JP2007520082A - レチクル/マスクシステムの適合リアルタイム制御 - Google Patents

レチクル/マスクシステムの適合リアルタイム制御 Download PDF

Info

Publication number
JP2007520082A
JP2007520082A JP2006551333A JP2006551333A JP2007520082A JP 2007520082 A JP2007520082 A JP 2007520082A JP 2006551333 A JP2006551333 A JP 2006551333A JP 2006551333 A JP2006551333 A JP 2006551333A JP 2007520082 A JP2007520082 A JP 2007520082A
Authority
JP
Japan
Prior art keywords
mask
reticle
heating device
data
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006551333A
Other languages
English (en)
Other versions
JP4837570B2 (ja
Inventor
サンイーヴ・カウシャル
プラディープ・パンディー
賢次 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of JP2007520082A publication Critical patent/JP2007520082A/ja
Application granted granted Critical
Publication of JP4837570B2 publication Critical patent/JP4837570B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

多変数コントローラー(260)を有する適合性リアルタイム熱処理システムが示される。全体的に、方法(1600)は、熱処理システム(1630)の動力学的モデルを生成すること、動力学的モデルにレチクル/マスク曲率を組み込むこと、拡散増幅モデルを動力学的モデルに連結すること、多変数コントローラーを生成すること、公称の設定点を情報設定点(1650)にパラメータ化すること、処理感度マトリックスを生成すること、効率最適化方法及び処理データを用いて情報設定点を生成すること、作動時間中に適切なモデル及び設定点を選択するレシピを構築すること、を含む。

Description

この発明は、半導体処理システムに関し、特に、レチクル/マスクシステム温度のリアルタイム制御を提供するための熱処理システムに関する。
フォトリソグラフィは、多くの極小型装置の製造において重要なステップである。半導体装置、薄膜記録ヘッド及び微小測定装置は、フォトリソグラフィを用いて作製された例である。半導体装置回路は、さらに小型されてきている。小型化の増大により、フォトリソグラフィ処理の精度が著しく重大なものになっている。フォトリソグラフィツールは、半導体装置、薄膜記録ヘッド及び微小測定装置の製造におけるフォトリソグラフィ処理を行うために用いられる機械である。
集積回路(ICs)用に用いられる半導体装置は、20又はそれ以上の層で形成され得る。典型的には、各層は、独自のフォトマスクを必要とする。ICデザインが完了した後、ICデザインは認証されなければならず、処理はフォトマスク生成ステップに進む。フォトマスクは、半導体製造のリソグラフィ処理において非常に重要なエレメントである。一般的に、レチクル、フォトマスク、又はマスクは、集積回路の異なる層における正確なイメージを含む高品質の水晶又はガラスプレートを備えている。このマスクは、これらのイメージを半導体ウエハ上に光学的に転写するために使用される。
多くの場合において、このデザインが認証された後、GDSIIフォーマットファイルに変換され、そして、マスク作製処理により、マスクジェネレータにパターンを描画するデザインデータに前記ファイルが変換される。感光性レジスト層は、ブランクマスク上部のクロム層上方で適用され、マスクジェネレータは電子ビーム又はレーザーを用いて、感光性レジスト層上にパターンを描き、感光性レジスト層中にパターンを生成する。
そして、感光性レジストのパターン層が、開発されている。この層は、回路パターンが所望されている領域のみの下層のクロムを露光する。そして、露出したクロムは、エッチングされる。エッチング後、残存するレジストは、完全に剥離され、回路イメージを、他の不透明なクロム膜中の透過パターンとして残存させる。
