unit 23 to move the chemical solution nozzle 31 to a peripheral position facing the peripheral portion of the front surface Wa of the substrate W and a central portion of the upper surface of the substrate W. May be moved between a central position facing the camera. In this case, the liquid landing position on the upper surface of the substrate W is scanned over the entire surface Wa of the substrate W. Thus, the entire surface Wa of the substrate W can be uniformly processed.
  • the control device 3 closes the chemical valve 35 and stops the discharge of the chemical from the chemical nozzle 31.
  • the chemical solution step (S2) ends. Further, the control device 3 returns the chemical liquid nozzle 31 to the retracted position.
  • control device 3 executes a rinsing step (step S3 in FIG. 6) in which the chemical solution on the substrate W is replaced with a rinsing liquid and the surface Wa of the substrate W is washed away.
  • control device 3 opens rinse liquid valve 38.
  • the rinsing liquid is discharged from the rinsing liquid nozzle 36 toward the center of the rotating surface Wa.
  • the rinsing liquid supplied to the front surface Wa of the substrate W receives the centrifugal force due to the rotation of the substrate W, moves to the peripheral edge of the substrate W, and is discharged from the peripheral edge of the substrate W to the side of the substrate W. Thereby, the chemical liquid adhering on the substrate W is washed away by the rinse liquid.
  • the control device 3 closes the rinsing liquid valve 38.
  • the rinsing step (S3) ends.
  • the substitution step (S4) is a step of replacing the rinsing liquid on the substrate W with a substitution solvent having an affinity for both the rinsing liquid (water) and the mixed sublimation agent (in this example, an organic solvent such as IPA). is there.
  • the control device 3 controls the nozzle moving unit 43 to move the replacement solvent nozzle 41 from the retracted position on the side of the spin chuck 5 to above the center of the surface Wa of the substrate W. . Then, the control device 3 opens the replacement solvent valve 45 and discharges the liquid replacement solvent from the replacement solvent nozzle 41 toward the center of the upper surface (front surface Wa) of the substrate W.
  • the replacement solvent supplied to the surface Wa of the substrate W receives the centrifugal force due to the rotation of the substrate W and spreads over the entire surface Wa. Thus, the rinsing liquid adhering to the front surface Wa of the entire surface Wa of the substrate W is replaced by the replacement solvent.
  • the replacement solvent that moves on the surface Wa of the substrate W is discharged from the periphery of the substrate W to the side of the substrate W.
  • the replacement step (S4) may be performed while rotating the substrate W at the above-described liquid processing speed. Further, the replacement step (S4) may be performed while rotating the substrate W at a liquid filling speed lower than the above-described liquid processing speed or while stopping the substrate W.
  • the control device 3 closes the replacement solvent valve 45 and stops the replacement solvent nozzle 41 from discharging the replacement solvent.
  • the replacement step (S4) ends. Further, the control device 3 returns the replacement solvent nozzle 41 to the retracted position.
  • control device 3 executes a mixed sublimation agent supply step (Step S5 in FIG. 6; a mixed drying auxiliary substance supply step).
  • the control device 3 controls the nozzle moving unit 48 to move the mixed sublimation agent nozzle 46 from the retracted position on the side of the spin chuck 5 to above the center of the surface Wa of the substrate W. . Then, the control device 3 opens the mixed sublimation agent valve 50 and discharges the mixed sublimation agent from the mixed sublimation nozzle 46 toward the center of the upper surface (front surface Wa) of the substrate W, as shown in FIG. 7A.
  • mixing sublimation agent supplied to the mixing sublimation agent nozzle 46, the freezing point T FM is to be less than room temperature under atmospheric pressure, the concentration of the sublimable substance in the mixed sublimation agent is defined . Therefore, the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 maintains a liquid state.
  • the mixed sublimant that has landed on the center of the surface Wa of the substrate W flows toward the peripheral edge of the surface Wa of the substrate W under the centrifugal force generated by the rotation of the substrate W.
  • a liquid film 81 of the mixed sublimant is formed on the surface Wa of the substrate W so as to cover the entire surface Wa of the substrate W. Since the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 maintains a liquid state, the liquid film 81 can be formed favorably.
  • the height of the thickness W11 of the mixed sublimation liquid film 81 formed on the surface Wa of the substrate W is sufficiently larger than the height T of the pattern 100 (see FIG. 5). High.
  • the mixed sublimation agent supply step (S5) may be performed while rotating the substrate W at the liquid processing speed described above.
  • the substrate W is subjected to a liquid filling speed lower than the liquid processing speed (the centrifugal force acting on the mixed sublimation liquid film 81 on the upper surface of the substrate W is mixed with the mixed sublimation agent). While rotating at a speed lower than the surface tension acting on the upper surface of the substrate W, or at a speed at which the centrifugal force and the surface tension substantially oppose each other (for example, about 5 rpm), or It may be performed while stopping.
  • the control device 3 closes the mixed sublimation valve 50. Thereby, the supply of the mixed sublimation agent to the surface Wa of the substrate W is stopped. Further, the control device 3 returns the mixed sublimation agent nozzle 46 to the retracted position.
  • a film thickness reducing step (step S6 in FIG. 6) of reducing the film thickness of the mixed sublimant liquid film 81 is performed.
  • the film thickness reduction step (S6) includes a substrate high rotation step (spin-off; substrate rotation step).
  • the controller 3 controls the spin motor 18 without supplying the mixed sublimation agent to the surface Wa of the substrate W to rotate the spin base 20 at a predetermined high rotation speed (for example, a predetermined speed of about 100 rpm to about 2500 rpm). Rotate. Thereby, the substrate W is rotated at this high rotation speed. As a result, a large centrifugal force is applied to the surface Wa of the substrate W, the mixed sublimation agent contained in the liquid film 81 is eliminated from the surface Wa of the substrate W, and the film thickness of the liquid film 81 decreases. As a result, as shown in FIG.
  • a thin film 82 of the mixed sublimation agent is formed on the surface Wa of the substrate W.
  • the thickness W12 of the thin film 82 is thinner, that is, lower than the thickness W11 of the liquid film 81.
  • the thickness W12 of the thin film 82 is on the order of several hundred nanometers to several micrometers.
  • the upper surface of the thin film 82 is located above the upper end of each pattern 100 (see FIG. 5) formed on the surface Wa.
  • the thickness W12 of the thin film 82 is adjusted by adjusting the rotation speed of the substrate W.
  • the thickness of the coagulated film 83 can be adjusted to be small. Thereby, generation of residues after the removal step (S10) can be suppressed.
  • the thin film 82 of the mixed sublimation agent is solidified to form a solidified film 83 containing a sublimable substance on the surface Wa of the substrate W (coagulated film forming step).
  • the coagulation film forming step includes a solvent evaporation step of evaporating the mixing solvent contained in the mixed sublimation agent, and a supply liquid contacting step (S8) described later. If the mixing solvent contained in the mixed sublimation agent has a higher vapor pressure than the sublimable substance contained in the mixed subliming agent, the mixing solvent is preferentially evaporated from the mixed sublimation agent present on the surface Wa of the substrate W. Thus, the mixed sublimation agent can be solidified by a mechanism described below. Then, the film thickness reduction step (S6) of rotating the substrate W at a relatively high speed is included in the solvent evaporation step.
  • the liquid film 81 (thin film 82) and the gas contained in the atmosphere around the surface Wa of the substrate W are generated by rotating the substrate W at a high rotation speed. Increases the number of collisions per unit time. This promotes the vaporization of the molecules of the sublimable substance contained in the mixed sublimation agent.
  • a heating step (S7) for heating the surface Wa of the substrate W is performed in parallel with the film thickness reducing step (S6).
  • the heating step (S7) is also included in the solvent evaporation step.
  • the control device 3 opens the heating fluid valve 73.
  • the heating fluid is supplied from the lower surface nozzle 12 to the central portion of the back surface Wb of the substrate W in the rotating state.
  • the heating fluid supplied to the back surface Wb of the substrate W receives the centrifugal force generated by the rotation of the substrate W and spreads toward the outer peripheral portion of the substrate W.
  • the heating fluid is supplied to the entire area of the back surface Wb of the substrate W, and the thin film 82 of the mixed sublimation agent is heated over the entire area of the front surface Wa of the substrate W.
  • the mixed solvent having a high vapor pressure among the mixed sublimants contained in the thin film 82 is preferentially evaporated.
  • the mixing solvent evaporates from the mixed sublimation agent the concentration of the sublimable substance in the mixed sublimation thin film 82 increases. Accordingly, the solidification point T FM of the mixed sublimation agent increases, and when the solidification point T FM reaches room temperature, solidification of the sublimable substance contained in the mixed sublimation agent present on the surface Wa of the substrate W is started. Thereby, the formation of the solidified film 83 can be further promoted.
  • the mixed solvent evaporates from the mixed sublimation agent in the film thickness reduction step (S6) and the heating step (S7), as shown by the white arrow in FIG. )
  • the concentration of the sublimable substance increases. Accordingly, the solidification point T FM of the mixed sublimation agent increases, and when the solidification point T FM reaches room temperature, solidification of the mixed sublimation agent present on the surface Wa of the substrate W is started.
  • the control device 3 reduces the rotation speed of the spin base 20 to the liquid processing speed or the liquid processing speed, and maintains the rotation speed.
  • the supply liquid contacting step (S8) is performed.
  • the control device 3 controls the nozzle moving unit 53 to move the supply liquid nozzle 51 from the retracted position on the side of the spin chuck 5 to the center of the front surface Wa of the substrate W. Move upward.
  • the control device 3 opens the supply liquid valve 55 and discharges the supply liquid from the supply liquid nozzle 51 toward the center of the upper surface (front surface Wa) of the substrate W, as shown in FIG. 7C.
  • the supply liquid is supplied from the supply liquid nozzle 51 at a small flow rate (for example, about 150 mL / min).
  • the thin film 82 of the mixed sublimation agent can be maintained in a film shape. Then, the supply liquid is supplied to the surface Wa of the substrate W without breaking the thin film 82 of the mixed sublimation agent while the thin film 82 of the mixed sublimation agent is kept in a film shape.
  • the coagulated film 83 obtained by coagulation of the conductive substance can be provided in a good film shape.
  • the supply liquid that has landed on the central portion of the surface Wa of the substrate W receives the centrifugal force due to the rotation of the substrate W and flows toward the peripheral portion of the surface Wa of the substrate W.
  • a liquid film 84 of the supply liquid is formed on the thin film 82 of the mixed sublimation agent so as to cover the entire upper surface of the thin film 82.
  • the mixed sublimant and the supply liquid can be brought into contact with each other over the entire upper surface of the mixed sublimant thin film 82. Therefore, the mixed sublimation agent can be brought into contact with the supply liquid over a wide contact area.
  • the solvent for mixing can be more favorably removed from the mixed sublimation agent. Therefore, the sublimable substance can be more solidified.
  • the temperature of the supply liquid supplied to the surface Wa of the substrate W in the supply liquid contacting step (S8) is lower than room temperature. Therefore, the surface Wa of the substrate W is cooled by the supply of the supply liquid to the surface Wa of the substrate W. Thus, the temperature of the mixed sublimation agent contained in the mixed sublimation agent thin film 82 can be lowered.
  • the supply liquid as a polar substance and the sublimable substance as a nonpolar substance are (almost) insoluble in each other (strictly speaking, camphor is only slightly soluble in water). Therefore, even if the supply liquid is brought into contact with the mixed sublimation agent, the sublimable substance and the supply liquid do not mix with each other.
  • the mixing solvent is used for the sublimable substance and the supply liquid. Is a unique value (a value determined by the distribution coefficient).
  • the partition coefficient of the mixing solvent for camphor and water is small (that is, it is remarkably easily distributed to water).
  • the mixing solvent contained in the mixed sublimation agent moves from the mixed sublimation agent to the supply liquid, and the mixing solvent dissolves in the supply liquid.
  • the concentration of the sublimable substance in the mixed sublimant thin film 82 increases.
  • the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, precipitation of the mixed sublimation agent present on the surface Wa of the substrate W is started. You. By the precipitation of the mixed sublimation agent, a solidified film 83 containing a sublimable substance is formed.
  • the supply liquid supplied to the surface Wa of the substrate W is lower than room temperature (for example, the supply liquid is a cooling liquid)
  • the supply of the supply liquid to the surface Wa of the substrate W is performed.
  • the temperature of the mixed sublimation agent contained in the mixed sublimation thin film 82 can be lowered.
  • the temperature of the mixed sublimation agent contained in the thin film 82 of the mixing sublimation agent falls below the freezing point T FM mixing sublimation agent, mixing sublimation agent initiates coagulation.
  • a solidified film 83 is formed.
  • coagulation of the mixed sublimation agent coagulation and using an increase in freezing point T FM mixing sublimation agent, coagulation and with temperature decrease of the mixed sublimation agent, to be done at the same time on two mechanisms, the coagulation of the mixed sublimation agent Can be performed in a short period of time.
  • the control device 3 closes the supply liquid valve 55 to supply the supply liquid to the surface Wa of the substrate W. Stop supplying.
  • the supply liquid contacting step (S8) ends.
  • a supply liquid removing step (S9) for removing the supply liquid from the surface Wa of the substrate W is performed. Specifically, the control device 3 controls the spin motor 18 to accelerate the rotation speed of the substrate W to a swing-off rotation speed at which the supply liquid can be shaken off from the surface Wa of the substrate W. As a result, the supply liquid containing the mixing solvent transferred from the mixed sublimation agent is shaken off from the entire surface Wa of the substrate W.
  • the supply liquid to be removed also contains the mixing solvent transferred from the sublimable substance. Thereby, the mixing solvent and the supply liquid can be satisfactorily removed from the entire surface Wa of the substrate W.
  • the supply liquid removing step (S9) only the solidified film 83 is formed on the surface Wa of the substrate W, as shown in FIG. 7E.
  • the sublimator substance contained in the solidified film 83 sublimates from a solid to a gas.
  • the removal step (S10) of removing the sublimable substance contained in the solidified film 83 without liquefaction by sublimation of the sublimable substance is realized.
  • a gas blowing step of blowing gas to the surface Wa of the substrate W is performed in parallel with the removing step (S10).
  • the control device 3 controls the nozzle moving unit 58 to move the gas nozzle 56 from the retracted position set around the spin chuck 5 to the position shown in FIG.
  • the gas nozzle 56 is moved to the processing position (above the central portion of the surface Wa of the substrate W), and the gas nozzle 56 is lowered to the proximity position where the gas nozzle 56 approaches the substrate W at the processing position.
  • the central axis of the gas nozzle 56 coincides with the rotation axis A1.
  • control device 3 opens the gas valve 60 to start discharging gas from each of the three gas discharge ports (the upper gas discharge port 65, the lower gas discharge port 66, and the center gas discharge port 67) of the gas nozzle 56. .
  • the dehumidified gas is blown to the entire area of the solidified film 83 by the three-layered annular airflow. By blowing such a gas, sublimation of the sublimable substance contained in the solidified film 83 is promoted.
  • the removal step (S10) all of the sublimable substances contained in the solidified film 83 can be sublimated. Since the sublimable substance is removed from the surface Wa of the substrate W by evaporating without passing through the liquid state, the surface Wa of the substrate W can be dried while effectively suppressing or preventing the pattern 100 from collapsing. .
  • a final spin-drying step (S11) of drying the substrate W is performed.
  • the control device 3 controls the spin motor 18 to rotate the substrate up to a drying rotation speed (for example, several thousand rpm) higher than the rotation speed in each step from the chemical solution step (S2) to the removal step (S10).
  • W is accelerated, and the substrate W is rotated at the drying rotation speed.
  • a large centrifugal force is applied on the substrate W.
  • the liquid adhering to the back surface Wb of the substrate W is shaken off around the substrate W.
  • the liquid is removed from the substrate W, and the back surface Wb of the substrate W is dried.
  • the control device 3 controls the spin motor 18 to stop the rotation of the substrate W by the spin chuck 5. Thereafter, the substrate W is carried out of the chamber 4 (Step S12 in FIG. 6). Specifically, the control device 3 causes the hand H of the substrate transfer robot CR to enter the inside of the chamber 4. Then, the control device 3 causes the hand H of the substrate transport robot CR to hold the substrate W on the spin chuck 5. After that, the control device 3 retreats the hand H of the substrate transfer robot CR from the inside of the chamber 4. Thus, the processed substrate W is carried out of the chamber 4.
  • the mixed sublimation agent in which the sublimable substance and the mixing solvent are mixed is supplied to the surface Wa of the substrate W. Since the sublimable substance has a freezing point T F1 equal to or higher than room temperature, a part or the whole of the sublimable substance may be in a solid state at room temperature.
  • the freezing point T FM of the mixed sublimation agent is lower than the freezing point T F1 of the sublimable substance due to the freezing point drop due to the mixing of the sublimable substance and the mixing solvent. That is, even when the freezing point T FM mixtures sublimation agent is even above room temperature, the freezing point T FM mixtures sublimation agent is low. Therefore, it is possible to reduce heat energy for keeping the mixed sublimation agent in a liquid state. Accordingly, it is possible to satisfactorily treat the surface Wa of the substrate W while avoiding unintended solidification of the sublimable substance without significantly increasing the cost.
  • a liquid film (liquid film 81) of the mixed sublimation agent in which the nonpolar sublimable material and the amphiphilic mixing solvent are mixed is formed on the surface Wa of the substrate W. Then, a supply liquid as a polar substance is supplied to the liquid film (thin film 82) of the mixed sublimation agent.
  • the feed liquid, which is a polar substance is (almost) insoluble in the sublimable substance, which is a non-polar substance. Therefore, even when the supply liquid comes into contact with the mixed sublimation agent, the sublimable substance and the supply liquid do not mix with each other.
  • the sublimable substance and the supply liquid are The ratio at which the mixing solvent dissolves becomes a unique value (a value determined by the distribution coefficient). Therefore, for example, when the distribution coefficient of the mixing solvent to the sublimable substance and the supply liquid is small, when the supply liquid comes into contact with the liquid film of the mixed sublimation agent, the mixing solvent contained in the mixed sublimation agent becomes From to the feed. As the mixing solvent moves, the concentration of the sublimable substance in the liquid film of the mixed sublimation agent increases.
  • the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, the sublimability contained in the mixed sublimation agent present on the surface Wa of the substrate W is increased.
  • the deposition of the substance starts.
  • a solidified film 83 is formed. Since solidifying the sublimable substance contained in the mixed sublimation agent mixed sublimation agent by utilizing the increase in freezing point T FM of, thereby cooling the mixture sublimation agent for coagulation of the mixed sublimation agent is not always necessary. Therefore, the sublimable substance supplied to the surface Wa of the substrate W can be solidified well without a large increase in cost.
  • the supply liquid contacting step (S8) the supply liquid is supplied to the surface Wa of the substrate W without breaking the mixed sublimant thin film 82 and keeping the mixed sublimate thin film 82 in a film shape.
  • the solidified film 83 obtained by solidifying the sublimable substance contained in the thin film 82 of the mixed sublimation agent can be provided in a good film shape.
  • the liquid temperature of the supply liquid supplied to the surface Wa of the substrate W is lower than room temperature. Therefore, the surface Wa of the substrate W can be cooled by supplying the supply liquid to the surface Wa of the substrate W.
  • the temperature of the mixed sublimation agent contained in the mixed sublimation agent thin film 82 can be lowered. Then, the temperature of the mixed sublimation agent contained in the thin film 82 of the mixing sublimation agent falls below the freezing point T FM mixing sublimation agent, sublimable substance contained in the mixed sublimation agent initiates coagulation. Thus, a solidified film 83 is formed.
  • the mixing solvent is preferentially evaporated from the mixed sublimation agent present on the surface Wa of the substrate W.
  • the mixing solvent evaporates from the mixed sublimation agent, the concentration of the sublimable substance in the mixed sublimation thin film 82 increases. Accordingly, the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, solidification of the sublimable substance contained in the mixed sublimation agent present on the surface Wa of the substrate W is started. Thereby, the formation of the solidified film 83 can be further promoted.
  • (cooling water) is supplied to the front surface Wa of the substrate W in the supply liquid contacting step (S8), and the heating fluid is supplied to the back surface Wb of the substrate W in the heating step (S7). Therefore, the temperature range can be divided between the front surface Wa of the substrate W and the rear surface Wb of the substrate W. Therefore, on each of the front surface Wa side and the rear surface Wb side of the substrate W, the execution time and the like of each process can be set without considering the influence of the heat history.
  • FIG. 8A is an illustrative sectional view for explaining a configuration example of the processing unit 202 according to the second embodiment of the present invention.
  • the difference between the processing unit 202 according to the second embodiment and the processing unit 2 according to the first embodiment (see FIG. 2) is that the processing unit 202 faces the upper surface of the substrate W held by the spin chuck 5 and The point is that a blocking member 210 for blocking the space above W from the surrounding atmosphere is provided.
  • a gas blowing unit 211 is provided instead of the gas blowing unit 11.
  • the upper surface nozzle 221, the gas pipe 224 and the gas valve 225 constitute a gas blowing unit 211.
  • the blocking member 210 includes the blocking plate 220 and an upper surface nozzle 221 that vertically passes through a central portion of the blocking plate 220.
  • a blocking plate rotating unit (not shown) having a configuration including an electric motor and the like is connected to the blocking plate 220. This blocking plate rotation unit rotates the blocking plate 220 around a rotation axis (not shown) coaxial with the rotation axis A1.
  • the blocking plate 220 has a circular substrate facing surface 220a on the lower surface facing the entire upper surface of the substrate W. At the center of the substrate facing surface 220a, there is formed a cylindrical through hole 220b vertically penetrating the blocking plate 220. The upper surface nozzle 221 is inserted through the through hole 220b. A cylindrical portion projecting downward over the entire area may be formed on the outer peripheral edge of the substrate facing surface 220a.
  • the upper surface nozzle 221 is attached to the blocking plate 220 so as to be able to move up and down integrally.
  • the upper surface nozzle 221 has, at its lower end, a discharge port 221a facing the center of the upper surface of the substrate W held by the spin chuck 5.
  • a blocking member elevating unit configured to include an electric motor, a ball screw, and the like is connected to the blocking member 210.
  • the blocking member elevating unit vertically moves the blocking plate 220 and the upper surface nozzle 221 vertically.
  • the blocking member elevating unit retracts the blocking plate 220 to a blocking position (the position shown in FIG. 8B) where the substrate facing surface 220 a is close to the upper surface of the substrate W held by the spin chuck 5, and retreats significantly higher than the blocking position. Up and down between the retracted positions (the positions shown in FIG. 2).
  • the blocking member elevating unit can hold the blocking plate 220 at both the blocking position and the retracted position.
  • the blocking position is a position where the substrate facing surface 220a forms a blocking space 230 (see FIG. 8B) between the substrate facing surface 220a and the surface Wa of the substrate W.
  • the isolation space 230 is not completely isolated from the surrounding space, no gas flows into the isolation space 230 from the surrounding space. That is, the cutoff space 230 is substantially cut off from the surrounding space.
  • a gas pipe 224 is connected to the upper surface nozzle 221.
  • the gas pipe 224 is provided with a gas valve 225 that opens and closes the gas pipe 224.
  • the gas applied to the gas pipe 224 is a dehumidified gas, particularly an inert gas.
  • the inert gas includes, for example, nitrogen gas and argon gas.
  • the gas may be an active gas such as air.
  • an inert gas is supplied to the upper surface nozzle 221.
  • the gas is discharged downward from the discharge port 221a, and the discharged gas is sprayed on the surface Wa of the substrate W.
  • the upper surface nozzle 221, the gas pipe 224, and the gas valve 225 form a gas blowing unit.
  • the rinsing liquid supply unit 7 may include the upper surface nozzle 221 as a rinsing liquid nozzle. That is, the rinsing liquid from the rinsing liquid pipe 37 may be supplied to the upper surface nozzle 221.
  • FIG. 8B is a schematic view showing the removing step (S10) performed in the processing unit 202.
  • the control device 3 controls the blocking member lifting / lowering unit, and as shown in FIG. 8B, lowers the blocking member 210 and arranges it in the blocking position.
  • the control device 3 opens the gas valve 225.
  • the dehumidified gas is discharged from the discharge port 221a of the upper surface nozzle 221 toward the center of the front surface Wa of the substrate W in the rotating state.
  • the gas from the upper surface nozzle 221 is blown to the center of the surface Wa of the substrate W.
  • the gas from the upper surface nozzle 221 moves in the blocking space 230 toward the outer peripheral portion of the substrate W. Thereby, gas is blown over the entire surface Wa of the substrate W.
  • sublimation of the sublimable substance contained in the solidified film 83 is promoted.
  • the supply position of the supply liquid on the surface Wa of the substrate W may be moved within the surface Wa of the substrate W.
  • the nozzle moving unit 53 (see FIG. 4) is configured such that the supply liquid discharged from the supply liquid nozzle 51 lands on the center of the upper surface of the substrate W, The supply liquid nozzle 51 is moved horizontally between the peripheral position where the discharged supply liquid lands on the upper peripheral part of the substrate W.
  • the center position and the peripheral position are both processing positions.
  • a gas nozzle 301 for discharging gas downward is attached to the nozzle arm 52. Therefore, when the nozzle arm 52 is moved, the supply liquid nozzle 51 and the gas nozzle 301 move while keeping the positional relationship between the supply liquid nozzle 51 and the gas nozzle 301 constant.
  • the gas nozzle 301 is attached to the nozzle arm 52 such that the gas blowing area on the surface Wa of the substrate W is located radially inside the supply position of the supply liquid on the surface Wa of the substrate W.
  • a gas pipe 302 for guiding gas to the gas nozzle 301 is connected to the gas nozzle 301.
  • the gas pipe 302 is provided with a gas valve 303.
  • gas from a gas supply source is supplied from the gas pipe 302 to the gas nozzle 301. Thereby, gas is blown downward from the gas nozzle 301.
  • the gas supplied to the gas pipe 302 is a dehumidified gas, particularly an inert gas.
  • the inert gas includes, for example, nitrogen gas and argon gas.
  • the gas may be an active gas such as air.
  • the control device 3 controls the nozzle moving unit 53 to change the supply liquid nozzle 51 discharging the supply liquid and the gas nozzle 301 discharging the gas.
  • the substrate W is horizontally moved from the center to the periphery of the substrate W.
  • the formation position of the body 83A extends from the central portion of the substrate W to the peripheral portion of the substrate W.
  • the solidified film 83 can be formed on the entire surface Wa of the substrate W.
  • the solidified film 83 can be formed over the entire surface Wa of the substrate W by moving the supply liquid nozzle 51 from the center position to the peripheral position, the solidified film 83 covering the entire surface Wa of the substrate W can be formed in a short time. be able to.
  • the supply liquid nozzle 51 supplies a continuous supply liquid to the surface Wa of the substrate W.
  • the supply liquid may be discharged in a shower form from the supply liquid nozzle 451 having the lower surface 451a.
  • the shower-like supply liquid discharged from the supply liquid nozzle 451 is supplied to the entire surface Wa of the substrate W.
  • the discharge pressure of the supply liquid discharged from the supply liquid nozzle 451 is weak. Since the shower-like supply liquid having a low discharge pressure is supplied to the surface Wa of the substrate W, in the supply liquid contacting step (S8), the supply of the supply liquid does not disturb the film shape of the mixed sublimation thin film 82. Therefore, the supply liquid can be supplied to the surface Wa of the substrate W while maintaining the film shape of the mixed sublimation thin film 82.
  • the supply range of the supply liquid from the supply liquid nozzle 451 is the entire surface Wa of the substrate W, but the supply range of the supply liquid from the supply liquid nozzle 451 is It may be a part of the surface Wa. In this case, the supply liquid nozzle 451 may be moved in the horizontal direction to scan the supply range so as to cover the entire surface Wa of the substrate W.
  • the substrate W may be cooled.
  • a method of cooling the substrate W in this manner a method of supplying a cooling fluid to the back surface Wb of the substrate W, a method of disposing a cooling plate 501 as shown in FIG.
  • the cooling plate 501 as a cooling unit is provided instead of the lower surface nozzle 12.
  • the cooling plate 501 is arranged above the spin base 20 and below the substrate W held by the holding member 21.
  • the cooling plate 501 has an upper surface 501a facing the entire rear surface Wb of the substrate W. Even if the spin chuck 5 rotates, the cooling plate 501 does not rotate.
  • the temperature of the cooling plate 501 is changed by the control device 3.
  • the temperature of the upper surface 501a of the cooling plate 501 is uniform in the plane.
  • the control device 3 lowers the temperature of the cooling plate 501 so that the entire surface Wa of the substrate W is uniformly cooled.
  • the cooling plate 501 may be used for cooling a cooling fluid or a heating fluid.
  • the built-in cooler 601 is disposed inside the blocking plate 220 of the blocking member 210.
  • the built-in cooler 601 moves up and down together with the blocking member 210.
  • the substrate W is disposed below the built-in cooler 601.
  • Built-in cooler 601 is, for example, a piezo element.
  • the temperature of built-in cooler 601 is changed by control device 3.
  • the temperature of the substrate facing surface 220a is uniform within the surface.
  • the controller 3 may cool the surface Wa of the substrate W by lowering the temperature of the built-in cooler 601 to a temperature lower than room temperature. Thereby, the mixed sublimation agent on the surface Wa of the substrate W can be cooled.
  • the supply liquid supplied to the supply liquid pipe 54 may have a liquid temperature higher than room temperature.
  • the temperature of the supply liquid is 50 ° C. to 60 ° C.
  • the mixing solvent has a vapor pressure higher than the vapor pressure of the sublimable substance
  • the mixing solvent is removed from the mixed sublimation agent present on the surface Wa of the substrate W. Is preferentially evaporated. As the mixing solvent evaporates from the mixed sublimation agent, the concentration of the sublimable substance in the liquid film of the mixed sublimation agent increases.
  • the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, solidification of the sublimable substance contained in the mixed sublimation agent present on the surface Wa of the substrate W is started. Thereby, the formation of the solidified film 83 can be further promoted in the supply liquid contacting step (S8).
  • the coagulated film forming step includes the supply liquid contacting step (S8) and the solvent evaporating step, and the solvent evaporating step includes the film thickness decreasing step (S6: substrate rotating step) and the heating step (S7). It was described as including.
  • the heating step (S7) and the film thickness reducing step (S6) are not performed in parallel with each other, but may be performed separately.
  • the heating unit that heats the front surface Wa of the substrate W in the heating step (S7) is not limited to the configuration that supplies the heating fluid to the rear surface Wb of the substrate W as in the above-described embodiment.
  • a hot plate 701 disposed below and opposed to the back surface Wb of the substrate W can be used as a heating unit.
  • the hot plate 701 is provided instead of the lower surface nozzle 12.
  • the hot plate 701 has a built-in heater 702 built therein.
  • the built-in heater 702 is, for example, a heating wire that generates heat when energized.
  • the hot plate 701 is arranged above the spin base 20 and below the substrate W held by the holding member 21.
  • the hot plate 701 has an upper surface 701a that faces the entire rear surface Wb of the substrate W. Even if the spin chuck 5 rotates, the hot plate 701 does not rotate.
  • the temperature of the hot plate 701 is changed by the control device 3.
  • the temperature of the upper surface 701a of the hot plate 701 is uniform in the plane.
  • the controller 3 raises the temperature of the hot plate 701, the entire surface Wa of the substrate W is uniformly heated.
  • the control device 3 instead of supplying a heating fluid to the back surface Wb of the substrate W, the control device 3 raises the temperature of the hot plate 701 to a temperature higher than room temperature, so that the substrate W The surface Wa may be heated.
  • the fluid at room temperature may be heated to a temperature higher than room temperature by the hot plate 701 and then supplied to the substrate W.
  • the heating fluid may be supplied to the substrate W after being raised to a higher temperature by the hot plate 701. This makes it possible to favorably evaporate the mixing solvent contained in the mixed sublimation agent on the surface Wa of the substrate W.
  • the heating unit for heating the surface Wa of the substrate W a configuration in which a heater is built in the blocking member 210 as shown in FIG.
  • the built-in heater 801 is arranged inside the blocking plate 220 of the blocking member 210.
  • the built-in heater 801 moves up and down together with the blocking member 210.
  • the substrate W is disposed below the built-in heater 801.
  • the built-in heater 801 is, for example, a heating wire that generates heat when energized.
  • the temperature of the built-in heater 801 is changed by the control device 3.
  • the temperature of the substrate facing surface 220a is uniform within the surface.
  • the control device 3 raises the temperature of the built-in heater 801 to a temperature higher than room temperature while arranging the blocking member 210 at the blocking position as shown in FIG. Wa may be heated. Thereby, the mixing solvent contained in the mixed sublimation agent on the surface Wa of the substrate W can be favorably evaporated.
