JP2008003490A - 画像形成装置、画像形成方法及びプログラム - Google Patents

画像形成装置、画像形成方法及びプログラム Download PDF

Info

Publication number
JP2008003490A
JP2008003490A JP2006175491A JP2006175491A JP2008003490A JP 2008003490 A JP2008003490 A JP 2008003490A JP 2006175491 A JP2006175491 A JP 2006175491A JP 2006175491 A JP2006175491 A JP 2006175491A JP 2008003490 A JP2008003490 A JP 2008003490A
Authority
JP
Japan
Prior art keywords
density
image forming
laser light
correction value
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006175491A
Other languages
English (en)
Inventor
Yuji Inagawa
雄二 稲川
Koji Tanimoto
弘二 谷本
Kenichi Komiya
研一 小宮
Daisuke Ishikawa
大介 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba TEC Corp
Original Assignee
Toshiba Corp
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba TEC Corp filed Critical Toshiba Corp
Priority to JP2006175491A priority Critical patent/JP2008003490A/ja
Publication of JP2008003490A publication Critical patent/JP2008003490A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Facsimiles In General (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

【課題】製品コストの増加を抑制して、簡便に濃度ムラを解消することのできる画像形成装置、画像形成方法及びプログラムを提供する。
【解決手段】レーザ光源(104、209)から出射されるレーザ光により感光体ドラム(102)上を走査露光してこの感光体ドラム上に画像を形成する画像形成装置であって、感光体ドラム上の画像を媒体(130)に転写する印刷部(106)と、媒体に転写された出力画像の濃度を走査方向の複数位置について検知して、この検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する濃度検知部(120)と、レーザ光量を補正値に基づいて補正する補正部(104、214)とを備え、濃度検知部が、画像形成装置の媒体を排出する出力部に設けられている画像形成装置である。
【選択図】図1

Description

本発明は、製品コストの増加を抑制して、簡便に濃度ムラを解消することのできる画像形成装置、画像形成方法及びプログラムに関する。
一般に、光源として半導体レーザ(以下、「レーザ」という。)を用いたデジタル複写機などの画像形成装置では、APC(Auto Power Control)と呼ばれる光量制御方法が用いられている。APCは、画像領域のレーザの発光量を、レーザに内蔵されたフォトダイオード、または外部に設けたフォトダイオードによって検知し、その検知信号を用いて、発光量の安定化制御を行う。
上記APC処理は、レーザ光源から照射されるレーザ光量を主に1走査ごとに所定値に制御する処理であるが。しかし、実際の画像形成装置ではレーザ光源から感光体ドラムまでの光路上にレーザ光量を変化させる要因が存在する。例えば光学素子の透過率が主走査方向で異なるため、感光体ドラム表面上での主走査方向のレーザ光量は均一ではない。そして、このレーザ光量の不均一さが印刷画像に濃度ムラとなって現れる。
光学素子の透過率は入射光角度により異なる。光学素子の光軸に沿って光が入射した場合は透過率が大きく、光学素子の光軸に対して光が斜めに入射する場合は透過率が小さくなる。従って、画像形成装置等で用いられる光学素子であるf-θレンズへのレーザ光の入射角度は、f-θレンズの中心付近は垂直に近く、f-θレンズの端に行くほど入射角度は斜めになる。
図12は、光の主走査方向位置における光学素子の透過率を示す図である。ここで、縦軸の上の方が透過率が大きく、下の方が透過率が小さいことを示している。主走査方向位置によって透過率が異なるため、上記APC処理によってレーザ光源から照射されるレーザ光量を一定に制御したとしても、感光体ドラム表面上での主走査方向のレーザ光量は図13に示すように、光学素子の透過率の大きい中心部分では、レーザ光量が大きく、光学素子の透過率が小さくなる端の部分ではレーザ光量が小さくなる。更に、この光学素子の透過率は光学素子のメーカーや種類の違いによっても異なる。
このようなレーザ光路中のレーザ光量の変化を補正して、印刷画像の濃度ムラを解消する方法が従来技術として存在する。この技術では、主走査方向の各位置に応じた光量補正値をあらかじめメモリなどの補正値記憶部に設定する。そして、走査中の主走査方向の位置に応じて、光量補正手段が光量補正値を用いてレーザ光量を補正して感光体ドラム上のレーザ光量を一定に制御する。
