JP6708564B2 - Cooling structure - Google Patents

Cooling structure Download PDF

Info

Publication number
JP6708564B2
JP6708564B2 JP2017008655A JP2017008655A JP6708564B2 JP 6708564 B2 JP6708564 B2 JP 6708564B2 JP 2017008655 A JP2017008655 A JP 2017008655A JP 2017008655 A JP2017008655 A JP 2017008655A JP 6708564 B2 JP6708564 B2 JP 6708564B2
Authority
JP
Japan
Prior art keywords
flow path
outlet
manifold
inlet
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017008655A
Other languages
Japanese (ja)
Other versions
JP2018117099A (en
Inventor
健男 大栗
健男 大栗
史紀 大場
史紀 大場
祥久 藤田
祥久 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanoh Industrial Co Ltd
Original Assignee
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanoh Industrial Co Ltd filed Critical Sanoh Industrial Co Ltd
Priority to JP2017008655A priority Critical patent/JP6708564B2/en
Priority to PCT/JP2017/037760 priority patent/WO2018135055A1/en
Publication of JP2018117099A publication Critical patent/JP2018117099A/en
Application granted granted Critical
Publication of JP6708564B2 publication Critical patent/JP6708564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、冷却構造に関する。 The present invention relates to a cooling structure.

特許文献1には、所定間隔を隔てて冷却チューブを配置し、冷却チューブの両端部に一対のヘッダを設け、隣接する冷却チューブ間に半導体モジュール(発熱部品)を配置した冷却構造が開示されている。この冷却構造では、ヘッダの各冷却チューブとの接続部間に冷却チューブの配置方向に変形可能な凹部が形成されている。 Patent Document 1 discloses a cooling structure in which cooling tubes are arranged at predetermined intervals, a pair of headers are provided at both ends of the cooling tubes, and a semiconductor module (heating component) is arranged between adjacent cooling tubes. There is. In this cooling structure, a recess that is deformable in the arrangement direction of the cooling tubes is formed between the connection portions of the header and the cooling tubes.

特許第5556680号公報Japanese Patent No. 5556680

特許文献1の冷却構造では、ヘッダに形成された凹部が変形することで、各半導体モジュールの厚みが異なっていても、隣接する冷却チューブ間に半導体モジュールを配置することができる。しかし、複数の冷却チューブと複数の半導体モジュールを組み立てて組立体とした場合、製造誤差により、各冷却チューブの端部の位置が定位置とならない(ばらつきが生じる)ことがある。この場合、ヘッダに形成された複数の挿入口と、各冷却チューブの端部の位置が合わず、挿入し難いなどの不具合が生じることがある。 In the cooling structure of Patent Document 1, the recess formed in the header is deformed, so that the semiconductor modules can be arranged between the adjacent cooling tubes even if the thickness of each semiconductor module is different. However, when a plurality of cooling tubes and a plurality of semiconductor modules are assembled into an assembly, the position of the end of each cooling tube may not be a fixed position (variation may occur) due to manufacturing error. In this case, the positions of the plurality of insertion openings formed in the header and the ends of each cooling tube do not match, which may cause a problem such as difficulty in insertion.

本発明は、上記事実を考慮して、隣接する冷却器間に発熱部品を配置した組立体とマニホールドが接続される構成において、各冷却器の配管部の位置にばらつきがある場合でも組立体とマニホールドの接続が容易な冷却構造を提供することを課題とする。 In consideration of the above facts, the present invention, in a configuration in which an assembly in which heat-generating components are arranged between adjacent coolers and a manifold are connected to each other, even if the positions of the piping parts of the respective coolers vary. An object is to provide a cooling structure in which manifolds can be easily connected.

本発明の第1態様の冷却構造は、第1方向に間隔をあけて配置され、かつ、内部を冷媒が流れる熱交換部と、前記熱交換部から第1方向と交差する方向へ延び、前記熱交換部内と連通する第1配管部と、前記熱交換部から前記第1配管部と反対側へ延び、前記熱交換部内と連通する第2配管部と、を備えた複数の冷却器と、前記第1方向に隣接する前記熱交換部間に配置されて前記熱交換部に接触する発熱部品と、を有する組立体と、前記第1方向に延び、前記冷媒が流れる第1流路を構成する第1流路構成部と、弾性材料で形成され、前記第1配管部が挿入される第1挿入口が複数設けられ、前記第1配管部内と前記第1流路を連通させる第1接続部と、を備えた第1マニホールドと、前記第1方向に延び、前記冷媒が流れる第2流路を構成する第2流路構成部と、弾性材料で形成され、前記第2配管部が挿入される第2挿入口が複数設けられ、前記第2配管部内と前記第2流路を連通させる第2接続部と、を備えた第2マニホールドと、を備えている。 The cooling structure according to the first aspect of the present invention is arranged with a space in the first direction, and extends from the heat exchange section in a direction intersecting the first direction with the heat exchange section in which the refrigerant flows, and A plurality of coolers including a first pipe part communicating with the inside of the heat exchange part, and a second pipe part extending from the heat exchange part to the opposite side of the first pipe part and communicating with the inside of the heat exchange part, An assembly including a heat-generating component that is disposed between the heat exchange units adjacent to each other in the first direction and is in contact with the heat exchange unit, and a first flow path that extends in the first direction and through which the refrigerant flows And a first connection that is formed of an elastic material and that is provided with a plurality of first insertion ports into which the first piping portion is inserted, and that connects the inside of the first piping portion with the first flow path. And a second flow passage forming portion that extends in the first direction and forms a second flow passage through which the refrigerant flows, and is formed of an elastic material, and the second pipe portion is inserted. A second manifold provided with a plurality of second insertion ports and having a second connecting portion that communicates the inside of the second piping portion with the second flow path.

第1態様の冷却構造では、組立体の各冷却器の第1配管部を第1マニホールドの第1接続部に設けられた複数の第1挿入口にそれぞれ挿入することで、第1配管部内と第1流路が連通する。また、組立体の各冷却器の第2配管部を第2マニホールドの第2接続部に設けられた複数の第2挿入口にそれぞれ挿入することで、第2配管部内と第2流路が連通する。この連通状態で、例えば、第1マニホールドに冷媒を供給すると、冷媒が第1流路から冷却器の第1配管部内を通して熱交換部内に流れ込む。そして、熱交換部内に流れ込んだ冷媒は、冷却器の熱交換部から第2配管部内を通して第2流路に流れ込み、第2マニホールドから排出される。上記のように冷媒が流れることで、冷却器の熱交換部を介して発熱部品と冷媒との間で熱交換が行われ、発熱部品が冷却される。 In the cooling structure of the first aspect, by inserting the first piping portions of the respective coolers of the assembly into the plurality of first insertion ports provided in the first connection portion of the first manifold, The first flow path communicates. Further, by inserting the second piping portion of each cooler of the assembly into the plurality of second insertion openings provided in the second connection portion of the second manifold, the inside of the second piping portion and the second flow path communicate with each other. To do. In this communication state, for example, when the refrigerant is supplied to the first manifold, the refrigerant flows from the first flow path into the heat exchange section through the first pipe section of the cooler. Then, the refrigerant flowing into the heat exchange section flows from the heat exchange section of the cooler through the second piping section into the second flow path, and is discharged from the second manifold. When the refrigerant flows as described above, heat is exchanged between the heat generating component and the refrigerant via the heat exchanging portion of the cooler, and the heat generating component is cooled.

ここで、上記冷却構造では、第1マニホールドの第1接続部を弾性材料で形成しているため、第1挿入口が弾性変形可能である。このため、上記冷却構造では、第1挿入口が弾性変形できない構成と比べて、組立体を構成する各冷却器の第1配管部の位置にばらつきがある場合でも各冷却器の第1配管部を第1挿入口に対して容易に挿入することができる。
同様に、上記冷却構造では、第2マニホールドの第2接続部を弾性材料で形成しているため、第2挿入口が弾性変形可能である。このため、上記冷却構造では、第2挿入口が弾性変形できない構成と比べて、組立体を構成する各冷却器の第2配管部の位置にばらつきがある場合でも各冷却器の第2配管部を第2挿入口に対して容易に挿入することができる。
以上のように上記冷却構造では、各冷却器の配管部の位置にばらつきがある場合でも組立体とマニホールドとの接続を容易に行うことができる。
Here, in the above cooling structure, since the first connection portion of the first manifold is made of an elastic material, the first insertion port can be elastically deformed. Therefore, in the above cooling structure, compared with the configuration in which the first insertion port cannot be elastically deformed, even if the position of the first piping portion of each cooler constituting the assembly varies, the first piping portion of each cooler Can be easily inserted into the first insertion opening.
Similarly, in the above cooling structure, since the second connection portion of the second manifold is formed of an elastic material, the second insertion port can be elastically deformed. For this reason, in the above cooling structure, as compared with the configuration in which the second insertion port cannot be elastically deformed, even if the position of the second piping portion of each cooler that constitutes the assembly varies, the second piping portion of each cooler is different. Can be easily inserted into the second insertion opening.
As described above, in the above cooling structure, the assembly and the manifold can be easily connected even when the positions of the piping parts of the respective coolers are varied.

本発明の第2態様の冷却構造は、第1態様の冷却構造において、前記第1流路構成部と前記第1接続部とが弾性材料によって一体成形され、前記第2流路構成部と前記第2接続部とが弾性材料によって一体成形されている。 A cooling structure according to a second aspect of the present invention is the cooling structure according to the first aspect, in which the first flow path forming section and the first connecting section are integrally formed of an elastic material, and the second flow path forming section and the The second connecting portion is integrally formed of an elastic material.

第2態様の冷却構造では、第1流路構成部と第1接続部を弾性材料の一体成形品としていることから、例えば、第1流路構成部と第1接続部を別体(別部品)とする構成と比べて、部品数及び第1流路構成部と第1接続部を組み付けるための工程などを削減することができる。
同様に、上記冷却構造では、第2流路構成部と第2接続部を弾性材料の一体成形品としていることから、例えば、第2流路構成部と第2接続部を別体(別部品)とする構成と比べて、部品数及び第2流路構成部と第2接続部を組み付けるための工程などを削減することができる。
In the cooling structure of the second aspect, since the first flow path constituent part and the first connection part are integrally molded products of elastic material, for example, the first flow path constituent part and the first connection part are separated (separate parts). 2), the number of parts and the process for assembling the first flow path forming portion and the first connecting portion can be reduced.
Similarly, in the above cooling structure, since the second flow path forming part and the second connecting part are integrally molded products of elastic material, for example, the second flow path forming part and the second connecting part are separated (separate parts). 2), the number of parts and the steps for assembling the second flow path forming portion and the second connecting portion can be reduced.

本発明の第3態様の冷却構造は、第1態様又は第2態様の冷却構造において、前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、前記第1流路には、前記冷媒の流れ方向上流側よりも下流側で前記冷媒の流量を減らすための流量調整手段が設けられている。 A cooling structure according to a third aspect of the present invention is the cooling structure according to the first or second aspect, wherein the first manifold is arranged upstream of the cooler in a flow direction of the refrigerant, and the first flow path is provided. Is provided with a flow rate adjusting means for reducing the flow rate of the refrigerant on the downstream side of the upstream side in the flow direction of the refrigerant.

第3態様の冷却構造では、冷却器よりも冷媒の流れ方向上流側に第1マニホールドが配置されている。すなわち、冷媒は、第1マニホールド、冷却器、第2マニホールドの順で流れるように構成されている。ここで、上記冷却構造では、第1マニホールドの第1流路に、冷媒の流れ方向上流側よりも下流側で冷媒の流量を減らすための流量調整手段を設けている。このため、冷媒の流れ方向上流側に位置する冷却器には、冷媒の流れ方向下流側に位置する冷却器よりも多くの冷媒が流れ込む。すなわち、上記冷却構造では、第1流路に流量調整手段が設けられない構成と比べて、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品を、冷媒の流れ方向下流側に位置する冷却器に接する発熱部品よりも早期に冷却することができる。例えば、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品の発熱量が、冷媒の流れ方向下流側に位置する冷却器に接する発熱部品の発熱量よりも高い場合、上記冷却構造を適用することで、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品と冷媒の流れ方向下流側に位置する冷却器に接触する発熱部品を効率よく冷却することができる。 In the cooling structure of the third aspect, the first manifold is arranged upstream of the cooler in the flow direction of the refrigerant. That is, the refrigerant is configured to flow in the order of the first manifold, the cooler, and the second manifold. Here, in the above cooling structure, the first flow path of the first manifold is provided with the flow rate adjusting means for reducing the flow rate of the refrigerant on the downstream side of the upstream side in the refrigerant flow direction. Therefore, more refrigerant flows into the cooler located on the upstream side in the refrigerant flow direction than the cooler located on the downstream side in the refrigerant flow direction. That is, in the above cooling structure, as compared with the configuration in which the flow rate adjusting means is not provided in the first flow path, the heat-generating component contacting the cooler located on the upstream side in the refrigerant flow direction is located on the downstream side in the refrigerant flow direction. Cooling can be performed earlier than the heat-generating component in contact with the cooling device. For example, when the calorific value of the heat generating component in contact with the cooler located on the upstream side in the flow direction of the refrigerant is higher than the calorific value of the heat generating component in contact with the cooler located on the downstream side in the flow direction of the refrigerant, the cooling structure is set to By applying it, it is possible to efficiently cool the heat-generating component that contacts the cooler located on the upstream side in the refrigerant flow direction and the heat-generating component that contacts the cooler located on the downstream side in the refrigerant flow direction.