  • the solvent evaporation step may include at least one of four steps in which a gas blowing step and a depressurization step are added to the film thickness reducing step (S6) and the heating step (S7).
  • the gas blowing step is a step equivalent to the above-described gas blowing step executed in parallel with the removing step (S10).
  • the pressure reduction step is performed as follows.
  • the exhaust device 17 (see FIG. 2) is provided so that its exhaust force (suction force) can be adjusted.
  • the exhaust device 17 is provided with an exhaust power adjustment unit (decompression unit) 901 (shown by a two-dot chain line in FIG. 2).
  • the exhaust power adjustment unit 901 is, for example, a regulator or an opening adjustment valve.
  • the control device 3 can satisfactorily evaporate the second sublimable substance contained in the mixed sublimation agent on the surface Wa of the substrate W by reducing the pressure inside the chamber 4. Further, it is sufficient that a pipe communicating with the exhaust power adjusting unit (decompression unit) 901 is provided in the chamber 4, and it is not always necessary to provide the exhaust device 17 with a pipe.
  • the solvent evaporation step is performed in combination with at least one of the film thickness reduction step (S6), the heating step (S7), the gas blowing step, and the pressure reduction step, or in place of these steps, or by natural drying or substrate drying.
  • the mixing solvent contained in the mixed sublimation agent on the surface Wa of the substrate W may be evaporated.
  • the coagulation film forming step only needs to include the supply liquid contact step (S8), and does not necessarily need to include the solvent evaporation step.
  • the mixing solvent has the same vapor pressure as the sublimable substance or is lower than the vapor pressure of the sublimable substance, the mixing solvent contained in the mixed sublimation agent does not evaporate preferentially. There is no point in doing.
  • the supply liquid removing step (S9) has been described as the shaking off step of rotating the substrate W about the rotation axis A1 to shake off the supply liquid existing on the surface Wa of the substrate W.
  • a gas blowing step of blowing gas onto the surface Wa of the substrate W may be performed as the supply liquid removing step (S9).
  • the gas blowing step is a step equivalent to the above-described gas blowing step executed in parallel with the removing step (S10).
  • the gas blowing step is performed in parallel with the removing step (S10) to promote the sublimation of the mixed subliming agent.
  • the step for promoting sublimation may include at least one of three steps in which the substrate blowing step and the heating step are added to the gas blowing step.
  • the heating step is the same step as the above-described heating step (S7) and its modification.
  • the substrate high rotation step is equivalent to the substrate high rotation step (spin-off) performed in the film thickness reduction step (S6).
  • the final spin dry step (S11) may be omitted.
  • the supply liquid supply unit 10 may be provided as a unit shared with the rinse liquid supply unit 7.
  • the supply liquid supply unit 10 may be provided as a unit shared with the replacement solvent supply unit 8.
  • the replacement step (S4) is performed between the rinsing step (S3) and the mixed sublimation agent supply step (S5).
  • the substitution step (S4) may be omitted. In this case, the configuration of the replacement solvent supply unit 8 of the processing unit 2 may be omitted.
  • the freezing point T FM mixtures sublimation agent supplied from the mixing sublimation agent supply unit 9 may be above room temperature and not less than room temperature.
  • a device (temperature control device) for maintaining the mixed sublimation agent in a liquid state inside the mixed sublimation agent supply unit 9 is required.
  • the freezing point T FM of the mixed sublimation agent is lower than the freezing point T F1 of the sublimable substance due to freezing point depression, the amount of heat for maintaining the mixed sublimation agent in a liquid state can be reduced.
  • the removing step (S10) of changing the sublimable substance contained in the solidified film 83 into a gas without passing through a liquid state is not a sublimation step, but a plasma that irradiates the substrate W with plasma. It may be an irradiation step. That is, in the removal step, the sublimable substance contained in the solidified film 83 may be changed to a gas without passing through a liquid by decomposition by an oxygen radical or the like or by a chemical reaction. Further, a removal step such as a plasma irradiation step may be performed in another processing unit.
  • FIG. 15 is a schematic diagram for explaining the transfer of the substrate W from the wet processing unit 2W to the dry processing unit 2D that changes the sublimable substance contained in the solidified film 83 into a gas without passing through a liquid state.
  • the same components as those shown in FIGS. 1 to 14 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • the processing unit 2 includes a dry processing unit 2D for processing the substrate W without supplying the processing liquid to the substrate W, in addition to the wet processing unit 2W for supplying the processing liquid to the substrate W.
  • FIG. 15 shows that the dry processing unit 2D includes a processing gas pipe 1001 that guides a processing gas into a chamber (second chamber) 4D, and a plasma generator 1002 that changes the processing gas in the chamber 4D into plasma. An example is shown.
  • the plasma generator 1002 includes an upper electrode 1003 arranged above the substrate W, and a lower electrode 1004 arranged below the substrate W.
  • the structures in the chambers 4 and 4D can be simplified, and the chambers 4 and 4D can be downsized. it can.
  • the present invention can also be applied to a batch type substrate processing apparatus.
  • FIG. 16 is a schematic diagram for explaining a configuration of a substrate processing apparatus 1101 according to the third embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing a state of lifting in the substrate processing apparatus 1101.
  • the substrate processing apparatus 1101 is a batch-type substrate processing apparatus that processes a plurality of substrates W at a time.
  • the substrate processing apparatus 1101 includes a chemical liquid storage tank 1102 for storing a chemical liquid, a rinse liquid storage tank 1103 for storing a rinse liquid (for example, water), and a mixed sublimate storage tank (first tank) 1104 for storing a mixed sublimate. And a supply liquid storage tank 1105 (second tank) for storing a supply liquid (for example, a water-containing liquid).
  • the substrate processing apparatus 1101 further includes a lifter 1106 for immersing the substrate W in the supply liquid stored in the supply liquid storage tank 1105, and a lifter elevating unit 1107 for raising and lowering the lifter 1106.
  • the lifter 1106 supports each of the plurality of substrates W in a vertical posture.
  • the lifter elevating unit 1107 includes a processing position (a position indicated by a solid line in FIG. 16) in which the substrate W held by the lifter 1106 is located in the supply liquid storage tank 1105, and a supply position of the substrate W held by the lifter 1106.
  • the lifter 1106 is moved up and down between a retreat position (a position shown by a two-dot chain line in FIG. 16) to retreat upward from the storage tank 1105.
  • a plurality of substrates W carried into the processing unit of the substrate processing apparatus 1101 are immersed in the chemical stored in the chemical storage tank 1102.
  • chemical processing cleaning processing or etching processing
  • a predetermined period elapses from the start of immersion in the chemical a plurality of substrates W are lifted from the chemical storage tank 1102 and moved to the rinse liquid storage tank 1103.
  • the plurality of substrates W are immersed in the rinsing liquid stored in the rinsing liquid storage tank 1103. Thereby, a rinsing process is performed on the substrate W (rinsing step).
  • the plurality of substrates W are lifted from the rinsing liquid storage tank 1103 and moved to the mixed sublimation agent storage tank 1104. Next, the plurality of substrates W are immersed in the mixed sublimation agent stored in the mixed sublimation agent storage tank 1104. Thereby, the mixed sublimation agent processing is performed on the substrate W (mixed sublimation agent supply step).
  • the plurality of substrates W are lifted from the mixed sublimation agent storage tank 1104 and moved to the supply liquid storage tank 1105.
  • a liquid film of the mixed sublimation agent is formed on the entire surface of the surface Wa of each substrate W transferred to the supply liquid storage tank 1105. Then, the lifter elevating unit 1107 is controlled to move the lifter 1106 from the retracted position to the processing position, so that the plurality of substrates W held by the lifter 1106 are immersed in the supply liquid. Thereby, the supply liquid is supplied to the surface Wa of each substrate W, and the supply liquid comes into contact with the liquid film of the mixed sublimation agent formed on the surface Wa of the substrate W (supply liquid contact step).
  • the mixing solvent contained in the mixed sublimation agent moves from the mixed sublimation agent to the supply liquid, and the mixing solvent dissolves in the supply liquid.
  • the concentration of the sublimable substance in the liquid film of the mixed sublimation agent increases.
  • the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, precipitation of the mixed sublimation agent present on the surface Wa of the substrate W is started. You. By the precipitation of the mixed sublimation agent, a solidified film 83 containing a sublimable substance is formed.
  • the supply of the supply liquid to the surface Wa of the substrate W causes the mixed sublimation contained in the liquid film of the mixed sublimation agent.
  • the agent can be cooled. Then, the temperature of the mixed sublimation agent contained in the liquid film of the mixed sublimation agent falls below the freezing point T FM mixing sublimation agent, mixing sublimation agent initiates coagulation. Thus, a solidified film 83 is formed.
  • coagulation of the mixed sublimation agent coagulation and using an increase in freezing point T FM mixing sublimation agent, coagulation and with temperature decrease of the mixed sublimation agent, for simultaneously as two mechanisms, the coagulation membrane 83, It can be formed in a short time.
  • pull-up drying (supply liquid removal step) is performed.
  • the pull-up drying is performed while blowing a gas (for example, an inert gas such as nitrogen gas) onto the surface Wa of the substrate W pulled up from the supply liquid storage tank 1105, and at a relatively low speed (for example, several times). (mm / sec). Thereby, the supply liquid is removed from the entire surface Wa of the substrate W.
  • a gas for example, an inert gas such as nitrogen gas
  • the sublimator substance contained in the solidified film 83 sublimates from a solid to a gas.
  • the sublimable substance can be removed from the surface Wa of the substrate W by evaporating without passing through the liquid state, so that the surface Wa of the substrate W is dried while effectively suppressing or preventing the pattern 100 from collapsing. be able to.
  • the substrate processing apparatuses 1 and 1101 are apparatuses for processing a substrate W made of a semiconductor wafer
  • the substrate processing apparatus is a substrate for a liquid crystal display device, an organic EL (electroluminescence).
  • An apparatus for processing a substrate such as a substrate for an FPD (Flat Panel Display) such as a display device, a substrate for an optical disk, a substrate for a magnetic disk, a substrate for a magneto-optical disk, a substrate for a photomask, a ceramic substrate, and a substrate for a solar cell. Is also good.
  • substrate processing apparatus 2 processing unit 3: control apparatus 4: chamber 5: spin chuck (substrate holding unit) 9: Mixed sublimation agent supply unit (mixed drying auxiliary substance supply unit) 10: Supply liquid supply unit 11: Gas blowing unit (removal unit) 18: Spin motor (removal unit) 81: liquid film 82: thin film 83: solidified film 100: pattern 1104: mixed sublimant storage tank (first tank) 1105: Supply liquid storage tank (second tank) A1: Rotation axis T F1 : Freezing point of sublimable substance (freezing point of auxiliary drying substance) T FM : Freezing point of mixed sublimation agent (freezing point of mixed drying auxiliary substance) W: Substrate Wa: Surface

Abstract

This substrate processing method comprises processing a substrate that has a pattern on the surface thereof, the method including: a mixed drying auxiliary substance supply step in which a mixed drying auxiliary substance, in which a drying auxiliary substance that is non-polar and an amphiphilic solvent are mixed together, is supplied to the surface of the substrate, the mixed drying auxiliary substance having a lower freezing point than that of the drying auxiliary substance, and a liquid film of the mixed drying auxiliary substance being formed on the surface of the substrate; a frozen film formation step in which the drying auxiliary substance included in the liquid film of the mixed drying auxiliary substance is frozen, thereby forming a frozen film that includes the drying auxiliary substance; and a removal step in which the drying auxiliary substance included in the frozen film is changed to a gas without passing through a liquid state and is removed from the surface of the substrate. The frozen film formation step includes a supplied-liquid wetting step in which: a supplied liquid, which is a liquid of a different type than the drying auxiliary substance and the solvent and which is polar with respect to the liquid film of the mixed drying auxiliary substance, is brought into contact with the liquid film; and the drying auxiliary substance is precipitated by an increase in the concentration of the drying auxiliary substance in the liquid film, the increase accompanying the movement of the solvent blended into the mixed drying auxiliary substance from the mixed drying auxiliary substance to the supplied liquid, thereby forming the frozen film.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 この発明は、基板処理方法および基板処理装置に関する。処理対象となる基板の例には、半導体ウエハ、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 << The present invention relates to a substrate processing method and a substrate processing apparatus. Examples of substrates to be processed include semiconductor wafers, substrates for liquid crystal displays, substrates for flat panel displays (FPDs) such as organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks. Substrates, photomask substrates, ceramic substrates, solar cell substrates and the like are included.
 半導体装置の製造工程では、湿式の基板処理が実施される。 湿 In the manufacturing process of the semiconductor device, a wet type substrate processing is performed.
 たとえば、ドライエッチング工程等を経て、凹凸を有する微細なパターンを形成した基板の表面(パターン形成面)には、反応副生成物であるエッチング残渣、金属不純物や有機汚染物質等が付着していることがある。これらの物質を基板の表面から除去するために、薬液(エッチング液、洗浄液等)を用いた薬液処理が実施される。また、薬液処理の後には、薬液をリンス液によって除去するリンス処理が行われる。典型的なリンス液は、脱イオン水等である。その後、基板の表面からリンス液を除去することによって基板を乾燥させる乾燥処理が行われる。 For example, etching residues, metal impurities, organic contaminants, and the like, which are reaction by-products, adhere to the surface (pattern forming surface) of the substrate on which a fine pattern having irregularities has been formed through a dry etching process or the like. Sometimes. In order to remove these substances from the surface of the substrate, a chemical treatment using a chemical (such as an etching liquid or a cleaning liquid) is performed. After the chemical treatment, a rinsing treatment for removing the chemical with a rinsing liquid is performed. A typical rinse solution is deionized water or the like. Thereafter, a drying process for drying the substrate by removing the rinsing liquid from the surface of the substrate is performed.
 近年、基板の表面に形成される凹凸状のパターンの微細化に伴い、パターンの凸部のアスペクト比(凸部の高さと幅の比)が大きくなる傾向がある。そのため、乾燥処理の際に、パターンの凸部間の凹部に入り込んだリンス液の液面(リンス液と、その上の気体と、の界面)に作用する表面張力によって、隣り合う凸部同士が引き寄せられて倒壊する場合がある。 In recent years, with the miniaturization of the uneven pattern formed on the surface of the substrate, the aspect ratio (the ratio of the height to the width of the projection) of the projection tends to increase. Therefore, at the time of the drying process, adjacent convex portions are caused by surface tension acting on the liquid surface of the rinsing liquid (the interface between the rinsing liquid and the gas thereon) that has entered the concave portions between the convex portions of the pattern. May be pulled down and collapse.
 下記特許文献1には、チャンバの内部において基板の表面に存在するリンス液を、昇華性物質としてのターシャリーブチルアルコールの液体に置換した後、ターシャリーブチルアルコールの膜状の凝固膜を形成させることが開示されている。また、下記特許文献1には、その後、凝固膜に含まれるターシャリーブチルアルコールを固相から液相を経ずに気相に変化させることにより、基板の表面を乾燥させることが開示されている。 In Patent Literature 1 below, a rinsing liquid present on the surface of a substrate inside a chamber is replaced with a liquid of tertiary butyl alcohol as a sublimable substance, and then a tertiary butyl alcohol film-like solidified film is formed. It is disclosed. Further, Patent Document 1 below discloses that the surface of a substrate is dried by changing tertiary butyl alcohol contained in a solidified film from a solid phase to a gas phase without passing through a liquid phase. .
特許文献1:特開2015-142069号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2015-142069
 しかしながら、ターシャリーブチルアルコールの凝固点は、一般的な基板処理に用いられる室温(22℃~25℃の範囲内で、たとえば約23℃)より、やや高い(約25.6℃)。そのため、ターシャリーブチルアルコールのような室温以上の凝固点を有する昇華性物質を用いる場合、配管内での凝固を防止するために、配管内の昇華性物質に熱を与える必要がある。具体的には、温度調節機構を配管に設けることが考えられる。この場合、昇華性物質が流通する配管の全域に、温度調節機構を設けることが望ましい。そのため、コストが大きく増大するおそれがある。また、装置トラブルによる温度調節機構の停止等により、昇華性物質が配管内で凝固すると、復旧のために多大の時間を要してしまう。すなわち、ターシャリーブチルアルコールのような室温以上の凝固点を有する昇華性物質をそのまま基板乾燥に用いる場合には、配管内での乾燥補助物質(昇華性物質)の凝固の懸念が残る。 However, the freezing point of tertiary butyl alcohol is slightly higher (about 25.6 ° C.) than room temperature used in general substrate processing (in the range of 22 ° C. to 25 ° C., for example, about 23 ° C.). Therefore, when a sublimable substance having a freezing point higher than room temperature, such as tertiary butyl alcohol, is used, it is necessary to apply heat to the sublimable substance in the pipe in order to prevent solidification in the pipe. Specifically, it is conceivable to provide a temperature control mechanism in the pipe. In this case, it is desirable to provide a temperature control mechanism in the entire area of the pipe through which the sublimable substance flows. Therefore, the cost may increase significantly. In addition, if the sublimable substance solidifies in the pipe due to a stop of the temperature control mechanism due to a trouble of the apparatus, a long time is required for recovery. That is, when a sublimable substance having a freezing point higher than room temperature, such as tertiary butyl alcohol, is used as it is for drying the substrate, there is a concern that the drying auxiliary substance (sublimable substance) solidifies in the piping.
 そのような懸念を取り除くべく、室温より低い凝固点を有する昇華性物質を基板乾燥に用いることが考えられる。しかしながら、常温よりも低い凝固点を有する昇華性物質は、一般的に非常に高価である。そのため、このような昇華性物質を基板乾燥に用いると、コストが大きく増大するおそれがある。常温よりも低い凝固点を有する昇華性物質は、室温において自然に凝固することはない。そのため、チャンバの内部において、昇華性物質を凝固させるために冷却装置等を用いる必要がある。この場合も、コストが大きく増大するおそれがある。 取 り 除 く To eliminate such concerns, it is conceivable to use a sublimable substance having a freezing point lower than room temperature for drying the substrate. However, sublimable materials having a freezing point below room temperature are generally very expensive. Therefore, when such a sublimable substance is used for drying the substrate, the cost may be greatly increased. Sublimable materials having a freezing point below room temperature do not solidify spontaneously at room temperature. Therefore, it is necessary to use a cooling device or the like inside the chamber to solidify the sublimable substance. Also in this case, the cost may increase significantly.
 そして、基板の表面に供給された乾燥補助物質(昇華性物質)を、大きなコストアップなく良好に凝固させることも求められている。 It is also required that the drying auxiliary substance (sublimable substance) supplied to the surface of the substrate be solidified well without a large increase in cost.
 そこで、この発明の目的の一つは、乾燥補助物質の意図しない凝固を大きなコストアップなく回避しながら、基板の表面を良好に処理することが可能な基板処理方法および基板処理装置を提供することである。 Therefore, an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of satisfactorily processing the surface of a substrate while avoiding unintentional solidification of a drying auxiliary substance without a large increase in cost. It is.
 また、この発明の他の目的は、基板の表面において乾燥補助物質を、大きなコストアップなく良好に凝固することが可能である基板処理方法および基板処理装置を提供することである。 Another object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of coagulating a drying auxiliary substance on a surface of a substrate without increasing the cost.
 この発明の第1の局面は、パターンを表面に有する基板を処理する基板処理方法であって、無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質であって、前記乾燥補助物質の凝固点よりも低い凝固点を有する混合乾燥補助物質を前記基板の表面に供給して、前記混合乾燥補助物質の液膜を前記基板の表面に形成する混合乾燥補助物質供給工程と、前記混合乾燥補助物質の液膜に含まれる前記乾燥補助物質を凝固させることにより、前記乾燥補助物質を含む凝固膜を形成する凝固膜形成工程と、前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させて前記基板の表面から除去する除去工程と、を含み、前記凝固膜形成工程が、前記乾燥補助物質および前記溶媒とは種類の異なる液体であり、かつ前記混合乾燥補助物質の液膜に極性物質である供給液を接液させ、前記混合乾燥補助物質に溶け込んでいる前記溶媒が前記混合乾燥補助物質から前記供給液へ移動することに伴う当該液膜における前記乾燥補助物質の濃度の上昇によって前記乾燥補助物質を析出させることにより前記凝固膜を形成する供給液接液工程を含む、基板処理方法を提供する。 A first aspect of the present invention is a substrate processing method for processing a substrate having a pattern on a surface, the method comprising a non-polar drying auxiliary substance and an amphipathic solvent mixed with each other. A mixing / drying aid for supplying a mixed / drying auxiliary substance having a freezing point lower than the freezing point of the drying / auxiliary substance to the surface of the substrate to form a liquid film of the mixed / drying auxiliary substance on the surface of the substrate; A substance supply step, a coagulation film forming step of forming a coagulation film containing the drying auxiliary substance by coagulating the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance, and the coagulation film included in the coagulation film Removing the drying auxiliary substance from the surface of the substrate by changing the drying auxiliary substance into a gas without passing through a liquid state, wherein the coagulation film forming step differs in type from the drying auxiliary substance and the solvent. And the supply liquid which is a polar substance is brought into contact with the liquid film of the mixed drying auxiliary substance, and the solvent dissolved in the mixed drying auxiliary substance moves from the mixed drying auxiliary substance to the supply liquid. The present invention further provides a substrate processing method including a supply liquid contacting step of forming the solidified film by depositing the drying auxiliary substance by increasing the concentration of the drying auxiliary substance in the liquid film.
 この明細書において、「室温」とは、日本国内外問わず、基板処理装置が設置される空調環境内における温度をいう。一般的には、22℃~25℃の範囲内で、たとえば約23℃である。 室温 In this specification, “room temperature” refers to a temperature in an air-conditioning environment in which a substrate processing apparatus is installed, regardless of whether it is in Japan or overseas. Generally, it is in the range of 22 ° C. to 25 ° C., for example about 23 ° C.
 また、この明細書において、「極性物質」とは、極性分子を含む物質のことをいう。 In this specification, the term “polar substance” refers to a substance containing a polar molecule.
 また、この明細書において、「無極性物質」とは、無極性分子からなる物質のことをいう。「無極性物質」は、極性物質(極性溶媒)に全く溶けないものだけでなく、僅かながら極性物質(極性溶媒)に溶けるものも含む趣旨である。 In this specification, “non-polar substance” refers to a substance composed of non-polar molecules. The “non-polar substance” is intended to include not only a substance that is completely insoluble in a polar substance (polar solvent) but also a substance that is slightly soluble in a polar substance (polar solvent).
 さらに、この明細書において、「両親媒性を有する」とは、両親媒性分子を含むことをいう。 Further, in this specification, “having amphipathic properties” refers to including amphiphilic molecules.
 この方法によれば、乾燥補助物質と溶媒とが混ざり合った混合乾燥補助物質が、基板の表面に供給される。たとえば、乾燥補助物質が室温以上の凝固点を有している場合には、室温の温度条件下においてその一部または全体が固体状をなすことがある。乾燥補助物質と溶媒との混合による凝固点降下により、混合乾燥補助物質の凝固点が、乾燥補助物質の凝固点よりも低くなっている。すなわち、混合乾燥補助物質の凝固点がたとえ室温以上である場合であっても、混合乾燥補助物質の凝固点は低い。したがって、混合乾燥補助物質を液状に維持しておくための熱エネルギーの低減を図ることができる。これにより、乾燥補助物質の意図しない凝固を大きなコストアップなく回避しながら、基板の表面を良好に処理することが可能である。 According to this method, the mixed drying auxiliary substance in which the drying auxiliary substance and the solvent are mixed is supplied to the surface of the substrate. For example, when the drying auxiliary substance has a freezing point higher than room temperature, a part or the whole thereof may be in a solid state at room temperature. The freezing point of the mixed drying auxiliary substance is lower than the freezing point of the drying auxiliary substance due to the freezing point drop due to the mixing of the drying auxiliary substance and the solvent. That is, even when the freezing point of the mixed drying auxiliary substance is higher than room temperature, the freezing point of the mixed drying auxiliary substance is low. Therefore, it is possible to reduce the heat energy for keeping the mixed drying auxiliary substance in a liquid state. As a result, it is possible to satisfactorily treat the surface of the substrate while avoiding unintentional solidification of the drying aid without increasing the cost.
 また、無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質の液膜が基板の表面に形成される。そして、この混合乾燥補助物質の液膜に、極性物質である供給液を供給する。極性物質である供給液は、無極性物質である乾燥補助物質に対し(ほとんど)溶けない。そのため、混合乾燥補助物質に供給液が接触しても、乾燥補助物質と供給液とが互いに混ざり合うことはない。 {Circle around (2)} A liquid film of the mixed drying auxiliary substance in which the non-polar drying auxiliary substance and the amphiphilic solvent are mixed is formed on the surface of the substrate. Then, a supply liquid which is a polar substance is supplied to the liquid film of the mixed drying auxiliary substance. The feed liquid, which is a polar substance, is (almost) insoluble in the drying aid, which is a non-polar substance. Therefore, even if the supply liquid comes into contact with the mixed drying auxiliary substance, the drying auxiliary substance and the supply liquid do not mix with each other.
 混合乾燥補助物質の液膜に供給液が接した状態(混合乾燥補助物質の相と供給液の相とが接した系中)で平衡状態になると、乾燥補助物質および供給液に対して溶媒が溶け込む比率が固有の値(分配係数により定まる値)になる。そのため、たとえば、乾燥補助物質および供給液に対する溶媒の分配係数が小さい場合には、混合乾燥補助物質の液膜に供給液が接すると、混合乾燥補助物質に含まれる溶媒が、混合乾燥補助物質から供給液へ移動する。溶媒の移動に伴って、混合乾燥補助物質の液膜における乾燥補助物質の濃度が上昇する。そして、乾燥補助物質の濃度の上昇に伴って、混合乾燥補助物質の凝固点が上昇し、この凝固点が室温に達すると、基板の表面に存在する混合乾燥補助物質に含まれる乾燥補助物質の析出が開始される。これにより、凝固膜が形成される。混合乾燥補助物質の凝固点の上昇を利用して混合乾燥補助物質に含まれる乾燥補助物質を凝固させるから、混合乾燥補助物質の凝固のために混合乾燥補助物質を冷却させることは必ずしも必要ではない。したがって、基板の表面に供給された乾燥補助物質を、大きなコストアップなく良好に凝固することが可能である。 If the equilibrium state is reached in the state where the feed liquid is in contact with the liquid film of the mixed drying auxiliary substance (in a system in which the phase of the mixed drying auxiliary substance and the phase of the supply liquid are in contact), the solvent will be applied to the drying auxiliary substance and the supplied liquid. The melting ratio becomes a unique value (a value determined by the distribution coefficient). Therefore, for example, when the distribution coefficient of the solvent to the drying auxiliary substance and the supply liquid is small, when the supply liquid comes into contact with the liquid film of the mixed drying auxiliary substance, the solvent contained in the mixed drying auxiliary substance is changed from the mixed drying auxiliary substance to Move to feed. As the solvent moves, the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases. Then, as the concentration of the drying auxiliary substance increases, the freezing point of the mixed drying auxiliary substance increases, and when this freezing point reaches room temperature, the precipitation of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is reduced. Be started. Thereby, a solidified film is formed. Since the drying auxiliary substance contained in the mixed drying auxiliary substance is solidified by utilizing the increase in the freezing point of the mixed drying auxiliary substance, it is not always necessary to cool the mixed drying auxiliary substance for coagulating the mixed drying auxiliary substance. Therefore, it is possible to satisfactorily solidify the drying auxiliary substance supplied to the surface of the substrate without increasing the cost.
 この発明の一実施形態のように、前記乾燥補助物質が、昇華性を有する昇華性物質を含んでいてもよい。この場合、前記混合乾燥補助物質が、混合昇華剤を含む。 As in one embodiment of the present invention, the drying auxiliary substance may include a sublimable substance having sublimability. In this case, the mixed drying auxiliary substance includes a mixed sublimation agent.
 この方法によれば、乾燥補助物質が昇華性を有しているので、凝固膜に含まれる乾燥補助物質を昇華させることにより、基板の表面から良好に除去できる。 According to this method, since the drying auxiliary substance has sublimability, it can be removed from the surface of the substrate by sublimating the drying auxiliary substance contained in the solidified film.
 この発明の一実施形態では、前記供給液接液工程が、前記混合乾燥補助物質の液膜を膜状に維持しながら、前記基板の表面に前記供給液を供給する工程を含む。 In one embodiment of the present invention, the supply liquid contacting step includes a step of supplying the supply liquid to the surface of the substrate while maintaining a liquid film of the mixed and dried auxiliary substance in a film form.
 この方法によれば、混合乾燥補助物質の液膜が膜状に保たれながら基板の表面に供給液が供給される。そのため、混合乾燥補助物質の液膜に含まれる乾燥補助物質が凝固することによって得られる凝固膜を、良好な膜状に設けることができる。 According to this method, the supply liquid is supplied to the surface of the substrate while the liquid film of the mixed and dried auxiliary substance is kept in a film shape. Therefore, a coagulated film obtained by coagulation of the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance can be provided in a good film shape.
 混合乾燥補助物質の液膜を膜状に維持しながら基板の表面に供給液を供給する手法として、微小な多数の吐出口から供給液を、弱い吐出圧でシャワー状に吐出する手法や、基板の表面に供給液を小流量で供給する手法がある。 As a method of supplying the supply liquid to the surface of the substrate while maintaining the liquid film of the mixed drying auxiliary substance in a film form, a method of discharging the supply liquid from a large number of minute discharge ports in a shower shape with a weak discharge pressure, There is a method of supplying a supply liquid at a small flow rate to the surface of the substrate.
 この発明の一実施形態では、前記基板処理方法が、前記除去工程の前に、前記基板の表面に存在している前記供給液を除去する供給液除去工程をさらに含む。 In one embodiment of the present invention, the substrate processing method further includes a supply liquid removing step of removing the supply liquid existing on the surface of the substrate before the removing step.
 この方法によれば、除去工程の前に、基板の表面に存在している供給液が、基板の表面から除去される。除去される供給液には、混合乾燥補助物質から移動してきた溶媒も含まれている。そのため、混合乾燥補助物質および溶媒を、基板の表面から良好に除去できる。 According to this method, before the removing step, the supply liquid existing on the surface of the substrate is removed from the surface of the substrate. The feed liquid to be removed also contains the solvent transferred from the mixed drying aid. Therefore, the mixed drying auxiliary substance and the solvent can be favorably removed from the surface of the substrate.
 この発明の一実施形態では、前記供給液除去工程が、所定の回転軸線回りに前記基板を回転させて、前記基板の表面に存在している前記供給液を振り切る振り切り工程、および前記基板の表面に気体を吹き付ける気体吹き付け工程の少なくとも一方を含む。 In one embodiment of the present invention, the supply liquid removing step comprises: rotating the substrate around a predetermined rotation axis to shake off the supply liquid present on the surface of the substrate; At least one of a gas blowing step of blowing a gas to the substrate.
 この方法によれば、回転軸線回りに基板を回転させることにより、基板の表面から供給液を振り切ることができる。これにより、基板の表面から供給液を良好に除去できる。基板の回転に代えて/併せて、基板の表面に気体を吹き付けることにより、基板の表面に付着している供給液を吹き飛ばすことができる。これにより、基板の表面から供給液を良好に除去できる。 According to this method, the supply liquid can be shaken off from the surface of the substrate by rotating the substrate around the rotation axis. Thereby, the supply liquid can be favorably removed from the surface of the substrate. By blowing gas on the surface of the substrate instead of / in conjunction with the rotation of the substrate, the supply liquid adhering to the surface of the substrate can be blown off. Thereby, the supply liquid can be favorably removed from the surface of the substrate.
 この発明の一実施形態では、前記基板処理方法が、前記供給液接液工程において前記基板の表面に供給される前記供給液が、室温よりも低い液温を有している。 In one embodiment of the present invention, in the substrate processing method, the supply liquid supplied to the surface of the substrate in the supply liquid contacting step has a liquid temperature lower than room temperature.
 この方法によれば、供給液の液温が室温よりも低い。そのため、基板の表面への供給液の供給によって基板の表面を冷却できる。これにより、基板の表面の混合乾燥補助物質の液膜に含まれる混合乾燥補助物質を温度低下させることができる。そして、基板の表面の混合乾燥補助物質の液膜に含まれる混合乾燥補助物質の温度が混合乾燥補助物質の凝固点を下回ると、混合乾燥補助物に含まれる乾燥補助物質が凝固を開始する。これにより、凝固膜が形成される。 に よ According to this method, the temperature of the supply liquid is lower than room temperature. Therefore, the surface of the substrate can be cooled by supplying the supply liquid to the surface of the substrate. Thereby, the temperature of the mixed drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance on the surface of the substrate can be lowered. When the temperature of the mixed drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance on the surface of the substrate falls below the freezing point of the mixed drying auxiliary substance, the drying auxiliary substance contained in the mixed drying auxiliary substance starts to solidify. Thereby, a solidified film is formed.