“レチクル”又は“マスク”のフォトマスクは、集積回路のフォトリソグラフィック製造用に使用されるパターンを含んでいる。この処理は、複雑であり、正確な撮像を保証するために、撮像システム、レチクル/マスクにおける極度の安定性を必要とする。例えば、フォトリソグラフィックツールは、0.15ミクロンより小さい回路エレメントを印刷して数ナノメータの精度で配置するためのフォトマスクを使用することができる。回路エレメント(トランジスタ)は、大きいシリコンウエハ上に製造される。典型的には、IC製造処理は、半導体ウエハ上を覆うレジスト膜中に回路パターンを転写する処理を含む。
IC製造処理は、一般的に、回路の各層用のフォトマスクの製造を必要とする。フォトマスク生成に使用される製造処理及び設備は、最良の精度及び再現可能な既知の撮像技術を必要とする。レチクルの品質は、実際のIC製造の生産に影響を及ぼし得る。
フォトマスクは、フォトマスク製造中の局所的温度変化に制約される。これらの温度は、マスクの作製精度に悪影響を及ぼしうる温度勾配及び熱応力をもたらす。この状況下において、製造中のフォトマスクの熱処理温度をより精度良く制御することが強く望まれている。リアルタイムでマスク全体の局所的温度を監視することが困難であるため、製造中のマスクの温度制御は、複雑化している。このような温度及びプロファイルは、製造処理中にずっと継続する形態で、変化する。同様に、このようなマスクを半導体装置又は他の装置の作成に用いられるような処理におけるマスク温度変化によって、フォトリソグラフィ処理の精度に悪影響を及ぼす虞があり、そして、作製された装置の品質を劣化する虞がある。
半導体装置又は液晶装置(LCD)製造に使用される種類のフォトリソグラフィ処理において、例えば、レジストは基板を覆い、残留レジストコーティング膜は露光されて現像される。このような一連の処理は、コーティング/現像システムで行うことができる。このコーティング/現像システムは、プレベーキングユニット及びポストベーキングユニットのような加熱部を有している。これらの加熱部の各々は、抵抗加熱型の組込ヒータを備えた加熱装置を有している。
ウエハ処理用の重要要件は、ウエハ上の描像の制御に使用されるレチクル/マスクの正確さである。レチクル/マスクの製造における多くのステップは、製造されるレチクル/マスクの不正確さを引き起こし得る。例えば、レチクル/マスクの限界寸法(CD)における偏差は、熱処理ステップ中にレチクル/マスクを横断する温度プロフィールの偏差によって引き起こされ得るし、熱応答における偏差は、異なるレチクル/マスク間及び異なる時間で製造されるレチクル/マスク間で生じる問題を調整する処理をも引き起こし得る。
レチクル/マスク用の製造処理は、レジストの適用及び生成物への加熱ステップ、現像ステップをも必要とする。例えば、プレベーキング及びポストベーキングは、所定の制限を有する個々のレシピ(製法)による熱処理状態下で行われる。レチクル/マスク温度が許容温度範囲外である場合、許容されるレチクル/マスクは製造することができない。
本発明は、従来技術よりも精度の良い熱処理システムにおけるレチクル/マスク温度を制御するための方法及び装置を提供する。熱処理システムの作動方法は、以下の処理を含む:すなわち、複数のセグメントを備える加熱装置上のシステムによって処理されるレチクル/マスクを配置することと、前記システムの動力学的な熱的モデルを生成することと、加熱装置の複数のセグメントそれぞれに対して少なくとも1つの情報(インテリジェント)設定点を生成する、システムの熱的モデルを用いて複数の情報設定点を構築することと、情報設定点の少なくともいくつかを用いて各セグメントの実際の温度を制御することと、を含む。前記加熱装置は、温度制御装置であり、前記セグメントを加熱又は冷却しうる。前記方法は、レチクル/マスクに亘る温度プロファイルを実質的に一様に保持するために、特に有用である。前記方法を実行するように構成された熱処理システムも提供される。
本発明のある好ましい実施の形態によれば、処理されるマスクを含む熱処理システムにおけるデジタルシミュレーションモデルが形成されている。このモデルは、力学的基礎に基づいてシステムの温度及び熱勾配を複製する。このモデルは、システム及びマスクの熱流特性に基づいて処理されているシステム及びマスクに亘って温度を計算する。このモデルは、前記マスク中の様々な地点での所望の温度を生成するために必要な加熱装置の部分に対する“情報”設定点温度を計算する。前記システムにおける選択された地点での温度の実際の測定は、前記モデルが前記システム及びマスク中の対応する地点での実際の温度に対応するように、計算を確認して修正するために使用され得る。前記モデルに含まれるアルゴリズムは、理論的又は実験的に、そして好ましくはこれらの技術の組み合わせによって、導かれ得る。前記偏差は、制御される処理サイクルを通してシステムを作動しているときに、試験マスク上で実際の温度測定を行うことで、作られ得る。
添付の図面は、本明細書の一部に組み込まれて構成要素となっており、上述の本発明の全体的な説明と、後述の詳細な説明とともに、本発明の実施の形態を例示し、本発明の原理の説明に供される。