本発明の第4態様の冷却構造は、第3態様の冷却構造において、前記流量調整手段は、前記第1流路に設けられ、前記冷媒の流れ方向上流側よりも下流側で前記第1流路の流路面積を小さくする面積縮小部である。 A cooling structure according to a fourth aspect of the present invention is the cooling structure according to the third aspect, wherein the flow rate adjusting means is provided in the first flow path, and the first flow is provided on a downstream side of an upstream side in a flow direction of the refrigerant. This is an area reduction unit that reduces the flow passage area of the passage.

第4態様の冷却構造では、第1流路に設けられた面積縮小部によって冷媒の流れ方向上流側よりも下流側で第1流路の流路面積が小さくなる。上記冷却構造では、第1流路に流路面積を小さくする面積縮小部を設ける簡単な構成で第1流路において冷媒の流れ方向上流側よりも下流側で冷媒の流量を減らすことができる。 In the cooling structure of the fourth aspect, the flow passage area of the first flow passage becomes smaller on the downstream side than the upstream side in the flow direction of the refrigerant due to the area reduction portion provided in the first flow passage. In the above cooling structure, the flow rate of the refrigerant can be reduced on the downstream side of the upstream side in the flow direction of the refrigerant in the first flow path with a simple configuration in which the area reduction portion that reduces the flow area is provided in the first flow path.

本発明の第5態様の冷却構造は、第3態様の冷却構造において、前記流量調整手段は、前記第1流路に設けられ、前記第1流路の開放面積を調整する調整弁である。 A cooling structure according to a fifth aspect of the present invention is the cooling structure according to the third aspect, wherein the flow rate adjusting means is a regulating valve that is provided in the first flow passage and adjusts an open area of the first flow passage.

第5態様の冷却構造では、第1流路に設けられた調整弁によって第1流路の開放面積が減少するように調整されると、冷媒の流れ方向上流側よりも下流側で冷媒の流量が減少する。上記冷却構造では、調整弁で第1流路の開放面積を調整できるため、冷媒の流れ方向上流側に位置する冷却器に接触する発熱部品の発熱量と冷媒の流れ方向下流側に位置する冷却器に接触する発熱部品の発熱量に応じて第1流路を流れる冷媒の流量を、冷媒の流れ方向上流側と下流側で適正に調整可能となる。 In the cooling structure of the fifth aspect, when the opening area of the first flow passage is adjusted to be reduced by the adjustment valve provided in the first flow passage, the flow rate of the refrigerant on the downstream side of the upstream side in the flow direction of the refrigerant is reduced. Is reduced. In the above cooling structure, since the open area of the first flow path can be adjusted by the adjusting valve, the heat generation amount of the heat-generating component contacting the cooler located on the upstream side in the refrigerant flow direction and the cooling located on the downstream side in the refrigerant flow direction. The flow rate of the refrigerant flowing through the first flow path can be appropriately adjusted on the upstream side and the downstream side in the flow direction of the refrigerant according to the amount of heat generated by the heat-generating component in contact with the container.

本発明の第6態様の冷却構造は、第1態様〜第5態様のいずれか一態様の冷却構造において、前記第1配管部の外周には、周方向に沿って円環状の第1突部が管軸方向に間隔をあけて複数設けられ、前記第2配管部の外周には、周方向に沿って円環状の第2突部が管軸方向に間隔をあけて複数設けられ、前記第1接続部は、前記第1挿入口の周囲に形成された第1凹部と、前記第1挿入口の内周面に形成され、前記第1突部が嵌合する第1嵌合部と、を備え、前記第2接続部は、前記第2挿入口の周囲に形成された第2凹部と、前記第2挿入口の内周面に形成され、前記第2突部が嵌合する第2嵌合部と、を備えている。 A cooling structure according to a sixth aspect of the present invention is the cooling structure according to any one of the first to fifth aspects, in which an outer periphery of the first piping portion has an annular first protrusion along the circumferential direction. Are provided at intervals in the pipe axis direction, and a plurality of annular second protrusions are provided at the outer circumference of the second pipe portion along the circumferential direction at intervals in the pipe axis direction. 1 connection part is a 1st recessed part formed in the circumference|surroundings of the said 1st insertion opening, 1st fitting part formed in the inner peripheral surface of the said 1st insertion opening, and the said 1st protrusion part fits, The second connection portion is formed on a second recess formed around the second insertion opening and an inner peripheral surface of the second insertion opening, and the second projection is fitted with the second recess. And a fitting portion.

第6態様の冷却構造では、第1配管部の外周に円環状の第1突部が管軸方向に間隔をあけて複数設けられ、第1挿入口の内周面に第1突部が嵌合する第1嵌合部が形成されている。このため、第1突部が第1嵌合部に嵌合するまで第1配管部を第1挿入口に挿入することで、第1配管部と第1挿入口を確実に接続することができる。これにより、上記冷却構造では、例えば、第1配管部の外周に第1突部を設けず、第1挿入口の内周面に第1嵌合部を設けない構成と比べて、第1配管部と第1挿入口との間のシール性が向上する。また、第1配管部を第1挿入口に挿入した状態では、第1突部が第1嵌合部に嵌合するため、第1配管部が第1挿入口から抜け出るのを効果的に抑制することができる。さらに、第1接続部の第1挿入口の周囲に第1凹部を形成しているため、例えば、第1挿入口の周囲に第1凹部を形成しない構成と比べて、第1配管部の挿入による第1挿入口の弾性変形を第1凹部で吸収することができる。このため、第1配管部と第1挿入口との間のシール性がさらに向上する。
同様に、上記冷却構造では、第2配管部の外周に円環状の第2突部が管軸方向に間隔をあけて複数設けられ、第2挿入口の内周面に第2突部が嵌合する第2嵌合部が形成されている。このため、第2突部が第2嵌合部に嵌合するまで第2配管部を第2挿入口に挿入することで、第2配管部と第2挿入口を確実に接続することができる。これにより、上記冷却構造では、例えば、第2配管部の外周に第2突部を設けず、第2挿入口の内周面に第2嵌合部を設けない構成と比べて、第2配管部と第2挿入口との間のシール性が向上する。また、第2配管部を第2挿入口に挿入した状態では、第2突部が第2嵌合部に嵌合するため、第2配管部が第2挿入口から抜け出るのを効果的に抑制することができる。さらに、第2接続部の第2挿入口の周囲に第2凹部を形成しているため、例えば、第2挿入口の周囲に第2凹部を形成しない構成と比べて、第2配管部の挿入による第2挿入口の弾性変形を第2凹部で吸収することができる。このため、第2配管部と第2挿入口との間のシール性がさらに向上する。
In the cooling structure of the sixth aspect, a plurality of annular first protrusions are provided on the outer periphery of the first piping portion at intervals in the pipe axial direction, and the first protrusions are fitted to the inner peripheral surface of the first insertion port. A mating first fitting portion is formed. Therefore, the first piping portion and the first insertion opening can be reliably connected by inserting the first piping portion into the first insertion opening until the first protrusion fits into the first fitting portion. .. Thereby, in the above cooling structure, for example, compared with a configuration in which the first protruding portion is not provided on the outer periphery of the first piping portion and the first fitting portion is not provided on the inner peripheral surface of the first insertion opening, the first piping is provided. The sealability between the portion and the first insertion opening is improved. Further, in the state where the first piping portion is inserted into the first insertion opening, the first protruding portion fits into the first fitting portion, so that the first piping portion is effectively suppressed from coming out of the first insertion opening. can do. Further, since the first concave portion is formed around the first insertion opening of the first connection portion, for example, as compared with the configuration in which the first concave portion is not formed around the first insertion opening, the insertion of the first piping portion is performed. The elastic deformation of the first insertion port due to can be absorbed by the first recess. Therefore, the sealing property between the first piping portion and the first insertion port is further improved.
Similarly, in the above cooling structure, a plurality of annular second protrusions are provided on the outer periphery of the second pipe portion at intervals in the pipe axial direction, and the second protrusion is fitted on the inner peripheral surface of the second insertion port. The 2nd fitting part which fits is formed. Therefore, by inserting the second piping portion into the second insertion opening until the second protrusion fits into the second fitting portion, the second piping portion and the second insertion opening can be reliably connected. .. Thereby, in the above cooling structure, for example, as compared with a configuration in which the second protrusion is not provided on the outer periphery of the second pipe portion and the second fitting portion is not provided on the inner peripheral surface of the second insertion port, the second pipe is provided. The sealability between the portion and the second insertion port is improved. Further, in the state where the second piping portion is inserted into the second insertion opening, the second protruding portion fits into the second fitting portion, so that the second piping portion is effectively suppressed from coming out of the second insertion opening. can do. Further, since the second concave portion is formed around the second insertion opening of the second connection portion, for example, as compared with the configuration in which the second concave portion is not formed around the second insertion opening, the insertion of the second piping portion is performed. The elastic deformation of the second insertion opening due to can be absorbed by the second recess. Therefore, the sealing property between the second piping portion and the second insertion port is further improved.

本発明の第7態様の冷却構造は、第1態様〜第6態様のいずれか一態様の冷却構造において、前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、前記第1流路には、前記第1配管部に流入する前記冷媒の流れを乱すための乱流促進体が設けられている。 A cooling structure according to a seventh aspect of the present invention is the cooling structure according to any one of the first to sixth aspects, in which the first manifold is arranged upstream of the cooler in the flow direction of the refrigerant, A turbulent flow promoting body for disturbing the flow of the refrigerant flowing into the first pipe portion is provided in the first flow path.

第7態様の冷却構造では、冷却器よりも冷媒の流れ方向上流側に第1マニホールドが配置されている。すなわち、冷媒は、第1マニホールド、冷却器、第2マニホールドの順で流れるように構成されている。ここで、上記冷却構造では、第1マニホールドの第1流路に、第1配管部に流入する冷媒の流れを乱すための乱流促進体を設けているため、第1配管部から熱交換部内へ流れ込む冷媒に乱流が生じるのが促進される。このように上記冷却構造では、第1流路に乱流促進体を設けているため、例えば、第1流路に乱流促進体を設けない構成と比べて、熱交換部内を流れる冷媒に乱流が生じるのが促進され、熱交換部内の冷媒と発熱部品との間の熱交換が効果的に行われる。 In the cooling structure of the seventh aspect, the first manifold is arranged upstream of the cooler in the refrigerant flow direction. That is, the refrigerant is configured to flow in the order of the first manifold, the cooler, and the second manifold. Here, in the above cooling structure, since the turbulent flow promoting body for disturbing the flow of the refrigerant flowing into the first pipe portion is provided in the first flow path of the first manifold, the turbulent flow promoting member is provided from the first pipe portion to the inside of the heat exchange portion. Turbulent flow is promoted in the refrigerant flowing into. As described above, in the above cooling structure, since the turbulent flow promoting body is provided in the first flow path, for example, as compared with the configuration in which the turbulent flow promoting body is not provided in the first flow path, the turbulent flow in the heat exchange section is disturbed. The generation of the flow is promoted, and the heat exchange between the refrigerant in the heat exchange section and the heat generating component is effectively performed.

以上説明したように、本発明によれば、隣接する冷却器間に発熱部品を配置した組立体とマニホールドが接続される構成において、各冷却器の配管部の位置にばらつきがある場合でも組立体とマニホールドの接続が容易な冷却構造を提供することができる。 As described above, according to the present invention, in the configuration in which the assembly in which the heat-generating components are arranged between the adjacent coolers and the manifold are connected to each other, even if the positions of the piping portions of the respective coolers vary, It is possible to provide a cooling structure in which the manifold and the manifold can be easily connected.