 混合乾燥補助物質の凝固が、混合乾燥補助物質の凝固点の上昇を利用した凝固と、混合乾燥補助物質の温度低下に伴う凝固と、の2つのメカニズムで同時に行われるため、混合乾燥補助物質の凝固を短期間のうちに行うことができる。 The coagulation of the mixed drying auxiliary substance is simultaneously performed by two mechanisms, that is, coagulation using an increase in the freezing point of the mixed drying auxiliary substance and coagulation due to a decrease in the temperature of the mixed drying auxiliary substance. Can be performed in a short period of time.
 この発明の一実施形態では、前記溶媒が、前記乾燥補助物質の蒸気圧よりも高い蒸気圧を有する。そして、前記供給液接液工程において前記基板の表面に供給される前記供給液が、室温よりも高い液温を有している。 In one embodiment of the present invention, the solvent has a higher vapor pressure than the vapor pressure of the drying auxiliary substance. The supply liquid supplied to the surface of the substrate in the supply liquid contacting step has a liquid temperature higher than room temperature.
 この方法によれば、乾燥補助物質の蒸気圧よりも高い蒸気圧を溶媒が有しているので、供給液接液工程において、基板の表面に存在する混合乾燥補助物質から溶媒が優先的に蒸発させられる。混合乾燥補助物質からの溶媒の蒸発に伴って、混合乾燥補助物質の液膜における乾燥補助物質の濃度が上昇する。これに伴って、混合乾燥補助物質の凝固点が上昇し、この凝固点が室温に達すると、基板の表面に存在する混合乾燥補助物質に含まれる乾燥補助物質の凝固が開始される。これにより、供給液接液工程において、凝固膜の形成をより一層促進できる。 According to this method, since the solvent has a vapor pressure higher than the vapor pressure of the drying auxiliary substance, the solvent is preferentially evaporated from the mixed drying auxiliary substance present on the surface of the substrate in the supply liquid contacting step. Let me do. As the solvent evaporates from the mixed drying auxiliary substance, the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases. Accordingly, the freezing point of the mixed drying auxiliary substance increases, and when the solidification point reaches room temperature, solidification of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is started. Thereby, in the supply liquid contacting step, the formation of the solidified film can be further promoted.
 この発明の一実施形態では、前記溶媒が、前記乾燥補助物質の蒸気圧よりも高い蒸気圧を有する。そして、前記凝固膜形成工程が、前記凝固膜形成工程の前に前記基板の表面に存在する前記混合乾燥補助物質から前記溶媒を蒸発させる溶媒蒸発工程をさらに含む。 In one embodiment of the present invention, the solvent has a higher vapor pressure than the vapor pressure of the drying auxiliary substance. The coagulation film forming step further includes a solvent evaporation step of evaporating the solvent from the mixed and dried auxiliary substance present on the surface of the substrate before the coagulation film formation step.
 この方法によれば、前記乾燥補助物質の蒸気圧よりも高い蒸気圧を溶媒が有しているので、基板の表面に存在する混合乾燥補助物質から溶媒が優先的に蒸発させられる。混合乾燥補助物質からの溶媒の蒸発に伴って、混合乾燥補助物質の液膜における乾燥補助物質の濃度が上昇する。これに伴って、混合乾燥補助物質の凝固点が上昇し、この凝固点が室温に達すると、基板の表面に存在する混合乾燥補助物質に含まれる乾燥補助物質の凝固が開始される。これにより、凝固膜の形成をより一層促進できる。 According to this method, since the solvent has a vapor pressure higher than the vapor pressure of the drying auxiliary substance, the solvent is preferentially evaporated from the mixed drying auxiliary substance present on the surface of the substrate. As the solvent evaporates from the mixed drying auxiliary substance, the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases. Accordingly, the freezing point of the mixed drying auxiliary substance increases, and when the solidification point reaches room temperature, solidification of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is started. Thereby, the formation of a solidified film can be further promoted.
 この発明の一実施形態では、前記溶媒蒸発工程が、前記混合乾燥補助物質を加熱する加熱工程と、前記混合乾燥補助物質に気体を吹き付ける気体吹き付け工程と、前記凝固膜の周囲の空間を減圧する減圧工程と、前記基板の表面に液体を供給することなく、所定の回転軸線回りに前記基板を高速で回転させる基板高回転工程と、のうちの少なくとも一つを含む。 In one embodiment of the present invention, the solvent evaporating step includes a heating step of heating the mixed drying auxiliary substance, a gas blowing step of blowing a gas to the mixed drying auxiliary substance, and reducing a space around the solidified film. The method includes at least one of a pressure reduction step and a substrate high rotation step of rotating the substrate around a predetermined rotation axis at a high speed without supplying a liquid to the surface of the substrate.
 この発明の一実施形態のように、前記加熱工程が、加熱流体を前記基板の裏面に供給する工程を含んでいてもよい。 As in an embodiment of the present invention, the heating step may include a step of supplying a heating fluid to the back surface of the substrate.
 この発明の一実施形態のように、前記溶媒が、前記乾燥補助物質の蒸気圧と同じか、前記乾燥補助物質の蒸気圧よりも低い蒸気圧を有していてもよい。 As in an embodiment of the present invention, the solvent may have a vapor pressure equal to or lower than the vapor pressure of the drying auxiliary substance.
 この発明の一実施形態では、前記供給液接液工程が、前記基板の表面への前記供給液の供給に並行して前記基板の表面における前記供給液の供給位置を前記基板の中央部から前記基板の周縁部に移動させることにより、前記基板の表面における前記凝固膜の形成位置を、前記基板の中央部から前記基板の周縁部に拡大する工程を含む。 In one embodiment of the present invention, the supply liquid contacting step includes, in parallel with the supply of the supply liquid to the surface of the substrate, the supply position of the supply liquid on the surface of the substrate from the central portion of the substrate. A step of enlarging the formation position of the solidified film on the surface of the substrate from the center of the substrate to the periphery of the substrate by moving the solidified film to the periphery of the substrate.
 この方法によれば、基板の表面全域に凝固膜を、短期間のうちに形成できる。 According to this method, a solidified film can be formed on the entire surface of the substrate in a short period of time.
 この発明の一実施形態では、前記除去工程が、前記凝固膜に含まれる前記乾燥補助物質を、固体から気体に昇華させる昇華工程と、前記凝固膜の分解により、前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させる分解工程と、前記凝固膜の反応により、前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させる反応工程と、のうちの少なくとも一つを含む。 In one embodiment of the present invention, the removing step includes a sublimation step of sublimating the drying auxiliary substance contained in the coagulated film from a solid to a gas, and the drying included in the coagulated film by decomposition of the coagulated film. A decomposition step of changing the auxiliary substance into a gas without passing through a liquid state, and a reaction step of changing the drying auxiliary substance contained in the coagulated film into a gas without passing through a liquid state by a reaction of the coagulated film. , At least one of the following.
 前記昇華工程は、前記凝固膜に気体を吹き付ける気体吹き付け工程と、前記凝固膜を加熱する加熱工程と、前記凝固膜の周囲の空間を減圧する減圧工程と、前記凝固体に光を照射する光照射工程と、前記凝固体に超音波振動を与える超音波振動付与工程と、のうちの少なくとも一つを含んでいてもよい。 The sublimation step includes a gas blowing step of blowing gas to the solidified film, a heating step of heating the solidified film, a depressurizing step of reducing the space around the solidified film, and light for irradiating the solidified body with light. The method may include at least one of an irradiation step and an ultrasonic vibration applying step of applying ultrasonic vibration to the solidified body.
 この発明の一実施形態では、前記混合乾燥補助物質供給工程が、前記混合乾燥補助物質を溜めた第1の槽に、前記基板を浸漬させる工程を含み、前記供給液接液工程が、前記供給液を溜めた第2の槽に、前記基板を浸漬させる工程を含む。 In one embodiment of the present invention, the mixed drying auxiliary substance supplying step includes a step of immersing the substrate in a first tank in which the mixed drying auxiliary substance is stored, and wherein the supply liquid contacting step includes the supply liquid contacting step. A step of immersing the substrate in a second tank storing a liquid.
 この方法によれば、バッチ方式においても、凝固膜を良好に形成できる。 According to this method, a solidified film can be favorably formed even in a batch method.
 この発明の一実施形態のように、前記供給液が、水を含有していてもよい。 供給 As in one embodiment of the present invention, the supply liquid may contain water.
 この発明の第2の局面は、パターンを表面に有する基板を処理する基板処理方法であって、無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質であって、前記乾燥補助物質の凝固点よりも低い凝固点を有する混合乾燥補助物質を前記基板の表面に供給して、前記混合乾燥補助物質の液膜を前記基板の表面に形成する混合乾燥補助物質供給工程と、前記混合乾燥補助物質の液膜に含まれる前記乾燥補助物質を凝固させることにより、前記乾燥補助物質を含む凝固膜を形成する凝固膜形成工程と、前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させて前記基板の表面から除去する除去工程と、を含み、前記凝固膜形成工程が、当該液膜における前記乾燥補助物質の濃度の上昇によって前記乾燥補助物質を析出させることにより前記凝固膜を形成する供給液接液工程を含む、基板処理方法を提供する。 A second aspect of the present invention is a substrate processing method for processing a substrate having a pattern on a surface, the method comprising a non-polar drying auxiliary substance and an amphipathic solvent mixed with each other. A mixing / drying aid for supplying a mixed / drying auxiliary substance having a freezing point lower than the freezing point of the drying / auxiliary substance to the surface of the substrate to form a liquid film of the mixed / drying auxiliary substance on the surface of the substrate; A substance supply step, a coagulation film forming step of forming a coagulation film containing the drying auxiliary substance by coagulating the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance, and the coagulation film included in the coagulation film Removing the drying auxiliary substance from the surface of the substrate by changing the drying auxiliary substance into a gas without passing through a liquid state, wherein the coagulation film forming step includes a step of increasing the concentration of the drying auxiliary substance in the liquid film. By comprising a feed liquid contacting step of forming the solidified layer by precipitating the dried auxiliary substances, to provide a substrate processing method.
 この方法によれば、乾燥補助物質と溶媒とが混ざり合った混合乾燥補助物質が、基板の表面に供給される。たとえば、乾燥補助物質が室温以上の凝固点を有している場合には、室温の温度条件下においてその一部または全体が固体状をなすことがある。乾燥補助物質と溶媒との混合による凝固点降下により、混合乾燥補助物質の凝固点が、乾燥補助物質の凝固点よりも低くなっている。すなわち、混合乾燥補助物質の凝固点がたとえ室温以上である場合であっても、混合乾燥補助物質の凝固点は低い。したがって、混合乾燥補助物質を液状に維持しておくための熱エネルギーの低減を図ることができる。これにより、乾燥補助物質の意図しない凝固を大きなコストアップなく回避しながら、基板の表面を良好に処理することが可能である。 According to this method, the mixed drying auxiliary substance in which the drying auxiliary substance and the solvent are mixed is supplied to the surface of the substrate. For example, when the drying auxiliary substance has a freezing point higher than room temperature, a part or the whole thereof may be in a solid state at room temperature. The freezing point of the mixed drying auxiliary substance is lower than the freezing point of the drying auxiliary substance due to the freezing point drop due to the mixing of the drying auxiliary substance and the solvent. That is, even when the freezing point of the mixed drying auxiliary substance is higher than room temperature, the freezing point of the mixed drying auxiliary substance is low. Therefore, it is possible to reduce the heat energy for keeping the mixed drying auxiliary substance in a liquid state. As a result, it is possible to satisfactorily treat the surface of the substrate while avoiding unintentional solidification of the drying aid without increasing the cost.
 また、混合乾燥補助物質の液膜における乾燥補助物質の濃度を上昇させる。そして、乾燥補助物質の濃度の上昇に伴って、混合乾燥補助物質の凝固点が上昇し、この凝固点が室温に達すると、基板の表面に存在する混合乾燥補助物質に含まれる乾燥補助物質の析出が開始される。これにより、凝固膜が形成される。混合乾燥補助物質の凝固点の上昇を利用して混合乾燥補助物質に含まれる乾燥補助物質を凝固させるから、混合乾燥補助物質の凝固のために混合乾燥補助物質を冷却させることは必ずしも必要ではない。したがって、基板の表面に供給された乾燥補助物質を、大きなコストアップなく良好に凝固することが可能である。 (4) The concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance is increased. Then, as the concentration of the drying auxiliary substance increases, the freezing point of the mixed drying auxiliary substance increases, and when this freezing point reaches room temperature, the precipitation of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is reduced. Be started. Thereby, a solidified film is formed. Since the drying auxiliary substance contained in the mixed drying auxiliary substance is solidified by utilizing the increase in the freezing point of the mixed drying auxiliary substance, it is not always necessary to cool the mixed drying auxiliary substance for coagulating the mixed drying auxiliary substance. Therefore, it is possible to satisfactorily solidify the drying auxiliary substance supplied to the surface of the substrate without increasing the cost.
 この発明の第3の局面は、パターンを表面に有する基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板の表面に、無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質であって、前記乾燥補助物質の凝固点よりも低い凝固点を有する混合乾燥補助物質を供給するための混合乾燥補助物質供給ユニットと、前記基板保持ユニットに保持されている基板の表面に、前記乾燥補助物質および前記溶媒とは種類の異なる液体であり、かつ極性物質である供給液を供給するための供給液供給ユニットと、前記基板保持ユニットに保持されている基板の表面から前記乾燥補助物質を、液体状態を経ずに気体に変化させて除去するための除去ユニットと、前記混合乾燥補助物質供給ユニット、前記供給液供給ユニットおよび前記除去ユニットを制御する制御装置と、を含む。そして、前記制御装置が、前記混合乾燥補助物質供給ユニットによって前記混合乾燥補助物質を前記基板の表面に供給して、前記混合乾燥補助物質の液膜を前記基板の表面に形成する混合乾燥補助物質供給工程と、前記混合乾燥補助物質の液膜に含まれる前記乾燥補助物質を凝固させることにより、前記乾燥補助物質を含む凝固膜を形成する凝固膜形成工程と、前記凝固膜に含まれる前記乾燥補助物質を、前記除去ユニットによって液体状態を経ずに気体に変化させて前記基板の表面から除去する除去工程と、を実行し、前記制御装置が、前記凝固膜形成工程において、前記混合乾燥補助物質の液膜に前記供給液供給ユニットによって前記供給液を供給し、前記混合乾燥補助物質に溶け込んでいる前記溶媒が前記混合乾燥補助物質から前記供給液へ移動することに伴う当該液膜における前記乾燥補助物質の濃度の上昇によって前記乾燥補助物質を析出させることにより前記凝固膜を形成する供給液接液工程を実行する、基板処理装置を提供する。 According to a third aspect of the present invention, there is provided a substrate holding unit for holding a substrate having a pattern on a surface thereof, a non-polar drying auxiliary substance on a surface of the substrate held by the substrate holding unit, A mixed drying auxiliary substance supply unit for supplying a mixed drying auxiliary substance having a lower freezing point than the freezing point of the drying auxiliary substance, and a mixed drying auxiliary substance mixed with a solvent having the following formula: A supply liquid supply unit for supplying a supply liquid, which is a liquid different in type from the drying auxiliary substance and the solvent, and a polar substance, on the surface of the substrate held by the substrate holding unit; A removing unit for removing the drying auxiliary substance from the surface of the substrate by converting the drying auxiliary substance into a gas without passing through a liquid state, and supplying the mixed drying auxiliary substance Knit, and a control device for controlling the feed supply unit and the removal unit. The control device supplies the mixed drying auxiliary substance to the surface of the substrate by the mixed drying auxiliary substance supply unit, and forms a liquid film of the mixed drying auxiliary substance on the surface of the substrate. A supply step, a coagulation film forming step of forming a coagulation film containing the drying auxiliary substance by coagulating the drying auxiliary substance contained in the liquid film of the mixed drying auxiliary substance, and the drying included in the coagulation film Removing the auxiliary substance from the surface of the substrate by changing the auxiliary substance into a gas without passing through a liquid state by the removing unit, wherein the control device performs the mixing and drying assistance in the coagulated film forming step. The supply liquid is supplied to the liquid film of the substance by the supply liquid supply unit, and the solvent dissolved in the mixed drying auxiliary substance is supplied from the mixed drying auxiliary substance to the supply liquid. Provided is a substrate processing apparatus, which performs a supply liquid contacting step of forming the coagulated film by depositing the drying auxiliary substance by increasing the concentration of the drying auxiliary substance in the liquid film accompanying the transfer to a liquid. .
 この構成によれば、乾燥補助物質と溶媒とが混ざり合った混合乾燥補助物質が、基板の表面に供給される。たとえば、乾燥補助物質が室温以上の凝固点を有している場合には、室温の温度条件下においてその一部または全体が固体状をなすことがある。乾燥補助物質と溶媒との混合による凝固点降下により、混合乾燥補助物質の凝固点が、乾燥補助物質の凝固点よりも低くなっている。すなわち、混合乾燥補助物質の凝固点がたとえ室温以上である場合であっても、混合乾燥補助物質の凝固点は低い。したがって、混合乾燥補助物質を液状に維持しておくための熱エネルギーの低減を図ることができる。これにより、乾燥補助物質の意図しない凝固を大きなコストアップなく回避しながら、基板の表面を良好に処理することが可能である。 According to this configuration, the mixed drying auxiliary substance in which the drying auxiliary substance and the solvent are mixed is supplied to the surface of the substrate. For example, when the drying auxiliary substance has a freezing point higher than room temperature, a part or the whole thereof may be in a solid state at room temperature. The freezing point of the mixed drying auxiliary substance is lower than the freezing point of the drying auxiliary substance due to the freezing point drop due to the mixing of the drying auxiliary substance and the solvent. That is, even when the freezing point of the mixed drying auxiliary substance is higher than room temperature, the freezing point of the mixed drying auxiliary substance is low. Therefore, it is possible to reduce the heat energy for keeping the mixed drying auxiliary substance in a liquid state. As a result, it is possible to satisfactorily treat the surface of the substrate while avoiding unintentional solidification of the drying aid without increasing the cost.
 また、無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質の液膜が基板の表面に形成される。そして、この混合乾燥補助物質の液膜に、極性物質である供給液を供給する。極性物質である供給液は、無極性物質である乾燥補助物質に対し(ほとんど)溶けない。そのため、混合乾燥補助物質に供給液が接触しても、乾燥補助物質と供給液とが互いに混ざり合うことはない。 {Circle around (2)} A liquid film of the mixed drying auxiliary substance in which the non-polar drying auxiliary substance and the amphiphilic solvent are mixed is formed on the surface of the substrate. Then, a supply liquid which is a polar substance is supplied to the liquid film of the mixed drying auxiliary substance. The feed liquid, which is a polar substance, is (almost) insoluble in the drying aid, which is a non-polar substance. Therefore, even if the supply liquid comes into contact with the mixed drying auxiliary substance, the drying auxiliary substance and the supply liquid do not mix with each other.
 混合乾燥補助物質の液膜に供給液が接した状態(混合乾燥補助物質の相と供給液の相とが接した系中)で平衡状態になると、乾燥補助物質および供給液に対して溶媒が溶け込む比率が固有の値(分配係数により定まる値)になる。そのため、たとえば、乾燥補助物質および供給液に対する溶媒の分配係数が小さい場合には、混合乾燥補助物質の液膜に供給液が接すると、混合乾燥補助物質に含まれる溶媒が、混合乾燥補助物質から供給液へ移動する。溶媒の移動に伴って、混合乾燥補助物質の液膜における乾燥補助物質の濃度が上昇する。そして、乾燥補助物質の濃度の上昇に伴って、混合乾燥補助物質の凝固点が上昇し、この凝固点が室温に達すると、基板の表面に存在する混合乾燥補助物質に含まれる乾燥補助物質の析出が開始される。これにより、凝固膜が形成される。混合乾燥補助物質の凝固点の上昇を利用して混合乾燥補助物質に含まれる乾燥補助物質を凝固させるから、混合乾燥補助物質の凝固のために混合乾燥補助物質を冷却させることは必ずしも必要ではない。したがって、基板の表面に供給された乾燥補助物質を、大きなコストアップなく良好に凝固することが可能である。 If the equilibrium state is reached in the state where the feed liquid is in contact with the liquid film of the mixed drying auxiliary substance (in a system in which the phase of the mixed drying auxiliary substance and the phase of the supply liquid are in contact), the solvent will be applied to the drying auxiliary substance and the supplied liquid. The melting ratio becomes a unique value (a value determined by the distribution coefficient). Therefore, for example, when the distribution coefficient of the solvent to the drying auxiliary substance and the supply liquid is small, when the supply liquid comes into contact with the liquid film of the mixed drying auxiliary substance, the solvent contained in the mixed drying auxiliary substance is changed from the mixed drying auxiliary substance to Move to feed. As the solvent moves, the concentration of the drying auxiliary substance in the liquid film of the mixed drying auxiliary substance increases. Then, as the concentration of the drying auxiliary substance increases, the freezing point of the mixed drying auxiliary substance increases, and when this freezing point reaches room temperature, the precipitation of the drying auxiliary substance contained in the mixed drying auxiliary substance present on the surface of the substrate is reduced. Be started. Thereby, a solidified film is formed. Since the drying auxiliary substance contained in the mixed drying auxiliary substance is solidified by utilizing the increase in the freezing point of the mixed drying auxiliary substance, it is not always necessary to cool the mixed drying auxiliary substance for coagulating the mixed drying auxiliary substance. Therefore, it is possible to satisfactorily solidify the drying auxiliary substance supplied to the surface of the substrate without increasing the cost.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above or other objects, features, and effects of the present invention will be apparent from the following description of embodiments with reference to the accompanying drawings.
図1は、この発明の第1の実施形態に係る基板処理装置を上から見た模式図である。FIG. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. 図2は、前記基板処理装置に備えられる処理ユニットの構成例を説明するための図解的な断面図である。FIG. 2 is an illustrative sectional view for explaining a configuration example of a processing unit provided in the substrate processing apparatus. 図3は、昇華性物質と溶媒とを含む混合昇華剤の状態平衡図である。FIG. 3 is a state equilibrium diagram of a mixed sublimant containing a sublimable substance and a solvent. 図4は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus. 図5は、前記基板処理装置による処理対象の基板の表面を拡大して示す断面図である。FIG. 5 is an enlarged sectional view showing the surface of a substrate to be processed by the substrate processing apparatus. 図6は、前記処理ユニットにおいて実行される基板処理例の内容を説明するための流れ図である。FIG. 6 is a flowchart for explaining the contents of a substrate processing example executed in the processing unit. 図7A~7Cは、前記基板処理例が実行されているときの基板の周辺の状態を示す模式図である。FIGS. 7A to 7C are schematic diagrams showing the state of the periphery of the substrate when the substrate processing example is executed. 図7D,7Eは、図7Cの次の工程を示す模式図である。7D and 7E are schematic views showing the next step of FIG. 7C. 図7F,7Gは、図7Eの次の工程を示す模式図である。7F and 7G are schematic views showing the next step of FIG. 7E. 図8Aは、この発明の第2の実施形態に係る処理ユニットの構成例を説明するための図解的な断面図である。FIG. 8A is an illustrative sectional view for explaining a configuration example of a processing unit according to the second embodiment of the present invention. 図8Bは、前記処理ユニットにおいて実行される除去工程(S10)を示す模式図である。FIG. 8B is a schematic view showing a removing step (S10) performed in the processing unit. 図9A,9Bは、供給液接液工程(S8)の変形例を示す模式図である。9A and 9B are schematic diagrams showing a modification of the supply liquid contacting step (S8). 図10は、供給液ノズルの変形例を示す模式図である。FIG. 10 is a schematic diagram showing a modification of the supply liquid nozzle. 図11は、冷却ユニットの例を示す模式的な図である。FIG. 11 is a schematic diagram illustrating an example of a cooling unit. 図12は、冷却ユニットの例を示す模式的な図である。FIG. 12 is a schematic diagram illustrating an example of a cooling unit. 図13は、加熱ユニットの例を示す模式的な図である。FIG. 13 is a schematic diagram illustrating an example of a heating unit. 図14は、加熱ユニットの例を示す模式的な図である。FIG. 14 is a schematic diagram illustrating an example of a heating unit. 図15は、ウェット処理ユニットおよびドライ処理ユニットを説明するための模式図である。FIG. 15 is a schematic diagram for explaining a wet processing unit and a dry processing unit. 図16は、本発明の第3の実施形態に係る基板処理装置の構成を説明するための模式図である。FIG. 16 is a schematic diagram for explaining the configuration of the substrate processing apparatus according to the third embodiment of the present invention. 図17は、前記基板処理装置における引き上げの様子を示す模式図である。FIG. 17 is a schematic diagram showing a state of lifting in the substrate processing apparatus.
 図1は、この発明の第1の実施形態に係る基板処理装置を上から見た模式図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、薬液およびリンス液を含む処理液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容する基板収容器が載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送するインデクサロボットIRおよび基板搬送ロボットCRと、基板処理装置1を制御する制御装置3と、を含む。インデクサロボットIRは、基板収容器と基板搬送ロボットCRとの間で基板Wを搬送する。基板搬送ロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。基板処理装置1は、常圧(大気圧)かつ室温(たとえば約23℃)環境下で設置されている。 FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. The substrate processing apparatus 1 is a single-wafer processing apparatus that processes a substrate W such as a silicon wafer one by one. In this embodiment, the substrate W is a disk-shaped substrate. In the substrate processing apparatus 1, a plurality of processing units 2 for processing a substrate W with a processing liquid including a chemical solution and a rinsing liquid, and a substrate container for storing a plurality of substrates W to be processed by the processing unit 2 are placed. It includes a load port LP, an indexer robot IR and a substrate transfer robot CR for transferring a substrate W between the load port LP and the processing unit 2, and a control device 3 for controlling the substrate processing apparatus 1. The indexer robot IR transports the substrate W between the substrate container and the substrate transport robot CR. The substrate transfer robot CR transfers the substrate W between the indexer robot IR and the processing unit 2. The plurality of processing units 2 have, for example, a similar configuration. The substrate processing apparatus 1 is installed under an environment of normal pressure (atmospheric pressure) and room temperature (for example, about 23 ° C.).
 図2は、処理ユニット2の構成例を説明するための図解的な断面図である。 FIG. 2 is an illustrative sectional view for explaining a configuration example of the processing unit 2.
 処理ユニット2は、箱形のチャンバ4と、チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板Wの上面(基板Wの表面Wa(図5参照))に薬液を供給する薬液供給ユニット6と、スピンチャック5に保持されている基板Wの上面(基板Wの表面Wa(図5参照))にリンス液を供給するリンス液供給ユニット7と、スピンチャック5に保持されている基板Wの上面(基板Wの表面Wa(図5参照))に、置換用の溶媒(以下、「置換用溶媒」という)を供給する置換用溶媒供給ユニット8と、スピンチャック5に保持されている基板Wの上面(基板Wの表面Wa(図5参照))に、混合昇華剤(混合乾燥補助物質)を供給する混合昇華剤供給ユニット(混合乾燥補助物質供給ユニット)9と、スピンチャック5に保持されている基板Wの上面(基板Wの表面Wa(図5参照))に、供給液を供給する供給液供給ユニット10と、スピンチャック5に保持されている基板Wの上面(基板Wの表面Wa(図5参照))に気体を吹き付ける気体吹き付けユニット(除去ユニット)11と、スピンチャック5に保持されている基板Wの下面(基板Wの裏面Wb(図7A等参照))の中央部に向けて加熱流体を吐出する下面ノズル12と、スピンチャック5の側方を取り囲む筒状の処理カップ13と、を含む。 The processing unit 2 includes a box-shaped chamber 4 and a spin chuck that holds one substrate W in a horizontal position in the chamber 4 and rotates the substrate W about a vertical rotation axis A1 passing through the center of the substrate W. (Substrate holding unit) 5, a chemical solution supply unit 6 for supplying a chemical solution to the upper surface of substrate W (surface Wa of substrate W (see FIG. 5)) held by spin chuck 5, and a chemical solution supply unit 6 held by spin chuck 5. A rinsing liquid supply unit 7 for supplying a rinsing liquid to the upper surface of the substrate W (the surface Wa of the substrate W (see FIG. 5)), and the upper surface of the substrate W held by the spin chuck 5 (the surface Wa of the substrate W (see FIG. 5)). 5)), a replacement solvent supply unit 8 for supplying a replacement solvent (hereinafter, referred to as “substitution solvent”), and an upper surface of the substrate W held by the spin chuck 5 (a surface Wa ( (See Fig. 5)) A sublimation agent supply unit (mixing / drying auxiliary substance supply unit) 9 for supplying a mixed sublimation agent (mixing / drying auxiliary substance), and an upper surface of the substrate W held by the spin chuck 5 (a surface Wa of the substrate W (see FIG. 5) )), A supply liquid supply unit 10 for supplying a supply liquid, and a gas blowing unit (removal unit) for blowing gas onto the upper surface of the substrate W (the surface Wa of the substrate W (see FIG. 5)) held by the spin chuck 5. ) 11, a lower nozzle 12 for discharging a heating fluid toward the center of the lower surface of the substrate W (the rear surface Wb of the substrate W (see FIG. 7A and the like)) held by the spin chuck 5, and a side of the spin chuck 5. And a cylindrical processing cup 13 surrounding the other.
 この実施形態では、基板Wの上方の空間をその周囲の雰囲気から遮断する遮断部材を設けていない。これは、凝固膜形成工程(後述する供給液接液工程S8)において基板Wの裏面Wbに冷却流体を供給する必要が必ずしもないからである。周辺部材(処理カップ13等)によって跳ね返った冷却流体が、基板Wの表面Waを汚染することがないので、遮断部材を設けていない。 で は In this embodiment, no blocking member is provided to block the space above the substrate W from the surrounding atmosphere. This is because it is not always necessary to supply the cooling fluid to the back surface Wb of the substrate W in the solidified film forming step (supplied liquid contacting step S8 described later). Since the cooling fluid rebounded by the peripheral members (the processing cup 13 and the like) does not contaminate the surface Wa of the substrate W, no blocking member is provided.
 チャンバ4は、スピンチャック5やノズルを収容する箱状の隔壁14と、隔壁14の上部から隔壁14内に清浄空気(フィルタによってろ過された空気)を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)15と、隔壁14の下部からチャンバ4内の気体を排出する排気ダクト16と、排気ダクト16の他端に接続された排気装置17と、を含む。FFU15は、隔壁14の上方に配置されており、隔壁14の天井に取り付けられている。FFU15は、隔壁14の天井からチャンバ4内に下向きに清浄空気を送る。排気装置17は、処理カップ13の底部に接続された排気ダクト16を介して、処理カップ13の内部を吸引する。FFU15および排気装置17により、チャンバ4内にダウンフロー(下降流)が形成される。基板Wの処理は、チャンバ4内にダウンフローが形成されている状態で行われる。 The chamber 4 includes a box-shaped partition 14 that accommodates the spin chuck 5 and the nozzle, and an FFU (fan filter filter) as a blowing unit that sends clean air (air filtered by a filter) into the partition 14 from above the partition 14. Unit) 15, an exhaust duct 16 for exhausting gas in the chamber 4 from below the partition 14, and an exhaust device 17 connected to the other end of the exhaust duct 16. The FFU 15 is disposed above the partition 14 and is attached to the ceiling of the partition 14. The FFU 15 sends clean air downward from the ceiling of the partition wall 14 into the chamber 4. The exhaust device 17 sucks the inside of the processing cup 13 via an exhaust duct 16 connected to the bottom of the processing cup 13. The FFU 15 and the exhaust device 17 form a downflow (downflow) in the chamber 4. The processing of the substrate W is performed in a state where a downflow is formed in the chamber 4.
 スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック5は、スピンモータ(除去ユニット)18と、このスピンモータ18の駆動軸と一体化されたスピン軸19と、スピン軸19の上端に略水平に取り付けられた円板状のスピンベース20と、を含む。 挟 As the spin chuck 5, a clamping chuck that holds the substrate W horizontally while sandwiching the substrate W in the horizontal direction is employed. Specifically, the spin chuck 5 includes a spin motor (removal unit) 18, a spin shaft 19 integrated with a drive shaft of the spin motor 18, and a disk attached substantially horizontally to an upper end of the spin shaft 19. And a spin base 20 in the shape of a circle.
