WO2018135055A1 - Cooling structure - Google Patents

Cooling structure Download PDF

Info

Publication number
WO2018135055A1
WO2018135055A1 PCT/JP2017/037760 JP2017037760W WO2018135055A1 WO 2018135055 A1 WO2018135055 A1 WO 2018135055A1 JP 2017037760 W JP2017037760 W JP 2017037760W WO 2018135055 A1 WO2018135055 A1 WO 2018135055A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
piping
insertion port
cooling structure
Prior art date
Application number
PCT/JP2017/037760
Other languages
French (fr)
Japanese (ja)
Inventor
健男 大栗
史紀 大場
祥久 藤田
Original Assignee
三桜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三桜工業株式会社 filed Critical 三桜工業株式会社
Publication of WO2018135055A1 publication Critical patent/WO2018135055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This disclosure relates to a cooling structure.
  • Japanese Patent No. 5556680 discloses a cooling structure in which cooling tubes are arranged at a predetermined interval, a pair of headers are provided at both ends of the cooling tube, and a semiconductor module (heat generating component) is arranged between adjacent cooling tubes. Has been.
  • a recess that can be deformed in the arrangement direction of the cooling tube is formed between the connection portions of the header to each cooling tube.
  • the recess formed in the header is deformed, so that the semiconductor modules can be arranged between adjacent cooling tubes even if the thicknesses of the respective semiconductor modules are different.
  • the position of the end of each cooling tube may not be a fixed position (variation occurs) due to manufacturing errors.
  • the plurality of insertion openings formed in the header and the positions of the end portions of the respective cooling tubes are not aligned, which may cause problems such as difficulty in insertion.
  • the present disclosure provides a structure in which a manifold is connected to an assembly in which heating parts are arranged between adjacent coolers, even if there is variation in the position of the piping portion of each cooler. It is an object to provide a cooling structure in which manifolds can be easily connected.
  • the cooling structure is arranged with a space in the first direction, and has a heat exchange part in which a refrigerant flows, and extends from the heat exchange part in a direction intersecting the first direction,
  • a plurality of coolers comprising: a first pipe part communicating with the inside of the exchange part; a second pipe part extending from the heat exchange part to the opposite side of the first pipe part and communicating with the inside of the heat exchange part;
  • An assembly having an exothermic component disposed between the heat exchanging parts adjacent in the first direction and contacting the heat exchanging part, and a first flow path extending in the first direction and flowing through the refrigerant are configured.
  • a first connection part that is formed of an elastic material and has a plurality of first insertion ports into which the first pipe part is inserted, and that communicates the inside of the first pipe part with the first channel.
  • a second manifold that extends in the first direction and through which the refrigerant flows.
  • a second connection that is formed of an elastic material and has a plurality of second insertion ports into which the second piping portion is inserted, and that communicates the inside of the second piping portion with the second channel.
  • a second manifold provided with a portion.
  • the assembly is provided even when the positions of the piping portions of the respective coolers vary. It is possible to provide a cooling structure in which the manifold can be easily connected.
  • FIG. 3 is a sectional view taken along line 3-3 in FIG. 1.
  • FIG. 6 is a sectional view taken along line 6-6 of FIG.
  • FIG. 8 is a sectional view taken along line 8-8 in FIG.
  • FIG. 10 is a cross-sectional view taken along line 10-10 of FIG. It is the side view which looked at the other modification of the 1st manifold which comprises the cooling structure of 2nd Embodiment from the 1st insertion port side.
  • 12 is a cross-sectional view taken along line 12-12 of FIG. It is the side view which looked at the further another modification of the 1st manifold which comprises the cooling structure of 2nd Embodiment from the 1st insertion port side.
  • FIG. 14 is a sectional view taken along line 14-14 of FIG. It is sectional drawing (sectional drawing corresponding to FIG.
  • arrow X, arrow Y, and arrow Z which are appropriately illustrated in each drawing, indicate the device width direction, the device depth direction, and the device thickness direction of the cooling device to which the cooling structure is applied, respectively. It demonstrates as a vertical direction.
  • FIG. 1 shows a cooling device 20 to which the cooling structure 22 of the first embodiment (hereinafter, this embodiment) is applied.
  • the cooling device 20 is used for cooling a heat generating component (cooling target) 36 such as a CPU or a power semiconductor element, for example.
  • the cooling device 20 cools the heat generating component 36 by transmitting the heat of the heat generating component 36 constituting the assembly 30 described later to the refrigerant in the cooler 32.
  • the cooling device 20 of the present embodiment is configured to supply the refrigerant L to the assembly 30, the inlet manifold 40, the outlet manifold 50, and the inlet manifold 40 that constitute the cooling structure 22.
  • a supply pipe 24 (indicated by a two-dot chain line in FIG. 1) and a discharge pipe 26 (indicated by a two-dot chain line in FIG. 1) for discharging the refrigerant L from the outlet side manifold 50 are provided.
  • the cooling structure 22 of the present embodiment includes the assembly 30, the inlet side manifold 40, and the outlet side manifold 50 as described above.
  • the assembly 30 includes a plurality of coolers 32 arranged in the first direction (the same direction as the apparatus depth direction in the present embodiment) and a first direction. And a heat generating component 36 that is disposed between the heat exchangers 33 described later of the cooler 32 adjacent to the heat exchangers 33 and contacts the heat exchangers 33.
  • the assembly 30 is formed by alternately stacking a plurality of coolers 32 and a plurality of heat generating components 36 in the first direction (the apparatus depth direction in the present embodiment).
  • the cooler 32 includes the above-described heat exchanging portion 33 through which the refrigerant L flows, an inlet side piping portion 34 extending from the heat exchanging portion 33 in a direction intersecting the first direction, and an inlet side piping portion 34 extending from the heat exchanging portion 33. And an exit side piping part 35 extending to the opposite side.
  • the heat exchanging part 33 has a substantially plate shape, and the inside constitutes a flow path of the refrigerant L.
  • fins for example, corrugated fins
  • the heat generating component 36 is in contact with the heat transfer surface 33 ⁇ / b> A that is the plate surface of the heat exchanging portion 33.
  • the inlet side piping part 34 is cylindrical and communicates with the heat exchange part 33. Further, the inlet side piping section 34 can be inserted into an inlet side insertion port 48 described later of the inlet side manifold 40. In a state where the inlet side piping part 34 is inserted into the inlet side insertion port 48 of the inlet side manifold 40, the refrigerant L flows from the inlet side manifold 40 into the heat exchange part 33 via the inlet side piping part 34. Yes.
  • the delivery side piping section 35 is cylindrical and communicates with the heat exchange section 33. Further, the outlet side piping portion 35 can be inserted into an outlet side insertion port 58 described later of the outlet side manifold 50. In a state where the outlet side pipe part 35 is inserted into the outlet side insertion port 58 of the outlet side manifold 50, the refrigerant L in the heat exchange part 33 flows out to the outlet side manifold 50 through the outlet side pipe part 35. Yes.
  • cooler 32 of the present embodiment is an integrally molded product using a metal material (for example, aluminum or copper).
  • the heat generating component 36 is fixed to the heat transfer surface 33A in a state in contact with the heat transfer surface 33A of the heat exchange unit 33 of the cooler 32. Specifically, both surfaces in the thickness direction of the heat generating component 36 are respectively fixed to the heat exchanging portions 33 adjacent in the first direction. With this configuration, the heat generating component 36 is cooled from both sides in the thickness direction by the heat exchanging portion 33 of the adjacent cooler 32.
  • the fixing of the heat generating component 36 and the heat exchanging portion 33 of the cooler 32 is preferably performed by, for example, brazing or mechanical joining (joining using a fastening member such as a screw) from the viewpoint of heat transfer. .
  • the inlet side manifold 40 has an inlet side passage portion 42 that constitutes an inlet side passage 44 through which the refrigerant L flows, and an inlet side insertion into which the inlet side piping portion 34 is inserted. And an inlet side connection portion 46 provided with a plurality of ports 48.
  • the entrance side manifold 40 of this embodiment is an example of the 1st manifold in this indication.
  • the inlet-side flow path component 42, the inlet-side flow path 44, the inlet-side connection part 46, and the inlet-side insertion port 48 of the present embodiment are respectively the first flow path component, the first flow path, and the first flow path in the present disclosure. It is an example of 1 connection part and a 1st insertion slot.
  • the inlet-side flow path constituting section 42 is formed in a substantially rectangular parallelepiped shape having the apparatus depth direction as the first direction as a longitudinal direction and extends in the first direction inside. 44 is formed.
  • One end of the inlet-side channel 44 opens at one end in the longitudinal direction of the inlet-side channel constituent part 42, and the other end terminates in the inlet-side channel constituent part 42.
  • one end of the inlet-side channel 44 forms a connection port 44 ⁇ / b> A for connecting the inlet-side channel 44 and the supply pipe 24.
  • the inlet side connecting portion 46 is formed adjacent to the inlet side flow path constituting portion 42 in a direction orthogonal to the first direction (short direction of the inlet side flow path constituting portion 42). A plurality are provided at intervals in the first direction.
  • the inlet side insertion port 48 is a circular hole (a through hole having a circular cross section) provided in the inlet side connection portion 46, and communicates with the inlet side flow path 44. . That is, by inserting the inlet side piping part 34 of the cooler 32 into the inlet side insertion port 48 of the inlet side connection part 46, the inside of the inlet side piping part 34 and the inlet side flow path 44 communicate with each other. .
  • the outer peripheral surface of the inlet side piping part 34 is configured to be in close contact with the inner peripheral surface of the inlet side insertion port 48. The sealing property between the port 48 and the inlet side piping part 34 is ensured.
  • the inlet-side flow path constituting portion 42 and the inlet-side connecting portion 46 are formed as an integrally molded product of the same elastic material (for example, rubber and resin having excellent sealing properties).
  • this indication is not limited to the said structure, It is good also considering the inlet side flow path structure part 42 and the inlet side connection part 46 as an integrally molded product of a different elastic material, and the inlet side flow path structure part 42 is made of an elastic material. It is good also as a structure which forms and forms the entrance side flow-path structure part 42 with a metal material.
  • the inlet side manifold 40 is provided with a plurality of leg portions 49 at intervals in the first direction on the lower surface of the inlet side flow path constituting portion 42.
  • the inlet side manifold 40 includes the inlet side flow path constituting portion 42, the inlet side connecting portion 46, and the leg portion 49, and is an integrally molded product of an elastic material.
  • this indication is not limited to the said structure, It is good also considering the inlet side flow-path structure part 42, the inlet-side connection part 46, and the leg part 49 as an integrally molded product of a different elastic material, or an inlet-side flow path structure part. It is good also as a structure which forms 42 and the entrance side connection part 46 with an elastic material, and forms the leg part 49 with a metal material.
  • the outlet side manifold 50 includes an outlet side flow path constituting portion 52 that constitutes an outlet side flow path 54 through which the refrigerant L flows, and an outlet side insertion port 58 into which the outlet side piping portion 35 is inserted.
  • the outlet manifold 50 of the present embodiment is an example of a second manifold in the present disclosure.
  • the outlet-side channel configuration unit 52, the outlet-side channel 54, the outlet-side connection unit 56, and the outlet-side insertion port 58 of the present embodiment are respectively the second channel configuration unit, the second channel, It is an example of 2 connection parts and a 2nd insertion port.
  • the outlet flow path constituting portion 52 has a substantially rectangular parallelepiped shape with the apparatus depth direction as the first direction as the longitudinal direction, and extends in the first direction inside. 54 is formed.
  • One end of the outlet channel 54 opens at one end in the longitudinal direction of the outlet channel component 52, and the other end terminates in the outlet channel component 52.
  • one end of the outlet-side channel 54 constitutes a connection port 54 ⁇ / b> A for connecting the outlet-side channel 54 and the discharge pipe 26.
  • the outlet-side connecting portion 56 is formed adjacent to the outlet-side flow path constituting portion 52 in a direction orthogonal to the first direction (short direction of the outlet-side flow path constituting portion 52). A plurality are provided at intervals in the first direction.
  • the outlet insertion port 58 is a circular hole (through hole having a circular cross section) provided in the outlet side connection portion 56 and communicates with the outlet side flow path 54. That is, by inserting the outlet side piping part 35 of the cooler 32 into the outlet side insertion port 58 of the outlet side connection part 56, the inside of the outlet side piping part 35 and the outlet side flow path 54 communicate with each other. .
  • the outer peripheral surface of the outlet side piping part 35 is configured to be in close contact with the inner peripheral surface of the outlet side insertion port 58.
  • the sealing property between the port 58 and the outlet side piping part 35 is ensured.
  • outlet-side flow path constituting portion 52 and the outlet-side connecting portion 56 are integrally molded products of the same elastic material (for example, rubber and resin having excellent sealing properties).
  • this indication is not limited to the said structure, It is good also considering the output side flow-path structure part 52 and the output-side connection part 56 as an integrally molded product of a different elastic material, and the output-side flow path structure 52 is made of an elastic material. It is good also as a structure which forms and forms the output side flow-path structure part 52 with a metal material.
  • the outlet side manifold 50 includes a plurality of leg portions 59 spaced on the lower surface of the outlet side flow path constituting portion 52 in the first direction.
  • the outlet manifold 50 is an integrally molded product of an elastic material including the outlet-side flow path constituting portion 52, the outlet-side connecting portion 56, and the leg portion 59.
  • this indication is not limited to the said structure, It is good also considering the exit side flow-path structure part 52, the exit-side connection part 56, and the leg part 59 as an integrally molded product of a different elastic material, or an exit-side flow path structure part.
  • 52 and the outlet side connection portion 56 may be formed of an elastic material
  • the leg portion 59 may be formed of a metal material.
  • the effect of the cooling structure 22 of this embodiment is demonstrated.
  • the cooling structure 22 by inserting the inlet-side piping portions 34 of the respective coolers 32 constituting the assembly 30 into the plurality of inlet-side insertion ports 48 provided in the inlet-side connecting portion 46 of the inlet-side manifold 40, The inlet side piping part 34 and the inlet side flow path 44 communicate.
  • the outlet side piping part 35 of each cooler 32 constituting the assembly 30 into the plurality of outlet side insertion ports 58 provided in the outlet side connection part 56 of the outlet side manifold 50.
  • the inside of the part 35 and the exit side flow path 54 communicate. In this communication state, as shown in FIG.
  • the refrigerant L when the refrigerant L is supplied from the supply pipe 24 to the inlet side flow path 44 of the inlet side manifold 40, the refrigerant L enters the inlet side piping of the cooler 32 from the inlet side flow path 44. It flows into the heat exchange section 33 through the section 34. Then, the refrigerant L that has flowed into the heat exchange section 33 flows from the heat exchange section 33 into the outlet side flow path 54 through the outlet side piping section 35, and is discharged from the outlet side manifold 50. As the refrigerant L flows as described above, heat exchange is performed between the heat generating component 36 and the refrigerant L via the heat exchanging portion 33 of the cooler 32, and the heat generating component 36 is cooled.
  • the inlet side connection portion 46 of the inlet side manifold 40 is formed of an elastic material
  • the inlet side insertion port 48 can be elastically deformed.
  • each cooler 32 is different even when the positions of the inlet-side piping portions 34 of the coolers 32 constituting the assembly 30 are different from the configuration in which the inlet-side insertion port 48 cannot be elastically deformed.
  • the inlet side piping part 34 can be easily inserted into the inlet side insertion port 48.
  • the outlet side connection portion 56 of the outlet side manifold 50 is formed of an elastic material
  • the outlet side insertion port 58 can be elastically deformed.
  • each cooler is different even in the case where there is a variation in the position of the exit side piping portion 35 of each cooler 32 constituting the assembly 30 compared to the configuration in which the exit side insertion port 58 cannot be elastically deformed.
  • the 32 outlet side piping portions 35 can be easily inserted into the outlet side insertion port 58.
  • the assembly 30 and the manifold (inlet side manifold 40) even when the positions of the pipe parts (including the inlet side pipe part 34 and the outlet side pipe part 35) of each cooler 32 vary. And the outlet manifold 50).
  • the inlet side flow path component 42 and the inlet side connection part 46 are integrally formed of an elastic material, for example, the inlet side flow path component 42 and the inlet side connection part 46 are separated. Compared to the configuration of (separate parts), it is possible to reduce the number of parts and the steps for assembling the inlet-side flow path component 42 and the inlet-side connecting portion 46.
  • the outlet-side flow path component 52 and the outlet-side connecting part 56 are integrally formed of an elastic material, for example, the outlet-side channel constituent part 52 and the outlet-side connecting part 56 are separately provided. Compared with the configuration of the body (separate parts), the number of parts and the steps for assembling the outlet-side flow path constituting portion 52 and the outlet-side connecting portion 56 can be reduced.
  • the cooling structure 62 of 2nd Embodiment is shown by FIG.7 and FIG.8.
  • the cooling structure 62 of this embodiment includes the configuration of the inlet side piping portion 66 and the outlet side piping portion 68 of the cooler 64, the configuration of the inlet side connection portion 72 of the inlet side manifold 70, and the outlet side connection of the outlet side manifold 80. Since the configuration of the part 82 is different from the cooling structure 22 of the first embodiment and the other configuration is the same as the cooling structure 22, the description of the same configuration as the cooling structure 22 is omitted. Moreover, the same code
  • annular protrusions 67 along the circumferential direction are spaced apart in the tube axis direction on the outer periphery of the cylindrical inlet-side piping part 66 constituting the cooler 64.
  • a plurality are provided. These protrusions 67 are formed by pushing the inner periphery of the inlet-side piping part 66 outward in the pipe radial direction.
  • a plurality of annular protrusions 69 are provided along the circumferential direction (circumferential direction) at intervals in the pipe axis direction (this embodiment). Two are provided in the form. These protrusions 69 are formed by pushing the inner periphery of the outlet side pipe portion 68 outward in the pipe diameter direction.
  • a recess 76 is formed around the inlet side insertion port 74 formed in the inlet side connecting portion 72 constituting the inlet side manifold 70.
  • a plurality of concave portions 76 are formed around the entry-side insertion port 74 at equal intervals. Due to the recess 76, the entry-side insertion port 74 is formed in a substantially cylindrical shape.
  • a fitting portion 78 into which the protrusion 67 is fitted is formed on the inner peripheral surface of the entry side insertion port 74.
  • the fitting portion 78 is provided on the distal end side of the inlet side piping portion 66 in a state in which a protrusion 67 provided on the back side (opposite side of the distal end side) of the inlet side piping portion 66 is fitted.
  • the protruding portion 67 is formed on the inner peripheral surface of the inlet-side insertion port 74 so as to be positioned in the inlet-side channel 44.
  • a recess 86 is formed around the outlet insertion port 84 formed in the outlet connecting portion 82 constituting the outlet manifold 80. Specifically, as shown in FIG. 7, a plurality of recesses 86 (four in the present embodiment) are formed around the outlet insertion port 84 at equal intervals. Due to the recess 86, the outlet side insertion port 84 is formed in a substantially cylindrical shape.
  • a fitting portion 88 into which the protrusion 69 is fitted is formed on the inner peripheral surface of the outlet side insertion port 84.
  • the fitting portion 88 is provided on the distal end side of the outlet side piping portion 68 in a state where the protrusion 69 provided on the back side (opposite side of the distal end side) of the outlet side piping portion 68 is fitted.
  • the protruding portion 69 is formed on the inner peripheral surface of the outlet-side insertion port 84 so as to be positioned in the outlet-side channel 54.
  • a plurality of annular protrusions 67 are provided on the outer periphery of the inlet-side piping part 66 at intervals in the tube axis direction, and the protrusions 67 are provided on the inner peripheral surface of the inlet-side insertion port 74.
  • a fitting portion 78 to be fitted is formed. For this reason, the inlet side piping part 66 and the inlet side insertion port 74 are reliably connected by inserting the inlet side piping part 66 into the inlet side insertion port 74 until the protrusion 67 is fitted to the fitting part 78. Can do.
  • the cooling structure 62 for example, compared to a configuration in which the protrusion 67 is not provided on the outer periphery of the inlet-side piping portion 66 and the fitting portion 78 is not provided on the inner peripheral surface of the inlet-side insertion port 74.
  • the sealing performance between the portion 66 and the entry side insertion port 74 is improved.
  • the projection 67 is fitted into the fitting portion 78, so that it is effective for the inlet side piping portion 66 to come out of the inlet side insertion port 74. Can be suppressed.
  • the protrusion 67 provided on the distal end side of the inlet side piping part 66 is located in the inlet side flow path 44, the protrusion 67 is an inlet side flow of the inlet side insertion port 74. It is possible to more effectively suppress the entrance side piping portion 66 from being caught by the opening edge on the side of the passage 44 and coming out of the entrance side insertion port 74.
  • the recessed part 76 is formed around the entrance side insertion port 74 of the entrance side connection part 72, compared with the structure which does not form the recessed part 76 around the entrance side insertion port 74, for example, the entrance side piping part 66
  • the recess 76 can absorb the elastic deformation of the entry-side insertion port 74 due to the insertion of. For this reason, the sealing performance between the inlet side piping part 66 and the inlet side insertion port 74 further improves.