第1実施形態の冷却構造を適用した冷却装置の斜視図である。It is a perspective view of the cooling device to which the cooling structure of the first embodiment is applied. 図1に示す冷却構造を構成する組立体の分解斜視図である。FIG. 2 is an exploded perspective view of an assembly that constitutes the cooling structure shown in FIG. 1. 図1の3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 of FIG. 1. 図1に示す冷却構造を構成する第1マニホールドの斜視図である。It is a perspective view of the 1st manifold which comprises the cooling structure shown in FIG. 図4に示す第1マニホールドを第1挿入口側から見た側面図である。It is the side view which looked at the 1st manifold shown in FIG. 4 from the 1st insertion port side. 図5の6−6線断面図である。FIG. 6 is a sectional view taken along line 6-6 of FIG. 5. 第2実施形態の冷却構造を構成する第1マニホールドを第1挿入口側から見た側面図である。It is the side view which looked at the 1st manifold which constitutes the cooling structure of a 2nd embodiment from the 1st insertion slot side. 図7の8−8線断面図である。FIG. 8 is a sectional view taken along line 8-8 of FIG. 7. 第2実施形態の冷却構造を構成する第1マニホールドの変形例を第1挿入口側から見た側面図である。It is the side view which looked at the modification of the 1st manifold which constitutes the cooling structure of a 2nd embodiment from the 1st insertion slot side. 図9の10−10線断面図である。FIG. 10 is a sectional view taken along line 10-10 of FIG. 9. 第2実施形態の冷却構造を構成する第1マニホールドの他の変形例を第1挿入口側から見た側面図である。It is the side view which looked at the other modification of the 1st manifold which constitutes the cooling structure of a 2nd embodiment from the 1st insertion slot side. 図11の12−12線断面図である。FIG. 12 is a sectional view taken along line 12-12 of FIG. 11. 第2実施形態の冷却構造を構成する第1マニホールドのさらに他の変形例を第1挿入口側から見た側面図である。It is the side view which looked at the further another modification of the 1st manifold which constitutes the cooling structure of a 2nd embodiment from the 1st insertion slot side. 図13の14−14線断面図である。FIG. 14 is a sectional view taken along line 14-14 of FIG. 13. 第3実施形態の冷却構造を構成する第1マニホールドの断面図(図3に対応する断面図)である。It is sectional drawing (sectional view corresponding to FIG. 3) of the 1st manifold which comprises the cooling structure of 3rd Embodiment. 第3実施形態の冷却構造を構成する第1マニホールドの変形例の断面図(図3に対応する断面図)である。It is sectional drawing (sectional view corresponding to FIG. 3) of the modification of the 1st manifold which comprises the cooling structure of 3rd Embodiment. 第3実施形態の冷却構造を構成する第2マニホールドの変形例の断面図(図3に対応する断面図)である。It is sectional drawing (sectional view corresponding to FIG. 3) of the modification of the 2nd manifold which comprises the cooling structure of 3rd Embodiment. 第4実施形態の冷却構造を構成する第2マニホールドの断面図(図3に対応する断面図)である。It is sectional drawing (sectional view corresponding to FIG. 3) of the 2nd manifold which comprises the cooling structure of 4th Embodiment. 第5実施形態の冷却構造を構成する第1マニホールドの断面図(図3に対応する断面図)である。It is sectional drawing (sectional view corresponding to FIG. 3) of the 1st manifold which comprises the cooling structure of 5th Embodiment.

以下、図面を参照しながら本発明に係る一実施形態の冷却構造について説明する。なお、各図において適宜図示される矢印X、矢印Y、矢印Zは、冷却構造が適用された冷却装置の装置幅方向、装置奥行き方向、装置厚さ方向をそれぞれ示しており、矢印Z方向を上下方向として説明する。 Hereinafter, a cooling structure according to an embodiment of the present invention will be described with reference to the drawings. In addition, arrow X, arrow Y, and arrow Z, which are illustrated in each drawing as appropriate, respectively indicate a device width direction, a device depth direction, and a device thickness direction of a cooling device to which a cooling structure is applied. This will be described as a vertical direction.

(第1実施形態)
図1には、第1実施形態(以下、本実施形態)の冷却構造22が適用された冷却装置20が示されている。この冷却装置20は、例えば、CPUや電力用半導体素子などの発熱部品(冷却対象物)36を冷却するために用いられる。具体的には、冷却装置20は、後述する組立体30を構成する発熱部品36の熱を冷却器32内の冷媒に伝達することにより、発熱部品36を冷却するものである。
(First embodiment)
FIG. 1 shows a cooling device 20 to which a cooling structure 22 of the first embodiment (hereinafter, this embodiment) is applied. The cooling device 20 is used, for example, to cool a heat-generating component (object to be cooled) 36 such as a CPU or a power semiconductor element. Specifically, the cooling device 20 cools the heat-generating component 36 by transferring the heat of the heat-generating component 36 that forms the assembly 30 described later to the refrigerant in the cooler 32.

図1に示されるように、本実施形態の冷却装置20は、冷却構造22を構成する組立体30、入側マニホールド40及び出側マニホールド50と、入側マニホールド40に冷媒Lを供給するための供給パイプ24(図1では二点鎖線で示す)と、出側マニホールド50から冷媒Lを排出するための排出パイプ26(図1では二点鎖線で示す)と、を備えている。 As shown in FIG. 1, the cooling device 20 of the present embodiment is for supplying the refrigerant L to the assembly 30, the inlet side manifold 40, the outlet side manifold 50, and the inlet side manifold 40 that constitute the cooling structure 22. A supply pipe 24 (shown by a chain double-dashed line in FIG. 1) and a discharge pipe 26 (shown by a chain double-dashed line in FIG. 1) for discharging the refrigerant L from the outlet-side manifold 50 are provided.

本実施形態の冷却構造22は、前述のように、組立体30と、入側マニホールド40と、出側マニホールド50とを備えている。 As described above, the cooling structure 22 of this embodiment includes the assembly 30, the inlet side manifold 40, and the outlet side manifold 50.

(組立体30)
図1及び図2に示されるように、組立体30は、第1方向(本実施形態では、装置奥行き方向と同じ方向)に間隔をあけて配置された複数の冷却器32と、第1方向に隣接する冷却器32の後述する熱交換部33間に配置されて熱交換部33に接触する発熱部品36と、を有する。言い換えると、組立体30は、複数の冷却器32と、複数の発熱部品36とを第1方向(本実施形態では、装置奥行き方向)に交互に重ねて形成されている。
(Assembly 30)
As shown in FIGS. 1 and 2, the assembly 30 includes a plurality of coolers 32 arranged at intervals in a first direction (the same direction as the device depth direction in the present embodiment), and a first direction. And a heat-generating component 36 that is disposed between heat exchangers 33 to be described later of the cooler 32 adjacent to the heat exchanger and that contacts the heat exchanger 33. In other words, the assembly 30 is formed by alternately stacking the plurality of coolers 32 and the plurality of heat-generating components 36 in the first direction (in the present embodiment, the device depth direction).

冷却器32は、内部を冷媒Lが流れる前述の熱交換部33と、熱交換部33から第1方向と交差する方向へ延びる入側配管部34と、熱交換部33から入側配管部34と反対側へ延びる出側配管部35と、を備えている。 The cooler 32 includes the above-mentioned heat exchange section 33 through which the refrigerant L flows, the inlet side piping section 34 extending from the heat exchange section 33 in a direction intersecting the first direction, and the heat exchange section 33 to the inlet side piping section 34. And an outlet-side pipe portion 35 extending to the opposite side.

熱交換部33は、略板状とされており、内部が冷媒Lの流路を構成している。また、熱交換部33の内部には、冷却性能を高めるために図示しないフィン(例えば、コルゲートフィン)などが設けられている。また、熱交換部33の板面である伝熱面33Aに発熱部品36が接触している。 The heat exchange section 33 has a substantially plate shape, and the inside thereof constitutes a flow path of the refrigerant L. Further, inside the heat exchange unit 33, fins (not shown) (for example, corrugated fins) or the like are provided to enhance cooling performance. Further, the heat generating component 36 is in contact with the heat transfer surface 33A which is the plate surface of the heat exchange section 33.

入側配管部34は、円筒状とされ、熱交換部33内と連通している。また、入側配管部34は、入側マニホールド40の後述する入側挿入口48に挿入可能とされている。入側配管部34が入側マニホールド40の入側挿入口48に挿入された状態では、入側マニホールド40から冷媒Lが入側配管部34を介して熱交換部33内へ流れ込むようになっている。 The inlet pipe section 34 has a cylindrical shape and communicates with the inside of the heat exchange section 33. Further, the inlet side piping portion 34 can be inserted into an inlet side insertion port 48 of the inlet side manifold 40 described later. When the inlet side piping portion 34 is inserted into the inlet side insertion opening 48 of the inlet side manifold 40, the refrigerant L flows from the inlet side manifold 40 into the heat exchange section 33 through the inlet side piping portion 34. There is.

出側配管部35は、円筒状とされ、熱交換部33内と連通している。また、出側配管部35は、出側マニホールド50の後述する出側挿入口58に挿入可能とされている。出側配管部35が出側マニホールド50の出側挿入口58に挿入された状態では、熱交換部33内の冷媒Lが出側配管部35を介して出側マニホールド50に流れ出るようになっている。 The outlet pipe portion 35 has a cylindrical shape and communicates with the inside of the heat exchange portion 33. Further, the outlet piping portion 35 can be inserted into an outlet insertion port 58 of the outlet manifold 50, which will be described later. When the outlet side pipe portion 35 is inserted into the outlet side insertion port 58 of the outlet side manifold 50, the refrigerant L in the heat exchange portion 33 comes to flow out to the outlet side manifold 50 via the outlet side pipe portion 35. There is.

また、本実施形態の冷却器32は、金属材料(例えば、アルミニウム、銅)を用いた一体成形品である。 Further, the cooler 32 of this embodiment is an integrally molded product using a metal material (for example, aluminum or copper).

発熱部品36は、冷却器32の熱交換部33の伝熱面33Aに接触した状態で該伝熱面33Aに固定されている。具体的には、発熱部品36の厚み方向の両面が、第1方向に隣接する熱交換部33にそれぞれ固定されている。この構成により、発熱部品36は、隣接する冷却器32の熱交換部33によって、厚み方向の両面側から冷却される。なお、発熱部品36と冷却器32の熱交換部33との固定は、伝熱性の観点から、例えば、ろう付けや機械的接合(ねじなどの締結部材を用いた接合)によって行われることが好ましい。 The heat generating component 36 is fixed to the heat transfer surface 33A of the heat exchanger 33 of the cooler 32 while being in contact with the heat transfer surface 33A. Specifically, both surfaces of the heat generating component 36 in the thickness direction are fixed to the heat exchange portions 33 adjacent to each other in the first direction. With this configuration, the heat generating component 36 is cooled by the heat exchanging portions 33 of the adjacent coolers 32 from both sides in the thickness direction. From the viewpoint of heat transfer, it is preferable to fix the heat generating component 36 and the heat exchange part 33 of the cooler 32 by brazing or mechanical joining (joining using a fastening member such as a screw). ..

(入側マニホールド40)
図3〜図6に示されるように、入側マニホールド40は、冷媒Lが流れる入側流路44を構成する入側流路構成部42と、入側配管部34が挿入される入側挿入口48が複数設けられる入側接続部46と、を備えている。なお、本実施形態の入側マニホールド40は、本発明の第1マニホールドの一例である。また、本実施形態の入側流路構成部42、入側流路44、入側接続部46、入側挿入口48は、それぞれ本発明の第1流路構成部、第1流路、第1接続部、第1挿入口の一例である。
(Inlet side manifold 40)
As shown in FIGS. 3 to 6, the inlet side manifold 40 has an inlet side passage forming portion 42 that constitutes an inlet side passage 44 through which the refrigerant L flows, and an inlet side insertion portion into which the inlet side pipe portion 34 is inserted. The inlet side connection portion 46 having a plurality of ports 48 is provided. The inlet side manifold 40 of the present embodiment is an example of the first manifold of the present invention. In addition, the inlet side flow path component 42, the inlet side flow path 44, the inlet side connection part 46, and the inlet side insertion port 48 of the present embodiment are respectively the first flow path component portion, the first flow path portion, and the first flow path portion of the present invention. It is an example of 1 connection part and a 1st insertion slot.

図3及び図6に示されるように、入側流路構成部42は、第1方向である装置奥行き方向を長手方向とする略直方体状とされ、内部に第1方向に延びる入側流路44が形成されている。この入側流路44は、一端が入側流路構成部42の長手方向の一端部に開口し、他端が入側流路構成部42内で終端している。なお、入側流路44の一端は、入側流路44と供給パイプ24を接続するための接続口44Aを構成している。 As shown in FIG. 3 and FIG. 6, the inlet-side flow channel forming portion 42 has a substantially rectangular parallelepiped shape whose longitudinal direction is the device depth direction which is the first direction, and the inlet-side flow channel extending inside in the first direction. 44 are formed. The inlet-side flow passage 44 has one end that opens at one end in the longitudinal direction of the inlet-side flow passage constituent portion 42 and the other end that terminates in the inlet-side passage constituent portion 42. It should be noted that one end of the inlet side flow passage 44 constitutes a connection port 44A for connecting the inlet side flow passage 44 and the supply pipe 24.