本発明のある実施の形態によれば、適合リアルタイムCD(ARCD)コントロールシステムは、従来技術の問題を克服するために用いられる。ARCD制御システムは、一連の中核技術(コアテクノロジー)を備え、この技術は、製造中にレチクル/マスクを搭載する必要性を解消するために、システムにおける仮想モデルからレチクル/マスク温度を計算することで使用者がレチクル/マスク温度をリアルタイムで“測定”することを可能とする仮想検出と、レチクル/マスク温度制御を可能として時間変化する設定点を備えうる多変数リアルタイム制御と、レチクル/マスクを横断する一様なCDsを可能とする情報設定点制御と、を備える。光デジタルプロファイル(ODP)技術は、レチクル/マスク認証処理中のCD測定を得るために用いられてもよい。
図1は、レチクル/マスクを作成する方法用の概略フローチャートを示す。フォトリソグラフィ処理中に、レチクル/マスクは光感光性材料上に複合回路パターンを撮像するために用いられ、この光感光性材料は半導体装置の処理中に物理的障壁を提供する。
手順100は、本発明を適用しうる典型的な処理を表す。開始処理110では、マスク作製システムは、1又は2以上の移動部位(図示せず)を備え、その中の移動アーム機構は、処理ステーション間でレチクル/マスクを移動するために使用される。前記移動アーム機構は、レチクル/マスクを保持するためのホルダー部(図示せず)と、少なくとも一方向で前記ホルダー部を移動するための移動機構(図示せず)を備えうる。
処理115において、ブロッキング層(金属含有化合物)は、ブランクの一側に適用され得る。ブランクは、リソグラフィ処理に使用される一定の種類の放射又は荷電粒子を透過する。典型的には、前記ブランクは、高純度な水晶又はガラス材料である。前記ブロッキング層は、非透過部位及び半透過部位を備える。例えば、クロムのような金属が使用され得る。
処理120において、レジスト材料は、前記ブランクに適用され得る。前記レジスト材料は、スピンコーターを用いて適用され得る。例えば、レジスト材料は、カップ(図示せず)内におけるスピンチャック(図示せず)上にレチクル/マスクを搭載することによって適用され得る。化学増幅レジスト(CAR)が、用いられ得る。CARは、酸成分、急冷成分、抑制消光剤を調査することで、特徴づけられうる。いくつかの実施の形態において、反射防止層は、前記レジスト材料下に堆積されてもよい。いくつかの実施の形態において、接着層は、レジスト材料が適用される前に、提供されてもよい。
CARsは、DUV放射のスペクトルエネルギーが低いため、現像され得る。CARsは、露光処理を増すために現像される。CARは、現像液中で不溶な1又は2以上の成分を含む。これらの成分は、化学的防護剤を含んでいてもよい。CARは、光酸発生剤(PAG)も含みうる。露光ステップ中において、PAGsは、撮像情報を含む酸分子を生成する。前記酸分子は、露光後ベーク(PEB)が行われるまで不活性のままであることが望ましい。PEBは、熱エネルギーにより酸と化学的防護剤とを反応させる前に脱保護反応を促進する。
処理125において、ポストアプリケーションベーク(PAB)は、レジストを取り除く(キュアする)ためになされうる。他の実施の形態においては、キュアリングステップは、必要ではない。加えて、冷却ステップは、PABの後で行われてもよい。典型的には、処理ユニット(冷却ユニット及び加熱ユニット)は、これらのユニット間の熱干渉を抑制するために配置される。他の実施の形態において、単一の加熱/冷却ユニットが使用されてもよい。
PAB加熱ユニットにおいて、レチクル/マスクは、少なくとも室温よりも高い温度に加熱され得るし、冷却ユニットにおいて、レチクル/マスクは室温またはそれ未満の温度に冷却され得る。例えば、加熱ユニットは、内部に埋め込まれた抵抗ヒータを有した加熱装置を有し得る処理チャンバを備えうる。
処理130において、前記レジストはパターン形成される。レジスト材料の特性により、放射又は荷電粒子を用いてパターン形成され得る。前記パターンは、高エネルギー電子のビーム又はレーザービームのアレイを用いてレチクル上に形成されることが望ましい。例えば、極紫外(DUV)リソグラフィが、用いられ得る。DUVリソグラフィは、0.25ミクロン又はそれ未満の外観を有する半導体装置の製造に使用し得ることを可能にする重要な技術である。さらに、エキシマレーザーが使用され得る。エキシマレーザーは、0.25ミクロン未満の外観を有する半導体装置の製造に使用される精度の良いDUVリソグラフィツールに対して高い電力の光を提供する。エキシマレーザーは、例えば、フッ化クリプトン(KrF)又はフッ化アルゴン(ArF)といった2つのガスをチャンバ中で混合し、短充電を適用することで生成される。
他の場合において、極端紫外(EUV)源は、0.05ミクロン未満の限界寸法に対して使用されてもよい。EUVリソグラフィは、最も一般的には約13nmの、5nmから50nmの範囲の波長での光を活用する。