また、この技術では画像形成装置に搭載された画像読取装置で印刷画像を読み取って濃度を検出する。そして、その濃度データに基づいて、補正値記憶部に設定する光量補正値が決定される(例えば、特許文献1参照)。
特開平11−112809号公報
特許文献1に記載された技術では、画像形成装置には画像読取装置が搭載されていることを前提としている。ところで、画像形成装置には、プリンタのように、スキャナなどの画像読取装置を搭載していない装置も数多く存在する。
従って、特許文献1に記載された技術を適用して、画像読取装置を搭載していない画像形成装置に画像読取装置を搭載すると、原稿ガラス台、照明ランプ、レンズ・ミラーなどからなる光学系、駆動機構を新たに装備することとなる。その結果、ユーザが画像読取機能を必要としない装置であるにも係らず、製品コストの上昇を招き、また、装置が大型化する問題がある。
本発明は、係る事情に鑑みてなされたものであって、製品コストの増加を抑制して、簡便に濃度ムラを解消することのできる画像形成装置、画像形成方法及びプログラムを提供することを目的とする。
上記課題を解決するための本発明に係る画像形成装置は、レーザ光源から出射されるレーザ光により感光体ドラム上を走査露光してこの感光体ドラム上に画像を形成する画像形成装置において、前記感光体ドラム上の画像を媒体に転写する印刷部と、前記媒体に転写された出力画像の濃度を走査方向の複数位置について検知して、この検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する濃度検知部と、前記レーザ光量を前記補正値に基づいて補正する補正部とを備え、前記濃度検知部が、前記画像形成装置の前記媒体を排出する出力部に設けられている。
また本発明に係る画像形成方法は、レーザ光源から出射されるレーザ光により感光体ドラム上を走査露光してこの感光体ドラム上に画像を形成する画像形成装置の画像形成方法において、前記感光体ドラム上の画像を媒体に転写する印刷ステップと、前記媒体に転写された出力画像の濃度を走査方向の複数位置について検知して、この検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する濃度検知ステップと、前記レーザ光量を前記補正値に基づいて補正する補正ステップとを備え、前記濃度検知ステップは、前記画像形成装置から排出される前記媒体の出力画像について実行される。
また本発明に係るプログラムは、レーザ光源から出射されるレーザ光により感光体ドラム上を走査露光してこの感光体ドラム上に画像を形成し前記感光体ドラム上の画像を媒体に転写する画像形成装置の前記媒体を排出する出力部に設けられる濃度検出部で実行されるプログラムであって、前記媒体に転写された出力画像の走査方向の複数位置の濃度を検知する濃度センシングステップと、前記媒体を搬送する速度を制御する速度制御ステップと、前記濃度センシングステップで検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する補正値算出ステップとを備えた。
本発明によれば、製品コストの増加を抑制して、簡便に濃度ムラを解消することのできる画像形成装置、画像形成方法及びプログラムを提供できる。
〔第1の実施の形態〕
以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明の第1の実施の形態の画像形成装置の構成を示す図である。
画像形成装置100は、制御部101、感光体ドラム102、帯電器103、走査露光部104、現像器105、転写チャージャ106、剥離チャージャ107、クリーナ108、給紙部109、用紙搬送部110、定着器111、排紙部112、排紙トレイ114及び濃度検知部120を備えている。
感光体ドラム102は、副走査方向(感光体ドラム102の周方向)に回転する。感光体ドラム102の周辺近傍には、帯電器103が配置される。帯電器103は、感光体ドラム102の表面を均一に帯電する。走査露光部104は、走査露光部104内の半導体レーザを走査しながら画像信号に応じて発光/消灯する。この半導体レーザから出射されるレーザ光は、ポリゴンミラーなどの偏向器によって主走査方向(感光体ドラム102の回転軸方向)に走査する光となる。そしてレンズ等の光学系によって、レーザ光は感光体ドラム102上に照射される。帯電した感光体ドラム102にレーザ光が照射されると、照射された部位の電位が低下し、静電潜像が形成される。
現像器105は、現像剤を感光体ドラム102に塗布することで、感光体ドラム102上にトナー像を形成する。一方、画像形成装置100の底部には用紙トレイ113が設けられている。給紙ローラ115は、用紙トレイ113内の用紙130を1枚ずつ分離して、給紙部109に送り出す。給紙部109は、感光体ドラム102の転写位置まで用紙130を供給する。転写チャージャ106は、供給される用紙130にトナー像を転写する。剥離チャージャ107は、感光体ドラム102から用紙130を剥離する。
トナー像が転写された用紙130は、用紙搬送部110によって搬送される。定着器111は、トナー像を用紙130に定着させる。排紙部112は、濃度検知部120を介して排紙トレイ114に画像が印刷された用紙130を排出する。
濃度検知部120は、画像形成装置100に着脱可能に構成されている。濃度検知部120は、所定の条件のときに用紙130に転写されたトナー像の濃度を検出して、その濃度値を制御部101に送信する。制御部101は、濃度値に基いて濃度ムラ補正を実行すると共に上述の各部の動作を制御する。
また、用紙130へトナー像の転写が終了した後、感光体ドラム102上の残留トナーはクリーナ108によって取り除かれる。感光体ドラム102は、初期状態に復帰し、次の画像形成の待機状態となる。