 スピンベース20は、基板Wの外径よりも大きな外径を有する水平な円形の上面20aを含む。上面20aには、その周縁部に複数個(3個以上。たとえば6個)の挟持部材21が配置されている。複数個の挟持部材21は、上面20aの周縁部において、基板Wの外周形状に対応する円周上で適当な間隔を空けてたとえば等間隔に配置されている。 The spin base 20 includes a horizontal circular upper surface 20a having an outer diameter larger than the outer diameter of the substrate W. On the upper surface 20a, a plurality (three or more, for example, six) of holding members 21 are arranged on a peripheral portion thereof. The plurality of sandwiching members 21 are arranged at, for example, equal intervals on a circumference corresponding to the outer peripheral shape of the substrate W at a peripheral portion of the upper surface 20a.
 図2に示すように、薬液供給ユニット6は、薬液ノズル31と、薬液ノズル31が先端部に取り付けられたノズルアーム32と、ノズルアーム32を移動させることにより、薬液ノズル31を移動させるノズル移動ユニット33(図4参照)と、を含む。ノズル移動ユニット33は、揺動軸線まわりにノズルアーム32を水平移動させることにより、薬液ノズル31を水平に移動させる。ノズル移動ユニット33は、モータ等を含む構成である。ノズル移動ユニット33は、薬液ノズル31から吐出される薬液が基板Wの表面Waに着液する処理位置と、平面視でスピンチャック5の周囲に設定された退避位置と、の間で、薬液ノズル31を水平に移動させる。換言すると、処理位置は、薬液ノズル31から吐出された薬液が基板Wの表面Waに供給される位置である。さらに、ノズル移動ユニット33は、薬液ノズル31から吐出された薬液が基板Wの表面Waの中央部に着液する中央位置と、薬液ノズル31から吐出された薬液が基板Wの表面Waの周縁部に着液する周縁位置と、の間で、薬液ノズル31を水平に移動させる。中央位置および周縁位置は、いずれも処理位置である。 As shown in FIG. 2, the chemical solution supply unit 6 includes a chemical solution nozzle 31, a nozzle arm 32 having the chemical solution nozzle 31 attached to a distal end thereof, and a nozzle movement for moving the chemical solution nozzle 31 by moving the nozzle arm 32. Unit 33 (see FIG. 4). The nozzle moving unit 33 horizontally moves the chemical liquid nozzle 31 by horizontally moving the nozzle arm 32 around the swing axis. The nozzle moving unit 33 has a configuration including a motor and the like. The nozzle moving unit 33 moves the chemical liquid nozzle between a processing position where the chemical liquid discharged from the chemical liquid nozzle 31 lands on the surface Wa of the substrate W and a retracted position set around the spin chuck 5 in plan view. 31 is moved horizontally. In other words, the processing position is a position where the chemical solution discharged from the chemical solution nozzle 31 is supplied to the front surface Wa of the substrate W. Furthermore, the nozzle moving unit 33 includes a central position where the chemical liquid discharged from the chemical liquid nozzle 31 lands on a central portion of the surface Wa of the substrate W, and a peripheral portion of the chemical liquid discharged from the chemical liquid nozzle 31 on the surface Wa of the substrate W. The chemical liquid nozzle 31 is moved horizontally between the peripheral position where the liquid is applied to the liquid. The center position and the peripheral position are both processing positions.
 薬液供給ユニット6は、薬液ノズル31に薬液を案内する薬液配管34と、薬液配管34を開閉する薬液バルブ35と、を含む。薬液バルブ35が開かれると、薬液供給源からの薬液が、薬液配管34から薬液ノズル31に供給される。これにより、薬液ノズル31から薬液が吐出される。 The chemical supply unit 6 includes a chemical pipe 34 for guiding the chemical to the chemical nozzle 31, and a chemical valve 35 for opening and closing the chemical pipe 34. When the chemical valve 35 is opened, the chemical from the chemical supply source is supplied from the chemical pipe 34 to the chemical nozzle 31. Thereby, the chemical solution is discharged from the chemical solution nozzle 31.
 薬液配管34に供給される薬液は、洗浄液およびエッチング液を含む。さらに具体的には、薬液は、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)および界面活性剤、腐食防止剤の少なくとも1つを含む液である。 (4) The chemical supplied to the chemical piping 34 includes a cleaning liquid and an etching liquid. More specifically, the chemicals include sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, aqueous hydrogen peroxide, organic acids (such as citric acid and oxalic acid), and organic alkalis (such as TMAH: tetramethylammonium hydrochloride). Liquid containing at least one of an oxide, a surfactant, and a corrosion inhibitor.
 図2に示すように、リンス液供給ユニット7は、リンス液ノズル36を含む。リンス液ノズル36は、たとえば、連続流の状態で液を吐出するストレートノズルであり、スピンチャック5の上方で、その吐出口を基板Wの上面中央部に向けて固定的に配置されている。リンス液ノズル36には、リンス液供給源からのリンス液が供給されるリンス液配管37が接続されている。リンス液配管37の途中部には、リンス液ノズル36からのリンス液の供給/供給停止を切り換えるためのリンス液バルブ38が介装されている。リンス液バルブ38が開かれると、リンス液配管37からリンス液ノズル36に供給されたリンス液が、リンス液ノズル36の下端に設定された吐出口から吐出される。また、リンス液バルブ38が閉じられると、リンス液配管37からリンス液ノズル36のリンス液の供給が停止される。リンス液は、水である。水は、たとえば脱イオン水(DIW)であるが、DIWに限らず、炭酸水、電解イオン水、水素水、オゾン水、アンモニア水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれかであってもよい。 リ ン As shown in FIG. 2, the rinsing liquid supply unit 7 includes a rinsing liquid nozzle 36. The rinse liquid nozzle 36 is, for example, a straight nozzle that discharges the liquid in a continuous flow state, and is fixedly disposed above the spin chuck 5 with its discharge port facing the center of the upper surface of the substrate W. A rinse liquid pipe 37 to which a rinse liquid is supplied from a rinse liquid supply source is connected to the rinse liquid nozzle 36. A rinsing liquid valve 38 for switching between supplying / stopping the supply of the rinsing liquid from the rinsing liquid nozzle 36 is provided at an intermediate portion of the rinsing liquid pipe 37. When the rinsing liquid valve 38 is opened, the rinsing liquid supplied from the rinsing liquid pipe 37 to the rinsing liquid nozzle 36 is discharged from a discharge port set at the lower end of the rinsing liquid nozzle 36. When the rinse liquid valve 38 is closed, the supply of the rinse liquid from the rinse liquid nozzle 36 from the rinse liquid pipe 37 is stopped. The rinsing liquid is water. The water is, for example, deionized water (DIW), but is not limited to DIW, and may be any of carbonated water, electrolytic ionized water, hydrogen water, ozone water, ammonia water, and hydrochloric acid water having a dilute concentration (for example, about 10 ppm to 100 ppm). Or it may be.
 また、リンス液供給ユニット7は、リンス液ノズル36を移動させることにより、基板Wの上面に対するリンス液の着液位置を基板Wの面内で走査させるリンス液ノズル移動装置を備えていてもよい。 In addition, the rinsing liquid supply unit 7 may include a rinsing liquid nozzle moving device that moves the rinsing liquid nozzle 36 to scan the rinsing liquid landing position on the upper surface of the substrate W within the surface of the substrate W. .
 図2に示すように、置換用溶媒供給ユニット8は、置換用溶媒ノズル41と、置換用溶媒ノズル41が先端部に取り付けられたノズルアーム42と、ノズルアーム42を移動させることにより、置換用溶媒ノズル41を移動させるノズル移動ユニット43(図4参照)と、を含む。ノズル移動ユニット43は、揺動軸線まわりにノズルアーム42を水平移動させることにより、置換用溶媒ノズル41を水平に移動させる。ノズル移動ユニット43は、モータ等を含む構成である。ノズル移動ユニット43は、置換用溶媒ノズル41から吐出される置換用溶媒が基板Wの表面Waに着液する処理位置と、平面視でスピンチャック5の周囲に設定された退避位置と、の間で、置換用溶媒ノズル41を水平に移動させる。換言すると、処理位置は、置換用溶媒ノズル41から吐出された置換用溶媒が基板Wの表面Wa(のたとえば中央部)に供給される位置である。 As illustrated in FIG. 2, the replacement solvent supply unit 8 includes a replacement solvent nozzle 41, a nozzle arm 42 having the replacement solvent nozzle 41 attached to a tip end thereof, and a nozzle arm 42 that is moved to thereby perform the replacement solvent nozzle 41. A nozzle moving unit 43 (see FIG. 4) for moving the solvent nozzle 41. The nozzle moving unit 43 horizontally moves the replacement solvent nozzle 41 by horizontally moving the nozzle arm 42 around the swing axis. The nozzle moving unit 43 has a configuration including a motor and the like. The nozzle moving unit 43 moves between the processing position where the replacement solvent discharged from the replacement solvent nozzle 41 lands on the surface Wa of the substrate W and the retreat position set around the spin chuck 5 in plan view. Then, the replacement solvent nozzle 41 is moved horizontally. In other words, the processing position is a position at which the replacement solvent discharged from the replacement solvent nozzle 41 is supplied to (for example, the center of) the surface Wa of the substrate W.
 図2に示すように、置換用溶媒供給ユニット8は、置換用溶媒ノズル41に置換用溶媒を案内する置換用溶媒配管44と、置換用溶媒配管44を開閉する置換用溶媒バルブ45と、を含む。置換用溶媒バルブ45が開かれると、置換用溶媒供給源からの置換用溶媒が、置換用溶媒配管44から置換用溶媒ノズル41に供給される。これにより、置換用溶媒ノズル41から置換用溶媒が吐出される。 As shown in FIG. 2, the replacement solvent supply unit 8 includes a replacement solvent pipe 44 for guiding the replacement solvent to the replacement solvent nozzle 41, and a replacement solvent valve 45 for opening and closing the replacement solvent pipe 44. Including. When the replacement solvent valve 45 is opened, the replacement solvent from the replacement solvent supply source is supplied to the replacement solvent nozzle 41 from the replacement solvent pipe 44. As a result, the replacement solvent is discharged from the replacement solvent nozzle 41.
 置換用溶媒配管44に供給される置換用溶媒は、混合昇華剤供給ユニット9によって供給される混合昇華剤に対する可溶性(混和性)を有している。すなわち、置換用溶媒は、混合昇華剤に含まれる昇華性物質および混合用溶媒に対する可溶性(混和性)を有している。置換用溶媒は、基板Wの表面Waへの混合昇華剤の供給に先立って表面Waに供給される前供給液として用いられる。 The replacement solvent supplied to the replacement solvent piping 44 has solubility (miscibility) with the mixed sublimation agent supplied by the mixed sublimation agent supply unit 9. That is, the replacement solvent has solubility (miscibility) with respect to the sublimable substance and the mixing solvent contained in the mixed sublimation agent. The replacement solvent is used as a pre-supply liquid to be supplied to the front surface Wa prior to the supply of the mixed sublimation agent to the front surface Wa of the substrate W.
 後述する基板処理例では、基板Wの表面Waへのリンス液の供給後、基板Wの表面Waへの混合昇華剤の供給に先立って、置換用溶媒が表面Waに供給される。そのため、置換用溶媒が、さらにリンス液(水)に対しても、可溶性(混和性)を有していることが望ましい。 In the substrate processing example described later, after the supply of the rinsing liquid to the surface Wa of the substrate W, the replacement solvent is supplied to the surface Wa prior to the supply of the mixed sublimation agent to the surface Wa of the substrate W. Therefore, it is desirable that the replacement solvent further has solubility (miscibility) in the rinsing liquid (water).
 置換用溶媒配管44に供給される置換用溶媒の具体例は、たとえばIPA(isopropyl alcohol)に代表される有機溶媒である。このような有機溶媒として、IPA以外に、たとえば、メタノール、エタノール、アセトン、EG(エチレングリコール)、HFE(ハイドロフルオロエーテル)、n-ブチルアルコール、t-ブチルアルコール、イソブチルアルコールおよび2-ブチルアルコールを例示できる。また、有機溶媒としては、単体成分のみからなる場合だけでなく、他の成分と混合した液体であってもよい。また、置換用溶媒として、有機溶媒以外の溶媒を用いることもできる。 具体 A specific example of the replacement solvent supplied to the replacement solvent pipe 44 is an organic solvent represented by, for example, IPA (isopropyl alcohol). Examples of such organic solvents include, in addition to IPA, methanol, ethanol, acetone, EG (ethylene glycol), HFE (hydrofluoroether), n-butyl alcohol, t-butyl alcohol, isobutyl alcohol and 2-butyl alcohol. Can be illustrated. Further, the organic solvent is not limited to the case where the organic solvent is composed of only a single component, and may be a liquid mixed with another component. In addition, a solvent other than the organic solvent can be used as the replacement solvent.
 図2に示すように、混合昇華剤供給ユニット9は、混合昇華剤ノズル46と、混合昇華剤ノズル46が先端部に取り付けられたノズルアーム47と、ノズルアーム47を移動させることにより、混合昇華剤ノズル46を移動させるノズル移動ユニット48(図4参照)と、を含む。ノズル移動ユニット48は、揺動軸線まわりにノズルアーム47を水平移動させることにより、混合昇華剤ノズル46を水平に移動させる。ノズル移動ユニット48は、モータ等を含む構成である。ノズル移動ユニット48は、混合昇華剤ノズル46から吐出される混合昇華剤が基板Wの表面Waに着液する処理位置と、平面視でスピンチャック5の周囲に設定された退避位置と、の間で、混合昇華剤ノズル46を水平に移動させる。換言すると、処理位置は、混合昇華剤ノズル46から吐出された混合昇華剤が基板Wの表面Wa(のたとえば中央部)に供給される位置である。 As shown in FIG. 2, the mixed sublimation supply unit 9 moves and moves the mixed sublimation nozzle 46, the nozzle arm 47 having the mixed sublimation nozzle 46 attached to the tip, and the nozzle arm 47. A nozzle moving unit 48 (see FIG. 4) for moving the agent nozzle 46. The nozzle moving unit 48 horizontally moves the mixed sublimation agent nozzle 46 by horizontally moving the nozzle arm 47 around the swing axis. The nozzle moving unit 48 is configured to include a motor and the like. The nozzle moving unit 48 moves between the processing position where the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 lands on the surface Wa of the substrate W and the retreat position set around the spin chuck 5 in plan view. Then, the mixed sublimation agent nozzle 46 is moved horizontally. In other words, the processing position is a position where the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 is supplied to (for example, the center of) the surface Wa of the substrate W.
 図2に示すように、混合昇華剤供給ユニット9は、混合昇華剤ノズル46に混合昇華剤を案内する混合昇華剤配管49と、混合昇華剤配管49を開閉する混合昇華剤バルブ50と、をさらに含む。混合昇華剤バルブ50が開かれると、混合昇華剤供給源からの混合昇華剤が、混合昇華剤配管49から混合昇華剤ノズル46に供給される。これにより、混合昇華剤ノズル46から混合昇華剤が吐出される。 As shown in FIG. 2, the mixed sublimation supply unit 9 includes a mixed sublimation pipe 49 that guides the mixed sublimation agent to the mixing sublimation nozzle 46, and a mixed sublimation valve 50 that opens and closes the mixed sublimation pipe 49. In addition. When the mixed sublimation valve 50 is opened, the mixed sublimation from the mixed sublimation supply source is supplied from the mixed sublimation piping 49 to the mixed sublimation nozzle 46. Thereby, the mixed sublimation agent is discharged from the mixed sublimation agent nozzle 46.
 混合昇華剤配管49に供給される混合昇華剤は、昇華性を有する昇華性物質(乾燥補助物質)と混合用溶媒(溶媒)とが混ざり合った混合物質である。昇華性物質は、室温(RT)以上の凝固点TF1(図3参照)を有している。室温(RT)は、外気の温度にも影響されるため必ずしも、一定でないが概ね23℃に設定されている。混合昇華剤において、昇華性物質と混合用溶媒とが互いに溶け合った態様になっている。そのため、混合昇華剤において、昇華性物質と混合用溶媒とが偏りなく均一に混ざり合っている。 The mixed sublimation agent supplied to the mixed sublimation pipe 49 is a mixed substance in which a sublimable substance having a sublimability (drying auxiliary substance) and a solvent for mixing (solvent) are mixed. The sublimable substance has a freezing point T F1 (see FIG. 3) equal to or higher than room temperature (RT). The room temperature (RT) is not necessarily constant but is generally set to 23 ° C. because it is affected by the temperature of the outside air. In the mixed sublimation agent, the sublimable substance and the solvent for mixing are in a state of being mutually dissolved. Therefore, in the mixed sublimation agent, the sublimable substance and the mixing solvent are uniformly mixed without bias.
 混合昇華剤に含まれる物質の中で優先的に昇華する昇華性物質は、無極性物質である。「無極性物質」とは、無極性分子からなる物質をいう。昇華性物質として、樟脳(大気圧下における凝固点:約175℃~180℃、室温大気圧下における蒸気圧:120Pa)、シクロヘキサノール(大気圧下における凝固点:約24℃、室温大気圧下における蒸気圧:0.13kPa)、室温ターシャリーブチルアルコール(大気圧下における凝固点:約25.6℃:室温大気圧下における蒸気圧:5.4kPa)、1,3,5-Trioxane(大気圧下における凝固点:約60℃~62℃、室温大気圧下における蒸気圧:0.75kPa)、ナフタレン(大気圧下における凝固点:約80℃、室温大気圧下における蒸気圧:7.9Pa)、ヨウ素(大気圧下における凝固点:約113℃、室温大気圧下における蒸気圧:0.04kPa)、メタノール、n-ブタノール等を例示できる。 昇 Sublimable substances that sublimate preferentially among substances contained in the mixed sublimation agent are non-polar substances. “Non-polar substance” refers to a substance composed of non-polar molecules. Camphor (freezing point under atmospheric pressure: about 175 ° C. to 180 ° C., vapor pressure under atmospheric pressure at room temperature: 120 Pa) as a sublimable substance, cyclohexanol (freezing point under atmospheric pressure: about 24 ° C., vapor under atmospheric pressure at room temperature) Pressure: 0.13 kPa), room temperature tertiary butyl alcohol (freezing point under atmospheric pressure: about 25.6 ° C .: vapor pressure under room temperature and atmospheric pressure: 5.4 kPa), 1,3,5-Trioxane (under atmospheric pressure) Freezing point: about 60 ° C to 62 ° C, vapor pressure at room temperature and atmospheric pressure: 0.75 kPa), naphthalene (freezing point at atmospheric pressure: about 80 ° C, vapor pressure at room temperature and atmospheric pressure: 7.9 Pa), iodine (large) Solidification point under atmospheric pressure: about 113 ° C., vapor pressure under atmospheric pressure at room temperature: 0.04 kPa), methanol, n-butanol and the like.
 混合昇華剤に含まれる混合用溶媒は、両親媒性を有している。「両親媒性を有する」とは、両親媒性分子を含むことをいう。混合用溶媒は、たとえばIPA(isopropyl alcohol)に代表される有機溶媒である。混合用溶媒として用いられる有機溶媒として、IPA以外に、たとえばエタノール、アセトン等を例示できる。また、混合用溶媒として用いられる有機溶媒としては、単体成分のみからなる場合だけでなく、他の成分と混合した液体であってもよい。また、混合用溶媒として、有機溶媒以外の溶媒を用いることもできる。 混合 The mixing solvent contained in the mixed sublimation agent has amphiphilicity. "Having amphipathic" refers to including amphiphilic molecules. The solvent for mixing is, for example, an organic solvent represented by IPA (isopropyl alcohol). Examples of the organic solvent used as the solvent for mixing include, for example, ethanol and acetone in addition to IPA. In addition, the organic solvent used as the mixing solvent is not limited to the case where the organic solvent includes only a single component, and may be a liquid mixed with another component. In addition, a solvent other than the organic solvent can be used as the mixing solvent.
 この実施形態において、昇華性物質および混合用溶媒の好適な組み合わせの例として、樟脳およびIPA、シクロヘキサノールおよびIPAを、1,3,5-TrioxaneおよびIPAを、それぞれ例示できる。 In this embodiment, examples of suitable combinations of the sublimable substance and the solvent for mixing include camphor and IPA, cyclohexanol and IPA, and 1,3,5-Trioxane and IPA, respectively.
 混合用溶媒がIPAである場合、その蒸気圧は、室温大気圧下で、6.05kPaである。樟脳、シクロヘキサノール、1,3,5-Trioxaneは、IPAに比べて蒸気圧が著しく小さい。換言すると、樟脳、シクロヘキサノール、1,3,5-Trioxane等を昇華性物質として用い、IPAを混合用溶媒として用いる場合には、混合昇華剤に含まれる混合用溶媒は、昇華性物質よりも高い蒸気圧を有している。 (4) When the mixing solvent is IPA, its vapor pressure is 6.05 kPa at room temperature and atmospheric pressure. Camphor, cyclohexanol and 1,3,5-Trioxane have a significantly lower vapor pressure than IPA. In other words, camphor, cyclohexanol, 1,3,5-Trioxane or the like is used as a sublimable substance, and when IPA is used as a solvent for mixing, the mixing solvent contained in the mixed sublimation agent is more than the sublimation substance. Has a high vapor pressure.
 また、昇華性物質および混合用溶媒の組み合わせとして樟脳およびIPAの組み合わせを採用する場合、昇華性物質(樟脳)の凝固点TF1は、大気圧下において、たとえば約175℃~約180℃である。また、混合用溶媒の凝固点TF2は、大気圧下において、約-80℃以下である。 Further, when employing the combination of camphor and IPA as a combination of sublimable material and the mixing solvent, the freezing point T F1 sublimable substance (camphor) is at atmospheric pressure, for example about 175 ° C. ~ about 180 ° C.. Further, the freezing point T F2 of the mixed solvent is at atmospheric pressure is less than or equal to about -80 ° C..
 前述した昇華性物質および混合用溶媒の組み合わせ例では、混合用溶媒が、室温よりも低い凝固点TF2を有するIPAである場合を例に挙げた。しかしながら、混合用溶媒の凝固点TF2が室温よりも高くてもよい。 In the above-described combination example of the sublimable substance and the mixing solvent, the case where the mixing solvent is IPA having a freezing point TF2 lower than room temperature has been described as an example. However, the freezing point T F2 of the mixed solvent may be higher than room temperature.
 図3は、昇華性物質と混合用溶媒とを含む混合昇華剤の状態平衡図である。昇華性物質と混合用溶媒との混合による凝固点降下により、混合昇華剤の凝固点TFMが、昇華性物質の凝固点TF1よりも下がる。混合昇華剤の凝固点TFMが、混合昇華剤における昇華性物質の濃度に依存する。図3には、混合昇華剤の凝固点曲線FPCが記載されている。混合昇華剤における昇華性物質の濃度が、混合昇華剤の凝固点TFMが室温(RT)未満の温度に下がり、室温環境下で混合昇華剤が液体状をなす。 FIG. 3 is a state equilibrium diagram of a mixed sublimant containing a sublimable substance and a mixing solvent. The freezing point T FM of the mixed sublimation agent is lower than the freezing point T F1 of the sublimable substance due to the freezing point drop due to the mixing of the sublimable substance and the mixing solvent. The freezing point TFM of the mixed sublimation agent depends on the concentration of the sublimable substance in the mixed sublimation agent. FIG. 3 shows a freezing point curve FPC of the mixed sublimation agent. The concentration of the sublimable substance in the mixed sublimation agent, freezing point T FM mixtures sublimation agent decreases to a temperature below room temperature (RT), mix sublimation agent forms a liquid at room temperature environment.
 混合昇華剤における昇華性物質の濃度は、混合昇華剤の凝固点TFMが室温(RT)未満の温度になる範囲で適宜設定される。しかしながら、混合昇華剤を用いる本来的な目的は、昇華性物質の昇華(図6のS10:除去工程)にあるので、混合昇華剤における混合用溶媒の濃度は高すぎない、すなわち、混合昇華剤における昇華性物質の濃度が低く過ぎない必要がある。 The concentration of the sublimable substance in the mixed sublimation agent, freezing point T FM mixtures sublimation agent is appropriately set in a range to a temperature below room temperature (RT). However, since the original purpose of using the mixed sublimant is to sublimate the sublimable substance (S10 in FIG. 6: removal step), the concentration of the mixing solvent in the mixed sublimant is not too high, that is, the mixed sublimant is used. It is necessary that the concentration of the sublimable substance is not too low.
 チャンバ4外には、基板処理装置1と一体的にまたは基板処理装置1と分離して、薬液供給装置が設置されている。この薬液供給装置も室温・常圧(大気圧)の環境下に設置されている。この薬液供給装置には、混合昇華剤を貯留するための貯留タンクが設けられている。室温環境下で、混合昇華剤が液体状をなしている。そのため、昇華性物質を液状に維持しておくための加熱装置等が不要である。また、このような加熱装置を設ける場合であっても、混合昇華剤を常時加熱しておく必要はない。そのため、必要な熱量の削減を図ることができ、その結果コストダウンを図ることができる。 薬 Outside the chamber 4, a chemical solution supply device is provided integrally with the substrate processing apparatus 1 or separately from the substrate processing apparatus 1. This chemical supply device is also installed in an environment of room temperature and normal pressure (atmospheric pressure). This chemical solution supply device is provided with a storage tank for storing the mixed sublimation agent. The mixed sublimation agent is in a liquid state at room temperature. Therefore, a heating device or the like for keeping the sublimable substance in a liquid state is unnecessary. Even when such a heating device is provided, it is not necessary to constantly heat the mixed sublimation agent. Therefore, the required heat amount can be reduced, and as a result, the cost can be reduced.
 図2に示すように、供給液供給ユニット10は、供給液ノズル51と、供給液ノズル51が先端部に取り付けられたノズルアーム52と、ノズルアーム52を移動させることにより、供給液ノズル51を移動させるノズル移動ユニット53(図4参照)と、を含む。ノズル移動ユニット53は、揺動軸線まわりにノズルアーム52を水平移動させることにより、供給液ノズル51を水平に移動させる。ノズル移動ユニット53は、モータ等を含む構成である。ノズル移動ユニット53は、供給液ノズル51から吐出される混合昇華剤が基板Wの表面Waに着液する処理位置と、平面視でスピンチャック5の周囲に設定された退避位置と、の間で、供給液ノズル51を水平に移動させる。換言すると、処理位置は、供給液ノズル51から吐出された供給液が基板Wの表面Wa(のたとえば中央部)に供給される位置である。 As shown in FIG. 2, the supply liquid supply unit 10 controls the supply liquid nozzle 51 by moving the supply liquid nozzle 51, the nozzle arm 52 having the supply liquid nozzle 51 attached to the distal end thereof, and the nozzle arm 52. And a nozzle moving unit 53 (see FIG. 4) for moving. The nozzle moving unit 53 horizontally moves the supply liquid nozzle 51 by horizontally moving the nozzle arm 52 around the swing axis. The nozzle moving unit 53 has a configuration including a motor and the like. The nozzle moving unit 53 moves between the processing position where the mixed sublimation agent discharged from the supply liquid nozzle 51 lands on the surface Wa of the substrate W and the retracted position set around the spin chuck 5 in plan view. Then, the supply liquid nozzle 51 is moved horizontally. In other words, the processing position is a position where the supply liquid discharged from the supply liquid nozzle 51 is supplied to (for example, a central portion of) the surface Wa of the substrate W.
 図2に示すように、供給液供給ユニット10は、供給液ノズル51に混合昇華剤を案内する供給液配管54と、供給液配管54を開閉する供給液バルブ55と、をさらに含む。供給液バルブ55が開かれると、供給液供給源からの供給液が、供給液配管54から供給液ノズル51に供給される。これにより、供給液ノズル51から供給液が吐出される。 As shown in FIG. 2, the supply liquid supply unit 10 further includes a supply liquid pipe 54 for guiding the mixed sublimation agent to the supply liquid nozzle 51, and a supply liquid valve 55 for opening and closing the supply liquid pipe 54. When the supply liquid valve 55 is opened, the supply liquid from the supply liquid supply source is supplied from the supply liquid pipe 54 to the supply liquid nozzle 51. Thereby, the supply liquid is discharged from the supply liquid nozzle 51.
 供給液配管54に供給される供給液は、前記の昇華性物質や混合用溶媒とは種類の異なる液体である。供給液配管54に供給される供給液は、極性物質である。「極性物質」とは、極性分子を含む物質のことをいう。また、供給液配管54に供給される供給液が、室温よりも低い液温を有している。この実施形態では、供給液の液温は、室温より5℃~10℃低く設定されている。すなわち、供給液は、冷却液としても機能する。 供給 The supply liquid supplied to the supply liquid pipe 54 is a liquid different from the above-described sublimable substance and the mixing solvent. The supply liquid supplied to the supply liquid pipe 54 is a polar substance. “Polar substance” refers to a substance containing a polar molecule. The supply liquid supplied to the supply liquid pipe 54 has a liquid temperature lower than room temperature. In this embodiment, the liquid temperature of the supply liquid is set to be 5 ° C. to 10 ° C. lower than room temperature. That is, the supply liquid also functions as a cooling liquid.
 供給液配管54に供給される供給液の具体例は、水を含有する水含有液である。水含有液の代表例は、脱イオン水(DIW)等の水である。このような水含有液として、DIWに限らず、炭酸水、電解イオン水、水素水、オゾン水、アンモニア水および塩酸水を例示できる。 具体 A specific example of the supply liquid supplied to the supply liquid pipe 54 is a water-containing liquid containing water. A representative example of a water-containing liquid is water, such as deionized water (DIW). Such a water-containing liquid is not limited to DIW, and examples thereof include carbonated water, electrolytic ionic water, hydrogen water, ozone water, ammonia water, and hydrochloric acid water.
 また、供給液として有機溶媒を用いることもできる。このような有機溶媒として、メタノール、エタノール、アセトン、メタノール、n-ブタノール等を例示できる。 有機 Also, an organic solvent can be used as the supply liquid. Examples of such an organic solvent include methanol, ethanol, acetone, methanol, n-butanol and the like.
 図2に示すように、気体吹き付けユニット11は、気体ノズル56と、気体ノズル56が先端部に取り付けられたノズルアーム57と、ノズルアーム57を移動させることにより、気体ノズル56を移動させるノズル移動ユニット58(図4参照)と、を含む。ノズル移動ユニット58は、揺動軸線まわりにノズルアーム57を水平移動させることにより、気体ノズル56を水平に移動させる。ノズル移動ユニット53は、モータ等を含む構成である。ノズル移動ユニット58は、気体ノズル56から吐出される混合昇華剤が基板Wの表面Waに着液する処理位置と、平面視でスピンチャック5の周囲に設定された退避位置と、の間で、気体ノズル56を水平に移動させる。換言すると、処理位置は、供給液ノズル51から吹き出された気体が基板Wの表面Waに供給される位置である。具体的には、処理位置は、気体ノズル56から吹き出された気体が基板Wの上面中央部に着液する中央位置である。 As shown in FIG. 2, the gas blowing unit 11 includes a gas nozzle 56, a nozzle arm 57 having the gas nozzle 56 attached to a distal end thereof, and a nozzle movement for moving the gas nozzle 56 by moving the nozzle arm 57. A unit 58 (see FIG. 4). The nozzle moving unit 58 horizontally moves the gas nozzle 56 by horizontally moving the nozzle arm 57 around the swing axis. The nozzle moving unit 53 has a configuration including a motor and the like. The nozzle moving unit 58 is provided between a processing position where the mixed sublimation agent discharged from the gas nozzle 56 lands on the surface Wa of the substrate W and a retreat position set around the spin chuck 5 in a plan view. The gas nozzle 56 is moved horizontally. In other words, the processing position is a position where the gas blown from the supply liquid nozzle 51 is supplied to the surface Wa of the substrate W. Specifically, the processing position is a central position where the gas blown out from the gas nozzle 56 lands on the center of the upper surface of the substrate W.
 図2に示すように、気体吹き付けユニット11は、気体ノズル56に気体を案内する気体配管59と、気体配管59を開閉する気体バルブ60と、をさらに含む。気体バルブ60が開かれると、気体供給源からの気体が、気体配管59から気体ノズル56に供給される。これにより、気体ノズル56から気体が吹き出される。 As shown in FIG. 2, the gas blowing unit 11 further includes a gas pipe 59 for guiding the gas to the gas nozzle 56, and a gas valve 60 for opening and closing the gas pipe 59. When the gas valve 60 is opened, gas from the gas supply source is supplied from the gas pipe 59 to the gas nozzle 56. Thereby, gas is blown out from the gas nozzle 56.