入側接続部46は、入側流路構成部42に第1方向と直交する方向(入側流路構成部42の短手方向)に隣接して形成されており、入側挿入口48が第1方向に間隔をあけて複数設けられている。この入側挿入口48は、図4及び図5に示されるように、入側接続部46に設けられた円孔(断面円形の貫通孔)であり、入側流路44に連通している。すなわち、入側接続部46の入側挿入口48に冷却器32の入側配管部34を挿入することで、入側配管部34内と入側流路44とが連通するようになっている。また、入側配管部34を入側挿入口48に挿入した状態では、入側挿入口48の内周面に入側配管部34の外周面が密着するように構成されており、入側挿入口48と入側配管部34との間のシール性が確保されている。 The inlet-side connection portion 46 is formed adjacent to the inlet-side flow channel constituent portion 42 in a direction orthogonal to the first direction (a lateral direction of the inlet-side flow channel constituent portion 42) and has an inlet-side insertion port 48. A plurality of them are provided at intervals in the first direction. As shown in FIGS. 4 and 5, this inlet side insertion port 48 is a circular hole (a through hole having a circular cross section) provided in the inlet side connection portion 46, and communicates with the inlet side flow passage 44. .. That is, by inserting the inlet-side piping portion 34 of the cooler 32 into the inlet-side insertion port 48 of the inlet-side connecting portion 46, the inside of the inlet-side piping portion 34 and the inlet-side flow passage 44 are communicated with each other. .. Further, in a state in which the inlet side piping portion 34 is inserted into the inlet side insertion opening 48, the outer peripheral surface of the inlet side piping portion 34 is configured to be in close contact with the inner peripheral surface of the inlet side insertion opening 48. The sealing property between the port 48 and the inlet side piping portion 34 is ensured.

また、入側流路構成部42と入側接続部46は、同一の弾性材料(例えば、ゴム、シール性に優れた樹脂)の一体成形品とされている。なお、本発明は上記構成に限定されず、入側流路構成部42と入側接続部46とを異なる弾性材料の一体成形品としてもよいし、入側流路構成部42を弾性材料で形成し、入側流路構成部42を金属材料で形成する構成としてもよい。 In addition, the inlet-side flow path forming portion 42 and the inlet-side connecting portion 46 are integrally molded products made of the same elastic material (for example, rubber or resin having excellent sealing properties). Note that the present invention is not limited to the above-described configuration, and the inlet side flow channel constituent portion 42 and the inlet side connection portion 46 may be integrally molded with different elastic materials, or the inlet side flow channel constituent portion 42 may be made of an elastic material. Alternatively, the inlet side flow path forming portion 42 may be formed of a metal material.

また、入側マニホールド40は、入側流路構成部42の下面に第1方向に間隔をあけて複数の脚部49を備えている。本実施形態では、入側マニホールド40が入側流路構成部42、入側接続部46及び脚部49を含めて、弾性材料の一体成形品とされている。なお、本発明は上記構成に限定されず、入側流路構成部42及び入側接続部46と、脚部49とを異なる弾性材料の一体成形品としてもよいし、入側流路構成部42及び入側接続部46を弾性材料で形成し、脚部49を金属材料で形成する構成としてもよい。 Further, the inlet side manifold 40 is provided with a plurality of leg portions 49 on the lower surface of the inlet side flow path forming portion 42 at intervals in the first direction. In the present embodiment, the inlet side manifold 40, including the inlet side flow path forming portion 42, the inlet side connecting portion 46 and the leg portion 49, is an integrally molded product of an elastic material. The present invention is not limited to the above-described configuration, and the inlet side flow path component 42 and the inlet side connection part 46 and the leg portion 49 may be integrally molded with different elastic materials, or the inlet side flow path component part. 42 and the inlet-side connecting portion 46 may be formed of an elastic material, and the leg portions 49 may be formed of a metal material.

(出側マニホールド50)
図3に示されるように、出側マニホールド50は、冷媒Lが流れる出側流路54を構成する出側流路構成部52と、出側配管部35が挿入される出側挿入口58が複数設けられる出側接続部56と、を備えている。なお、本実施形態の出側マニホールド50は、本発明の第2マニホールドの一例である。また、本実施形態の出側流路構成部52、出側流路54、出側接続部56、出側挿入口58は、それぞれ本発明の第2流路構成部、第2流路、第2接続部、第2挿入口の一例である。
(Outlet manifold 50)
As shown in FIG. 3, the outlet side manifold 50 includes an outlet side channel forming portion 52 forming an outlet side passage 54 through which the refrigerant L flows, and an outlet side insertion port 58 into which the outlet side pipe portion 35 is inserted. And a plurality of outlet-side connecting portions 56 provided. The outlet manifold 50 of the present embodiment is an example of the second manifold of the present invention. Further, the outlet-side flow channel component 52, the outlet-side channel 54, the outlet-side connector 56, and the outlet-side insertion port 58 of this embodiment are the second channel component, the second channel, and the second channel of the present invention, respectively. It is an example of a 2 connection part and a 2nd insertion slot.

図1及び図3に示されるように、出側流路構成部52は、第1方向である装置奥行き方向を長手方向とする略直方体状とされ、内部に第1方向に延びる出側流路54が形成されている。この出側流路54は、一端が出側流路構成部52の長手方向の一端部に開口し、他端が出側流路構成部52内で終端している。なお、出側流路54の一端は、出側流路54と排出パイプ26を接続するための接続口54Aを構成している。 As shown in FIG. 1 and FIG. 3, the outlet-side flow channel forming portion 52 is formed into a substantially rectangular parallelepiped shape whose longitudinal direction is the device depth direction which is the first direction, and the outlet-side flow channel extending inside in the first direction. 54 is formed. One end of the outlet-side flow passage 54 opens at one end in the longitudinal direction of the outlet-side flow passage constituent portion 52, and the other end terminates in the outlet-side flow passage constituent portion 52. It should be noted that one end of the outlet-side flow passage 54 constitutes a connection port 54A for connecting the outlet-side flow passage 54 and the discharge pipe 26.

出側接続部56は、出側流路構成部52に第1方向と直交する方向(出側流路構成部52の短手方向)に隣接して形成されており、出側挿入口58が第1方向に間隔をあけて複数設けられている。この出側挿入口58は、図3に示されるように、出側接続部56に設けられた円孔(断面円形の貫通孔)であり、出側流路54に連通している。すなわち、出側接続部56の出側挿入口58に冷却器32の出側配管部35を挿入することで、出側配管部35内と出側流路54とが連通するようになっている。また、出側配管部35を出側挿入口58に挿入した状態では、出側挿入口58の内周面に出側配管部35の外周面が密着するように構成されており、出側挿入口58と出側配管部35との間のシール性が確保されている。 The outlet-side connecting portion 56 is formed adjacent to the outlet-side flow channel constituent portion 52 in a direction orthogonal to the first direction (a lateral direction of the outlet-side flow channel constituent portion 52), and has a outlet-side insertion port 58. A plurality of them are provided at intervals in the first direction. As shown in FIG. 3, the outlet side insertion port 58 is a circular hole (a through hole having a circular cross section) provided in the outlet side connection portion 56 and communicates with the outlet side flow passage 54. That is, by inserting the outlet side piping portion 35 of the cooler 32 into the outlet side insertion port 58 of the outlet side connecting portion 56, the inside of the outlet side piping portion 35 and the outlet side flow passage 54 are made to communicate with each other. .. Further, when the outlet pipe portion 35 is inserted into the outlet insertion port 58, the outer peripheral surface of the outlet pipe portion 35 is configured to be in close contact with the inner peripheral surface of the outlet insertion port 58. The sealing property between the port 58 and the outlet piping portion 35 is ensured.

また、出側流路構成部52と出側接続部56は、同一の弾性材料(例えば、ゴム、シール性に優れた樹脂)の一体成形品とされている。なお、本発明は上記構成に限定されず、出側流路構成部52と出側接続部56とを異なる弾性材料の一体成形品としてもよいし、出側流路構成部52を弾性材料で形成し、出側流路構成部52を金属材料で形成する構成としてもよい。 Further, the outlet side flow path forming portion 52 and the outlet side connecting portion 56 are integrally molded products of the same elastic material (for example, rubber or resin having excellent sealing properties). Note that the present invention is not limited to the above-described configuration, and the outlet side flow channel forming portion 52 and the outlet side connecting portion 56 may be integrally molded with different elastic materials, or the outlet side flow channel forming portion 52 may be formed of an elastic material. Alternatively, the outlet side flow path forming portion 52 may be formed of a metal material.

また、出側マニホールド50は、出側流路構成部52の下面に第1方向に間隔をあけて複数の脚部59を備えている。本実施形態では、出側マニホールド50が出側流路構成部52、出側接続部56及び脚部59を含めて、弾性材料の一体成形品とされている。なお、本発明は上記構成に限定されず、出側流路構成部52及び出側接続部56と、脚部59とを異なる弾性材料の一体成形品としてもよいし、出側流路構成部52及び出側接続部56を弾性材料で形成し、脚部59を金属材料で形成する構成としてもよい。 Further, the outlet side manifold 50 is provided with a plurality of legs 59 on the lower surface of the outlet side flow path forming portion 52 at intervals in the first direction. In the present embodiment, the outlet side manifold 50 is an integrally molded product of an elastic material, including the outlet side flow path forming portion 52, the outlet side connecting portion 56 and the leg portion 59. Note that the present invention is not limited to the above-described configuration, and the outlet side flow path forming portion 52 and the outlet side connecting portion 56, and the leg portion 59 may be integrally molded of different elastic materials, or the output side flow path forming portion. The configuration may be such that 52 and the outlet-side connecting portion 56 are made of an elastic material and the leg portions 59 are made of a metal material.

次に、本実施形態の冷却構造22の作用効果について説明する。
冷却構造22では、組立体30を構成する各冷却器32の入側配管部34を入側マニホールド40の入側接続部46に設けられた複数の入側挿入口48にそれぞれ挿入することで、入側配管部34内と入側流路44が連通する。また、組立体30を構成する各冷却器32の出側配管部35を出側マニホールド50の出側接続部56に設けられた複数の出側挿入口58にそれぞれ挿入することで、出側配管部35内と出側流路54が連通する。この連通状態で、図3に示されるように、供給パイプ24から入側マニホールド40の入側流路44に冷媒Lを供給すると、冷媒Lが入側流路44から冷却器32の入側配管部34内を通して熱交換部33内に流れ込む。そして、熱交換部33内に流れ込んだ冷媒Lは、熱交換部33から出側配管部35内を通して出側流路54に流れ込み、出側マニホールド50から排出される。上記のように冷媒Lが流れることで、冷却器32の熱交換部33を介して発熱部品36と冷媒Lとの間で熱交換が行われ、発熱部品36が冷却される。
Next, the function and effect of the cooling structure 22 of this embodiment will be described.
In the cooling structure 22, by inserting the inlet side piping portions 34 of the respective coolers 32 configuring the assembly 30 into the plurality of inlet side insertion ports 48 provided in the inlet side connection portion 46 of the inlet side manifold 40, respectively, The inside of the inlet pipe section 34 and the inlet flow path 44 communicate with each other. Further, by inserting the outlet-side piping portion 35 of each cooler 32 that constitutes the assembly 30 into the plurality of outlet-side insertion ports 58 provided in the outlet-side connecting portion 56 of the outlet-side manifold 50, the outlet-side piping The inside of the portion 35 and the outlet flow path 54 communicate with each other. In this communication state, as shown in FIG. 3, when the refrigerant L is supplied from the supply pipe 24 to the inlet side flow path 44 of the inlet side manifold 40, the refrigerant L flows from the inlet side flow path 44 into the inlet side pipe of the cooler 32. It flows into the heat exchange section 33 through the section 34. Then, the refrigerant L that has flowed into the heat exchange section 33 flows from the heat exchange section 33 through the output side piping section 35 into the output side flow path 54, and is discharged from the output side manifold 50. As the refrigerant L flows as described above, heat is exchanged between the heat generating component 36 and the refrigerant L via the heat exchanging portion 33 of the cooler 32, and the heat generating component 36 is cooled.