以上のプロセス動作を繰り返すことにより、画像形成動作が連続して行われる。
図2は、画像形成装置100の制御部101と、走査露光部104の構成を示す図である。
制御部101は、CPU201、メモリ202、画像データI/F203、ページメモリ204及びハードディスク205を備えている。
そして、制御部101には、指示部206、外部通信I/F207及び濃度検知部120が信号接続されている。指示部206は、タッチパネルやボタンなどの操作部材を備えている。外部通信I/F207には、LANケーブル、USBケーブルなどを接続するための通信インターフェースが設けられている。
走査露光部104は、レーザ制御回路208、半導体レーザ(以下、「レーザ」という。)209、ポリゴンモータドライバ210、ポリゴンミラー211、f−θレンズ212、ビーム検知センサ213、電圧補正部214及び補正値設定部215を備えている。
制御部101は、画像形成装置100の各部を統括して制御する。指示部206、あるいは外部通信I/F207からの画像データの印刷要求に対し、CPU201は、印刷が要求された画像データを、複数部印刷などの必要に応じてページメモリ204やハードディスク205に格納する。この処理は、画像データI/F203を介して実行される。この処理では、メモリ202は一時的なデータ格納バッファとして機能する。なお、印刷する画像データは、図示しないスキャナなどの画像読取装置から取り込んでもよい。
CPU201は、ページメモリ204に格納された画像データを画像データI/F203を介して、走査露光部104内のレーザ制御回路208に送信する。レーザ制御回路208は、送信された画像データに応じてレーザ209をON/OFFさせる。レーザ209から出射されるレーザ光は、図示しないコリメータレンズや集光レンズなどの光学系によって集光され、ポリゴンモータドライバ210によって駆動させられるポリゴンミラー211によって走査する光となる。そして、レーザ光は、f−θレンズ212を通して、1走査ラインごとに、図示しない感光体ドラム102上に照射される。
また、走査露光部104では、感光体ドラム102の近傍に配されたビーム検知センサ213が走査するレーザ光を検知する。不図示のビーム検知回路が、検知信号に基いて、主走査方向の1走査の基準となる水平同期信号を発生させる。電圧補正部214は、主走査方向のレーザ光量を補正するための補正電圧をレーザ制御回路209に付加する。この補正電圧値は、補正値設定部215にあらかじめ設定されている。
図3は、レーザ光量の補正に関する回路の構成を示す図である。
図3を参照しつつ、レーザ制御回路208によって制御される上述のレーザ光量安定化制御(APC)を説明する。
APCでは、レーザ光源(LD)301のレーザ光量を、内蔵されたフォトダイオード(PD)302、または外部に設けたフォトダイオード(不図示)によって検出し、そのフォトダイオード302の検出電流に応じてレーザ209を所望の光量で発光させる。
具体的には、まず、所定のレーザ駆動電流をレーザ209に供給し、レーザ光源301を発光する。レーザ光源301の発光量をフォトダイオード302で検出する。この検出した電流を調整抵抗Rpd303によって電圧に変換する。変換後の電圧値である検出電圧Vmと所望の発光量に対する電圧値である基準電圧Vrefとをコンパレータ306によって比較する。検出電圧Vmが基準電圧Vrefより大きければホールドコンデンサ304の電荷を放電してレーザ光源301の発光量を少なくする。検出電圧Vmが基準電圧Vrefより小さければホールドコンデンサ304の電荷を充電してレーザ光源301の発光量を大きくする。このように、ホールドコンデンサ304の充電・放電を制御して検出電圧Vmが基準電圧Vrefと等しくなるように調整する。この処理によってレーザ光源301のレーザ光量を一定に保つことができる。ここで、基準電圧Vrefは、APC基準電圧回路305から供給しているが、外部から供給するようにしてもよい。
なお、このAPC処理が行われるのは、APC回路307がアクティブのときである。APC回路が非アクティブのとき、コンパレータ306は切り離され、検出電圧Vmと基準電圧Vrefによらず、アクティブのときに設定されたホールドコンデンサ304の電荷に相当する電圧でレーザ光源301を点灯させる。
このAPC回路307のアクティブ/非アクティブは、CPU201から入力されるAPC信号によって切り替えられる。このAPC回路のアクティブ/非アクティブのタイミングについて説明する。通常、APCをアクティブにするのは走査レーザ光が画像領域外の一部分にあるときで、走査レーザ光が画像領域内にあるときはAPCを非アクティブにする。
走査されたレーザ光を画像領域外に設けたビーム検知センサ213によって検知する。そして、その検知信号に基いて、主走査方向の1走査の基準となる水平同期信号を発生させる。一方、画像クロック発生器308は画像データ信号の基準となる画像クロック信号を発生する。そして、同期回路309は、この水平同期信号に画像クロック信号を同期させる。CPU201は、内部のカウンタで水平同期信号と同期した画像クロック信号のクロック数をカウントする。CPU201は、そのカウント数に応じて、APC回路307にアクティブ/非アクティブを切り替えるAPC信号を出力する。
レーザ制御回路208は、APCによってレーザ光源301の光量を一定に制御すると共に、CPU201から送られてくる画像データ信号に応じて、レーザ光源301のON/OFFを制御する。レーザ光源301のON/OFF制御は、レーザスイッチング回路310が実行する。
