JP2007530085A - 大きなガントリボアを有するコンピュータトモグラフィスキャナ - Google Patents

大きなガントリボアを有するコンピュータトモグラフィスキャナ Download PDF

Info

Publication number
JP2007530085A
JP2007530085A JP2006520031A JP2006520031A JP2007530085A JP 2007530085 A JP2007530085 A JP 2007530085A JP 2006520031 A JP2006520031 A JP 2006520031A JP 2006520031 A JP2006520031 A JP 2006520031A JP 2007530085 A JP2007530085 A JP 2007530085A
Authority
JP
Japan
Prior art keywords
radiation
detector
region
gantry
imaging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006520031A
Other languages
English (en)
Inventor
ドミニク ジェイ ヒューシャー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2007530085A publication Critical patent/JP2007530085A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating

Abstract

コンピュータトモグラフィスキャナは、検査領域(16)を規定する回転ガントリ(20)を有する。第1の放射線源(22)は、回転ガントリ(20)上に配置されており、検査領域(16)に第1の放射線(32)を発する。第2の放射線源(24)は、回転ガントリ(20)上に配置されており、検査領域(16)に第2の放射線(36)を発する。第2の放射線源(24)は、ガントリ周囲に第1の放射線源(22)から角度間隔をおいて配置される。第1の放射線検出器(30,30’)は、第1の放射線(32)を受け取る。第1の放射線検出器(30,30’)の中心は、ガントリ周囲に、第1の放射線源(22)から180°未満の角度間隔をおいて配置される。第2の放射線検出器(34)は、第2の放射線(36)を受け取る。第2の放射線検出器(34)の中心は、ガントリ周囲に、第2の放射線源(24)から180°未満の角度間隔をおいて配置される。

