JP2008004606A - Cooling apparatus - Google Patents

Cooling apparatus Download PDF

Info

Publication number
JP2008004606A
JP2008004606A JP2006170034A JP2006170034A JP2008004606A JP 2008004606 A JP2008004606 A JP 2008004606A JP 2006170034 A JP2006170034 A JP 2006170034A JP 2006170034 A JP2006170034 A JP 2006170034A JP 2008004606 A JP2008004606 A JP 2008004606A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
cooling device
heat transfer
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006170034A
Other languages
Japanese (ja)
Inventor
Haruhiko Kono
治彦 河野
Iku Sato
郁 佐藤
Masaaki Arita
雅昭 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006170034A priority Critical patent/JP2008004606A/en
Publication of JP2008004606A publication Critical patent/JP2008004606A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling apparatus which can establish high cooling efficiency inside a PC enclosure inexpensively, low noise and high reliability, in comparison with the conventional cooling measures using microbubble emission boiling for an MPU for PC as a super-high density heat source, which requires a large-scales mechanism for necessary cooling capacity and too much cost and large occupancy volume. <P>SOLUTION: A pump 4 is used to increase the velocity of a refrigerant passing over a heating surface, thus establishing stable microbubble emission boiling state even in a cooling circulation system wherein the degree of subcool is not large enough. Then, an auxiliary pump is used together, so as to realize microbubble emission boiling state even in still smaller subcool environment. In addition, a protective film is provided on the heating surface to ensure high reliability. Furthermore, the operation state of the PC is reflected on the rotational frequency of a fan 6 to prevent noises. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、パーソナルコンピュータ等に使われるマイクロプロセッシングユニット(以下、MPUと略す)等の発熱する半導体、またはその他の発熱部を有する電子部品を主に冷媒の相変化による吸熱作用により冷却する冷却装置に関するものである。   The present invention relates to a cooling device that cools a semiconductor that generates heat, such as a microprocessing unit (hereinafter abbreviated as MPU) used in a personal computer or the like, or an electronic component having another heat generating portion, mainly by an endothermic action due to a phase change of the refrigerant. It is about.

近年、電子機器においては半導体等の電子部品の高集積化、動作クロックの高周波数化等に伴う発熱量の増大に対して、電子部品の正常動作の為に、それぞれの電子部品の接点温度を動作温度範囲内に如何に保つかが大きな問題となってきている。このため、従来のようにヒートシンクで空冷するだけでは能力不足で、より高効率の冷却装置が不可欠になっている。そこでこのような冷却装置として、本出願人は、発熱した電子部品を冷媒の循環により高効率に冷却する冷却装置を提案した(特許文献1参照)。しかしながら、MPUの技術的進化において発熱量は大きく変化しないものの電子部品の高集積化はさらに進み、部品のチップ面積は減少して、それに伴い熱密度が増大している。2005年におけるパーソナルコンピュータ用MPUにおけるチップ上の配線ルール(最小間隔)の代表値は90ナノメートルであるがこれが2007年頃には65ナノメートルとなる見込みである。このことはMPUの実装回路量と消費電力が変わらなければチップの面積が半分となり熱密度が2倍、1平方cmあたり300W程度となることを意味する。このような高熱密度に対応する冷却装置として冷媒の相変化、さらにはより効率的な気泡微細化沸騰を利用した冷却方法が提案されている(特許文献2参照)。   In recent years, in electronic devices, the contact temperature of each electronic component has been reduced for the normal operation of the electronic component against the increase in heat generation due to higher integration of electronic components such as semiconductors and higher operating clock frequencies. How to keep within the operating temperature range has become a major issue. For this reason, it is not sufficient to perform air cooling with a heat sink as in the conventional case, and a more efficient cooling device is indispensable. Therefore, as such a cooling device, the present applicant has proposed a cooling device that cools the generated electronic components with high efficiency by circulating the refrigerant (see Patent Document 1). However, although the calorific value does not change greatly in the technical evolution of the MPU, the integration of electronic components has further increased, the chip area of the components has decreased, and the heat density has increased accordingly. The representative value of the wiring rule (minimum distance) on the chip in the MPU for personal computer in 2005 is 90 nanometers, but this is expected to be 65 nanometers around 2007. This means that if the MPU mounting circuit amount and power consumption are not changed, the chip area is halved and the heat density is doubled to about 300 W per square centimeter. As a cooling device corresponding to such a high heat density, a cooling method using refrigerant phase change and more efficient bubble micronization boiling has been proposed (see Patent Document 2).

以下、冷媒の気泡微細化沸騰による相変化にともなう吸熱作用を用いた冷却装置について説明する。前記の集積化が進んだMPUなどのように、伝熱部における高熱密度化はいたるところで見受けられ、従来以上の高い冷却効果と冷却効率を達成する冷却方法が求められている。このような高熱負荷面の冷却方法としては、冷媒の核沸騰伝熱を利用することが考えられる。この沸騰冷却方法によると、図10に例示する沸騰曲線図から明らかなように、限界熱流束(核沸騰I1から遷移沸騰I2に移るときの熱流束の極大値P1)が存在し、それが実用上の上限となっている。即ち、核沸騰下では、伝熱面温度の上昇と共に冷却水に伝えられる熱量は増加するが、やがて限界熱流束P1で頭打ちとなり、遷移沸騰下では冷媒に伝えられる熱量は急激に減少し伝熱面温度は急激に上昇することが知られている。さらに、遷移沸騰を経て図中P2点越えてI3で示す膜沸騰に移行すると、蒸気が伝熱面を覆って伝熱面温度が不連続に著しく増加して、MPUなどを焼損してしまう場合があることが知られている。このため、限界熱流束は実用上の上限値とされていた。その上限を超える熱流束を実現するのが気泡微細化沸騰と呼ばれる沸騰形態である。この沸騰様式においては微細気泡の激しい射出を伴う特異な沸騰下では一般的な沸騰現象での限界熱流束より高い熱流束を得られる。本従来例は、伝熱面での冷媒の沸騰を利用して発熱源からの熱を除去する冷却方法において、冷媒が伝熱面に生ずる大気泡を凝縮させ周囲冷媒を伝熱直に供給できるサブクール度を有するものとし、大気泡が凝縮されて伝熱面と冷媒とが触れ合うときの接触界面温度が最小膜沸騰温度未満でかつ伝熱面の発熱源側が融点よりも低い温度となる伝熱面厚さを有するものとして、伝熱面で気泡微細化沸騰を持続的に発生させ、限界熱流束を超える熱流束下で安定に冷却できるようにしている。これによって、発熱源の熱は伝熱面を覆う大きな気泡例えば直径2〜4cmの気泡を凝縮するサブクール度を有する冷媒の伝熱面表面での沸騰により除熱される。そして、熱流束が大きくなるとそれに従って伝熱面を覆う大きな気泡が頻繁に出現するようになる。この大気泡が伝熱面を覆えば、伝熱面表面温度が上昇して膜沸騰へ移行すると考えられるが、直ちに周囲のサブクール度を確保した冷媒により凝縮して消滅するため、膜沸騰には移行しない。即ち、大気泡が瞬時に形成と崩壊を繰り返すことによって、伝熱面表面のより広い範囲で十分なサブクール度を確保した冷媒の混合が促進され、温度分布か均一になると共に大量のサブクール度を確保した冷媒が伝熱面に触れて大量の熱が伝熱面から取り除かれ、限界熱流束を遥かに超える高熱流束下においても気泡微細化沸騰を安定して持続し、除熱することができる。また、従来例では、前記の気泡微細化沸騰を利用した冷却方法において、冷媒を大気圧下においてサブクール度15K〜85Kの範囲の水とするようにしている。この場合には、伝熱面を覆う気泡を十分に成長させてから崩壊させることを瞬時に繰り返すことができ、大量の冷媒が伝熱面に触れて大量の熱を伝熱面から除去することができるとしている。
特開2005−327776号公報 特開2002−26210号公報
Hereinafter, a cooling device using an endothermic action accompanying a phase change caused by bubble miniaturization boiling of the refrigerant will be described. As in the case of the MPU that has been integrated, the increase in the heat density in the heat transfer section can be seen everywhere, and a cooling method that achieves a higher cooling effect and cooling efficiency than before is required. As a method for cooling such a high heat load surface, it is conceivable to use nucleate boiling heat transfer of the refrigerant. According to this boiling cooling method, as is clear from the boiling curve diagram illustrated in FIG. 10, there is a critical heat flux (the maximum value P1 of the heat flux when transitioning from nucleate boiling I1 to transition boiling I2), which is practically used. It is the upper limit. That is, under nucleate boiling, the amount of heat transferred to the cooling water increases as the heat transfer surface temperature rises, but eventually reaches a peak at the critical heat flux P1, and under transition boiling, the amount of heat transferred to the refrigerant decreases rapidly and heat transfer. It is known that the surface temperature rises rapidly. Furthermore, when transition to boiling through the film shown by I3 over the point P2 in the figure after transition boiling, the steam covers the heat transfer surface and the heat transfer surface temperature increases discontinuously and burns down the MPU, etc. It is known that there is. For this reason, the critical heat flux has been regarded as a practical upper limit. It is a boiling form called bubble refinement boiling that realizes a heat flux exceeding the upper limit. In this boiling mode, a heat flux higher than the critical heat flux in a general boiling phenomenon can be obtained under a specific boiling accompanied by intense injection of fine bubbles. This conventional example is a cooling method that removes heat from a heat generation source using boiling of the refrigerant on the heat transfer surface, and the refrigerant can condense large bubbles generated on the heat transfer surface and directly supply the surrounding refrigerant to the heat transfer. Heat transfer that has a subcool degree, the contact interface temperature when large bubbles are condensed and the heat transfer surface comes into contact with the refrigerant is less than the minimum film boiling temperature, and the heat source side of the heat transfer surface is lower than the melting point It has a surface thickness so that bubble refinement boiling is continuously generated on the heat transfer surface so that it can be stably cooled under a heat flux exceeding the critical heat flux. Thereby, the heat of the heat source is removed by boiling on the surface of the heat transfer surface of the refrigerant having a subcool degree that condenses large bubbles covering the heat transfer surface, for example, bubbles having a diameter of 2 to 4 cm. And when a heat flux becomes large, the big bubble which covers a heat-transfer surface will come to appear frequently according to it. If this large bubble covers the heat transfer surface, the surface temperature of the heat transfer surface rises and transitions to film boiling, but it immediately condenses and disappears by the refrigerant that has secured the degree of subcooling. Do not migrate. In other words, large bubbles instantly repeat the formation and collapse, which promotes mixing of the refrigerant that ensures a sufficient degree of subcooling over a wider area of the heat transfer surface, making the temperature distribution uniform and increasing the amount of subcooling. The secured refrigerant touches the heat transfer surface and a large amount of heat is removed from the heat transfer surface, and even under high heat flux far exceeding the critical heat flux, bubble micronization boiling can be stably maintained and heat can be removed. it can. In the conventional example, in the cooling method using the above-described bubble micronization boiling, the refrigerant is water having a subcool degree of 15K to 85K under atmospheric pressure. In this case, the bubbles covering the heat transfer surface can be grown and collapsed instantaneously, and a large amount of refrigerant touches the heat transfer surface to remove a large amount of heat from the heat transfer surface. I can do it.
JP 2005-327776 A JP 2002-26210 A