レーザスイッチング回路310には、レーザ駆動電流リミッタ抵抗(RS)311が接続されている。このレーザ駆動電流リミッタ抵抗(RS)311の抵抗値を変更することによって、最大レーザ駆動電流を設定でき、レーザ駆動電流が既定値より大きくならないように制御できる。
また、レーザ光源301のON/OFF動作の応答特性を良くするために、バイアス電圧回路312、バイアス電流回路313によって、バイアス電流をレーザ光源301に加えてもよい。バイアス電流はバイアス電流設定抵抗(RB)314を変更することによって調整できる。また、バイアス電流のかわりに、レーザ光源301のしきい値からのオフセット電流を設定するようにしてもよい。
以上説明したAPC処理では、1走査ごとにレーザ光量の制御が行われる。しかしながら、このAPC処理では、上述したように1走査中のレンズの透過率の違いなどによる、画像領域走査中の光量の変化を補正することはできない。
そこで、画像領域走査中には、電圧補正部214がレーザ光量の変化を補正する。即ち、ホールドコンデンサ304に電圧補正部214を接続し、ホールドコンデンサ304の電荷に補正電圧を加えレーザ光源301の光量を補正できるようにする。これは、レーザ光量が、ホールドコンデンサ304の電荷によって調整できることを考慮したものである。
具体的には、電圧補正部214は、ボールテージフォロワ316によって、補正値設定部215から入力される補正電圧を保持する。一方、この補正電圧は数Vのオーダなので、抵抗318、抵抗319によって分圧することで数十mVのオーダに調整して、ホールドコンデンサ304に付加する。ここで、補正値設定部215には、レーザ光量補正量としての補正電圧があらかじめ格納されているものとする。また、抵抗319と並列にコンデンサ320を接続して、電圧補正変化時にノイズが発生しにくいようにしても良い。
図4、図5は、1走査中の光量補正処理のタイミングチャートである。
図4の横軸は経過時間を表し、縦軸はそれぞれ画像クロック信号(図4(a))、画像クロックカウント値(図4(b))、APC信号タイミング(図4(c))、水平同期信号タイミング(図4(d))を表している。
図5の横軸はレーザ主走査方向位置を表し、縦軸はそれぞれ光学素子(f−θレンズ)の透過率(図5(e))、光量補正前の感光体ドラム上のレーザ光量(図5(f))、電圧補正部によって付加される補正電圧(図5(g))、光量補正後のレーザ光源上でのレーザ光量(図5(h))、光量補正後の感光体ドラム上のレーザ光量(図5(i))を示している。
なお、図4の横軸の経過時間は、図5の横軸のレーザ主走査方向位置と対応して表している。
図3乃至図5を参照しつつタイミングチャートを説明する。
画像クロック発生器308は、図4(a)に示す画像データ信号の基準となる画像クロック信号を発生する。そして、CPU201は、内部のカウンタで水平同期信号を基準としてこの画像クロック信号のクロック数をカウントする。図4(b)に画像クロックカウント値を示す。このクロックカウンタ数によって主走査方向位置、つまり主走査方向の感光体ドラム上の位置が決定される。
従って、CPU201は、そのクロックカウント数に応じて、APC回路307にアクティブ/非アクティブを切り替えるAPC信号を出力する。図4(c)のAPC信号でLOWレベルとなっている期間がAPCがアクティブとなっている状態である。
図4(c)のAPCの行われている最中に、走査されたレーザ光がビーム検知センサ213によって検知されると、図4(d)に示す水平同期信号が発生する。同期回路309は、1走査ごとにこの水平同期信号に画像クロック信号を同期させる。図4(d)では、例として水平同期信号図4(d)の立ち下りで同期させている。
感光体ドラム102上の画像領域において、光学素子の透過率は、図5(e)に示すように、主走査方向位置の中心部分が大きく端のほうになるにつれ小さくなっている。このため、感光体ドラム102上のレーザ光量は図5(f)に示すように、点線で示しているAPC制御によって所定値に設定されたレーザ光量に比べ、端のほうになるにつれ減衰している。
この主走査方向位置のレーザ光量の減衰に応じて、電圧補正部214によって図5(g)に示す補正電圧を付加する。この補正電圧の付加は、主走査方向位置に対応するクロックカウンタ数に対応したタイミングで行われる。
図5(h)は、光量補正後のレーザ光パワーを示している。レーザ光量があまり減衰していない中心部分の補正電圧は小さく、レーザ光量が大きく減衰している端のほうの補正電圧は大きく設定している。このように、主走査方向位置に応じて補正電圧を付加することで感光体ドラム102上のレーザ光量を図5(i)に示すように一定にする。
なお、図5(g)の補正電圧を変化させるタイミングは、画像クロック信号1クロックごとに行う必要はなく、数クロックごとに補正電圧を変化させてもよい。適宜のクロック数で補正電圧を更新出力しても良い。
次に、補正値を設定する方法について説明する。
上述のように、主走査方向の光量補正を行うためには、あらかじめ補正値設定部215に補正値を設定しておく必要がある。この補正値は、f−θレンズ212の個体差などによって画像形成装置毎に設定する必要がある。また、一度補正値を設定した後も、経時変化などによって補正値を変更する必要が生ずる。従って、この補正値の設定が簡単に行えることが求められる。
本実施の形態では、濃度検知部120が補正値を自動的に算出して、補正値を画像形成装置100に転送し、補正値設定部215に格納する。濃度検知部120は、画像形成装置100の排紙側(用紙出力側)に着脱自在に取り付けられる。
図6は、濃度検知部120の構成を示す図である。
濃度検知部120は、濃度センサ制御部501、濃度センサ502a〜 502p、濃度データ一時格納部503、外部I/F504、給紙ローラモータ505及び給紙ローラ506を備えている。