処理135において、PEB処理は、前の脱保護反応を促進するように行われうる。前記脱保護反応は酸を促進して、露光領域で起こる。他の実施の形態において、PEBステップは、必要ではない。加えて、冷却ステップは、PEBの後に行われてもよい。典型的には、処理ユニット(冷却ユニット及び加熱ユニット)が、ユニット間の熱干渉を抑制するために配置される。他の実施の形態において、単一の加熱/冷却ユニットが使用されてもよい。
PEB加熱ユニットにおいて、レチクル/マスクは、少なくとも室温よりも高い温度に加熱され得るし、冷却ユニットにおいて、レチクル/マスクは室温またはそれ未満の温度に冷却され得る。例えば、加熱ユニットは、内部に埋め込まれた抵抗ヒータを有した加熱装置を有し得る処理チャンバを備えてもよい。
PEB処理は、フォトレジスト処理において重要な役割を担う。レジストの熱処理は、溶媒の除去から化学増幅の触媒といった多くの目的を有しうる。対象とする結果に加えて、熱処理は、多くの問題を引き起こしうる。例えば、レジストの光感知成分は、溶媒の除去に典型的に使用される温度で分解するおそれがあり、これは化学増幅レジストに対して非常に重大な問題である。何故なら、残存する溶媒の中身は、拡散及び増幅率に強い影響を有しているからである。また、熱処理は、レジストの分解にも影響し得るため、現像されたレジストプロファイルに直接的な影響を有する。
処理140において、前記レジストは現像される。例えば、水酸化テトラメチルアンモニウム(TMAH)の2.3重量%溶液のような現像溶液が使用され得る。加えて、洗浄(リンス)処理もまた、行われうる。例えば、現像溶液及び/又は洗浄溶液は、カップ(図示せず)内のスピンチャック(図示せず)上にレチクル/マスクを搭載することによって、適用され得る。
処理145において、前記パターンは、レチクルに転写され得る。例えば、エッチング処理が使用され得る。手順100は、処理150で終了する。
さらに、レチクル/マスクは、正確に製造されているかどうかを決定するために、検査されうる。前記レチクル/マスクは、汚染物質の無い環境中で格納されてもよい。何故なら、粒子は、撮像の問題を引き起こすおそれがあるからである。
図2は、本発明の実施の形態による熱処理装置の概略ブロック線図を示す。熱処理システム200は、処理チャンバ210、保持アセンブリ220、及びコントローラー260を備えている。レチクル/マスク215は、保持アセンブリ220上部の上に示されている。レチクル/マスク215は、移動システム(図示せず)を用いた制御可能な開口部(図示せず)を介して、処理チャンバ210中に積み込まれ(ロードされ)、そして処理チャンバ210から取り除かれ得る(アンロードされ得る)。保持アセンブリ220は、加熱エレメント235、隔離ユニット240、及び、冷却エレメント255を含む搭載アセンブリ250を有する加熱装置230を備え得る。保持アセンブリ220は、温度測定のためのセンサ(図示せず)、レチクル/マスクを支持するための支持手段、及び、レチクル/マスクを上昇及び下降するための昇降手段(図示せず)、を備えうる。あるいは、保持アセンブリは、昇降手段を備えていなくてもよい。
図2に示されているように、コントローラー260は、処理チャンバ210及び保持アセンブリ220に連結され得るし、処理チャンバ210及び保持アセンブリ220を制御するように使用され得る。加えて、コントローラー260は、1又は2以上の付加的なコントローラー(図示せず)とデータを交換し得る。例えば、処理システムコントローラーは、フィードフォワードデータをコントローラー260に提供し得る。フィードフォワードデータは、層の情報、処理情報、計測情報といった、レチクル/マスク情報を含み得る。層の情報には、層の数、層の組成、及び、層の厚さが、含まれ得る。処理情報には、データに関連する前のステップ、及び、現在のステップに対するレシピ情報が、含まれ得る。計測情報には、CDデータ、並びに、屈折率(n)データ及び吸光係数(k)データといった光学データが、含まれ得る。
レチクル/マスク215及び保持アセンブリ220は、正方形形状であっても良い。加えて、加熱装置230は、正方形形状であってもよく、多くの部位232を有していてもよい。加えて、各部位232は、加熱エレメント235を備えていてもよい。例えば、個々の制御可能な加熱エレメントは、加熱装置の部位中に位置してもよい。他の実施の形態においては、加熱装置は、冷却エレメント及び/又は組み合わせた加熱/冷却エレメントを備えていてもよい。さらに、加熱装置230は、複数の温度センサを備えていてもよい。例えば、温度センサ(図示せず)は、加熱装置230の部位内に位置していてもよい。加えて、1又は2以上の温度センサは、保持アセンブリ220と連結されていてもよい。