Description

本発明は、画像診断技術に関する。本発明は、特定のアプリケーションを、インターベンショナルコンピュータトモグラフィに、すなわち、インターベンショナルプロシージャの可視化を提供するためのコンピュータトモグラフィイメージングに見い出し、以下、特にこれに関して説明される。しかしながら、本発明は、更に、大きい視野の高速イメージングから利益を得るコンピュータトモグラフィイメージングの他の領域にもアプリケーションを見い出す。
コンピュータトモグラフィイメージングは、インターベンショナルな医学的プロシージャを助けるためにますます使用されている。例えば、内部組織の生検は、組織抽出プロセスの間、ニードル経路を決定し、案内するために、コンピュータトモグラフィイメージングを使用することから利益を得る。コンピュータトモグラフィは、流体ドレナージプロシージャを監視するためにも使用されることができる。複雑な腫瘍放射線治療プロシージャは、コンピュータトモグラフィイメージングによって取得されるイメージング及び放射線吸収プロファイリングデータを使用して、適切に事前にプログラムされる。
インターベンショナルコンピュータトモグラフィスキャナは、好適には、患者及びインターベンショナルプロシージャにおいて使用される装置の両方を収容するための大きなガントリボアを有する。大きなボアは、インターベンショナルプロシージャの間、腹臥位以外の形で配置されうる患者を収容するためにも有用である。患者は、ボアに配置され、インターベンショナルプロシージャの対象である器官又は領域は、ボアの中心部に又はその近傍に配置される。視野のこの中央領域は、インターベンショナルプロシージャの間、主として関心がある領域であり、高い空間及び時間分解能をもってイメージングされることが好ましい。
更に、多くのインターベンショナルプロシージャの場合、主に関心のある中央領域を囲むより大きい視野にわたって、イメージングを提供することが有益である。例えば、生検の間、好適には初めに患者にニードルを挿入するところから始まり、ニードル経路の全体にわたってニードルをイメージングすることが有用である。同様に、放射線治療において、中央領域は、好適には、治療を受けるべき器官を含む。しかしながら、患者を通る放射ビームの全体のパスが、避けられるべきであるビーム妨害又は敏感な重要な構造がないことを確認するために、イメージングされることが好ましい。
対象器官を含む中央領域、更には周囲領域の両方をイメージングすることが有益であるが、周囲領域のイメージングは、重要さが低く、より低い空間及び時間分解能で取得されることができる。今日のスキャナが、一般に、一様なサイズの検出器の円弧を有しているにもかかわらず、空間分解能は、焦点スポットの光学特性ため、走査中心からの距離の関数として低下する。これらの光学的制限にかかわらず、既存のコンピュータトモグラフィスキャナは、視野の全体にわたって一様な空間及び時間分解能を提供することを試みる。
既存のコンピュータトモグラフィスキャナは、概して円形の又は円筒状のイメージングボリュームと対話するX線のファンビーム又はコーンビームを生成する。視野は、ファンビーム又はコーンビームの扇角度によって決定され、イメージングボリュームは、検出器ジオメトリ及び時間分解能に基づいて、選択された空間サイズのボクセルに分割される。結果として、X線ビームが、関心のある器官及び周囲組織の両方と対話するに十分に大きい場合、関心のある器官及び周囲組織の両方は、同じ空間及び時間分解能の画像である。しかしながら、画像品質は、一般に、例えばフォーカス欠陥、増加するX線散乱、再構成関連のアーチファクト等のさまざまな理由のため、イメージングボリュームの外部の部分については低下することが知られている。
このように、既存のスキャナは、イメージングボリュームの外部の領域において不必要に大量のデータを取得し、その上、これらの大量のデータは、外部の領域の対応する高い品質の再構成された画像に変わらない。大きいイメージングボリュームは、大きく高価なX線管、大きい領域を占め且つそれに応じた高価な高分解能のX線検出器アレイ、及び低下した画像再構成性能に変わる高データ取得レートを犠牲にして、これらの既存のスキャナによって得られる。
大きいボア及び大きい視野に加えて、インターベンショナルコンピュータトモグラフィスキャナが更に、高い時間及び空間分解能を有することが好ましい。時間分解能は、ガントリの回転レートによって、部分的に制限される。画像再構成を実施するために概して十分である投影データの180°セグメントは、ガントリの半回転を通じて取得される。200rpmのガントリ回転レートの場合、これは、約150ミリ秒の時間分解能に対応する。
時間及び空間分解能は、回転ガントリ上に、第1の放射線源から角度的にオフセットされる第2の放射線源を加えることによって、改善されることができる。両方の放射線源の投影データを組み合わせることによって、時間分解能は、例示の200rpm回転レートの場合、約75ミリ秒まで改善される。しかしながら、ガントリの空間的な問題は、インターベンショナルコンピュータトモグラフィスキャナ又は他の大きなボアをもつ大きい視野のスキャナのガントリ上に、その電源、冷却回路及び他の関連ハードウェアを伴う第2の放射線源を、組み込むことを試みる際に生じる。放射線検出器のそれぞれの素子が、2つの放射線源のうちの1つから放射線を受け取ることに制限されるとき、X線源間の角度変位は、扇角度を制限する。扇角度を不利に制限することは、視野を制限する。
本発明は、上述の制限、その他を克服する改善された装置及び方法を企図する。
1つの見地により、コンピュータトモグラフィイメージングシステムが開示される。回転ガントリは、検査領域を規定する。第1の放射線源は、回転ガントリに配置され、検査領域に第1の放射線を発するように構成される。第2の放射線源は、回転ガントリに配置され、検査領域に第2の放射線を発するように構成される。第2の放射線源は、ガントリ周囲に、第1の放射線源から角度的に間隔をおいて配置される。第1の放射線検出器は、第1の放射線を受け取るように構成される。第1の放射線検出器の中心は、ガントリ周囲に、第1の放射線源から180°未満の角度間隔をおいて配置される。第2の放射線検出器は、第2の放射線を受け取るように構成される。第2の放射線検出器の中心は、第2の放射線源から180°未満の角度間隔をおいて、ガントリ周囲に配置される。再構成プロセッサは、第1及び第2の放射線検出器によってガントリ回転中に取得される投影データを、1又は複数の画像表現に再構成する。
別の見地により、コンピュータトモグラフィイメージングシステムが開示される。回転ガントリは、検査領域を規定する。検査領域は、回転ガントリの回転中心を含む中央領域及びその中央領域を囲む周囲領域を含む。回転ガントリは、更に、ガントリ回転のガントリ平面及び軸方向を規定する。第1の放射線源は、回転ガントリに配置される。第1の放射線源は、検査領域に向けられる第1の放射線を生成する。第1の放射線検出器アレイは、第1の放射線が検査領域を通過したあと、第1の放射線を受け取るように構成される。第1の検出器アレイは、中央領域を通過する第1の放射線を受け取る第1のサイズの検出器素子を有する高分解能部分と、中央領域でなく周囲領域を通過する第1の放射線を受け取る第2のサイズの検出器素子を有する低分解能部分と、を有する。第2のサイズは、第1のサイズより大きい。再構成プロセッサは、ガントリ回転中に少なくとも第1の放射線検出器アレイによって取得される投影データを、画像表現に再構成する。
更に別の見地により、コンピュータトモグラフィイメージング方法が提供される。第1の放射線は、検査領域を通過される。検査領域は、中央領域及び周囲領域を含む。中心投影は、中央領域と交わる第1の放射線の放射線に対応して測定される。測定は、検出器素子の第1の間隔を有する第1の高分解能検出器アレイを使用する。周囲投影は、中央領域と交わらずに周囲領域と交わる第1の放射線の放射線に対応して測定される。測定は、第1の間隔より大きい検出器素子の第2の間隔を有する第1の低分解能検出器アレイを使用する。中心投影及び周囲投影は、再構成された画像表現を生成するために、再構成される。
更に別の見地により、コンピュータトモグラフィイメージング方法が提供される。第1及び第2の、角度的に回転し、角度的にオフセットされる非対称の放射線ビームが、検査領域を通過される。第1及び第2の角度的に回転し、角度的にオフセットされる非対称の放射線ビームは、角度回転中に第1及び第2の双方の非対称の放射線ビームによって連続的にサンプリングされる中央領域と、角度回転の一部についてサンプリングされない周囲領域と、を規定する。第1及び第2の非対称の放射線ビームは、第1及び第2の放射線投影データを生成するために、前記ビームが検査領域を通過したあと検出される。ボクセルが、第1及び第2の放射線投影データに基づいて再構成される。再構成は、中央領域と周囲領域との間の遷移領域のボクセルの投影データを平滑化することを含む。
1つの利点は、例えばインターベンショナルコンピュータトモグラフィスキャナのような、大きなボア及び大きい視野のコンピュータトモグラフィスキャナについての、改善された時間及び空間分解能にある。
別の利点は、中央領域を囲む検査領域の周囲領域における低減された分解能と結合されて、検査領域の中央領域に高分解能を提供することにある。
別の利点は、主要なイメージング対象を含む中央領域と比較して、より関心の低い周囲領域について取得される投影データの量を低減することによる、より効率的な画像再構成にある。
更に別の利点は、再構成された画像において強調されたコントラストを提供するために、デュアルエネルギー投影データの同時取得を提供することにある。
更に別の利点は、空間及び/又は時間分解能を改善するために、角度方向及び軸方向にオフセットされた放射線源を提供することにある。
多くの付加の利点及び利益は、好適な実施例の以下の詳細な説明を読むことによって、即座に当業者に明らかになるであろう。
本発明は、さまざまな構成要素及び構成要素の組み合わせ、並びにさまざまなプロセス動作及びプロセス動作の組み合わせの形をとりうる。図面は、好適な実施例を説明する目的であって、本発明を制限するものとして解釈されるべきではない。
図1及び図2を参照して、コンピュータトモグラフィイメージングスキャナ10は、検査領域16を規定するボア14を有する静止ガントリ12を備える。インターベンショナルアプリケーションの場合、ボア14は、大きいボアであることが好ましく、好適には、例えば直径約800mmのボアである。しかしながら、ボア14は、これより小さいこともある。(図1及び図2に図示される)回転ガントリ20は、静止ガントリ12に回転可能に取り付けられる。好適には、コリメータ26、28によってファンビーム又はコーンビームにコリメートされるX線管である第1及び第2の放射線源22、24は、ガントリ周囲にαの角度間隔をおいて、回転ガントリ20上に配置される。ここで、αは、好適には90°に等しい。放射線源22、24は、回転ガントリ20と共に回転する。