 気体配管59に供給される気体は、除湿された気体、とくに不活性ガスである。不活性ガスは、たとえば、窒素ガスやアルゴンガスを含む。気体は、空気等の活性ガスであってもよい。 気 体 The gas supplied to the gas pipe 59 is a dehumidified gas, particularly an inert gas. The inert gas includes, for example, nitrogen gas and argon gas. The gas may be an active gas such as air.
 気体ノズル56は、下端にフランジ部63を有する円筒状のノズル本体64を有している。フランジ部63の側面である外周面には、上側気体吐出口65および下側気体吐出口66が、それぞれ環状に外方に向けて開口している。ノズル本体64の下面には、中心気体吐出口67が配置されている。したがって、中心気体吐出口67から吐出される不活性ガスが形成する放射状気流と、上側気体吐出口65および下側気体吐出口66から吐出される二層の放射状気流と、を合わせて、三層の放射状気流が基板Wの上方に形成されることになる。 The gas nozzle 56 has a cylindrical nozzle body 64 having a flange 63 at the lower end. An upper gas discharge port 65 and a lower gas discharge port 66 are formed in the outer peripheral surface, which is the side surface of the flange portion 63, and open outward in a ring shape. On the lower surface of the nozzle body 64, a central gas discharge port 67 is arranged. Therefore, the radial gas flow formed by the inert gas discharged from the center gas discharge port 67 and the two-layer radial gas flow discharged from the upper gas discharge port 65 and the lower gas discharge port 66 are combined into three layers. Is formed above the substrate W.
 図2に示すように、下面ノズル12は、スピンチャック5に保持された基板Wの下面の中央部に対向する単一の吐出口12aを有している。吐出口12aは、鉛直上方に向けて液を吐出する。吐出された液は、スピンチャック5に保持されている基板Wの下面の中央部に対してほぼ垂直に入射する。下面ノズル12には、下面供給配管71が接続されている。下面供給配管71は、鉛直に配置された中空軸からなるスピン軸19の内部に挿通されている。 As shown in FIG. 2, the lower surface nozzle 12 has a single discharge port 12 a facing the center of the lower surface of the substrate W held by the spin chuck 5. The discharge port 12a discharges the liquid vertically upward. The discharged liquid is incident almost perpendicularly to the center of the lower surface of the substrate W held by the spin chuck 5. A lower surface supply pipe 71 is connected to the lower surface nozzle 12. The lower surface supply pipe 71 is inserted into the inside of a spin shaft 19 composed of a hollow shaft arranged vertically.
 図2に示すように、下面供給配管71には、加熱流体配管72が接続されている。加熱流体配管72には、加熱流体配管72を開閉するための加熱流体バルブ73が介装されている。加熱流体は、温水等の加熱液であってもよいし、加熱気体であってもよい。加熱流体は、混合昇華剤の凝固点TFMよりも高い液温を有している。 As shown in FIG. 2, a heating fluid pipe 72 is connected to the lower surface supply pipe 71. The heating fluid pipe 72 is provided with a heating fluid valve 73 for opening and closing the heating fluid pipe 72. The heating fluid may be a heating liquid such as hot water or a heating gas. Heating fluid has a higher liquid temperature than the freezing point T FM mixtures sublimation agent.
 加熱流体バルブ73が開かれると、加熱流体供給源からの加熱流体が、加熱流体配管72および下面供給配管71を介して下面ノズル12に供給される。下面ノズル12に供給された加熱流体は、吐出口12aからほぼ鉛直上向きに吐出される。下面ノズル12から吐出された加熱液は、スピンチャック5に保持された基板Wの下面中央部に対してほぼ垂直に入射する。この実施形態では、下面ノズル12、下面供給配管71、加熱流体配管72および加熱流体バルブ73によって加熱ユニットが構成されている。 When the heating fluid valve 73 is opened, the heating fluid from the heating fluid supply source is supplied to the lower nozzle 12 via the heating fluid pipe 72 and the lower supply pipe 71. The heating fluid supplied to the lower nozzle 12 is discharged almost vertically upward from the discharge port 12a. The heating liquid discharged from the lower surface nozzle 12 is incident on the substrate W held by the spin chuck 5 substantially perpendicularly to the center of the lower surface. In this embodiment, a heating unit is configured by the lower nozzle 12, the lower supply pipe 71, the heating fluid pipe 72, and the heating fluid valve 73.
 図2に示すように、処理カップ13は、スピンチャック5に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。処理カップ13は、スピンベース20を取り囲んでいる。スピンチャック5が基板Wを回転させている状態で、処理液やリンス液、置換用溶媒、混合昇華剤等の液体が基板Wに供給されると、基板Wに供給された液体が基板Wの周囲に振り切られる。これらの液体が基板Wに供給されるとき、処理カップ13の上端部13aは、スピンベース20よりも上方に配置される。したがって、基板Wの周囲に排出された液体は、処理カップ13によって受け止められる。そして、処理カップ13に受け止められた液体は、図示しない回収装置または廃液装置に送られる。 (2) As shown in FIG. 2, the processing cup 13 is disposed outside (in a direction away from the rotation axis A1) the substrate W held by the spin chuck 5. The processing cup 13 surrounds the spin base 20. When a liquid such as a processing liquid, a rinsing liquid, a replacement solvent, or a mixed sublimation agent is supplied to the substrate W while the spin chuck 5 is rotating the substrate W, the liquid supplied to the substrate W Shake off around. When these liquids are supplied to the substrate W, the upper end 13 a of the processing cup 13 is disposed above the spin base 20. Therefore, the liquid discharged around the substrate W is received by the processing cup 13. Then, the liquid received by the processing cup 13 is sent to a not-shown recovery device or waste liquid device.
 図4は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。 FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus 1.
 制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット、固定メモリデバイス、ハードディスクドライブ等の記憶ユニット、および入出力ユニットを有している。記憶ユニットには、演算ユニットが実行するプログラムが記憶されている。 The control device 3 is configured using, for example, a microcomputer. The control device 3 has an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit. The storage unit stores a program executed by the arithmetic unit.
 また、制御装置3には、制御対象として、スピンモータ18、ノズル移動ユニット33,43,48,53,58等が接続されている。制御装置3は、予め定められたプログラムに従って、スピンモータ18、ノズル移動ユニット33,43,48,53,58等の動作を制御する。 {Circle around (3)} The control device 3 is connected with the spin motor 18, the nozzle moving units 33, 43, 48, 53, 58, etc. as control objects. The control device 3 controls the operations of the spin motor 18, the nozzle moving units 33, 43, 48, 53, 58 and the like according to a predetermined program.
 また、制御装置3は、予め定められたプログラムに従って、気体バルブ225、薬液バルブ35、リンス液バルブ38、置換用溶媒バルブ45、混合昇華剤バルブ50、供給液バルブ55、気体バルブ60、加熱流体バルブ73等を開閉する。 The control device 3 also controls the gas valve 225, the chemical liquid valve 35, the rinsing liquid valve 38, the replacement solvent valve 45, the mixed sublimator valve 50, the supply liquid valve 55, the gas valve 60, and the heating fluid according to a predetermined program. The valve 73 and the like are opened and closed.
 以下では、パターン形成面である、表面Waにパターン100が形成された基板Wを処理する場合について説明する。 Hereinafter, a case will be described in which the substrate W on which the pattern 100 is formed on the front surface Wa, which is the pattern forming surface, is processed.
 図5は、基板処理装置1による処理対象の基板Wの表面Waを拡大して示す断面図である。処理対象の基板Wは、たとえばシリコンウエハであり、そのパターン形成面である表面Waにパターン100が形成されている。パターン100は、たとえば微細パターンである。パターン100は、図5に示すように、凸形状(柱状)を有する構造体101が行列状に配置されていてもよい。この場合、構造体101の線幅W1はたとえば3nm~45nm程度に、パターン100の隙間W2はたとえば10nm~数μm程度に、それぞれ設けられている。パターン100の高さTは、たとえば、0.2μm~1.0μm程度である。また、パターン100は、たとえば、アスペクト比(線幅W1に対する高さTの比)が、たとえば、5~500程度であってもよい(典型的には、5~50程度である)。 FIG. 5 is an enlarged cross-sectional view showing the surface Wa of the substrate W to be processed by the substrate processing apparatus 1. The substrate W to be processed is, for example, a silicon wafer, and a pattern 100 is formed on a surface Wa, which is a pattern forming surface thereof. The pattern 100 is, for example, a fine pattern. In the pattern 100, as shown in FIG. 5, the structures 101 having a convex shape (column shape) may be arranged in a matrix. In this case, the line width W1 of the structure 101 is set to, for example, about 3 nm to 45 nm, and the gap W2 of the pattern 100 is set to, for example, about 10 nm to several μm. The height T of the pattern 100 is, for example, about 0.2 μm to 1.0 μm. Further, pattern 100 may have, for example, an aspect ratio (ratio of height T to line width W1) of, for example, about 5 to 500 (typically about 5 to 50).
 また、パターン100は、微細なトレンチにより形成されたライン状のパターンが、繰り返し並ぶものであってもよい。また、パターン100は、薄膜に、複数の微細穴(ボイド(void)またはポア(pore))を設けることにより形成されていてもよい。 {Circle around (4)} The pattern 100 may be a pattern in which linear patterns formed by fine trenches are repeatedly arranged. The pattern 100 may be formed by providing a plurality of fine holes (voids or pores) in a thin film.
 パターン100は、たとえば絶縁膜を含む。また、パターン100は、導体膜を含んでいてもよい。より具体的には、パターン100は、複数の膜を積層した積層膜により形成されており、さらには、絶縁膜と導体膜とを含んでいてもよい。パターン100は、単層膜で構成されるパターンであってもよい。絶縁膜は、シリコン酸化膜(SiO2膜)やシリコン窒化膜(SiN膜)であってもよい。また、導体膜は、低抵抗化のための不純物を導入したアモルファスシリコン膜であってもよいし、金属膜(たとえばTiN膜)であってもよい。 Pattern 100 includes, for example, an insulating film. Further, the pattern 100 may include a conductive film. More specifically, the pattern 100 is formed of a stacked film in which a plurality of films are stacked, and may further include an insulating film and a conductive film. The pattern 100 may be a pattern composed of a single layer film. The insulating film may be a silicon oxide film (SiO2 film) or a silicon nitride film (SiN film). Further, the conductor film may be an amorphous silicon film into which an impurity for lowering the resistance is introduced, or a metal film (for example, a TiN film).
 また、パターン100は、親水性膜であってもよい。親水性膜として、TEOS膜(シリコン酸化膜の一種)を例示できる。 パ タ ー ン The pattern 100 may be a hydrophilic film. Examples of the hydrophilic film include a TEOS film (a type of silicon oxide film).
 図6は、処理ユニット2による基板処理例を説明するための流れ図である。図7A~7Gは、この基板処理例が実行されているときの基板Wの周辺の状態を示す模式図である。 FIG. 6 is a flowchart for explaining an example of substrate processing by the processing unit 2. 7A to 7G are schematic diagrams showing the state of the periphery of the substrate W when this substrate processing example is being executed.
 処理ユニット2によって基板Wに基板処理例が施されるときには、チャンバ4の内部に、未処理の基板Wが搬入される(図6のステップS1)。 When the substrate processing example is performed on the substrate W by the processing unit 2, the unprocessed substrate W is loaded into the chamber 4 (Step S1 in FIG. 6).
 制御装置3は、ノズル等が全てスピンチャック5の上方から退避している状態で、基板Wを保持している基板搬送ロボットCR(図1参照)のハンドHをチャンバ4の内部に進入させる。これにより、基板Wがその表面Waを上方に向けた状態でスピンチャック5に受け渡され、スピンチャック5に保持される。 (4) The control device 3 causes the hand H of the substrate transfer robot CR (see FIG. 1) holding the substrate W to enter the inside of the chamber 4 with all the nozzles and the like retracted from above the spin chuck 5. As a result, the substrate W is transferred to the spin chuck 5 with the surface Wa facing upward, and is held by the spin chuck 5.
 スピンチャック5に基板Wが保持された後、制御装置3は、スピンモータ18を制御してスピンベース20の回転速度を、所定の液処理速度(約10rpm~約1500rpmの範囲内で、たとえば約500rpm)まで上昇させ、その液処理速度に維持させる。 After the substrate W is held by the spin chuck 5, the control device 3 controls the spin motor 18 to increase the rotation speed of the spin base 20 to a predetermined liquid processing speed (for example, within a range of about 10 rpm to about 1500 rpm, for example, about 500 rpm) to maintain the liquid processing speed.
 基板Wの回転速度が液処理速度に達すると、制御装置3は、薬液工程(図6のステップS2)を実行開始する。具体的には、制御装置3は、ノズル移動ユニット33を制御して、薬液ノズル31を、退避位置から処理位置に移動させる。また、制御装置3は、薬液バルブ35を開く。これにより、薬液配管34を通って薬液ノズル31に薬液が供給され、薬液ノズル31の吐出口から吐出された薬液が基板Wの表面Waに着液する。 (4) When the rotation speed of the substrate W reaches the liquid processing speed, the control device 3 starts executing the chemical liquid process (Step S2 in FIG. 6). Specifically, the control device 3 controls the nozzle moving unit 33 to move the chemical liquid nozzle 31 from the retracted position to the processing position. The control device 3 opens the chemical liquid valve 35. As a result, the chemical is supplied to the chemical nozzle 31 through the chemical pipe 34, and the chemical discharged from the discharge port of the chemical nozzle 31 lands on the surface Wa of the substrate W.
 また、薬液工程(S2)において、制御装置3が、ノズル移動ユニット23を制御して、薬液ノズル31を、基板Wの表面Waの周縁部に対向する周縁位置と、基板Wの上面の中央部に対向する中央位置と、の間で移動するようにしてもよい。この場合、基板Wの上面における薬液の着液位置が、基板Wの表面Wa全域を走査させられる。これにより、基板Wの表面Wa全域を均一に処理できる。 Further, in the chemical solution process (S2), the control device 3 controls the nozzle moving unit 23 to move the chemical solution nozzle 31 to a peripheral position facing the peripheral portion of the front surface Wa of the substrate W and a central portion of the upper surface of the substrate W. May be moved between a central position facing the camera. In this case, the liquid landing position on the upper surface of the substrate W is scanned over the entire surface Wa of the substrate W. Thus, the entire surface Wa of the substrate W can be uniformly processed.
 薬液の吐出開始から予め定める期間が経過すると、制御装置3は、薬液バルブ35を閉じて、薬液ノズル31からの薬液の吐出を停止する。これにより、薬液工程(S2)が終了する。また、制御装置3は、薬液ノズル31を退避位置に戻す。 制 御 When a predetermined period elapses from the start of the discharge of the chemical, the control device 3 closes the chemical valve 35 and stops the discharge of the chemical from the chemical nozzle 31. Thus, the chemical solution step (S2) ends. Further, the control device 3 returns the chemical liquid nozzle 31 to the retracted position.
 次いで、制御装置3は、基板W上の薬液をリンス液に置換して、基板Wの表面Waを洗い流すリンス工程(図6のステップS3)を実行する。具体的には、制御装置3は、リンス液バルブ38を開く。それにより、回転状態の表面Waの中央部に向けて、リンス液ノズル36からリンス液が吐出される。基板Wの表面Waに供給されたリンス液は、基板Wの回転による遠心力を受けて基板Wの周縁部に移動して、基板Wの周縁部から基板Wの側方に排出される。これにより、基板W上に付着している薬液がリンス液によって洗い流される。 Next, the control device 3 executes a rinsing step (step S3 in FIG. 6) in which the chemical solution on the substrate W is replaced with a rinsing liquid and the surface Wa of the substrate W is washed away. Specifically, control device 3 opens rinse liquid valve 38. Thus, the rinsing liquid is discharged from the rinsing liquid nozzle 36 toward the center of the rotating surface Wa. The rinsing liquid supplied to the front surface Wa of the substrate W receives the centrifugal force due to the rotation of the substrate W, moves to the peripheral edge of the substrate W, and is discharged from the peripheral edge of the substrate W to the side of the substrate W. Thereby, the chemical liquid adhering on the substrate W is washed away by the rinse liquid.
 リンス液バルブ38が開かれてから予め定める期間が経過すると、制御装置3はリンス液バルブ38を閉じる。これにより、リンス工程(S3)が終了する。 When a predetermined period has elapsed since the opening of the rinsing liquid valve 38, the control device 3 closes the rinsing liquid valve 38. Thus, the rinsing step (S3) ends.
 次いで、制御装置3は、置換工程(図6のステップS4)を実行する。置換工程(S4)は、基板W上のリンス液を、リンス液(水)および混合昇華剤の双方に親和性を有する置換用溶媒(この例では、IPA等の有機溶媒)に置換する工程である。 Next, the control device 3 executes a replacement step (step S4 in FIG. 6). The substitution step (S4) is a step of replacing the rinsing liquid on the substrate W with a substitution solvent having an affinity for both the rinsing liquid (water) and the mixed sublimation agent (in this example, an organic solvent such as IPA). is there.
 具体的には、制御装置3は、ノズル移動ユニット43を制御して、置換用溶媒ノズル41を、スピンチャック5の側方の退避位置から、基板Wの表面Waの中央部の上方に移動させる。そして、制御装置3は、置換用溶媒バルブ45を開いて、基板Wの上面(表面Wa)の中央部に向けて置換用溶媒ノズル41から、液体の置換用溶媒を吐出する。基板Wの表面Waに供給された置換用溶媒は、基板Wの回転による遠心力を受けて表面Wa全域に広がる。これにより、基板Wの表面Wa全域において、当該表面Waに付着しているリンス液が、置換用溶媒によって置換される。基板Wの表面Waを移動する置換用溶媒は、基板Wの周縁部から基板Wの側方に排出される。 Specifically, the control device 3 controls the nozzle moving unit 43 to move the replacement solvent nozzle 41 from the retracted position on the side of the spin chuck 5 to above the center of the surface Wa of the substrate W. . Then, the control device 3 opens the replacement solvent valve 45 and discharges the liquid replacement solvent from the replacement solvent nozzle 41 toward the center of the upper surface (front surface Wa) of the substrate W. The replacement solvent supplied to the surface Wa of the substrate W receives the centrifugal force due to the rotation of the substrate W and spreads over the entire surface Wa. Thus, the rinsing liquid adhering to the front surface Wa of the entire surface Wa of the substrate W is replaced by the replacement solvent. The replacement solvent that moves on the surface Wa of the substrate W is discharged from the periphery of the substrate W to the side of the substrate W.
 置換工程(S4)は、前記の液処理速度で基板Wを回転させながら行われていてもよい。また、置換工程(S4)は、基板Wを、前記の液処理速度よりも遅い液盛り速度で回転させながら、あるいは、基板Wを制止させながら行うようにしてもよい。 The replacement step (S4) may be performed while rotating the substrate W at the above-described liquid processing speed. Further, the replacement step (S4) may be performed while rotating the substrate W at a liquid filling speed lower than the above-described liquid processing speed or while stopping the substrate W.
 置換用溶媒の吐出開始から予め定める期間が経過すると、制御装置3は、置換用溶媒バルブ45を閉じて、置換用溶媒ノズル41からの置換用溶媒の吐出を停止する。これにより、置換工程(S4)が終了する。また、制御装置3は、置換用溶媒ノズル41を退避位置に戻す。 (4) When a predetermined period has elapsed from the start of the replacement solvent discharge, the control device 3 closes the replacement solvent valve 45 and stops the replacement solvent nozzle 41 from discharging the replacement solvent. Thus, the replacement step (S4) ends. Further, the control device 3 returns the replacement solvent nozzle 41 to the retracted position.
 次いで、制御装置3は、混合昇華剤供給工程(図6のステップS5。混合乾燥補助物質供給工程)を実行する。 Next, the control device 3 executes a mixed sublimation agent supply step (Step S5 in FIG. 6; a mixed drying auxiliary substance supply step).
 具体的には、制御装置3は、ノズル移動ユニット48を制御して、混合昇華剤ノズル46を、スピンチャック5の側方の退避位置から、基板Wの表面Waの中央部の上方に移動させる。そして、制御装置3は、混合昇華剤バルブ50を開いて、図7Aに示すように、基板Wの上面(表面Wa)の中央部に向けて混合昇華剤ノズル46から混合昇華剤を吐出する。前述のように、混合昇華剤ノズル46に供給される混合昇華剤は、その凝固点TFMが、大気圧下において室温未満になるように、混合昇華剤における昇華性物質の濃度が定められている。そのため、混合昇華剤ノズル46から吐出される混合昇華剤は、液体状を維持している。 Specifically, the control device 3 controls the nozzle moving unit 48 to move the mixed sublimation agent nozzle 46 from the retracted position on the side of the spin chuck 5 to above the center of the surface Wa of the substrate W. . Then, the control device 3 opens the mixed sublimation agent valve 50 and discharges the mixed sublimation agent from the mixed sublimation nozzle 46 toward the center of the upper surface (front surface Wa) of the substrate W, as shown in FIG. 7A. As mentioned above, mixing sublimation agent supplied to the mixing sublimation agent nozzle 46, the freezing point T FM is to be less than room temperature under atmospheric pressure, the concentration of the sublimable substance in the mixed sublimation agent is defined . Therefore, the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 maintains a liquid state.
 基板Wの表面Waの中央部に着液した混合昇華剤は、基板Wの回転による遠心力を受けて、基板Wの表面Waの周縁部に向けて流れる。これにより、基板Wの表面Waに、基板Wの表面Wa全域を覆う混合昇華剤の液膜81が形成される。混合昇華剤ノズル46から吐出される混合昇華剤が液体状を維持しているので、液膜81を良好に形成できる。混合昇華剤供給工程(S5)において、基板Wの表面Waに形成される混合昇華剤の液膜81の膜厚W11の高さは、パターン100の高さT(図5参照)に対して十分に高い。 {Circle around (4)} The mixed sublimant that has landed on the center of the surface Wa of the substrate W flows toward the peripheral edge of the surface Wa of the substrate W under the centrifugal force generated by the rotation of the substrate W. Thus, a liquid film 81 of the mixed sublimant is formed on the surface Wa of the substrate W so as to cover the entire surface Wa of the substrate W. Since the mixed sublimation agent discharged from the mixed sublimation agent nozzle 46 maintains a liquid state, the liquid film 81 can be formed favorably. In the mixed sublimation agent supply step (S5), the height of the thickness W11 of the mixed sublimation liquid film 81 formed on the surface Wa of the substrate W is sufficiently larger than the height T of the pattern 100 (see FIG. 5). High.
 混合昇華剤供給工程(S5)は、前記の液処理速度で基板Wを回転させながら行われていてもよい。また、混合昇華剤供給工程(S5)は、基板Wを、前記の液処理速度よりも遅い液盛り速度(基板Wの上面の混合昇華剤の液膜81に作用する遠心力が混合昇華剤と基板Wの上面との間で作用する表面張力よりも小さいか、あるいは前記の遠心力と前記の表面張力とがほぼ拮抗するような速度。たとえば約5rpm)で回転させながら、あるいは、基板Wを制止させながら行うようにしてもよい。 (4) The mixed sublimation agent supply step (S5) may be performed while rotating the substrate W at the liquid processing speed described above. In the mixed sublimation agent supplying step (S5), the substrate W is subjected to a liquid filling speed lower than the liquid processing speed (the centrifugal force acting on the mixed sublimation liquid film 81 on the upper surface of the substrate W is mixed with the mixed sublimation agent). While rotating at a speed lower than the surface tension acting on the upper surface of the substrate W, or at a speed at which the centrifugal force and the surface tension substantially oppose each other (for example, about 5 rpm), or It may be performed while stopping.
 混合昇華剤の吐出開始から予め定める期間が経過すると、制御装置3は、混合昇華剤バルブ50を閉じる。これにより、基板Wの表面Waへの混合昇華剤の供給が停止される。また、制御装置3は、混合昇華剤ノズル46を退避位置に戻す。 {Circle around (3)} When a predetermined period has elapsed since the start of the discharge of the mixed sublimation agent, the control device 3 closes the mixed sublimation valve 50. Thereby, the supply of the mixed sublimation agent to the surface Wa of the substrate W is stopped. Further, the control device 3 returns the mixed sublimation agent nozzle 46 to the retracted position.
 次いで、混合昇華剤の液膜81の膜厚を減少させる膜厚減少工程(図6のステップS6)が実行される。 Next, a film thickness reducing step (step S6 in FIG. 6) of reducing the film thickness of the mixed sublimant liquid film 81 is performed.
 具体的には、膜厚減少工程(S6)は、基板高回転工程(スピンオフ。基板回転工程)を含む。制御装置3は、基板Wの表面Waに混合昇華剤を供給せずに、スピンモータ18を制御してスピンベース20を所定の高回転速度(たとえば約100rpm~約2500rpmのうちの所定速度)で回転させる。これにより、基板Wが、この高回転速度で回転される。これにより、基板Wの表面Waに大きな遠心力が加わり、液膜81に含まれる混合昇華剤が基板Wの表面Waから排除され、液膜81の膜厚が減少する。その結果、図7Bに示すように、基板Wの表面Waに、混合昇華剤の薄膜82が形成される。薄膜82の膜厚W12は、液膜81の膜厚W11よりも薄く、すなわち低い。薄膜82の膜厚W12は、数百ナノメートル~数マイクロメートルのオーダーである。薄膜82の上面は、表面Waに形成されている各パターン100(図5参照)の上端よりも上方に位置する。薄膜82の膜厚W12は、基板Wの回転速度を調整することによって調整される。 Specifically, the film thickness reduction step (S6) includes a substrate high rotation step (spin-off; substrate rotation step). The controller 3 controls the spin motor 18 without supplying the mixed sublimation agent to the surface Wa of the substrate W to rotate the spin base 20 at a predetermined high rotation speed (for example, a predetermined speed of about 100 rpm to about 2500 rpm). Rotate. Thereby, the substrate W is rotated at this high rotation speed. As a result, a large centrifugal force is applied to the surface Wa of the substrate W, the mixed sublimation agent contained in the liquid film 81 is eliminated from the surface Wa of the substrate W, and the film thickness of the liquid film 81 decreases. As a result, as shown in FIG. 7B, a thin film 82 of the mixed sublimation agent is formed on the surface Wa of the substrate W. The thickness W12 of the thin film 82 is thinner, that is, lower than the thickness W11 of the liquid film 81. The thickness W12 of the thin film 82 is on the order of several hundred nanometers to several micrometers. The upper surface of the thin film 82 is located above the upper end of each pattern 100 (see FIG. 5) formed on the surface Wa. The thickness W12 of the thin film 82 is adjusted by adjusting the rotation speed of the substrate W.
 凝固前の液膜(薄膜82)の膜厚が厚ければ厚いほど、供給液接液工程(S8)によって形成される凝固膜83に残留する内部応力(歪み)が大きくなる。供給液接液工程(S8)の開始直前における液膜(薄膜82)の膜厚を薄くすることで、供給液接液工程(S8)によって形成される凝固膜83に残留する内部応力を、できるだけ小さくできる。 (4) The larger the thickness of the liquid film (thin film 82) before solidification, the larger the internal stress (strain) remaining in the solidified film 83 formed in the liquid supply step (S8). By reducing the thickness of the liquid film (thin film 82) immediately before the start of the supply liquid contact step (S8), the internal stress remaining in the solidified film 83 formed in the supply liquid contact step (S8) is reduced as much as possible. Can be smaller.
 また、凝固膜83の膜厚が薄ければ薄いほど、後述する除去工程(S10)後において基板Wの表面Waに残存する残渣が少ない。供給液接液工程(S8)の開始前における凝固膜83の膜厚を薄くすることで、凝固膜83の膜厚を薄く調整できる。これにより、除去工程(S10)後における残渣の発生を抑制できる。 Further, the thinner the film thickness of the solidified film 83 is, the smaller the amount of residue remaining on the surface Wa of the substrate W after the removing step (S10) described later. By reducing the thickness of the coagulated film 83 before the start of the supply liquid contacting step (S8), the thickness of the coagulated film 83 can be adjusted to be small. Thereby, generation of residues after the removal step (S10) can be suppressed.
 また、この実施形態では、混合昇華剤の薄膜82を凝固させて、昇華性物質を含む凝固膜83を基板Wの表面Waに形成する(凝固膜形成工程)。凝固膜形成工程は、混合昇華剤に含まれる混合用溶媒を蒸発させる溶媒蒸発工程と、後述する供給液接液工程(S8)と、を含む。混合昇華剤に含まれる混合用溶媒が、混合昇華剤に含まれる昇華性物質よりも蒸気圧が高い場合には、基板Wの表面Waに存在する混合昇華剤から混合用溶媒が優先的に蒸発させることができ、これにより、後述するメカニズムにより混合昇華剤を凝固させることができる。そして、比較的高速で基板Wを回転させる膜厚減少工程(S6)は、溶媒蒸発工程に含まれる。 Also, in this embodiment, the thin film 82 of the mixed sublimation agent is solidified to form a solidified film 83 containing a sublimable substance on the surface Wa of the substrate W (coagulated film forming step). The coagulation film forming step includes a solvent evaporation step of evaporating the mixing solvent contained in the mixed sublimation agent, and a supply liquid contacting step (S8) described later. If the mixing solvent contained in the mixed sublimation agent has a higher vapor pressure than the sublimable substance contained in the mixed subliming agent, the mixing solvent is preferentially evaporated from the mixed sublimation agent present on the surface Wa of the substrate W. Thus, the mixed sublimation agent can be solidified by a mechanism described below. Then, the film thickness reduction step (S6) of rotating the substrate W at a relatively high speed is included in the solvent evaporation step.
 具体的には、膜厚減少工程(S6)において、基板Wが高回転速度で回転されることによって、液膜81(薄膜82)と、基板Wの表面Wa周辺の雰囲気に含まれる気体と、の単位時間当たりの衝突回数が増大する。これにより、混合昇華剤に含まれる昇華性物質の分子の気化が促進される。 Specifically, in the film thickness decreasing step (S6), the liquid film 81 (thin film 82) and the gas contained in the atmosphere around the surface Wa of the substrate W are generated by rotating the substrate W at a high rotation speed. Increases the number of collisions per unit time. This promotes the vaporization of the molecules of the sublimable substance contained in the mixed sublimation agent.
 また、この実施形態では、膜厚減少工程(S6)に並行して、基板Wの表面Waを加熱する加熱工程(S7)が実行される。加熱工程(S7)も、溶媒蒸発工程に含まれる。加熱工程(S7)において、制御装置3が、加熱流体バルブ73を開く。それにより、図7Bに示すように、回転状態の基板Wの裏面Wbの中央部に、下面ノズル12から加熱流体が供給される。基板Wの裏面Wbに供給された加熱流体は、基板Wの回転による遠心力を受けて基板Wの外周部に向けて広がる。これにより、基板Wの裏面Wbの全域に加熱流体が供給されて、基板Wの表面Wa全域において、混合昇華剤の薄膜82が加熱される。このような混合昇華剤の薄膜82の加熱により、薄膜82に含まれる混合昇華剤のうち蒸気圧の高い混合用溶媒が優先して蒸発する。混合昇華剤からの混合用溶媒の蒸発に伴って、混合昇華剤の薄膜82における昇華性物質の濃度が上昇する。これに伴って、混合昇華剤の凝固点TFMが上昇し、この凝固点TFMが室温に達すると、基板Wの表面Waに存在する混合昇華剤に含まれる昇華性物質の凝固が開始される。これにより、凝固膜83の形成をより一層促進できる。 In this embodiment, a heating step (S7) for heating the surface Wa of the substrate W is performed in parallel with the film thickness reducing step (S6). The heating step (S7) is also included in the solvent evaporation step. In the heating step (S7), the control device 3 opens the heating fluid valve 73. Thereby, as shown in FIG. 7B, the heating fluid is supplied from the lower surface nozzle 12 to the central portion of the back surface Wb of the substrate W in the rotating state. The heating fluid supplied to the back surface Wb of the substrate W receives the centrifugal force generated by the rotation of the substrate W and spreads toward the outer peripheral portion of the substrate W. Thus, the heating fluid is supplied to the entire area of the back surface Wb of the substrate W, and the thin film 82 of the mixed sublimation agent is heated over the entire area of the front surface Wa of the substrate W. By heating the mixed sublimant thin film 82, the mixed solvent having a high vapor pressure among the mixed sublimants contained in the thin film 82 is preferentially evaporated. As the mixing solvent evaporates from the mixed sublimation agent, the concentration of the sublimable substance in the mixed sublimation thin film 82 increases. Accordingly, the solidification point T FM of the mixed sublimation agent increases, and when the solidification point T FM reaches room temperature, solidification of the sublimable substance contained in the mixed sublimation agent present on the surface Wa of the substrate W is started. Thereby, the formation of the solidified film 83 can be further promoted.