  • a plurality of annular protrusions 69 are provided on the outer periphery of the outlet-side piping part 68 at intervals in the tube axis direction, and the protrusions 69 are provided on the inner peripheral surface of the outlet-side insertion port 84.
  • a fitting portion 88 to be fitted is formed.
  • the cooling structure 62 compared with the structure which does not provide the protrusion 69 in the outer periphery of the exit side piping part 68, and does not provide the fitting part 88 in the internal peripheral surface of the exit side insertion port 84, for example.
  • the sealing performance between the portion 68 and the outlet insertion port 84 is improved.
  • the projection 69 fits into the fitting portion 88, so that it is effective for the outlet side piping portion 68 to escape from the outlet side insertion port 84. Can be suppressed.
  • the protrusion 69 provided on the distal end side of the outlet side pipe portion 68 is located in the outlet side flow path 54, the protrusion 69 is connected to the outlet side flow of the outlet side insertion port 84. It is possible to further effectively prevent the outlet side pipe portion 68 from being caught by the opening edge on the side of the passage 54 and coming out of the outlet side insertion port 84.
  • the recessed part 86 is formed around the output side insertion port 84 of the output side connection part 82, compared with the structure which does not form the recessed part 86 around the output side insertion port 84, for example, the output side piping part 68 is provided. The recess 86 can absorb the elastic deformation of the outlet side insertion port 84 due to the insertion. For this reason, the sealing performance between the outlet side piping part 68 and the outlet side insertion port 84 is further improved.
  • the fitting portion 78 is provided on the distal end side of the inlet side piping portion 66 in a state where the protrusion 67 provided on the back side of the inlet side piping portion 66 is fitted.
  • the protruding portion 67 is formed on the inner peripheral surface of the inlet-side insertion port 74 so that the protrusion 67 is positioned in the inlet-side channel 44, but the present disclosure is not limited to this configuration.
  • the fitting portion 93 into which a plurality of (two) protrusions 67 provided in the inlet side piping portion 66 are fitted is inserted into the inlet side.
  • a plurality (two) of the inner peripheral surface of the mouth 74 may be formed.
  • movement of the inlet side piping part 66 in the tube axis direction can be suppressed.
  • the sealing performance between the inlet side piping part 66 and the inlet side insertion port 74 is securable.
  • an annular recess portion 94 is formed between the fitting portions 93 on the inner peripheral surface of the inlet side insertion port 74. The recessed portion 94 facilitates elastic deformation of the entry-side insertion port 74 in the diameter increasing direction.
  • an annular recess 104 is provided between the fitting portion 78 of the inlet insertion port 74 and the opening of the inlet channel 44. May be formed.
  • a recess 114 is formed around the opening of the inlet channel 44 of the inlet insertion port 74 with a circumferential interval. May be.
  • the recess 114 By forming the recess 114 in this way, at least a part of the opening edge of the inlet-side flow path 44 of the inlet-side insertion port 74 is reduced in the diameter-reducing direction against the force in the removal direction acting on the inlet-side piping portion 66. It becomes deformable, and the protrusion 67 on the distal end side of the inlet side piping portion 66 is more effectively suppressed.
  • the fitting portion 88 is on the distal end side of the outlet side piping portion 68 in a state in which the protrusion 69 provided on the back side of the outlet side piping portion 68 is fitted.
  • the provided protrusion 69 is formed on the inner peripheral surface of the outlet-side insertion port 84 so as to be positioned in the outlet-side channel 54, the present disclosure is not limited to this configuration.
  • a fitting portion 97 into which a plurality of (two) protrusions 69 provided in the outlet side piping portion 68 are fitted is inserted into the outlet side.
  • a plurality (two) may be formed on the inner peripheral surface of the mouth 84.
  • movement of the outlet side piping part 68 in the tube axis direction can be suppressed in a state where the outlet side piping part 68 is inserted into the outlet side insertion port 84.
  • the sealing performance between the exit side piping part 68 and the exit side insertion port 84 is securable.
  • an annular recess 98 is formed between the fitting portions 97 on the inner peripheral surface of the output side insertion port 84.
  • the recessed portion 98 facilitates elastic deformation of the exit-side insertion port 84 in the diameter increasing direction.
  • an annular recess 108 is provided between the fitting portion 88 of the outlet insertion port 84 and the opening of the outlet channel 54. May be formed.
  • a recess 118 is formed around the opening of the outlet side flow path 54 of the outlet side insertion port 84 at intervals in the circumferential direction. May be.
  • FIG. 15 shows the cooling structure 122 of the third embodiment.
  • the cooling structure 122 of the present embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the inlet-side flow path component 126 of the inlet-side manifold 124, and other configurations are the same as the cooling structure 22.
  • the description of the same configuration as 22 is omitted.
  • symbol is attached
  • the inlet side flow path 128 is provided with an area reducing unit 130 as an example of a flow rate adjusting unit for reducing the flow rate of the refrigerant L on the downstream side of the upstream side in the flow direction of the refrigerant L. ing.
  • the area reducing unit 130 is a portion that protrudes from the wall surface of the inlet-side channel 128 so as to reduce the channel area of the inlet-side channel 128 on the downstream side of the upstream side in the flow direction of the refrigerant L.
  • the inlet side flow path 128 of the inlet side manifold 124 is provided with an area reducing portion 130 for reducing the flow rate of the refrigerant L downstream from the upstream side in the refrigerant flow direction. For this reason, more refrigerant
  • the heat-generating component that contacts the heat exchanging unit 33 of the cooler 32 located upstream in the flow direction of the refrigerant L. 36 can be cooled earlier than the heat-generating component 36 in contact with the heat exchanging portion 33 of the cooler 32 located on the downstream side in the flow direction of the refrigerant L.
  • the amount of heat generated by the heat generating component 36 that contacts the heat exchanging portion 33 of the cooler 32 positioned upstream in the flow direction of the refrigerant L is transferred to the heat exchanging portion 33 of the cooler 32 positioned downstream in the flow direction of the refrigerant L.
  • the cooling structure 122 is applied so that the flow rate of the refrigerant L flowing in the cooler 32 positioned upstream in the flow direction of the refrigerant L is positioned downstream in the flow direction of the refrigerant L.
  • the flow rate flowing to the cooler 32 can be increased.
  • the heat generating component 36 can be efficiently cooled.
  • the area of the inlet side flow path 128 is smaller on the downstream side than the upstream side in the flow direction of the refrigerant L by the area reducing unit 130 provided in the inlet side flow path 128.
  • the flow rate of the refrigerant L is more downstream than the upstream side in the flow direction of the refrigerant L in the inlet side channel 128 with a simple configuration in which the area reducing unit 130 for reducing the channel area is provided in the inlet side channel 128. Can be reduced.
  • the area reducing portion 130 is provided in the inlet-side flow path 128 of the inlet-side manifold 124, but the present disclosure is not limited to this configuration.
  • a regulating valve 136 as an example of a flow rate adjusting means may be provided in the inlet side flow path 134 as in the inlet side manifold 132 of the modification shown in FIG.
  • the adjustment valve 136 adjusts the open area of the inlet-side flow path 128 according to the heat generation amount of the heat generating component 36 located upstream in the flow direction of the refrigerant L and the heat generation amount of the heat generating component 36 located downstream. It has become.
  • the regulating valve 136 is controlled by a control device (not shown), and the heat generation amount of each heat generating component 36 is transmitted to this control device.
  • a control device not shown
  • the open area of the inlet-side flow path 128 can be adjusted by the adjustment valve 136, the amount of heat generated by the heat-generating component 36 and the refrigerant in contact with the heat exchanging portion 33 of the cooler 32 located upstream in the flow direction of the refrigerant L.
  • the flow rate of the refrigerant L flowing through the inlet-side flow path 134 in accordance with the amount of heat generated by the heat generating component 36 that contacts the heat exchanging portion 33 of the cooler 32 located downstream in the flow direction of L Appropriate adjustment is possible on the downstream side.
  • the adjustment valve 136 is provided in the inlet manifold 132, but the present disclosure is not limited to this configuration.
  • a regulating valve 142 as an example of a flow rate adjusting means may be provided in the outlet side flow path 140 as in the outlet side manifold 138 of the modification shown in FIG.
  • the same effect as the configuration in which the adjustment valve 136 is provided in the inlet-side flow path 128 can be obtained.
  • the configurations of the inlet side manifold 124 of the third embodiment and the inlet side manifold 132 and the outlet side manifold 138 of the modification may be applied to the first embodiment, the second embodiment, and the fifth embodiment to be described later. .
  • FIG. 18 shows the cooling structure 152 of the fourth embodiment.
  • the cooling structure 152 of this embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the outlet insertion port 156 of the outlet manifold 154, and the other configurations are the same as those of the cooling structure 22. The description of the same configuration is omitted. Moreover, the same code
  • a thermostat 158 is provided at each outlet insertion port 156 of the outlet manifold 154.
  • the thermostat 158 is configured to open the outlet-side insertion port 156 when the temperature of the refrigerant L that exchanges heat with the heat generating component 36 in the cooler 32 is equal to or higher than a predetermined temperature.
  • the thermostat 158 opens the outlet insertion port 156 when the temperature of the refrigerant L that exchanges heat with the heat generating component 36 in the cooler 32 becomes equal to or higher than a predetermined temperature. For this reason, when there is a difference in the amount of heat generated by each heat generating component 36, a thermostat 158 provided in the outlet side insertion port 156 corresponding to the outlet side piping portion 35 of the cooler 32 that cools the heat generating component 36 having a high heat generation amount. Is opened, and the thermostat 158 provided in the outlet side insertion port 156 corresponding to the outlet side piping part 35 of the cooler 32 that cools the heat generating component 36 having a low calorific value is closed. Thereby, since more refrigerant
  • each outlet side insertion port 156 of the outlet side manifold 154 may be provided with an adjustment valve that adjusts the flow rate of the outlet side insertion port 156.
  • This adjustment valve is configured to adjust the flow rate of the corresponding outlet-side insertion port 156 according to the amount of heat generated by each heat generating component 36.
  • the configuration of the outlet manifold 154 of the fourth embodiment may be applied to the first embodiment, the second embodiment, and the fifth embodiment to be described later.
  • FIG. 19 shows a cooling structure 162 of the fifth embodiment.
  • the cooling structure 162 of the present embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the inlet-side flow path component 166 of the inlet-side manifold 164, and other configurations are the same as those of the cooling structure 22.
  • the description of the same configuration as 22 is omitted.
  • symbol is attached
  • the inlet-side channel 166 of the inlet-side manifold 164 is provided with an inlet-side channel 168.
  • the inlet side flow path 168 is provided with a turbulent flow promoting body 170 for disturbing the flow of the refrigerant L flowing into the inlet side piping part 34 through the inlet side insertion port 48.
  • the turbulence promoting body 170 is provided at a position corresponding to each entry side insertion port 48 of the entry side flow path 168.
  • the inlet side flow path 168 of the inlet side manifold 164 is provided with the turbulent flow promoting body 170 for disturbing the flow of the refrigerant L flowing into the inlet side piping section 34. It is promoted that a turbulent flow is generated in the refrigerant L flowing from the pipe portion 34 into the heat exchange portion 33.
  • the turbulent flow promoting body 170 is provided in the inlet-side flow path 168, for example, compared with a configuration in which the turbulent flow promoting body 170 is not provided in the incoming-side flow path 168, the heat exchange unit 33. It is promoted that turbulent flow is generated in the refrigerant L flowing inside, and heat exchange between the refrigerant L in the heat exchange section 33 and the heat generating component 36 is effectively performed.
  • the configuration of the inlet manifold 164 (turbulent flow promoting body 170) of the fifth embodiment may be applied to the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment.
  • Appendix 1 A heat exchanging portion that is arranged at an interval in the first direction and in which the refrigerant flows, and a first piping portion that extends from the heat exchanging portion in a direction intersecting the first direction and communicates with the inside of the heat exchanging portion.
  • a plurality of coolers comprising: a second pipe part extending from the heat exchange part to the opposite side of the first pipe part and communicating with the inside of the heat exchange part; and the heat exchange part adjacent in the first direction An exothermic part disposed between and in contact with the heat exchange part, A plurality of first passage openings extending in the first direction and constituting a first flow path constituting the first flow path through which the refrigerant flows, and an elastic material, into which the first piping section is inserted; A first manifold including a first connection portion that communicates the inside of the first piping portion and the first flow path; A plurality of second passage openings that extend in the first direction and constitute a second passage that constitutes the second passage through which the refrigerant flows, and a second insertion port that is formed of an elastic material and into which the second piping portion is inserted; A second manifold provided with a second connection portion for communicating the inside of the second piping portion with the second flow path; With cooling structure.
  • the first piping portion of each cooler of the assembly is inserted into the plurality of first insertion ports provided in the first connection portion of the first manifold, so that the first piping portion and the first piping portion are connected to each other.
  • One flow path communicates.
  • the second piping portion of each cooler of the assembly is inserted into each of a plurality of second insertion ports provided in the second connection portion of the second manifold, so that the second piping portion and the second flow path communicate with each other.
  • the refrigerant flows from the first flow path into the heat exchange section through the first piping section of the cooler.
  • the refrigerant that has flowed into the heat exchange part flows into the second flow path from the heat exchange part of the cooler through the second pipe part, and is discharged from the second manifold.
  • heat exchange is performed between the heat-generating component and the refrigerant via the heat exchange portion of the cooler, and the heat-generating component is cooled.
  • the first connection portion of the first manifold is formed of an elastic material
  • the first insertion port can be elastically deformed.
  • the first piping portion of each cooler is different even when the position of the first piping portion of each cooler constituting the assembly is different from the configuration in which the first insertion port cannot be elastically deformed. Can be easily inserted into the first insertion port.
  • the second connecting portion of the second manifold is made of an elastic material, the second insertion port can be elastically deformed.
  • the second piping portion of each cooler is different even in the case where the position of the second piping portion of each cooler constituting the assembly varies as compared with the configuration in which the second insertion port cannot be elastically deformed. Can be easily inserted into the second insertion port.
  • the assembly and the manifold can be easily connected even when the positions of the piping portions of the respective coolers vary.
  • the first flow path component and the first connection part are integrally formed of an elastic material, for example, the first flow path component and the first connection part are separated (separate parts). In comparison with the configuration, the number of parts and the steps for assembling the first flow path component and the first connection portion can be reduced.
  • the second flow path component and the second connection part are integrally formed of an elastic material, for example, the second flow path component and the second connection part are separated (separate parts). ) And the number of parts and the steps for assembling the second flow path component and the second connection portion can be reduced.
  • the first manifold is disposed upstream of the cooler in the refrigerant flow direction,
  • the first manifold is disposed upstream of the cooler in the refrigerant flow direction. That is, the refrigerant is configured to flow in the order of the first manifold, the cooler, and the second manifold.
  • the first flow path of the first manifold is provided with a flow rate adjusting means for reducing the flow rate of the refrigerant on the downstream side of the refrigerant flow direction upstream. For this reason, more refrigerant flows into the cooler located upstream in the refrigerant flow direction than in the cooler located downstream in the refrigerant flow direction.
  • the heat generating component that contacts the cooler located upstream in the refrigerant flow direction is located downstream in the refrigerant flow direction, compared to the configuration in which the flow rate adjusting means is not provided in the first flow path. It is possible to cool earlier than the heat-generating component in contact with the cooler. For example, when the heat generation amount of the heat generating component that contacts the cooler located upstream in the refrigerant flow direction is higher than the heat generation amount of the heat generating component that contacts the cooler located downstream in the refrigerant flow direction, the cooling structure is By applying, it is possible to efficiently cool the heat-generating component that contacts the cooler located upstream in the refrigerant flow direction and the heat-generating component that contacts the cooler located downstream in the refrigerant flow direction.
  • the flow rate adjusting means is provided in the first flow path, and is an area reduction unit that reduces the flow area of the first flow path on the downstream side of the upstream side in the flow direction of the refrigerant. Cooling structure.
  • the flow path area of the first flow path is smaller on the downstream side than on the upstream side in the refrigerant flow direction due to the area reduction portion provided in the first flow path.
  • the flow rate of the refrigerant can be reduced on the downstream side of the first flow path from the upstream side in the flow direction of the refrigerant with a simple configuration in which the area reducing portion for reducing the flow path area is provided in the first flow path.
  • appendix 5 The cooling structure according to appendix 3, wherein the flow rate adjusting means is an adjustment valve that is provided in the first flow path and adjusts an open area of the first flow path.
  • the flow rate of the refrigerant is more downstream than the upstream side in the flow direction of the refrigerant. Decrease.
  • the open area of the first flow path can be adjusted by the adjustment valve, the amount of heat generated by the heat generating components contacting the cooler located upstream in the refrigerant flow direction and the cooling located downstream in the refrigerant flow direction
  • the flow rate of the refrigerant flowing through the first flow path can be appropriately adjusted on the upstream side and the downstream side in the refrigerant flow direction in accordance with the heat generation amount of the heat-generating component that contacts the container.
  • a plurality of annular first protrusions are provided on the outer periphery of the first piping part at intervals in the tube axis direction, and the first protrusions are fitted to the inner peripheral surface of the first insertion port.
  • a first fitting portion is formed.
  • the first piping is not provided on the outer periphery of the first piping portion, and the first piping is not provided on the inner peripheral surface of the first insertion port.
  • the sealing performance between the portion and the first insertion port is improved.
  • the insertion of the first piping portion is compared with the configuration in which the first concave portion is not formed around the first insertion port.
  • the first recess can absorb the elastic deformation of the first insertion port. For this reason, the sealing performance between a 1st piping part and a 1st insertion port further improves.
  • a plurality of annular second protrusions are provided on the outer periphery of the second piping part at intervals in the tube axis direction, and the second protrusions are fitted on the inner peripheral surface of the second insertion port. A mating second fitting portion is formed.
  • a 2nd piping part and a 2nd insertion port can be reliably connected by inserting a 2nd piping part into a 2nd insertion port until a 2nd protrusion fits in a 2nd fitting part.
  • the second pipe is not provided with the second protrusion on the outer periphery of the second pipe and the second fitting part is not provided on the inner peripheral surface of the second insertion port. The sealing performance between the portion and the second insertion port is improved.
  • the first manifold is disposed upstream of the cooler in the refrigerant flow direction,
  • the cooling structure according to any one of appendix 1 to appendix 6, wherein the first flow path is provided with a turbulent flow promoting body for disturbing a flow of the refrigerant flowing into the first pipe section.
  • the first manifold is disposed upstream of the cooler in the refrigerant flow direction. That is, the refrigerant is configured to flow in the order of the first manifold, the cooler, and the second manifold.
  • the turbulent flow promoting body for disturbing the flow of the refrigerant flowing into the first piping part is provided in the first flow path of the first manifold, the inside of the heat exchange part from the first piping part. It is promoted that turbulent flow is generated in the refrigerant flowing into.
  • the turbulent flow promoting body is provided in the first flow path, for example, the refrigerant flowing in the heat exchange unit is turbulent compared to the configuration in which the turbulent flow promoting body is not provided in the first flow path. The generation of the flow is promoted, and heat exchange between the refrigerant in the heat exchange section and the heat generating component is effectively performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This cooling structure is provided with: an assembly including a plurality of cooling units having a heat-exchange section, an entry-side piping section, and an exit-side piping section, and a heat-generating component disposed between adjacent heat-exchange sections in contact with the heat-exchange sections; an entry-side manifold including an entry-side flow passageway constituting section constituting an entry-side flow passageway through which refrigerant flows, and an entry-side connection section which is formed from elastic material and is provided with a plurality of entry-side insertion openings into which the entry-side piping section is inserted; and an exit-side manifold including an exit-side flow passageway constituting section which constitutes an exit-side flow passageway through which the refrigerant flows, and an exit-side connection section which is formed from elastic material and is provided with a plurality of exit-side insertion openings into which the exit-side piping section is inserted.