ここで、上記冷却構造22では、入側マニホールド40の入側接続部46を弾性材料で形成しているため、入側挿入口48が弾性変形可能である。このため、冷却構造22では、入側挿入口48が弾性変形できない構成と比べて、組立体30を構成する各冷却器32の入側配管部34の位置にばらつきがある場合でも各冷却器32の入側配管部34を入側挿入口48に対して容易に挿入することができる。
同様に、上記冷却構造22では、出側マニホールド50の出側接続部56を弾性材料で形成しているため、出側挿入口58が弾性変形可能である。このため、上記冷却構造22では、出側挿入口58が弾性変形できない構成と比べて、組立体30を構成する各冷却器32の出側配管部35の位置にばらつきがある場合でも各冷却器32の出側配管部35を出側挿入口58に対して容易に挿入することができる。
以上のように上記冷却構造22では、各冷却器32の配管部(入側配管部34及び出側配管部35を含む)の位置にばらつきがある場合でも組立体30とマニホールド(入側マニホールド40及び出側マニホールド50を含む)との接続を容易に行うことができる。
Here, in the cooling structure 22, since the inlet side connecting portion 46 of the inlet side manifold 40 is formed of an elastic material, the inlet side insertion port 48 can be elastically deformed. For this reason, in the cooling structure 22, as compared with the configuration in which the inlet side insertion port 48 cannot be elastically deformed, even if the positions of the inlet side piping portions 34 of the respective coolers 32 constituting the assembly 30 are different, The inlet side piping portion 34 can be easily inserted into the inlet side insertion port 48.
Similarly, in the cooling structure 22, the outlet-side connecting portion 56 of the outlet-side manifold 50 is made of an elastic material, so that the outlet-side insertion port 58 can be elastically deformed. Therefore, in the cooling structure 22, as compared with the structure in which the outlet insertion port 58 cannot be elastically deformed, the respective coolers even if the positions of the outlet pipe portions 35 of the respective coolers 32 constituting the assembly 30 are varied. The outlet pipe portion 35 of 32 can be easily inserted into the outlet insertion port 58.
As described above, in the cooling structure 22, even if the positions of the piping portions (including the inlet piping portion 34 and the outlet piping portion 35) of the respective coolers 32 vary, the assembly 30 and the manifold (the inlet manifold 40). And the outlet-side manifold 50).

また、冷却構造22では、入側流路構成部42と入側接続部46を弾性材料の一体成形品としていることから、例えば、入側流路構成部42と入側接続部46を別体(別部品)とする構成と比べて、部品数及び入側流路構成部42と入側接続部46を組み付けるための工程などを削減することができる。
同様に、上記冷却構造では、出側流路構成部52と出側接続部56を弾性材料の一体成形品としていることから、例えば、出側流路構成部52と出側接続部56を別体(別部品)とする構成と比べて、部品数及び出側流路構成部52と出側接続部56を組み付けるための工程などを削減することができる。
In addition, in the cooling structure 22, since the inlet-side flow channel constituent portion 42 and the inlet-side connection portion 46 are integrally molded with an elastic material, for example, the inlet-side flow channel constituent portion 42 and the inlet-side connection portion 46 are separated. Compared with the configuration of (separate component), the number of components and the process for assembling the inlet side flow path forming portion 42 and the inlet side connecting portion 46 can be reduced.
Similarly, in the above-described cooling structure, since the outlet-side flow passage constituent portion 52 and the outlet-side connection portion 56 are integrally molded with an elastic material, for example, the outlet-side flow passage constituent portion 52 and the outlet-side connection portion 56 are separated. Compared to the configuration of a body (separate component), the number of components and the process for assembling the outlet side flow path forming portion 52 and the outlet side connecting portion 56 can be reduced.

(第2実施形態)
図7及び図8には、第2実施形態の冷却構造62が示されている。本実施形態の冷却構造62は、冷却器64の入側配管部66及び出側配管部68の構成と、入側マニホールド70の入側接続部72の構成と、出側マニホールド80の出側接続部82の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Second embodiment)
The cooling structure 62 of 2nd Embodiment is shown by FIG.7 and FIG.8. In the cooling structure 62 of the present embodiment, the configuration of the inlet side piping portion 66 and the outlet side piping portion 68 of the cooler 64, the configuration of the inlet side connecting portion 72 of the inlet side manifold 70, and the outlet side connection of the outlet side manifold 80. The configuration of the portion 82 is different from that of the cooling structure 22 of the first embodiment, and the other configurations are the same as those of the cooling structure 22. Therefore, the description of the same configuration as the cooling structure 22 will be omitted. The same components as those in the first embodiment are designated by the same reference numerals.

図8に示されるように、冷却器64を構成する円筒状の入側配管部66の外周には、周方向(円周方向)に沿って円環状の突部67が管軸方向に間隔をあけて複数(本実施形態では2つ)設けられている。これらの突部67は、入側配管部66の内周を管径方向外側に押し出して形成されている。 As shown in FIG. 8, an annular protrusion 67 is provided along the circumferential direction (circumferential direction) on the outer circumference of the cylindrical inlet-side piping portion 66 that constitutes the cooler 64, and is spaced in the pipe axial direction. A plurality (two in this embodiment) are provided apart from each other. These protrusions 67 are formed by pushing the inner circumference of the inlet side pipe portion 66 outward in the pipe radial direction.

また、冷却器64を構成する円筒状の出側配管部68の外周には、周方向(円周方向)に沿って円環状の突部69が管軸方向に間隔をあけて複数(本実施形態では2つ)設けられている。これらの突部69は、出側配管部68の内周を管径方向外側に押し出して形成されている。 Further, a plurality of annular projections 69 are provided along the circumferential direction (circumferential direction) on the outer circumference of the cylindrical outlet side piping portion 68 that constitutes the cooler 64, with a plurality of intervals (in the present embodiment) being provided in the pipe axial direction. Two in the form) are provided. These protrusions 69 are formed by pushing the inner circumference of the outlet side pipe portion 68 outward in the pipe radial direction.

図7及び図8に示されるように、入側マニホールド70を構成する入側接続部72に形成された入側挿入口74の周囲には、凹部76が形成されている。具体的には、図7に示されるように、凹部76は、入側挿入口74の周囲に等間隔で複数(本実施形態では4つ)形成されている。この凹部76により、入側挿入口74は、略円筒状に形成されている。 As shown in FIGS. 7 and 8, a recess 76 is formed around the inlet insertion port 74 formed in the inlet connection portion 72 that constitutes the inlet manifold 70. Specifically, as shown in FIG. 7, a plurality of recesses 76 (four in this embodiment) are formed at equal intervals around the inlet insertion port 74. Due to this recess 76, the insertion side insertion port 74 is formed in a substantially cylindrical shape.

また、入側挿入口74の内周面には、突部67が嵌合する嵌合部78が形成されている。具体的には、嵌合部78は、入側配管部66の奥側(先端側と反対側)に設けられた突部67が嵌合した状態で、入側配管部66の先端側に設けられた突部67が入側流路44内に位置するように、入側挿入口74の内周面に形成されている。 In addition, a fitting portion 78 into which the protrusion 67 is fitted is formed on the inner peripheral surface of the inlet insertion port 74. Specifically, the fitting portion 78 is provided on the tip side of the entry side piping portion 66 in a state where the projection 67 provided on the back side (the side opposite to the tip side) of the entry side piping portion 66 is fitted. The protruding portion 67 is formed on the inner peripheral surface of the inlet insertion port 74 so that the protruding portion 67 is located in the inlet flow path 44.

一方、出側マニホールド80を構成する出側接続部82に形成された出側挿入口84の周囲には、凹部86が形成されている。具体的には、図7に示されるように、凹部86は、出側挿入口84の周囲に等間隔で複数(本実施形態では4つ)形成されている。この凹部86により、出側挿入口84は、略円筒状に形成されている。 On the other hand, a recess 86 is formed around the outlet insertion opening 84 formed in the outlet connection portion 82 that constitutes the outlet manifold 80. Specifically, as shown in FIG. 7, a plurality of recesses 86 (four in this embodiment) are formed around the exit insertion port 84 at equal intervals. Due to this recess 86, the outlet insertion port 84 is formed in a substantially cylindrical shape.

また、出側挿入口84の内周面には、突部69が嵌合する嵌合部88が形成されている。具体的には、嵌合部88は、出側配管部68の奥側(先端側と反対側)に設けられた突部69が嵌合した状態で、出側配管部68の先端側に設けられた突部69が出側流路54内に位置するように、出側挿入口84の内周面に形成されている。 Further, a fitting portion 88 into which the protrusion 69 is fitted is formed on the inner peripheral surface of the outlet insertion opening 84. Specifically, the fitting portion 88 is provided on the tip end side of the outlet side pipe portion 68 in a state where the protrusion 69 provided on the back side (opposite side to the tip end side) of the outlet side pipe portion 68 is fitted. The protruding portion 69 is formed on the inner peripheral surface of the outlet insertion port 84 so as to be located in the outlet passage 54.

次に、本実施形態の冷却構造62の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, the function and effect of the cooling structure 62 of this embodiment will be described. Note that the description of the same operational effects as those obtained in the first embodiment will be appropriately omitted.

本実施形態の冷却構造62では、入側配管部66の外周に円環状の突部67が管軸方向に間隔をあけて複数設けられ、入側挿入口74の内周面に突部67が嵌合する嵌合部78が形成されている。このため、突部67が嵌合部78に嵌合するまで入側配管部66を入側挿入口74に挿入することで、入側配管部66と入側挿入口74を確実に接続することができる。これにより、冷却構造62では、例えば、入側配管部66の外周に突部67を設けず、入側挿入口74の内周面に嵌合部78を設けない構成と比べて、入側配管部66と入側挿入口74との間のシール性が向上する。また、入側配管部66を入側挿入口74に挿入した状態では、突部67が嵌合部78に嵌合するため、入側配管部66が入側挿入口74から抜け出るのを効果的に抑制することができる。特に、本実施形態では、入側配管部66の先端側に設けられた突部67が入側流路44内に位置しているため、この突部67が入側挿入口74の入側流路44側の開口縁部に引っ掛かり、入側配管部66が入側挿入口74から抜け出るのをさらに効果的に抑制することができる。また、入側接続部72の入側挿入口74の周囲に凹部76を形成しているため、例えば、入側挿入口74の周囲に凹部76を形成しない構成と比べて、入側配管部66の挿入による入側挿入口74の弾性変形を凹部76で吸収することができる。このため、入側配管部66と入側挿入口74との間のシール性がさらに向上する。 In the cooling structure 62 of the present embodiment, a plurality of annular protrusions 67 are provided on the outer circumference of the inlet side piping portion 66 at intervals in the pipe axis direction, and the protrusion 67 is provided on the inner peripheral surface of the inlet side insertion port 74. A fitting portion 78 for fitting is formed. Therefore, the inlet side piping portion 66 is inserted into the inlet side insertion opening 74 until the protrusion 67 fits into the fitting portion 78, thereby reliably connecting the inlet side piping portion 66 and the inlet side insertion opening 74. You can As a result, in the cooling structure 62, for example, as compared with the configuration in which the protrusion 67 is not provided on the outer periphery of the inlet side pipe portion 66 and the fitting portion 78 is not provided on the inner peripheral surface of the inlet side insertion port 74. The sealing property between the portion 66 and the inlet insertion port 74 is improved. Further, in the state where the inlet side piping portion 66 is inserted into the inlet side insertion opening 74, the protrusion 67 fits into the fitting portion 78, so that the inlet side piping portion 66 is effectively prevented from coming out of the inlet side insertion opening 74. Can be suppressed to. In particular, in the present embodiment, since the protrusion 67 provided on the tip side of the inlet-side piping portion 66 is located in the inlet-side flow path 44, this protrusion 67 is used for the inlet-side flow of the inlet-side insertion port 74. It is possible to more effectively suppress the entry side piping portion 66 from being caught in the opening edge portion on the path 44 side and coming out of the entry side insertion opening 74. Further, since the concave portion 76 is formed around the inlet side insertion opening 74 of the inlet side connection portion 72, for example, as compared with the configuration in which the concave portion 76 is not formed around the inlet side insertion opening 74, the inlet side piping portion 66. The concave portion 76 can absorb the elastic deformation of the inlet side insertion port 74 due to the insertion of the. For this reason, the sealing property between the inlet side piping portion 66 and the inlet side insertion port 74 is further improved.