前記のように超高熱密度熱源であるPC用MPUを冷却するには、気泡微細化沸騰による相変化による伝熱面からの熱の除去が必要である。そのためは前記のように冷媒に十分なサブクール度を持たせるような冷却能力を確保しなければならない。図11に従来の実施済みのPC用MPU冷却装置の構成例を示す。この例は相変化を伴わない冷媒循環式のPC用冷却装置のものであるがその筐体の大きさは将来的に大きく変化することはないものと考えられる。図11において、111は冷却装置を搭載したPCの筐体、112は冷却装置を構成するため発熱体に接触して熱交換する熱交換手段、113はMPUである。114はMPU113を実装した基板、115は筐体111の内部側面に設けられMPU113から受熱した冷媒の熱を外部に放熱する放熱器、116は熱交換手段112と放熱器115とを接続して冷媒を循環するための閉じた管路である。117は冷媒を圧送循環させるポンプである。MPU113と熱交換手段112との接触面には熱伝導性グリース(図示せず)が塗布されており、前記接触面での接触熱抵抗を低減させている。循環路116内を循環する冷媒としては、エチレングリコール水溶液やプロピレングリコール水溶液等の不凍液が用いられるのがふつうである。放熱器115は、熱伝導率が高く放熱性のよい材料、例えば銅、アルミニウム等の薄板材で構成され、内部に冷媒通路とリザーブタンクが形成されている。また、放熱器115に強制的に空気を当てて冷やし冷却効果を増やすためファンを設けてもよい。管路116は、配管レイアウトの自由度を確保するため、フレキシブルでガス透過性の少ないゴム、例えばブチルゴムなどのゴムチューブで構成されている。熱交換手段112は熱伝導性に優れるアルミニウム、銅などの金属部品と冷媒を外部に漏らさずかつ、外部から与えられる固定応力に耐える強度をもつ樹脂部品などで構成される 。しかし、このような閉塞された狭い空間に設置され、かつ騒音を抑える理由でファンによる送風量も限られるので放熱器115による冷媒の冷却能力も限られたものとなってしまう。さらに、数万時間以上、大掛かりなメンテナンス作業なしで性能を維持する信頼性も要求される。一方、超高熱密度熱源を冷却するためには、従来の気泡微細化沸騰を用いた冷却装置では、十分なサブクール度を得るに必要な冷却能力を実現するための機構、特に放熱器は大規模なものとなり、コストや占有体積は多大なものとなり、定期的なメンテナンス作業も必要とされることもある。そのため前記のようなサイズや発生騒音が限られたPC筺体内にそれを収めることは非常に困難であるため、気泡微細化沸騰を用いた冷却装置は実現ができなかった。そこで、本発明は、低コストで気泡微細化沸騰を用いた高い冷却効率を最小の騒音発生でPC筐体内部で実現でき、信頼性のある冷却装置を提供することを目的とする。   As described above, in order to cool the MPU for PC which is an ultra-high heat density heat source, it is necessary to remove heat from the heat transfer surface by phase change due to bubble refinement boiling. Therefore, as described above, it is necessary to secure a cooling capacity that allows the refrigerant to have a sufficient degree of subcooling. FIG. 11 shows a configuration example of a conventional PC MPU cooling apparatus that has been implemented. In this example, the refrigerant circulation type PC cooling device without phase change is considered, but the size of the casing will not change greatly in the future. In FIG. 11, reference numeral 111 denotes a PC housing on which a cooling device is mounted, 112 denotes a heat exchange means for exchanging heat in contact with a heating element to constitute the cooling device, and 113 denotes an MPU. 114 is a substrate on which the MPU 113 is mounted, 115 is a radiator that is provided on the inner side surface of the casing 111 and radiates the heat of the refrigerant received from the MPU 113 to the outside, and 116 is a refrigerant that connects the heat exchanging means 112 and the radiator 115. It is a closed pipe line for circulating. Reference numeral 117 denotes a pump for circulating the refrigerant under pressure. A thermal conductive grease (not shown) is applied to the contact surface between the MPU 113 and the heat exchanging means 112 to reduce the contact thermal resistance at the contact surface. As the refrigerant circulating in the circulation path 116, an antifreeze liquid such as an ethylene glycol aqueous solution or a propylene glycol aqueous solution is usually used. The radiator 115 is made of a material having high thermal conductivity and good heat dissipation, for example, a thin plate material such as copper or aluminum, and a refrigerant passage and a reserve tank are formed therein. Further, a fan may be provided to increase the cooling effect by forcibly applying air to the radiator 115 for cooling. The pipe line 116 is made of a rubber tube such as a flexible rubber having a low gas permeability, for example, butyl rubber, in order to ensure flexibility in piping layout. The heat exchanging means 112 is composed of a metal part such as aluminum or copper having excellent heat conductivity and a resin part that does not leak the refrigerant to the outside and has a strength that can withstand a fixed stress given from the outside. However, since the amount of air blown by the fan is limited because it is installed in such a closed narrow space and the noise is suppressed, the cooling ability of the refrigerant by the radiator 115 is also limited. Furthermore, reliability is required to maintain performance without tens of thousands of hours and without extensive maintenance work. On the other hand, in order to cool an ultra-high heat density heat source, a conventional cooling device using bubble micronization boiling has a large-scale mechanism, particularly a radiator, for realizing a cooling capacity necessary to obtain a sufficient subcooling degree. Therefore, the cost and occupied volume become enormous, and regular maintenance work may be required. For this reason, it is very difficult to fit the above-mentioned size and generated noise in a PC housing, and thus a cooling device using bubble micronization boiling cannot be realized. Accordingly, an object of the present invention is to provide a reliable cooling device that can realize high cooling efficiency using bubble micronized boiling at a low cost inside a PC housing with minimal noise generation.

上記の目的を達成するために、本発明は、冷媒を循環するための閉循環路に放熱手段と熱交換手段が設けられ、熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒との相変化を伴う熱交換作用で前記発熱電子部品から熱を奪い前記放熱手段から放熱を行う冷却装置であって、冷媒の圧送手段として冷媒ポンプを用い、前記熱交換手段の伝熱部において、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置としている。 In order to achieve the above object, according to the present invention, a heat dissipating means and a heat exchanging means are provided in a closed circuit for circulating a refrigerant, and the heat exchanging means is brought into contact with a heat generating electronic component so that A cooling device that draws heat from the heat generating electronic component by heat exchange with phase change and releases heat from the heat dissipating means, using a refrigerant pump as the refrigerant pressure feeding means, and a heat transfer portion of the heat exchanging means In this case, if the temperature of the refrigerant flowing in is lower than the boiling point of the refrigerant at the pressure and the temperature difference is ΔT, the average speed of the refrigerant passing through the heat transfer section is 2 × 10 10 × ΔT (−8.958) or more. The cooling device is characterized by this.

また本発明では、冷媒を循環するための閉循環路に放熱手段と熱交換手段が設けられ、熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒との相変化を伴う熱交換作用で前記発熱電子部品から熱を奪い前記放熱手段から放熱を行う冷却装置であって、前記閉循環路中に第1の冷媒ポンプを備えと熱交換手段の冷媒出口から冷媒入口に連通する冷媒流路とその流路中に第2の冷媒ポンプを備え、前記熱交換手段の伝熱部において、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置としている。 Further, in the present invention, a heat dissipating means and a heat exchanging means are provided in a closed circuit for circulating the refrigerant, and the heat accompanying the heat exchange means is brought into contact with the heat generating electronic component to cause heat accompanying phase change with the refrigerant in the closed circuit. A cooling device for removing heat from the heat generating electronic component by exchanging action and radiating heat from the heat dissipating means, comprising a first refrigerant pump in the closed circuit and communicating from the refrigerant outlet of the heat exchanging means to the refrigerant inlet A refrigerant flow path and a second refrigerant pump in the flow path are provided, and in the heat transfer portion of the heat exchanging means, the temperature of the refrigerant flowing in is lower than the boiling point of the refrigerant at the pressure there, and the temperature difference is ΔT. For example, the cooling device is characterized in that the average speed of the refrigerant passing through the heat transfer section is 2 × 10 10 × ΔT (−8.958) or more.

また本発明では、熱交換手段のうち、受熱面と放熱面の間の部材の熱伝導率がそれ以外の部分の部材の熱伝導率よりも低いことを特徴とする請求項1または請求項2の冷却装置としている。また本発明では、熱交換手段のうち、受熱面直上の冷媒流中に冷媒攪拌手段を有することを特徴とする請求項1から請求項3の冷却装置としている。   Moreover, in this invention, the heat conductivity of the member between a heat receiving surface and a heat radiating surface is lower than the heat conductivity of the member of a part other than that in a heat exchange means. As a cooling device. In the present invention, the cooling device according to any one of claims 1 to 3, further comprising a refrigerant agitating means in the refrigerant flow immediately above the heat receiving surface of the heat exchange means.

また本発明では、熱交換手段のうち、冷媒が受熱面に流入する位置直前の上流に乱流促進構造を有することを特徴とする請求項1または4の冷却装置としている。   Further, in the present invention, the cooling device according to claim 1 or 4 further comprising a turbulent flow promoting structure upstream of the heat exchange means immediately before the position where the refrigerant flows into the heat receiving surface.

また本発明では、冷媒を循環するための閉循環路に放熱手段と冷媒ポンプと複数の熱交換手段のすべてもしくは一部が直列または並列に設けられ、前記熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒の相変化を伴う熱交換作用もしくは対流伝熱により前記発熱電子部品から熱を奪い、前記放熱手段から放熱を行う冷却装置であって、少なくとも最も熱密度の高い熱交換手段が、放熱手段に対し最も上流にあって、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置としている。 In the present invention, all or part of the heat radiating means, the refrigerant pump, and the plurality of heat exchanging means are provided in series or in parallel in a closed circuit for circulating the refrigerant, and the heat exchanging means is brought into contact with the heat generating electronic component. A cooling device that removes heat from the heat generating electronic component by heat exchange action or convective heat transfer accompanied by phase change of the refrigerant in the closed circuit, and radiates heat from the heat radiating means, and has at least the highest heat density heat. If the exchanging means is at the most upstream with respect to the heat dissipating means, the refrigerant temperature flowing in is lower than the boiling point of the refrigerant at the pressure there, and the temperature difference is ΔT, the average speed of the refrigerant passing through the heat transfer section is 2 It is a cooling device characterized by being not less than × 10 10 × ΔT (-8.958) .

また本発明では、冷媒を循環するための閉循環路に放熱手段と冷媒ポンプと複数の熱交換手段のすべてもしくは一部が直列または並列に設けられ、前記熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒の相変化を伴う熱交換作用もしくは対流伝熱により前記発熱電子部品から熱を奪い、前記放熱手段から放熱を行う冷却装置であって、単独もしくは複数熱交換手段に冷媒出口から冷媒入口に連通する冷媒流路とその流路中に別個の冷媒ポンプを備え、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置としている。 In the present invention, all or part of the heat radiating means, the refrigerant pump, and the plurality of heat exchanging means are provided in series or in parallel in a closed circuit for circulating the refrigerant, and the heat exchanging means is brought into contact with the heat generating electronic component. A cooling device that removes heat from the heat generating electronic component by heat exchange action or convective heat transfer accompanied by a phase change of the refrigerant in the closed circuit and radiates heat from the heat radiating means. A refrigerant flow path communicating from the refrigerant outlet to the refrigerant inlet and a separate refrigerant pump in the flow path are provided, and if the temperature of the refrigerant flowing in is lower than the boiling point of the refrigerant at the pressure and the temperature difference is ΔT, heat transfer The cooling device is characterized in that the average speed of the refrigerant passing through the section is 2 × 10 10 × ΔT (−8.958) or more.

また本発明では、熱交換手段のうち、少なくとも伝熱面に分子間結合度の高いコーティング層を有することを特徴とする請求項1から7の冷却装置としている。   Further, in the present invention, the cooling device according to any one of claims 1 to 7, further comprising a coating layer having a high intermolecular bonding degree on at least a heat transfer surface of the heat exchange means.

また本発明では、放熱手段からの放熱がファンによる送風によるもので、熱交換手段内部の伝熱面近傍における温度と圧力を検出する手段と伝熱面温度を検出する手段を具備しとその検出値をもとに放熱手段に送風するファンの回転数を制御する手段を有することを特徴とする請求項1から8の冷却装置としている。   Further, in the present invention, the heat radiation from the heat radiating means is due to the air blown by the fan, and includes means for detecting the temperature and pressure in the vicinity of the heat transfer surface inside the heat exchange means and means for detecting the heat transfer surface temperature. 9. The cooling device according to claim 1, further comprising means for controlling the rotational speed of a fan that blows air to the heat radiating means based on the value.