Description

冷却構造Cooling structure
 本開示は、冷却構造に関する。 This disclosure relates to a cooling structure.
 特許第5556680号公報には、所定間隔を隔てて冷却チューブを配置し、冷却チューブの両端部に一対のヘッダを設け、隣接する冷却チューブ間に半導体モジュール(発熱部品)を配置した冷却構造が開示されている。この冷却構造では、ヘッダの各冷却チューブとの接続部間に冷却チューブの配置方向に変形可能な凹部が形成されている。 Japanese Patent No. 5556680 discloses a cooling structure in which cooling tubes are arranged at a predetermined interval, a pair of headers are provided at both ends of the cooling tube, and a semiconductor module (heat generating component) is arranged between adjacent cooling tubes. Has been. In this cooling structure, a recess that can be deformed in the arrangement direction of the cooling tube is formed between the connection portions of the header to each cooling tube.
 特許第5556680号公報の冷却構造では、ヘッダに形成された凹部が変形することで、各半導体モジュールの厚みが異なっていても、隣接する冷却チューブ間に半導体モジュールを配置することができる。しかし、複数の冷却チューブと複数の半導体モジュールを組み立てて組立体とした場合、製造誤差により、各冷却チューブの端部の位置が定位置とならない(ばらつきが生じる)ことがある。この場合、ヘッダに形成された複数の挿入口と、各冷却チューブの端部の位置が合わず、挿入し難いなどの不具合が生じることがある。 In the cooling structure of Japanese Patent No. 5556680, the recess formed in the header is deformed, so that the semiconductor modules can be arranged between adjacent cooling tubes even if the thicknesses of the respective semiconductor modules are different. However, when a plurality of cooling tubes and a plurality of semiconductor modules are assembled into an assembly, the position of the end of each cooling tube may not be a fixed position (variation occurs) due to manufacturing errors. In this case, the plurality of insertion openings formed in the header and the positions of the end portions of the respective cooling tubes are not aligned, which may cause problems such as difficulty in insertion.
 本開示は、上記事実を考慮して、隣接する冷却器間に発熱部品を配置した組立体とマニホールドが接続される構成において、各冷却器の配管部の位置にばらつきがある場合でも組立体とマニホールドの接続が容易な冷却構造を提供することを課題とする。 In consideration of the above facts, the present disclosure provides a structure in which a manifold is connected to an assembly in which heating parts are arranged between adjacent coolers, even if there is variation in the position of the piping portion of each cooler. It is an object to provide a cooling structure in which manifolds can be easily connected.
 本開示の一態様の冷却構造は、第1方向に間隔をあけて配置され、かつ、内部を冷媒が流れる熱交換部と、前記熱交換部から第1方向と交差する方向へ延び、前記熱交換部内と連通する第1配管部と、前記熱交換部から前記第1配管部と反対側へ延び、前記熱交換部内と連通する第2配管部と、を備えた複数の冷却器と、前記第1方向に隣接する前記熱交換部間に配置されて前記熱交換部に接触する発熱部品と、を有する組立体と、前記第1方向に延び、前記冷媒が流れる第1流路を構成する第1流路構成部と、弾性材料で形成され、前記第1配管部が挿入される第1挿入口が複数設けられ、前記第1配管部内と前記第1流路を連通させる第1接続部と、を備えた第1マニホールドと、前記第1方向に延び、前記冷媒が流れる第2流路を構成する第2流路構成部と、弾性材料で形成され、前記第2配管部が挿入される第2挿入口が複数設けられ、前記第2配管部内と前記第2流路を連通させる第2接続部と、を備えた第2マニホールドと、を備えている。 The cooling structure according to an aspect of the present disclosure is arranged with a space in the first direction, and has a heat exchange part in which a refrigerant flows, and extends from the heat exchange part in a direction intersecting the first direction, A plurality of coolers comprising: a first pipe part communicating with the inside of the exchange part; a second pipe part extending from the heat exchange part to the opposite side of the first pipe part and communicating with the inside of the heat exchange part; An assembly having an exothermic component disposed between the heat exchanging parts adjacent in the first direction and contacting the heat exchanging part, and a first flow path extending in the first direction and flowing through the refrigerant are configured. A first connection part that is formed of an elastic material and has a plurality of first insertion ports into which the first pipe part is inserted, and that communicates the inside of the first pipe part with the first channel. And a second manifold that extends in the first direction and through which the refrigerant flows. And a second connection that is formed of an elastic material and has a plurality of second insertion ports into which the second piping portion is inserted, and that communicates the inside of the second piping portion with the second channel. And a second manifold provided with a portion.
 以上説明したように、本開示によれば、隣接する冷却器間に発熱部品を配置した組立体とマニホールドが接続される構成において、各冷却器の配管部の位置にばらつきがある場合でも組立体とマニホールドの接続が容易な冷却構造を提供することができる。 As described above, according to the present disclosure, in a configuration in which a manifold is connected to an assembly in which heat generating components are arranged between adjacent coolers, the assembly is provided even when the positions of the piping portions of the respective coolers vary. It is possible to provide a cooling structure in which the manifold can be easily connected.
第1実施形態の冷却構造を適用した冷却装置の斜視図である。It is a perspective view of the cooling device to which the cooling structure of the first embodiment is applied. 図1に示す冷却構造を構成する組立体の分解斜視図である。It is a disassembled perspective view of the assembly which comprises the cooling structure shown in FIG. 図1の3-3線断面図である。FIG. 3 is a sectional view taken along line 3-3 in FIG. 1. 図1に示す冷却構造を構成する第1マニホールドの斜視図である。It is a perspective view of the 1st manifold which comprises the cooling structure shown in FIG. 図4に示す第1マニホールドを第1挿入口側から見た側面図である。It is the side view which looked at the 1st manifold shown in Drawing 4 from the 1st insertion slot side. 図5の6-6線断面図である。FIG. 6 is a sectional view taken along line 6-6 of FIG. 第2実施形態の冷却構造を構成する第1マニホールドを第1挿入口側から見た側面図である。It is the side view which looked at the 1st manifold which constitutes the cooling structure of a 2nd embodiment from the 1st insertion slot side. 図7の8-8線断面図である。FIG. 8 is a sectional view taken along line 8-8 in FIG. 第2実施形態の冷却構造を構成する第1マニホールドの変形例を第1挿入口側から見た側面図である。It is the side view which looked at the modification of the 1st manifold which comprises the cooling structure of 2nd Embodiment from the 1st insertion port side. 図9の10-10線断面図である。FIG. 10 is a cross-sectional view taken along line 10-10 of FIG. 第2実施形態の冷却構造を構成する第1マニホールドの他の変形例を第1挿入口側から見た側面図である。It is the side view which looked at the other modification of the 1st manifold which comprises the cooling structure of 2nd Embodiment from the 1st insertion port side. 図11の12-12線断面図である。12 is a cross-sectional view taken along line 12-12 of FIG. 第2実施形態の冷却構造を構成する第1マニホールドのさらに他の変形例を第1挿入口側から見た側面図である。It is the side view which looked at the further another modification of the 1st manifold which comprises the cooling structure of 2nd Embodiment from the 1st insertion port side. 図13の14-14線断面図である。FIG. 14 is a sectional view taken along line 14-14 of FIG. 第3実施形態の冷却構造を構成する第1マニホールドの断面図(図3に対応する断面図)である。It is sectional drawing (sectional drawing corresponding to FIG. 3) of the 1st manifold which comprises the cooling structure of 3rd Embodiment. 第3実施形態の冷却構造を構成する第1マニホールドの変形例の断面図(図3に対応する断面図)である。It is sectional drawing (sectional drawing corresponding to FIG. 3) of the modification of the 1st manifold which comprises the cooling structure of 3rd Embodiment. 第3実施形態の冷却構造を構成する第2マニホールドの変形例の断面図(図3に対応する断面図)である。It is sectional drawing (sectional drawing corresponding to FIG. 3) of the modification of the 2nd manifold which comprises the cooling structure of 3rd Embodiment. 第4実施形態の冷却構造を構成する第2マニホールドの断面図(図3に対応する断面図)である。It is sectional drawing (sectional drawing corresponding to FIG. 3) of the 2nd manifold which comprises the cooling structure of 4th Embodiment. 第5実施形態の冷却構造を構成する第1マニホールドの断面図(図3に対応する断面図)である。It is sectional drawing (sectional drawing corresponding to FIG. 3) of the 1st manifold which comprises the cooling structure of 5th Embodiment.
 以下、図面を参照しながら本開示に係る一実施形態の冷却構造について説明する。なお、各図において適宜図示される矢印X、矢印Y、矢印Zは、冷却構造が適用された冷却装置の装置幅方向、装置奥行き方向、装置厚さ方向をそれぞれ示しており、矢印Z方向を上下方向として説明する。 Hereinafter, a cooling structure according to an embodiment of the present disclosure will be described with reference to the drawings. In addition, the arrow X, arrow Y, and arrow Z, which are appropriately illustrated in each drawing, indicate the device width direction, the device depth direction, and the device thickness direction of the cooling device to which the cooling structure is applied, respectively. It demonstrates as a vertical direction.
(第1実施形態)
 図1には、第1実施形態(以下、本実施形態)の冷却構造22が適用された冷却装置20が示されている。この冷却装置20は、例えば、CPUや電力用半導体素子などの発熱部品(冷却対象物)36を冷却するために用いられる。具体的には、冷却装置20は、後述する組立体30を構成する発熱部品36の熱を冷却器32内の冷媒に伝達することにより、発熱部品36を冷却するものである。
(First embodiment)
FIG. 1 shows a cooling device 20 to which the cooling structure 22 of the first embodiment (hereinafter, this embodiment) is applied. The cooling device 20 is used for cooling a heat generating component (cooling target) 36 such as a CPU or a power semiconductor element, for example. Specifically, the cooling device 20 cools the heat generating component 36 by transmitting the heat of the heat generating component 36 constituting the assembly 30 described later to the refrigerant in the cooler 32.
 図1に示されるように、本実施形態の冷却装置20は、冷却構造22を構成する組立体30、入側マニホールド40及び出側マニホールド50と、入側マニホールド40に冷媒Lを供給するための供給パイプ24(図1では二点鎖線で示す)と、出側マニホールド50から冷媒Lを排出するための排出パイプ26(図1では二点鎖線で示す)と、を備えている。 As shown in FIG. 1, the cooling device 20 of the present embodiment is configured to supply the refrigerant L to the assembly 30, the inlet manifold 40, the outlet manifold 50, and the inlet manifold 40 that constitute the cooling structure 22. A supply pipe 24 (indicated by a two-dot chain line in FIG. 1) and a discharge pipe 26 (indicated by a two-dot chain line in FIG. 1) for discharging the refrigerant L from the outlet side manifold 50 are provided.
 本実施形態の冷却構造22は、前述のように、組立体30と、入側マニホールド40と、出側マニホールド50とを備えている。 The cooling structure 22 of the present embodiment includes the assembly 30, the inlet side manifold 40, and the outlet side manifold 50 as described above.
(組立体30)
 図1及び図2に示されるように、組立体30は、第1方向(本実施形態では、装置奥行き方向と同じ方向)に間隔をあけて配置された複数の冷却器32と、第1方向に隣接する冷却器32の後述する熱交換部33間に配置されて熱交換部33に接触する発熱部品36と、を有する。言い換えると、組立体30は、複数の冷却器32と、複数の発熱部品36とを第1方向(本実施形態では、装置奥行き方向)に交互に重ねて形成されている。
(Assembly 30)
As shown in FIGS. 1 and 2, the assembly 30 includes a plurality of coolers 32 arranged in the first direction (the same direction as the apparatus depth direction in the present embodiment) and a first direction. And a heat generating component 36 that is disposed between the heat exchangers 33 described later of the cooler 32 adjacent to the heat exchangers 33 and contacts the heat exchangers 33. In other words, the assembly 30 is formed by alternately stacking a plurality of coolers 32 and a plurality of heat generating components 36 in the first direction (the apparatus depth direction in the present embodiment).
 冷却器32は、内部を冷媒Lが流れる前述の熱交換部33と、熱交換部33から第1方向と交差する方向へ延びる入側配管部34と、熱交換部33から入側配管部34と反対側へ延びる出側配管部35と、を備えている。 The cooler 32 includes the above-described heat exchanging portion 33 through which the refrigerant L flows, an inlet side piping portion 34 extending from the heat exchanging portion 33 in a direction intersecting the first direction, and an inlet side piping portion 34 extending from the heat exchanging portion 33. And an exit side piping part 35 extending to the opposite side.
 熱交換部33は、略板状とされており、内部が冷媒Lの流路を構成している。また、熱交換部33の内部には、冷却性能を高めるために図示しないフィン(例えば、コルゲートフィン)などが設けられている。また、熱交換部33の板面である伝熱面33Aに発熱部品36が接触している。 The heat exchanging part 33 has a substantially plate shape, and the inside constitutes a flow path of the refrigerant L. In addition, fins (for example, corrugated fins) (not shown) are provided inside the heat exchange unit 33 in order to improve the cooling performance. Further, the heat generating component 36 is in contact with the heat transfer surface 33 </ b> A that is the plate surface of the heat exchanging portion 33.
 入側配管部34は、円筒状とされ、熱交換部33内と連通している。また、入側配管部34は、入側マニホールド40の後述する入側挿入口48に挿入可能とされている。入側配管部34が入側マニホールド40の入側挿入口48に挿入された状態では、入側マニホールド40から冷媒Lが入側配管部34を介して熱交換部33内へ流れ込むようになっている。 The inlet side piping part 34 is cylindrical and communicates with the heat exchange part 33. Further, the inlet side piping section 34 can be inserted into an inlet side insertion port 48 described later of the inlet side manifold 40. In a state where the inlet side piping part 34 is inserted into the inlet side insertion port 48 of the inlet side manifold 40, the refrigerant L flows from the inlet side manifold 40 into the heat exchange part 33 via the inlet side piping part 34. Yes.
 出側配管部35は、円筒状とされ、熱交換部33内と連通している。また、出側配管部35は、出側マニホールド50の後述する出側挿入口58に挿入可能とされている。出側配管部35が出側マニホールド50の出側挿入口58に挿入された状態では、熱交換部33内の冷媒Lが出側配管部35を介して出側マニホールド50に流れ出るようになっている。 The delivery side piping section 35 is cylindrical and communicates with the heat exchange section 33. Further, the outlet side piping portion 35 can be inserted into an outlet side insertion port 58 described later of the outlet side manifold 50. In a state where the outlet side pipe part 35 is inserted into the outlet side insertion port 58 of the outlet side manifold 50, the refrigerant L in the heat exchange part 33 flows out to the outlet side manifold 50 through the outlet side pipe part 35. Yes.
 また、本実施形態の冷却器32は、金属材料(例えば、アルミニウム、銅)を用いた一体成形品である。 Further, the cooler 32 of the present embodiment is an integrally molded product using a metal material (for example, aluminum or copper).
 発熱部品36は、冷却器32の熱交換部33の伝熱面33Aに接触した状態で該伝熱面33Aに固定されている。具体的には、発熱部品36の厚み方向の両面が、第1方向に隣接する熱交換部33にそれぞれ固定されている。この構成により、発熱部品36は、隣接する冷却器32の熱交換部33によって、厚み方向の両面側から冷却される。なお、発熱部品36と冷却器32の熱交換部33との固定は、伝熱性の観点から、例えば、ろう付けや機械的接合(ねじなどの締結部材を用いた接合)によって行われることが好ましい。 The heat generating component 36 is fixed to the heat transfer surface 33A in a state in contact with the heat transfer surface 33A of the heat exchange unit 33 of the cooler 32. Specifically, both surfaces in the thickness direction of the heat generating component 36 are respectively fixed to the heat exchanging portions 33 adjacent in the first direction. With this configuration, the heat generating component 36 is cooled from both sides in the thickness direction by the heat exchanging portion 33 of the adjacent cooler 32. The fixing of the heat generating component 36 and the heat exchanging portion 33 of the cooler 32 is preferably performed by, for example, brazing or mechanical joining (joining using a fastening member such as a screw) from the viewpoint of heat transfer. .
 (入側マニホールド40)
 図3~図6に示されるように、入側マニホールド40は、冷媒Lが流れる入側流路44を構成する入側流路構成部42と、入側配管部34が挿入される入側挿入口48が複数設けられる入側接続部46と、を備えている。なお、本実施形態の入側マニホールド40は、本開示における第1マニホールドの一例である。また、本実施形態の入側流路構成部42、入側流路44、入側接続部46、入側挿入口48は、それぞれ本開示における第1流路構成部、第1流路、第1接続部、第1挿入口の一例である。
(Entry manifold 40)
As shown in FIGS. 3 to 6, the inlet side manifold 40 has an inlet side passage portion 42 that constitutes an inlet side passage 44 through which the refrigerant L flows, and an inlet side insertion into which the inlet side piping portion 34 is inserted. And an inlet side connection portion 46 provided with a plurality of ports 48. In addition, the entrance side manifold 40 of this embodiment is an example of the 1st manifold in this indication. In addition, the inlet-side flow path component 42, the inlet-side flow path 44, the inlet-side connection part 46, and the inlet-side insertion port 48 of the present embodiment are respectively the first flow path component, the first flow path, and the first flow path in the present disclosure. It is an example of 1 connection part and a 1st insertion slot.
 図3及び図6に示されるように、入側流路構成部42は、第1方向である装置奥行き方向を長手方向とする略直方体状とされ、内部に第1方向に延びる入側流路44が形成されている。この入側流路44は、一端が入側流路構成部42の長手方向の一端部に開口し、他端が入側流路構成部42内で終端している。なお、入側流路44の一端は、入側流路44と供給パイプ24を接続するための接続口44Aを構成している。 As shown in FIG. 3 and FIG. 6, the inlet-side flow path constituting section 42 is formed in a substantially rectangular parallelepiped shape having the apparatus depth direction as the first direction as a longitudinal direction and extends in the first direction inside. 44 is formed. One end of the inlet-side channel 44 opens at one end in the longitudinal direction of the inlet-side channel constituent part 42, and the other end terminates in the inlet-side channel constituent part 42. Note that one end of the inlet-side channel 44 forms a connection port 44 </ b> A for connecting the inlet-side channel 44 and the supply pipe 24.
 入側接続部46は、入側流路構成部42に第1方向と直交する方向(入側流路構成部42の短手方向)に隣接して形成されており、入側挿入口48が第1方向に間隔をあけて複数設けられている。この入側挿入口48は、図4及び図5に示されるように、入側接続部46に設けられた円孔(断面円形の貫通孔)であり、入側流路44に連通している。すなわち、入側接続部46の入側挿入口48に冷却器32の入側配管部34を挿入することで、入側配管部34内と入側流路44とが連通するようになっている。また、入側配管部34を入側挿入口48に挿入した状態では、入側挿入口48の内周面に入側配管部34の外周面が密着するように構成されており、入側挿入口48と入側配管部34との間のシール性が確保されている。 The inlet side connecting portion 46 is formed adjacent to the inlet side flow path constituting portion 42 in a direction orthogonal to the first direction (short direction of the inlet side flow path constituting portion 42). A plurality are provided at intervals in the first direction. As shown in FIGS. 4 and 5, the inlet side insertion port 48 is a circular hole (a through hole having a circular cross section) provided in the inlet side connection portion 46, and communicates with the inlet side flow path 44. . That is, by inserting the inlet side piping part 34 of the cooler 32 into the inlet side insertion port 48 of the inlet side connection part 46, the inside of the inlet side piping part 34 and the inlet side flow path 44 communicate with each other. . In addition, when the inlet side piping part 34 is inserted into the inlet side insertion port 48, the outer peripheral surface of the inlet side piping part 34 is configured to be in close contact with the inner peripheral surface of the inlet side insertion port 48. The sealing property between the port 48 and the inlet side piping part 34 is ensured.
 また、入側流路構成部42と入側接続部46は、同一の弾性材料(例えば、ゴム、シール性に優れた樹脂)の一体成形品とされている。なお、本開示は上記構成に限定されず、入側流路構成部42と入側接続部46とを異なる弾性材料の一体成形品としてもよいし、入側流路構成部42を弾性材料で形成し、入側流路構成部42を金属材料で形成する構成としてもよい。 Further, the inlet-side flow path constituting portion 42 and the inlet-side connecting portion 46 are formed as an integrally molded product of the same elastic material (for example, rubber and resin having excellent sealing properties). In addition, this indication is not limited to the said structure, It is good also considering the inlet side flow path structure part 42 and the inlet side connection part 46 as an integrally molded product of a different elastic material, and the inlet side flow path structure part 42 is made of an elastic material. It is good also as a structure which forms and forms the entrance side flow-path structure part 42 with a metal material.
 また、入側マニホールド40は、入側流路構成部42の下面に第1方向に間隔をあけて複数の脚部49を備えている。本実施形態では、入側マニホールド40が入側流路構成部42、入側接続部46及び脚部49を含めて、弾性材料の一体成形品とされている。なお、本開示は上記構成に限定されず、入側流路構成部42及び入側接続部46と、脚部49とを異なる弾性材料の一体成形品としてもよいし、入側流路構成部42及び入側接続部46を弾性材料で形成し、脚部49を金属材料で形成する構成としてもよい。 Further, the inlet side manifold 40 is provided with a plurality of leg portions 49 at intervals in the first direction on the lower surface of the inlet side flow path constituting portion 42. In this embodiment, the inlet side manifold 40 includes the inlet side flow path constituting portion 42, the inlet side connecting portion 46, and the leg portion 49, and is an integrally molded product of an elastic material. In addition, this indication is not limited to the said structure, It is good also considering the inlet side flow-path structure part 42, the inlet-side connection part 46, and the leg part 49 as an integrally molded product of a different elastic material, or an inlet-side flow path structure part. It is good also as a structure which forms 42 and the entrance side connection part 46 with an elastic material, and forms the leg part 49 with a metal material.
(出側マニホールド50)
 図3に示されるように、出側マニホールド50は、冷媒Lが流れる出側流路54を構成する出側流路構成部52と、出側配管部35が挿入される出側挿入口58が複数設けられる出側接続部56と、を備えている。なお、本実施形態の出側マニホールド50は、本開示における第2マニホールドの一例である。また、本実施形態の出側流路構成部52、出側流路54、出側接続部56、出側挿入口58は、それぞれ本開示における第2流路構成部、第2流路、第2接続部、第2挿入口の一例である。
(Exit manifold 50)
As shown in FIG. 3, the outlet side manifold 50 includes an outlet side flow path constituting portion 52 that constitutes an outlet side flow path 54 through which the refrigerant L flows, and an outlet side insertion port 58 into which the outlet side piping portion 35 is inserted. A plurality of outlet side connection portions 56. The outlet manifold 50 of the present embodiment is an example of a second manifold in the present disclosure. In addition, the outlet-side channel configuration unit 52, the outlet-side channel 54, the outlet-side connection unit 56, and the outlet-side insertion port 58 of the present embodiment are respectively the second channel configuration unit, the second channel, It is an example of 2 connection parts and a 2nd insertion port.