第1の放射線検出器30は、第1の放射線源22によって発生された第1の放射線32が検査領域16を通過したのち、その第1の放射線32を受け取るように構成される。第1の放射線検出器30は、第1の放射線源22に対して非対称に配置される。すなわち、第1の放射線検出器30の中心は、ガントリ周囲に、第1の放射線源22から180°未満の角度間隔をおいて配置される。第1の放射線検出器30は、例示の実施例において、大きい視野にわたってイメージングを可能にするために、90°より大きいガントリの角度間隔に及ぶ。
同様に、第2の放射線検出器34は、第2の放射線源24によって発生された第2の放射線36が検査領域16を通過したのち、その第2の放射線36を受け取るように構成される。第2の放射線検出器34は、第2の放射線源24に対して非対称に配置される。すなわち、第2の放射線検出器34の中心は、ガントリ周囲に、第2の放射線源24から180°未満の角度間隔をおいて配置される。第2の放射線検出器34は、好適には、例示の実施例において、大きい視野にわたるイメージングを可能にするために、90°より大きいガントリの角度間隔に及ぶ。
図2を特に参照して、非対称のガントリジオメトリが、更に詳細に記述される。回転中心38、すなわちガントリ回転の中心は、図2の十字線によって示されている。第1の放射線源22は、第1の放射線32が実質的に第1の放射線検出器30をスパンするような扇角度で広がるように、広がっているファンビーム又はコーンビーム構造の第1の放射線32を生成するように、コリメータ26によってコリメートされる。第1の放射線検出器30の中心は、第1の放射線源22から180°より小さい角度間隔のところに配置されるので、第1の放射線32の扇形状は、非対称であり、すなわち、回転中心38に関して中心がずれている。同様に、第2の放射線源24は、実質的に第2の放射線検出器34をスパンするような扇角度で広がる、広がっているファンビーム又はコーンビーム構造の第2の放射線36を生成する。第2の放射線検出器34の中心は、第2の放射線源22から180°より小さい角度間隔をおいたところに配置されるので、第2の放射線36の扇形状も非対称であり、すなわち、回転中心38に関して中心がずれている。
好適な実施例において、第1及び第2の放射線32、36の非対称性は、調整可能である。この実施例において、第1の放射線コリメータ26は、第1の放射線32の固定の第1の端部を規定する固定の端部、及び非対称の量を規定する調整可能な端部を有する。コリメータ26の最小設定において、第1の放射線32の対称の端部40(破線として示される)が、選択される。この設定において、第1の放射線32は、概して対称である。同様に、第2の放射線コリメータ28は、固定の端部と、その最小設定において対称の端部42を規定する調整可能な端部と、を有する。他方、コリメータ26の最大設定においては、第1の放射線32の最大の非対称の端部44が、選択される。これは、第1の放射線32の最大の非対称性をもたらす。同様に、コリメータ28の最大設定において、第2の放射線36の最大の非対称の端部46が選択され、これは、第2の放射線36の最大の非対称性をもたらす。
一般に、コリメータ26、28の最小設定は、大きい視野が特に有用でないときに、イメージング対象の放射線露光を低減するために使用される。最小の対称性設定と最大の非対称設定との間の中間的なコリメータ設定は、放射線露光線量と視野との間でトレードオフを行うために用いられることができる。非対称に調整可能なコリメータ26、28は、有利には、対象の放射線露光の制御を可能にするが、調整不可能な非対称の放射ビームを提供する調整不可能なコリメータを用いることも企図される。
第1及び第2の放射線32、36の非対称のファンビーム又はコーンビームは、対称のビーム成分及び非対称のビーム成分の組み合わせと考えられることが適切である。対称の端部40は、第1の放射線32の対称のビーム成分と非対称のビーム成分とを分け、対称の端部42は、第2の放射線36の対称のビーム成分と非対称のビーム成分とを分ける。対称のビーム成分は、回転中心38を通過し、回転中心38を中心とする。コリメータ26、28がそれらの最小設定にある場合、対称のビーム成分のみが、作用する。調整可能なコリメータ26、28が、それらの最小設定を越えて開かれるとき、付加の非対称のビーム部分が導入される。非対称の端部44、46は、最大の非対称ビーム部分に対応する。他に言及される場合を除いて、以下、コリメータ26、28は、第1及び第2の放射線32、36の最大の非対称性及び最大の視野を提供するために、それらの最大の非対称設定にあるものとする。
回転中心38を軸とする回転ガントリ20の回転中、第1及び第2の放射線ファンビーム又はコーンビーム32、36の各々の対称のビーム成分は、検査領域16の中央領域48を連続的に照射する。中央領域48は、回転中心38を含み、回転中心38を中心とする。ガントリ20のいかなる角度位置についても、2つの放射線ファンビーム32、36の各々の対称のビーム成分は、中央領域48に含まれるあらゆるボクセルを照射する。中央領域48に含まれるボクセルは、両方の放射線源22、24によって連続的に照射されるので、およそ90°のガントリ回転は、中央領域48に含まれるボクセルについて180°の角度カバレージを確実にする。投影の180°の角度スパンが、ボクセルを再構成するために十分であるとすると、これは、中央領域48に含まれるボクセルについて、およそ、次式、
Figure 2007530085
の平均の時間分解能を与える。ここで、Tgantryは、ガントリ回転の期間であり、fgantryは、ガントリ回転周波数であり、tres,centralは、中央領域48のボクセルについての時間分解能である。fgantry=200rpmの例示のガントリ回転レートの場合、Tgantry=300ミリ秒及びtres,central=75ミリ秒である。
中央領域48の外側では、ボクセルは、対称のビーム成分によって連続的に照射されない。更に、中央領域48を囲む周囲領域50に含まれるいくつかのボクセルは、対称のビーム成分による照射及び非対称のビーム成分による付加的な照射により、180°より大きいガントリ回転間隔にわたって180°の角度カバレージを受け取る。これは、周囲領域50に含まれるボクセルについての時間分解能を与え、この時間分解能は、中央領域48のボクセルの時間分解能の約半分にすぎない。それゆえ、例示の200rpmのガントリ回転の場合、周囲領域には、ただ約150ミリ秒の時間分解能をもって完全に再構成されるボクセルがある。
好適な実施例において、第1の放射線検出器30は、第1の放射線32の対称のビーム成分を受け取る高分解能検出器部分54と、第1の放射線32の非対称のビーム成分を受け取る低分解能検出器部分56と、を有する。図2に見られるように、第1の放射線32の対称のビーム成分の放射線は、中央領域48を通過する。こうして、高分解能検出器部分54は、第1の放射線32の、中央領域48を通過した部分を受け取る。更に、図2に見られるように、第1の放射線32の非対称のビーム成分の放射線は、周囲領域50を通過するが、中央領域48を通過しない。こうして、低分解能検出器部分56は、中央領域48ではなく周囲領域50を通過した第1の放射線32の部分を受け取る。同様に、第2の放射線検出器34は、中央領域48を通過した第2の放射線36の対称のビーム成分を受け取る高分解能検出器部分60と、中央領域48でなく周囲領域50を通過した第2の放射線36の非対称のビーム成分を受け取る低分解能検出器部分62と、を有する。コリメータ26、28が、非対称のビーム成分を除去するために、それらの最小設定に変えられる場合、低分解能検出器部分56、62は、放射線を受け取らないことが分かるであろう。
一実施例において、検出器部分54,56,60,62はすべて、同じサイズの検出器素子を有する。この実施例において、高分解能検出器部分54、60の検出器素子は、低分解能検出器部分56、62の検出器素子と同じサイズを有する。しかしながら、放射線検出器30、34のこの実施例は、最適ではない。これは、画像品質が、例えばフォーカス欠陥、増加するX線散乱、再構成関連のアーチファクト等のさまざまな理由のため、イメージングボリュームの外部の部分について低下することが知られているからである。低分解能検出器部分56、62によって取得される投影データは、低分解能検出器部分56、62によって取得される投影のより大きい扇角度成分のため、高分解能検出器部分54、60によって取得される投影データと比較して、概して正確さが低い。
従って、好適な実施例において、低分解能検出器部分56、62の検出器素子は、高分解能検出器部分54、60の検出器素子より大きいサイズを有する。このサイズの違いは、低分解能検出器部分56、62及び高分解能検出器部分54、60について異なるアレイ素子サイズを有する、異なる検出器アレイを製造することによって得られることができる。
代替例として、同じアレイ素子サイズを有する1つの検出器アレイ又は複数のアレイが、すべての検出器部分54、56、60、62について使用されることができる。この実施例において、低分解能検出器部分56、62のより大きい検出器素子は、低分解能検出器部分56、62のより大きい検出器素子の各々を規定するために、複数の隣り合うアレイ素子を相互接続することによって得られる。コーンビームジオメトリに関する特に好適な実施例において、それぞれの低分解能検出器素子は、4つのアレイ素子の正方形又は矩形を相互接続することによって構築される。0.75mm×0.75mmアレイ素子の例示のアレイ素子を有するこのような装置構成において、高分解能検出器54、60の検出器素子はそれぞれが、1つのアレイ素子に対応し、従って0.75mm×0.75mmの寸法を有し、その一方で、低分解能検出器部分56、62の検出器素子はそれぞれが、4つの相互接続されたアレイ素子に対応し、従って1.5mm×1.5mmの寸法を有する。線形検出器アレイを使用するファンビームジオメトリにおいて、アレイ素子の隣り合う対は、例えば0.75mm乃至1.5mmの分解能になるように相互接続されることができる。一般に、相互接続は、高分解能検出器部分54、60の検出器サイズの整数倍である低分解能検出器部分56、62の検出器サイズをもたらす。
低分解能検出器部分56、62のアレイ素子を相互接続することによって、単一の検出器アレイとして高分解能検出器部分54、60及び低分解能検出器部分56、62を具体化することに加えて、電気接続によって機能的に検出器アレイ30、34に区別される1つの一体の検出器アレイとして、検出器アレイ30、34を組み合わせることも同様に可能である。他方、それぞれ異なる物理的な検出器アレイが、第1及び第2の検出器アレイ30、34について使用される場合、任意には、アレイ30の検出器素子は、アレイ34の検出器素子とは異なるサイズに作られる。しかしながら、画像再構成を容易にするために、一般に、2つの検出器アレイ30、34の高分解能検出器部分54、60について同じサイズの検出器素子を使用し、同様に、2つの検出器アレイ30、34の低分解能検出器部分56、62について同じサイズの検出器素子を使用することが好ましい。