そして、濃度センサ制御部501には、内部メモリ510が設けられ、その内部メモリ510には、目標濃度値511及び濃度―光量変換表512を記憶している。
なお、目標濃度値511及び濃度−光量変換表512は、画像形成装置100側に記憶させておいてもよい。また、外部I/F504はUSBI/Fなどの汎用I/Fを使用することによって、接続に汎用性を持たせられるようにしてもよい。
給紙ローラモータ505は、給紙ローラ506を駆動して回転させる。給紙ローラ506は、画像形成装置100から送られてくる用紙130を搬送する。濃度センサ502a,・・・,502pは、用紙130上のトナー濃度を検出するラインセンサである。濃度データ一時格納部503は、検出したトナー濃度を記憶するバッファメモリである。外部I/F504は、画像形成装置100のCPU201との間で情報の授受を行う通信インターフェースである。
濃度センサ制御部501は、濃度検知部120の各部の動作を統括して制御する。例えば、濃度センサ制御部501は、給紙ローラモータ505の動作を制御する。また、濃度センサ制御部501は、濃度データ一時格納部503から濃度データを読み取り、目標濃度値511、濃度−光量変換表512に基いて補正値を算出する。さらに、濃度センサ制御部501は、CPU201と外部I/F504を介して情報の授受を行う。
図7は、濃度センサ502の構成と濃度読み取り方法を示す図である。
濃度センサ502は、LEDなどの発光素子601、フォトダイオードなどの受光素子602及び集光レンズ603、604を有している。発光素子601は、濃度センサ制御部501によって、ON/OFFされる。発光素子601から出射された光は、集光レンズ603で集光され、用紙130を照射する。光は、用紙130、あるいは用紙130上のトナー606によって反射される。反射光は、集光レンズ604によって集光され、受光素子602で受光される。この受光量から用紙上のトナー濃度を検出することができる。濃度センサ502によって検出された濃度は、濃度データ一時格納部503に格納される。そしてその後、濃度センサ制御部501は濃度データから光量補正値を算出する補正処理を実行する。
図8は、濃度検知部120の概略の濃度補正手順を示すフロー図である。この処理は濃度センサ制御部501によって実行される。
ユーザが指示部206などから濃度テストパターン印刷を要求すると、ステップS701において、濃度センサ制御部501は、その要求を外部I/F504を介して受信する。この後、ステップS702において、画像形成装置100が用紙130に濃度テストパターンを印刷するまで待機する。
図9は、濃度テストパターンの一例を示す図である。
この濃度テストパターンでは、50%ハーフトーンの帯状の図形が5つ印刷されている。即ち、同じ濃度の帯状の図形が5回繰り返して用紙130に印刷される。なお、この濃度テストパターンは、K(黒色)で印刷されているが、C(シアン)、M(マゼンタ)、Y(イエロー)で印刷しても良い。また、C・M・Y・Kを組み合わせて印刷しても良い。さらに、濃度テストパターンは図9に示すものに限定されず、種々の図形を組み合わせて形成しても良い。なお、これらの濃度テストパターンは、メモリ202や、ハードディスク205などに格納され、ユーザが任意に指定できるものとする。
図8に戻り、濃度テスト印刷パターン印刷要求後、ある一定時間後に、濃度テストパターンが画像形成装置100から出力される。この一定時間はあらかじめ内部メモリ510に記憶されている。そこで、ステップS703において、テストパターンの濃度をあらかじめ設定されているタイミングで検出する(1回目の濃度検出)。
即ち、用紙130が搬送されてくるタイミングに同期して、給紙ローラモータ505を回転させて、用紙130を所定の速度で濃度センサ502に搬送する。次に、発光素子601をONとして、反射光を受光素子602で受光する。すると、用紙130の幅方向の所定位置における濃度データが得られる。この濃度データの所定のタイミングでの検出した値を第1回目の検出濃度として濃度データ一時格納部に格納する。
なお、所定のタイミングにおいて測定した濃度を検出濃度としたが、例えば、濃度センサ502の測定出力をサンプリングし、その時系列波形から検出濃度を求めても良い。
ステップS703〜S707において、上述の濃度検出を例えば、5回繰り返す。そして、この測定値に基いて補正の要否を判断する。
図10は、濃度検出データと目標濃度値の一例を示す図である。図10を参照しつつ、補正の要否判断手順を説明する。
図8のステップS708において、5回の濃度検出値の平均値を算出する。ステップS709において、算出した平均値と、内部メモリ510に格納されている目標濃度値511と比較し、補正濃度を算出する。補正濃度は、濃度検出値の平均値と目標濃度値との差とすることができる。ステップS710でYesの場合、即ち、この補正濃度が±0.02以下なら、濃度ムラは小さいと判断し処理を終了する。ステップS710でNoの場合、即ち、この補正濃度が±0.02よりも大きいなら補正値送信処理を実行する。
ステップS711において、補正濃度が±0.02より大きいなら、濃度―光量変換表512から、ステップS709で算出された補正濃度に対応する光量を決定する。
図11は、濃度−光量変換表512の内容を表す図である。この対応表に基いて、補正濃度から補正光量を求める。
そして、ステップS712において、画像形成装置100のCPU201へ、補正濃度に対応する光量補正値を外部I/F504を介して転送する。転送された補正値は、補正値設定部215に設定される。ここで、転送された補正値は、CPU201などによって電圧値に変換されて補正値設定部215に設定される。