本発明の冷却装置によれば十分なサブクール度を得られないような小型の冷却装置においても、伝熱面を覆う大きな気泡を形成すると直ちに周囲のサブクール冷媒により凝縮して消滅する気泡微細化沸騰を安定して持続することが可能となり、即ち大気泡の形成と崩壊を瞬時に繰り返すことによって、伝熱面表面のより広い範囲で十分なサブクール冷媒の混合および供給を促進して温度分布を均一にすると共に大量のサブクール冷媒が伝熱面に触れて大量の熱を伝熱面から除去して一般限界熱流束を遙かに超える高熱流束下においても除熱可能としている。したがって、従来は冷却が困難とされてきた高熱密度のPC用MPU等に対して、低コストで高い冷却効率を実現できる。また、サブクール度が小さくかつポンプにより発生される冷媒の熱交換部における流速が小さい場合でも前記の気泡微細化沸騰を安定して持続することが可能となり、低コストで高い冷却効率を実現できる。さらに瞬時に繰り返される気泡の形成と崩壊に付随して発生する衝撃波による壊食(エロージョン)による伝熱面の劣化を防ぎ長期間において安定した性能を維持する冷却装置を提供することができる。また、冷却装置で発生する騒音を最小限に抑えることができる。   Even in a small cooling device that cannot obtain a sufficient degree of subcooling according to the cooling device of the present invention, when a large bubble covering the heat transfer surface is formed, it immediately condenses and disappears by the surrounding subcooled refrigerant. In other words, the formation and collapse of large bubbles can be instantaneously repeated to promote sufficient mixing and supply of subcooled refrigerant over a wider area on the surface of the heat transfer surface, thereby making the temperature distribution uniform. In addition, a large amount of subcooled refrigerant touches the heat transfer surface to remove a large amount of heat from the heat transfer surface, so that heat can be removed even under a high heat flux far exceeding the general limit heat flux. Therefore, high cooling efficiency can be realized at a low cost with respect to a high heat density PC MPU or the like that has conventionally been difficult to cool. In addition, even when the subcool degree is small and the flow rate of the refrigerant generated by the pump in the heat exchanging portion is small, the above-described bubble micronization boiling can be stably maintained, and high cooling efficiency can be realized at low cost. Furthermore, it is possible to provide a cooling device that prevents deterioration of the heat transfer surface due to erosion due to shock waves generated accompanying the formation and collapse of bubbles that are instantaneously repeated, and maintains stable performance over a long period of time. In addition, noise generated by the cooling device can be minimized.

本発明の請求項1の発明は、冷媒を循環するための閉循環路に放熱手段と熱交換手段が設けられ、熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒との相変化を伴う熱交換作用で前記発熱電子部品から熱を奪い前記放熱手段から放熱を行う冷却装置であって、冷媒の圧送手段として冷媒ポンプを用い、前記熱交換手段の伝熱部において、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置であり、このような構成としたことで、熱交換部分での冷媒の沸騰様式を気泡微細化沸騰とすることができ、これにより、熱交換部分の熱交換効率を著しく向上することができる。 According to the first aspect of the present invention, a heat dissipating means and a heat exchanging means are provided in a closed circulation path for circulating the refrigerant, and the heat exchanging means is brought into contact with a heat generating electronic component so that A cooling device that takes heat from the heat generating electronic component by heat exchange action accompanied by phase change and radiates heat from the heat radiating means, and uses a refrigerant pump as a refrigerant pressure feeding means, and in the heat transfer section of the heat exchange means, If the temperature of the refrigerant flowing in is lower than the boiling point of the refrigerant at the same pressure and the temperature difference is ΔT, the average speed of the refrigerant passing through the heat transfer section is 2 × 10 10 × ΔT (−8.958) or more. By adopting such a configuration, the refrigerant boiling mode in the heat exchange portion can be changed to bubble micronization boiling, thereby significantly improving the heat exchange efficiency of the heat exchange portion. be able to.

本発明の請求項2の発明は、冷媒を循環するための閉循環路に放熱手段と熱交換手段が設けられ、熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒との相変化を伴う熱交換作用で前記発熱電子部品から熱を奪い前記放熱手段から放熱を行う冷却装置であって、前記閉循環路中に第1の冷媒ポンプを備えと熱交換手段の冷媒出口から冷媒入口に連通する冷媒流路とその流路中に第2の冷媒ポンプを備え、前記熱交換手段の伝熱部において、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置であり、このような構成としたことで、限られた出力の冷媒ポンプであっても効率的に熱交換手段内部における冷媒の平均流速を高めることができ、熱交換部分での冷媒の沸騰様式を気泡微細化沸騰とすることができ、これにより、熱交換部分の熱交換効率を著しく向上することができる。 According to the second aspect of the present invention, the closed circuit for circulating the refrigerant is provided with a heat dissipating means and a heat exchanging means, and the heat exchanging means is brought into contact with the heat generating electronic component so as to contact the refrigerant inside the closed circuit. A cooling device that removes heat from the heat generating electronic component by heat exchange action accompanied by phase change and dissipates heat from the heat radiating means, and includes a first refrigerant pump in the closed circuit and from a refrigerant outlet of the heat exchange means A refrigerant flow path communicating with the refrigerant inlet and a second refrigerant pump in the flow path are provided, and in the heat transfer section of the heat exchanging means, the temperature of the refrigerant flowing in is lower than the boiling point of the refrigerant at the pressure therein, and the temperature If the difference is ΔT, the cooling device is characterized in that the average speed of the refrigerant passing through the heat transfer section is 2 × 10 10 × ΔT (-8.958) or more. Efficient heat exchange means even with the refrigerant pump of the output The average flow velocity of the refrigerant can be enhanced in the parts, the boiling mode of the refrigerant in the heat exchange portion can be a microbubble boils, thereby, it is possible to remarkably improve heat exchange efficiency of the heat exchange portion.

本発明の請求項3の発明は、熱交換手段のうち、受熱面と放熱面の間の部材の熱伝導率がそれ以外の部分の部材の熱伝導率よりも低いことを特徴とする請求項1または請求項2の冷却装置であり、このような構成としたことで、熱交換部分での冷媒の沸騰様式をより安定した気泡微細化沸騰とすることができ、これにより、熱交換部分の著しい熱交換効率を向上を安定化することができる。   The invention according to claim 3 of the present invention is characterized in that the heat conductivity of the member between the heat receiving surface and the heat radiating surface of the heat exchange means is lower than the heat conductivity of the other members. The cooling device according to claim 1 or claim 2 having such a configuration makes it possible to make the boiling mode of the refrigerant in the heat exchange part a more stable bubble micronization boiling. Significant heat exchange efficiency can be improved and stabilized.

本発明の請求項4の発明は、熱交換手段のうち、受熱面直上の冷媒流中に冷媒攪拌手段を有することを特徴とする請求項1から請求項4の冷却装置であり、このような構成としたことで、熱交換部分での冷媒の沸騰様式を気泡微細化沸騰とすることができ、これにより、熱交換部分の熱交換効率を著しく向上することができる。   Invention of Claim 4 of this invention is a cooling device of Claims 1-4 which has a refrigerant | coolant stirring means in the refrigerant | coolant flow just above a heat receiving surface among heat exchange means, Such a cooling device, By adopting the configuration, the boiling mode of the refrigerant in the heat exchange part can be changed to bubble refined boiling, and thereby the heat exchange efficiency of the heat exchange part can be remarkably improved.

本発明の請求項5の発明は、熱交換手段のうち、冷媒が受熱面に流入する位置直前の上流に乱流促進構造を有することを特徴とする請求項1から4の冷却装置であり、このような構成としたことで、熱交換部分での冷媒の沸騰様式をより安定した気泡微細化沸騰とすることができ、これにより、熱交換部分の著しい熱交換効率を向上を安定化することができる。   Invention of Claim 5 of this invention is a cooling device of Claim 1 to 4 which has a turbulent flow promotion structure in the upstream just before the position where a refrigerant | coolant flows in into a heat receiving surface among heat exchange means, By adopting such a configuration, it is possible to make the boiling mode of the refrigerant in the heat exchange part more stable bubble refinement boiling, thereby stabilizing the improvement of the remarkable heat exchange efficiency of the heat exchange part. Can do.

本発明の請求項6の発明は、冷媒を循環するための閉循環路に放熱手段と冷媒ポンプと複数の熱交換手段のすべてもしくは一部が直列または並列に設けられ、前記熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒の相変化を伴う熱交換作用もしくは対流伝熱により前記発熱電子部品から熱を奪い、前記放熱手段から放熱を行う冷却装置であって、少なくとも最も熱密度の高い熱交換手段が、放熱手段に対し最も上流にあって、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置であり、このような構成としたことで、最小の部品点数で効率的に熱交換手段内部における冷媒の平均流速を高めることができ、これにより、もっとも熱負荷の大きな熱交換手段における熱交換効率を著しく向上させるとともに他の複数の熱交換部分の熱交換効率も向上することができる。 According to a sixth aspect of the present invention, all or a part of the heat dissipating means, the refrigerant pump, and the plurality of heat exchanging means are provided in series or in parallel in a closed circuit for circulating the refrigerant, and the heat exchanging means generates heat. A cooling device that is brought into contact with an electronic component to remove heat from the heat generating electronic component by heat exchange action or convective heat transfer accompanied by a phase change of the refrigerant inside the closed circuit, and radiates heat from the heat radiating means. Refrigerant that passes through the heat transfer section when the heat exchange means having a high heat density is at the most upstream with respect to the heat dissipating means, and the temperature of the refrigerant flowing in is lower than the boiling point of the refrigerant at that pressure and the temperature difference is ΔT. The cooling device is characterized in that the average speed of the refrigerant is 2 × 10 10 × ΔT (−8.958) or more. By adopting such a configuration, the refrigerant in the heat exchange means can be efficiently used with the minimum number of parts. Mean flow velocity Can Mel, this makes it possible to best heat exchange efficiency of the other of the plurality of heat exchange parts with remarkably improve heat exchange efficiency in a large heat exchange means of the thermal load is also improved.

本発明の請求項7の発明は、冷媒を循環するための閉循環路に放熱手段と冷媒ポンプと複数の熱交換手段のすべてもしくは一部が直列または並列に設けられ、前記熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒の相変化を伴う熱交換作用もしくは対流伝熱により前記発熱電子部品から熱を奪い、前記放熱手段から放熱を行う冷却装置であって、単独もしくは複数熱交換手段に冷媒出口から冷媒入口に連通する冷媒流路とその流路中に別個の冷媒ポンプを備え、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置であり、このような構成としたことで、限られた出力の冷媒ポンプであっても効率的に熱交換手段内部における冷媒の平均流速を高めることができ、これにより、もっとも熱負荷の大きな熱交換手段における熱交換効率を著しく向上させるとともに他の複数の熱交換部分の熱交換効率も向上することができる。 According to a seventh aspect of the present invention, all or part of the heat radiating means, the refrigerant pump, and the plurality of heat exchanging means are provided in series or in parallel in a closed circuit for circulating the refrigerant, and the heat exchanging means generates heat. A cooling device that takes heat from the heat generating electronic component by heat exchange action or convective heat transfer accompanied by a phase change of the refrigerant inside the closed circuit in contact with the electronic component and radiates heat from the heat radiating means, alone or The plurality of heat exchanging means is provided with a refrigerant flow path communicating from the refrigerant outlet to the refrigerant inlet and a separate refrigerant pump in the flow path, and the temperature of the refrigerant flowing in is lower than the boiling point of the refrigerant at the pressure, and the temperature difference is ΔT In this case, the cooling device is characterized in that the average speed of the refrigerant passing through the heat transfer section is 2 × 10 10 × ΔT (−8.958) or more. The refrigerant pump Can effectively increase the average flow rate of the refrigerant inside the heat exchange means, thereby significantly improving the heat exchange efficiency of the heat exchange means with the largest heat load and the heat exchange efficiency of other heat exchange parts. Can also be improved.

本発明の請求項8の発明は、熱交換手段のうち、熱交換手段のうち、少なくとも伝熱面に分子間結合度の高いコーティング層を有することを特徴とする請求項1から7の冷却装置であり、このような構成としたことで、伝熱面の劣化を防ぎ長期間において安定した性能を維持する冷却装置を提供することができる。   The invention according to claim 8 of the present invention has a coating layer having a high degree of intermolecular bonding at least on the heat transfer surface of the heat exchange means. With such a configuration, it is possible to provide a cooling device that prevents deterioration of the heat transfer surface and maintains stable performance over a long period of time.