図2を引き続き参照して、第1及び第2の放射線検出器30,34は、好適には、対応する第1及び第2の放射線源22,24にフォーカスされる(焦点を合わせられる)対応する第1及び第2の散乱防止グリッド66,68を更に有する。それぞれの散乱防止グリッド66,68は、対応する放射線源22,24から発する放射線に沿うようにそろえられる、間隔をおいて配置される放射線吸収翼板を有する。図2には、広く間隔をおいて配置されたほんの少数の例示の翼板だけが示されている。既存の散乱防止グリッドは、より接近した間隔で配置される翼板のより高い密度を有する。接近した間隔で配置される翼板は、散乱された放射線を吸収するとともに、まっすぐな放射線が、実質的に減衰されずに翼板の間を通過することを可能にする。放射線検出器30、34は、個々の放射線源22、24よりむしろ回転中心38を中心とする。
図3を参照して、変更された実施例において、回転可能に中心を決められた第1の放射線検出器30は、放射線検出器30の高分解能部分54及び低分解能部分56と同様の高分解能部分54’及び低分解能部分56’を有する、放射線源にフォーカスされる放射線検出器30’と置き換えられている。放射線源にフォーカスされる放射線検出器30’は、第1の放射線源22にフォーカスされる扇方向に沿った湾曲を有する。放射線検出器30’の散乱防止グリッド66’は、同様に、第1の放射線源22にフォーカスされる。任意には、第2の放射線検出器34もまた、放射線源にフォーカスされる放射線検出器と置き換えられることができる。
放射線源にフォーカスされる放射線検出器30’は、放射線検出器30と第1の放射線源22の位置との間の湾曲の不整合を補償するリビニング動作を除去することによって、再構成スピードを有利に向上させる。しかしながら、放射線源にフォーカスされる放射線検出器30’と回転ガントリ20との間の湾曲の不整合は、放射線源にフォーカスされる放射線検出器30’の機械的なマウンティング及びサポートを複雑にすることがある。更に、焦点スポット変調が使用される場合、回転可能に中心を決められる検出器ジオメトリにより得られる改善されたサンプリングは、視野のかなりの部分にわたって、改善された空間分解能を提供する。
図1及び図2を再び参照して、当業者であれば、クロストークの可能性が、第1の放射線源−検出器システム22、30と、第2の放射線源−検出器システム24、34との間にあることが分かるであろう。第1の放射線源22によって生成される第1の放射線32は、散乱されて、第2の放射線検出器34に入り、ノイズに寄与することがある。同様に、第2の放射線源24によって生成される第2の放射線36は、散乱されて第1の放射線検出器30に入り、ノイズに寄与することがある。散乱防止グリッド66、68は、散乱放射線の大部分を吸収することによって、このようなクロストークノイズをかなり低減する。しかしながら、ほとんどの放射線は、少量散乱され、散乱角が大きくなるにつれて、次第に散乱は少なくなる。減衰されない散乱放射線の近傍の検出器素子は、最も多くのクロストークノイズを受け取る傾向がある。任意には、これらの領域の散乱防止グリッド翼板の高さは、クロストークノイズを低減するために高められる。別の選択肢として、放射線源22、24のうちただ1つが任意の所与の時間に放射線を生成していることを確実にするために、放射線源コントローラ70は、放射線源22、24の放射線出力が、第1の放射線源22による放射線生成と第2の放射線源24による放射線生成との間を交互するようにする。X線真空管ソースの場合、放射線源22、24からの放射線生成の変調は、1つの企図される実施例において、X線の実質的な低減又は完全な静電的ピンチオフを達成するために、真空管フィラメントの前のグリッドの静電位を変調することによって達成される。放射線検出器30、34のサンプリングを放射線源22、24のパルス放射線生成と同期させることによって、クロストークは、実質的に低減されることができる。
インターベンショナルコンピュータトモグラフィアプリケーションについての好適な一実施例において、スキャナ10は、すべての半径が回転ガントリ20の回転中心38を参照する以下の例示的な寸法を有する。ボア14の半径Rboreは、約400mmであり、インターベンショナルプロシージャに関連するメージング対象及び装置を収容するための大きい直径800mmの開口を提供する。放射線源22、24は、半径600mmのところに配置され、放射線検出器30、34は、半径650mmのところにあり、それゆえ、放射線源と検出器との間の距離は、約1250mmである。散乱防止グリッド66、68の翼板は、半径方向の内側に約50mm延びている。扇角度、及び放射線源−検出器間の角度間隔は、約200mmの高分解能中央領域48の半径Rcentral及び約300mmの低分解能周囲領域50の半径Rsurroundを規定するように選択される。この好適な実施例において、ガントリは、約200rpmで回転する。これらの寸法は、例示にすぎない。当業者であれば、特定のアプリケーションのために適当な寸法を容易に選択することができる。
図1を再び参照して、例えば寝台のような支持素子72が、検査領域16におけるイメージング対象を支持し、好適には、関心領域は、実質的に中央領域48を中心とする。好適には、支持素子72は、(図1に示すように)軸方向又はz方向に線形に移動可能である。回転可能なガントリ20は、ガントリ回転のガントリ平面を規定する。軸方向又はz方向は、概して、ガントリ回転のガントリ平面を横切り、好適にはガントリ平面に対して垂直である。ファンビームジオメトリにおいて、支持素子72は、任意には、軸方向に間隔をおいた複数のスライスについて投影データを取得するために、軸方向走査の間に段階的に動かされる。コーンビームジオメトリにおいても同様に、段階的に進められる軸方向走査が使用されることができる。代替例として、コーンビームジオメトリにおいて、支持素子72の連続的な線形の軸方向の運動が、イメージング中、ガントリ20の同時の回転と組み合わせられることにより、イメージング対象を中心とした放射線源22、24のヘリカル軌道を達成する。インターベンショナルコンピュータトモグラフィアプリケーションの場合、支持素子72は、一般に、インターベンショナルプロシージャの間静止したままであり、ガントリ回転は、選択されたスライスの画像を取得する軸方向走査を生じさせる。第1の放射線検出器30によって取得されるイメージングデータは、第1の投影データメモリ76に記憶され、第2の放射線検出器34によって取得されるイメージングデータは、第2の投影データメモリ78に記憶される。
図1を引き続き参照し、図4を更に参照して、非固定の遷移フィルタ80、82が、中央領域48及び周囲領域50の半径Rcentralの間の遷移領域T(図4に示す)を平滑化するために、第1及び第2の投影データメモリ76、78に記憶された投影データにそれぞれ適用される。例示の必要な大きさで作られた実施例において、遷移領域Tは、約200mmから始まり、周囲領域50の方へ、半径方向外側に約25mmに延在する。図4は、高分解能中央領域48から低分解能周囲領域50への円滑な遷移を提供するための、半径Rの関数である適切な非固定フィルタ関数Fnsを概略的に示している。代替例として、高分解能領域及び低分解能領域は、別個に再構成されることができ、組み合わせられることができる。
図1を引き続き参照し、図5を更に参照して、2つの検出器からの平滑化されたデータは、平滑化された投影データを1又は複数の画像表現に再構成する再構成プロセッサ86に入力される。ボクセル循環プロセッサ90は、再構成されるべき視野のボクセルを循環する。それぞれのボクセルについて、重み付けプロセッサ92は、ボクセルを通過する投影を、重み付けして組み合わせ、重み付けされた投影データセットを畳込み逆投影プロセッサ94に入力する。図5は、遷移領域Tの内側位置に対応する半径R=200mm、遷移領域T内の中間位置に対応するR=215mm、及び遷移領域Tの外側の位置に対応するR=220mmに位置するボクセルについての例示の重み付け関数を示す。これらの半径値は、例示の必要な大きさに作られたインターベンショナルコンピュータトモグラフィ実施例を参照する。
中央領域48に含まれる、すなわち約200mmの半径の内側のボクセルについて、対称の90°+90°重み付けが、適切に適用され、この重み付けは、第1及び第2の放射線検出器30、34によって取得される角度的に隣接する90°セグメントを重み付けし、組み合わせる。組み合わせられた90°+90°重み付けは、図5の破線によって示されるように、180°をカバーする。完全なカバレージの約200mm半径の外側では、重みは、ボクセル位置に依存して変わる。概して、ボクセル半径は、遷移領域Tを通して増加し、重み付けは、およそ2の係数に達する時間分解能の低減をともなって、より非対称の重み付けに向かってシフトする。こうして、遷移領域T内の中間位置に対応するR=215mmでは、重み付けは、相対的に非対称であり、遷移領域Tの外側位置に対応する半径R=220mmでは、重み付けは、かなり非対称である。R=215mm及びR=220mmに関して図5に示される重み付けは、示された半径における、選択された例示のピクセルに関するものである;一般に、重みは、角度位置及び半径Rに依存する。重みは、更に、軸方向の再構成又はヘリカル再構成が実施されるかどうかに依存する。それぞれのボクセルについて、ネットの角度的な重み付け(すなわち個別の重みの合計)は、R=215mm及びR=220mmの重み付けプロットにおいて破線によって示されるように、180°の角度カバレージを提供する。
図1を参照して、畳込み逆投影プロセッサ94は、例えば平行リビニングされ、フィルタリングされる逆投影のような、適切な逆投影方法を実現する。選択された逆投影は、好適には、例えば中央領域48及び周囲領域50を囲む視野のような相対的に大きいボリュームを再構成するのに適している。この視野は、例示の必要な大きさに作られた実施例において、約300mmの半径を有する。平行リビニングされ、フィルタリングされる逆投影を実現する逆投影プロセッサ94が示されているが、当業者は、特定のコンピュータトモグラフィジオメトリ、利用可能な処理ハードウェア及びソフトウェア等にふさわしい再構成プロセッサの他のタイプを代用することができる。
再構成された1又は複数の画像表現は、画像メモリ98に記憶される。画像表現は、画像スライス、3次元レンダリング又は他の人間可視の表現を生成するために、ビデオプロセッサ100によって処理され、それは、ユーザインタフェース102のディスプレイに表示される。ビデオディスプレイではなく、画像メモリ98のコンテントは、印刷され、ローカルコンピュータネットワーク又はインターネットを通じて伝送され、電子的に記憶され、又は他の方法で処理されることができる。好適な実施例において、ユーザインタフェース102は、更に、放射線医又は他のシステム操作者が、コンピュータトモグラフィスキャナ10によって実施されるイメージングプロセスを組み立て、開始し、制御するために、コンピュータトモグラフィ走査コントローラ104とインタフェースすることを可能にする。