そして、再度濃度テストパターンの印刷を開始し、ステップS702以下の処理を繰り返して実行する。この処理を補正濃度が十分小さい±0.02以下になるまで繰り返すことによって、濃度ムラを自動で補正することができる。
なお、濃度検出回数は5回に限定されず、濃度センサ502の検出応答時間などに応じて決めることができる。また、所定回数繰り返して濃度補正を行っても補正濃度が±0.02よりも大きい場合は、エラー情報を出力しても良い。
〔実施の形態の効果〕
以上説明したように、本実施の形態の画像形成方法によれば、種々の効果を奏することができる。
主走査方向の補正値を設定する際、補正値の設定方法を簡単に行えることができる。また、濃度検知部120を取り付けることによって、テストパターンをスキャナのような画像読み取り装置に移動させることなく、全自動で補正値を設定し、濃度ムラを解消できる。また、画像形成装置100と濃度検知部120の接続部分を共通化することで、異なる機種においても、濃度検知部120を共通に使用できる。
濃度検知部120は、画像形成装置100の用紙出力側に着脱自在に構成されている。従って、普段は濃度検知部120を装備せず、必要時に装着して調整することができる。また、濃度検知部120と画像形成装置100の互いの接続部分を共通化することで、機械的なインターフェースをとることができる。
また濃度検知部120には、動作タイミングを内部で判断する機能を備えている。従って、画像形成装置100とは、濃度テストパターン印刷要求があったタイミングの入力と、補正値の出力のみの信号授受で良い。電気的には、濃度検知部120とCPU201との通信インターフェースを設けることで対応することができる。従って、画像形成装置100のコスト増加を抑制することができる。
この発明は、例えば、画像形成装置100の製造プロセスにおける濃度調整工程に適用することができる。また定期的なメンテナンス作業における濃度調整作業に適用することができる。そして、これにより作業の効率化を図ることができる。
なお、本実施の形態では、濃度検知部120が用紙130に印刷された画像の濃度を検知したが、濃度検知部120がOHP用紙、Fax用紙などの媒体に印刷された画像の濃度を検知しても良い。
なお、上述の実施の形態で説明した各機能は、ハードウエアを用いて構成しても良く、また、ソフトウエアを用いて各機能を記載したプログラムをコンピュータに読み込ませて実現しても良い。また、各機能は、適宜ソフトウエア、ハードウエアのいずれかを選択して構成するものであっても良い。
更に、各機能は図示しない記録媒体に格納したプログラムをコンピュータに読み込ませることで実現させることもできる。ここで本実施の形態における記録媒体は、プログラムを記録でき、かつコンピュータが読み取り可能な記録媒体であれば、その記録形式は何れの形態であってもよい。
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
画像形成装置の構成を示す図。 画像形成装置の制御部と、走査露光部の構成を示す図。 レーザ光量の補正に関する回路の構成を示す図。 1走査中の光量補正のタイミングチャート。 1走査中の光量補正のタイミングチャート。 濃度検知部の構成を示す図。 濃度センサの構成と濃度読み取り方法を示す図。 濃度検知部の概略の濃度補正手順を示すフロー図。 濃度テストパターンを示す図。 濃度検出データと目標濃度値の一例を示す図。 濃度−光量変換表の内容を表す図。 光の主走査方向位置における光学素子の透過率を示す図。 感光体ドラム表面上での主走査方向のレーザ光量を示す図。
符号の説明
100…画像形成装置、101…制御部、102…感光体ドラム、104…露光制御部、106…転写チャージャ、120…濃度検知部、130…用紙、208…レーザ制御回路、214…電圧補正部、215…補正値設定部、501…濃度センサ制御部、502…濃度センサ、504…外部インターフェース、506…給紙ローラ。

Claims (17)

  1. レーザ光源から出射されるレーザ光により感光体ドラム上を走査露光してこの感光体ドラム上に画像を形成する画像形成装置において、
    前記感光体ドラム上の画像を媒体に転写する印刷部と、
    前記媒体に転写された出力画像の濃度を走査方向の複数位置について検知して、この検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する濃度検知部と、
    前記レーザ光量を前記補正値に基づいて補正する補正部とを備え、
    前記濃度検知部が、前記画像形成装置の前記媒体を排出する出力部に設けられていることを特徴とする画像形成装置。
  2. 前記濃度検知部は前記画像形成装置に着脱可能になされたことを特徴とする請求項1に記載の画像形成装置。
  3. 前記濃度検知部は、
    前記出力画像の走査方向の複数位置の濃度を検知する濃度センサと、
    前記媒体を搬送する速度を制御する速度制御手段と、
    前記濃度センサが検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する補正値算出手段と
    を備えたことを特徴とする請求項1に記載の画像形成装置。
  4. 前記濃度検知部は、目標濃度値を保存する記憶部を更に備え、
    前記補正値算出部は、前記濃度センサが検知した濃度と前記目標濃度値とから前記レーザ光量の補正値を算出することを特徴とする請求項3に記載の画像形成装置。
  5. 前記濃度検知部は、前記出力画像の濃度の検知を複数回行い、
    前記補正値算出部は、前記複数回検知した濃度値を統計処理した値と目標濃度値とから前記レーザ光量の補正値を算出することを特徴とする請求項3に記載の画像形成装置。