熱処理システム200は、物理的センサ及び/又は仮想センサであり得るセンサ(図示せず)を備えていてもよい。これらのセンサは、コントローラー260で使用される温度データ源であって、区分(セクター)232の実温度を表示し、マスク215の様々な地点にあり、前記センサからコントローラー260は、加熱装置230の区分232の加熱エレメント235における電力及び温度を制御するための判定を行う。例えば、ソフトウエアで計算されてコントローラー260のメモリ中に保持される力学的熱モデルは、マスク中の様々な地点での温度に対して計算されたリアルタイム値の一部からなるレチクル/マスク215の温度プロファイルを決定するために、温度成分を有していてもよい。これらの計算値は、力学的熱モデルのエレメントであり、信頼して使用できない実際の物理的センサの代わりに使用される、仮想センサの電力として考慮され得る。しかしながら、チャンバ部材の温度を測定するために、又は、マスクから非接触の温度測定を行うために、複数の実際の物理的センサを使用することが好ましい。これらの物理的センサからのデータは、力学的熱モデルにおける計算を調整及び補正するために、コントローラー260によって使用され得る。加えて、熱処理システム200は、少なくとも1つ以上の圧力センサを備えていてもよい。
コントローラー260は、付加的なコントローラーから入手するレチクル/マスクに対するフィードフォワードデータを受信し得る。フィードフォワードデータは、保持アセンブリ220に配置される次のマスク215の特性及びパラメータに関するデータである。コントローラー260は、レチクル/マスクに亘る圧力を測定するために、フィードフォワードデータを用いてもよい。コントローラー260は、レチクル/マスクの平坦度を決定するために、手段を備えてもよい。前記コントローラーは、受信するフィードフォワードデータに基づいて、入手したレチクル/マスクに対する熱応答を予測し得る。そして、前記コントローラーは、複数の加熱装置部位のそれぞれに対して情報設定点を形成し得る。情報設定点は、各セグメント232に対してコントローラー260によって計算される設定点温度であり、コントローラー260はこの温度になるようにヒータ235を制御する。これらの設定点は、力学的値であってもよく、又は、コントローラー260が力学的熱モデルの分析に基づいて決定する変化する値であってもよい。そして、入手したレチクル/マスクは、一様な方法で加熱される。何故なら、情報設定点は、自身のプロファイルを含むレチクル/マスクの特性に対して補償するように計算されているからである。
例えば、コントローラー260は、マイクロプロセッサ、メモリ(例えば、揮発性及び/又は不揮発性メモリ)、及び、熱処理部材を制御可能なデジタルI/Oポートを、備えていてもよい。また、メモリ中に格納されたプログラムは、処理レシピに従って熱処理システムの前述の部材を制御するために、活用され得る。加えて、コントローラーは、測定データを分析し、測定データを対象データと比較して、この比較結果を用いて処理を変化させ、及び/又は、熱処理システム200の部材を制御するように、構成され得る。また、コントローラーは、測定データを分析し、測定データを過去のデータと比較して、この比較結果を用いて失敗を予測し、及び/又は、失敗を明らかにするように、構成され得る。
熱処理システム200は、処理チャンバ210内の圧力を制御するために、圧力制御システム(図示せず)をさらに備えてもよい。加えて、熱処理システム200は、処理チャンバ210に処理ガスを提供するために、ガス供給システム(図示せず)をさらに備えてもよい。他の実施の形態において、熱処理システム200は、監視装置(図示せず)を備えてもよい。前記監視装置は、例えば、レチクル/マスクの光学的監視を許容してもよい。
他の実施の形態において、熱処理システム200は、シャッター装置(図示せず)をさらに備えてもよい。シャッターは、レチクル/マスクの熱応答を変化させるために、処理中に異なる位置に配置するようにしてもよい。例えば、シャッターは、フォトリソグラフィ処理においてマスクを介して半導体ウエハを露光するときに、レチクル/マスクからの放射エネルギーを、又は、マスク製造におけるレチクル/マスクへの放射エネルギーを、制御するために用いてもよい。このようなシャッターを制御することで、マスク中の様々な地点での温度及びマスク中の温度勾配が、所望の温度プロファイル、温度一様性、及び熱応力分布を維持するような方法で制御され得る。露光シーケンスの例は、図3に示されたような、セグメントのシーケンスの数で示される。
図3は、本発明の実施の形態による加熱装置の概略図を示す。図3において、正方形の加熱装置230は、複数の正方形のセグメント232を示している。図3には、25のセグメントが示されているが、これは本発明に対して必須ではない。加熱装置は、異なる数のセグメントを備えていてもよく、セグメントの形状は異なっていてもよい。例えば、長方形形状、六角形形状、及び/又は円形形状を用いてもよい。示された実施の形態において、加熱装置の各セグメントは、加熱エレメント(図示せず)を備え、各加熱エレメントは独立に制御され得る。