上述の再構成プロセスにおいて、第1及び第2の放射線源22、24は、同じエネルギーの概して単色である第1及び第2の放射線32、36を発生させる。この場合、2つの放射線検出器30、34によって取得される投影データは、2つの放射線源22、24の使用により改善された空間及び時間分解能を有する画像を生成するために、適切に重み付けされ、組み合わせられる。しかしながら、企図される別の実施例において、放射線源は、異なるエネルギーの放射線を発生する。このデュアルエネルギーの実施例において、2つの放射線源の各々に対応する投影データは、2つの異なるエネルギーで画像を発生するために別個に再構成される。この場合、時間分解能の改善はないが、画像の2セットが、およそTgantry/4の時間間隔内でほぼ取得される。これは、放射線エネルギーの差により、画像の2セットについて異なる組織コントラストを与える。別個の組織コントラストを有する画像は、別個に表示されることができ、又は、それらは、選択された組織コントラストにターゲットを合わせるように、重ね合わせられ、減じられ、又は他の方法で組み合わせられる。代替例として、投影データは、デュアルエネルギーアルゴリズムを使用して組み合わせられることができる。デュアルエネルギーアルゴリズムは、選択された組織コントラストにターゲットを合わせるように、知られているスペクトラムに基づいて、投影データを最適に組み合わせ、組み合わせられた投影データセットは、選択された組織コントラストを有する再構成された画像を生成するように再構成される。
1つの適切な実施例において、第1及び第2の放射線源22、24は、同一平面上にあり、すなわち、ガントリの中心平面又はそれに平行な平面内にある。この装置構成において、第1及び第2の放射線源22、24は、同じ軸のスライスについて投影データを取得する。企図される別の実施例において、第1及び第2の放射線源22、24は、放射線検出器30、34の検出器素子の軸方向の間隔の半分だけ、軸方向に相対的にオフセットされる。この装置構成は、第1及び第2の放射線検出器30、34によって取得される投影を軸方向においてインタリーブし、これは、軸方向のエイリアシングを低減する。
軸方向にオフセットされる更に別の実施例において、第1の放射線源−検出器の対22、30及び第2の放射線源−検出器の対24、34は、走査中心において測定されるコーンビームの軸寸法より小さい寸法だけ、軸方向に隔てられている。この実施例は、円軌道で走査する場合の、増加する軸方向カバレージに対する、改善される時間分解能のトレードオフをもたらす。放射線源22、24の角度的な隔たりのため、ボリュームの2つ半分は、約Tgantry/4の時間シフトによって取得される。取得された投影の2セットは、好適には、2つのコーンビームの間のオーバラップの量に対応する重み付けされた遷移領域と組み合わせられ、1の円軌道のカバレージの約2倍をもつボリュームを生成するように、再構成される。取得されたボリューム内のボクセルについての時間分解能は、Tgantry/2以下からTgantry以上まで(例えば、前の例示の構造の場合、150ミリ秒以下から300ミリ秒以上まで)に及ぶ。
軸方向にオフセットされる更に別の実施例において、コーンビームヘリカルコンピュータトモグラフィイメージング(支持素子72が、ガントリ20の回転と同時に線形に移動する)は、両方の放射線源22、24が、共通ヘリカル軌道又はインタリーブされたヘリカル軌道に沿って回転するような量だけ、相対的に軸方向にオフセットされる第1の放射線源−検出器の対22、30及び第2の放射線源−検出器の対24、34によって実施される。この装置構成は、2つの軸方向に間隔をおいた位置でヘリカルデータを同時に取得することによって、改善された時間分解能を提供する。2つの放射線源−検出器の対の相対的な軸方向間隔が選択可能に調整されることを可能にする軸方向に調整可能な実装を用いて、放射線源−検出器の対の一方又は両方を実装することが企図される。例えば、これは、放射線源が、ヘリカル軌道のヘリカルピッチの適切な一部又は全部に対応するように、選択可能に間隔をおいて配置されることを可能にする。
図6を参照して、単一の放射線源の実施例が記述される。静止ガントリ112は、検査領域116を規定するボア114を有する。インターベンショナルアプリケーションの場合、ボア114は、好適には大きなボアであり、例えば直径800mmのボアである。回転ガントリ120(図6に概略的に示される)は、静止ガントリ114に回転可能に取り付けられる。ファンビーム又はコーンビームを協働して発生する1の放射線源122及び関連するコリメータ126は、回転ガントリ120に配置される。放射線源122は、好適にはX線管である。放射線検出器130は、放射線源122によって生成された放射線132を、放射線132が検査領域116を通過したのち受け取るように構成される。放射線検出器130は、放射線源122に関して対称に配置される。すなわち、放射線検出器130の中心は、ガントリ周囲に、放射線源122から180°の角度間隔をおいて配置される。
回転中心138、すなわちガントリ回転の中心は、図6の十字線によって示されている。放射線源122は、コリメータ126と協働して、放射線132が実質的に放射線検出器130をスパンするような扇角度で広がるように、ファンビーム又はコーンビーム構造の放射線132を発生する。図6の対称的な構造において、放射線132の扇形状は、回転中心138を中心に対称的に構成される。扇角度は、大きい視野のイメージングを提供するために大きいことが好ましい。検査領域116の中央領域148のイメージングは、周囲領域150のイメージングより高い品質である。これは、外部の周囲領域150のイメージングが、一般に、フォーカス欠陥、増加するX線散乱、再構成関連のアーチファクト等により、劣化されるからである。
放射線検出器130は、2つの低分解能外側部分154、156の間に配置される高分解能中央部分152を有する。外側部分154、156は、放射線検出器130が対称であるように等しい領域又は角度スパンである。外側部分154及び中央部分152によって取得される投影データを分ける仮想境界線又は面160が規定される。同様に、外側部分156及び中央部分152によって取得される投影データを分ける仮想境界線又は面162が、規定される。低分解能外側部分154、156は、放射線検出器130の中央部分152の検出器素子より大きいサイズの検出器素子を有する。検出器130は、例えば、より大きい外側の検出器素子を形成するように外側部分154、156のアレイ素子を相互接続することによって、図2の検出器30、34と同様に適切に構成される。好適には、放射線吸収翼板を有する散乱防止グリッド166が、散乱放射線によるノイズを低減するために、放射線検出器130にわたって配置される。任意には、散乱防止グリッド166は、中央及び外側の検出器部分154、156において、それぞれ異なる翼板間隔、翼板高さ、又はこれらの両方を有する。
インターベンショナルコンピュータトモグラフィアプリケーションについての好適な実施例において、図6の対称ガントリは、以下の例示の寸法を有し、すべての半径は、回転ガントリ120の回転中心138を参照する。ボア114の半径は約400mmであり、これは、インターベンショナルプロシージャに関連するイメージング対象及び装置を収容するために大きい直径800mmの開口を提供する。放射線源122は、半径600mmのところに配置され、放射線検出器130は、半径650mmのところに配置され、それゆえ、放射線源−検出器間の距離は、約1250mmである。散乱防止グリッド166の翼板は、半径方向内側に約50mm延びている。放射線132の扇角度、及び放射線検出器130の中央の高分解能部分152に対する外側の低分解能検出器部分154、156の角度比率は、約200mmの高分解能中央領域148の半径及び約300mmの低分解能周囲領域150の半径を規定するように、選択される。この好適な実施例において、ガントリは、約200rpmで回転する。これらの寸法は、例示にすぎない。当業者であれば、特定のアプリケーションのために適当な寸法を容易に選択することができる。
図6の対称の実施例において、中央領域148又は周囲領域150のいずれかに含まれるすべてのボクセルは、ガントリ120の回転中、すべてのガントリ角度について放射線源122によって連続的に照射される。投影の180°の角度スパンが、ボクセルを再構成するのに十分であるとすると、これは、中央領域148又は周囲領域150のいずれかに含まれるボクセルについて、およそ、次式、
Figure 2007530085
の平均の時間分解能を与える。ここで、Tgantryは、ガントリ回転の期間であり、fgantryは、ガントリ回転周波数であり、tres,symmは、ボクセルについての時間分解能である。fgantry=200rpmの例示のガントリ回転レートの場合、Tgantry=300ミリ秒、及びtres,central=150ミリ秒である。
空間分解能は、検出器アレイの分解能によって部分的に決定される。例示の実施例において、放射線検出器130の中央部分152は、0.75mmの素子を有し、外側部分154、156では、隣り合う検出器が、扇方向に1.5mmの分解能を与えるように相互接続される。図4の非固定遷移フィルタFnsは、0.75mmの分解能領域と1.5mmの分解能領域との間の遷移領域を平滑化するために適切に用いられる。しかしながら、1つの放射線源122のみがイメージングのために使用されるので、図5の重み付けウィンドウは、180°+180°重み付けが、中央領域148及び周囲領域150の両方のすべてのボクセルに適用される点において、変更される。
高分解能中央部分152及び外側低分解能部分154,156を有する放射線検出器130を使用することは、インターベンショナルプロシージャを実施するために、関心の低い周囲領域150のボクセルについてデータ量を低減することによって、再構成スピードを有利に高める。任意には、コリメータ126は、放射線検出器130と実質的に同一の広がりを有し、大きい視野を提供する図示されるワイドビームと、より狭い視野の代わりに放射線露光を減らすように大きい扇角度におけるデータを除去するナロービーム(例えば、境界線160、162に制限される)と、の間で対称的に調整可能である。
本発明は、好適な実施例を参照して記述された。明らかに、当業者には、前述の詳細な説明を読み、理解することにより、変形例及び変更例が即座に思い付くであろう。すべてのこのような変形例及び変更例が添付の特許請求の範囲又はその等価なものの範囲内に入る限りにおいて、本発明は、すべてのこのような変形例及び変更例を含むものとして解釈されることが意図される。
2つの角度間隔をおいて配置された放射線源を有するインターベンショナルコンピュータトモグラフィイメージングシステムを図式的に示す図。 扇状の放射線が2つの放射線源によって生成され、中央及び周囲イメージング領域が示されている、図1のコンピュータトモグラフィスキャナのガントリを図式的に示す図。 放射線検出器の1つが、放射線源から一定の半径のところに検出器素子を有する、図1のコンピュータトモグラフィスキャナの別のガントリ実施例を概略的に示す図。 放射線検出器の高分解能部分及び低分解能部分を使用して取得される投影データの間の遷移を平滑化するための適切な非固定フィルタを示す図。 遷移領域のボクセルを再構成する際に使用される例示の角度に関する重み付け関数を示す図。 高分解能の中央検出器部分及び低分解能の外側検出器部分を有する対称の放射線検出器と関連して動作する1つの放射線源をサポートするガントリを図式的に示す図。