 図1及び図3に示されるように、出側流路構成部52は、第1方向である装置奥行き方向を長手方向とする略直方体状とされ、内部に第1方向に延びる出側流路54が形成されている。この出側流路54は、一端が出側流路構成部52の長手方向の一端部に開口し、他端が出側流路構成部52内で終端している。なお、出側流路54の一端は、出側流路54と排出パイプ26を接続するための接続口54Aを構成している。 As shown in FIG. 1 and FIG. 3, the outlet flow path constituting portion 52 has a substantially rectangular parallelepiped shape with the apparatus depth direction as the first direction as the longitudinal direction, and extends in the first direction inside. 54 is formed. One end of the outlet channel 54 opens at one end in the longitudinal direction of the outlet channel component 52, and the other end terminates in the outlet channel component 52. Note that one end of the outlet-side channel 54 constitutes a connection port 54 </ b> A for connecting the outlet-side channel 54 and the discharge pipe 26.
 出側接続部56は、出側流路構成部52に第1方向と直交する方向(出側流路構成部52の短手方向)に隣接して形成されており、出側挿入口58が第1方向に間隔をあけて複数設けられている。この出側挿入口58は、図3に示されるように、出側接続部56に設けられた円孔(断面円形の貫通孔)であり、出側流路54に連通している。すなわち、出側接続部56の出側挿入口58に冷却器32の出側配管部35を挿入することで、出側配管部35内と出側流路54とが連通するようになっている。また、出側配管部35を出側挿入口58に挿入した状態では、出側挿入口58の内周面に出側配管部35の外周面が密着するように構成されており、出側挿入口58と出側配管部35との間のシール性が確保されている。 The outlet-side connecting portion 56 is formed adjacent to the outlet-side flow path constituting portion 52 in a direction orthogonal to the first direction (short direction of the outlet-side flow path constituting portion 52). A plurality are provided at intervals in the first direction. As shown in FIG. 3, the outlet insertion port 58 is a circular hole (through hole having a circular cross section) provided in the outlet side connection portion 56 and communicates with the outlet side flow path 54. That is, by inserting the outlet side piping part 35 of the cooler 32 into the outlet side insertion port 58 of the outlet side connection part 56, the inside of the outlet side piping part 35 and the outlet side flow path 54 communicate with each other. . In addition, in a state where the outlet side piping part 35 is inserted into the outlet side insertion port 58, the outer peripheral surface of the outlet side piping part 35 is configured to be in close contact with the inner peripheral surface of the outlet side insertion port 58. The sealing property between the port 58 and the outlet side piping part 35 is ensured.
 また、出側流路構成部52と出側接続部56は、同一の弾性材料(例えば、ゴム、シール性に優れた樹脂)の一体成形品とされている。なお、本開示は上記構成に限定されず、出側流路構成部52と出側接続部56とを異なる弾性材料の一体成形品としてもよいし、出側流路構成部52を弾性材料で形成し、出側流路構成部52を金属材料で形成する構成としてもよい。 Further, the outlet-side flow path constituting portion 52 and the outlet-side connecting portion 56 are integrally molded products of the same elastic material (for example, rubber and resin having excellent sealing properties). In addition, this indication is not limited to the said structure, It is good also considering the output side flow-path structure part 52 and the output-side connection part 56 as an integrally molded product of a different elastic material, and the output-side flow path structure 52 is made of an elastic material. It is good also as a structure which forms and forms the output side flow-path structure part 52 with a metal material.
 また、出側マニホールド50は、出側流路構成部52の下面に第1方向に間隔をあけて複数の脚部59を備えている。本実施形態では、出側マニホールド50が出側流路構成部52、出側接続部56及び脚部59を含めて、弾性材料の一体成形品とされている。なお、本開示は上記構成に限定されず、出側流路構成部52及び出側接続部56と、脚部59とを異なる弾性材料の一体成形品としてもよいし、出側流路構成部52及び出側接続部56を弾性材料で形成し、脚部59を金属材料で形成する構成としてもよい。 Further, the outlet side manifold 50 includes a plurality of leg portions 59 spaced on the lower surface of the outlet side flow path constituting portion 52 in the first direction. In the present embodiment, the outlet manifold 50 is an integrally molded product of an elastic material including the outlet-side flow path constituting portion 52, the outlet-side connecting portion 56, and the leg portion 59. In addition, this indication is not limited to the said structure, It is good also considering the exit side flow-path structure part 52, the exit-side connection part 56, and the leg part 59 as an integrally molded product of a different elastic material, or an exit-side flow path structure part. 52 and the outlet side connection portion 56 may be formed of an elastic material, and the leg portion 59 may be formed of a metal material.
 次に、本実施形態の冷却構造22の作用効果について説明する。
 冷却構造22では、組立体30を構成する各冷却器32の入側配管部34を入側マニホールド40の入側接続部46に設けられた複数の入側挿入口48にそれぞれ挿入することで、入側配管部34内と入側流路44が連通する。また、組立体30を構成する各冷却器32の出側配管部35を出側マニホールド50の出側接続部56に設けられた複数の出側挿入口58にそれぞれ挿入することで、出側配管部35内と出側流路54が連通する。この連通状態で、図3に示されるように、供給パイプ24から入側マニホールド40の入側流路44に冷媒Lを供給すると、冷媒Lが入側流路44から冷却器32の入側配管部34内を通して熱交換部33内に流れ込む。そして、熱交換部33内に流れ込んだ冷媒Lは、熱交換部33から出側配管部35内を通して出側流路54に流れ込み、出側マニホールド50から排出される。上記のように冷媒Lが流れることで、冷却器32の熱交換部33を介して発熱部品36と冷媒Lとの間で熱交換が行われ、発熱部品36が冷却される。
Next, the effect of the cooling structure 22 of this embodiment is demonstrated.
In the cooling structure 22, by inserting the inlet-side piping portions 34 of the respective coolers 32 constituting the assembly 30 into the plurality of inlet-side insertion ports 48 provided in the inlet-side connecting portion 46 of the inlet-side manifold 40, The inlet side piping part 34 and the inlet side flow path 44 communicate. Further, by inserting the outlet side piping part 35 of each cooler 32 constituting the assembly 30 into the plurality of outlet side insertion ports 58 provided in the outlet side connection part 56 of the outlet side manifold 50, the outlet side piping part is provided. The inside of the part 35 and the exit side flow path 54 communicate. In this communication state, as shown in FIG. 3, when the refrigerant L is supplied from the supply pipe 24 to the inlet side flow path 44 of the inlet side manifold 40, the refrigerant L enters the inlet side piping of the cooler 32 from the inlet side flow path 44. It flows into the heat exchange section 33 through the section 34. Then, the refrigerant L that has flowed into the heat exchange section 33 flows from the heat exchange section 33 into the outlet side flow path 54 through the outlet side piping section 35, and is discharged from the outlet side manifold 50. As the refrigerant L flows as described above, heat exchange is performed between the heat generating component 36 and the refrigerant L via the heat exchanging portion 33 of the cooler 32, and the heat generating component 36 is cooled.
 ここで、上記冷却構造22では、入側マニホールド40の入側接続部46を弾性材料で形成しているため、入側挿入口48が弾性変形可能である。このため、冷却構造22では、入側挿入口48が弾性変形できない構成と比べて、組立体30を構成する各冷却器32の入側配管部34の位置にばらつきがある場合でも各冷却器32の入側配管部34を入側挿入口48に対して容易に挿入することができる。
 同様に、上記冷却構造22では、出側マニホールド50の出側接続部56を弾性材料で形成しているため、出側挿入口58が弾性変形可能である。このため、上記冷却構造22では、出側挿入口58が弾性変形できない構成と比べて、組立体30を構成する各冷却器32の出側配管部35の位置にばらつきがある場合でも各冷却器32の出側配管部35を出側挿入口58に対して容易に挿入することができる。
 以上のように上記冷却構造22では、各冷却器32の配管部(入側配管部34及び出側配管部35を含む)の位置にばらつきがある場合でも組立体30とマニホールド(入側マニホールド40及び出側マニホールド50を含む)との接続を容易に行うことができる。
Here, in the cooling structure 22, since the inlet side connection portion 46 of the inlet side manifold 40 is formed of an elastic material, the inlet side insertion port 48 can be elastically deformed. For this reason, in the cooling structure 22, each cooler 32 is different even when the positions of the inlet-side piping portions 34 of the coolers 32 constituting the assembly 30 are different from the configuration in which the inlet-side insertion port 48 cannot be elastically deformed. The inlet side piping part 34 can be easily inserted into the inlet side insertion port 48.
Similarly, in the cooling structure 22, since the outlet side connection portion 56 of the outlet side manifold 50 is formed of an elastic material, the outlet side insertion port 58 can be elastically deformed. For this reason, in the cooling structure 22, each cooler is different even in the case where there is a variation in the position of the exit side piping portion 35 of each cooler 32 constituting the assembly 30 compared to the configuration in which the exit side insertion port 58 cannot be elastically deformed. The 32 outlet side piping portions 35 can be easily inserted into the outlet side insertion port 58.
As described above, in the cooling structure 22, the assembly 30 and the manifold (inlet side manifold 40) even when the positions of the pipe parts (including the inlet side pipe part 34 and the outlet side pipe part 35) of each cooler 32 vary. And the outlet manifold 50).
 また、冷却構造22では、入側流路構成部42と入側接続部46を弾性材料の一体成形品としていることから、例えば、入側流路構成部42と入側接続部46を別体(別部品)とする構成と比べて、部品数及び入側流路構成部42と入側接続部46を組み付けるための工程などを削減することができる。
 同様に、上記冷却構造では、出側流路構成部52と出側接続部56を弾性材料の一体成形品としていることから、例えば、出側流路構成部52と出側接続部56を別体(別部品)とする構成と比べて、部品数及び出側流路構成部52と出側接続部56を組み付けるための工程などを削減することができる。
Moreover, in the cooling structure 22, since the inlet side flow path component 42 and the inlet side connection part 46 are integrally formed of an elastic material, for example, the inlet side flow path component 42 and the inlet side connection part 46 are separated. Compared to the configuration of (separate parts), it is possible to reduce the number of parts and the steps for assembling the inlet-side flow path component 42 and the inlet-side connecting portion 46.
Similarly, in the above cooling structure, since the outlet-side flow path component 52 and the outlet-side connecting part 56 are integrally formed of an elastic material, for example, the outlet-side channel constituent part 52 and the outlet-side connecting part 56 are separately provided. Compared with the configuration of the body (separate parts), the number of parts and the steps for assembling the outlet-side flow path constituting portion 52 and the outlet-side connecting portion 56 can be reduced.
(第2実施形態)
 図7及び図8には、第2実施形態の冷却構造62が示されている。本実施形態の冷却構造62は、冷却器64の入側配管部66及び出側配管部68の構成と、入側マニホールド70の入側接続部72の構成と、出側マニホールド80の出側接続部82の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Second Embodiment)
The cooling structure 62 of 2nd Embodiment is shown by FIG.7 and FIG.8. The cooling structure 62 of this embodiment includes the configuration of the inlet side piping portion 66 and the outlet side piping portion 68 of the cooler 64, the configuration of the inlet side connection portion 72 of the inlet side manifold 70, and the outlet side connection of the outlet side manifold 80. Since the configuration of the part 82 is different from the cooling structure 22 of the first embodiment and the other configuration is the same as the cooling structure 22, the description of the same configuration as the cooling structure 22 is omitted. Moreover, the same code | symbol is attached | subjected about the structure same as 1st Embodiment.
 図8に示されるように、冷却器64を構成する円筒状の入側配管部66の外周には、周方向(円周方向)に沿って円環状の突部67が管軸方向に間隔をあけて複数(本実施形態では2つ)設けられている。これらの突部67は、入側配管部66の内周を管径方向外側に押し出して形成されている。 As shown in FIG. 8, annular protrusions 67 along the circumferential direction (circumferential direction) are spaced apart in the tube axis direction on the outer periphery of the cylindrical inlet-side piping part 66 constituting the cooler 64. A plurality (two in this embodiment) are provided. These protrusions 67 are formed by pushing the inner periphery of the inlet-side piping part 66 outward in the pipe radial direction.
 また、冷却器64を構成する円筒状の出側配管部68の外周には、周方向(円周方向)に沿って円環状の突部69が管軸方向に間隔をあけて複数(本実施形態では2つ)設けられている。これらの突部69は、出側配管部68の内周を管径方向外側に押し出して形成されている。 Further, on the outer periphery of the cylindrical outlet pipe portion 68 constituting the cooler 64, a plurality of annular protrusions 69 are provided along the circumferential direction (circumferential direction) at intervals in the pipe axis direction (this embodiment). Two are provided in the form. These protrusions 69 are formed by pushing the inner periphery of the outlet side pipe portion 68 outward in the pipe diameter direction.
 図7及び図8に示されるように、入側マニホールド70を構成する入側接続部72に形成された入側挿入口74の周囲には、凹部76が形成されている。具体的には、図7に示されるように、凹部76は、入側挿入口74の周囲に等間隔で複数(本実施形態では4つ)形成されている。この凹部76により、入側挿入口74は、略円筒状に形成されている。 7 and 8, a recess 76 is formed around the inlet side insertion port 74 formed in the inlet side connecting portion 72 constituting the inlet side manifold 70. As shown in FIG. Specifically, as shown in FIG. 7, a plurality of concave portions 76 (four in the present embodiment) are formed around the entry-side insertion port 74 at equal intervals. Due to the recess 76, the entry-side insertion port 74 is formed in a substantially cylindrical shape.
 また、入側挿入口74の内周面には、突部67が嵌合する嵌合部78が形成されている。具体的には、嵌合部78は、入側配管部66の奥側(先端側と反対側)に設けられた突部67が嵌合した状態で、入側配管部66の先端側に設けられた突部67が入側流路44内に位置するように、入側挿入口74の内周面に形成されている。 Also, a fitting portion 78 into which the protrusion 67 is fitted is formed on the inner peripheral surface of the entry side insertion port 74. Specifically, the fitting portion 78 is provided on the distal end side of the inlet side piping portion 66 in a state in which a protrusion 67 provided on the back side (opposite side of the distal end side) of the inlet side piping portion 66 is fitted. The protruding portion 67 is formed on the inner peripheral surface of the inlet-side insertion port 74 so as to be positioned in the inlet-side channel 44.
 一方、出側マニホールド80を構成する出側接続部82に形成された出側挿入口84の周囲には、凹部86が形成されている。具体的には、図7に示されるように、凹部86は、出側挿入口84の周囲に等間隔で複数(本実施形態では4つ)形成されている。この凹部86により、出側挿入口84は、略円筒状に形成されている。 On the other hand, a recess 86 is formed around the outlet insertion port 84 formed in the outlet connecting portion 82 constituting the outlet manifold 80. Specifically, as shown in FIG. 7, a plurality of recesses 86 (four in the present embodiment) are formed around the outlet insertion port 84 at equal intervals. Due to the recess 86, the outlet side insertion port 84 is formed in a substantially cylindrical shape.
 また、出側挿入口84の内周面には、突部69が嵌合する嵌合部88が形成されている。具体的には、嵌合部88は、出側配管部68の奥側(先端側と反対側)に設けられた突部69が嵌合した状態で、出側配管部68の先端側に設けられた突部69が出側流路54内に位置するように、出側挿入口84の内周面に形成されている。 Also, a fitting portion 88 into which the protrusion 69 is fitted is formed on the inner peripheral surface of the outlet side insertion port 84. Specifically, the fitting portion 88 is provided on the distal end side of the outlet side piping portion 68 in a state where the protrusion 69 provided on the back side (opposite side of the distal end side) of the outlet side piping portion 68 is fitted. The protruding portion 69 is formed on the inner peripheral surface of the outlet-side insertion port 84 so as to be positioned in the outlet-side channel 54.
 次に、本実施形態の冷却構造62の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, the function and effect of the cooling structure 62 of this embodiment will be described. In addition, the description about the effect similar to the effect obtained in 1st Embodiment is abbreviate | omitted suitably.
 本実施形態の冷却構造62では、入側配管部66の外周に円環状の突部67が管軸方向に間隔をあけて複数設けられ、入側挿入口74の内周面に突部67が嵌合する嵌合部78が形成されている。このため、突部67が嵌合部78に嵌合するまで入側配管部66を入側挿入口74に挿入することで、入側配管部66と入側挿入口74を確実に接続することができる。これにより、冷却構造62では、例えば、入側配管部66の外周に突部67を設けず、入側挿入口74の内周面に嵌合部78を設けない構成と比べて、入側配管部66と入側挿入口74との間のシール性が向上する。また、入側配管部66を入側挿入口74に挿入した状態では、突部67が嵌合部78に嵌合するため、入側配管部66が入側挿入口74から抜け出るのを効果的に抑制することができる。特に、本実施形態では、入側配管部66の先端側に設けられた突部67が入側流路44内に位置しているため、この突部67が入側挿入口74の入側流路44側の開口縁部に引っ掛かり、入側配管部66が入側挿入口74から抜け出るのをさらに効果的に抑制することができる。また、入側接続部72の入側挿入口74の周囲に凹部76を形成しているため、例えば、入側挿入口74の周囲に凹部76を形成しない構成と比べて、入側配管部66の挿入による入側挿入口74の弾性変形を凹部76で吸収することができる。このため、入側配管部66と入側挿入口74との間のシール性がさらに向上する。 In the cooling structure 62 of the present embodiment, a plurality of annular protrusions 67 are provided on the outer periphery of the inlet-side piping part 66 at intervals in the tube axis direction, and the protrusions 67 are provided on the inner peripheral surface of the inlet-side insertion port 74. A fitting portion 78 to be fitted is formed. For this reason, the inlet side piping part 66 and the inlet side insertion port 74 are reliably connected by inserting the inlet side piping part 66 into the inlet side insertion port 74 until the protrusion 67 is fitted to the fitting part 78. Can do. Thereby, in the cooling structure 62, for example, compared to a configuration in which the protrusion 67 is not provided on the outer periphery of the inlet-side piping portion 66 and the fitting portion 78 is not provided on the inner peripheral surface of the inlet-side insertion port 74. The sealing performance between the portion 66 and the entry side insertion port 74 is improved. In addition, in a state where the inlet side piping portion 66 is inserted into the inlet side insertion port 74, the projection 67 is fitted into the fitting portion 78, so that it is effective for the inlet side piping portion 66 to come out of the inlet side insertion port 74. Can be suppressed. In particular, in this embodiment, since the protrusion 67 provided on the distal end side of the inlet side piping part 66 is located in the inlet side flow path 44, the protrusion 67 is an inlet side flow of the inlet side insertion port 74. It is possible to more effectively suppress the entrance side piping portion 66 from being caught by the opening edge on the side of the passage 44 and coming out of the entrance side insertion port 74. Moreover, since the recessed part 76 is formed around the entrance side insertion port 74 of the entrance side connection part 72, compared with the structure which does not form the recessed part 76 around the entrance side insertion port 74, for example, the entrance side piping part 66 The recess 76 can absorb the elastic deformation of the entry-side insertion port 74 due to the insertion of. For this reason, the sealing performance between the inlet side piping part 66 and the inlet side insertion port 74 further improves.
 同様に、上記冷却構造62では、出側配管部68の外周に円環状の突部69が管軸方向に間隔をあけて複数設けられ、出側挿入口84の内周面に突部69が嵌合する嵌合部88が形成されている。このため、突部69が嵌合部88に嵌合するまで出側配管部68を出側挿入口84に挿入することで、出側配管部68と出側挿入口84を確実に接続することができる。これにより、冷却構造62では、例えば、出側配管部68の外周に突部69を設けず、出側挿入口84の内周面に嵌合部88を設けない構成と比べて、出側配管部68と出側挿入口84との間のシール性が向上する。また、出側配管部68を出側挿入口84に挿入した状態では、突部69が嵌合部88に嵌合するため、出側配管部68が出側挿入口84から抜け出るのを効果的に抑制することができる。特に、本実施形態では、出側配管部68の先端側に設けられた突部69が出側流路54内に位置しているため、この突部69が出側挿入口84の出側流路54側の開口縁部に引っ掛かり、出側配管部68が出側挿入口84から抜け出るのをさらに効果的に抑制することができる。また、出側接続部82の出側挿入口84の周囲に凹部86を形成しているため、例えば、出側挿入口84の周囲に凹部86を形成しない構成と比べて、出側配管部68の挿入による出側挿入口84の弾性変形を凹部86で吸収することができる。このため、出側配管部68と出側挿入口84との間のシール性がさらに向上する。 Similarly, in the cooling structure 62, a plurality of annular protrusions 69 are provided on the outer periphery of the outlet-side piping part 68 at intervals in the tube axis direction, and the protrusions 69 are provided on the inner peripheral surface of the outlet-side insertion port 84. A fitting portion 88 to be fitted is formed. For this reason, the outlet side pipe part 68 and the outlet side insertion port 84 are securely connected by inserting the outlet side pipe part 68 into the outlet side insertion port 84 until the protrusion 69 is fitted to the fitting part 88. Can do. Thereby, in the cooling structure 62, compared with the structure which does not provide the protrusion 69 in the outer periphery of the exit side piping part 68, and does not provide the fitting part 88 in the internal peripheral surface of the exit side insertion port 84, for example. The sealing performance between the portion 68 and the outlet insertion port 84 is improved. In addition, in a state where the outlet side pipe portion 68 is inserted into the outlet side insertion port 84, the projection 69 fits into the fitting portion 88, so that it is effective for the outlet side piping portion 68 to escape from the outlet side insertion port 84. Can be suppressed. In particular, in this embodiment, since the protrusion 69 provided on the distal end side of the outlet side pipe portion 68 is located in the outlet side flow path 54, the protrusion 69 is connected to the outlet side flow of the outlet side insertion port 84. It is possible to further effectively prevent the outlet side pipe portion 68 from being caught by the opening edge on the side of the passage 54 and coming out of the outlet side insertion port 84. Moreover, since the recessed part 86 is formed around the output side insertion port 84 of the output side connection part 82, compared with the structure which does not form the recessed part 86 around the output side insertion port 84, for example, the output side piping part 68 is provided. The recess 86 can absorb the elastic deformation of the outlet side insertion port 84 due to the insertion. For this reason, the sealing performance between the outlet side piping part 68 and the outlet side insertion port 84 is further improved.