同様に、上記冷却構造62では、出側配管部68の外周に円環状の突部69が管軸方向に間隔をあけて複数設けられ、出側挿入口84の内周面に突部69が嵌合する嵌合部88が形成されている。このため、突部69が嵌合部88に嵌合するまで出側配管部68を出側挿入口84に挿入することで、出側配管部68と出側挿入口84を確実に接続することができる。これにより、冷却構造62では、例えば、出側配管部68の外周に突部69を設けず、出側挿入口84の内周面に嵌合部88を設けない構成と比べて、出側配管部68と出側挿入口84との間のシール性が向上する。また、出側配管部68を出側挿入口84に挿入した状態では、突部69が嵌合部88に嵌合するため、出側配管部68が出側挿入口84から抜け出るのを効果的に抑制することができる。特に、本実施形態では、出側配管部68の先端側に設けられた突部69が出側流路54内に位置しているため、この突部69が出側挿入口84の出側流路54側の開口縁部に引っ掛かり、出側配管部68が出側挿入口84から抜け出るのをさらに効果的に抑制することができる。また、出側接続部82の出側挿入口84の周囲に凹部86を形成しているため、例えば、出側挿入口84の周囲に凹部86を形成しない構成と比べて、出側配管部68の挿入による出側挿入口84の弾性変形を凹部86で吸収することができる。このため、出側配管部68と出側挿入口84との間のシール性がさらに向上する。 Similarly, in the cooling structure 62, a plurality of annular projections 69 are provided on the outer periphery of the outlet side piping portion 68 at intervals in the pipe axial direction, and the protrusions 69 are provided on the inner peripheral surface of the outlet side insertion opening 84. A fitting portion 88 for fitting is formed. Therefore, by inserting the outlet side piping portion 68 into the outlet side insertion opening 84 until the protrusion 69 fits into the fitting portion 88, the outlet side piping portion 68 and the outlet side insertion opening 84 can be reliably connected. You can As a result, in the cooling structure 62, for example, as compared with the configuration in which the protrusion 69 is not provided on the outer circumference of the outlet piping portion 68 and the fitting portion 88 is not provided on the inner peripheral surface of the outlet insertion port 84, the outlet piping is provided. The sealing property between the portion 68 and the outlet insertion opening 84 is improved. Further, in the state in which the outlet side pipe portion 68 is inserted into the outlet side insertion port 84, the protrusion 69 fits into the fitting portion 88, so that the outlet side pipe portion 68 is effectively prevented from coming out of the outlet side insertion port 84. Can be suppressed to. In particular, in the present embodiment, since the protrusion 69 provided on the tip side of the outlet pipe portion 68 is located in the outlet flow path 54, the protrusion 69 causes the outlet flow of the outlet insertion port 84. It is possible to more effectively prevent the outlet pipe portion 68 from being caught in the opening edge portion on the side of the passage 54 and coming out of the outlet insertion opening 84. Further, since the recessed portion 86 is formed around the delivery side insertion opening 84 of the delivery side connection portion 82, for example, as compared with the configuration in which the recessed portion 86 is not formed around the delivery side insertion opening 84, the delivery side piping portion 68. The recessed portion 86 can absorb the elastic deformation of the outlet insertion opening 84 due to the insertion of the. Therefore, the sealing property between the outlet side pipe portion 68 and the outlet side insertion port 84 is further improved.

第2実施形態の入側マニホールド70では、嵌合部78が、入側配管部66の奥側に設けられた突部67が嵌合した状態で、入側配管部66の先端側に設けられた突部67が入側流路44内に位置するように、入側挿入口74の内周面に形成されているが、本発明はこの構成に限定されない。例えば、図9及び図10に示す変形例の入側マニホールド92のように、入側配管部66に設けられた複数(2つ)の突部67が嵌合する嵌合部93が入側挿入口74の内周面に複数(2つ)形成されていてもよい。この構成とすることで、入側配管部66を入側挿入口74に挿入した状態において、入側配管部66の管軸方向の移動を抑制することができる。これにより、入側配管部66と入側挿入口74との間のシール性を確保することができる。また、変形例の入側マニホールド92では、入側挿入口74の内周面の嵌合部93間に円環状の窪み部94を形成している。この窪み部94により入側挿入口74が拡径方向に弾性変形しやすくなっている。このため、入側配管部66を入側挿入口74に挿入しやすくなっている。また、図11及び図12に示す他の変形例の入側マニホールド102のように、入側挿入口74の嵌合部78と入側流路44の開口との間に円環状の窪み部104を形成してもよい。さらに、図13及び図14示すさらに他の変形例の入側マニホールド112のように、入側挿入口74の入側流路44の開口周囲に周方向に間隔をあけて凹部114を形成してもよい。このように凹部114を形成することで、入側配管部66に作用する抜去方向の力に対し、入側挿入口74の入側流路44の開口縁部の少なくとも一部が縮径方向に変形可能となり、入側配管部66の先端側の突部67の抜けがより効果的に抑制される。 In the inlet-side manifold 70 of the second embodiment, the fitting portion 78 is provided on the tip side of the inlet-side piping portion 66 in a state where the protrusion 67 provided on the back side of the inlet-side piping portion 66 is fitted. The protrusion 67 is formed on the inner peripheral surface of the inlet insertion port 74 so that the protrusion 67 is located in the inlet flow path 44, but the present invention is not limited to this configuration. For example, like the inlet-side manifold 92 of the modification shown in FIGS. 9 and 10, the fitting portion 93 into which the plurality (two) of the protrusions 67 provided in the inlet-side piping portion 66 are fitted is inserted-side. A plurality (two) may be formed on the inner peripheral surface of the mouth 74. With this configuration, it is possible to suppress the movement of the inlet side pipe portion 66 in the pipe axis direction when the inlet side pipe portion 66 is inserted into the inlet side insertion port 74. As a result, it is possible to secure the sealing property between the inlet side piping portion 66 and the inlet side insertion port 74. Further, in the inlet-side manifold 92 of the modified example, an annular recess 94 is formed between the fitting portions 93 on the inner peripheral surface of the inlet-side insertion port 74. The recessed portion 94 facilitates elastic deformation of the inlet insertion port 74 in the radial direction. Therefore, it is easy to insert the inlet side piping portion 66 into the inlet side insertion port 74. Further, like the inlet side manifold 102 of another modified example shown in FIGS. 11 and 12, an annular recess 104 between the fitting portion 78 of the inlet side insertion port 74 and the opening of the inlet side flow passage 44. May be formed. Further, like the inlet-side manifold 112 of still another modification shown in FIGS. 13 and 14, the recesses 114 are formed around the opening of the inlet-side flow passage 44 of the inlet-side insertion port 74 at circumferential intervals. Good. By forming the recess 114 in this way, at least a part of the opening edge portion of the inlet-side flow path 44 of the inlet-side insertion port 74 is reduced in the diameter reducing direction against the force in the withdrawal direction that acts on the inlet-side piping portion 66. It becomes deformable, so that the protrusion 67 on the tip end side of the inlet side pipe portion 66 is more effectively prevented from coming off.

また、第2実施形態の出側マニホールド80では、嵌合部88が、出側配管部68の奥側に設けられた突部69が嵌合した状態で、出側配管部68の先端側に設けられた突部69が出側流路54内に位置するように、出側挿入口84の内周面に形成されているが、本発明はこの構成に限定されない。例えば、図9及び図10に示す変形例の出側マニホールド96のように、出側配管部68に設けられた複数(2つ)の突部69が嵌合する嵌合部97が出側挿入口84の内周面に複数(2つ)形成されていてもよい。この構成とすることで、出側配管部68を出側挿入口84に挿入した状態において、出側配管部68の管軸方向の移動を抑制することができる。これにより、出側配管部68と出側挿入口84との間のシール性を確保することができる。また、変形例の出側マニホールド96では、出側挿入口84の内周面の嵌合部97間に円環状の窪み部98を形成している。この窪み部98により出側挿入口84が拡径方向に弾性変形しやすくなっている。このため、出側配管部68を出側挿入口84に挿入しやすくなっている。また、図11及び図12に示す他の変形例の出側マニホールド106のように、出側挿入口84の嵌合部88と出側流路54の開口との間に円環状の窪み部108を形成してもよい。さらに、図13及び図14示すさらに他の変形例の出側マニホールド116のように、出側挿入口84の出側流路54の開口周囲に周方向に間隔をあけて凹部118を形成してもよい。このように凹部118を形成することで、出側配管部68に作用する抜去方向の力に対し、出側挿入口84の出側流路54の開口縁部の少なくとも一部が縮径方向に変形可能となり、出側配管部68の先端側の突部69の抜けがより効果的に抑制される。 Further, in the outlet side manifold 80 of the second embodiment, the fitting portion 88 is attached to the tip end side of the outlet side pipe portion 68 in a state where the protrusion 69 provided on the back side of the outlet side pipe portion 68 is fitted. Although the protrusion 69 provided is formed on the inner peripheral surface of the outlet insertion port 84 so as to be located inside the outlet channel 54, the present invention is not limited to this configuration. For example, like the outlet manifold 96 of the modification shown in FIGS. 9 and 10, the fitting portion 97 into which the plurality of (two) projections 69 provided on the outlet piping portion 68 are fitted is inserted into the outlet side. A plurality (two) may be formed on the inner peripheral surface of the mouth 84. With this configuration, it is possible to suppress the movement of the outlet side pipe portion 68 in the pipe axis direction when the outlet side pipe portion 68 is inserted into the outlet side insertion port 84. As a result, it is possible to secure the sealing property between the outlet side piping portion 68 and the outlet side insertion opening 84. Further, in the outlet-side manifold 96 of the modified example, an annular recess 98 is formed between the fitting portions 97 on the inner peripheral surface of the outlet-side insertion opening 84. The recessed portion 98 facilitates elastic deformation of the outlet insertion opening 84 in the radial direction. For this reason, it is easy to insert the outlet side pipe portion 68 into the outlet side insertion opening 84. Further, like the outlet side manifold 106 of another modified example shown in FIGS. 11 and 12, an annular recess 108 is provided between the fitting portion 88 of the outlet side insertion opening 84 and the opening of the outlet side flow passage 54. May be formed. Further, as in the outlet side manifold 116 of still another modified example shown in FIGS. 13 and 14, the recesses 118 are formed around the opening of the outlet side flow path 54 of the outlet side insertion port 84 at circumferential intervals. Good. By forming the recess 118 in this way, at least a part of the opening edge portion of the outlet side flow path 54 of the outlet side insertion port 84 is reduced in the diameter reducing direction against the force in the outlet direction acting on the outlet side pipe portion 68. It becomes deformable, and the protrusion 69 on the tip side of the outlet side pipe 68 is more effectively prevented from coming off.

(第3実施形態)
図15には、第3実施形態の冷却構造122が示されている。本実施形態の冷却構造122は、入側マニホールド124の入側流路構成部126の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Third Embodiment)
FIG. 15 shows the cooling structure 122 of the third embodiment. The cooling structure 122 of the present embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the inlet-side flow path forming portion 126 of the inlet-side manifold 124, and the other configurations are the same as the cooling structure 22. The description of the same configuration as that of No. 22 will be omitted. The same components as those in the first embodiment are designated by the same reference numerals.

図15に示されるように、入側流路128には、冷媒Lの流れ方向上流側よりも下流側で冷媒Lの流量を減らすための流量調整手段の一例としての面積縮小部130が設けられている。この面積縮小部130は、冷媒Lの流れ方向上流側よりも下流側で入側流路128の流路面積を小さくするように入側流路128の壁面から隆起した部分である。 As shown in FIG. 15, the inlet flow path 128 is provided with an area reduction unit 130 as an example of a flow rate adjusting unit for reducing the flow rate of the refrigerant L on the downstream side of the upstream side in the flow direction of the refrigerant L. ing. The area reduction unit 130 is a portion that is bulged from the wall surface of the inlet-side channel 128 so as to reduce the channel area of the inlet-side channel 128 on the downstream side of the upstream side in the flow direction of the refrigerant L.

次に、本実施形態の冷却構造122の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, the function and effect of the cooling structure 122 of this embodiment will be described. Note that the description of the same operational effects as those obtained in the first embodiment will be appropriately omitted.

本実施形態の冷却構造122では、入側マニホールド124の入側流路128に、冷媒の流れ方向上流側よりも下流側で冷媒Lの流量を減らすための面積縮小部130を設けている。このため、冷媒Lの流れ方向上流側に位置する冷却器32には、冷媒Lの流れ方向下流側に位置する冷却器32よりも多くの冷媒Lが流れ込む。すなわち、上記冷却構造122では、入側流路128に面積縮小部130が設けられない構成と比べて、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36を、冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接する発熱部品36よりも早期に冷却することができる。例えば、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36の発熱量が、冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接する発熱部品36の発熱量よりも高い場合、冷却構造122を適用することで、冷媒Lの流れ方向上流側に位置する冷却器32に流れる冷媒Lの流量を冷媒Lの流れ方向下流側に位置する冷却器32に流れる流量よりも多くできる。このため、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36と、冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接触する発熱部品36を効率よく冷却することができる。 In the cooling structure 122 of the present embodiment, the inlet-side flow passage 128 of the inlet-side manifold 124 is provided with the area reduction portion 130 for reducing the flow rate of the refrigerant L on the downstream side of the upstream side in the refrigerant flow direction. Therefore, more refrigerant L flows into the cooler 32 located on the upstream side in the flow direction of the refrigerant L than the cooler 32 located on the downstream side in the flow direction of the refrigerant L. That is, in the cooling structure 122, as compared with the configuration in which the area reduction unit 130 is not provided in the inlet side flow channel 128, the heat generating component that contacts the heat exchange unit 33 of the cooler 32 located on the upstream side in the flow direction of the refrigerant L. 36 can be cooled earlier than the heat-generating component 36 in contact with the heat exchange section 33 of the cooler 32 located on the downstream side in the flow direction of the refrigerant L. For example, the heat generation amount of the heat-generating component 36 that contacts the heat exchange portion 33 of the cooler 32 located on the upstream side in the flow direction of the refrigerant L is transferred to the heat exchange portion 33 of the cooler 32 located on the downstream side in the flow direction of the refrigerant L. When the heat generation amount of the heat generating component 36 in contact is higher, by applying the cooling structure 122, the flow rate of the refrigerant L flowing to the cooler 32 located on the upstream side in the flow direction of the refrigerant L is located on the downstream side in the flow direction of the refrigerant L. The flow rate can be higher than the flow rate flowing to the cooler 32. Therefore, the heat generating component 36 that contacts the heat exchange portion 33 of the cooler 32 located upstream in the flow direction of the refrigerant L and the heat exchange portion 33 of the cooler 32 located downstream in the flow direction of the refrigerant L come into contact. The heat-generating component 36 can be cooled efficiently.