本発明の請求項9の発明は、放熱手段からの放熱がファンによる送風によるもので、熱交換手段内部の伝熱面近傍における温度と圧力を検出する手段と伝熱面温度を検出する手段を具備しとその検出値をもとに放熱手段に送風するファンの回転数を制御する手段を有することを特徴とする請求項1から8の冷却装置であり、このような構成としたことで、冷却装置で発生する騒音を最小限に抑えることができる。   According to the ninth aspect of the present invention, the heat radiation from the heat radiating means is by air blown by a fan, and means for detecting the temperature and pressure in the vicinity of the heat transfer surface inside the heat exchange means and means for detecting the heat transfer surface temperature are provided. The cooling device according to claim 1, further comprising means for controlling the number of rotations of a fan that blows air to the heat radiating means based on the detected value. Noise generated by the cooling device can be minimized.

(実施の形態1)
本発明の実施の形態1における冷却装置の熱交換手段について説明する。図1は本発明の実施の形態1における冷却装置の構成図である。1はMPU、2はMPU1が実装された基板、3は熱交換手段、4は冷媒を熱交換手段3に供給するポンプ、5は熱交換手段3でMPU1から受け取った熱を外気に放熱する放熱器、6は放熱器5に外気を吹き付けるファン、7は熱交換手段3とポンプ4と放熱器5を繋ぐ管路である。冷却装置内の冷媒に接する部材および冷媒についても配慮が必要である。接液部材については、非凝縮性のガスが部材から発生すれば冷却装置内循環系の全体圧力が上昇、冷媒の沸点が上がり熱交換手段における熱平衡温度が上昇することで所要の冷却性能が実現できなくなってしまう。例えば冷媒が水の場合、アルミニウムなど化学的に反応して非凝縮性のガスを生じるような金属、わずかながらでも分解することで非凝縮性のガスを発する有機物は接液部材の材料とすることができない。冷媒については、R134aなどのフレオン系の有機冷媒、プロパン、水などがPC用冷却装置に利用できる。しかし、フレオン系冷媒の地球温暖化に拘る環境問題、プロパンの安全性、冷媒としての性能を考慮すると水がPC用冷却装置には最適である。したがって水を冷媒とすれば熱交換手段3、ポンプ4の接液部、放熱器5、管路7などは必然的に銅が最良の構成材料となる。MPU1は前記のように回路密度の向上に伴い発熱密度が近年非常に高まっておりその伝熱面における熱流束は1平方センチあたり300W(3MW/m2)を越えるものとなる。なお、MPU1において発生した熱を放熱する経路として基板2および周囲の空気が考えられるがいずれも熱伝導度が低く、有効な伝熱経路とはなり得ない。例えば冷媒に水を用いた場合、相変化を利用して熱の移送を行うためには所要とされる熱交換手段3で冷媒が蒸発するようにその伝熱部での圧力を低く保つようにする。そのため、外部の大気圧に対し永続して気密を保つため、管路7はもとより冷媒が接する部材はすべて銅などの金属製とし部品間の接合にも有機系接着剤などは用いいず溶接などを行うなど特別に配慮する必要がある。アルミニウムなど、冷媒と化学的に反応して非凝縮性のガスを生じるような金属は接液する部品の素材とすることができない。さて、研究論文1:日本機械学会論文集(B編)58巻546号論文No.91−0492「気泡微細化沸騰の発生と安定性」および研究論文2:日本機械学会論文集(B編)63巻637号論文No.98−1221「矩形管流路内のサブクール沸騰熱伝達(気泡微細化沸騰の観察と発生条件)」において、気泡微細化沸騰を生じさせる条件が述べられている。研究論文1によると、「強サブクール沸騰では、核沸騰領域は飽和沸騰の延長線上に位置するが、DNB点を超えてもすぐには膜沸騰に遷移せず、気泡微細化領域に移行する。このときその沸騰曲線は気泡微細化現象が発生していない普通の沸騰曲線とは異なる。すなわち普通の沸騰では遷移沸騰領域にある伝熱面温度にもかかわらず、ここでは曲線が正の傾きを持つのが特徴である。また本報では、この気泡微細化現象を、微細化された気泡が伝熱面から射出されるときの強さによって2種類の形態に分類することにし、それぞれ激しい気泡微細化沸騰(Stormy Microbubble Emission Boil−ing)、静かな気泡微細化沸騰(Calm Microbubble Emission Boiling)という名称で呼ぶ。」とし、「気泡微細化現象がいずれの形態を呈するかはサプクール度および流速に大きく依存し、また、条件によっては両者の間で往復する変動が生じることが、圧力および温度の変動を同時測定した結果などから明らかになった。」としている(DNB:Departure from Nucleate Boilingの略「核沸騰限界」)。同論文では静かな気泡微細化沸騰で2MW/m2程度、激しい気泡微細化沸騰では10MW/m2程度までの熱流速を実験で確認している。
(Embodiment 1)
The heat exchange means of the cooling device in Embodiment 1 of the present invention will be described. FIG. 1 is a configuration diagram of a cooling device according to Embodiment 1 of the present invention. DESCRIPTION OF SYMBOLS 1 is MPU, 2 is the board | substrate with which MPU1 was mounted, 3 is a heat exchange means, 4 is a pump which supplies a refrigerant | coolant to the heat exchange means 3, 5 is heat dissipation which radiates the heat received from MPU1 by the heat exchange means 3 to outside air 6 is a fan for blowing outside air to the radiator 5, and 7 is a pipe line connecting the heat exchange means 3, the pump 4 and the radiator 5. Consideration is also required for the member in contact with the refrigerant in the cooling device and the refrigerant. For non-condensable gas generated from the member, the overall pressure of the circulating system in the cooling device rises, the boiling point of the refrigerant rises, and the heat equilibrium temperature in the heat exchange means rises. It becomes impossible. For example, when the coolant is water, a metal that reacts chemically such as aluminum to generate a non-condensable gas, or an organic substance that emits a non-condensable gas by decomposing even a little should be used as the material of the wetted part I can't. As for the refrigerant, Freon organic refrigerant such as R134a, propane, water and the like can be used for the cooling device for PC. However, water is the most suitable for the cooling device for PC in consideration of environmental problems related to global warming of Freon refrigerant, safety of propane, and performance as a refrigerant. Therefore, if water is used as the refrigerant, the heat exchange means 3, the liquid contact part of the pump 4, the radiator 5, the pipe line 7, etc. inevitably become the best constituent material. As described above, the heat generation density of the MPU 1 has been greatly increased with the improvement of the circuit density as described above, and the heat flux at the heat transfer surface exceeds 300 W (3 MW / m 2 ) per square centimeter. In addition, although the board | substrate 2 and surrounding air can be considered as a path | route which radiates the heat | fever generated in MPU1, neither has a low thermal conductivity and cannot become an effective heat-transfer path | route. For example, when water is used as the refrigerant, in order to transfer the heat using the phase change, the pressure at the heat transfer section is kept low so that the refrigerant is evaporated by the required heat exchange means 3. To do. Therefore, in order to keep the airtight permanently against the external atmospheric pressure, all the members that contact the refrigerant as well as the conduit 7 are made of metal such as copper, and welding is not used for joining the parts. Special considerations such as Metals that react chemically with the refrigerant to produce non-condensable gas, such as aluminum, cannot be used as a material for parts in contact with liquid. Now, Research Paper 1: Proceedings of the Japan Society of Mechanical Engineers (Part B), Vol. 91-0492 “Occurrence and Stability of Bubble Micronization Boiling” and Research Paper 2: Transactions of the Japan Society of Mechanical Engineers (Part B), Vol. 63, No. 637. 98-1221 “Subcooled boiling heat transfer in rectangular channel (observation and generation conditions for bubble refinement boiling)” describes conditions that cause bubble refinement boiling. According to Research Paper 1, “In strong subcooled boiling, the nucleate boiling region is located on the extension line of saturation boiling, but even if the DNB point is exceeded, it does not immediately transition to film boiling, but shifts to the bubble refinement region. At this time, the boiling curve is different from the normal boiling curve in which the bubble refinement phenomenon does not occur, that is, in the normal boiling, the curve has a positive slope in spite of the heat transfer surface temperature in the transition boiling region. In addition, in this paper, we decided to classify this phenomenon of bubble miniaturization into two types according to the strength when the micronized bubble is ejected from the heat transfer surface. Named “Storm Microbubble Emission Boiling”, Calm Microbubble Emission Boiling "Which form of bubble refinement phenomenon depends largely on the degree of subcooling and flow velocity, and depending on the conditions, fluctuations reciprocating between the two may occur. It was clarified from the results of simultaneous measurement of “(NNB: Departure from Nucleate Boiling”, “nuclear boiling limit”). 2MW / m 2 about a quiet microbubble boiling in the same paper, it was confirmed by experiment heat flux up to about 10 MW / m 2 is intense microbubble boiling.

図2に研究論文2に示されている2つの気泡微細化沸騰(MEB)の形態領域を示す。この図から気泡微細化沸騰に遷移する条件をサブクール度ΔTsubと流速(Flow velocity)Uについて定式化すると、静かな気泡微細化沸騰(Calm−MEB)に遷移する条件は、
U=2×1010×ΔT(-8.958) ・・・(式1)
激しい気泡微細化沸騰(Stormy−MEB)に遷移する条件は、
U=1×109×ΔTsub-6.9972 ・・・(式2)
となる。尚、上記上付き文字は、累乗用を示す。このことから、図1においてPC筐体外の空気をファン6により放熱器6に吹き付け、内部の冷媒温度を下げ、ポンプ4により冷媒を加圧し、熱交換器3に送り込むことで、少なくとも上記の(式1)を満足させれば一般限界熱流速を超えても膜沸騰に遷移せず、そこでの沸騰様式は気泡微細化沸騰となる。すなわちこうすることで大量の熱が伝熱面から取り除かれ、一般限界熱流束を遥かに超える高熱流束下においても気泡微細化沸騰を安定して持続し、除熱することができる。
FIG. 2 shows two morphological regions of bubble micronization boiling (MEB) shown in Research Paper 2. From this figure, when the conditions for transition to bubble refinement boiling are formulated for subcool degree ΔTsub and flow velocity (Flow velocity) U, the conditions for transition to quiet bubble refinement boiling (Calm-MEB) are:
U = 2 × 10 10 × ΔT (-8.958) (Formula 1)
The conditions for transition to intense bubble refinement boiling (Storm-MEB) are:
U = 1 × 10 9 × ΔTsub -6.9972 (Expression 2)
It becomes. Note that the above superscript indicates power. Therefore, in FIG. 1, air outside the PC housing is blown to the radiator 6 by the fan 6, the internal refrigerant temperature is lowered, the refrigerant is pressurized by the pump 4, and sent to the heat exchanger 3. If Formula 1) is satisfied, even if the general critical heat flow rate is exceeded, transition to film boiling does not occur, and the boiling mode there is bubble refined boiling. That is, by doing so, a large amount of heat is removed from the heat transfer surface, and even under a high heat flux far exceeding the general limit heat flux, the bubble micronization boiling can be stably maintained and heat can be removed.

(実施の形態2)
ここで、もし、要求される伝熱面での熱流束が大きければ流速を上げるかもしくはサブクール度を大きくし、なるべく(式2)を満足するようにすればよい。ただし、前記のようにさらに大きなサブクール度の確保は困難であるため、流速を高めることが得策である。
(Embodiment 2)
Here, if the required heat flux at the heat transfer surface is large, the flow velocity is increased or the subcooling degree is increased to satisfy (Equation 2) as much as possible. However, it is difficult to secure a larger subcooling degree as described above, so it is a good idea to increase the flow rate.