Claims (31)

  1. 検査領域を規定する回転ガントリと、
    前記回転ガントリに配置され、前記検査領域に第1の放射線を発するように構成される第1の放射線源と、
    前記回転ガントリに配置され、前記検査領域に第2の放射線を発するように構成される第2の放射線源であって、前記ガントリ周囲に、前記第1の放射線源から角度間隔をおいて配置される第2の放射線源と、
    前記第1の放射線を受け取るように構成される第1の放射線検出器であって、該第1の放射線検出器の中心が、前記ガントリ周囲に、前記第1の放射線源から180°未満の角度間隔をおいて配置される、第1の放射線検出器と、
    第2の放射線を受け取るように構成される第2の放射線検出器であって、該第2の放射線検出器の中心が、前記ガントリ周囲に、前記第2の放射線源から180°未満の角度間隔をおいて配置される、第2の放射線検出器と、
    前記ガントリの回転中、前記第1及び前記第2の放射線検出器によって取得される投影データを、1又は複数の画像表現に再構成する再構成プロセッサと、
    を有する、コンピュータトモグラフィイメージングシステム。
  2. 前記第1の放射線検出器が、
    第1のサイズの検出器素子を有する高分解能部分と、
    前記第1のサイズより大きい第2のサイズの検出器素子を有する低分解能部分と、
    を有する、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  3. 前記第2の放射線検出器が、
    前記第1のサイズの検出器素子を有する高分解能部分と、
    前記第2のサイズの検出器素子を有する低分解能部分と、
    を有し、前記第1及び前記第2の放射線検出器の高分解能部分が、前記回転ガントリ上の前記第1及び前記第2の放射線検出器の前記低分解能部分の間に角度をもって配置される、請求項2に記載のコンピュータトモグラフィイメージングシステム。
  4. 前記第1及び前記第2の放射線検出器アレイの前記低分解能部分によって取得される投影データと、前記第1及び前記第2の放射線検出器アレイの前記高分解能部分によって取得される投影データと、の間の遷移を平滑化する非固定フィルタを更に有する、請求項3に記載のコンピュータトモグラフィイメージングシステム。
  5. 前記第1の放射線検出器の前記第1の放射線源から180°未満の角度間隔は、前記第1の放射線の対称及び非対称のビーム成分を規定し、前記対称のビーム成分は、前記回転ガントリの回転中心を中心とし、
    前記第1の放射線検出器の前記高分解能部分は、前記対称のビーム成分を受け取るように構成され、
    前記第1の放射線検出器の前記低分解能部分は、前記非対称のビーム成分を受け取るように構成される、
    請求項2に記載のコンピュータトモグラフィイメージングシステム。
  6. 前記第1及び前記第2の放射線検出器の各々は、前記ガントリ周囲の90°より大きい角度に及ぶ、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  7. 前記第2の放射線源は、前記第1の放射線源から90°の角度間隔をおいて配置される、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  8. 前記第2の放射線源は、前記第1の放射線源から少なくとも90°の角度間隔をおいて配置され、前記第1及び前記第2の放射線検出器の各々は、前記ガントリ周囲の90°より大きい角度に及ぶ、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  9. 前記第1及び前記第2の放射線源が、ガントリ回転の平面に平行な面内にある、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  10. 前記第1及び前記第2の放射線源は、前記第1及び前記第2の放射線検出器の検出器素子の軸方向間隔の半分だけ、相対的に軸方向にオフセットされている、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  11. 前記第1及び第2の放射線源は、走査中心におけるコーンビームの軸方向寸法より小さい寸法だけ、相対的に軸方向にオフセットされている、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  12. 前記第1及び前記第2の放射線源は、コーンビーム放射線源であり、前記第1及び前記第2の放射線検出器は、2次元アレイであり、
    前記コンピュータトモグラフィイメージングシステムは、更に、前記検査領域における関連するイメージング対象を支持する支持素子を有し、前記支持素子は、軸方向に線形に移動可能であり、同時に生じる前記ガントリの回転及び前記支持素子の軸方向運動は、前記投影データの取得中、前記関連するイメージング対象に対する前記第1及び前記第2の放射線源のヘリカル軌道をもたらす、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  13. 前記第1及び前記第2の放射線源は、前記第2の放射線源が、前記ヘリカル軌道に沿って前記第1の放射線源に追従するような量だけ、前記軸方向に相対的にオフセットされている、請求項12に記載のコンピュータトモグラフィイメージングシステム。
  14. 前記第1の放射線検出器は、前記第1の放射線源にフォーカスされる第1の散乱防止グリッドを有し、
    前記第2の放射線検出器は、前記第2の放射線源にフォーカスされる第2の散乱防止グリッドを有する、
    請求項1に記載のコンピュータトモグラフィイメージングシステム。
  15. 前記第1の放射線の第1の放射エネルギーは、前記第2の放射線の第2の放射エネルギーと異なり、
    前記再構成プロセッサは、前記第1及び前記第2の放射線検出器アレイによって取得された投影データを、前記第1及び前記第2の放射線検出器アレイによって取得された投影データからの寄与を有する1又は複数の組み合わせられた画像表現に再構成する、
    請求項1に記載のコンピュータトモグラフィイメージングシステム。
  16. 前記第1及び前記第2の放射線源が同時に放射線を生成していないように、前記第1の放射線源による放射線の生成と前記第2の放射線源による放射線の生成とを交互させる放射線源制御部を更に有する、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  17. 前記再構成プロセッサは、
    逆投影器と、
    逆投影の前に重み付け関数を投影データに適用する重み付けプロセッサと、
    を有し、前記重み付けプロセッサは、前記検査領域の中央領域のボクセルを再構成するために、第1の重み付け関数を投影データに適用し、前記重み付けプロセッサは、前記中央領域の外側のボクセルを再構成するために、第2の重み付け関数を適用し、前記第2の重み付け関数は、回転中心からの前記ボクセルの距離に依存する、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  18. 前記第1の放射線の端部を調整するための第1の非対称に調整可能なコリメータと、
    前記第2の放射線の端部を調整するための第2の非対称に調整可能なコリメータと、
    を更に有する、請求項1に記載のコンピュータトモグラフィイメージングシステム。
  19. 検査領域を規定する回転ガントリであって、前記検査領域が、該回転ガントリの回転中心を含む中央領域と、前記中央領域を囲む周囲領域と、を有し、該回転ガントリが更に、ガントリ回転のガントリ平面及び軸方向を規定する、回転ガントリと、
    前記回転ガントリに配置され、前記検査領域に向けられる第1の放射線を発生する第1の放射線源と、
    前記第1の放射線が前記検査領域を通過したのち、前記第1の放射線を受け取るように構成される第1の放射線検出器アレイであって、前記中央領域を通過する第1の放射線を受け取る第1のサイズの検出器素子を有する高分解能部分と、前記中央領域でなく前記周囲領域を通過する第1の放射線を受け取る前記第1のサイズより大きい第2のサイズの検出器素子を有する低分解能部分と、を有する、第1の放射線検出器アレイと、
    少なくとも前記第1の放射線検出器アレイによって、ガントリ回転中に取得される投影データを画像表現に再構成する再構成プロセッサと、
    を有するコンピュータトモグラフィイメージングシステム。
  20. 前記回転ガントリに配置され、前記第1の放射線源に対して角度的にオフセットされて前記回転ガントリに位置付けられ、前記検査領域に向けられる第2の放射線を発生する第2の放射線源と、
    前記第2の放射線が前記検査領域を通過したのち、前記第2の放射線を受け取るように構成される第2の放射線検出器アレイであって、前記中央領域を通過する第2の放射線を受け取る第3のサイズの検出器素子を有する高分解能部分と、前記中央領域でなく前記周囲領域を通過する第2の放射線を受け取る前記第3のサイズより大きい第4のサイズの検出器素子を有する低分解能部分と、を有する、第2の放射線検出器アレイと、
    を有し、前記再構成プロセッサは、前記第1及び前記第2の放射線検出器アレイの両方によってガントリ回転中に取得される投影データを、1又は複数の画像表現に再構成する、請求項19に記載のコンピュータトモグラフィイメージングシステム。
  21. 前記第1及び前記第2の放射線検出器アレイが、協働して単一の放射線検出器アレイを規定し、
    前記単一の放射線検出器アレイが、前記第1及び前記第2の放射線検出器アレイの前記高分解能部分によって規定される中央の高分解能部分と、前記第1の放射線検出器アレイの前記低分解能部分によって規定される第1の外側の低分解能部分と、前記第2の放射線検出器アレイの前記低分解能部分によって規定される第2の外側低分解能部分と、を有し、
    前記中央の高分解能部分が、前記第1及び前記第2の外側の低分解能部分の間に配置される、請求項20に記載のコンピュータトモグラフィイメージングシステム。
  22. 前記第1及び前記第2の放射線検出器アレイの前記高分解能部分が、前記第1及び前記第2の放射線検出器アレイの前記低分解能部分の間の前記回転ガントリに配置される、請求項20に記載のコンピュータトモグラフィイメージングシステム。
  23. 前記再構成プロセッサは、
    逆投影器と、
    逆投影の前に投影データに重み付けする重み付けプロセッサと、
    を有し、前記重み付けプロセッサは、
    前記検査領域の前記中央領域のボクセルを逆投影するための90°重み付けウィンドウと、
    前記検査領域の前記周囲領域のボクセルを逆投影するための180°重み付けウィンドウと、
    前記中央領域と前記周囲領域との間の中間の遷移領域のボクセルを逆投影するための非対称の重み付けウィンドウと、
    を適用する、請求項20に記載のコンピュータトモグラフィイメージングシステム。
  24. 前記低分解能部分は、等しいサイズの2つの低分解能サブ部分を有し、
    前記高分解能部分は、前記第1の放射線検出器アレイが対称の検出器アレイであるように前記2つの低分解能サブ部分の間に配置される、請求項19に記載のコンピュータトモグラフィイメージングシステム。
  25. 前記低分解能部分の各検出器素子が、電気的に相互接続される前記第1のサイズの複数の検出器素子を有する、請求項19に記載のコンピュータトモグラフィイメージングシステム。
  26. 第1の放射線を、中央領域及び周囲領域を含む検査領域に通過させるステップと、
    検出器素子の第1の間隔を有する第1の高分解能検出器アレイを使用して、前記中央領域と交わる前記第1の放射線の放射線に対応する中心投影を測定するステップと、
    検出器素子の前記第1の間隔より大きい第2の間隔を有する第1の低分解能検出器アレイを使用して、前記中央領域と交わらずに前記周囲領域と交わる前記第1の放射線の放射線に対応する周囲投影を測定するステップと、
    再構成された画像表現を生成するために前記中心投影及び前記周囲投影を再構成するステップと、
    を含む、コンピュータトモグラフィイメージング方法。
  27. 第2の放射線を前記検査領域に通過させるステップと、
    検出器素子の前記第1の間隔を有する第2の高分解能検出器アレイを使用して、前記中央領域と交わる前記第2の放射線の放射線に対応する中心投影を測定するステップと、
    検出器素子の前記第2の間隔を有する第2の低分解能検出器アレイを使用して、前記中央領域と交わらずに前記周囲領域と交わる前記第2の放射線の放射線に対応する周囲投影を測定するステップと、
    を含む請求項26に記載の方法。
  28. 前記第1の放射線は、第1のエネルギーで実質的に単色であり、前記第2の放射線は、前記第1のエネルギーと異なる第2のエネルギーで実質的に単色であり、前記再構成するステップは、
    第1の再構成された画像表現を生成するために、前記第1の高分解能検出器アレイを使用して測定される前記中央領域と、前記第1の低分解能検出器アレイを使用して測定される周囲投影と、を再構成し、
    第2の再構成された画像表現を生成するために、前記第2の高分解能検出器アレイを使用して測定される中心投影と、前記第2の低分解能検出器アレイを使用して測定される周囲投影と、を再構成することを含む、
    請求項27に記載の方法。
  29. 前記第1の放射線を通過させる前記ステップと、前記第2の放射線を通過させる前記ステップとは、時間的に重ならない、請求項27に記載の方法。
  30. 前記再構成するステップは、
    前記中央領域のボクセルを再構成する間、中心投影の連続する90°の角度セグメントを組み合わせ、
    遷移半径の外側の前記周囲領域のボクセルを再構成する間、中心投影及び周囲投影の連続する180°の角度セグメントを組み合わせることを含む、請求項27に記載の方法。
  31. 第1及び第2の、角度的に回転し、角度的にオフセットされる非対称の放射ビームを、検査領域に通過させるステップであって、前記第1及び前記第2の非対称の放射ビームが、角度回転中に、前記第1及び第2の非対称の放射ビームの双方によって連続的にサンプリングされる中央領域と、角度回転の一部についてサンプリングされない周囲領域と、を規定する、ステップと、
    第1及び第2の放射線投影データを生成するために、前記第1及び前記第2の非対称の放射ビームが前記検査領域を通過したのち、前記第1及び前記第2の非対称の放射ビームを検出するステップと、
    前記第1及び前記第2の放射線投影データに基づいて、ボクセルを再構成するステップであって、前記中央領域と前記周囲領域との間の遷移領域のボクセルの投影データを平滑化することを含む、ステップと、
    を含む、コンピュータトモグラフィイメージング方法。
JP2006520031A 2003-07-15 2004-07-12 大きなガントリボアを有するコンピュータトモグラフィスキャナ Pending JP2007530085A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48738903P 2003-07-15 2003-07-15
PCT/IB2004/002271 WO2005004722A2 (en) 2003-07-15 2004-07-12 Computed tomography scanner with large gantry bore