 膜厚減少工程(S6)および加熱工程(S7)における、混合昇華剤からの混合用溶媒の蒸発に伴って、図3に示す白抜き矢印のように、混合昇華剤の液膜81(薄膜82)における昇華性物質の濃度が上昇する。これに伴って、混合昇華剤の凝固点TFMが上昇し、この凝固点TFMが室温に達すると、基板Wの表面Waに存在する混合昇華剤の凝固が開始される。 As the mixed solvent evaporates from the mixed sublimation agent in the film thickness reduction step (S6) and the heating step (S7), as shown by the white arrow in FIG. )), The concentration of the sublimable substance increases. Accordingly, the solidification point T FM of the mixed sublimation agent increases, and when the solidification point T FM reaches room temperature, solidification of the mixed sublimation agent present on the surface Wa of the substrate W is started.
 膜厚減少工程(S6)および加熱工程(S7)の開始から所定期間が経過すると、基板Wの裏面Wbへの加熱流体の供給が停止される。 (4) When a predetermined period has elapsed from the start of the film thickness reduction step (S6) and the heating step (S7), the supply of the heating fluid to the back surface Wb of the substrate W is stopped.
 また、制御装置3は、スピンベース20の回転速度を、液処理速度または液処理速度まで減速させ、その回転速度のまま維持させる。 {Circle around (4)} The control device 3 reduces the rotation speed of the spin base 20 to the liquid processing speed or the liquid processing speed, and maintains the rotation speed.
 次いで、供給液接液工程(S8)が実行される。供給液接液工程(S8)において、制御装置3は、ノズル移動ユニット53を制御して、供給液ノズル51を、スピンチャック5の側方の退避位置から、基板Wの表面Waの中央部の上方に移動させる。そして、制御装置3は、供給液バルブ55を開いて、図7Cに示すように、基板Wの上面(表面Wa)の中央部に向けて供給液ノズル51から供給液を吐出する。供給液ノズル51からは供給液が小流量(たとえば約150mL/min)を供給する。そのため、基板Wの表面Waへの供給液に拘わらず、混合昇華剤の薄膜82を膜状に維持できる。そして、混合昇華剤の薄膜82を崩すことなく、混合昇華剤の薄膜82が膜状に保たれながら、基板Wの表面Waに供給液を供給するので、混合昇華剤の薄膜82に含まれる昇華性物質が凝固することによって得られる凝固膜83を、良好な膜状に設けることができる。 Next, the supply liquid contacting step (S8) is performed. In the supply liquid contacting step (S8), the control device 3 controls the nozzle moving unit 53 to move the supply liquid nozzle 51 from the retracted position on the side of the spin chuck 5 to the center of the front surface Wa of the substrate W. Move upward. Then, the control device 3 opens the supply liquid valve 55 and discharges the supply liquid from the supply liquid nozzle 51 toward the center of the upper surface (front surface Wa) of the substrate W, as shown in FIG. 7C. The supply liquid is supplied from the supply liquid nozzle 51 at a small flow rate (for example, about 150 mL / min). Therefore, regardless of the supply liquid to the surface Wa of the substrate W, the thin film 82 of the mixed sublimation agent can be maintained in a film shape. Then, the supply liquid is supplied to the surface Wa of the substrate W without breaking the thin film 82 of the mixed sublimation agent while the thin film 82 of the mixed sublimation agent is kept in a film shape. The coagulated film 83 obtained by coagulation of the conductive substance can be provided in a good film shape.
 基板Wの表面Waの中央部に着液した供給液は、基板Wの回転による遠心力を受けて、基板Wの表面Waの周縁部に向けて流れる。これにより、基板Wの表面Waに、混合昇華剤の薄膜82の上に、薄膜82の上面の全域を覆う供給液の液膜84が形成される。これにより、混合昇華剤の薄膜82の上面の全域において、混合昇華剤と供給液とを接触させることができる。そのため、混合昇華剤と供給液とを広い接触面積で接触させることができる。これにより、混合昇華剤から混合用溶媒をより一層良好に除去できる。ゆえに、昇華性物質をより一層良好に凝固させることができる。 (4) The supply liquid that has landed on the central portion of the surface Wa of the substrate W receives the centrifugal force due to the rotation of the substrate W and flows toward the peripheral portion of the surface Wa of the substrate W. As a result, on the surface Wa of the substrate W, a liquid film 84 of the supply liquid is formed on the thin film 82 of the mixed sublimation agent so as to cover the entire upper surface of the thin film 82. Thus, the mixed sublimant and the supply liquid can be brought into contact with each other over the entire upper surface of the mixed sublimant thin film 82. Therefore, the mixed sublimation agent can be brought into contact with the supply liquid over a wide contact area. Thereby, the solvent for mixing can be more favorably removed from the mixed sublimation agent. Therefore, the sublimable substance can be more solidified.
 また、供給液接液工程(S8)において基板Wの表面Waに供給される供給液の液温が、室温よりも低い。そのため、基板Wの表面Waへの供給液の供給によって、基板Wの表面Waが冷却される。これにより、混合昇華剤の薄膜82に含まれる混合昇華剤を温度低下させることができる。 (4) The temperature of the supply liquid supplied to the surface Wa of the substrate W in the supply liquid contacting step (S8) is lower than room temperature. Therefore, the surface Wa of the substrate W is cooled by the supply of the supply liquid to the surface Wa of the substrate W. Thus, the temperature of the mixed sublimation agent contained in the mixed sublimation agent thin film 82 can be lowered.
 また、極性物質である供給液と、無極性物質である昇華性物質とは互いに(ほとんど)溶け合わない(厳密には、樟脳は水に対しごく微量しか溶けない)。そのため、混合昇華剤に供給液を接触させても、昇華性物質と供給液とが互いに混ざり合うことはない。 供給 Furthermore, the supply liquid as a polar substance and the sublimable substance as a nonpolar substance are (almost) insoluble in each other (strictly speaking, camphor is only slightly soluble in water). Therefore, even if the supply liquid is brought into contact with the mixed sublimation agent, the sublimable substance and the supply liquid do not mix with each other.
 混合昇華剤の薄膜82に供給液が接している状態(混合昇華剤の相と供給液の相とが接した系中)で平衡状態になると、昇華性物質および供給液に対して混合用溶媒が溶け込む比率が固有の値(分配係数により定まる値)になる。 When an equilibrium state is established in a state where the supply liquid is in contact with the mixed sublimant thin film 82 (in a system in which the mixed sublimate phase and the supply liquid phase are in contact), the mixing solvent is used for the sublimable substance and the supply liquid. Is a unique value (a value determined by the distribution coefficient).
 昇華性物質が樟脳であり、かつ供給液が水である場合には、樟脳および水に対する混合用溶媒の分配係数が小さい(すなわち、水に著しく分配され易い)。この場合において、混合昇華剤の薄膜82に供給液が接すると、混合昇華剤に含まれる混合用溶媒が、混合昇華剤から供給液へ移動し、この混合用溶媒が供給液に溶け込む。混合用溶媒の移動に伴って、混合昇華剤の薄膜82における昇華性物質の濃度が上昇する。そして、昇華性物質の濃度の上昇に伴って、混合昇華剤の凝固点TFMが上昇し、この凝固点TFMが室温に達すると、基板Wの表面Waに存在する混合昇華剤の析出が開始される。混合昇華剤の析出により、昇華性物質を含む凝固膜83が形成される。 When the sublimable substance is camphor and the feed solution is water, the partition coefficient of the mixing solvent for camphor and water is small (that is, it is remarkably easily distributed to water). In this case, when the supply liquid comes into contact with the mixed sublimation thin film 82, the mixing solvent contained in the mixed sublimation agent moves from the mixed sublimation agent to the supply liquid, and the mixing solvent dissolves in the supply liquid. As the mixing solvent moves, the concentration of the sublimable substance in the mixed sublimant thin film 82 increases. Then, as the concentration of the sublimable substance increases, the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, precipitation of the mixed sublimation agent present on the surface Wa of the substrate W is started. You. By the precipitation of the mixed sublimation agent, a solidified film 83 containing a sublimable substance is formed.
 また、前述のように、基板Wの表面Waに供給される供給液の液温が室温よりも低い(たとえば、供給液が冷却液である)ので、基板Wの表面Waへの供給液の供給によって、混合昇華剤の薄膜82に含まれる混合昇華剤を温度低下させることができる。そして、混合昇華剤の薄膜82に含まれる混合昇華剤の温度が混合昇華剤の凝固点TFMを下回ると、混合昇華剤が凝固を開始する。これにより、凝固膜83が形成される。 Further, as described above, since the temperature of the supply liquid supplied to the surface Wa of the substrate W is lower than room temperature (for example, the supply liquid is a cooling liquid), the supply of the supply liquid to the surface Wa of the substrate W is performed. Thereby, the temperature of the mixed sublimation agent contained in the mixed sublimation thin film 82 can be lowered. Then, the temperature of the mixed sublimation agent contained in the thin film 82 of the mixing sublimation agent falls below the freezing point T FM mixing sublimation agent, mixing sublimation agent initiates coagulation. Thus, a solidified film 83 is formed.
 つまり、混合昇華剤の凝固が、混合昇華剤の凝固点TFMの上昇を利用した凝固と、混合昇華剤の温度低下に伴う凝固と、の2つのメカニズムで同時に行われるため、混合昇華剤の凝固を短期間のうちに行うことができる。 In other words, coagulation of the mixed sublimation agent, coagulation and using an increase in freezing point T FM mixing sublimation agent, coagulation and with temperature decrease of the mixed sublimation agent, to be done at the same time on two mechanisms, the coagulation of the mixed sublimation agent Can be performed in a short period of time.
 供給液の供給開始から、基板Wの表面Waの全域に供給液が行き渡るのに十分な期間が経過すると、制御装置3は、供給液バルブ55を閉じて、基板Wの表面Waへの供給液の供給を停止する。 When a period sufficient for the supply liquid to spread over the entire surface Wa of the substrate W has elapsed from the start of the supply of the supply liquid, the control device 3 closes the supply liquid valve 55 to supply the supply liquid to the surface Wa of the substrate W. Stop supplying.
 その後、基板Wの表面Wa上の混合昇華剤の薄膜82に含まれる昇華性物質の全てが凝固するのに十分な処理時間が経過すると、供給液接液工程(S8)が終了する。次いで、基板Wの表面Waから供給液を除去する供給液除去工程(S9)が実行される。具体的には、制御装置3は、スピンモータ18を制御して、基板Wの回転速度を、基板Wの表面Waから供給液を振り切ることのできる振り切り回転速度まで加速させる。これにより、混合昇華剤から移動した混合用溶媒を含む供給液が基板Wの表面Wa全域から振り切られる。このとき、除去される供給液には、昇華性物質から移動してきた混合用溶媒も含まれている。これにより、混合用溶媒および供給液を、基板Wの表面Wa全域から良好に除去できる。供給液除去工程(S9)の後、基板Wの表面Waには、図7Eに示すように、凝固膜83のみが形成される。 After that, when a processing time sufficient for all of the sublimable substances contained in the thin film 82 of the mixed sublimation agent on the surface Wa of the substrate W to coagulate has elapsed, the supply liquid contacting step (S8) ends. Next, a supply liquid removing step (S9) for removing the supply liquid from the surface Wa of the substrate W is performed. Specifically, the control device 3 controls the spin motor 18 to accelerate the rotation speed of the substrate W to a swing-off rotation speed at which the supply liquid can be shaken off from the surface Wa of the substrate W. As a result, the supply liquid containing the mixing solvent transferred from the mixed sublimation agent is shaken off from the entire surface Wa of the substrate W. At this time, the supply liquid to be removed also contains the mixing solvent transferred from the sublimable substance. Thereby, the mixing solvent and the supply liquid can be satisfactorily removed from the entire surface Wa of the substrate W. After the supply liquid removing step (S9), only the solidified film 83 is formed on the surface Wa of the substrate W, as shown in FIG. 7E.
 凝固膜83の形成後は、凝固膜83に含まれる昇華剤物質が固体から気体に昇華する。この実施形態では、昇華性物質の昇華によって、凝固膜83に含まれる昇華性物質を液状化させずに除去する除去工程(S10)が実現される。 後 After the formation of the solidified film 83, the sublimator substance contained in the solidified film 83 sublimates from a solid to a gas. In this embodiment, the removal step (S10) of removing the sublimable substance contained in the solidified film 83 without liquefaction by sublimation of the sublimable substance is realized.
 また、凝固膜83の昇華を促進させるために、除去工程(S10)に並行して、基板Wの表面Waに気体を吹き付ける気体吹き付け工程が実行される。 {Circle around (4)} In order to promote sublimation of the solidified film 83, a gas blowing step of blowing gas to the surface Wa of the substrate W is performed in parallel with the removing step (S10).
 具体的には、除去工程(S10)の開始に先立ち、制御装置3は、ノズル移動ユニット58を制御して、気体ノズル56を、スピンチャック5の周囲に設定された退避位置から、図7Fに示すように処理位置(基板Wの表面Waの中央部の上方)に移動させ、かつ当該処理位置において、気体ノズル56を基板Wに接近する近接位置まで下降させる。気体ノズル56が処理位置(前述の近接位置を含む)に配置されている状態では気体ノズル56の中心軸線が回転軸線A1に一致している。 Specifically, prior to the start of the removing step (S10), the control device 3 controls the nozzle moving unit 58 to move the gas nozzle 56 from the retracted position set around the spin chuck 5 to the position shown in FIG. As shown in the figure, the gas nozzle 56 is moved to the processing position (above the central portion of the surface Wa of the substrate W), and the gas nozzle 56 is lowered to the proximity position where the gas nozzle 56 approaches the substrate W at the processing position. In a state where the gas nozzle 56 is disposed at the processing position (including the above-described proximity position), the central axis of the gas nozzle 56 coincides with the rotation axis A1.
 その後、制御装置3は、気体バルブ60を開いて、気体ノズル56の3つの気体吐出口(上側気体吐出口65、下側気体吐出口66および中心気体吐出口67)から気体をそれぞれ吐出開始させる。この三層の環状気流によって、凝固膜83の全域に、除湿された気体が吹き付けられる。このような気体の吹き付けにより、凝固膜83に含まれる昇華性物質の昇華が促進される。 Thereafter, the control device 3 opens the gas valve 60 to start discharging gas from each of the three gas discharge ports (the upper gas discharge port 65, the lower gas discharge port 66, and the center gas discharge port 67) of the gas nozzle 56. . The dehumidified gas is blown to the entire area of the solidified film 83 by the three-layered annular airflow. By blowing such a gas, sublimation of the sublimable substance contained in the solidified film 83 is promoted.
 これにより、除去工程(S10)において、凝固膜83に含まれる昇華性物質の全てを昇華させることができる。昇華性物質を、液体状態を経ずに気化させることにより基板Wの表面Waから除去するので、パターン100の倒壊を効果的に抑制または防止しながら、基板Wの表面Waを乾燥させることができる。 Thereby, in the removal step (S10), all of the sublimable substances contained in the solidified film 83 can be sublimated. Since the sublimable substance is removed from the surface Wa of the substrate W by evaporating without passing through the liquid state, the surface Wa of the substrate W can be dried while effectively suppressing or preventing the pattern 100 from collapsing. .
 次いで、図7Gに示すように、基板Wを乾燥させる最終スピンドライ工程(S11)が行われる。具体的には、制御装置3は、スピンモータ18を制御して薬液工程(S2)から除去工程(S10)までに至る各工程における回転速度よりも大きい乾燥回転速度(たとえば数千rpm)まで基板Wを加速させ、その乾燥回転速度で基板Wを回転させる。これにより、大きな遠心力が基板W上に加わる。基板Wの裏面Wbに付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wから液体が除去され、基板Wの裏面Wbが乾燥する。 Next, as shown in FIG. 7G, a final spin-drying step (S11) of drying the substrate W is performed. Specifically, the control device 3 controls the spin motor 18 to rotate the substrate up to a drying rotation speed (for example, several thousand rpm) higher than the rotation speed in each step from the chemical solution step (S2) to the removal step (S10). W is accelerated, and the substrate W is rotated at the drying rotation speed. Thereby, a large centrifugal force is applied on the substrate W. The liquid adhering to the back surface Wb of the substrate W is shaken off around the substrate W. Thus, the liquid is removed from the substrate W, and the back surface Wb of the substrate W is dried.
 基板Wの加速から予め定める期間が経過すると、制御装置3は、スピンモータ18を制御することにより、スピンチャック5による基板Wの回転を停止させる。その後、チャンバ4内から基板Wが搬出される(図6のステップS12)。具体的には、制御装置3は、基板搬送ロボットCRのハンドHをチャンバ4の内部に進入させる。そして、制御装置3は、基板搬送ロボットCRのハンドHにスピンチャック5上の基板Wを保持させる。その後、制御装置3は、基板搬送ロボットCRのハンドHをチャンバ4内から退避させる。これにより、処理後の基板Wがチャンバ4から搬出される。 (4) When a predetermined period has elapsed from the acceleration of the substrate W, the control device 3 controls the spin motor 18 to stop the rotation of the substrate W by the spin chuck 5. Thereafter, the substrate W is carried out of the chamber 4 (Step S12 in FIG. 6). Specifically, the control device 3 causes the hand H of the substrate transfer robot CR to enter the inside of the chamber 4. Then, the control device 3 causes the hand H of the substrate transport robot CR to hold the substrate W on the spin chuck 5. After that, the control device 3 retreats the hand H of the substrate transfer robot CR from the inside of the chamber 4. Thus, the processed substrate W is carried out of the chamber 4.
 以上のようにこの実施形態によれば、昇華性物質と混合用溶媒とが混ざり合った混合昇華剤が、基板Wの表面Waに供給される。昇華性物質は、室温以上の凝固点TF1を有しているため、室温の温度条件下においてその一部または全体が固体状をなすことがある。昇華性物質と混合用溶媒との混合による凝固点降下により、混合昇華剤の凝固点TFMが、昇華性物質の凝固点TF1よりも低くなっている。すなわち、混合昇華剤の凝固点TFMがたとえ室温以上である場合であっても、混合昇華剤の凝固点TFMは低い。したがって、混合昇華剤を液状に維持しておくための熱エネルギーの低減を図ることができる。これにより、昇華性物質の意図しない凝固を大きなコストアップなく回避しながら、基板Wの表面Waを良好に処理することが可能である。 As described above, according to this embodiment, the mixed sublimation agent in which the sublimable substance and the mixing solvent are mixed is supplied to the surface Wa of the substrate W. Since the sublimable substance has a freezing point T F1 equal to or higher than room temperature, a part or the whole of the sublimable substance may be in a solid state at room temperature. The freezing point T FM of the mixed sublimation agent is lower than the freezing point T F1 of the sublimable substance due to the freezing point drop due to the mixing of the sublimable substance and the mixing solvent. That is, even when the freezing point T FM mixtures sublimation agent is even above room temperature, the freezing point T FM mixtures sublimation agent is low. Therefore, it is possible to reduce heat energy for keeping the mixed sublimation agent in a liquid state. Accordingly, it is possible to satisfactorily treat the surface Wa of the substrate W while avoiding unintended solidification of the sublimable substance without significantly increasing the cost.
 また、無極性物質である昇華性物質と両親媒性を有する混合用溶媒とが混ざり合った混合昇華剤の液膜(液膜81)が基板Wの表面Waに形成される。そして、この混合昇華剤の液膜(薄膜82)に、極性物質である供給液を供給する。極性物質である供給液は、無極性物質である昇華性物質に対し(ほとんど)溶けない。そのため、混合昇華剤に供給液が接触しても、昇華性物質と供給液とが互いに混ざり合うことはない。 {Circle around (4)} A liquid film (liquid film 81) of the mixed sublimation agent in which the nonpolar sublimable material and the amphiphilic mixing solvent are mixed is formed on the surface Wa of the substrate W. Then, a supply liquid as a polar substance is supplied to the liquid film (thin film 82) of the mixed sublimation agent. The feed liquid, which is a polar substance, is (almost) insoluble in the sublimable substance, which is a non-polar substance. Therefore, even when the supply liquid comes into contact with the mixed sublimation agent, the sublimable substance and the supply liquid do not mix with each other.
 混合昇華剤の液膜(薄膜82)に供給液が接した状態(混合昇華剤の相と供給液の相とが接した系中)で平衡状態になると、昇華性物質および供給液に対して混合用溶媒が溶け込む比率が固有の値(分配係数により定まる値)になる。そのため、たとえば、昇華性物質および供給液に対する混合用溶媒の分配係数が小さい場合には、混合昇華剤の液膜に供給液が接すると、混合昇華剤に含まれる混合用溶媒が、混合昇華剤から供給液へ移動する。混合用溶媒の移動に伴って、混合昇華剤の液膜における昇華性物質の濃度が上昇する。そして、昇華性物質の濃度の上昇に伴って、混合昇華剤の凝固点TFMが上昇し、この凝固点TFMが室温に達すると、基板Wの表面Waに存在する混合昇華剤に含まれる昇華性物質の析出が開始される。これにより、凝固膜83が形成される。混合昇華剤の凝固点TFMの上昇を利用して混合昇華剤に含まれる昇華性物質を凝固させるから、混合昇華剤の凝固のために混合昇華剤を冷却させることは必ずしも必要ではない。したがって、基板Wの表面Waに供給された昇華性物質を、大きなコストアップなく良好に凝固することが可能である。 When an equilibrium state is established in a state in which the supply liquid is in contact with the liquid film (thin film 82) of the mixed sublimation agent (in a system in which the phase of the mixed sublimation agent and the supply liquid are in contact), the sublimable substance and the supply liquid are The ratio at which the mixing solvent dissolves becomes a unique value (a value determined by the distribution coefficient). Therefore, for example, when the distribution coefficient of the mixing solvent to the sublimable substance and the supply liquid is small, when the supply liquid comes into contact with the liquid film of the mixed sublimation agent, the mixing solvent contained in the mixed sublimation agent becomes From to the feed. As the mixing solvent moves, the concentration of the sublimable substance in the liquid film of the mixed sublimation agent increases. Then, as the concentration of the sublimable substance increases, the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, the sublimability contained in the mixed sublimation agent present on the surface Wa of the substrate W is increased. The deposition of the substance starts. Thus, a solidified film 83 is formed. Since solidifying the sublimable substance contained in the mixed sublimation agent mixed sublimation agent by utilizing the increase in freezing point T FM of, thereby cooling the mixture sublimation agent for coagulation of the mixed sublimation agent is not always necessary. Therefore, the sublimable substance supplied to the surface Wa of the substrate W can be solidified well without a large increase in cost.
 また、供給液接液工程(S8)において、混合昇華剤の薄膜82を崩すことなく、混合昇華剤の薄膜82が膜状に保たれながら、基板Wの表面Waに供給液を供給するので、混合昇華剤の薄膜82に含まれる昇華性物質が凝固することによって得られる凝固膜83を、良好な膜状に設けることができる。 Further, in the supply liquid contacting step (S8), the supply liquid is supplied to the surface Wa of the substrate W without breaking the mixed sublimant thin film 82 and keeping the mixed sublimate thin film 82 in a film shape. The solidified film 83 obtained by solidifying the sublimable substance contained in the thin film 82 of the mixed sublimation agent can be provided in a good film shape.
 また、供給液接液工程(S8)において、基板Wの表面Waに供給される供給液の液温が室温よりも低い。そのため、基板Wの表面Waへの供給液の供給によって基板Wの表面Waを冷却できる。これにより、混合昇華剤の薄膜82に含まれる混合昇華剤を温度低下させることができる。そして、混合昇華剤の薄膜82に含まれる混合昇華剤の温度が混合昇華剤の凝固点TFMを下回ると、混合昇華剤に含まれる昇華性物質が凝固を開始する。これにより、凝固膜83が形成される。 In the supply liquid contacting step (S8), the liquid temperature of the supply liquid supplied to the surface Wa of the substrate W is lower than room temperature. Therefore, the surface Wa of the substrate W can be cooled by supplying the supply liquid to the surface Wa of the substrate W. Thus, the temperature of the mixed sublimation agent contained in the mixed sublimation agent thin film 82 can be lowered. Then, the temperature of the mixed sublimation agent contained in the thin film 82 of the mixing sublimation agent falls below the freezing point T FM mixing sublimation agent, sublimable substance contained in the mixed sublimation agent initiates coagulation. Thus, a solidified film 83 is formed.
 また、混合用溶媒の蒸気圧が昇華性物質の蒸気圧よりも高いので、基板Wの表面Waに存在する混合昇華剤から混合用溶媒が優先的に蒸発させられる。混合昇華剤からの混合用溶媒の蒸発に伴って、混合昇華剤の薄膜82における昇華性物質の濃度が上昇する。これに伴って、混合昇華剤の凝固点TFMが上昇し、この凝固点TFMが室温に達すると、基板Wの表面Waに存在する混合昇華剤に含まれる昇華性物質の凝固が開始される。これにより、凝固膜83の形成をより一層促進できる。 Further, since the vapor pressure of the mixing solvent is higher than the vapor pressure of the sublimable substance, the mixing solvent is preferentially evaporated from the mixed sublimation agent present on the surface Wa of the substrate W. As the mixing solvent evaporates from the mixed sublimation agent, the concentration of the sublimable substance in the mixed sublimation thin film 82 increases. Accordingly, the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, solidification of the sublimable substance contained in the mixed sublimation agent present on the surface Wa of the substrate W is started. Thereby, the formation of the solidified film 83 can be further promoted.
 また、基板Wの表面Waに対し、供給液接液工程(S8)において(冷却水)を供給し、基板Wの裏面Wbに対し、加熱工程(S7)において加熱流体を供給している。そのため、基板Wの表面Wa側と基板Wの裏面Wb側とで温度域を分けることができる。そのため、基板Wの表面Wa側および裏面Wb側のそれぞれにおいて、熱履歴の影響を考慮せずに各工程の実行時間等を設定できる。 (4) Further, (cooling water) is supplied to the front surface Wa of the substrate W in the supply liquid contacting step (S8), and the heating fluid is supplied to the back surface Wb of the substrate W in the heating step (S7). Therefore, the temperature range can be divided between the front surface Wa of the substrate W and the rear surface Wb of the substrate W. Therefore, on each of the front surface Wa side and the rear surface Wb side of the substrate W, the execution time and the like of each process can be set without considering the influence of the heat history.
 図8Aは、本発明の第2の実施形態に係る処理ユニット202の構成例を説明するための図解的な断面図である。 FIG. 8A is an illustrative sectional view for explaining a configuration example of the processing unit 202 according to the second embodiment of the present invention.
 第2の実施形態において、前述の第1の実施形態共通する部分には、それぞれ、図1~図7の場合と同一の参照符号を付し説明を省略する。 に お い て In the second embodiment, the same reference numerals as those in FIGS. 1 to 7 denote the same parts in the first embodiment, and a description thereof will be omitted.
 第2の実施形態に係る処理ユニット202が、第1の実施形態に係る処理ユニット2(図2参照)と相違する点は、スピンチャック5に保持されている基板Wの上面に対向し、基板Wの上方の空間をその周囲の雰囲気から遮断する遮断部材210を設けた点である。また、気体吹き付けユニット11に代えて気体吹き付けユニット211を設けた点である。この実施形態では、上面ノズル221、気体配管224および気体バルブ225によって気体吹き付けユニット211が構成されている。 The difference between the processing unit 202 according to the second embodiment and the processing unit 2 according to the first embodiment (see FIG. 2) is that the processing unit 202 faces the upper surface of the substrate W held by the spin chuck 5 and The point is that a blocking member 210 for blocking the space above W from the surrounding atmosphere is provided. Another difference is that a gas blowing unit 211 is provided instead of the gas blowing unit 11. In this embodiment, the upper surface nozzle 221, the gas pipe 224 and the gas valve 225 constitute a gas blowing unit 211.
 遮断部材210は、遮断板220と、遮断板220の中央部を上下方向に貫通する上面ノズル221と、を含む。遮断板220には、電動モータ等を含む構成の遮断板回転ユニット(図示しない)が結合されている。この遮断板回転ユニットは、遮断板220を、回転軸線A1と同軸の回転軸線(図示しない)まわりに回転させる。 The blocking member 210 includes the blocking plate 220 and an upper surface nozzle 221 that vertically passes through a central portion of the blocking plate 220. A blocking plate rotating unit (not shown) having a configuration including an electric motor and the like is connected to the blocking plate 220. This blocking plate rotation unit rotates the blocking plate 220 around a rotation axis (not shown) coaxial with the rotation axis A1.
 遮断板220は、その下面に、基板Wの上面全域に対向する円形の基板対向面220aを有している。基板対向面220aの中央部には、遮断板220を上下に貫通する円筒状の貫通穴220bが形成されている。貫通穴220bに、上面ノズル221が挿通している。基板対向面220aの外周縁には、全域に亘って下方に向けて突出する筒状部が形成されていてもよい。 The blocking plate 220 has a circular substrate facing surface 220a on the lower surface facing the entire upper surface of the substrate W. At the center of the substrate facing surface 220a, there is formed a cylindrical through hole 220b vertically penetrating the blocking plate 220. The upper surface nozzle 221 is inserted through the through hole 220b. A cylindrical portion projecting downward over the entire area may be formed on the outer peripheral edge of the substrate facing surface 220a.
 上面ノズル221は、遮断板220に一体昇降移動可能に取り付けられている。上面ノズル221は、その下端部に、スピンチャック5に保持されている基板Wの上面中央部に対向する吐出口221aを形成している。 The upper surface nozzle 221 is attached to the blocking plate 220 so as to be able to move up and down integrally. The upper surface nozzle 221 has, at its lower end, a discharge port 221a facing the center of the upper surface of the substrate W held by the spin chuck 5.
 遮断部材210には、電動モータ、ボールねじ等を含む構成の遮断部材昇降ユニット(図示しない)が結合されている。遮断部材昇降ユニット(図示しない)は、遮断板220および上面ノズル221を鉛直方向に昇降する。 遮断 A blocking member elevating unit (not shown) configured to include an electric motor, a ball screw, and the like is connected to the blocking member 210. The blocking member elevating unit (not shown) vertically moves the blocking plate 220 and the upper surface nozzle 221 vertically.
 遮断部材昇降ユニットは、遮断板220を、基板対向面220aがスピンチャック5に保持されている基板Wの上面に近接する遮断位置(図8Bに示す位置)と、遮断位置よりも大きく上方に退避した退避位置(図2に示す位置)の間で昇降させる。遮断部材昇降ユニットは、遮断位置および退避位置の双方において遮断板220を保持可能である。遮断位置は、基板対向面220aが基板Wの表面Waとの間に、遮断空間230(図8B参照)を形成するような位置である。遮断空間230は、その周囲の空間から完全に隔離されているわけではないが、当該周囲の空間から遮断空間230への気体の流入はない。すなわち、遮断空間230は、実質的にその周囲の空間と遮断されている。 The blocking member elevating unit retracts the blocking plate 220 to a blocking position (the position shown in FIG. 8B) where the substrate facing surface 220 a is close to the upper surface of the substrate W held by the spin chuck 5, and retreats significantly higher than the blocking position. Up and down between the retracted positions (the positions shown in FIG. 2). The blocking member elevating unit can hold the blocking plate 220 at both the blocking position and the retracted position. The blocking position is a position where the substrate facing surface 220a forms a blocking space 230 (see FIG. 8B) between the substrate facing surface 220a and the surface Wa of the substrate W. Although the isolation space 230 is not completely isolated from the surrounding space, no gas flows into the isolation space 230 from the surrounding space. That is, the cutoff space 230 is substantially cut off from the surrounding space.
 上面ノズル221には、気体配管224が接続されている。気体配管224には、気体配管224を開閉する気体バルブ225が介装されている。気体配管224に付与される気体は、除湿された気体、とくに不活性ガスである。不活性ガスは、たとえば、窒素ガスやアルゴンガスを含む。気体は、空気等の活性ガスであってもよい。気体バルブ225が開かれることにより、上面ノズル221に不活性ガスが供給される。これにより、吐出口221aから気体が下向きに吐出され、吐出された気体が基板Wの表面Waに吹き付けられる。この実施形態では、上面ノズル221、気体配管224および気体バルブ225によって、気体吹き付けユニットが構成されている。 気 体 A gas pipe 224 is connected to the upper surface nozzle 221. The gas pipe 224 is provided with a gas valve 225 that opens and closes the gas pipe 224. The gas applied to the gas pipe 224 is a dehumidified gas, particularly an inert gas. The inert gas includes, for example, nitrogen gas and argon gas. The gas may be an active gas such as air. When the gas valve 225 is opened, an inert gas is supplied to the upper surface nozzle 221. As a result, the gas is discharged downward from the discharge port 221a, and the discharged gas is sprayed on the surface Wa of the substrate W. In this embodiment, the upper surface nozzle 221, the gas pipe 224, and the gas valve 225 form a gas blowing unit.