図3における各セグメント232は、番号で識別され、この番号は露光シーケンスにおける位置を表す。示された番号シーケンスは、本発明に対して必須ではない。代わりに、異なる番号シーケンスを用いてもよい。コントローラー260は、セグメントに導入するエネルギー量を設定してもよく、又は、露光光度を設定してもよく、又はさもなければシーケンスが行われるときにセグメントからセグメントへの1又は2以上のパラメータを設定してもよい。あるいは、コントローラー260は、制御対象物を最適化するようなシーケンスを決定してもよい。
レチクル/マスクに対する熱処理ステップは、ウエハ処理システムに対する熱処理ステップと同様である。しかしながら、両者の間には多くの差異がある。例えば、レチクル/マスクは正方形であってもよく、加熱装置は正方形であってもよく、レチクル/マスクはウエハよりも厚く;レチクル/マスクは異なる材料を備えていてもよく、レチクル/マスクは異なる層構造を備えていてもよい。加えて、レチクル/マスクの熱容量が大きくなると、ウエハよりも異なる特性となる。
下記の表1は、典型的なシステムの寸法、材料種類、及び構成を提供する。
Figure 2007520082
図4は、本発明の実施の形態におけるモデル開発で使用したヒータ電力とプレート及びマスクの温度のグラフを示す。例えば、物理的温度センサは、加熱装置及び/又は機器搭載の試験レチクル/マスク内に配置されてもよい。このグラフは、ヒータに適用される試験信号、加熱装置及び/又はレチクル/マスクの力学的熱応答、を示す。サンプルは、各秒毎に取得された。
図5は、本発明の実施の形態における多変数制御を含むレチクル/マスクシステムの簡略化したブロック線図を示す。本発明は、システムにおける熱応答の生成モデルを備える。この力学的モデルは、ヒータセグメント、加熱装置、及びレチクル/マスク間の相互作用を含んでいてもよい。そして、力学的モデルは、測定されたレチクル/マスク温度をリアルタイムで制御する多変数コントローラーを生成するために用いてもよい。様々な実施の形態において、機器搭載のレチクル/マスクは、力学的モデルを生成及び/又は認証するために用いてもよい。
例えば、一組のモデルは、処理される様々なレチクル/マスクに対して生成され得る−これにより、レチクル曲率を説明することができ、熱応答での変数をリアルタイムで補償することができる。1つの場合において、前記分析には、3つのレチクル/マスクの種類(例えば、それぞれ異なる既知の曲率)を含んだ。
本発明は、レチクル/マスクを横断する限界寸法(CD)偏差を抑制するために、レチクル/マスクを横断する外観プロファイル偏差を抑制するために、レチクル/マスク曲率の影響を最小化するために、そして、一方のレチクル/マスクの他方との適合性を向上するために、これらの技術を適用し得る。CD及びプロファイル測定は、外観、ビア、及び層に適用し得る。例えば、情報設定点制御(ISC)法は、露光処理に対して生成され得る。ISC法は、下記で説明されるが、以下のように要約される。
1)レチクル/マスクシステムの力学的熱モデルを生成処理。
2)力学的熱モデルのレチクル/マスク曲率の組込処理。
3)分散増幅モデルを力学的熱モデルに連結。
4)レチクル/マスクシステムに対する少なくとも1つの多変数コントローラーの生成処理。
5)情報設定点を含むベクトルに公称の設定点をパラメータ処理、及び、処理感度マトリックスの生成処理。
6)効率最適化方法及び処理データを用いた情報設定点の生成処理。
7)作動時間中に適切なモデル及び設定点を選択するための手法の生成処理。
図6は、本発明の実施の形態における多重入力/多重出力(MIMO)システム300に対する簡略化したブロック線図を示す。全体的に、リアルタイムシステムは、力学的に複雑であり、非線形である。これらの過渡応答は、性能に対して重要であり、しばしば決定が困難である。作動時間温度センサ304又は決定された手法305といった、システムの制御出力は、不知の外乱303によって影響される。全体的に、MIMOシステムに対して、それぞれの入力(例えば、電力)301は、複数の出力(例えば、ガス流、フィルム厚)302に影響しうる。
図7は、本発明の実施の形態における情報設定点コントローラーを含むレチクル/マスクシステムの簡略化したブロック線図を示す。示された実施の形態において、制御下の装置(DUC)は、仮想センサ、多変数コントローラー、情報設定点コントローラーに沿って示されている。例えば、DUCは、熱制御したレチクル/マスクシステムであってもよい。
加えて、第1処理及び第1センサが示されている。例えば、第1処理は、熱的処理であってもよく、第1センサは、レチクル/マスクの温度を制御する加熱装置に対する温度データといった、第1処理からの出力データ及び/又はエラーデータを提供してもよい。また、第2処理及び第2センサが示されている。例えば、第2処理は、現像処理であってもよく、第2センサは、第2処理からの出力データ及び/又はエラーデータを提供してもよい。ある場合には、第2センサは、ODPセンサ及びCDであってもよく、プロファイル、及び一様性データは、ODPセンサによって提供され得る。他の場合には、第2センサは、走査電子顕微鏡(SEM)であってもよい。あるいは、又は、加えて、第2又は第3処理が露光処理であってもよい。