 第2実施形態の入側マニホールド70では、嵌合部78が、入側配管部66の奥側に設けられた突部67が嵌合した状態で、入側配管部66の先端側に設けられた突部67が入側流路44内に位置するように、入側挿入口74の内周面に形成されているが、本開示はこの構成に限定されない。例えば、図9及び図10に示す変形例の入側マニホールド92のように、入側配管部66に設けられた複数(2つ)の突部67が嵌合する嵌合部93が入側挿入口74の内周面に複数(2つ)形成されていてもよい。この構成とすることで、入側配管部66を入側挿入口74に挿入した状態において、入側配管部66の管軸方向の移動を抑制することができる。これにより、入側配管部66と入側挿入口74との間のシール性を確保することができる。また、変形例の入側マニホールド92では、入側挿入口74の内周面の嵌合部93間に円環状の窪み部94を形成している。この窪み部94により入側挿入口74が拡径方向に弾性変形しやすくなっている。このため、入側配管部66を入側挿入口74に挿入しやすくなっている。また、図11及び図12に示す他の変形例の入側マニホールド102のように、入側挿入口74の嵌合部78と入側流路44の開口との間に円環状の窪み部104を形成してもよい。さらに、図13及び図14に示すさらに他の変形例の入側マニホールド112のように、入側挿入口74の入側流路44の開口周囲に周方向に間隔をあけて凹部114を形成してもよい。このように凹部114を形成することで、入側配管部66に作用する抜去方向の力に対し、入側挿入口74の入側流路44の開口縁部の少なくとも一部が縮径方向に変形可能となり、入側配管部66の先端側の突部67の抜けがより効果的に抑制される。 In the inlet side manifold 70 of the second embodiment, the fitting portion 78 is provided on the distal end side of the inlet side piping portion 66 in a state where the protrusion 67 provided on the back side of the inlet side piping portion 66 is fitted. The protruding portion 67 is formed on the inner peripheral surface of the inlet-side insertion port 74 so that the protrusion 67 is positioned in the inlet-side channel 44, but the present disclosure is not limited to this configuration. For example, like the inlet side manifold 92 of the modification shown in FIGS. 9 and 10, the fitting portion 93 into which a plurality of (two) protrusions 67 provided in the inlet side piping portion 66 are fitted is inserted into the inlet side. A plurality (two) of the inner peripheral surface of the mouth 74 may be formed. With this configuration, in the state where the inlet side piping part 66 is inserted into the inlet side insertion port 74, movement of the inlet side piping part 66 in the tube axis direction can be suppressed. Thereby, the sealing performance between the inlet side piping part 66 and the inlet side insertion port 74 is securable. Further, in the inlet side manifold 92 of the modified example, an annular recess portion 94 is formed between the fitting portions 93 on the inner peripheral surface of the inlet side insertion port 74. The recessed portion 94 facilitates elastic deformation of the entry-side insertion port 74 in the diameter increasing direction. For this reason, it is easy to insert the inlet side piping portion 66 into the inlet side insertion port 74. Further, like an inlet manifold 102 of another modification shown in FIGS. 11 and 12, an annular recess 104 is provided between the fitting portion 78 of the inlet insertion port 74 and the opening of the inlet channel 44. May be formed. Further, as in the inlet manifold 112 of still another modification shown in FIGS. 13 and 14, a recess 114 is formed around the opening of the inlet channel 44 of the inlet insertion port 74 with a circumferential interval. May be. By forming the recess 114 in this way, at least a part of the opening edge of the inlet-side flow path 44 of the inlet-side insertion port 74 is reduced in the diameter-reducing direction against the force in the removal direction acting on the inlet-side piping portion 66. It becomes deformable, and the protrusion 67 on the distal end side of the inlet side piping portion 66 is more effectively suppressed.
 また、第2実施形態の出側マニホールド80では、嵌合部88が、出側配管部68の奥側に設けられた突部69が嵌合した状態で、出側配管部68の先端側に設けられた突部69が出側流路54内に位置するように、出側挿入口84の内周面に形成されているが、本開示はこの構成に限定されない。例えば、図9及び図10に示す変形例の出側マニホールド96のように、出側配管部68に設けられた複数(2つ)の突部69が嵌合する嵌合部97が出側挿入口84の内周面に複数(2つ)形成されていてもよい。この構成とすることで、出側配管部68を出側挿入口84に挿入した状態において、出側配管部68の管軸方向の移動を抑制することができる。これにより、出側配管部68と出側挿入口84との間のシール性を確保することができる。また、変形例の出側マニホールド96では、出側挿入口84の内周面の嵌合部97間に円環状の窪み部98を形成している。この窪み部98により出側挿入口84が拡径方向に弾性変形しやすくなっている。このため、出側配管部68を出側挿入口84に挿入しやすくなっている。また、図11及び図12に示す他の変形例の出側マニホールド106のように、出側挿入口84の嵌合部88と出側流路54の開口との間に円環状の窪み部108を形成してもよい。さらに、図13及び図14に示すさらに他の変形例の出側マニホールド116のように、出側挿入口84の出側流路54の開口周囲に周方向に間隔をあけて凹部118を形成してもよい。このように凹部118を形成することで、出側配管部68に作用する抜去方向の力に対し、出側挿入口84の出側流路54の開口縁部の少なくとも一部が縮径方向に変形可能となり、出側配管部68の先端側の突部69の抜けがより効果的に抑制される。 Further, in the outlet side manifold 80 of the second embodiment, the fitting portion 88 is on the distal end side of the outlet side piping portion 68 in a state in which the protrusion 69 provided on the back side of the outlet side piping portion 68 is fitted. Although the provided protrusion 69 is formed on the inner peripheral surface of the outlet-side insertion port 84 so as to be positioned in the outlet-side channel 54, the present disclosure is not limited to this configuration. For example, like the modified output side manifold 96 shown in FIGS. 9 and 10, a fitting portion 97 into which a plurality of (two) protrusions 69 provided in the outlet side piping portion 68 are fitted is inserted into the outlet side. A plurality (two) may be formed on the inner peripheral surface of the mouth 84. With this configuration, movement of the outlet side piping part 68 in the tube axis direction can be suppressed in a state where the outlet side piping part 68 is inserted into the outlet side insertion port 84. Thereby, the sealing performance between the exit side piping part 68 and the exit side insertion port 84 is securable. In the modified output side manifold 96, an annular recess 98 is formed between the fitting portions 97 on the inner peripheral surface of the output side insertion port 84. The recessed portion 98 facilitates elastic deformation of the exit-side insertion port 84 in the diameter increasing direction. For this reason, it is easy to insert the outlet side piping portion 68 into the outlet side insertion port 84. Further, like the outlet manifold 106 of another modification shown in FIGS. 11 and 12, an annular recess 108 is provided between the fitting portion 88 of the outlet insertion port 84 and the opening of the outlet channel 54. May be formed. Further, like the outlet side manifold 116 of still another modified example shown in FIGS. 13 and 14, a recess 118 is formed around the opening of the outlet side flow path 54 of the outlet side insertion port 84 at intervals in the circumferential direction. May be. By forming the recess 118 in this way, at least a part of the opening edge of the outlet-side channel 54 of the outlet-side insertion port 84 in the diameter-reducing direction against the force in the removal direction acting on the outlet-side piping portion 68. It becomes deformable, and the protrusion 69 on the distal end side of the outlet side piping portion 68 is more effectively suppressed.
(第3実施形態)
 図15には、第3実施形態の冷却構造122が示されている。本実施形態の冷却構造122は、入側マニホールド124の入側流路構成部126の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Third embodiment)
FIG. 15 shows the cooling structure 122 of the third embodiment. The cooling structure 122 of the present embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the inlet-side flow path component 126 of the inlet-side manifold 124, and other configurations are the same as the cooling structure 22. The description of the same configuration as 22 is omitted. Moreover, the same code | symbol is attached | subjected about the structure same as 1st Embodiment.
 図15に示されるように、入側流路128には、冷媒Lの流れ方向上流側よりも下流側で冷媒Lの流量を減らすための流量調整手段の一例としての面積縮小部130が設けられている。この面積縮小部130は、冷媒Lの流れ方向上流側よりも下流側で入側流路128の流路面積を小さくするように入側流路128の壁面から隆起した部分である。 As shown in FIG. 15, the inlet side flow path 128 is provided with an area reducing unit 130 as an example of a flow rate adjusting unit for reducing the flow rate of the refrigerant L on the downstream side of the upstream side in the flow direction of the refrigerant L. ing. The area reducing unit 130 is a portion that protrudes from the wall surface of the inlet-side channel 128 so as to reduce the channel area of the inlet-side channel 128 on the downstream side of the upstream side in the flow direction of the refrigerant L.
 次に、本実施形態の冷却構造122の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, the function and effect of the cooling structure 122 of this embodiment will be described. In addition, the description about the effect similar to the effect obtained in 1st Embodiment is abbreviate | omitted suitably.
 本実施形態の冷却構造122では、入側マニホールド124の入側流路128に、冷媒の流れ方向上流側よりも下流側で冷媒Lの流量を減らすための面積縮小部130を設けている。このため、冷媒Lの流れ方向上流側に位置する冷却器32には、冷媒Lの流れ方向下流側に位置する冷却器32よりも多くの冷媒Lが流れ込む。すなわち、上記冷却構造122では、入側流路128に面積縮小部130が設けられない構成と比べて、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36を、冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接する発熱部品36よりも早期に冷却することができる。例えば、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36の発熱量が、冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接する発熱部品36の発熱量よりも高い場合、冷却構造122を適用することで、冷媒Lの流れ方向上流側に位置する冷却器32に流れる冷媒Lの流量を冷媒Lの流れ方向下流側に位置する冷却器32に流れる流量よりも多くできる。このため、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36と、冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接触する発熱部品36を効率よく冷却することができる。 In the cooling structure 122 of the present embodiment, the inlet side flow path 128 of the inlet side manifold 124 is provided with an area reducing portion 130 for reducing the flow rate of the refrigerant L downstream from the upstream side in the refrigerant flow direction. For this reason, more refrigerant | coolant L flows into the cooler 32 located in the flow direction upstream of the refrigerant | coolant L than the cooler 32 located in the flow direction downstream of the refrigerant | coolant L. FIG. That is, in the cooling structure 122, compared to a configuration in which the area reducing unit 130 is not provided in the inlet-side flow path 128, the heat-generating component that contacts the heat exchanging unit 33 of the cooler 32 located upstream in the flow direction of the refrigerant L. 36 can be cooled earlier than the heat-generating component 36 in contact with the heat exchanging portion 33 of the cooler 32 located on the downstream side in the flow direction of the refrigerant L. For example, the amount of heat generated by the heat generating component 36 that contacts the heat exchanging portion 33 of the cooler 32 positioned upstream in the flow direction of the refrigerant L is transferred to the heat exchanging portion 33 of the cooler 32 positioned downstream in the flow direction of the refrigerant L. When the heating value of the heat generating component 36 in contact is higher, the cooling structure 122 is applied so that the flow rate of the refrigerant L flowing in the cooler 32 positioned upstream in the flow direction of the refrigerant L is positioned downstream in the flow direction of the refrigerant L. The flow rate flowing to the cooler 32 can be increased. For this reason, the heat generating component 36 that comes into contact with the heat exchange part 33 of the cooler 32 that is located upstream in the flow direction of the refrigerant L and the heat exchange part 33 of the cooler 32 that is located downstream of the refrigerant L in the flow direction. The heat generating component 36 can be efficiently cooled.
 また、上記冷却構造122では、入側流路128に設けられた面積縮小部130によって冷媒Lの流れ方向上流側よりも下流側で入側流路128の流路面積が小さくなる。上記冷却構造122では、入側流路128に流路面積を小さくする面積縮小部130を設ける簡単な構成で入側流路128において冷媒Lの流れ方向上流側よりも下流側で冷媒Lの流量を減らすことができる。 In the cooling structure 122, the area of the inlet side flow path 128 is smaller on the downstream side than the upstream side in the flow direction of the refrigerant L by the area reducing unit 130 provided in the inlet side flow path 128. In the cooling structure 122, the flow rate of the refrigerant L is more downstream than the upstream side in the flow direction of the refrigerant L in the inlet side channel 128 with a simple configuration in which the area reducing unit 130 for reducing the channel area is provided in the inlet side channel 128. Can be reduced.
 第3実施形態では、入側マニホールド124の入側流路128に面積縮小部130を設ける構成としているが本開示はこの構成に限定されない。例えば、図16に示す変形例の入側マニホールド132のように入側流路134に流量調整手段の一例としての調整弁136を設けてもよい。この調整弁136は、冷媒Lの流れ方向上流側に位置する発熱部品36の発熱量と下流側に位置する発熱部品36の発熱量に応じて入側流路128の開放面積を調整するようになっている。なお、調整弁136は、図示しない制御装置によって制御されており、この制御装置には各発熱部品36の発熱量が送信されるようになっている。上記構成では、調整弁136で入側流路128の開放面積を調整できるため、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36の発熱量と冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接触する発熱部品36の発熱量に応じて入側流路134を流れる冷媒Lの流量を、冷媒Lの流れ方向上流側と下流側で適正に調整可能となる。
 また、前述の変形例では、入側マニホールド132に調整弁136を設ける構成としているが、本開示はこの構成に限定されない。例えば、図17に示す変形例の出側マニホールド138のように出側流路140に流量調整手段の一例としての調整弁142を設けてもよい。上記構成では、入側流路128に調整弁136を設けた構成と同様の作用効果が得られる。
In the third embodiment, the area reducing portion 130 is provided in the inlet-side flow path 128 of the inlet-side manifold 124, but the present disclosure is not limited to this configuration. For example, a regulating valve 136 as an example of a flow rate adjusting means may be provided in the inlet side flow path 134 as in the inlet side manifold 132 of the modification shown in FIG. The adjustment valve 136 adjusts the open area of the inlet-side flow path 128 according to the heat generation amount of the heat generating component 36 located upstream in the flow direction of the refrigerant L and the heat generation amount of the heat generating component 36 located downstream. It has become. The regulating valve 136 is controlled by a control device (not shown), and the heat generation amount of each heat generating component 36 is transmitted to this control device. In the above configuration, since the open area of the inlet-side flow path 128 can be adjusted by the adjustment valve 136, the amount of heat generated by the heat-generating component 36 and the refrigerant in contact with the heat exchanging portion 33 of the cooler 32 located upstream in the flow direction of the refrigerant L. The flow rate of the refrigerant L flowing through the inlet-side flow path 134 in accordance with the amount of heat generated by the heat generating component 36 that contacts the heat exchanging portion 33 of the cooler 32 located downstream in the flow direction of L Appropriate adjustment is possible on the downstream side.
In the above-described modification, the adjustment valve 136 is provided in the inlet manifold 132, but the present disclosure is not limited to this configuration. For example, a regulating valve 142 as an example of a flow rate adjusting means may be provided in the outlet side flow path 140 as in the outlet side manifold 138 of the modification shown in FIG. In the above configuration, the same effect as the configuration in which the adjustment valve 136 is provided in the inlet-side flow path 128 can be obtained.
 第3実施形態の入側マニホールド124及び変形例の入側マニホールド132、出側マニホールド138の各構成については、第1実施形態、第2実施形態及び後述する第5実施形態に適用してもよい。 The configurations of the inlet side manifold 124 of the third embodiment and the inlet side manifold 132 and the outlet side manifold 138 of the modification may be applied to the first embodiment, the second embodiment, and the fifth embodiment to be described later. .
(第4実施形態)
 図18には、第4実施形態の冷却構造152が示されている。本実施形態の冷却構造152は、出側マニホールド154の出側挿入口156の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Fourth embodiment)
FIG. 18 shows the cooling structure 152 of the fourth embodiment. The cooling structure 152 of this embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the outlet insertion port 156 of the outlet manifold 154, and the other configurations are the same as those of the cooling structure 22. The description of the same configuration is omitted. Moreover, the same code | symbol is attached | subjected about the structure same as 1st Embodiment.
 図18に示されるように、出側マニホールド154の各出側挿入口156には、それぞれサーモスタット158が設けられている。このサーモスタット158は、冷却器32において発熱部品36と熱交換をした冷媒Lの温度が所定の温度以上のときに、出側挿入口156を開放するように構成されている。 As shown in FIG. 18, a thermostat 158 is provided at each outlet insertion port 156 of the outlet manifold 154. The thermostat 158 is configured to open the outlet-side insertion port 156 when the temperature of the refrigerant L that exchanges heat with the heat generating component 36 in the cooler 32 is equal to or higher than a predetermined temperature.
 次に、本実施形態の冷却構造152の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, the function and effect of the cooling structure 152 of this embodiment will be described. In addition, the description about the effect similar to the effect obtained in 1st Embodiment is abbreviate | omitted suitably.
 本実施形態の冷却構造152では、冷却器32において発熱部品36と熱交換をした冷媒Lの温度が所定の温度以上になるとサーモスタット158が出側挿入口156を開放する。このため、各発熱部品36の発熱量に差がある場合に、発熱量が高い発熱部品36を冷却する冷却器32の出側配管部35に対応する出側挿入口156に設けられたサーモスタット158が開放され、発熱量が低い発熱部品36を冷却する冷却器32の出側配管部35に対応する出側挿入口156に設けられたサーモスタット158が閉鎖状態となる。これにより、発熱量が高い発熱部品36に対応する冷却器32にはより多くの冷媒Lが流れるため、発熱量が高い発熱部品36を効果的に冷却することができる。 In the cooling structure 152 of the present embodiment, the thermostat 158 opens the outlet insertion port 156 when the temperature of the refrigerant L that exchanges heat with the heat generating component 36 in the cooler 32 becomes equal to or higher than a predetermined temperature. For this reason, when there is a difference in the amount of heat generated by each heat generating component 36, a thermostat 158 provided in the outlet side insertion port 156 corresponding to the outlet side piping portion 35 of the cooler 32 that cools the heat generating component 36 having a high heat generation amount. Is opened, and the thermostat 158 provided in the outlet side insertion port 156 corresponding to the outlet side piping part 35 of the cooler 32 that cools the heat generating component 36 having a low calorific value is closed. Thereby, since more refrigerant | coolant L flows into the cooler 32 corresponding to the heat_generation | fever component 36 with high heat_generation | fever amount, the heat_generation | fever component 36 with high heat_generation | fever amount can be cooled effectively.
 第4実施形態では、出側マニホールド154の各出側挿入口156にそれぞれサーモスタット158を設ける構成としているが、本開示はこの構成に限定されない。例えば、出側マニホールド154の各出側挿入口156にそれぞれ出側挿入口156の流量を調整する調整弁を設ける構成としてもよい。この調整弁は、各発熱部品36の発熱量に応じて対応する出側挿入口156の流量を調整するように構成されている。 In the fourth embodiment, the thermostat 158 is provided in each outlet insertion port 156 of the outlet manifold 154, but the present disclosure is not limited to this configuration. For example, each outlet side insertion port 156 of the outlet side manifold 154 may be provided with an adjustment valve that adjusts the flow rate of the outlet side insertion port 156. This adjustment valve is configured to adjust the flow rate of the corresponding outlet-side insertion port 156 according to the amount of heat generated by each heat generating component 36.
 第4実施形態の出側マニホールド154の構成については、第1実施形態、第2実施形態及び後述する第5実施形態に適用してもよい。 The configuration of the outlet manifold 154 of the fourth embodiment may be applied to the first embodiment, the second embodiment, and the fifth embodiment to be described later.
(第5実施形態)
 図19には、第5実施形態の冷却構造162が示されている。本実施形態の冷却構造162は、入側マニホールド164の入側流路構成部166の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Fifth embodiment)
FIG. 19 shows a cooling structure 162 of the fifth embodiment. The cooling structure 162 of the present embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the inlet-side flow path component 166 of the inlet-side manifold 164, and other configurations are the same as those of the cooling structure 22. The description of the same configuration as 22 is omitted. Moreover, the same code | symbol is attached | subjected about the structure same as 1st Embodiment.
 図19に示されるように、入側マニホールド164の入側流路構成部166には入側流路168が設けられている。この入側流路168には、入側挿入口48を通して入側配管部34に流入する冷媒Lの流れを乱すための乱流促進体170が設けられている。具体的には、入側流路168の各入側挿入口48に対応する位置に乱流促進体170がそれぞれ設けられている。 As shown in FIG. 19, the inlet-side channel 166 of the inlet-side manifold 164 is provided with an inlet-side channel 168. The inlet side flow path 168 is provided with a turbulent flow promoting body 170 for disturbing the flow of the refrigerant L flowing into the inlet side piping part 34 through the inlet side insertion port 48. Specifically, the turbulence promoting body 170 is provided at a position corresponding to each entry side insertion port 48 of the entry side flow path 168.
 次に、本実施形態の冷却構造162の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, functions and effects of the cooling structure 162 of this embodiment will be described. In addition, the description about the effect similar to the effect obtained in 1st Embodiment is abbreviate | omitted suitably.
 本実施形態の冷却構造162では、入側マニホールド164の入側流路168に、入側配管部34に流入する冷媒Lの流れを乱すための乱流促進体170を設けているため、入側配管部34から熱交換部33内へ流れ込む冷媒Lに乱流が生じるのが促進される。このように冷却構造162では、入側流路168に乱流促進体170を設けているため、例えば、入側流路168に乱流促進体170を設けない構成と比べて、熱交換部33内を流れる冷媒Lに乱流が生じるのが促進され、熱交換部33内の冷媒Lと発熱部品36との間の熱交換が効果的に行われる。 In the cooling structure 162 of the present embodiment, the inlet side flow path 168 of the inlet side manifold 164 is provided with the turbulent flow promoting body 170 for disturbing the flow of the refrigerant L flowing into the inlet side piping section 34. It is promoted that a turbulent flow is generated in the refrigerant L flowing from the pipe portion 34 into the heat exchange portion 33. Thus, in the cooling structure 162, since the turbulent flow promoting body 170 is provided in the inlet-side flow path 168, for example, compared with a configuration in which the turbulent flow promoting body 170 is not provided in the incoming-side flow path 168, the heat exchange unit 33. It is promoted that turbulent flow is generated in the refrigerant L flowing inside, and heat exchange between the refrigerant L in the heat exchange section 33 and the heat generating component 36 is effectively performed.