また、上記冷却構造122では、入側流路128に設けられた面積縮小部130によって冷媒Lの流れ方向上流側よりも下流側で入側流路128の流路面積が小さくなる。上記冷却構造122では、入側流路128に流路面積を小さくする面積縮小部130を設ける簡単な構成で入側流路128において冷媒Lの流れ方向上流側よりも下流側で冷媒Lの流量を減らすことができる。 Further, in the cooling structure 122, the flow passage area of the inlet side flow channel 128 becomes smaller on the downstream side than the upstream side in the flow direction of the refrigerant L due to the area reduction section 130 provided in the inlet side flow channel 128. In the cooling structure 122, the flow rate of the refrigerant L in the inlet flow channel 128 is more downstream than the upstream side in the flow direction of the refrigerant L in the inlet flow channel 128 with a simple configuration in which the area reduction unit 130 that reduces the flow channel area is provided. Can be reduced.

第3実施形態では、入側マニホールド124の入側流路128に面積縮小部130を設ける構成としているが本発明はこの構成に限定されない。例えば、図16に示す変形例の入側マニホールド132のように入側流路134に流量調整手段の一例としての調整弁136を設けてもよい。この調整弁136は、冷媒Lの流れ方向上流側に位置する発熱部品36の発熱量と下流側に位置する発熱部品36の発熱量に応じて入側流路128の開放面積を調整するようになっている。なお、調整弁136は、図示しない制御装置によって制御されており、この制御装置には各発熱部品36の発熱量が送信されるようになっている。上記構成では、調整弁136で入側流路128の開放面積を調整できるため、冷媒Lの流れ方向上流側に位置する冷却器32の熱交換部33に接触する発熱部品36の発熱量と冷媒Lの流れ方向下流側に位置する冷却器32の熱交換部33に接触する発熱部品36の発熱量に応じて入側流路134を流れる冷媒Lの流量を、冷媒Lの流れ方向上流側と下流側で適正に調整可能となる。
また、前述の変形例では、入側マニホールド132に調整弁136を設ける構成としているが、本発明はこの構成に限定されない。例えば、図17に示す変形例の出側マニホールド138のように出側流路140に流量調整手段の一例としての調整弁142を設けてもよい。上記構成では、入側流路128に調整弁136を設けた構成と同様の作用効果が得られる。
In the third embodiment, the area reducing portion 130 is provided in the inlet side flow channel 128 of the inlet side manifold 124, but the present invention is not limited to this configuration. For example, like the inlet manifold 132 of the modification shown in FIG. 16, an inlet valve 134 may be provided with an adjusting valve 136 as an example of a flow rate adjusting unit. The adjusting valve 136 adjusts the open area of the inlet channel 128 according to the heat generation amount of the heat generating component 36 located on the upstream side in the flow direction of the refrigerant L and the heat generation amount of the heat generating component 36 located on the downstream side. Is becoming The adjusting valve 136 is controlled by a control device (not shown), and the amount of heat generated by each heat generating component 36 is transmitted to this control device. In the above configuration, since the opening area of the inlet-side flow path 128 can be adjusted by the adjusting valve 136, the heat generation amount of the heat-generating component 36 and the refrigerant which come into contact with the heat exchange section 33 of the cooler 32 located on the upstream side in the flow direction of the refrigerant L and the refrigerant. The flow rate of the refrigerant L flowing through the inlet side flow path 134 in accordance with the heat generation amount of the heat generating component 36 contacting the heat exchange part 33 of the cooler 32 located on the downstream side in the flow direction of L is the upstream side in the flow direction of the refrigerant L. It becomes possible to properly adjust on the downstream side.
Further, in the above-described modification, the adjusting valve 136 is provided in the inlet side manifold 132, but the present invention is not limited to this structure. For example, like the outlet-side manifold 138 of the modification shown in FIG. 17, the outlet-side flow passage 140 may be provided with an adjusting valve 142 as an example of a flow rate adjusting unit. With the above configuration, the same operational effect as the configuration in which the adjusting valve 136 is provided in the inlet side flow channel 128 can be obtained.

第3実施形態の入側マニホールド124及び変形例の入側マニホールド132、出側マニホールド138の各構成については、第1実施形態、第2実施形態及び後述する第5実施形態に適用してもよい。 The respective configurations of the inlet side manifold 124 of the third embodiment and the inlet side manifold 132 and the outlet side manifold 138 of the modified example may be applied to the first embodiment, the second embodiment and the fifth embodiment described later. ..

(第4実施形態)
図18には、第4実施形態の冷却構造152が示されている。本実施形態の冷却構造152は、出側マニホールド154の出側挿入口156の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Fourth Embodiment)
FIG. 18 shows the cooling structure 152 of the fourth embodiment. The cooling structure 152 of the present embodiment is different from the cooling structure 22 of the first embodiment in the configuration of the outlet insertion port 156 of the outlet manifold 154, and other configurations are the same as the cooling structure 22, and therefore, The description of the same configuration will be omitted. The same components as those in the first embodiment are designated by the same reference numerals.

図18に示されるように、出側マニホールド154の各出側挿入口156には、それぞれサーモスタット158が設けられている。このサーモスタット158は、冷却器32において発熱部品36と熱交換をした冷媒Lの温度が所定の温度以上のときに、出側挿入口156を開放するように構成されている。 As shown in FIG. 18, a thermostat 158 is provided at each outlet insertion port 156 of the outlet manifold 154. The thermostat 158 is configured to open the outlet insertion port 156 when the temperature of the refrigerant L that has exchanged heat with the heat generating component 36 in the cooler 32 is equal to or higher than a predetermined temperature.

次に、本実施形態の冷却構造152の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, the function and effect of the cooling structure 152 of this embodiment will be described. Note that the description of the same operational effects as those obtained in the first embodiment will be appropriately omitted.

本実施形態の冷却構造152では、冷却器32において発熱部品36と熱交換をした冷媒Lの温度が所定の温度以上になるとサーモスタット158が出側挿入口156を開放する。このため、各発熱部品36の発熱量に差がある場合に、発熱量が高い発熱部品36を冷却する冷却器32の出側配管部35に対応する出側挿入口156に設けられたサーモスタット158が開放され、発熱量が低い発熱部品36を冷却する冷却器32の出側配管部35に対応する出側挿入口156に設けられたサーモスタット158が閉鎖状態となる。これにより、発熱量が高い発熱部品36に対応する冷却器32にはより多くの冷媒Lが流れるため、発熱量が高い発熱部品36を効果的に冷却することができる。 In the cooling structure 152 of the present embodiment, the thermostat 158 opens the outlet insertion port 156 when the temperature of the refrigerant L that has exchanged heat with the heat generating component 36 in the cooler 32 becomes equal to or higher than a predetermined temperature. Therefore, when there is a difference in the heat generation amount of each heat generation component 36, the thermostat 158 provided in the outlet side insertion port 156 corresponding to the outlet side pipe portion 35 of the cooler 32 that cools the heat generation component 36 having a high heat generation amount. Is opened, and the thermostat 158 provided in the outlet side insertion port 156 corresponding to the outlet side pipe portion 35 of the cooler 32 that cools the heat generating component 36 having a low calorific value is closed. As a result, a larger amount of the refrigerant L flows in the cooler 32 corresponding to the heat generating component 36 having a high heat generation amount, so that the heat generating component 36 having a high heat generation amount can be effectively cooled.

第4実施形態では、出側マニホールド154の各出側挿入口156にそれぞれサーモスタット158を設ける構成としているが、本発明はこの構成に限定されない。例えば、出側マニホールド154の各出側挿入口156にそれぞれ出側挿入口156の流量を調整する調整弁を設ける構成としてもよい。この調整弁は、各発熱部品36の発熱量に応じて対応する出側挿入口156の流量を調整するように構成されている。 In the fourth embodiment, a thermostat 158 is provided in each of the outlet insertion ports 156 of the outlet manifold 154, but the present invention is not limited to this configuration. For example, a configuration may be used in which each outlet insertion port 156 of the outlet manifold 154 is provided with an adjustment valve that adjusts the flow rate of the outlet insertion port 156. This adjusting valve is configured to adjust the flow rate of the corresponding outlet insertion port 156 according to the amount of heat generated by each heat generating component 36.

第4実施形態の出側マニホールド154の構成については、第1実施形態、第2実施形態及び後述する第5実施形態に適用してもよい。 The configuration of the outlet manifold 154 of the fourth embodiment may be applied to the first embodiment, the second embodiment, and the fifth embodiment described later.

(第5実施形態)
図19には、第5実施形態の冷却構造162が示されている。本実施形態の冷却構造162は、入側マニホールド164の入側流路構成部166の構成が第1実施形態の冷却構造22と異なり、それ以外の構成が冷却構造22と同一のため、冷却構造22と同一の構成についてはその説明を省略する。また、第1実施形態と同一の構成については同一符号を付す。
(Fifth Embodiment)
FIG. 19 shows the cooling structure 162 of the fifth embodiment. The cooling structure 162 of the present embodiment is different from the cooling structure 22 of the first embodiment in the structure of the inlet side flow path forming portion 166 of the inlet side manifold 164, and the other structures are the same as the cooling structure 22. The description of the same configuration as that of No. 22 will be omitted. The same components as those in the first embodiment are designated by the same reference numerals.

図19に示されるように、入側マニホールド164の入側流路構成部166には入側流路168が設けられている。この入側流路168には、入側挿入口48を通して入側配管部34に流入する冷媒Lの流れを乱すための乱流促進体170が設けられている。具体的には、入側流路168の各入側挿入口48に対応する位置に乱流促進体170がそれぞれ設けられている。 As shown in FIG. 19, the inlet side flow passage 168 is provided in the inlet side flow passage forming portion 166 of the inlet side manifold 164. The inlet flow passage 168 is provided with a turbulent flow promoting body 170 for disturbing the flow of the refrigerant L flowing into the inlet pipe section 34 through the inlet insertion port 48. Specifically, the turbulence promoting bodies 170 are provided at positions corresponding to the respective inlet insertion ports 48 of the inlet flow passage 168.

次に、本実施形態の冷却構造162の作用効果について説明する。なお、第1実施形態で得られる作用効果と同様の作用効果についてはその説明を適宜省略する。 Next, the function and effect of the cooling structure 162 of this embodiment will be described. Note that the description of the same operational effects as those obtained in the first embodiment will be appropriately omitted.

本実施形態の冷却構造162では、入側マニホールド164の入側流路168に、入側配管部34に流入する冷媒Lの流れを乱すための乱流促進体170を設けているため、入側配管部34から熱交換部33内へ流れ込む冷媒Lに乱流が生じるのが促進される。このように冷却構造162では、入側流路168に乱流促進体170を設けているため、例えば、入側流路168に乱流促進体170を設けない構成と比べて、熱交換部33内を流れる冷媒Lに乱流が生じるのが促進され、熱交換部33内の冷媒Lと発熱部品36との間の熱交換が効果的に行われる。 In the cooling structure 162 of the present embodiment, since the inlet flow passage 168 of the inlet manifold 164 is provided with the turbulent flow promoting body 170 for disturbing the flow of the refrigerant L flowing into the inlet piping section 34, the inlet side 168 is provided. A turbulent flow is promoted in the refrigerant L flowing into the heat exchange section 33 from the piping section 34. As described above, in the cooling structure 162, since the turbulent flow promoting body 170 is provided in the inlet side flow passage 168, for example, as compared with the configuration in which the turbulent flow promoting body 170 is not provided in the inlet side flow passage 168, the heat exchange section 33. A turbulent flow is promoted in the refrigerant L flowing therein, and the heat exchange between the refrigerant L in the heat exchange section 33 and the heat generating component 36 is effectively performed.

第5実施形態の入側マニホールド164の構成(乱流促進体170)については、第1実施形態、第2実施形態、第3実施形態及び第4実施形態に適用してもよい。 The configuration of the inlet side manifold 164 (turbulent flow promoting body 170) of the fifth embodiment may be applied to the first embodiment, the second embodiment, the third embodiment and the fourth embodiment.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 The embodiments of the present invention have been described above with reference to the embodiments, but these embodiments are merely examples, and various modifications may be made without departing from the scope of the invention. Further, it goes without saying that the scope of rights of the present invention is not limited to these embodiments.