情報設定点コントローラーは、多変数コントローラーに時間変化設定点(TVS)を計算及び提供し得る。情報設定点コントローラー及び多変数コントローラーは、ハードウエア及びソフトウエア部を備えていてもよい。仮想センサは、計算されたレチクル/マスク温度及び/又は加熱装置温度を多変数コントローラーに提供してもよく、加熱装置セグメント中の加熱エレメントへの電力供給を制御してもよい。
図8は、本発明の実施の形態における仮想センサの概略代表図を示す。示された実施の形態において、仮想センサは、例えばマスク内の温度を表す力学的モデル部、加熱装置の地点での温度といった物理的変数を測定する物理的センサ部、又は、他のチャンバ部、ヒータへの印加電圧又は電力といった変数を制御する操作変数部、及び、物理的センサ及び走査変数からの情報に関する力学的モデル部に関するソフトウエアアルゴリズム部、を備えている。仮想センサは、多数の“物理的”センサからの連結情報に基づくアルゴリズムを有する複合装置とみなしてもよい。前記仮想センサは、過去のデータ、リアルタイムデータ、そして、予測データを提供し得る適合装置である。
前記仮想センサは、測定した加熱装置温度を用いて、レチクル/マスク温度を“測定”して制御することを可能とする。モデルは、レチクル/マスク組成及びレチクル/マスクの平坦度(曲率)における偏差を含む加熱装置とレチクル/マスクとの間の力学的相互作用を詳述するように構築される。仮想検出は、リアルタイムでのレチクル/マスク温度を得るための方法を提供する。
仮想センサは、製造中に(単数又は複数の)機器搭載のレチクル/マスクに対する必要性を取り除く。例えば、力学的な“ゴールド”モデル及び仮想センサは、レチクル/マスクに対して一旦生成されると、前記モデルは、特有の設備における初期の認定中に、補修可能な試験レチクル/マスクを用いて変換されることができ、そして、システムは生産のための準備をする。ソフトウエアに基づくサーバは、任意の再チューニングに用いられ得る。
図9は、本発明の実施の形態における温度制御されたレチクル/マスクシステムの力学的モデルの概略代表図を示す。示された実施の形態において、4つのノード又はモデル成分(M1,M2,M3,M4)が示されている。しかしながら、本発明の他の実施の形態において、異なる数のモデル成分が用いられてもよいし、モデル成分は異なるアーキテクチャで配置されてもよい。
加えて、力学的モデルは、ヒータ電力といった制御入力(U)、及び、非測定の変数といった外乱入力(D)を受信し、レチクル/マスク温度といった制御出力(Z)、及び、ホットプレート温度といった測定出力(Y)を決定する。前記モデルの構造は、以下のように表現され得る。すなわち、Z=MU+MD、及び、Y=MU+MD。あるいは、モデル構造に対して異なる表現を用いてもよい。
図9において、制御入力は、ヒータ電力データを含んでいてもよく、外乱入力は非測定変数であってもよく、測定出力は加熱装置温度であってもよく、そして、制御出力はレチクル/マスク温度であってもよい。
力学的モデルは、システムの“状態”の軌跡(トラック)を保持し、リアルタイムでの出力に対する入力に関係する。例えば、U、Yは測定され得るし、そして、モデルを用いることで、Dは、Y=MU+Mestを用いて算出され得るし、Zは、Zest=MU+Mestを用いて算出され得る。
力学的モデルを形成するときに、レチクル/マスク曲率及びPAC拡散増幅効果は、前記モデル中に組み込まれ得る。前記多変数コントローラーは、セグメント間での相互作用を計算するために、ランプ及び安定化モード中に、使用され得る。情報設定点コントローラーは、情報設定点を含むベクトル中に公称の設定点をパラメータ化するために、効率的な最適化方法及び処理データを用いて情報設定点を決定するために、そして、作動時間中に適正なモード及び設定点を選択するために、使用され得る。
情報設定点コントローラーを構築するための情報設定点制御(ISC)方法論中での1つのステップは、設制御したレチクル/マスクシステムといった処理システムの力学的振る舞いを記述する力学的モデルを形成することである。このようなモデルは、多変数コントローラーの設計に使用してもよく、感度マトリックス及び情報設定点の形成に使用してもよい。
熱伝導、ガス流、反応速度論、そして、熱処理システムといった処理システムから収集されたリアルタイムデータとともに形成されたオンラインモデルに基づく第1原理モデルを含むがこれに限定されない力学的モデルを形成するために、いくつかのアプローチが利用可能である。
第1原理熱的モデルにおいて、レチクル/マスク及び加熱装置は、いくつかのエレメントを備えてもよく、そして前記レチクル/マスク及び加熱装置間の熱伝導は、周囲に対する熱伝導と同様に、各エレメントに対してモデル化され得る。例えば、レチクル/マスクは、n個の正方形エレメントに区分され得るし、そして、下記の方程式はmこのようなエレメントの熱応答を示す。