 第5実施形態の入側マニホールド164の構成(乱流促進体170)については、第1実施形態、第2実施形態、第3実施形態及び第4実施形態に適用してもよい。 The configuration of the inlet manifold 164 (turbulent flow promoting body 170) of the fifth embodiment may be applied to the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment.
 以上、実施形態を挙げて本開示の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 The embodiments of the present disclosure have been described above with reference to the embodiments. However, these embodiments are examples, and various modifications can be made without departing from the scope of the invention. It goes without saying that the scope of rights of the present disclosure is not limited to these embodiments.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiment, the following additional notes are disclosed.
 (付記1)
 第1方向に間隔をあけて配置され、かつ、内部を冷媒が流れる熱交換部と、前記熱交換部から第1方向と交差する方向へ延び、前記熱交換部内と連通する第1配管部と、前記熱交換部から前記第1配管部と反対側へ延び、前記熱交換部内と連通する第2配管部と、を備えた複数の冷却器と、前記第1方向に隣接する前記熱交換部間に配置されて前記熱交換部に接触する発熱部品と、を有する組立体と、
 前記第1方向に延び、前記冷媒が流れる第1流路を構成する第1流路構成部と、弾性材料で形成され、前記第1配管部が挿入される第1挿入口が複数設けられ、前記第1配管部内と前記第1流路を連通させる第1接続部と、を備えた第1マニホールドと、
 前記第1方向に延び、前記冷媒が流れる第2流路を構成する第2流路構成部と、弾性材料で形成され、前記第2配管部が挿入される第2挿入口が複数設けられ、前記第2配管部内と前記第2流路を連通させる第2接続部と、を備えた第2マニホールドと、
 を備える冷却構造。
(Appendix 1)
A heat exchanging portion that is arranged at an interval in the first direction and in which the refrigerant flows, and a first piping portion that extends from the heat exchanging portion in a direction intersecting the first direction and communicates with the inside of the heat exchanging portion. A plurality of coolers comprising: a second pipe part extending from the heat exchange part to the opposite side of the first pipe part and communicating with the inside of the heat exchange part; and the heat exchange part adjacent in the first direction An exothermic part disposed between and in contact with the heat exchange part,
A plurality of first passage openings extending in the first direction and constituting a first flow path constituting the first flow path through which the refrigerant flows, and an elastic material, into which the first piping section is inserted; A first manifold including a first connection portion that communicates the inside of the first piping portion and the first flow path;
A plurality of second passage openings that extend in the first direction and constitute a second passage that constitutes the second passage through which the refrigerant flows, and a second insertion port that is formed of an elastic material and into which the second piping portion is inserted; A second manifold provided with a second connection portion for communicating the inside of the second piping portion with the second flow path;
With cooling structure.
 付記1の冷却構造では、組立体の各冷却器の第1配管部を第1マニホールドの第1接続部に設けられた複数の第1挿入口にそれぞれ挿入することで、第1配管部内と第1流路が連通する。また、組立体の各冷却器の第2配管部を第2マニホールドの第2接続部に設けられた複数の第2挿入口にそれぞれ挿入することで、第2配管部内と第2流路が連通する。この連通状態で、例えば、第1マニホールドに冷媒を供給すると、冷媒が第1流路から冷却器の第1配管部内を通して熱交換部内に流れ込む。そして、熱交換部内に流れ込んだ冷媒は、冷却器の熱交換部から第2配管部内を通して第2流路に流れ込み、第2マニホールドから排出される。上記のように冷媒が流れることで、冷却器の熱交換部を介して発熱部品と冷媒との間で熱交換が行われ、発熱部品が冷却される。 In the cooling structure of Supplementary Note 1, the first piping portion of each cooler of the assembly is inserted into the plurality of first insertion ports provided in the first connection portion of the first manifold, so that the first piping portion and the first piping portion are connected to each other. One flow path communicates. Further, the second piping portion of each cooler of the assembly is inserted into each of a plurality of second insertion ports provided in the second connection portion of the second manifold, so that the second piping portion and the second flow path communicate with each other. To do. In this communication state, for example, when a refrigerant is supplied to the first manifold, the refrigerant flows from the first flow path into the heat exchange section through the first piping section of the cooler. Then, the refrigerant that has flowed into the heat exchange part flows into the second flow path from the heat exchange part of the cooler through the second pipe part, and is discharged from the second manifold. As the refrigerant flows as described above, heat exchange is performed between the heat-generating component and the refrigerant via the heat exchange portion of the cooler, and the heat-generating component is cooled.
 ここで、上記冷却構造では、第1マニホールドの第1接続部を弾性材料で形成しているため、第1挿入口が弾性変形可能である。このため、上記冷却構造では、第1挿入口が弾性変形できない構成と比べて、組立体を構成する各冷却器の第1配管部の位置にばらつきがある場合でも各冷却器の第1配管部を第1挿入口に対して容易に挿入することができる。
 同様に、上記冷却構造では、第2マニホールドの第2接続部を弾性材料で形成しているため、第2挿入口が弾性変形可能である。このため、上記冷却構造では、第2挿入口が弾性変形できない構成と比べて、組立体を構成する各冷却器の第2配管部の位置にばらつきがある場合でも各冷却器の第2配管部を第2挿入口に対して容易に挿入することができる。
 以上のように上記冷却構造では、各冷却器の配管部の位置にばらつきがある場合でも組立体とマニホールドとの接続を容易に行うことができる。
Here, in the cooling structure, since the first connection portion of the first manifold is formed of an elastic material, the first insertion port can be elastically deformed. For this reason, in the above cooling structure, the first piping portion of each cooler is different even when the position of the first piping portion of each cooler constituting the assembly is different from the configuration in which the first insertion port cannot be elastically deformed. Can be easily inserted into the first insertion port.
Similarly, in the cooling structure, since the second connecting portion of the second manifold is made of an elastic material, the second insertion port can be elastically deformed. For this reason, in the above cooling structure, the second piping portion of each cooler is different even in the case where the position of the second piping portion of each cooler constituting the assembly varies as compared with the configuration in which the second insertion port cannot be elastically deformed. Can be easily inserted into the second insertion port.
As described above, in the cooling structure, the assembly and the manifold can be easily connected even when the positions of the piping portions of the respective coolers vary.
 (付記2)
 前記第1流路構成部と前記第1接続部とが弾性材料によって一体成形され、
 前記第2流路構成部と前記第2接続部とが弾性材料によって一体成形された、付記1に記載の冷却構造。
(Appendix 2)
The first flow path component and the first connection portion are integrally formed of an elastic material,
The cooling structure according to appendix 1, wherein the second flow path component and the second connection portion are integrally formed of an elastic material.
 付記2の冷却構造では、第1流路構成部と第1接続部を弾性材料の一体成形品としていることから、例えば、第1流路構成部と第1接続部を別体(別部品)とする構成と比べて、部品数及び第1流路構成部と第1接続部を組み付けるための工程などを削減することができる。
 同様に、上記冷却構造では、第2流路構成部と第2接続部を弾性材料の一体成形品としていることから、例えば、第2流路構成部と第2接続部を別体(別部品)とする構成と比べて、部品数及び第2流路構成部と第2接続部を組み付けるための工程などを削減することができる。
In the cooling structure of Supplementary Note 2, since the first flow path component and the first connection part are integrally formed of an elastic material, for example, the first flow path component and the first connection part are separated (separate parts). In comparison with the configuration, the number of parts and the steps for assembling the first flow path component and the first connection portion can be reduced.
Similarly, in the cooling structure, since the second flow path component and the second connection part are integrally formed of an elastic material, for example, the second flow path component and the second connection part are separated (separate parts). ) And the number of parts and the steps for assembling the second flow path component and the second connection portion can be reduced.
(付記3)
 前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、
 前記第1流路には、前記冷媒の流れ方向上流側よりも下流側で前記冷媒の流量を減らすための流量調整手段が設けられている、付記1又は付記2に記載の冷却構造。
(Appendix 3)
The first manifold is disposed upstream of the cooler in the refrigerant flow direction,
The cooling structure according to appendix 1 or appendix 2, wherein the first flow path is provided with a flow rate adjusting means for reducing the flow rate of the refrigerant on the downstream side of the upstream side in the flow direction of the refrigerant.
 付記3の冷却構造では、冷却器よりも冷媒の流れ方向上流側に第1マニホールドが配置されている。すなわち、冷媒は、第1マニホールド、冷却器、第2マニホールドの順で流れるように構成されている。ここで、上記冷却構造では、第1マニホールドの第1流路に、冷媒の流れ方向上流側よりも下流側で冷媒の流量を減らすための流量調整手段を設けている。このため、冷媒の流れ方向上流側に位置する冷却器には、冷媒の流れ方向下流側に位置する冷却器よりも多くの冷媒が流れ込む。すなわち、上記冷却構造では、第1流路に流量調整手段が設けられない構成と比べて、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品を、冷媒の流れ方向下流側に位置する冷却器に接する発熱部品よりも早期に冷却することができる。例えば、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品の発熱量が、冷媒の流れ方向下流側に位置する冷却器に接する発熱部品の発熱量よりも高い場合、上記冷却構造を適用することで、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品と冷媒の流れ方向下流側に位置する冷却器に接触する発熱部品を効率よく冷却することができる。 In the cooling structure of Appendix 3, the first manifold is disposed upstream of the cooler in the refrigerant flow direction. That is, the refrigerant is configured to flow in the order of the first manifold, the cooler, and the second manifold. Here, in the cooling structure, the first flow path of the first manifold is provided with a flow rate adjusting means for reducing the flow rate of the refrigerant on the downstream side of the refrigerant flow direction upstream. For this reason, more refrigerant flows into the cooler located upstream in the refrigerant flow direction than in the cooler located downstream in the refrigerant flow direction. That is, in the above cooling structure, the heat generating component that contacts the cooler located upstream in the refrigerant flow direction is located downstream in the refrigerant flow direction, compared to the configuration in which the flow rate adjusting means is not provided in the first flow path. It is possible to cool earlier than the heat-generating component in contact with the cooler. For example, when the heat generation amount of the heat generating component that contacts the cooler located upstream in the refrigerant flow direction is higher than the heat generation amount of the heat generating component that contacts the cooler located downstream in the refrigerant flow direction, the cooling structure is By applying, it is possible to efficiently cool the heat-generating component that contacts the cooler located upstream in the refrigerant flow direction and the heat-generating component that contacts the cooler located downstream in the refrigerant flow direction.
(付記4)
 前記流量調整手段は、前記第1流路に設けられ、前記冷媒の流れ方向上流側よりも下流側で前記第1流路の流路面積を小さくする面積縮小部である、付記3に記載の冷却構造。
(Appendix 4)
The flow rate adjusting means is provided in the first flow path, and is an area reduction unit that reduces the flow area of the first flow path on the downstream side of the upstream side in the flow direction of the refrigerant. Cooling structure.
 付記4の冷却構造では、第1流路に設けられた面積縮小部によって冷媒の流れ方向上流側よりも下流側で第1流路の流路面積が小さくなる。上記冷却構造では、第1流路に流路面積を小さくする面積縮小部を設ける簡単な構成で第1流路において冷媒の流れ方向上流側よりも下流側で冷媒の流量を減らすことができる。 In the cooling structure of Supplementary Note 4, the flow path area of the first flow path is smaller on the downstream side than on the upstream side in the refrigerant flow direction due to the area reduction portion provided in the first flow path. In the cooling structure described above, the flow rate of the refrigerant can be reduced on the downstream side of the first flow path from the upstream side in the flow direction of the refrigerant with a simple configuration in which the area reducing portion for reducing the flow path area is provided in the first flow path.
(付記5)
 前記流量調整手段は、前記第1流路に設けられ、前記第1流路の開放面積を調整する調整弁である、付記3に記載の冷却構造。
(Appendix 5)
The cooling structure according to appendix 3, wherein the flow rate adjusting means is an adjustment valve that is provided in the first flow path and adjusts an open area of the first flow path.
 付記5の冷却構造では、第1流路に設けられた調整弁によって第1流路の開放面積が減少するように調整されると、冷媒の流れ方向上流側よりも下流側で冷媒の流量が減少する。上記冷却構造では、調整弁で第1流路の開放面積を調整できるため、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品の発熱量と冷媒の流れ方向下流側に位置する冷却器に接触する発熱部品の発熱量に応じて第1流路を流れる冷媒の流量を、冷媒の流れ方向上流側と下流側で適正に調整可能となる。 In the cooling structure according to appendix 5, when the opening area of the first flow path is adjusted to be reduced by the adjustment valve provided in the first flow path, the flow rate of the refrigerant is more downstream than the upstream side in the flow direction of the refrigerant. Decrease. In the above cooling structure, since the open area of the first flow path can be adjusted by the adjustment valve, the amount of heat generated by the heat generating components contacting the cooler located upstream in the refrigerant flow direction and the cooling located downstream in the refrigerant flow direction The flow rate of the refrigerant flowing through the first flow path can be appropriately adjusted on the upstream side and the downstream side in the refrigerant flow direction in accordance with the heat generation amount of the heat-generating component that contacts the container.
(付記6)
 前記第1配管部の外周には、周方向に沿って円環状の第1突部が管軸方向に間隔をあけて複数設けられ、
 前記第2配管部の外周には、周方向に沿って円環状の第2突部が管軸方向に間隔をあけて複数設けられ、
 前記第1接続部は、前記第1挿入口の周囲に形成された第1凹部と、前記第1挿入口の内周面に形成され、前記第1突部が嵌合する第1嵌合部と、を備え、
 前記第2接続部は、前記第2挿入口の周囲に形成された第2凹部と、前記第2挿入口の内周面に形成され、前記第2突部が嵌合する第2嵌合部と、を備えている、付記1~付記5のいずれか1項に記載の冷却構造。
(Appendix 6)
On the outer periphery of the first piping part, a plurality of annular first protrusions are provided along the circumferential direction at intervals in the pipe axis direction,
On the outer periphery of the second piping part, a plurality of annular second protrusions are provided along the circumferential direction at intervals in the pipe axis direction,
The first connection part is formed on a first recess formed around the first insertion opening and an inner peripheral surface of the first insertion opening, and the first fitting part is fitted with the first protrusion. And comprising
The second connecting portion is formed on a second recess formed around the second insertion port and an inner peripheral surface of the second insertion port, and the second fitting portion is fitted with the second protrusion. And the cooling structure according to any one of appendix 1 to appendix 5.
 付記6の冷却構造では、第1配管部の外周に円環状の第1突部が管軸方向に間隔をあけて複数設けられ、第1挿入口の内周面に第1突部が嵌合する第1嵌合部が形成されている。このため、第1突部が第1嵌合部に嵌合するまで第1配管部を第1挿入口に挿入することで、第1配管部と第1挿入口を確実に接続することができる。これにより、上記冷却構造では、例えば、第1配管部の外周に第1突部を設けず、第1挿入口の内周面に第1嵌合部を設けない構成と比べて、第1配管部と第1挿入口との間のシール性が向上する。また、第1配管部を第1挿入口に挿入した状態では、第1突部が第1嵌合部に嵌合するため、第1配管部が第1挿入口から抜け出るのを効果的に抑制することができる。さらに、第1接続部の第1挿入口の周囲に第1凹部を形成しているため、例えば、第1挿入口の周囲に第1凹部を形成しない構成と比べて、第1配管部の挿入による第1挿入口の弾性変形を第1凹部で吸収することができる。このため、第1配管部と第1挿入口との間のシール性がさらに向上する。
 同様に、上記冷却構造では、第2配管部の外周に円環状の第2突部が管軸方向に間隔をあけて複数設けられ、第2挿入口の内周面に第2突部が嵌合する第2嵌合部が形成されている。このため、第2突部が第2嵌合部に嵌合するまで第2配管部を第2挿入口に挿入することで、第2配管部と第2挿入口を確実に接続することができる。これにより、上記冷却構造では、例えば、第2配管部の外周に第2突部を設けず、第2挿入口の内周面に第2嵌合部を設けない構成と比べて、第2配管部と第2挿入口との間のシール性が向上する。また、第2配管部を第2挿入口に挿入した状態では、第2突部が第2嵌合部に嵌合するため、第2配管部が第2挿入口から抜け出るのを効果的に抑制することができる。さらに、第2接続部の第2挿入口の周囲に第2凹部を形成しているため、例えば、第2挿入口の周囲に第2凹部を形成しない構成と比べて、第2配管部の挿入による第2挿入口の弾性変形を第2凹部で吸収することができる。このため、第2配管部と第2挿入口との間のシール性がさらに向上する。
In the cooling structure according to appendix 6, a plurality of annular first protrusions are provided on the outer periphery of the first piping part at intervals in the tube axis direction, and the first protrusions are fitted to the inner peripheral surface of the first insertion port. A first fitting portion is formed. For this reason, a 1st piping part and a 1st insertion port can be reliably connected by inserting a 1st piping part into a 1st insertion port until a 1st protrusion fits in a 1st fitting part. . Thereby, in the above cooling structure, for example, the first piping is not provided on the outer periphery of the first piping portion, and the first piping is not provided on the inner peripheral surface of the first insertion port. The sealing performance between the portion and the first insertion port is improved. Moreover, in the state which inserted the 1st piping part in the 1st insertion port, since a 1st protrusion fits in a 1st fitting part, it suppresses effectively that a 1st piping part pulls out from a 1st insertion port. can do. Furthermore, since the first concave portion is formed around the first insertion port of the first connection portion, for example, the insertion of the first piping portion is compared with the configuration in which the first concave portion is not formed around the first insertion port. The first recess can absorb the elastic deformation of the first insertion port. For this reason, the sealing performance between a 1st piping part and a 1st insertion port further improves.
Similarly, in the above cooling structure, a plurality of annular second protrusions are provided on the outer periphery of the second piping part at intervals in the tube axis direction, and the second protrusions are fitted on the inner peripheral surface of the second insertion port. A mating second fitting portion is formed. For this reason, a 2nd piping part and a 2nd insertion port can be reliably connected by inserting a 2nd piping part into a 2nd insertion port until a 2nd protrusion fits in a 2nd fitting part. . Thereby, in the cooling structure, for example, the second pipe is not provided with the second protrusion on the outer periphery of the second pipe and the second fitting part is not provided on the inner peripheral surface of the second insertion port. The sealing performance between the portion and the second insertion port is improved. Moreover, in the state which inserted the 2nd piping part in the 2nd insertion port, since a 2nd protrusion fits in a 2nd fitting part, it suppresses effectively that a 2nd piping part pulls out from a 2nd insertion port. can do. Furthermore, since the second recessed portion is formed around the second insertion port of the second connection portion, for example, the insertion of the second piping portion is compared with the configuration in which the second recess is not formed around the second insertion port. The elastic deformation of the second insertion port due to can be absorbed by the second recess. For this reason, the sealing performance between a 2nd piping part and a 2nd insertion port further improves.
(付記7)
 前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、
 前記第1流路には、前記第1配管部に流入する前記冷媒の流れを乱すための乱流促進体が設けられている、付記1~付記6のいずれか1項に記載の冷却構造。
(Appendix 7)
The first manifold is disposed upstream of the cooler in the refrigerant flow direction,
The cooling structure according to any one of appendix 1 to appendix 6, wherein the first flow path is provided with a turbulent flow promoting body for disturbing a flow of the refrigerant flowing into the first pipe section.
 付記7の冷却構造では、冷却器よりも冷媒の流れ方向上流側に第1マニホールドが配置されている。すなわち、冷媒は、第1マニホールド、冷却器、第2マニホールドの順で流れるように構成されている。ここで、上記冷却構造では、第1マニホールドの第1流路に、第1配管部に流入する冷媒の流れを乱すための乱流促進体を設けているため、第1配管部から熱交換部内へ流れ込む冷媒に乱流が生じるのが促進される。このように上記冷却構造では、第1流路に乱流促進体を設けているため、例えば、第1流路に乱流促進体を設けない構成と比べて、熱交換部内を流れる冷媒に乱流が生じるのが促進され、熱交換部内の冷媒と発熱部品との間の熱交換が効果的に行われる。 In the cooling structure of Appendix 7, the first manifold is disposed upstream of the cooler in the refrigerant flow direction. That is, the refrigerant is configured to flow in the order of the first manifold, the cooler, and the second manifold. Here, in the above cooling structure, since the turbulent flow promoting body for disturbing the flow of the refrigerant flowing into the first piping part is provided in the first flow path of the first manifold, the inside of the heat exchange part from the first piping part. It is promoted that turbulent flow is generated in the refrigerant flowing into. As described above, in the cooling structure, since the turbulent flow promoting body is provided in the first flow path, for example, the refrigerant flowing in the heat exchange unit is turbulent compared to the configuration in which the turbulent flow promoting body is not provided in the first flow path. The generation of the flow is promoted, and heat exchange between the refrigerant in the heat exchange section and the heat generating component is effectively performed.
 なお、2017年1月20日に出願された日本国特許出願2017-008655号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-008655 filed on January 20, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (7)