22 冷却構造
30 組立体
32 冷却器
33 熱交換部
34 入側配管部(第1配管部)
35 出側配管部(第2配管部)
36 発熱部品
40 入側マニホールド(第1マニホールド)
42 入側流路構成部(第1流路構成部)
44 入側流路(第1流路)
46 入側接続部(第1接続部)
48 入側挿入口(第1挿入口)
50 出側マニホールド(第2マニホールド)
52 出側流路構成部(第2流路構成部)
54 出側流路(第2流路)
56 出側接続部(第2接続部)
58 出側挿入口(第2挿入口)
62 冷却構造
64 冷却器
66 入側配管部(第1配管部)
67 突部(第1突部)
68 出側配管部(第2配管部)
69 突部(第2突部)
70 入側マニホールド(第1マニホールド)
72 入側接続部(第1接続部)
74 入側挿入口(第1挿入口)
76 凹部(第1凹部)
78 嵌合部(第1嵌合部)
80 出側マニホールド(第2マニホールド)
82 出側接続部(第2接続部)
84 出側挿入口(第2挿入口)
86 凹部(第2凹部)
88 嵌合部(第2嵌合部)
92 入側マニホールド(第1マニホールド)
93 嵌合部(第1嵌合部)
96 出側マニホールド(第2マニホールド)
97 嵌合部(第2嵌合部)
102 入側マニホールド(第1マニホールド)
106 出側マニホールド(第2マニホールド)
112 入側マニホールド(第1マニホールド)
114 凹部(第1凹部)
116 出側マニホールド(第2マニホールド)
118 凹部(第2凹部)
122 冷却構造
124 入側マニホールド(第2マニホールド)
126 入側流路構成部(第1流路構成部)
128 入側流路(第1流路)
130 面積縮小部(流量調整手段)
132 入側マニホールド(第1マニホールド)
134 入側流路(第1流路)
136 調整弁(流量調整手段)
138 出側マニホールド(第2マニホールド)
140 出側流路(第2流路)
142 調整弁(流量調整手段)
152 冷却構造
154 出側マニホールド(第2マニホールド)
156 出側挿入口(第2挿入口)
162 冷却構造
164 入側マニホールド(第1マニホールド)
166 入側流路構成部(第1流路構成部)
168 入側流路(第1流路)
170 乱流促進体
22 Cooling Structure 30 Assembly 32 Cooler 33 Heat Exchange Section 34 Inlet Side Pipe Section (First Pipe Section)
35 Outlet side piping section (second piping section)
36 Heat generating component 40 Inlet side manifold (first manifold)
42 Entry-side flow path component (first flow path component)
44 Inlet side flow path (first flow path)
46 Entry side connection (first connection)
48 Entry side insertion port (first insertion port)
50 Outlet side manifold (second manifold)
52 Outlet side flow path forming section (second flow path forming section)
54 Outgoing flow path (second flow path)
56 Outgoing side connection (second connection)
58 Outlet insertion port (second insertion port)
62 cooling structure 64 cooler 66 inlet side piping part (first piping part)
67 Projection (First projection)
68 Outlet side piping section (second piping section)
69 Projection (Second projection)
70 Inlet side manifold (first manifold)
72 Entry side connection part (first connection part)
74 Entry side insertion port (first insertion port)
76 recess (first recess)
78 Fitting part (first fitting part)
80 Outlet manifold (2nd manifold)
82 Outgoing side connection (second connection)
84 Outlet insertion port (second insertion port)
86 recess (second recess)
88 Fitting part (second fitting part)
92 Inlet manifold (first manifold)
93 Fitting part (first fitting part)
96 Outlet side manifold (2nd manifold)
97 Fitting part (second fitting part)
102 Inlet side manifold (first manifold)
106 Outlet side manifold (second manifold)
112 Inlet side manifold (first manifold)
114 recess (first recess)
116 Outlet side manifold (second manifold)
118 recess (second recess)
122 Cooling Structure 124 Inlet Manifold (Second Manifold)
126 Entry-side flow path component (first flow path component)
128 inlet side channel (first channel)
130 Area reduction unit (flow rate adjusting means)
132 Inlet manifold (first manifold)
134 Inlet side flow path (first flow path)
136 Adjusting valve (flow rate adjusting means)
138 Outlet side manifold (2nd manifold)
140 Outflow channel (second channel)
142 Adjusting valve (flow rate adjusting means)
152 Cooling Structure 154 Outlet Manifold (Second Manifold)
156 Outlet insertion port (second insertion port)
162 Cooling structure 164 Inlet manifold (first manifold)
166 Entry-side flow path component (first flow path component)
168 inlet side flow path (first flow path)
170 Turbulence promoter

Claims (7)

第1方向に間隔をあけて配置され、かつ、内部を冷媒が流れる熱交換部と、前記熱交換部から第1方向と交差する方向へ延び、前記熱交換部内と連通する第1配管部と、前記熱交換部から前記第1配管部と反対側へ延び、前記熱交換部内と連通する第2配管部と、を備えた複数の冷却器と、前記第1方向に隣接する前記熱交換部間に配置されて前記熱交換部に接触する発熱部品と、を有する組立体と、
前記第1方向に延び、前記冷媒が流れる第1流路を構成する第1流路構成部と、弾性材料で形成され、前記第1配管部が挿入される第1挿入口が複数設けられ、前記第1配管部内と前記第1流路を連通させる第1接続部と、を備えた第1マニホールドと、
前記第1方向に延び、前記冷媒が流れる第2流路を構成する第2流路構成部と、弾性材料で形成され、前記第2配管部が挿入される第2挿入口が複数設けられ、前記第2配管部内と前記第2流路を連通させる第2接続部と、を備えた第2マニホールドと、
を備える冷却構造。
A heat exchanging portion which is arranged at a distance in the first direction and through which a refrigerant flows, and a first piping portion which extends from the heat exchanging portion in a direction intersecting the first direction and communicates with the inside of the heat exchanging portion. A plurality of coolers each including a second pipe portion that extends from the heat exchange portion to the side opposite to the first pipe portion and communicates with the inside of the heat exchange portion, and the heat exchange portion that is adjacent in the first direction. An assembly having a heat-generating component disposed between and in contact with the heat exchange unit;
A first flow path forming part that extends in the first direction and forms a first flow path through which the refrigerant flows, and a plurality of first insertion ports formed of an elastic material and into which the first piping part is inserted, A first manifold including a first connecting portion that communicates the inside of the first piping portion with the first flow path;
A second flow path forming part that extends in the first direction and forms a second flow path through which the refrigerant flows, and a plurality of second insertion ports that are formed of an elastic material and into which the second piping part is inserted, A second manifold provided with a second connecting portion that communicates the inside of the second piping portion with the second flow path;
Cooling structure.
前記第1流路構成部と前記第1接続部とが弾性材料によって一体成形され、
前記第2流路構成部と前記第2接続部とが弾性材料によって一体成形された、請求項1に記載の冷却構造。
The first flow path forming portion and the first connecting portion are integrally formed of an elastic material,
The cooling structure according to claim 1, wherein the second flow path forming portion and the second connecting portion are integrally formed of an elastic material.
前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、
前記第1流路には、前記冷媒の流れ方向上流側よりも下流側で前記冷媒の流量を減らすための流量調整手段が設けられている、請求項1又は請求項2に記載の冷却構造。
The first manifold is arranged upstream of the cooler in the flow direction of the refrigerant,
The cooling structure according to claim 1 or 2, wherein the first flow path is provided with flow rate adjusting means for reducing the flow rate of the refrigerant on the downstream side of the upstream side in the flow direction of the refrigerant.
前記流量調整手段は、前記第1流路に設けられ、前記冷媒の流れ方向上流側よりも下流側で前記第1流路の流路面積を小さくする面積縮小部である、請求項3に記載の冷却構造。 The flow rate adjusting means is an area reduction unit that is provided in the first flow path and reduces the flow path area of the first flow path on the downstream side of the upstream side in the flow direction of the refrigerant. Cooling structure. 前記流量調整手段は、前記第1流路に設けられ、前記第1流路の開放面積を調整する調整弁である、請求項3に記載の冷却構造。 The cooling structure according to claim 3, wherein the flow rate adjusting means is an adjusting valve provided in the first flow path and adjusting an open area of the first flow path. 前記第1配管部の外周には、周方向に沿って円環状の第1突部が管軸方向に間隔をあけて複数設けられ、
前記第2配管部の外周には、周方向に沿って円環状の第2突部が管軸方向に間隔をあけて複数設けられ、
前記第1接続部は、前記第1挿入口の周囲に形成された第1凹部と、前記第1挿入口の内周面に形成され、前記第1突部が嵌合する第1嵌合部と、を備え、
前記第2接続部は、前記第2挿入口の周囲に形成された第2凹部と、前記第2挿入口の内周面に形成され、前記第2突部が嵌合する第2嵌合部と、を備えている、請求項1〜請求項5のいずれか1項に記載の冷却構造。
A plurality of annular first protrusions are provided on the outer periphery of the first pipe portion along the circumferential direction at intervals in the pipe axis direction,
A plurality of annular second protrusions are provided on the outer circumference of the second pipe portion along the circumferential direction at intervals in the pipe axial direction,
The first connecting portion is formed on a first concave portion formed around the first insertion opening and an inner peripheral surface of the first insertion opening, and a first fitting portion into which the first protrusion is fitted. And
The second connecting portion is formed on a second concave portion formed around the second insertion opening and an inner peripheral surface of the second insertion opening, and a second fitting portion into which the second protrusion is fitted. The cooling structure according to any one of claims 1 to 5, further comprising:
前記第1マニホールドは、前記冷却器よりも前記冷媒の流れ方向上流側に配置され、
前記第1流路には、前記第1配管部に流入する前記冷媒の流れを乱すための乱流促進体が設けられている、請求項1〜請求項6のいずれか1項に記載の冷却構造。
The first manifold is arranged upstream of the cooler in the flow direction of the refrigerant,
The cooling according to any one of claims 1 to 6, wherein the first flow path is provided with a turbulent flow promoting body for disturbing a flow of the refrigerant flowing into the first piping portion. Construction.
JP2017008655A 2017-01-20 2017-01-20 Cooling structure Active JP6708564B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017008655A JP6708564B2 (en) 2017-01-20 2017-01-20 Cooling structure
PCT/JP2017/037760 WO2018135055A1 (en) 2017-01-20 2017-10-18 Cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008655A JP6708564B2 (en) 2017-01-20 2017-01-20 Cooling structure

Publications (2)

Publication Number Publication Date
JP2018117099A JP2018117099A (en) 2018-07-26
JP6708564B2 true JP6708564B2 (en) 2020-06-10

Family

ID=62908044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008655A Active JP6708564B2 (en) 2017-01-20 2017-01-20 Cooling structure

Country Status (2)

Country Link
JP (1) JP6708564B2 (en)
WO (1) WO2018135055A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102662283B1 (en) * 2023-10-06 2024-05-03 한화시스템(주) Air cooled antenna of active Electronically Scanned Array

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326102B2 (en) * 1997-12-17 2002-09-17 株式会社東芝 Semiconductor module
JP2008004606A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Cooling apparatus
JP2014154664A (en) * 2013-02-07 2014-08-25 Nippon Soken Inc Cooler

Also Published As

Publication number Publication date
JP2018117099A (en) 2018-07-26
WO2018135055A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US10473209B2 (en) Heat exchange device
US10113817B2 (en) Heater core
US10462931B2 (en) Heat exchanger
KR20080016588A (en) Multifluid heat exchanger
WO2018116370A1 (en) Heat exchange device
US20120234021A1 (en) Heat exchanger
US20100147501A1 (en) Curled manifold for evaporator
JP6708564B2 (en) Cooling structure
US10670348B2 (en) Heat exchanger
WO2020012921A1 (en) Heat exchanger
US11131514B2 (en) Heat exchange device
JP2004060920A (en) Heat exchanger
KR20210158512A (en) Heat exchanger
JP5760943B2 (en) Cooler
WO2024116500A1 (en) Cooler
JP7121551B2 (en) Heat exchanger
WO2021149462A1 (en) Heat exchanger
JP7259287B2 (en) Heat exchanger
KR102533346B1 (en) Integrated heat exchanger
KR102322880B1 (en) Heat dissipation device using turbulent flow
US20160348980A1 (en) Heat exchanger with improved flow at mitered corners
JP2017187196A (en) Exhaust heat exchanger
WO2011101910A1 (en) Heat exchanger
JP2019121742A (en) Liquid-cooled type cooling device
KR20210123531A (en) Plate stacked heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R150 Certificate of patent or registration of utility model

Ref document number: 6708564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250