  6. 前記濃度検知部は、前記出力画像の濃度を検知する動作の開始タイミングを判断するタイミング判断部を更に有することを特徴とする請求項3に記載の画像形成装置。
  7. 前記印刷部、前記濃度検知部、前記補正部の動作を前記走査方向の複数位置についての補正値が所定値範囲以内になるまで繰り返して実行させる実行制御部を更に備えたことを特徴とする請求項1に記載の画像形成装置。
  8. レーザ光源から出射されるレーザ光により感光体ドラム上を走査露光してこの感光体ドラム上に画像を形成する画像形成装置の画像形成方法において、
    前記感光体ドラム上の画像を媒体に転写する印刷ステップと、
    前記媒体に転写された出力画像の濃度を走査方向の複数位置について検知して、この検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する濃度検知ステップと、
    前記レーザ光量を前記補正値に基づいて補正する補正ステップとを備え、
    前記濃度検知ステップは、前記画像形成装置から排出される前記媒体の出力画像について実行されることを特徴とする画像形成装置。
  9. 前記濃度検知ステップは、
    前記出力画像の走査方向の複数位置の濃度を検知する濃度センシングステップと、
    前記媒体を搬送する速度を制御する速度制御ステップと、
    前記濃度センシングステップで検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する補正値算出ステップと
    を備えたことを特徴とする請求項8に記載の画像形成方法。
  10. 前記濃度検知ステップは、目標濃度値を保存する記憶ステップを更に備え、
    前記補正値算出ステップは、前記濃度センシングステップで検知した濃度と前記目標濃度値とから前記レーザ光量の補正値を算出することを特徴とする請求項9に記載の画像形成方法。
  11. 前記濃度検知ステップは、前記出力画像の濃度の検知を複数回行い、
    前記補正値算出ステップは、前記複数回検知した濃度値を統計処理した値と目標濃度値とから前記レーザ光量の補正値を算出することを特徴とする請求項9に記載の画像形成方法。
  12. 前記濃度検知ステップは、前記出力画像の濃度を検知する動作の開始タイミングを判断するタイミング判断ステップを更に有することを特徴とする請求項9に記載の画像形成方法。
  13. 前記印刷ステップ、前記濃度検知ステップ、前記補正ステップを前記走査方向の複数位置についての補正値が所定値範囲以内になるまで繰り返して実行させる実行制御ステップを更に備えたことを特徴とする請求項8に記載の画像形成方法。
  14. レーザ光源から出射されるレーザ光により感光体ドラム上を走査露光してこの感光体ドラム上に画像を形成し前記感光体ドラム上の画像を媒体に転写する画像形成装置の前記媒体を排出する出力部に設けられる濃度検出部で実行されるプログラムであって、
    前記媒体に転写された出力画像の走査方向の複数位置の濃度を検知する濃度センシングステップと、
    前記媒体を搬送する速度を制御する速度制御ステップと、
    前記濃度センシングステップで検知した濃度から走査方向の複数位置についてのレーザ光量の補正値を算出する補正値算出ステップと
    を備えたことを特徴とするプログラム。
  15. 前記プログラムは、目標濃度値を保存する記憶ステップを更に備え、
    前記補正値算出ステップでは、前記濃度センシングステップで検知した濃度と前記目標濃度値とから前記レーザ光量の補正値を算出することを特徴とする請求項14に記載のプログラム。
  16. 前記プログラムは、前記出力画像の濃度の検知を複数回実行する複数濃度検知ステップを更に有し、
    前記補正値算出ステップでは、前記複数回検知した濃度値を統計処理した値と目標濃度値とから前記レーザ光量の補正値を算出することを特徴とする請求項14に記載のプログラム。
  17. 前記プログラムは、前記出力画像の濃度を検知する動作の開始タイミングを判断するタイミング判断ステップを更に有することを特徴とする請求項14に記載のプログラム。
JP2006175491A 2006-06-26 2006-06-26 画像形成装置、画像形成方法及びプログラム Pending JP2008003490A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175491A JP2008003490A (ja) 2006-06-26 2006-06-26 画像形成装置、画像形成方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175491A JP2008003490A (ja) 2006-06-26 2006-06-26 画像形成装置、画像形成方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2008003490A true JP2008003490A (ja) 2008-01-10

Family

ID=39007898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175491A Pending JP2008003490A (ja) 2006-06-26 2006-06-26 画像形成装置、画像形成方法及びプログラム

Country Status (1)

Country Link
JP (1) JP2008003490A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174336A (ja) * 2013-03-08 2014-09-22 Fuji Xerox Co Ltd 画像形成装置及びプログラム