  1.  第1方向に間隔をあけて配置され、かつ、内部を冷媒が流れる熱交換部と、前記熱交換部から第1方向と交差する方向へ延び、前記熱交換部内と連通する第1配管部と、前記熱交換部から前記第1配管部と反対側へ延び、前記熱交換部内と連通する第2配管部と、を備えた複数の冷却器と、前記第1方向に隣接する前記熱交換部間に配置されて前記熱交換部に接触する発熱部品と、を有する組立体と、
     前記第1方向に延び、前記冷媒が流れる第1流路を構成する第1流路構成部と、弾性材料で形成され、前記第1配管部が挿入される第1挿入口が複数設けられ、前記第1配管部内と前記第1流路を連通させる第1接続部と、を備えた第1マニホールドと、
     前記第1方向に延び、前記冷媒が流れる第2流路を構成する第2流路構成部と、弾性材料で形成され、前記第2配管部が挿入される第2挿入口が複数設けられ、前記第2配管部内と前記第2流路を連通させる第2接続部と、を備えた第2マニホールドと、
     を備える冷却構造。
    A heat exchanging portion that is arranged at an interval in the first direction and in which the refrigerant flows, and a first piping portion that extends from the heat exchanging portion in a direction intersecting the first direction and communicates with the inside of the heat exchanging portion. A plurality of coolers comprising: a second pipe part extending from the heat exchange part to the opposite side of the first pipe part and communicating with the inside of the heat exchange part; and the heat exchange part adjacent in the first direction An exothermic part disposed between and in contact with the heat exchange part,
    A plurality of first passage openings extending in the first direction and constituting a first flow path constituting the first flow path through which the refrigerant flows, and an elastic material, into which the first piping section is inserted; A first manifold including a first connection portion that communicates the inside of the first piping portion and the first flow path;
    A plurality of second passage openings that extend in the first direction and constitute a second passage that constitutes the second passage through which the refrigerant flows, and a second insertion port that is formed of an elastic material and into which the second piping portion is inserted; A second manifold provided with a second connection portion for communicating the inside of the second piping portion with the second flow path;
    With cooling structure.
  2.  前記第1流路構成部と前記第1接続部とが弾性材料によって一体成形され、
     前記第2流路構成部と前記第2接続部とが弾性材料によって一体成形された、請求項1に記載の冷却構造。
    The first flow path component and the first connection portion are integrally formed of an elastic material,
    The cooling structure according to claim 1, wherein the second flow path component and the second connection portion are integrally formed of an elastic material.
  3.  前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、
     前記第1流路には、前記冷媒の流れ方向上流側よりも下流側で前記冷媒の流量を減らすための流量調整手段が設けられている、請求項1又は請求項2に記載の冷却構造。
    The first manifold is disposed upstream of the cooler in the refrigerant flow direction,
    The cooling structure according to claim 1 or 2, wherein the first flow path is provided with a flow rate adjusting means for reducing the flow rate of the refrigerant on the downstream side relative to the upstream side in the flow direction of the refrigerant.
  4.  前記流量調整手段は、前記第1流路に設けられ、前記冷媒の流れ方向上流側よりも下流側で前記第1流路の流路面積を小さくする面積縮小部である、請求項3に記載の冷却構造。 The said flow rate adjustment means is an area reduction part which is provided in the said 1st flow path and reduces the flow path area of the said 1st flow path in the downstream rather than the flow direction upstream of the said refrigerant | coolant. Cooling structure.
  5.  前記流量調整手段は、前記第1流路に設けられ、前記第1流路の開放面積を調整する調整弁である、請求項3に記載の冷却構造。 The cooling structure according to claim 3, wherein the flow rate adjusting means is an adjustment valve that is provided in the first flow path and adjusts an open area of the first flow path.
  6.  前記第1配管部の外周には、周方向に沿って円環状の第1突部が管軸方向に間隔をあけて複数設けられ、
     前記第2配管部の外周には、周方向に沿って円環状の第2突部が管軸方向に間隔をあけて複数設けられ、
     前記第1接続部は、前記第1挿入口の周囲に形成された第1凹部と、前記第1挿入口の内周面に形成され、前記第1突部が嵌合する第1嵌合部と、を備え、
     前記第2接続部は、前記第2挿入口の周囲に形成された第2凹部と、前記第2挿入口の内周面に形成され、前記第2突部が嵌合する第2嵌合部と、を備えている、請求項1~請求項5のいずれか1項に記載の冷却構造。
    On the outer periphery of the first piping part, a plurality of annular first protrusions are provided along the circumferential direction at intervals in the pipe axis direction,
    On the outer periphery of the second piping part, a plurality of annular second protrusions are provided along the circumferential direction at intervals in the pipe axis direction,
    The first connection part is formed on a first recess formed around the first insertion opening and an inner peripheral surface of the first insertion opening, and the first fitting part is fitted with the first protrusion. And comprising
    The second connecting portion is formed on a second recess formed around the second insertion port and an inner peripheral surface of the second insertion port, and the second fitting portion is fitted with the second protrusion. The cooling structure according to any one of claims 1 to 5, further comprising:
  7.  前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、
     前記第1流路には、前記第1配管部に流入する前記冷媒の流れを乱すための乱流促進体が設けられている、請求項1~請求項6のいずれか1項に記載の冷却構造。
    The first manifold is disposed upstream of the cooler in the refrigerant flow direction,
    The cooling according to any one of claims 1 to 6, wherein the first flow path is provided with a turbulent flow promoting body for disturbing the flow of the refrigerant flowing into the first piping section. Construction.
PCT/JP2017/037760 2017-01-20 2017-10-18 Cooling structure WO2018135055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-008655 2017-01-20
JP2017008655A JP6708564B2 (en) 2017-01-20 2017-01-20 Cooling structure