図3は本発明の実施の形態2における冷却装置の構成図である。実施の形態1と異なる点はポンプ4の他に第2のポンプとしてポンプ4´を加えた構成となっていることである。ポンプ4´は熱交換手段3と放熱器5の間を繋ぐ管路7の途中に吸い込み口、第1のポンプであるポンプ4と熱交換手段3の途中の繋ぐ管路7の途中に吐き出し口を持つように備えられる。ポンプ4については、その運転負荷が熱交換手段3と放熱器5およびそれぞれの構成部分を繋ぐ管路7の循環流量分の流体抵抗となるが、ポンプ4´はその運転負荷は熱交換手段3のみであるため同じポンプ性能、同じ運転動力であると仮定すればより多くの冷媒を動かすことが可能である。すなわち、ポンプ4と同時にポンプ4´を運転することで熱交換手段3を通過する流量を格段に多くすることができる。このことで、熱交換手段3内の流速はより高速となり、サブクール度が大きく確保できない場合でも安定した気泡微細化沸騰の状態を作ることができる。さらに、熱交換手段3の分の負荷が実質的にポンプ4から除かれるので、全体の循環流量を多少なりとも増加させることにもなる。それにより、放熱器5の放熱効率もわずかながら向上するのでサブクール度も幾分大きく確保できるという利点も生じる。なお、ポンプ4とポンプ4´は同じ性能である必要はなく、取り付けスペースその他の理由で適宜選定できる。   FIG. 3 is a configuration diagram of a cooling device according to Embodiment 2 of the present invention. The difference from the first embodiment is that a pump 4 ′ is added as a second pump in addition to the pump 4. The pump 4 ′ has a suction port in the middle of the conduit 7 connecting the heat exchange means 3 and the radiator 5, and a discharge outlet in the middle of the conduit 7 in the middle of the first pump 4 and the heat exchange means 3. Be prepared to have. For the pump 4, the operating load is a fluid resistance corresponding to the circulation flow rate of the pipe 7 connecting the heat exchanging means 3, the radiator 5, and the respective components, but the operating load of the pump 4 ′ is the heat exchanging means 3. As a result, it is possible to move more refrigerant if it is assumed that the same pump performance and the same driving power are obtained. That is, by operating the pump 4 ′ simultaneously with the pump 4, the flow rate passing through the heat exchange means 3 can be remarkably increased. As a result, the flow rate in the heat exchanging means 3 becomes higher, and a stable bubble refined boiling state can be created even when the subcool degree cannot be ensured greatly. Furthermore, since the load corresponding to the heat exchange means 3 is substantially removed from the pump 4, the overall circulation flow rate is increased somewhat. Thereby, since the heat dissipation efficiency of the radiator 5 is slightly improved, there is also an advantage that the degree of subcooling can be secured somewhat large. Note that the pump 4 and the pump 4 ′ do not have to have the same performance, and can be appropriately selected for installation space and other reasons.

(実施の形態3)
本発明の実施の形態3における冷却装置について説明する。前記の研究論文2中に、伝熱面長が長い場合の気泡微細化沸騰において、「伝熱面上を流れる液は加熱されてサブクールが減少するので、ΔTsub=10KではいずれのUにおいても発生せず、遷移沸騰を経て膜沸騰に至っているものと考えられる。」との記述がある。このことから、伝熱面に至るまで、冷媒温度が上昇することは極力さけることでサブクール度を確保することが重要であることがわかる。例として銅のみでできたの熱交換手段を考えると、特に、実質的な伝熱面近傍では冷媒流に境界層ができ冷媒の温度上昇が著しくなることがMPUに接触する受熱面から冷媒に接液する伝熱面まで熱が移動する間にそれと直行する方向(面方向)にも熱が拡散する。つまり、伝熱面での温度分布は受熱面中心を中心とする同心円上に等温線をもつものとなる。このことは伝熱部接する冷媒温度は徐々に上昇していくことを意味し、前記の論文中にある長い伝熱面と同様に局所的に冷媒のサブクール度が減少して膜沸騰に至りやすい状態となる。
(Embodiment 3)
A cooling device according to Embodiment 3 of the present invention will be described. In the research paper 2 mentioned above, in bubble miniaturization boiling when the heat transfer surface length is long, “the liquid flowing on the heat transfer surface is heated and subcooling is reduced, so that ΔTsub = 10K occurs in any U. It is considered that film boiling occurs through transition boiling. " From this, it can be seen that it is important to secure the subcooling degree by avoiding the rise in the refrigerant temperature as much as possible until reaching the heat transfer surface. Considering heat exchange means made only of copper as an example, especially in the vicinity of a substantial heat transfer surface, a boundary layer is formed in the refrigerant flow, and the temperature rise of the refrigerant becomes significant, and the refrigerant receives heat from the heat receiving surface that contacts the MPU. While heat is transferred to the heat transfer surface in contact with the liquid, the heat is also diffused in a direction (surface direction) perpendicular to the heat transfer surface. That is, the temperature distribution on the heat transfer surface has an isotherm on a concentric circle centered on the center of the heat receiving surface. This means that the temperature of the refrigerant in contact with the heat transfer part gradually rises, and like the long heat transfer surface in the paper, the subcooling degree of the refrigerant is locally reduced and film boiling tends to occur. It becomes a state.

図4は本発明の実施の形態3における冷却装置内の熱交換手段3の部分構成図である。8は熱交換手段3のMPU1に接触する面(受熱面)から冷媒に接液する面(伝熱面)までの伝熱部材である。伝熱部材8は熱交換手段3の他の部分に比べ熱伝導率の良い材料で作られている。熱交換手段3の他の部分が銅で作られているとすれば、伝熱部材8は金、銀などが銅よりも熱伝導率の良い材料が使用可能である。熱交換手段3の他の部分をステンレス鋼で作られているとすれば、伝熱部材8は銅を使用すれば低コストでほぼ同様の効果を得ることができる。さらには、熱交換手段3の他の部分を、表面をメタライズするなどして非凝集性ガスの発生抑止と気密性確保の処理が施したセラミックなどで作り、伝熱部材8とロウ付けなどで一体化すれば、より効果的である。また、伝熱部材8を熱交換手段3と同じ熱伝導率の材料としその境界に熱流を阻害する前記のメタライズ処理したセラミックなどで作った部材を介在させる、もしくは、溝を設けるなどして同様に熱流を阻害する構造としてもよい。   FIG. 4 is a partial configuration diagram of heat exchange means 3 in the cooling device according to Embodiment 3 of the present invention. Reference numeral 8 denotes a heat transfer member from a surface (heat receiving surface) in contact with the MPU 1 of the heat exchanging means 3 to a surface (heat transfer surface) in contact with the refrigerant. The heat transfer member 8 is made of a material having a higher thermal conductivity than the other parts of the heat exchange means 3. If the other part of the heat exchanging means 3 is made of copper, the heat transfer member 8 can be made of a material having higher thermal conductivity than gold, such as gold and silver. If the other part of the heat exchanging means 3 is made of stainless steel, the heat transfer member 8 can obtain substantially the same effect at low cost if copper is used. Furthermore, the other part of the heat exchange means 3 is made of ceramic or the like that has been subjected to a treatment for suppressing the generation of non-aggregating gas and ensuring airtightness by metallizing the surface, and brazing the heat transfer member 8 and the like. If integrated, it is more effective. Further, the heat transfer member 8 is made of a material having the same thermal conductivity as that of the heat exchanging means 3, and a member made of the above-mentioned metallized ceramic or the like that inhibits the heat flow is interposed at the boundary, or a groove is provided. Alternatively, the heat flow may be blocked.

(実施の形態4)
本発明の実施の形態4における冷却装置について説明する。前記のように核沸騰から気泡微細化沸騰の状態に遷移させそれを安定に維持するためには、サブクール度を確保した冷媒に沸騰により相変化して生じた気泡を早急に分散させ、冷媒内で迅速に凝縮させることが必要である。そのためには、伝熱面近傍の冷媒の流速を上げかつ乱流とすることで上記の気泡の分散が効率的に行われることとなる。
(Embodiment 4)
A cooling device according to Embodiment 4 of the present invention will be described. As described above, in order to make the transition from the nucleate boiling to the bubble miniaturization boiling state and maintain it stably, the bubbles generated by the phase change due to the boiling are rapidly dispersed in the refrigerant with the subcool degree secured, It is necessary to condense quickly. For this purpose, the bubbles are dispersed efficiently by increasing the flow rate of the refrigerant in the vicinity of the heat transfer surface and creating a turbulent flow.

図5に本発明の実施の形態4における冷却装置の熱交換手段の部分構成図を示す。図5において、9は冷媒を撹拌する撹拌手段、10は撹拌手段9と一体になった駆動磁石、11はコイルおよびコアからなる駆動部材である。撹拌手段9と一体になった駆動磁石10は、駆動部材11および図示しない電流制御回路により、回転する。なお、駆動磁石10と駆動部材11の間にある熱交換手段3の隔壁は透磁性のものであることは言うまでもない。この回転運動により、撹拌手段9も回転し熱交換手段3内にある冷媒を撹拌する。ポンプにより加圧された冷媒は管路7から熱交換手段3に順次流入するので熱交換手段3内の冷媒は撹拌されつつも入口から出口へ移動し続けることになる。撹拌手段9により撹拌された冷媒の伝熱面近傍における伝熱面に対する相対速度は上昇しそれに伴い温度境界層も薄くなる。つまり、伝熱面で気化した冷媒の気泡は発生後、すぐに温度境界層を抜け温度の低い冷媒に接触することになり、そこで迅速に凝縮することができる。さらに物理的に撹拌することで近傍の流れは乱れ、気泡周囲の冷媒内の熱交換も活発化することから凝縮作用はよりスムーズに進行する。撹拌手段9はMPU1からの受熱面直上の伝熱面近傍に回転可能に保持されるが、撹拌手段9と伝熱面の距離はなるべく近いほうが望ましい。また、駆動方式による駆動力に余裕があり、撹拌手段9と伝熱面の接触による摩耗などに起因する問題が生じなければ、接触した状態で駆動する方がより効果的となる。また、本実施の形態4によれば駆動は回転運動によるものになっているが往復運動などとしても構わない。さらに、撹拌手段としても伝熱面上を球体もしくは円筒体がころがり運動をするようなものでも同様な効果を得ることができる。   FIG. 5 shows a partial configuration diagram of the heat exchange means of the cooling device according to Embodiment 4 of the present invention. In FIG. 5, 9 is a stirring means for stirring the refrigerant, 10 is a drive magnet integrated with the stirring means 9, and 11 is a drive member comprising a coil and a core. The drive magnet 10 integrated with the stirring means 9 is rotated by the drive member 11 and a current control circuit (not shown). Needless to say, the partition walls of the heat exchange means 3 between the drive magnet 10 and the drive member 11 are magnetically permeable. Due to this rotational movement, the stirring means 9 also rotates and stirs the refrigerant in the heat exchange means 3. Since the refrigerant pressurized by the pump sequentially flows into the heat exchange means 3 from the pipe line 7, the refrigerant in the heat exchange means 3 continues to move from the inlet to the outlet while being stirred. The relative speed with respect to the heat transfer surface in the vicinity of the heat transfer surface of the refrigerant stirred by the stirring means 9 increases, and the temperature boundary layer also becomes thinner accordingly. In other words, the bubbles of the refrigerant evaporated on the heat transfer surface immediately pass through the temperature boundary layer and come into contact with the refrigerant having a low temperature, and can be quickly condensed there. Further, by physically stirring, the flow in the vicinity is disturbed, and heat exchange in the refrigerant around the bubbles is also activated, so that the condensing action proceeds more smoothly. The stirring means 9 is rotatably held in the vicinity of the heat transfer surface immediately above the heat receiving surface from the MPU 1, but it is desirable that the distance between the stirring means 9 and the heat transfer surface be as close as possible. Further, if there is a margin in the driving force due to the driving method and no problem due to wear due to contact between the stirring means 9 and the heat transfer surface occurs, it is more effective to drive in the contacted state. Further, according to the fourth embodiment, the driving is based on a rotational motion, but it may be a reciprocating motion. Furthermore, the same effect can be obtained even when the spherical body or the cylindrical body rolls on the heat transfer surface as the stirring means.

(実施の形態5)
本発明の実施の形態5における冷却装置について説明する。前記実施の形態4において、伝熱面近傍での冷媒の撹拌が気泡微細化沸騰状態の生成および維持安定化に有効であることは述べたが、撹拌機構を伝熱面近傍に設けることは冷却装置自体の信頼性、コスト、実装時の融通性など、問題が生ずる場合がありうる。その場合、次善策として伝熱面近傍の冷媒流の乱流強化が有効である。つまり、冷媒の流れ中の伝熱面近傍上流に簡単な構成の乱流促進構造を設けることで実施の形態4に近い効果を得る事ができる。
(Embodiment 5)
A cooling device according to Embodiment 5 of the present invention will be described. In the fourth embodiment, it has been described that the stirring of the refrigerant in the vicinity of the heat transfer surface is effective for generating and maintaining the bubble micronized boiling state, but providing the stirring mechanism in the vicinity of the heat transfer surface is cooling. Problems such as the reliability of the device itself, cost, and flexibility during mounting may occur. In that case, it is effective to enhance the turbulent flow of the refrigerant flow in the vicinity of the heat transfer surface as a next best measure. That is, the effect close to that of the fourth embodiment can be obtained by providing a turbulent flow promoting structure with a simple configuration upstream of the heat transfer surface in the refrigerant flow.