 さらに、リンス液供給ユニット7は、上面ノズル221を、リンス液ノズルとして備えていてもよい。すなわち、リンス液配管37からのリンス液が上面ノズル221に供給されるようになっていてもよい。 Furthermore, the rinsing liquid supply unit 7 may include the upper surface nozzle 221 as a rinsing liquid nozzle. That is, the rinsing liquid from the rinsing liquid pipe 37 may be supplied to the upper surface nozzle 221.
 図8Bは、処理ユニット202において実行される除去工程(S10)を示す模式図である。制御装置3は、除去工程(S10)の開始に先立って遮断部材昇降ユニットを制御し、図8Bに示すように、遮断部材210を下降させ遮断位置に配置する。 FIG. 8B is a schematic view showing the removing step (S10) performed in the processing unit 202. Prior to the start of the removal step (S10), the control device 3 controls the blocking member lifting / lowering unit, and as shown in FIG. 8B, lowers the blocking member 210 and arranges it in the blocking position.
 気体吹き付け工程において、制御装置3が気体バルブ225を開く。それにより、図8Bに示すように、回転状態の基板Wの表面Waの中央部に向けて、上面ノズル221の吐出口221aから除湿された気体が吐出される。上面ノズル221からの気体は、基板Wの表面Waの中央部に吹き付けられる。また、上面ノズル221からの気体は、遮断空間230を基板Wの外周部に向けて移動する。これにより、基板Wの表面Wa全域に気体が吹き付けられる。このような気体の吹き付けにより、凝固膜83に含まれる昇華性物質の昇華が促進される。 制 御 In the gas blowing step, the control device 3 opens the gas valve 225. Thus, as shown in FIG. 8B, the dehumidified gas is discharged from the discharge port 221a of the upper surface nozzle 221 toward the center of the front surface Wa of the substrate W in the rotating state. The gas from the upper surface nozzle 221 is blown to the center of the surface Wa of the substrate W. Further, the gas from the upper surface nozzle 221 moves in the blocking space 230 toward the outer peripheral portion of the substrate W. Thereby, gas is blown over the entire surface Wa of the substrate W. By blowing such a gas, sublimation of the sublimable substance contained in the solidified film 83 is promoted.
 以上、この発明の2つの実施形態について説明したが、この発明は、さらに他の形態で実施することもできる。 Although the two embodiments of the present invention have been described above, the present invention can be embodied in other forms.
 たとえば、供給液接液工程(S8)において、基板Wの表面Waにおける供給液の供給位置が基板Wの表面Wa内を移動させられてもよい。 For example, in the supply liquid contacting step (S8), the supply position of the supply liquid on the surface Wa of the substrate W may be moved within the surface Wa of the substrate W.
 図9A,9Bに示すように、ノズル移動ユニット53(図4参照)は、供給液ノズル51から吐出された供給液が基板Wの上面中央部に着液する中央位置と、供給液ノズル51から吐出された供給液が基板Wの上面周縁部に着液する周縁位置と、の間で、供給液ノズル51を水平に移動させる。中央位置および周縁位置は、いずれも処理位置である。ノズルアーム52には、気体を下方に向けて吐出するための気体ノズル301が取り付けられている。そのため、ノズルアーム52を移動させると、供給液ノズル51および気体ノズル301が、供給液ノズル51および気体ノズル301との位置関係を一定に保ちながら移動する。気体ノズル301は、基板Wの表面Waにおける気体の吹き付け領域が、基板Wの表面Waにおける供給液の供給位置の半径方向の内側に位置するように、ノズルアーム52に取り付けられている。 As shown in FIGS. 9A and 9B, the nozzle moving unit 53 (see FIG. 4) is configured such that the supply liquid discharged from the supply liquid nozzle 51 lands on the center of the upper surface of the substrate W, The supply liquid nozzle 51 is moved horizontally between the peripheral position where the discharged supply liquid lands on the upper peripheral part of the substrate W. The center position and the peripheral position are both processing positions. A gas nozzle 301 for discharging gas downward is attached to the nozzle arm 52. Therefore, when the nozzle arm 52 is moved, the supply liquid nozzle 51 and the gas nozzle 301 move while keeping the positional relationship between the supply liquid nozzle 51 and the gas nozzle 301 constant. The gas nozzle 301 is attached to the nozzle arm 52 such that the gas blowing area on the surface Wa of the substrate W is located radially inside the supply position of the supply liquid on the surface Wa of the substrate W.
 気体ノズル301には、気体ノズル301に気体を案内する気体配管302が接続されている。気体配管302には、気体バルブ303が介装されている。気体バルブ303が開かれると、気体供給源からの気体が、気体配管302から気体ノズル301に供給される。これにより、気体ノズル301から下方に向けて気体が吹き出される。 気 体 A gas pipe 302 for guiding gas to the gas nozzle 301 is connected to the gas nozzle 301. The gas pipe 302 is provided with a gas valve 303. When the gas valve 303 is opened, gas from a gas supply source is supplied from the gas pipe 302 to the gas nozzle 301. Thereby, gas is blown downward from the gas nozzle 301.
 気体配管302に供給される気体は、除湿された気体、とくに不活性ガスである。不活性ガスは、たとえば、窒素ガスやアルゴンガスを含む。気体は、空気等の活性ガスであってもよい。 The gas supplied to the gas pipe 302 is a dehumidified gas, particularly an inert gas. The inert gas includes, for example, nitrogen gas and argon gas. The gas may be an active gas such as air.
 そして、供給液接液工程(S8)において、制御装置3は、ノズル移動ユニット53を制御して、供給液を吐出している供給液ノズル51、および気体が吐出している気体ノズル301を、基板Wの中央部から基板Wの周縁部に向けて水平移動させる。 Then, in the supply liquid contacting step (S8), the control device 3 controls the nozzle moving unit 53 to change the supply liquid nozzle 51 discharging the supply liquid and the gas nozzle 301 discharging the gas. The substrate W is horizontally moved from the center to the periphery of the substrate W.
 基板Wの表面Waにおける供給液の供給位置PSでは、供給後直ちに凝固が行われ、凝固体83Aが形成される。また、基板Wの表面Waにおける気体の吹き付け位置PBでは、供給された供給液が気体によって吹き飛ばされる。これにより、供給液は、基板Wの表面Waにおいて凝固に寄与した後、速やかに表面Waから除去される。 凝固 At the supply position PS of the supply liquid on the surface Wa of the substrate W, solidification is performed immediately after the supply, and a solidified body 83A is formed. Further, at the gas blowing position PB on the surface Wa of the substrate W, the supplied liquid is blown off by the gas. Thus, the supply liquid contributes to the solidification on the surface Wa of the substrate W, and is then quickly removed from the surface Wa.
 各供給位置PSにおいて供給液の凝固体83Aを良好に形成できるように、供給位置PSの移動速度を好適に調整しながら、供給位置PSを基板Wの中央から周縁部を移動させることにより、凝固体83Aの形成位置が、基板Wの中央部から基板Wの周縁部にまで拡大する。これにより、基板Wの表面Wa全域に凝固膜83を形成できる。 By moving the supply position PS from the center of the substrate W to the peripheral edge while suitably adjusting the moving speed of the supply position PS so that the solidified body 83A of the supply liquid can be formed satisfactorily at each supply position PS, The formation position of the body 83A extends from the central portion of the substrate W to the peripheral portion of the substrate W. Thus, the solidified film 83 can be formed on the entire surface Wa of the substrate W.
 供給液ノズル51の中央位置から周縁位置への移動によって基板Wの表面Wa全域に凝固膜83を形成できるので、基板Wの表面Wa全域を覆う凝固膜83の形成を、短時間のうちに行うことができる。 Since the solidified film 83 can be formed over the entire surface Wa of the substrate W by moving the supply liquid nozzle 51 from the center position to the peripheral position, the solidified film 83 covering the entire surface Wa of the substrate W can be formed in a short time. be able to.
 また、基板Wの表面Waに供給された供給液は、気体ノズル301から吹き付けられる気体によって除去されるので、別途、供給液除去工程(S9)を行う必要がない。そのため、処理時間の短縮化を図ることができ、スループットを向上させることができる。 {Circle around (4)} Since the supply liquid supplied to the surface Wa of the substrate W is removed by the gas blown from the gas nozzle 301, there is no need to perform a separate supply liquid removal step (S9). Therefore, the processing time can be reduced, and the throughput can be improved.
 また、供給液接液工程(S8)において、供給液ノズル51から連続流状の供給液を基板Wの表面Waに供給するとして説明したが、図10に示すように、微小な多数の吐出口を下面451aに有する供給液ノズル451からシャワー状に供給液を吐出するようにしてもよい。供給液ノズル451から吐出されたシャワー状の供給液は、基板Wの表面Wa全域に供給される。供給液ノズル451から吐出される供給液の吐出圧は弱い。吐出圧の弱いシャワー状の供給液が基板Wの表面Waに供給されるため、供給液接液工程(S8)において、供給液の供給によって混合昇華剤の薄膜82の膜状が崩れない。したがって、混合昇華剤の薄膜82の膜状を維持しながら、基板Wの表面Waに供給液を供給できる。 In the supply liquid contacting step (S8), the supply liquid nozzle 51 supplies a continuous supply liquid to the surface Wa of the substrate W. However, as shown in FIG. The supply liquid may be discharged in a shower form from the supply liquid nozzle 451 having the lower surface 451a. The shower-like supply liquid discharged from the supply liquid nozzle 451 is supplied to the entire surface Wa of the substrate W. The discharge pressure of the supply liquid discharged from the supply liquid nozzle 451 is weak. Since the shower-like supply liquid having a low discharge pressure is supplied to the surface Wa of the substrate W, in the supply liquid contacting step (S8), the supply of the supply liquid does not disturb the film shape of the mixed sublimation thin film 82. Therefore, the supply liquid can be supplied to the surface Wa of the substrate W while maintaining the film shape of the mixed sublimation thin film 82.
 なお、図10の例では、供給液ノズル451からの供給液の供給範囲が、基板Wの表面Waの全域になっているが、供給液ノズル451からの供給液の供給範囲が、基板Wの表面Waの一部であってもよい。この場合、供給液ノズル451を水平方向に移動させて、供給範囲を、基板Wの表面Waの全域をカバーできるように走査させてもよい。 In the example of FIG. 10, the supply range of the supply liquid from the supply liquid nozzle 451 is the entire surface Wa of the substrate W, but the supply range of the supply liquid from the supply liquid nozzle 451 is It may be a part of the surface Wa. In this case, the supply liquid nozzle 451 may be moved in the horizontal direction to scan the supply range so as to cover the entire surface Wa of the substrate W.
 また、たとえば、供給液接液工程(S8)では、基板Wを冷却するようにしてもよい。このように基板Wを冷却する手法として、基板Wの裏面Wbに冷却流体を供給する手法や、図11に示すようなクーリングプレート501を基板Wの裏面Wbに近接配置する手法等を例示できる。 基板 In addition, for example, in the supply liquid contacting step (S8), the substrate W may be cooled. As a method of cooling the substrate W in this manner, a method of supplying a cooling fluid to the back surface Wb of the substrate W, a method of disposing a cooling plate 501 as shown in FIG.
 冷却ユニットとしてのクーリングプレート501は、下面ノズル12の代わりに設けられている。クーリングプレート501は、スピンベース20の上方で、かつ、挟持部材21に保持される基板Wの下方に配置される。クーリングプレート501は、基板Wの裏面Wbの全域に対向する上面501aを有している。スピンチャック5が回転しても、クーリングプレート501は回転しない。クーリングプレート501の温度は、制御装置3によって変更される。クーリングプレート501の上面501aの温度は、面内で均一である。制御装置3がクーリングプレート501の温度を低下させることにより、基板Wの表面Wa全域が均一に冷却される。また、クーリングプレート501を、冷却流体や加熱流体を冷却させる用途に使用してもよい。 The cooling plate 501 as a cooling unit is provided instead of the lower surface nozzle 12. The cooling plate 501 is arranged above the spin base 20 and below the substrate W held by the holding member 21. The cooling plate 501 has an upper surface 501a facing the entire rear surface Wb of the substrate W. Even if the spin chuck 5 rotates, the cooling plate 501 does not rotate. The temperature of the cooling plate 501 is changed by the control device 3. The temperature of the upper surface 501a of the cooling plate 501 is uniform in the plane. The control device 3 lowers the temperature of the cooling plate 501 so that the entire surface Wa of the substrate W is uniformly cooled. In addition, the cooling plate 501 may be used for cooling a cooling fluid or a heating fluid.
 また、基板Wの表面Waを冷却する冷却ユニットの別の態様として、遮断部材210の内部にクーラーを内蔵する構成を挙げることができる。 Another example of the cooling unit that cools the surface Wa of the substrate W includes a configuration in which a cooler is built in the blocking member 210.
 図12に示すように、内蔵クーラー601は、遮断部材210の遮断板220の内部に配置されている。内蔵クーラー601は、遮断部材210とともに昇降する。基板Wは、内蔵クーラー601の下方に配置される。内蔵クーラー601は、たとえばピエゾ素子である。内蔵クーラー601の温度は、制御装置3によって変更される。基板対向面220aの温度は、面内で均一である。 内 蔵 As shown in FIG. 12, the built-in cooler 601 is disposed inside the blocking plate 220 of the blocking member 210. The built-in cooler 601 moves up and down together with the blocking member 210. The substrate W is disposed below the built-in cooler 601. Built-in cooler 601 is, for example, a piezo element. The temperature of built-in cooler 601 is changed by control device 3. The temperature of the substrate facing surface 220a is uniform within the surface.
 供給液接液工程(S8)において、制御装置3が、内蔵クーラー601の温度を室温よりも低い温度に下降させることにより、基板Wの表面Waを冷却するようにしてもよい。これにより、基板Wの表面Wa上の混合昇華剤を冷却できる。 In the supply liquid contacting step (S8), the controller 3 may cool the surface Wa of the substrate W by lowering the temperature of the built-in cooler 601 to a temperature lower than room temperature. Thereby, the mixed sublimation agent on the surface Wa of the substrate W can be cooled.
 また、供給液接液工程(S8)において、供給液配管54に供給される供給液が、室温よりも高い液温を有していてもよい。この実施形態では、供給液の液温は、50℃~60℃である。混合用溶媒が、昇華性物質の蒸気圧よりも高い蒸気圧を有している場合には、供給液接液工程(S8)において、基板Wの表面Waに存在する混合昇華剤から混合用溶媒が優先的に蒸発させられる。混合昇華剤からの混合用溶媒の蒸発に伴って、混合昇華剤の液膜における昇華性物質の濃度が上昇する。これに伴って、混合昇華剤の凝固点TFMが上昇し、この凝固点TFMが室温に達すると、基板Wの表面Waに存在する混合昇華剤に含まれる昇華性物質の凝固が開始される。これにより、供給液接液工程(S8)において凝固膜83の形成をより一層促進できる。 In the supply liquid contacting step (S8), the supply liquid supplied to the supply liquid pipe 54 may have a liquid temperature higher than room temperature. In this embodiment, the temperature of the supply liquid is 50 ° C. to 60 ° C. When the mixing solvent has a vapor pressure higher than the vapor pressure of the sublimable substance, in the supply liquid contact step (S8), the mixing solvent is removed from the mixed sublimation agent present on the surface Wa of the substrate W. Is preferentially evaporated. As the mixing solvent evaporates from the mixed sublimation agent, the concentration of the sublimable substance in the liquid film of the mixed sublimation agent increases. Accordingly, the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, solidification of the sublimable substance contained in the mixed sublimation agent present on the surface Wa of the substrate W is started. Thereby, the formation of the solidified film 83 can be further promoted in the supply liquid contacting step (S8).
 前述の実施形態では、凝固膜形成工程が、供給液接液工程(S8)および溶媒蒸発工程を含み、溶媒蒸発工程が、膜厚減少工程(S6:基板回転工程)および加熱工程(S7)を含むとして説明した。加熱工程(S7)および膜厚減少工程(S6)は、互いに並行に行うものでなく、それぞれ別々に実行されていてもよい。 In the above-described embodiment, the coagulated film forming step includes the supply liquid contacting step (S8) and the solvent evaporating step, and the solvent evaporating step includes the film thickness decreasing step (S6: substrate rotating step) and the heating step (S7). It was described as including. The heating step (S7) and the film thickness reducing step (S6) are not performed in parallel with each other, but may be performed separately.
 加熱工程(S7)において基板Wの表面Waを加熱する加熱ユニットは、前述の実施形態のような、加熱流体を基板Wの裏面Wbに供給する構成に限られない。図13に示すような、基板Wの裏面Wbの下方に対向配置されるホットプレート701を、加熱ユニットとして用いることもできる。ホットプレート701は、下面ノズル12の代わりに設けられている。ホットプレート701には、内蔵ヒータ702が内蔵されている。内蔵ヒータ702は、たとえば、通電により発熱する電熱線である。ホットプレート701は、スピンベース20の上方で、かつ、挟持部材21に保持される基板Wの下方に配置される。ホットプレート701は、基板Wの裏面Wbの全域に対向する上面701aを有している。スピンチャック5が回転しても、ホットプレート701は回転しない。ホットプレート701の温度は、制御装置3によって変更される。ホットプレート701の上面701aの温度は、面内で均一である。制御装置3がホットプレート701の温度を上昇させることにより、基板Wの表面Wa全域が均一に加熱される。 The heating unit that heats the front surface Wa of the substrate W in the heating step (S7) is not limited to the configuration that supplies the heating fluid to the rear surface Wb of the substrate W as in the above-described embodiment. As shown in FIG. 13, a hot plate 701 disposed below and opposed to the back surface Wb of the substrate W can be used as a heating unit. The hot plate 701 is provided instead of the lower surface nozzle 12. The hot plate 701 has a built-in heater 702 built therein. The built-in heater 702 is, for example, a heating wire that generates heat when energized. The hot plate 701 is arranged above the spin base 20 and below the substrate W held by the holding member 21. The hot plate 701 has an upper surface 701a that faces the entire rear surface Wb of the substrate W. Even if the spin chuck 5 rotates, the hot plate 701 does not rotate. The temperature of the hot plate 701 is changed by the control device 3. The temperature of the upper surface 701a of the hot plate 701 is uniform in the plane. When the controller 3 raises the temperature of the hot plate 701, the entire surface Wa of the substrate W is uniformly heated.
 この場合、加熱工程(S7)において、基板Wの裏面Wbに加熱流体を供給するのではなく、制御装置3が、ホットプレート701の温度を室温よりも高い温度に上昇させることにより、基板Wの表面Waを加熱するようにしてもよい。また、室温の流体をホットプレート701によって室温よりも高い温度に上昇させてから基板Wに供給してもよい。さらに、加熱流体を、ホットプレート701によってさらに高い温度に上昇させてから基板Wに供給してもよい。これにより、基板Wの表面Wa上の混合昇華剤に含まれる混合用溶媒を良好に蒸発させることができる。 In this case, in the heating step (S7), instead of supplying a heating fluid to the back surface Wb of the substrate W, the control device 3 raises the temperature of the hot plate 701 to a temperature higher than room temperature, so that the substrate W The surface Wa may be heated. Alternatively, the fluid at room temperature may be heated to a temperature higher than room temperature by the hot plate 701 and then supplied to the substrate W. Further, the heating fluid may be supplied to the substrate W after being raised to a higher temperature by the hot plate 701. This makes it possible to favorably evaporate the mixing solvent contained in the mixed sublimation agent on the surface Wa of the substrate W.
 また、基板Wの表面Waを加熱する加熱ユニットの別の態様として、図14に示すように、遮断部材210の内部にヒータを内蔵する構成を挙げることができる。 As another example of the heating unit for heating the surface Wa of the substrate W, a configuration in which a heater is built in the blocking member 210 as shown in FIG.
 図14に示すように、内蔵ヒータ801は、遮断部材210の遮断板220の内部に配置されている。内蔵ヒータ801は、遮断部材210とともに昇降する。基板Wは、内蔵ヒータ801の下方に配置される。内蔵ヒータ801は、たとえば、通電により発熱する電熱線である。内蔵ヒータ801の温度は、制御装置3によって変更される。基板対向面220aの温度は、面内で均一である。 内 蔵 As shown in FIG. 14, the built-in heater 801 is arranged inside the blocking plate 220 of the blocking member 210. The built-in heater 801 moves up and down together with the blocking member 210. The substrate W is disposed below the built-in heater 801. The built-in heater 801 is, for example, a heating wire that generates heat when energized. The temperature of the built-in heater 801 is changed by the control device 3. The temperature of the substrate facing surface 220a is uniform within the surface.
 加熱工程(S7)において、制御装置3が、図14に示すように、遮断部材210を遮断位置に配置しながら内蔵ヒータ801の温度を室温よりも高い温度に上昇させることにより、基板Wの表面Waを加熱するようにしてもよい。これにより、基板Wの表面Wa上の混合昇華剤に含まれる混合用溶剤を良好に蒸発させることができる。 In the heating step (S7), the control device 3 raises the temperature of the built-in heater 801 to a temperature higher than room temperature while arranging the blocking member 210 at the blocking position as shown in FIG. Wa may be heated. Thereby, the mixing solvent contained in the mixed sublimation agent on the surface Wa of the substrate W can be favorably evaporated.
 また、溶媒蒸発工程は、膜厚減少工程(S6)および加熱工程(S7)に、気体吹き付け工程および減圧工程を加えた4つの工程のうち少なくとも一つの工程を含んでいればよい。気体吹き付け工程は、除去工程(S10)に並行して実行される前述の気体吹き付け工程と同等の工程である。 {Circle around (4)} The solvent evaporation step may include at least one of four steps in which a gas blowing step and a depressurization step are added to the film thickness reducing step (S6) and the heating step (S7). The gas blowing step is a step equivalent to the above-described gas blowing step executed in parallel with the removing step (S10).
 減圧工程は、次のように行われる。排気装置17(図2参照)はその排気力(吸引力)を調整可能に設けられている。排気装置17には、排気力調整ユニット(減圧ユニット)901(図2に二点鎖線にて図示)が設けられている。排気力調整ユニット901は、たとえばレギュレータや開度調整バルブである。排気力調整ユニット901によって排気装置17の排気力を調整することにより、チャンバ4の内部の圧力が変更される。つまり、チャンバ4の内部の圧力が、制御装置3によって変更される。 The pressure reduction step is performed as follows. The exhaust device 17 (see FIG. 2) is provided so that its exhaust force (suction force) can be adjusted. The exhaust device 17 is provided with an exhaust power adjustment unit (decompression unit) 901 (shown by a two-dot chain line in FIG. 2). The exhaust power adjustment unit 901 is, for example, a regulator or an opening adjustment valve. By adjusting the exhaust force of the exhaust device 17 by the exhaust force adjusting unit 901, the pressure inside the chamber 4 is changed. That is, the pressure inside the chamber 4 is changed by the control device 3.
 凝固膜形成工程において、制御装置3が、チャンバ4の内部を減圧することにより、基板Wの表面Wa上の混合昇華剤に含まれる第2の昇華性物質を良好に蒸発させることができる。また、チャンバ4内に排気力調整ユニット(減圧ユニット)901と連通する配管が設けられていればよく、必ずしも排気装置17に設ける必要はない。 In the coagulation film forming step, the control device 3 can satisfactorily evaporate the second sublimable substance contained in the mixed sublimation agent on the surface Wa of the substrate W by reducing the pressure inside the chamber 4. Further, it is sufficient that a pipe communicating with the exhaust power adjusting unit (decompression unit) 901 is provided in the chamber 4, and it is not always necessary to provide the exhaust device 17 with a pipe.
 また、溶媒蒸発工程は、膜厚減少工程(S6)、加熱工程(S7)、気体吹き付け工程および減圧工程のうちの少なくとも1つに併せて、或いはこれらの工程に代えて、自然乾燥や、基板Wの表面Wa上の混合昇華剤への超音波振動の付与により、基板Wの表面Wa上の混合昇華剤に含まれる混合用溶媒を蒸発させるようにしてもよい。 In addition, the solvent evaporation step is performed in combination with at least one of the film thickness reduction step (S6), the heating step (S7), the gas blowing step, and the pressure reduction step, or in place of these steps, or by natural drying or substrate drying. By applying ultrasonic vibration to the mixed sublimation agent on the surface Wa of W, the mixing solvent contained in the mixed sublimation agent on the surface Wa of the substrate W may be evaporated.
 また、凝固膜形成工程は、供給液接液工程(S8)を含んでいれば足り、溶媒蒸発工程を必ずしも含まなくてもよい。 {Circle around (4)} The coagulation film forming step only needs to include the supply liquid contact step (S8), and does not necessarily need to include the solvent evaporation step.
 とくに、混合用溶媒が、昇華性物質の蒸気圧と同じか、昇華性物質の蒸気圧よりも低い場合には、混合昇華剤に含まれる混合用溶媒は優先的に蒸発しないので、溶媒蒸発工程を行う意義がない。 In particular, when the mixing solvent has the same vapor pressure as the sublimable substance or is lower than the vapor pressure of the sublimable substance, the mixing solvent contained in the mixed sublimation agent does not evaporate preferentially. There is no point in doing.
 また、供給液除去工程(S9)が、回転軸線A1回りに基板Wを回転させて、基板Wの表面Waに存在している供給液を振り切る振り切り工程として説明した。この振り切り工程に代えて/併せて、基板Wの表面Waに気体を吹き付ける気体吹き付け工程を供給液除去工程(S9)として実行するようにしてもよい。気体吹き付け工程は、除去工程(S10)に並行して実行される前述の気体吹き付け工程と同等の工程である。 供給 Further, the supply liquid removing step (S9) has been described as the shaking off step of rotating the substrate W about the rotation axis A1 to shake off the supply liquid existing on the surface Wa of the substrate W. Instead of / in conjunction with this shaking-off step, a gas blowing step of blowing gas onto the surface Wa of the substrate W may be performed as the supply liquid removing step (S9). The gas blowing step is a step equivalent to the above-described gas blowing step executed in parallel with the removing step (S10).
 また、除去工程(S10)に並行して、混合昇華剤の昇華を促進させるために、気体吹き付け工程が実行されるとして説明した。昇華を促進させるための工程は、気体吹き付け工程に、基板高回転工程および加熱工程を加えた3つの工程のうち少なくとも一つの工程を含んでいればよい。加熱工程は、前述した加熱工程(S7)やその変形例と、同等の工程である。基板高回転工程は、膜厚減少工程(S6)において実行される基板高回転工程(スピンオフ)と同等の工程である。 {Also, it has been described that the gas blowing step is performed in parallel with the removing step (S10) to promote the sublimation of the mixed subliming agent. The step for promoting sublimation may include at least one of three steps in which the substrate blowing step and the heating step are added to the gas blowing step. The heating step is the same step as the above-described heating step (S7) and its modification. The substrate high rotation step is equivalent to the substrate high rotation step (spin-off) performed in the film thickness reduction step (S6).
 また、除去工程(S10)において基板高回転工程を行う場合には、除去工程(S10)の後の基板Wの裏面Wbが既に乾燥しているため、除去工程(S10)の後に振り切り乾燥は不要である。そのため、最終スピンドライ工程(S11)を省略してもよい。 In the case where the substrate high rotation step is performed in the removing step (S10), since the back surface Wb of the substrate W after the removing step (S10) has already been dried, it is not necessary to shake off and dry after the removing step (S10). It is. Therefore, the final spin dry step (S11) may be omitted.
 また、供給液として水含有液を用いる場合には、供給液供給ユニット10をリンス液供給ユニット7と共用のユニットとして設けてもよい。また、供給液として有機溶媒を用いる場合には、供給液供給ユニット10を置換用溶媒供給ユニット8と共用のユニットとして設けてもよい。 In the case where a water-containing liquid is used as the supply liquid, the supply liquid supply unit 10 may be provided as a unit shared with the rinse liquid supply unit 7. When an organic solvent is used as the supply liquid, the supply liquid supply unit 10 may be provided as a unit shared with the replacement solvent supply unit 8.
 また、前述の各基板処理例において、リンス工程(S3)と混合昇華剤供給工程(S5)との間に置換工程(S4)を実行している。しかしながら、混合昇華剤がリンス液(すなわち、水)に対して混和性を有している場合には、置換工程(S4)を省略してもよい。この場合には、処理ユニット2の置換用溶媒供給ユニット8の構成を廃止してもよい。 In addition, in each of the aforementioned substrate processing examples, the replacement step (S4) is performed between the rinsing step (S3) and the mixed sublimation agent supply step (S5). However, when the mixed sublimation agent has miscibility with the rinsing liquid (that is, water), the substitution step (S4) may be omitted. In this case, the configuration of the replacement solvent supply unit 8 of the processing unit 2 may be omitted.
 また、混合昇華剤供給ユニット9から供給される混合昇華剤の凝固点TFMが室温未満ではなく室温以上であってもよい。この場合には、混合昇華剤供給ユニット9の内部で、混合昇華剤を液体状に維持するための装置(温調装置)等が必要になる。しかしながら、混合昇華剤の凝固点TFMが凝固点降下によって昇華性物質の凝固点TF1よりも低く下がっているので、混合昇華剤を液体状に維持しておくための熱量の低減を図ることができる。 Further, the freezing point T FM mixtures sublimation agent supplied from the mixing sublimation agent supply unit 9 may be above room temperature and not less than room temperature. In this case, a device (temperature control device) for maintaining the mixed sublimation agent in a liquid state inside the mixed sublimation agent supply unit 9 is required. However, since the freezing point T FM of the mixed sublimation agent is lower than the freezing point T F1 of the sublimable substance due to freezing point depression, the amount of heat for maintaining the mixed sublimation agent in a liquid state can be reduced.
 また、図15に示すように、凝固膜83に含まれる昇華性物質を、液体状態を経ずに気体に変化させる除去工程(S10)が、昇華工程ではなく、基板Wにプラズマを照射するプラズマ照射工程であってもよい。すなわち、除去工程では、酸素ラジカル等による分解や、化学反応により、凝固膜83に含まれる昇華性物質を、液体を経ずに気体に変化させてもよい。さらに、プラズマ照射工程などの除去工程が、別の処理ユニットで行われてもよい。 Further, as shown in FIG. 15, the removing step (S10) of changing the sublimable substance contained in the solidified film 83 into a gas without passing through a liquid state is not a sublimation step, but a plasma that irradiates the substrate W with plasma. It may be an irradiation step. That is, in the removal step, the sublimable substance contained in the solidified film 83 may be changed to a gas without passing through a liquid by decomposition by an oxygen radical or the like or by a chemical reaction. Further, a removal step such as a plasma irradiation step may be performed in another processing unit.
 図15は、ウェット処理ユニット2Wから、凝固膜83に含まれる昇華性物質を、液体状態を経ずに気体に変化させるドライ処理ユニット2Dへの基板Wの搬送について説明するための模式図である。図15において、前述の図1~図14に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 FIG. 15 is a schematic diagram for explaining the transfer of the substrate W from the wet processing unit 2W to the dry processing unit 2D that changes the sublimable substance contained in the solidified film 83 into a gas without passing through a liquid state. . In FIG. 15, the same components as those shown in FIGS. 1 to 14 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
 処理ユニット2は、基板Wに処理液を供給するウェット処理ユニット2Wに加えて、基板Wに処理液を供給せずに基板Wを処理するドライ処理ユニット2Dを含む。図15は、ドライ処理ユニット2Dが、チャンバ(第2のチャンバ)4D内に処理ガスを案内する処理ガス配管1001と、チャンバ4D内の処理ガスをプラズマに変化させるプラズマ発生装置1002と、を含む例を示している。プラズマ発生装置1002は、基板Wの上方に配置される上電極1003と、基板Wの下方に配置される下電極1004と、を含む。 The processing unit 2 includes a dry processing unit 2D for processing the substrate W without supplying the processing liquid to the substrate W, in addition to the wet processing unit 2W for supplying the processing liquid to the substrate W. FIG. 15 shows that the dry processing unit 2D includes a processing gas pipe 1001 that guides a processing gas into a chamber (second chamber) 4D, and a plasma generator 1002 that changes the processing gas in the chamber 4D into plasma. An example is shown. The plasma generator 1002 includes an upper electrode 1003 arranged above the substrate W, and a lower electrode 1004 arranged below the substrate W.