Publications (1)

Publication Number Publication Date
WO2018135055A1 true WO2018135055A1 (en) 2018-07-26

Family

ID=62908044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037760 WO2018135055A1 (en) 2017-01-20 2017-10-18 Cooling structure

Country Status (2)

Country Link
JP (1) JP6708564B2 (en)
WO (1) WO2018135055A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102662283B1 (en) * 2023-10-06 2024-05-03 한화시스템(주) Air cooled antenna of active Electronically Scanned Array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186478A (en) * 1997-12-17 1999-07-09 Toshiba Corp Semiconductor module
JP2008004606A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Cooling apparatus
JP2014154664A (en) * 2013-02-07 2014-08-25 Nippon Soken Inc Cooler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186478A (en) * 1997-12-17 1999-07-09 Toshiba Corp Semiconductor module
JP2008004606A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Cooling apparatus
JP2014154664A (en) * 2013-02-07 2014-08-25 Nippon Soken Inc Cooler

Also Published As

Publication number Publication date
JP6708564B2 (en) 2020-06-10
JP2018117099A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP5257945B2 (en) Multi-fluid two-dimensional heat exchanger
US10113817B2 (en) Heater core
WO2018180058A1 (en) Heat exchanger
US10462931B2 (en) Heat exchanger
US20070193732A1 (en) Heat exchanger
US10921068B2 (en) Integrated heat exchanger
US11193722B2 (en) Heat exchanger with multi-zone heat transfer surface
US20180292140A1 (en) Heat exchanger assembly
CN112154297B (en) Integrated liquid air cooled condenser and low temperature radiator
CN109479385A (en) The core of laminated type radiator
WO2019189924A1 (en) Header-plateless heat exchanger
WO2018135055A1 (en) Cooling structure
WO2016175193A1 (en) Heat exchanger
JP2004060920A (en) Heat exchanger
JP4128935B2 (en) Water-cooled heat sink
WO2021149462A1 (en) Heat exchanger
KR102533346B1 (en) Integrated heat exchanger
JP2020003188A (en) Heat exchanger
JP5471628B2 (en) EGR cooler and method for manufacturing EGR cooler
EP4023994A1 (en) Heat exchanger
KR20210123531A (en) Plate stacked heat exchanger
US20190353426A1 (en) Side member and heat exchanger having the same
KR101155463B1 (en) A heat exchanger
KR20210158512A (en) Heat exchanger
KR20210151441A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892194

Country of ref document: EP

Kind code of ref document: A1