図6に本発明の実施の形態5における冷却装置の熱交換手段の部分構成図を示す。12は乱流促進構造、13はワイヤ型乱流促進構造である。図6(a)はMPU1上部に空間的な余裕があり、かつ冷媒を送り込むポンプに能力的な余裕がある場合の構成例である。管路7からの冷媒は乱流促進構造12に突き当たる。この乱流促進構造12を冷媒が超えるとき流れ中のせん断力により比較的規模の大きい乱れが生じる。この乱流の作用によりサブクール度を確保した冷媒の沸騰により相変化して生じた気泡を早急に分散させ、冷媒内で迅速に凝縮させることができる。この乱れは下流に行くに従い散逸していくが伝熱面上部で発生した気泡近傍の冷媒を攪拌するのに十分な強度を保つようにすることが必要である。そのため、乱流促進構造12の断面形状は図の形状に限られるものではなくかつ、流れに直交する方向に断面形状を変化させることで乱流に3次元構造を持たせることで乱流強度を十分なものとすることができる。ただし、乱流促進構造12はなるべく伝熱面に近づける方が効果が大きくなるが伝熱面上に位置させると、そこで流れの剥離が起こり膜沸騰状態もしくはそれに近似した状態となり、伝熱効率が低下するので好ましくない。図6(b)はMPU1上部に空間的な余裕がないもしくは冷媒を送り込むポンプに能力的な余裕がない場合の構成例である。ワイヤ型乱流促進構造13は針状の部材を冷媒流れに直交するように張ったものである。このワイヤ型乱流促進構造13を冷媒が超えるとき周期的に流れ中のせん断力の強弱分布が発生しこれにより渦の列が生じる。この渦列は上流では規則正しく並んだ状態で下流へと流れるが、途中で崩れ均一な乱れ状態をもつ流れとなる。このワイヤ型乱流促進構造13による乱流促進は上記の乱流促進構造12によるものに比べ乱流の規模や強度は大きくならないものの比較的流体抵抗が少ないため使われるポンプ動力が節減できる。なお、ワイヤ型乱流促進構造13の数は図6(b)においては1本であるが、伝熱面の広さによっては伝熱面上部の冷媒流中に増設し、乱流範囲を拡張してもよい。   FIG. 6 shows a partial configuration diagram of the heat exchange means of the cooling device in the fifth embodiment of the present invention. 12 is a turbulent flow promoting structure, and 13 is a wire type turbulent flow promoting structure. FIG. 6A shows a configuration example in the case where there is a space in the upper part of the MPU 1 and there is a capacity in the pump for feeding the refrigerant. The refrigerant from the pipe 7 hits the turbulent flow promoting structure 12. When the refrigerant exceeds the turbulent flow promoting structure 12, a relatively large scale of turbulence occurs due to the shear force in the flow. Bubbles generated by the phase change due to the boiling of the refrigerant that has secured the subcool degree by the action of the turbulent flow can be quickly dispersed and condensed quickly in the refrigerant. This turbulence dissipates as it goes downstream, but it is necessary to maintain sufficient strength to stir the refrigerant in the vicinity of the bubbles generated at the upper part of the heat transfer surface. Therefore, the cross-sectional shape of the turbulent flow promoting structure 12 is not limited to the shape shown in the figure, and the turbulent flow strength is increased by giving the turbulent flow a three-dimensional structure by changing the cross-sectional shape in the direction orthogonal to the flow. It can be sufficient. However, the effect of increasing the turbulent flow promoting structure 12 as close as possible to the heat transfer surface is greater, but if it is positioned on the heat transfer surface, flow separation occurs there, and the film boils or approximates it, resulting in a decrease in heat transfer efficiency. This is not preferable. FIG. 6B shows a configuration example in the case where there is no space in the upper part of the MPU 1 or there is no capacity in the pump for feeding the refrigerant. The wire-type turbulent flow promoting structure 13 is a needle-like member stretched so as to be orthogonal to the refrigerant flow. When the refrigerant exceeds the wire-type turbulent flow promoting structure 13, a distribution of shear force in the flow is periodically generated, thereby generating a vortex array. These vortex streets flow downstream in a state where they are regularly arranged upstream, but break in the middle and become a flow having a uniform turbulence state. The turbulent flow promotion by the wire type turbulent flow promoting structure 13 does not increase the scale and strength of the turbulent flow as compared with the turbulent flow promoting structure 12 described above, but can reduce the pump power used because it has a relatively small fluid resistance. The number of wire-type turbulent flow promoting structures 13 is one in FIG. 6B, but depending on the size of the heat transfer surface, it can be added to the refrigerant flow above the heat transfer surface to expand the turbulent flow range. May be.

(実施の形態6)
本発明の実施の形態6における冷却装置について説明する。
(Embodiment 6)
A cooling device according to Embodiment 6 of the present invention will be described.

図7に本発明の実施の形態6における冷却装置の概略構成図を示す。図7において1´はMPU1と同等の発熱量および発熱密度であるMPU、3´は熱交換手段、14および14´は補助基板用熱交換手段、15および15´は補助基板、16および16´は補助基板上に実装されたサブチップである。最近のサーバー用PCには1枚の基板2上に複数のMPU1およびMPU1´を実装してその処理能力を向上しているものがある。また、PCの画像表示能力を向上するサブチップ16を補助基板15に実装しそれを基板2に設けられたスロットに挿入している。最近はさらにサブチップ16´と補助基板15´を増設することでさらに画像表示能力を増強しているPCも存在する。サブチップ16およびサブチップ16´は単独で高度な描画処理を高速に行うようになり、その内蔵回路は大規模化し、駆動周波数は高速化してきている。その結果、MPU1およびMPU1´の発熱量および熱密度には及ばないものの動作時にはかなりの発熱を伴うようになっている。従来は補助基板上のサブチップの冷却はヒートシンクと小型ファンによる空冷によって行なわれていたが上記のように発熱量が増加してきた結果、空冷では不十分になってきている。本実施の形態6では、このような状況に対しMPU1およびMPU1´を冷却した後の冷却能力の余剰を使って冷却することで対応している。熱交換手段1および熱交換手段1´は管路7に対し直列であるのでそこを通過する冷媒の流速は、前記(式1)または(式2)の条件よりも高速となる。よってサブクール度が十分に確保された冷媒により熱交換は気泡微細化沸騰により行なわれ、大熱量・高熱密度であるMPU1およびMPU1´を冷却することができる。この下流に補助基板用熱交換手段14および補助基板用熱交換手段14´が並列に配置されている。そのため、通過する冷媒の流速は高速ではないので補助基板用熱交換手段14および補助基板用熱交換手段14´での流体抵抗は直列に接続する場合と比べて低く抑えられ、熱交換は核沸騰により行なわれる。前記のようにサブチップ16およびサブチップ16´はMPU1およびMPU1´ほど大熱量・高熱密度ではないので核沸騰もしくは対流伝熱による熱交換で十分な冷却ができる。なお、本実施の形態6ではポンプの負荷を低減する意味で補助基板用熱交換手段14および補助基板用熱交換手段14´を並列に配置したが、ポンプの能力に余裕があればこの限りではない。また、本実施の形態6ではMPU1以外の冷却対象を、MPU1´およびサブチップ16、サブチップ16´としたが、これ以上もしくはこれ以下の数の冷却対象を同一冷媒循環路内で冷却する場合も同様に最も熱密度の高い熱交換手段3が、放熱手段5に対し最も上流にあり、そこでのサブクール度において流速が少なくとも(式2)の条件より高速であれば最小のポンプ動力で効率のよい冷却装置が実現可能である。   FIG. 7 shows a schematic configuration diagram of a cooling device according to Embodiment 6 of the present invention. In FIG. 7, 1 ′ is an MPU having the same heat generation amount and heat density as MPU 1, 3 ′ is a heat exchanging means, 14 and 14 ′ are auxiliary board heat exchanging means, 15 and 15 ′ are auxiliary boards, and 16 and 16 ′. Is a sub-chip mounted on an auxiliary substrate. Some recent server PCs have a plurality of MPUs 1 and MPUs 1 'mounted on a single substrate 2 to improve the processing capability. Further, the sub chip 16 for improving the image display capability of the PC is mounted on the auxiliary substrate 15 and inserted into a slot provided on the substrate 2. Recently, there are PCs that further enhance the image display capability by adding more subchips 16 'and auxiliary boards 15'. The sub-chip 16 and the sub-chip 16 ′ independently perform high-level drawing processing at a high speed, the built-in circuit is increased in scale, and the drive frequency is increased. As a result, the MPU 1 and MPU 1 ′ have a considerable amount of heat during operation, although they do not reach the heat generation amount and heat density. Conventionally, the sub chip on the auxiliary substrate is cooled by air cooling with a heat sink and a small fan. However, as a result of the increase in the amount of heat generated as described above, air cooling has become insufficient. In the sixth embodiment, such a situation is dealt with by using the surplus cooling capacity after cooling MPU1 and MPU1 ′. Since the heat exchanging means 1 and the heat exchanging means 1 ′ are in series with the pipe line 7, the flow rate of the refrigerant passing therethrough is higher than the condition of the (Expression 1) or (Expression 2). Therefore, heat exchange is performed by bubble micronization boiling with a refrigerant having a sufficiently high subcooling degree, and MPU1 and MPU1 ′ having a large amount of heat and high heat density can be cooled. The auxiliary board heat exchanging means 14 and the auxiliary board heat exchanging means 14 ′ are arranged in parallel downstream of this. Therefore, since the flow rate of the refrigerant passing therethrough is not high, the fluid resistance in the auxiliary substrate heat exchanging means 14 and the auxiliary substrate heat exchanging means 14 ′ is suppressed as compared with the case where they are connected in series. It is done by. As described above, the subchip 16 and the subchip 16 'are not as large in heat quantity and high heat density as the MPU1 and MPU1', and therefore can be sufficiently cooled by heat exchange by nucleate boiling or convective heat transfer. In the sixth embodiment, the auxiliary board heat exchanging means 14 and the auxiliary board heat exchanging means 14 'are arranged in parallel to reduce the load on the pump. Absent. In the sixth embodiment, the cooling target other than the MPU 1 is the MPU 1 ′, the sub chip 16, and the sub chip 16 ′, but the same applies when cooling more or less cooling targets in the same refrigerant circulation path. If the heat exchange means 3 having the highest heat density is the most upstream with respect to the heat dissipating means 5, and the flow rate is higher than the condition of (Equation 2) at the subcooling degree, efficient cooling with minimum pump power is possible. A device is feasible.

(実施の形態7)
本発明の実施の形態7における冷却装置について説明する。
(Embodiment 7)
A cooling device according to Embodiment 7 of the present invention will be described.