Publications (1)

Publication Number Publication Date
JP2007530085A true JP2007530085A (ja) 2007-11-01

Family

ID=34062153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006520031A Pending JP2007530085A (ja) 2003-07-15 2004-07-12 大きなガントリボアを有するコンピュータトモグラフィスキャナ

Country Status (6)

Country Link
US (1) US7324623B2 (ja)
EP (1) EP1646316B1 (ja)
JP (1) JP2007530085A (ja)
AT (1) ATE451874T1 (ja)
DE (1) DE602004024682D1 (ja)
WO (1) WO2005004722A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297314A (ja) * 2008-06-16 2009-12-24 Ge Medical Systems Global Technology Co Llc X線断層撮影装置
JP2013099639A (ja) * 2013-02-28 2013-05-23 Ge Medical Systems Global Technology Co Llc X線断層撮影装置
JP2013543784A (ja) * 2010-11-25 2013-12-09 コーニンクレッカ フィリップス エヌ ヴェ 順投影装置
JP2018517138A (ja) * 2015-12-18 2018-06-28 チンファ ユニバーシティTsinghua University マルチモーダル検出システムおよび方法

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034502A1 (de) * 2004-07-16 2006-02-09 Siemens Ag Verfahren zur Rekonstruktion von Schnittbildern aus Detektormessdaten eines Tomographiegerätes
DE102004042491B4 (de) * 2004-08-31 2009-07-09 Siemens Ag Verfahren zur Erzeugung von tomographischen Schnittbildern von einem Untersuchungsobjekt mit mindestens zwei winkelversetzten Strahlenbündeln und Computertomographie-Gerät zur Durchführung dieses Verfahrens
US9875508B1 (en) 2004-11-19 2018-01-23 Allstate Insurance Company Systems and methods for customizing insurance
CN2747301Y (zh) * 2004-11-26 2005-12-21 清华大学 翼缘弯折的工形截面构件
DE102004062857A1 (de) * 2004-12-27 2006-07-13 Siemens Ag Verfahren zur Ermittlung wenigstens eines Skalierungsfaktors für Messwerte eines Computertomographiegerätes
US7231014B2 (en) * 2005-02-14 2007-06-12 Varian Medical Systems Technologies, Inc. Multiple mode flat panel X-ray imaging system
DE602006013733D1 (de) 2005-03-07 2010-06-02 Toshiba Kk Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts
JP2006280919A (ja) * 2005-03-07 2006-10-19 Toshiba Corp X線ct装置
DE102005014853A1 (de) * 2005-03-30 2006-10-12 Siemens Ag Tomographiegerät zur schnellen Volumenabtastung eines Untersuchungsbereichs und Verfahren zur schnellen Volumenabtastung des Untersuchungsbereichs mit einem solchen Tomographiegerät
WO2006119426A2 (en) * 2005-05-03 2006-11-09 Regents Of The University Of California Biopsy systems for breast computed tomography
DE602006018934D1 (de) * 2005-07-08 2011-01-27 Wisconsin Alumni Res Found Rückprojektions-rekonstruktionsverfahren für ct-bildgebung
DE102006002895B3 (de) * 2006-01-20 2007-07-19 Siemens Ag Verfahren zur Erzeugung von Kardio-CT-Darstellungen unter Applikation eines Kontrastmittels und Mehr-Röhren-CT-System zur Durchführung dieses Verfahrens
DE102006007058A1 (de) * 2006-02-15 2007-07-12 Siemens Ag CT-System mit mindestens zwei Fokus/Detektor-Systemen
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US8009793B2 (en) * 2006-02-24 2011-08-30 Mayo Foundation For Medical Education And Research Method for imaging plaque using dual energy CT
JP5214916B2 (ja) * 2006-07-19 2013-06-19 株式会社東芝 X線ct装置及びそのデータ処理方法
US7835486B2 (en) * 2006-08-30 2010-11-16 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7616731B2 (en) * 2006-08-30 2009-11-10 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7706499B2 (en) * 2006-08-30 2010-04-27 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US20080056432A1 (en) * 2006-08-30 2008-03-06 General Electric Company Reconstruction of CT projection data
US8180017B2 (en) * 2007-12-20 2012-05-15 Koninklijke Philips Electronics N.V. Stereo tube attenuation filter
US8633445B2 (en) * 2008-05-19 2014-01-21 Varian Medical Systems, Inc. Multi-energy X-ray imaging
WO2009155418A2 (en) * 2008-06-18 2009-12-23 Wright State University Computed tomography scanners, x-ray filters and methods thereof
US8139709B2 (en) * 2008-09-15 2012-03-20 University Of Utah Research Foundation Staggered circular scans for CT imaging
DE102008049049A1 (de) 2008-09-26 2010-04-08 Siemens Aktiengesellschaft Röntgen-CT-System zur tomographischen Darstellung eines Untersuchungsobjektes
US8053745B2 (en) * 2009-02-24 2011-11-08 Moore John F Device and method for administering particle beam therapy
US20100246753A1 (en) * 2009-03-25 2010-09-30 Varian Medical Systems, Inc. Fourth Generation Computed Tomography Scanner
JP5815218B2 (ja) 2010-08-30 2015-11-17 株式会社東芝 放射線治療装置、制御方法及び制御プログラム
DE102010041774B4 (de) * 2010-09-30 2020-10-08 Siemens Healthcare Gmbh Verfahren zur Abtastung eines Herzens mit einem Dual-Source-CT-Gerät und Ausgestaltung eines Dual-Source-CT-Gerätes
CN102456228B (zh) * 2010-10-29 2015-11-25 Ge医疗系统环球技术有限公司 图像重建方法和装置及ct机
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
US9411057B2 (en) * 2011-04-01 2016-08-09 Medtronic Navigation, Inc. X-ray imaging system and method
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US10874466B2 (en) 2012-06-21 2020-12-29 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
WO2013192598A1 (en) 2012-06-21 2013-12-27 Excelsius Surgical, L.L.C. Surgical robot platform
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US10842461B2 (en) 2012-06-21 2020-11-24 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
US10646280B2 (en) 2012-06-21 2020-05-12 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11963755B2 (en) 2012-06-21 2024-04-23 Globus Medical Inc. Apparatus for recording probe movement
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
US9526461B2 (en) 2012-06-26 2016-12-27 Mobius Imaging, Llc Multi-plane x-ray imaging system and method
DE102012217888A1 (de) * 2012-10-01 2014-04-03 Siemens Aktiengesellschaft Tomographische Bildgebung mit asymmetrischer Detektion
JP2014226376A (ja) * 2013-05-23 2014-12-08 株式会社東芝 X線ct装置
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
EP3104803B1 (en) 2014-02-11 2021-09-15 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
KR101579111B1 (ko) * 2014-02-24 2015-12-21 삼성전자주식회사 영상 진단 방법, 장치 및 기록매체
WO2015162256A1 (en) 2014-04-24 2015-10-29 KB Medical SA Surgical instrument holder for use with a robotic surgical system
CN106999248B (zh) 2014-06-19 2021-04-06 Kb医疗公司 用于执行微创外科手术的系统及方法
EP3169252A1 (en) 2014-07-14 2017-05-24 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US10765438B2 (en) 2014-07-14 2020-09-08 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
JP7065611B6 (ja) * 2014-11-20 2022-06-06 コーニンクレッカ フィリップス エヌ ヴェ フォトンカウンティング検出器のためのx線フラックスレデューサ
EP3226781B1 (en) 2014-12-02 2018-08-01 KB Medical SA Robot assisted volume removal during surgery
US10010296B2 (en) 2014-12-30 2018-07-03 Morpho Detection, Llc Systems and methods for x-ray CT scanner with reconfigurable field of view
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
EP3258872B1 (en) 2015-02-18 2023-04-26 KB Medical SA Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
DE102015204481A1 (de) * 2015-03-12 2016-09-15 Siemens Healthcare Gmbh Detektorvorrichtung mit Detektoruntereinheiten und mehreren Betriebspositionen