 図15に示す基板Wの搬入(S1)から供給液除去工程(S9)までの工程は、ウェット処理ユニット2Wのチャンバ4内で行われる。その後、図15に示すように、基板Wは、基板搬送ロボットCRによって、ウェット処理ユニット2Wのチャンバ4から搬出され、ドライ処理ユニット2Dのチャンバ4Dに搬入される。基板Wの表面Waに残った凝固膜83に含まれる昇華性物質は、チャンバ4D内のプラズマに起因する化学反応および物理反応により液体を経ずに気体に変化する。これにより、基板Wから凝固膜83が除去される。図15の例では、凝固膜83の形成と凝固膜83の除去とをそれぞれチャンバ4およびチャンバ4Dで行うので、チャンバ4およびチャンバ4D内の構造を簡素化でき、チャンバ4およびチャンバ4Dを小型化できる。 工程 The steps from the loading of the substrate W (S1) to the supply liquid removing step (S9) shown in FIG. 15 are performed in the chamber 4 of the wet processing unit 2W. Thereafter, as shown in FIG. 15, the substrate W is carried out of the chamber 4 of the wet processing unit 2W by the substrate transfer robot CR, and is carried into the chamber 4D of the dry processing unit 2D. The sublimable substance contained in the solidified film 83 remaining on the surface Wa of the substrate W changes into a gas without passing through a liquid by a chemical reaction and a physical reaction caused by the plasma in the chamber 4D. Thus, the solidified film 83 is removed from the substrate W. In the example of FIG. 15, since the formation of the coagulation film 83 and the removal of the coagulation film 83 are performed in the chambers 4 and 4D, respectively, the structures in the chambers 4 and 4D can be simplified, and the chambers 4 and 4D can be downsized. it can.
 本発明は、バッチ式の基板処理装置に適用することもできる。 The present invention can also be applied to a batch type substrate processing apparatus.
 図16は、本発明の第3の実施形態に係る基板処理装置1101の構成を説明するための模式図である。図17は、基板処理装置1101における引き上げの様子を示す模式図である。 FIG. 16 is a schematic diagram for explaining a configuration of a substrate processing apparatus 1101 according to the third embodiment of the present invention. FIG. 17 is a schematic diagram showing a state of lifting in the substrate processing apparatus 1101.
 基板処理装置1101は、複数枚の基板Wを一括して処理するバッチ式の基板処理装置である。基板処理装置1101は、薬液を貯留する薬液貯留槽1102と、リンス液(たとえば水)を貯留するリンス液貯留槽1103と、混合昇華剤を貯留する混合昇華剤貯留槽(第1の槽)1104と、供給液(たとえば水含有液)を貯留する供給液貯留槽1105(第2の槽)と、を含む。 The substrate processing apparatus 1101 is a batch-type substrate processing apparatus that processes a plurality of substrates W at a time. The substrate processing apparatus 1101 includes a chemical liquid storage tank 1102 for storing a chemical liquid, a rinse liquid storage tank 1103 for storing a rinse liquid (for example, water), and a mixed sublimate storage tank (first tank) 1104 for storing a mixed sublimate. And a supply liquid storage tank 1105 (second tank) for storing a supply liquid (for example, a water-containing liquid).
 基板処理装置1101は、さらに、供給液貯留槽1105に貯留されている供給液に基板Wを浸漬させるリフタ1106と、リフタ1106を昇降させるためのリフタ昇降ユニット1107と、を含む。リフタ1106は、複数枚の基板Wの各々を、鉛直な姿勢で支持する。リフタ昇降ユニット1107は、リフタ1106に保持されている基板Wが供給液貯留槽1105内に位置する処理位置(図16に実線で示す位置)と、リフタ1106に保持されている基板Wが供給液貯留槽1105内から上方に退避する退避位置(図16に二点鎖線で示す位置)と、の間でリフタ1106を昇降させる。 The substrate processing apparatus 1101 further includes a lifter 1106 for immersing the substrate W in the supply liquid stored in the supply liquid storage tank 1105, and a lifter elevating unit 1107 for raising and lowering the lifter 1106. The lifter 1106 supports each of the plurality of substrates W in a vertical posture. The lifter elevating unit 1107 includes a processing position (a position indicated by a solid line in FIG. 16) in which the substrate W held by the lifter 1106 is located in the supply liquid storage tank 1105, and a supply position of the substrate W held by the lifter 1106. The lifter 1106 is moved up and down between a retreat position (a position shown by a two-dot chain line in FIG. 16) to retreat upward from the storage tank 1105.
 基板処理装置1101における一連の処理では、基板処理装置1101の処理ユニットに搬入された複数枚の基板Wは、薬液貯留槽1102に貯留されている薬液に浸漬される。これにより、薬液処理(洗浄処理やエッチング処理)が各基板Wに施される(薬液工程)。薬液への浸漬開始から予め定める期間が経過すると、複数枚の基板Wは薬液貯留槽1102から引き上げられ、リンス液貯留槽1103へと移される。次いで、複数枚の基板Wは、リンス液貯留槽1103に貯留されているリンス液に浸漬される。これにより、リンス処理が基板Wに施される(リンス工程)。リンス液への浸漬開始から予め定める期間が経過すると、複数枚の基板Wは、リンス液貯留槽1103から引き上げられ、混合昇華剤貯留槽1104へと移される。次いで、複数枚の基板Wは、混合昇華剤貯留槽1104に貯留されている混合昇華剤に浸漬される。これにより、混合昇華剤処理が基板Wに施される(混合昇華剤供給工程)。混合昇華剤への浸漬開始から予め定める期間が経過すると、複数枚の基板Wは、混合昇華剤貯留槽1104から引き上げられ、供給液貯留槽1105へと移される。 In a series of processes in the substrate processing apparatus 1101, a plurality of substrates W carried into the processing unit of the substrate processing apparatus 1101 are immersed in the chemical stored in the chemical storage tank 1102. As a result, chemical processing (cleaning processing or etching processing) is performed on each substrate W (chemical processing). When a predetermined period elapses from the start of immersion in the chemical, a plurality of substrates W are lifted from the chemical storage tank 1102 and moved to the rinse liquid storage tank 1103. Next, the plurality of substrates W are immersed in the rinsing liquid stored in the rinsing liquid storage tank 1103. Thereby, a rinsing process is performed on the substrate W (rinsing step). When a predetermined period elapses from the start of immersion in the rinsing liquid, the plurality of substrates W are lifted from the rinsing liquid storage tank 1103 and moved to the mixed sublimation agent storage tank 1104. Next, the plurality of substrates W are immersed in the mixed sublimation agent stored in the mixed sublimation agent storage tank 1104. Thereby, the mixed sublimation agent processing is performed on the substrate W (mixed sublimation agent supply step). When a predetermined period elapses from the start of immersion in the mixed sublimation agent, the plurality of substrates W are lifted from the mixed sublimation agent storage tank 1104 and moved to the supply liquid storage tank 1105.
 供給液貯留槽1105へと移された各基板Wの表面Waには、その全域において混合昇華剤の液膜が形成されている。そして、リフタ昇降ユニット1107が制御されて、リフタ1106が退避位置から処理位置に移動させられることにより、リフタ1106に保持されている複数枚の基板Wが供給液に浸漬される。これにより、各基板Wの表面Waに供給液が供給され、基板Wの表面Waに形成されている混合昇華剤の液膜に、供給液が接液する(供給液接液工程)。 液 A liquid film of the mixed sublimation agent is formed on the entire surface of the surface Wa of each substrate W transferred to the supply liquid storage tank 1105. Then, the lifter elevating unit 1107 is controlled to move the lifter 1106 from the retracted position to the processing position, so that the plurality of substrates W held by the lifter 1106 are immersed in the supply liquid. Thereby, the supply liquid is supplied to the surface Wa of each substrate W, and the supply liquid comes into contact with the liquid film of the mixed sublimation agent formed on the surface Wa of the substrate W (supply liquid contact step).
 混合昇華剤の液膜に供給液が接すると、混合昇華剤に含まれる混合用溶媒が、混合昇華剤から供給液へ移動し、この混合用溶媒が供給液に溶け込む。混合用溶媒の移動に伴って、混合昇華剤の液膜における昇華性物質の濃度が上昇する。そして、昇華性物質の濃度の上昇に伴って、混合昇華剤の凝固点TFMが上昇し、この凝固点TFMが室温に達すると、基板Wの表面Waに存在する混合昇華剤の析出が開始される。混合昇華剤の析出により、昇華性物質を含む凝固膜83が形成される。 When the supply liquid comes into contact with the liquid film of the mixed sublimation agent, the mixing solvent contained in the mixed sublimation agent moves from the mixed sublimation agent to the supply liquid, and the mixing solvent dissolves in the supply liquid. As the mixing solvent moves, the concentration of the sublimable substance in the liquid film of the mixed sublimation agent increases. Then, as the concentration of the sublimable substance increases, the freezing point T FM of the mixed sublimation agent increases, and when the freezing point T FM reaches room temperature, precipitation of the mixed sublimation agent present on the surface Wa of the substrate W is started. You. By the precipitation of the mixed sublimation agent, a solidified film 83 containing a sublimable substance is formed.
 また、供給液貯留槽1105に貯留されている供給液の液温が室温よりも低い場合には、基板Wの表面Waへの供給液の供給によって、混合昇華剤の液膜に含まれる混合昇華剤を温度低下させることができる。そして、混合昇華剤の液膜に含まれる混合昇華剤の温度が混合昇華剤の凝固点TFMを下回ると、混合昇華剤が凝固を開始する。これにより、凝固膜83が形成される。 When the liquid temperature of the supply liquid stored in the supply liquid storage tank 1105 is lower than room temperature, the supply of the supply liquid to the surface Wa of the substrate W causes the mixed sublimation contained in the liquid film of the mixed sublimation agent. The agent can be cooled. Then, the temperature of the mixed sublimation agent contained in the liquid film of the mixed sublimation agent falls below the freezing point T FM mixing sublimation agent, mixing sublimation agent initiates coagulation. Thus, a solidified film 83 is formed.
 つまり、混合昇華剤の凝固が、混合昇華剤の凝固点TFMの上昇を利用した凝固と、混合昇華剤の温度低下に伴う凝固と、の2つのメカニズムで同時に行われるため、凝固膜83を、短期間のうちに形成できる。 In other words, coagulation of the mixed sublimation agent, coagulation and using an increase in freezing point T FM mixing sublimation agent, coagulation and with temperature decrease of the mixed sublimation agent, for simultaneously as two mechanisms, the coagulation membrane 83, It can be formed in a short time.
 供給液への基板Wの浸漬開始から予め定める期間が経過すると、リフタ昇降ユニット1107が制御されて、リフタ1106が処理位置から退避位置に移動させる。これにより、供給液に浸漬されている複数枚の基板Wが供給液から引き上げられる。 (4) When a predetermined period has elapsed from the start of immersion of the substrate W in the supply liquid, the lifter elevating unit 1107 is controlled, and the lifter 1106 is moved from the processing position to the retreat position. Thereby, the plurality of substrates W immersed in the supply liquid are pulled up from the supply liquid.
 供給液からの基板Wの引上げ時には引上げ乾燥(供給液除去工程)が実施される。引上げ乾燥は、図17に示すように、供給液貯留槽1105から引き上げられた基板Wの表面Waに気体(たとえば、窒素ガス等の不活性ガス)を吹き付けながら、かつ比較的遅い速度(たとえば数mm/秒)で基板Wを引き上げることにより行う。これにより、基板Wの表面Waの全域から、供給液が除去される。 時 に は When the substrate W is pulled up from the supply liquid, pull-up drying (supply liquid removal step) is performed. As shown in FIG. 17, the pull-up drying is performed while blowing a gas (for example, an inert gas such as nitrogen gas) onto the surface Wa of the substrate W pulled up from the supply liquid storage tank 1105, and at a relatively low speed (for example, several times). (mm / sec). Thereby, the supply liquid is removed from the entire surface Wa of the substrate W.
 その後、凝固膜83に含まれる昇華剤物質が固体から気体に昇華する。これにより、昇華性物質を、液体状態を経ずに気化させることにより基板Wの表面Waから除去できるので、パターン100の倒壊を効果的に抑制または防止しながら、基板Wの表面Waを乾燥させることができる。 After that, the sublimator substance contained in the solidified film 83 sublimates from a solid to a gas. Thereby, the sublimable substance can be removed from the surface Wa of the substrate W by evaporating without passing through the liquid state, so that the surface Wa of the substrate W is dried while effectively suppressing or preventing the pattern 100 from collapsing. be able to.
 また、前述の各実施形態において、基板処理装置1,1101が半導体ウエハからなる基板Wを処理する装置である場合について説明したが、基板処理装置が、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板を処理する装置であってもよい。 Further, in each of the above-described embodiments, the case where the substrate processing apparatuses 1 and 1101 are apparatuses for processing a substrate W made of a semiconductor wafer has been described, but the substrate processing apparatus is a substrate for a liquid crystal display device, an organic EL (electroluminescence). An apparatus for processing a substrate such as a substrate for an FPD (Flat Panel Display) such as a display device, a substrate for an optical disk, a substrate for a magnetic disk, a substrate for a magneto-optical disk, a substrate for a photomask, a ceramic substrate, and a substrate for a solar cell. Is also good.
 その他、請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made within the scope of the matters described in the claims.
 この出願は、2018年9月21日に日本国特許庁に提出された特願2018-177377号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2018-177377 filed with the Japan Patent Office on September 21, 2018, and the entire disclosure of this application is incorporated herein by reference.
1   :基板処理装置
2   :処理ユニット
3   :制御装置
4   :チャンバ
5   :スピンチャック(基板保持ユニット)
9   :混合昇華剤供給ユニット(混合乾燥補助物質供給ユニット)
10  :供給液供給ユニット
11  :気体吹き付けユニット(除去ユニット)
18  :スピンモータ(除去ユニット)
81  :液膜
82  :薄膜
83  :凝固膜
100 :パターン
1104:混合昇華剤貯留槽(第1の槽)
1105:供給液貯留槽(第2の槽)
A1  :回転軸線
F1  :昇華性物質の凝固点(乾燥補助物質の凝固点)
FM  :混合昇華剤の凝固点(混合乾燥補助物質の凝固点)
W   :基板
Wa  :表面
1: substrate processing apparatus 2: processing unit 3: control apparatus 4: chamber 5: spin chuck (substrate holding unit)
9: Mixed sublimation agent supply unit (mixed drying auxiliary substance supply unit)
10: Supply liquid supply unit 11: Gas blowing unit (removal unit)
18: Spin motor (removal unit)
81: liquid film 82: thin film 83: solidified film 100: pattern 1104: mixed sublimant storage tank (first tank)
1105: Supply liquid storage tank (second tank)
A1: Rotation axis T F1 : Freezing point of sublimable substance (freezing point of auxiliary drying substance)
T FM : Freezing point of mixed sublimation agent (freezing point of mixed drying auxiliary substance)
W: Substrate Wa: Surface

Claims (17)

  1.  パターンを表面に有する基板を処理する基板処理方法であって、
     無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質であって、前記乾燥補助物質の凝固点よりも低い凝固点を有する混合乾燥補助物質を前記基板の表面に供給して、前記混合乾燥補助物質の液膜を前記基板の表面に形成する混合乾燥補助物質供給工程と、
     前記混合乾燥補助物質の液膜に含まれる前記乾燥補助物質を凝固させることにより、前記乾燥補助物質を含む凝固膜を形成する凝固膜形成工程と、
     前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させて前記基板の表面から除去する除去工程と、を含み、
     前記凝固膜形成工程が、
     前記乾燥補助物質および前記溶媒とは種類の異なる液体であり、かつ前記混合乾燥補助物質の液膜に極性物質である供給液を接液させ、前記混合乾燥補助物質に溶け込んでいる前記溶媒が前記混合乾燥補助物質から前記供給液へ移動することに伴う当該液膜における前記乾燥補助物質の濃度の上昇によって前記乾燥補助物質を析出させることにより前記凝固膜を形成する供給液接液工程を含む、基板処理方法。
    A substrate processing method for processing a substrate having a pattern on a surface,
    A non-polar drying auxiliary substance and a solvent having amphipathic properties are mixed dry auxiliary substances mixed with each other, wherein the mixed drying auxiliary substance having a freezing point lower than the freezing point of the drying auxiliary substance is mixed with the substrate. Supplying to the surface, a mixed drying auxiliary substance supplying step of forming a liquid film of the mixed drying auxiliary substance on the surface of the substrate,
    A coagulation film forming step of forming a coagulation film containing the drying auxiliary material by coagulating the drying auxiliary material contained in the liquid film of the mixed drying auxiliary material,
    Removing the drying auxiliary substance contained in the coagulated film from the surface of the substrate by changing to a gas without passing through a liquid state,
    The coagulation film forming step,
    The drying auxiliary substance and the solvent are different kinds of liquids, and the supply liquid that is a polar substance is brought into contact with a liquid film of the mixed drying auxiliary substance, and the solvent dissolved in the mixed drying auxiliary substance is the solvent. A feed liquid contacting step of forming the coagulated film by precipitating the drying auxiliary substance by increasing the concentration of the drying auxiliary substance in the liquid film due to moving from the mixed drying auxiliary substance to the supply liquid, Substrate processing method.
  2.  前記乾燥補助物質が、昇華性を有する昇華性物質を含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the drying auxiliary substance includes a sublimable substance having sublimability.
  3.  前記供給液接液工程が、前記混合乾燥補助物質の液膜を膜状に維持しながら、前記基板の表面に前記供給液を供給する工程を含む、請求項1または2に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the supply liquid contacting step includes a step of supplying the supply liquid to the surface of the substrate while maintaining a liquid film of the mixed and dried auxiliary substance in a film form. .
  4.  前記除去工程の前に、前記基板の表面に存在している前記供給液を除去する供給液除去工程をさらに含む、請求項1または2に記載の基板処理方法。 The substrate processing method according to claim 1 or 2, further comprising a supply liquid removing step of removing the supply liquid existing on the surface of the substrate before the removing step.
  5.  前記供給液除去工程が、所定の回転軸線回りに前記基板を回転させて、前記基板の表面に存在している前記供給液を振り切る振り切り工程、および前記基板の表面に気体を吹き付ける気体吹き付け工程の少なくとも一方を含む、請求項4に記載の基板処理方法。 The supply liquid removing step includes rotating the substrate around a predetermined rotation axis to shake off the supply liquid existing on the surface of the substrate, and a gas blowing step of blowing gas to the surface of the substrate. The substrate processing method according to claim 4, comprising at least one.
  6.  前記供給液接液工程において前記基板の表面に供給される前記供給液が、室温よりも低い液温を有している、請求項1または2に記載の基板処理方法。 3. The substrate processing method according to claim 1, wherein the supply liquid supplied to the surface of the substrate in the supply liquid contacting step has a liquid temperature lower than room temperature.
  7.  前記溶媒が、前記乾燥補助物質の蒸気圧よりも高い蒸気圧を有し、
     前記供給液接液工程において前記基板の表面に供給される前記供給液が、室温よりも高い液温を有している、請求項1または2に記載の基板処理方法。
    The solvent has a higher vapor pressure than the vapor pressure of the drying aid;
    The substrate processing method according to claim 1, wherein the supply liquid supplied to the surface of the substrate in the supply liquid contacting step has a liquid temperature higher than room temperature.
  8.  前記溶媒が、前記乾燥補助物質の蒸気圧よりも高い蒸気圧を有し、
     前記凝固膜形成工程が、前記基板の表面に存在する前記混合乾燥補助物質から前記溶媒を蒸発させる溶媒蒸発工程をさらに含む、請求項1または2に記載の基板処理方法。
    The solvent has a higher vapor pressure than the vapor pressure of the drying aid;
    The substrate processing method according to claim 1, wherein the coagulation film forming step further includes a solvent evaporating step of evaporating the solvent from the mixed and dried auxiliary substance present on the surface of the substrate.
  9.  前記溶媒蒸発工程が、前記混合乾燥補助物質を加熱する加熱工程と、前記混合乾燥補助物質に気体を吹き付ける気体吹き付け工程と、前記凝固膜の周囲の空間を減圧する減圧工程と、前記基板の表面に液体を供給することなく、所定の回転軸線回りに前記基板を高速で回転させる基板高回転工程のうちの少なくとも一つを含む、請求項8に記載の基板処理方法。 A heating step of heating the mixed drying auxiliary substance, a gas blowing step of blowing a gas to the mixed drying auxiliary substance, a depressurizing step of depressurizing a space around the solidified film, and a surface of the substrate. 9. The substrate processing method according to claim 8, comprising at least one of a substrate high rotation step of rotating the substrate at a high speed around a predetermined rotation axis without supplying a liquid to the substrate.
  10.  前記加熱工程が、加熱流体を前記基板の裏面に供給する工程を含む、請求項9に記載の
    基板処理方法。
    10. The substrate processing method according to claim 9, wherein the heating step includes a step of supplying a heating fluid to a back surface of the substrate.
  11.  前記溶媒が、前記乾燥補助物質の蒸気圧と同じか、前記乾燥補助物質の蒸気圧よりも低い蒸気圧を有している、請求項1または2に記載の基板処理方法。 3. The substrate processing method according to claim 1, wherein the solvent has a vapor pressure equal to or lower than a vapor pressure of the drying auxiliary substance.
  12.  前記供給液接液工程が、前記基板の表面への前記供給液の供給に並行して前記基板の表面における前記供給液の供給位置を前記基板の中央部から前記基板の周縁部に移動させることにより、前記基板の表面における前記凝固膜の形成位置を、前記基板の中央部から前記基板の周縁部に拡大する工程を含む、請求項1または2に記載の基板処理方法。 The supply liquid contacting step moves a supply position of the supply liquid on the surface of the substrate from a central portion of the substrate to a peripheral portion of the substrate in parallel with the supply of the supply liquid to the surface of the substrate. 3. The substrate processing method according to claim 1, further comprising: expanding a formation position of the solidified film on a surface of the substrate from a central portion of the substrate to a peripheral portion of the substrate.
  13.  前記除去工程が、前記凝固膜に含まれる前記乾燥補助物質を、固体から気体に昇華させる昇華工程と、前記凝固膜の分解により、前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させる分解工程と、前記凝固膜の反応により、前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させる反応工程と、のうちの少なくとも一つを含む、請求項1または2に記載の基板処理方法。 The removing step is a sublimation step of sublimating the drying auxiliary substance contained in the coagulated film from a solid to a gas, and the decomposition of the coagulated film causes the drying auxiliary substance contained in the coagulated film to pass through a liquid state. At least one of a decomposition step of converting the gas into a gas without reacting, and a reaction of the coagulation film, the drying auxiliary substance contained in the coagulation film, a reaction step of changing the gas into a gas without passing through a liquid state. The substrate processing method according to claim 1, further comprising:
  14.  前記混合乾燥補助物質供給工程が、前記混合乾燥補助物質を溜めた第1の槽に、前記基板を浸漬させる工程を含み、
     前記供給液接液工程が、前記供給液を溜めた第2の槽に、前記基板を浸漬させる工程を含む、請求項1に記載の基板処理方法。
    The mixing and drying auxiliary substance supply step includes a step of immersing the substrate in a first tank storing the mixing and drying auxiliary substance,
    2. The substrate processing method according to claim 1, wherein the supply liquid contacting step includes a step of immersing the substrate in a second tank storing the supply liquid. 3.
  15.  前記供給液が、水を含有する、請求項1または2に記載の基板処理方法。 The substrate processing method according to claim 1 or 2, wherein the supply liquid contains water.
  16.  パターンを表面に有する基板を処理する基板処理方法であって、
     無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質であって、前記乾燥補助物質の凝固点よりも低い凝固点を有する混合乾燥補助物質を前記基板の表面に供給して、前記混合乾燥補助物質の液膜を前記基板の表面に形成する混合乾燥補助物質供給工程と、
     前記混合乾燥補助物質の液膜に含まれる前記乾燥補助物質を凝固させることにより、前記乾燥補助物質を含む凝固膜を形成する凝固膜形成工程と、
     前記凝固膜に含まれる前記乾燥補助物質を、液体状態を経ずに気体に変化させて前記基板の表面から除去する除去工程と、を含み、
     前記凝固膜形成工程が、
     当該液膜における前記乾燥補助物質の濃度の上昇によって前記乾燥補助物質を析出させることにより前記凝固膜を形成する供給液接液工程を含む、基板処理方法。
    A substrate processing method for processing a substrate having a pattern on a surface,
    A non-polar drying auxiliary substance and a solvent having amphipathic properties are mixed dry auxiliary substances mixed with each other, wherein the mixed drying auxiliary substance having a freezing point lower than the freezing point of the drying auxiliary substance is mixed with the substrate. Supplying to the surface, a mixed drying auxiliary substance supplying step of forming a liquid film of the mixed drying auxiliary substance on the surface of the substrate,
    A coagulation film forming step of forming a coagulation film containing the drying auxiliary material by coagulating the drying auxiliary material contained in the liquid film of the mixed drying auxiliary material,
    Removing the drying auxiliary substance contained in the coagulated film from the surface of the substrate by changing to a gas without passing through a liquid state,
    The coagulation film forming step,
    A method for treating a substrate, comprising: a liquid contacting step for forming the coagulated film by depositing the drying auxiliary substance by increasing the concentration of the drying auxiliary substance in the liquid film.
  17.  パターンを表面に有する基板を保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板の表面に、無極性物質である乾燥補助物質と、両親媒性を有する溶媒と、が混ざり合った混合乾燥補助物質であって、前記乾燥補助物質の凝固点よりも低い凝固点を有する混合乾燥補助物質を供給するための混合乾燥補助物質供給ユニットと、
     前記基板保持ユニットに保持されている基板の表面に、前記乾燥補助物質および前記溶媒とは種類の異なる液体であり、かつ極性物質である供給液を供給するための供給液供給ユニットと、
     前記基板保持ユニットに保持されている基板の表面から前記乾燥補助物質を、液体状態を経ずに気体に変化させて除去するための除去ユニットと、
     前記混合乾燥補助物質供給ユニット、前記供給液供給ユニットおよび前記除去ユニットを制御する制御装置と、を含み、
     前記制御装置が、前記混合乾燥補助物質供給ユニットによって前記混合乾燥補助物質を
    前記基板の表面に供給して、前記混合乾燥補助物質の液膜を前記基板の表面に形成する混合乾燥補助物質供給工程と、前記混合乾燥補助物質の液膜に含まれる前記乾燥補助物質を凝固させることにより、前記乾燥補助物質を含む凝固膜を形成する凝固膜形成工程と、前記凝固膜に含まれる前記乾燥補助物質を、前記除去ユニットによって液体状態を経ずに気体に変化させて前記基板の表面から除去する除去工程と、を実行し、
     前記制御装置が、前記凝固膜形成工程において、前記混合乾燥補助物質の液膜に前記供給液供給ユニットによって前記供給液を供給し、前記混合乾燥補助物質に溶け込んでいる前記溶媒が前記混合乾燥補助物質から前記供給液へ移動することに伴う当該液膜における前記乾燥補助物質の濃度の上昇によって前記乾燥補助物質を析出させることにより前記凝固膜を形成する供給液接液工程を実行する、基板処理装置。
    A substrate holding unit that holds a substrate having a pattern on its surface,
    On a surface of the substrate held by the substrate holding unit, a drying auxiliary substance that is a nonpolar substance and a solvent having amphipathic properties are mixed dry auxiliary substances mixed together, and the freezing point of the drying auxiliary substance is mixed. A mixed drying auxiliary substance supply unit for supplying a mixed drying auxiliary substance having a lower freezing point,
    On the surface of the substrate held by the substrate holding unit, a supply liquid supply unit for supplying a supply liquid that is a different liquid from the drying auxiliary substance and the solvent, and a polar substance,
    A removal unit for removing the drying auxiliary substance from the surface of the substrate held by the substrate holding unit by changing the gas into a gas without passing through a liquid state,
    The mixing and drying auxiliary substance supply unit, and a control device that controls the supply liquid supply unit and the removal unit,
    A mixing / drying auxiliary substance supplying step of supplying the mixed / drying auxiliary substance to the surface of the substrate by the mixing / drying auxiliary substance supply unit and forming a liquid film of the mixed / drying auxiliary substance on the surface of the substrate; A coagulation film forming step of forming a coagulation film containing the drying auxiliary material by coagulating the drying auxiliary material contained in the liquid film of the mixed drying auxiliary material; and the drying auxiliary material contained in the coagulation film A removing step of removing the substrate from the surface by changing to a gas without passing through a liquid state by the removing unit,
    In the coagulation film forming step, the control device supplies the supply liquid to the liquid film of the mixed drying auxiliary substance by the supply liquid supply unit, and the solvent dissolved in the mixed drying auxiliary substance is used as the mixed drying auxiliary substance. Performing a liquid-contacting liquid supply step of forming the coagulated film by depositing the drying auxiliary substance by increasing the concentration of the drying auxiliary substance in the liquid film accompanying the transfer from a substance to the supply liquid; apparatus.
PCT/JP2019/028854 2018-09-21 2019-07-23 Substrate processing method and substrate processing device WO2020059286A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217008262A KR102518117B1 (en) 2018-09-21 2019-07-23 Substrate processing method and substrate processing apparatus
CN201980061313.9A CN112740370A (en) 2018-09-21 2019-07-23 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-177377 2018-09-21
JP2018177377A JP7198618B2 (en) 2018-09-21 2018-09-21 Substrate processing method and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2020059286A1 true WO2020059286A1 (en) 2020-03-26

Family

ID=69888686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028854 WO2020059286A1 (en) 2018-09-21 2019-07-23 Substrate processing method and substrate processing device

Country Status (5)

Country Link
JP (1) JP7198618B2 (en)
KR (1) KR102518117B1 (en)
CN (1) CN112740370A (en)
TW (1) TWI722507B (en)
WO (1) WO2020059286A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446181B2 (en) * 2020-08-20 2024-03-08 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010638A (en) * 2006-06-29 2008-01-17 Ulvac Seimaku Kk Method of manufacturing semiconductor device
JP2012243869A (en) * 2011-05-17 2012-12-10 Tokyo Electron Ltd Substrate drying method and substrate processing apparatus
JP2015050414A (en) * 2013-09-04 2015-03-16 株式会社Screenホールディングス Substrate drier
JP2017037985A (en) * 2015-08-11 2017-02-16 東京エレクトロン株式会社 Substrate processing device and deposition prevention method for sublimable material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826846B2 (en) * 2009-02-12 2011-11-30 信越化学工業株式会社 Pattern formation method
JP5643007B2 (en) 2010-07-05 2014-12-17 スリーエム イノベイティブ プロパティズ カンパニー Method for drying surface structure
JP5622675B2 (en) * 2011-07-05 2014-11-12 株式会社東芝 Substrate processing method and substrate processing apparatus
JP6259299B2 (en) 2014-01-30 2018-01-10 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP6649146B2 (en) * 2016-03-25 2020-02-19 株式会社Screenホールディングス Substrate processing apparatus, substrate processing system and substrate processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010638A (en) * 2006-06-29 2008-01-17 Ulvac Seimaku Kk Method of manufacturing semiconductor device
JP2012243869A (en) * 2011-05-17 2012-12-10 Tokyo Electron Ltd Substrate drying method and substrate processing apparatus
JP2015050414A (en) * 2013-09-04 2015-03-16 株式会社Screenホールディングス Substrate drier
JP2017037985A (en) * 2015-08-11 2017-02-16 東京エレクトロン株式会社 Substrate processing device and deposition prevention method for sublimable material

Also Published As

Publication number Publication date
JP2020047887A (en) 2020-03-26
KR20210045469A (en) 2021-04-26
KR102518117B1 (en) 2023-04-05
TW202023696A (en) 2020-07-01
JP7198618B2 (en) 2023-01-04
TWI722507B (en) 2021-03-21
CN112740370A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
KR20180029914A (en) Substrate processing method and substrate processing apparatus
JP6966899B2 (en) Substrate drying method and substrate processing equipment
JP7235594B2 (en) Substrate processing method and substrate processing apparatus
KR102504971B1 (en) Substrate processing method and substrate processing apparatus
US20200001333A1 (en) Substrate processing method and substrate processing apparatus
KR102055070B1 (en) Substrate drying method and substrate processing apparatus
KR102475175B1 (en) Substrate processing apparatus and substrate processing method
WO2020044885A1 (en) Substrate processing method and substrate processing device
WO2020059286A1 (en) Substrate processing method and substrate processing device
JP7288764B2 (en) Substrate processing method and substrate processing apparatus
JP7126429B2 (en) Substrate processing method and substrate processing apparatus
WO2022254951A1 (en) Substrate treatment method and sublimation drying treatment agent
TWI829142B (en) Substrate treatment method and treatment liquid
WO2020004041A1 (en) Substrate processing method and substrate processing apparatus
JP7130791B2 (en) Substrate processing method and substrate processing apparatus
JP2023123996A (en) Substrate processing liquid, substrate processing method and substrate processing apparatus
JP2022035122A (en) Substrate processing device and substrate processing method
JP2024047257A (en) SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING LIQUID

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217008262

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862344

Country of ref document: EP

Kind code of ref document: A1