図8に本発明の実施の形態7における冷却装置の概略構成図を示す。本実施の形態7は概略において実施の形態6に近似であるが、主の循環系のポンプ4に加え、熱交換手段3´をバイパスする構成でポンプ4´が設けられている。ポンプ4´は実施の形態2にあるようにその運転負荷は熱交換手段3´のみであるため同じポンプ性能、同じ運転動力であると仮定すればより多くの冷媒を動かすことが可能であり、ポンプ4と同時にポンプ4´を運転することで熱交換手段3´を通過する流量を格段に多くすることができる。このことで、熱交換手段3´内の流速はより高速となり、サブクール度が大きく確保できない場合でも安定した気泡微細化沸騰の状態を作ることができる。つまり、熱交換手段3で受熱した分、熱交換手段3´に流入する冷媒温度は多少上昇しているためサブクール度が減少しており、熱交換手段3´の伝熱面において少なくとも前記(式2)の流速を超える速度で冷媒を動かすことで、熱交換手段3´での気泡微細化沸騰による熱交換が可能となっている。なお、本実施の形態7は実施の形態6と同様に冷却対象の数の増減は任意であり、ポンプ4´と同様の構成、効果をもつポンプの設置数、位置も増減可能である。   FIG. 8 shows a schematic configuration diagram of a cooling device according to Embodiment 7 of the present invention. The seventh embodiment is roughly similar to the sixth embodiment, but in addition to the main circulation system pump 4, a pump 4 ′ is provided so as to bypass the heat exchanging means 3 ′. Since the operation load of the pump 4 ′ is only the heat exchanging means 3 ′ as in the second embodiment, it is possible to move more refrigerant if it is assumed that the same pump performance and the same operation power are obtained. By operating the pump 4 ′ simultaneously with the pump 4, the flow rate passing through the heat exchanging means 3 ′ can be remarkably increased. As a result, the flow rate in the heat exchanging means 3 ′ becomes higher, and a stable bubble refined boiling state can be created even when the subcool degree cannot be ensured greatly. That is, since the temperature of the refrigerant flowing into the heat exchanging means 3 ′ is slightly increased by the amount received by the heat exchanging means 3, the subcooling degree is reduced, and at least the above (formula) on the heat transfer surface of the heat exchanging means 3 ′. By moving the refrigerant at a speed exceeding the flow rate of 2), heat exchange by bubbling refined boiling in the heat exchanging means 3 ′ is possible. In the seventh embodiment, similarly to the sixth embodiment, the number of objects to be cooled can be increased or decreased, and the number of installations and positions of pumps having the same configuration and effect as the pump 4 ′ can be increased or decreased.

(実施の形態8)
本発明の実施の形態8における冷却装置について説明する。前記研究論文(1)および研究論文(2)に気泡微細化沸騰による伝熱面の腐食が報告されている。研究論文(1)を例にとると、「高サプクール度での激しい気泡微細化現象は、伝熱面に針でついたような無数の壊食こんをもたらす。この特色はキャピテーション気泡の崩壊時に、近くの固体壁にみられるものと類似している。」としている。気泡はもともとその周囲と同じ冷媒が相変化して生じたものであるので、気泡内部の気体が周囲の冷媒に冷やされると急激に液体に戻る。このときの収縮は急激でその結果、冷媒中に衝撃波が生じる。この衝撃波により近傍の固体表面が壊食される。冷媒を水とした場合この現象は特に激しい。これを回避するためには固体表面に衝撃を吸収するもしくは衝撃波による壊食に耐える部材を介在させればよい。しかし、熱交換手段3内の伝熱面上に衝撃を吸収しうる厚みのあるクッション部材を設けることは伝熱特性を劣化させるため不適で、固体表面にコーティングする形で壊食に耐える部材を設けるのが得策である。このような部材には、例えば混合触媒を用い母材に分子間結合度の高い炭化クロム合金をコーティングした硬質炭化クロムメッキなどが有効である。
(Embodiment 8)
A cooling device according to Embodiment 8 of the present invention will be described. In the research paper (1) and the research paper (2), corrosion of the heat transfer surface due to bubbling of finer bubbles is reported. Taking research paper (1) as an example, “The intense bubble miniaturization phenomenon at a high degree of subcooling leads to countless erosion erosion like a needle attached to the heat transfer surface. Sometimes it is similar to what is found in a nearby solid wall. " Since the bubbles are originally generated by the phase change of the same refrigerant as the surroundings, the bubbles rapidly return to liquid when the gas inside the bubbles is cooled by the surrounding refrigerant. The contraction at this time is rapid, and as a result, a shock wave is generated in the refrigerant. This shock wave erodes the nearby solid surface. This phenomenon is particularly severe when the coolant is water. In order to avoid this, a member that absorbs shock or resists erosion by shock waves may be interposed on the solid surface. However, it is not appropriate to provide a cushion member with a thickness capable of absorbing shock on the heat transfer surface in the heat exchange means 3 because it deteriorates the heat transfer characteristics, and a member that resists erosion by coating the solid surface. It is a good idea to provide it. For such a member, for example, hard chromium carbide plating in which a base material is coated with a chromium carbide alloy having a high degree of intermolecular bonding using a mixed catalyst is effective.

(実施の形態9)
本発明の実施の形態9における冷却装置について説明する。実際のPCの負荷状態は刻々と変化し、それに応じてMPUにおいて発生する熱量も増減する。もし、発生しうる最大の熱量に合わせてファン回転数を設定するとその送風音は一般的なPCの使用環境にはそぐわない大きなものとなりうる。
(Embodiment 9)
A cooling device according to Embodiment 9 of the present invention will be described. The actual load state of the PC changes every moment, and the amount of heat generated in the MPU increases or decreases accordingly. If the number of fan rotations is set in accordance with the maximum amount of heat that can be generated, the blowing sound can be large and unsuitable for general PC usage environments.

図9に本発明の実施の形態9における冷却装置の概略構成図を示す。図9において17は熱交換手段3内部の伝熱面近傍に設けられた冷媒温度検出手段、18は同じく熱交換手段3内部の伝熱面近傍に設けられた冷媒圧力検出手段、19は伝熱面温度を検出する伝熱面温度検出手段、20は冷媒温度検出手段17および冷媒圧力検出手段18、伝熱面温度検出手段19から得られた検出値をもとにファン6の回転数を制御する制御回路である。制御回路20による制御はまず、冷媒圧力検出手段18からの冷媒の圧力検出値をもとに冷媒の沸点を求める。求め方は近似式もしくは数表などから計算もしくは内挿する方法などがある。その沸点と冷媒温度検出手段17の差がサブクール度となる。PCの稼動状況が変化して伝熱面温度検出手段19により得られた伝熱面温度があらかじめ決められた設定温度を超えた場合、制御回路20はファン6の回転数を上げ、冷媒温度を下げる方向の制御を行う。こうすることでサブクール度が大きくなるので、冷媒の流速は一定でも前記(式2)の条件を満たすので熱交換手段3での沸騰様式は完全な激しい気泡微細化沸騰となって冷却性能は最大となって許容値以下の一定温度となる。この最大冷却性能をMPU1の発生しうる最大熱量を若干超える程度とすることでファンの最高回転数を抑えることができる。PCの負荷が下がり伝熱面温度が下がれば、制御回路20はファン6の回転数を下げ、冷媒温度を上げる方向の制御を行う。こうすることでサブクール度が小さくなり沸騰様式は完全な激しい気泡微細化沸騰から静かな気泡微細化沸騰もしくは核沸騰となり、その時のPC負荷に見合った冷却性能となる。このようにファン6の回転数を制御することで発生する騒音を最低限に抑えることができる。なお、ポンプ4の能力に余裕があればポンプの運転状態も制御することでファン6の回転数の上限を抑えることができ、さらに効果的である。なお、伝熱面温度検出手段19の代替としてMPU1に内蔵される温度センサや基板2に実装される温度センサ、PC上でのMPU稼動状況をソフトで検出する手段も利用可能である。   FIG. 9 shows a schematic configuration diagram of a cooling device according to Embodiment 9 of the present invention. In FIG. 9, 17 is a refrigerant temperature detection means provided near the heat transfer surface inside the heat exchange means 3, 18 is a refrigerant pressure detection means provided similarly near the heat transfer surface inside the heat exchange means 3, and 19 is heat transfer. Heat transfer surface temperature detection means 20 for detecting the surface temperature, 20 controls the rotational speed of the fan 6 based on the detection values obtained from the refrigerant temperature detection means 17, the refrigerant pressure detection means 18, and the heat transfer surface temperature detection means 19. Control circuit. The control by the control circuit 20 first obtains the boiling point of the refrigerant based on the refrigerant pressure detection value from the refrigerant pressure detection means 18. There is a method of calculating or interpolating from an approximate expression or a numerical table. The difference between the boiling point and the refrigerant temperature detection means 17 is the subcool degree. When the operating state of the PC changes and the heat transfer surface temperature obtained by the heat transfer surface temperature detecting means 19 exceeds a predetermined set temperature, the control circuit 20 increases the rotational speed of the fan 6 to increase the refrigerant temperature. Control the lowering direction. By doing this, the degree of subcooling increases, so even if the flow rate of the refrigerant is constant, the condition of (Equation 2) is satisfied. Therefore, the boiling mode in the heat exchange means 3 is completely intense bubble refinement boiling, and the cooling performance is maximum. It becomes a constant temperature below the allowable value. By setting the maximum cooling performance to a level that slightly exceeds the maximum amount of heat that can be generated by the MPU 1, the maximum rotational speed of the fan can be suppressed. When the load on the PC decreases and the heat transfer surface temperature decreases, the control circuit 20 controls the direction in which the rotational speed of the fan 6 is decreased and the refrigerant temperature is increased. By doing so, the subcooling degree is reduced, and the boiling mode changes from complete intense bubble refinement boiling to quiet bubble refinement boiling or nucleate boiling, and cooling performance corresponding to the PC load at that time. Thus, the noise generated by controlling the rotation speed of the fan 6 can be minimized. If the capacity of the pump 4 is sufficient, the upper limit of the rotational speed of the fan 6 can be suppressed by controlling the operation state of the pump, which is more effective. As an alternative to the heat transfer surface temperature detection means 19, a temperature sensor built in the MPU 1, a temperature sensor mounted on the substrate 2, or a means for detecting the MPU operating status on the PC by software can be used.

本発明は、従来の相変化による冷却装置における限界熱密度を大きく超える熱密度をもつ熱源の冷却を小型の冷却装置でも可能とすることができるので、小型・高発熱の電子部品の冷却装置として好適に用いられる。   Since the present invention can enable the cooling of a heat source having a heat density that greatly exceeds the critical heat density of a conventional cooling device by phase change even with a small cooling device, as a cooling device for a small and highly exothermic electronic component. Preferably used.

本発明の実施の形態1における冷却装置の構成図Configuration diagram of cooling device in Embodiment 1 of the present invention 研究論文2に示されている2つの気泡微細化沸騰(MEB)の形態領域図Two bubble refined boiling (MEB) morphological region diagrams shown in Research Paper 2 本発明の実施の形態2における冷却装置の構成図Configuration diagram of cooling device according to Embodiment 2 of the present invention 本発明の実施の形態3における冷却装置内の熱交換手段の部分構成図Partial configuration diagram of heat exchange means in the cooling device in Embodiment 3 of the present invention 本発明の実施の形態4における冷却装置の熱交換手段の部分構成図Partial block diagram of the heat exchange means of the cooling device in Embodiment 4 of the present invention 本発明の実施の形態5における冷却装置の熱交換手段の部分構成図Partial block diagram of the heat exchange means of the cooling device in Embodiment 5 of the present invention 本発明の実施の形態6における冷却装置の概略構成図Schematic block diagram of the cooling device in Embodiment 6 of the present invention 本発明の実施の形態7における冷却装置の概略構成図Schematic configuration diagram of a cooling device in Embodiment 7 of the present invention 本発明の実施の形態9における冷却装置の概略構成図Schematic configuration diagram of a cooling device in Embodiment 9 of the present invention 沸騰曲線図Boiling curve diagram 従来の実施済みのPC用MPU冷却装置の構成図Configuration diagram of conventional MPU cooling device for PC

符号の説明Explanation of symbols

1、1´ MPU
2 基板
3、3´ 熱交換手段
4、4´ ポンプ
5 放熱器
6 ファン
7 管路
8 伝熱部材
9 撹拌手段
10 駆動磁石
11 駆動部材
12 乱流促進構造
13 ワイヤ型乱流促進構造
14、14´ 補助基板用熱交換手段
15、15´ 補助基板
16、16´ サブチップ
17 冷媒温度検出手段
18 冷媒圧力検出手段
19 伝熱面温度検出手段
20 制御回路
111 PC筐体
112 熱交換手段
113 MPU
114 基板
115 放熱器
116 管路
117 ポンプ
1, 1 'MPU
2 Substrate 3, 3 'Heat exchange means 4, 4' Pump 5 Radiator 6 Fan 7 Pipe line 8 Heat transfer member 9 Stirring means 10 Drive magnet 11 Drive member 12 Turbulence promotion structure 13 Wire type turbulence promotion structure 14, 14 ′ Auxiliary board heat exchange means 15, 15 ′ Auxiliary board 16, 16 ′ Subchip 17 Refrigerant temperature detection means 18 Refrigerant pressure detection means 19 Heat transfer surface temperature detection means 20 Control circuit 111 PC housing 112 Heat exchange means 113 MPU
114 Substrate 115 Radiator 116 Pipe line 117 Pump