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
EP3344179B1 (en) 2015-08-31 2021-06-30 KB Medical SA Robotic surgical systems
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US10646176B2 (en) * 2015-09-30 2020-05-12 General Electric Company Layered radiation detector
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
CN109152928B (zh) 2016-03-09 2021-05-28 反射医疗公司 用于计算辐射治疗的注量图的方法和系统
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US11039893B2 (en) 2016-10-21 2021-06-22 Globus Medical, Inc. Robotic surgical systems
WO2018093849A1 (en) 2016-11-15 2018-05-24 Reflexion Medical, Inc. Methods for radiation delivery in emission-guided radiotherapy
EP3360502A3 (en) 2017-01-18 2018-10-31 KB Medical SA Robotic navigation of robotic surgical systems
JP2018114280A (ja) 2017-01-18 2018-07-26 ケービー メディカル エスアー ロボット外科用システムのための汎用器具ガイド、外科用器具システム、及びそれらの使用方法
EP3351202B1 (en) 2017-01-18 2021-09-08 KB Medical SA Universal instrument guide for robotic surgical systems
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
JP2020522307A (ja) * 2017-05-30 2020-07-30 リフレクション メディカル, インコーポレイテッド リアルタイム画像誘導放射線療法のための方法
US11648418B2 (en) 2017-06-22 2023-05-16 Reflexion Medical, Inc. Systems and methods for biological adaptive radiotherapy
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
CN117761751A (zh) 2017-07-26 2024-03-26 反射医疗公司 放射治疗的图形表示
EP3684468B1 (en) 2017-09-22 2024-03-20 RefleXion Medical, Inc. Systems for shuttle mode radiation delivery
CA3080986C (en) 2017-11-06 2023-11-14 The Research Foundation for State University of New York System and method for dual-use computed tomography for imaging and radiation therapy
EP3492032B1 (en) 2017-11-09 2023-01-04 Globus Medical, Inc. Surgical robotic systems for bending surgical rods
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
WO2020150505A1 (en) 2019-01-16 2020-07-23 Reflexion Medical, Inc. Methods for setup corrections in radiation therapy
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
CN110755101B (zh) * 2019-10-23 2023-07-28 东软医疗系统股份有限公司 一种ct扫描方法和装置
CA3169406A1 (en) 2020-01-28 2021-08-05 Reflexion Medical, Inc. Joint optimization of radionuclide and external beam radiotherapy
US11464581B2 (en) 2020-01-28 2022-10-11 Globus Medical, Inc. Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11666293B2 (en) * 2020-07-03 2023-06-06 The Brigham And Women's Hospital, Inc. Extended field-of-view x-ray imaging using multiple x-ray sources and one or more laterally offset x-ray detectors
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073442A (ja) * 1983-09-30 1985-04-25 Toshiba Corp 放射線断層測定装置
US4636952A (en) * 1984-12-03 1987-01-13 General Electric Company Method and apparatus for back projection image reconstruction using virtual equi-spaced detector array
JPH0252640A (ja) * 1988-08-15 1990-02-22 Toshiba Corp X線ctスキャナ装置
US5068882A (en) 1990-08-27 1991-11-26 General Electric Company Dual parallel cone beam circular scanning trajectories for reduced data incompleteness in three-dimensional computerized tomography
DE69425762T2 (de) * 1993-06-09 2001-04-26 Wisconsin Alumni Res Found System zur Strahlungstherapie
US5513236A (en) 1995-01-23 1996-04-30 General Electric Company Image reconstruction for a CT system implementing a dual fan beam helical scan
US5848117A (en) 1996-11-27 1998-12-08 Analogic Corporation Apparatus and method for computed tomography scanning using halfscan reconstruction with asymmetric detector system
US6104780A (en) * 1997-11-24 2000-08-15 Oec Medical Systems, Inc. Mobile bi-planar fluoroscopic imaging apparatus
US6154516A (en) 1998-09-04 2000-11-28 Picker International, Inc. Cardiac CT system
US6104775A (en) 1998-10-29 2000-08-15 Picker International, Inc. 3D image reconstruction for helical partial cone beam scanners using wedge beam transform
US6229870B1 (en) 1998-11-25 2001-05-08 Picker International, Inc. Multiple fan beam computed tomography system
EP1107260B1 (de) * 1999-11-30 2008-10-15 Philips Intellectual Property & Standards GmbH Gitter zur Absorption von Röntgenstrahlen
JP4892673B2 (ja) 2000-09-28 2012-03-07 フィリップス メディカル システムズ テクノロジーズ リミテッド 時間的に一貫した大きい照射範囲のためのctスキャナ
US6504892B1 (en) 2000-10-13 2003-01-07 University Of Rochester System and method for cone beam volume computed tomography using circle-plus-multiple-arc orbit
US7085343B2 (en) * 2001-10-18 2006-08-01 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
US6895077B2 (en) * 2001-11-21 2005-05-17 University Of Massachusetts Medical Center System and method for x-ray fluoroscopic imaging
US20030128801A1 (en) * 2002-01-07 2003-07-10 Multi-Dimensional Imaging, Inc. Multi-modality apparatus for dynamic anatomical, physiological and molecular imaging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297314A (ja) * 2008-06-16 2009-12-24 Ge Medical Systems Global Technology Co Llc X線断層撮影装置
JP2013543784A (ja) * 2010-11-25 2013-12-09 コーニンクレッカ フィリップス エヌ ヴェ 順投影装置
JP2013099639A (ja) * 2013-02-28 2013-05-23 Ge Medical Systems Global Technology Co Llc X線断層撮影装置
JP2018517138A (ja) * 2015-12-18 2018-06-28 チンファ ユニバーシティTsinghua University マルチモーダル検出システムおよび方法
US10338011B2 (en) 2015-12-18 2019-07-02 Tsinghua University Multi-modality detection system and method

Also Published As

Publication number Publication date
ATE451874T1 (de) 2010-01-15
WO2005004722A3 (en) 2005-04-14
EP1646316A2 (en) 2006-04-19
US7324623B2 (en) 2008-01-29
EP1646316B1 (en) 2009-12-16
WO2005004722A2 (en) 2005-01-20
DE602004024682D1 (de) 2010-01-28
US20060159220A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
EP1646316B1 (en) Computed tomography scanner with large gantry bore
JP4974131B2 (ja) 複数のオフセットx線照射点を用いるイメージングの方法及びシステム
RU2452383C2 (ru) Детектирование многотрубчатого рентгеновского излучения
US7072436B2 (en) Volumetric computed tomography (VCT)
JP5226523B2 (ja) X線撮像に関する方法および装置
JP4384766B2 (ja) 物体の画像を形成する方法及びイメージング・システム
JP5920912B2 (ja) X線コンピュータトモグラフィを用いた動的関心領域コリメーション・イメージング用のシステム及び、その作動方法
US8897413B2 (en) Dynamic adjustable source collimation during fly-by scanning
JP6014323B2 (ja) X線システム
US7145981B2 (en) Volumetric computed tomography (VCT)
EP2049918B1 (en) Stereo tube computed tomography
EP1959835B1 (en) Systems and methods for scanning and data acquisition in computed tomography (ct) applications
EP2383702A1 (en) Method and apparatus for computed tomography
US20100246756A1 (en) Stereo tube attenuation filter
AU2008243204A1 (en) Apparatus and method for cone beam volume computed tomography breast imaging
JP2008528985A (ja) 可変の結像ジオメトリーを有する断層撮影機
IL124014A (en) Methods and apparatus for scanning an object in a computed tomography system
US20110261923A1 (en) Method and apparatus to filter x-ray beams generated using a ct apparatus with displaced geometry
JP4347061B2 (ja) 逐次コンピュータ断層撮影方法
CN105491950B (zh) 用于实现螺旋计算机断层摄影中的最优snr的可调节蝴蝶结滤波器
JP2000023970A (ja) X線ct装置
WO2023238108A1 (en) Ct scanner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302