JP2019064232A (ja) * 2017-10-04 2019-04-25 京セラドキュメントソリューションズ株式会社 画像形成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031175A (ja) * 1989-05-30 1991-01-07 Canon Inc 画像形成装置
JPH1065886A (ja) * 1996-08-22 1998-03-06 Citizen Watch Co Ltd 文書画像データ読み取り装置
JP2005208364A (ja) * 2004-01-23 2005-08-04 Fuji Xerox Co Ltd 画像形成装置の制御装置、制御方法及び制御プログラム
JP2005205613A (ja) * 2004-01-20 2005-08-04 Fuji Xerox Co Ltd 画像形成装置、画像形成方法及びそのプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031175A (ja) * 1989-05-30 1991-01-07 Canon Inc 画像形成装置
JPH1065886A (ja) * 1996-08-22 1998-03-06 Citizen Watch Co Ltd 文書画像データ読み取り装置
JP2005205613A (ja) * 2004-01-20 2005-08-04 Fuji Xerox Co Ltd 画像形成装置、画像形成方法及びそのプログラム
JP2005208364A (ja) * 2004-01-23 2005-08-04 Fuji Xerox Co Ltd 画像形成装置の制御装置、制御方法及び制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174336A (ja) * 2013-03-08 2014-09-22 Fuji Xerox Co Ltd 画像形成装置及びプログラム
JP2019064232A (ja) * 2017-10-04 2019-04-25 京セラドキュメントソリューションズ株式会社 画像形成装置

Similar Documents

Publication Publication Date Title
US7728862B2 (en) Optical scanning apparatus
JP5779967B2 (ja) 光書き込み装置、画像形成装置及び補正値情報生成方法
US8638481B2 (en) Optical writing control apparatus for controlling a light source emitting a light beam onto a photosensitive member and control method using the same
JP2009217163A (ja) 画像形成装置及び画像形成方法
US20160161881A1 (en) Image forming apparatus
JP5333047B2 (ja) 光書込装置および光書込方法
JP3938144B2 (ja) 画像形成装置、その制御方法、及び制御プログラム
US8730522B2 (en) Image forming apparatus having plural deflection units and to perform positional shift correction
JP5282444B2 (ja) 画像形成装置および画像形成方法
US9442447B2 (en) Image forming apparatus, method thereof, and computer program product
JP2008221847A (ja) 画像形成装置、画像形成方法及びプログラム
JP4950601B2 (ja) トナー補給制御装置および画像形成装置
JPH11231736A (ja) 画像形成装置
US8520042B2 (en) Exposure apparatus, control method thereof, and image forming apparatus
JP4873270B2 (ja) 画像形成装置
JP5332207B2 (ja) 光書込装置および画像形成装置
JP2008003490A (ja) 画像形成装置、画像形成方法及びプログラム
JPH07181605A (ja) 画像形成装置
JP2007223740A (ja) 画像形成装置
US9001175B2 (en) Optical scanning device and method for operating the same and image forming apparatus
JP6123270B2 (ja) 書き込み制御装置、画像形成装置およびプログラム
US9703231B2 (en) Image formation optical scanner, image forming apparatus, and non-transitory computer-readable recording medium storing image forming apparatus optical scanning program
JP2016179553A (ja) 画像形成装置
JP2000267517A (ja) 画像形成装置及び画像安定化動作実施方法
JP4246966B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207