Claims (9)

冷媒を循環するための閉循環路に放熱手段と熱交換手段が設けられ、熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒との相変化を伴う熱交換作用で前記発熱電子部品から熱を奪い前記放熱手段から放熱を行う冷却装置であって、冷媒の圧送手段として冷媒ポンプを用い、前記熱交換手段の伝熱部において、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置。 Heat dissipating means and heat exchanging means are provided in a closed circulation path for circulating the refrigerant, and the heat exchanging means is brought into contact with the heat generating electronic component, and the heat is generated by a heat exchanging action involving a phase change with the refrigerant inside the closed circulation path. A cooling device for removing heat from an electronic component and radiating heat from the heat radiating means, using a refrigerant pump as a refrigerant pressure feeding means, and flowing in at a heat transfer portion of the heat exchanging means above the boiling point of the refrigerant at that pressure. A cooling device characterized in that if the refrigerant temperature is low and the temperature difference is ΔT, the average speed of the refrigerant passing through the heat transfer section is 2 × 10 10 × ΔT (-8.958) or more. 冷媒を循環するための閉循環路に放熱手段と熱交換手段が設けられ、熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒との相変化を伴う熱交換作用で前記発熱電子部品から熱を奪い前記放熱手段から放熱を行う冷却装置であって、前記閉循環路中に第1の冷媒ポンプを備えと熱交換手段の冷媒出口から冷媒入口に連通する冷媒流路とその流路中に第2の冷媒ポンプを備え、前記熱交換手段の伝熱部において、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置。 Heat dissipating means and heat exchanging means are provided in a closed circulation path for circulating the refrigerant, and the heat exchanging means is brought into contact with the heat generating electronic component, and the heat is generated by a heat exchanging action involving a phase change with the refrigerant inside the closed circulation path. A cooling device for removing heat from the electronic component and radiating heat from the heat radiating means, comprising a first refrigerant pump in the closed circuit, and a refrigerant flow path communicating from the refrigerant outlet of the heat exchanging means to the refrigerant inlet; A second refrigerant pump is provided in the flow path, and in the heat transfer section of the heat exchanging means, if the refrigerant temperature flowing in is lower than the boiling point of the refrigerant at the pressure and the temperature difference is ΔT, the heat transfer section is A cooling device characterized in that the average speed of the refrigerant passing therethrough is 2 × 10 10 × ΔT (−8.958) or more. 熱交換手段のうち、受熱面と放熱面の間の部材の熱伝導率がそれ以外の部分の部材の熱伝導率よりも低いことを特徴とする請求項1または請求項2の冷却装置。 The cooling device according to claim 1 or 2, wherein, of the heat exchange means, the thermal conductivity of the member between the heat receiving surface and the heat radiating surface is lower than the thermal conductivity of the other members. 熱交換手段のうち、受熱面直上の冷媒流中に冷媒攪拌手段を有することを特徴とする請求項1から請求項3の冷却装置。 The cooling device according to any one of claims 1 to 3, further comprising a refrigerant stirring means in the refrigerant flow immediately above the heat receiving surface among the heat exchange means. 熱交換手段のうち、冷媒が受熱面に流入する位置直前の上流に乱流促進構造を有することを特徴とする請求項1または4の冷却装置。 5. The cooling device according to claim 1, further comprising a turbulent flow promoting structure upstream immediately before a position where the refrigerant flows into the heat receiving surface of the heat exchange means. 冷媒を循環するための閉循環路に放熱手段と冷媒ポンプと複数の熱交換手段のすべてもしくは一部が直列または並列に設けられ、前記熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒の相変化を伴う熱交換作用もしくは対流伝熱により前記発熱電子部品から熱を奪い、前記放熱手段から放熱を行う冷却装置であって、少なくとも最も熱密度の高い熱交換手段が、放熱手段に対し最も上流にあって、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置。 All or part of the heat dissipating means, the refrigerant pump, and the plurality of heat exchanging means are provided in series or in parallel in a closed circuit for circulating the refrigerant, and the heat exchanging means is brought into contact with the heat generating electronic component to thereby form the closed circuit A cooling device that removes heat from the heat generating electronic component by heat exchange action or convective heat transfer accompanied by a phase change of an internal refrigerant and radiates heat from the heat radiating means, and at least the heat exchange means having the highest heat density is radiated. If the temperature of the refrigerant flowing upstream of the means is lower than the boiling point of the refrigerant at the pressure and the temperature difference is ΔT, the average speed of the refrigerant passing through the heat transfer section is 2 × 10 10 × ΔT. (-8.958) Cooling device characterized by being above. 冷媒を循環するための閉循環路に放熱手段と冷媒ポンプと複数の熱交換手段のすべてもしくは一部が直列または並列に設けられ、前記熱交換手段を発熱電子部品に接触させて前記閉循環路内部の冷媒の相変化を伴う熱交換作用もしくは対流伝熱により前記発熱電子部品から熱を奪い、前記放熱手段から放熱を行う冷却装置であって、単独もしくは複数熱交換手段に冷媒出口から冷媒入口に連通する冷媒流路とその流路中に別個の冷媒ポンプを備え、そこでの圧力における冷媒の沸点よりも流入する冷媒温度が低くかつかつその温度差がΔTとすれば伝熱部を通過する冷媒の平均速度が2×1010×ΔT(-8.958)以上であることを特徴とする冷却装置。 All or part of the heat dissipating means, the refrigerant pump, and the plurality of heat exchanging means are provided in series or in parallel in a closed circuit for circulating the refrigerant, and the heat exchanging means is brought into contact with the heat generating electronic component to thereby form the closed circuit A cooling device that draws heat from the heat generating electronic component by heat exchange action or convective heat transfer accompanied by a phase change of an internal refrigerant and dissipates heat from the heat radiating means, and the refrigerant inlet from the refrigerant outlet to the single or plural heat exchange means A refrigerant flow path that communicates with the refrigerant, and a separate refrigerant pump in the flow path, and if the refrigerant temperature is lower than the boiling point of the refrigerant at the pressure and the temperature difference is ΔT, the refrigerant that passes through the heat transfer section The cooling device is characterized in that the average speed of is 2 × 10 10 × ΔT (−8.958) or more. 熱交換手段のうち、少なくとも伝熱面に分子間結合度の高いコーティング層を有することを特徴とする請求項1から7の冷却装置。 8. The cooling device according to claim 1, further comprising a coating layer having a high intermolecular bond degree on at least a heat transfer surface of the heat exchange means. 放熱手段からの放熱がファンによる送風によるもので、熱交換手段内部の伝熱面近傍における温度と圧力を検出する手段と伝熱面温度を検出する手段を具備しとその検出値をもとに放熱手段に送風するファンの回転数を制御する手段を有することを特徴とする請求項1から8の冷却装置。 The heat radiating from the heat radiating means is due to the air blown by the fan, and it has means for detecting the temperature and pressure in the vicinity of the heat transfer surface inside the heat exchange means and means for detecting the heat transfer surface temperature, and based on the detected value 9. The cooling device according to claim 1, further comprising means for controlling the rotational speed of a fan that blows air to the heat dissipating means.
JP2006170034A 2006-06-20 2006-06-20 Cooling apparatus Pending JP2008004606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006170034A JP2008004606A (en) 2006-06-20 2006-06-20 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170034A JP2008004606A (en) 2006-06-20 2006-06-20 Cooling apparatus

Publications (1)

Publication Number Publication Date
JP2008004606A true JP2008004606A (en) 2008-01-10

Family

ID=39008779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170034A Pending JP2008004606A (en) 2006-06-20 2006-06-20 Cooling apparatus

Country Status (1)

Country Link
JP (1) JP2008004606A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140761A1 (en) * 2012-03-22 2013-09-26 日本電気株式会社 Cooling structure for electronic substrate, and electronic device using same
JP2017207919A (en) * 2016-05-18 2017-11-24 株式会社Nttファシリティーズ Heat generator cooling system
WO2018135055A1 (en) * 2017-01-20 2018-07-26 三桜工業株式会社 Cooling structure
CN108509004A (en) * 2018-05-30 2018-09-07 广东合新材料研究院有限公司 A kind of active heat-pipe radiating apparatus
JP2018178233A (en) * 2017-04-20 2018-11-15 Jfeスチール株式会社 Method and facility for manufacturing galvanized steel band with chemical conversion coating
WO2019123881A1 (en) * 2017-12-22 2019-06-27 株式会社デンソー Device temperature adjusting apparatus
JP2019113301A (en) * 2017-12-22 2019-07-11 株式会社デンソー Machine temperature adjusting device
CN110487095A (en) * 2019-07-31 2019-11-22 四川大学 A kind of ultrasound-enhanced heat transfer pool cooling device using bubble miniaturization boiling
CN111919293A (en) * 2018-04-09 2020-11-10 株式会社电装 Heat exchanger
WO2022190868A1 (en) * 2021-03-10 2022-09-15 株式会社デンソー Cooling device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140761A1 (en) * 2012-03-22 2013-09-26 日本電気株式会社 Cooling structure for electronic substrate, and electronic device using same
JPWO2013140761A1 (en) * 2012-03-22 2015-08-03 日本電気株式会社 Electronic substrate cooling structure and electronic device using the same
JP2017207919A (en) * 2016-05-18 2017-11-24 株式会社Nttファシリティーズ Heat generator cooling system
WO2018135055A1 (en) * 2017-01-20 2018-07-26 三桜工業株式会社 Cooling structure
JP2018117099A (en) * 2017-01-20 2018-07-26 三桜工業株式会社 Cooling structure
JP2018178233A (en) * 2017-04-20 2018-11-15 Jfeスチール株式会社 Method and facility for manufacturing galvanized steel band with chemical conversion coating
WO2019123881A1 (en) * 2017-12-22 2019-06-27 株式会社デンソー Device temperature adjusting apparatus
JP2019113301A (en) * 2017-12-22 2019-07-11 株式会社デンソー Machine temperature adjusting device
CN111919293A (en) * 2018-04-09 2020-11-10 株式会社电装 Heat exchanger
CN108509004A (en) * 2018-05-30 2018-09-07 广东合新材料研究院有限公司 A kind of active heat-pipe radiating apparatus
CN110487095A (en) * 2019-07-31 2019-11-22 四川大学 A kind of ultrasound-enhanced heat transfer pool cooling device using bubble miniaturization boiling
WO2022190868A1 (en) * 2021-03-10 2022-09-15 株式会社デンソー Cooling device

Similar Documents

Publication Publication Date Title
JP2008004606A (en) Cooling apparatus
JP5644767B2 (en) Heat transport structure of electronic equipment
US7936560B2 (en) Cooling device and electronic equipment including cooling device
JP4978401B2 (en) Cooling system
JP4551261B2 (en) Cooling jacket
US7978474B2 (en) Liquid-cooled portable computer
WO2010050129A1 (en) Cooling structure, electronic device, and cooling method
JP2004116864A (en) Electronic apparatus comprising cooling mechanism
JP2005093604A (en) Cooling device and electronic apparatus
JP2005321287A (en) Cooling device, electronic apparatus, heat sink, and radiation fin
JP2004084958A (en) Electronic equipment, liquid-cooling system and liquid-cooling tank
US20120033382A1 (en) Heat sink, liquid cooling unit, and electronic apparatus
JP2006242176A (en) Piezoelectric pump and cooling device using it
JP4899997B2 (en) Thermal siphon boiling cooler
JP2006039663A (en) Liquid-circulating system and liquid-cooling system using the same
JP2008112874A (en) Cooling system, and electronic apparatus
JP2007281213A (en) Heat sink module and cooling apparatus having the same
JP4744280B2 (en) Electronic equipment with cooling mechanism
JP5760797B2 (en) Cooling unit
JP2006191123A (en) Piezoelectric fan, cooling device using the same, and driving method therefor
JP2013026362A (en) Electronic apparatus cooling device
JP3727647B2 (en) Electronic equipment cooling device
JP5252059B2 (en) Cooling system
JP4679474B2 (en) Cooling device, electronic device and cooling medium
JP2008089253A (en) Heat sink