Figure 2007520082
前記パラメータは:
レチクル/マスク熱伝導度 3.91Wcm−1−1
thエレメントの体積
thエレメントの領域
th及び(k−1)thエレメント間の距離
th及び(k−1)thエレメント間の一定領域
δth及び加熱装置間の空隙距離
ρ レチクル/マスク密度
レチクル/マスク熱容量 8.8g/cm
環境温度 20℃
h 環境に対する熱伝導係数
空隙距離熱伝導度 0.0003Wcm−1−1
L レチクル/マスク厚さ 0.635cm
プレート温度 130℃
δ 空隙距離(距離) 0.11mm
T レチクル/マスク温度 (シミュレーションパラメータ)
パラメータδは、エレメントの位置に依存し、レチクル/マスク形状によって特定され得る。同様に、加熱装置は、正方形状のエレメント中に区分され得るし、同様の数学的関係によって記述され得る。
ISCをモデリングするための一実施の形態において、サーモカップル(熱温度計)は、加熱装置中のヒータと共同設置されているものが想定され、サーモカップルに関する任意の動力学(例えば、サーモカップル応答に対する時定数)は、前記モデルには含まれない。効果の観点から、前記モデルは、瞬間的な温度測定を想定している。あるいは、サーモカップルは、加熱装置中のヒータと共同設置されず、及び/又は、サーモカップルに関連する任意の動力学は、モデルに含まれ得る。効果の観点から、前記モデルは、瞬間的な温度測定を想定している。前記プレートと前記レチクル/マスク間の熱伝導は、空隙を介する。各エレメントに対する空隙は、レチクル/マスクの曲率に依存し、モデル中に設定され得る。
第1原理動力学的モデルは、n組の微分方程式を規定する。前記方程式は、下記の簡潔な式で表現され得る。
Figure 2007520082
ここで、Tは、n個のレチクル/マスクエレメントの温度を示すベクトルである。これらの微分方程式を用いたシミュレーションは、熱応答における偏差、及び、レチクルの曲率によるレチクル/マスクに亘る加熱量(反応供給物)、を示すために使用され得る。
他の実施の形態において、ISCは、オンラインの熱的モデルによって記述され得る。例えば、動力学的モデルを得るための1つの方法は、リアルタイムデータ収集を用いてもよい。このようなリアルタイムのモデルにおいて、動力学的モデルは、例えば、加熱装置から収集されたリアルタイムデータに基づいて形成される。レチクル/マスク温度を収集するための1つの方法は、機器搭載のレチクル/マスクを用いることである。レチクル/マスクの温度収集のこの方法において、検出時間定数に対する設定点の軌道は獲得され得る。設定点の軌道は、システムの熱的挙動を用いるために選択される。前記システムの全応答は、ログファイル中に記録され、このログファイルは、検出設定点、検出時定数、ヒータ電力、及びレチクル/マスク温度の、同期した時間軌道を提供し得る。測定したレチクル/マスクの温度は、ISCモデルの正確さを認証するために使用され得る。あるいは、レチクル/マスク温度の光学的測定も使用され得る。
オンラインの熱的モデルは、入力としてヒータ電力、及び出力として様々な温度を有する動力学的システム、センサと同様にウエハ、を規定し得る。そして、前記モデルは、一組の線形微分方程式で表され得る。
Figure 2007520082
ここで、前記関数f(T,P)は線形である。閉ループシステムを得るために、既知のコントローラーは、閉ループの応答を得るためのこの組の方程式に亘って適用され得る。この方法は、レチクル/マスク温度及び熱応答のより高品質モデルを提供し得る。あるいは、オンラインの熱的モデルは、広範な温度範囲に亘る熱的挙動を記述する多重線形モデルでも記述され得る。この目的のために、レチクル/マスク温度は多数の温度範囲で測定され得るし、1つの温度範囲から次の温度範囲に随時切り換えるモデルを形成し得る。
レチクル/マスクの曲率は、上述したように情報設定点制御を構築するために、第1原理のモデルに組み込まれてもよい。第1原理のモデルにおいて、各レチクル/マスクエレメントに対してレチクル/マスクと加熱装置との間の空隙が、直接モデル化され得る。例えば、rcがレチクル/マスクの曲率半径で規定されている場合、レチクル/マスクは角度θの範囲を定める。
Figure 2007520082
この角度に基づいて、所与の径方向位置での空隙は、以下のように計算され得る。
Figure 2007520082
オンライン熱的モデルの方法において、モデルのライブラリーは、データ駆動オンラインモデリングを用いて、既知の曲率プロファイルとともに形成され得るし、予想されるレチクル/マスクの曲率の範囲は、一組のモデルを用いてカバーされ得る。
モデル開発中において、レチクル/マスク曲率を含む熱的モデルの第1原理モデルは、Matlabのような、好適なソフトウエアシミュレーションのアプリケーションにおける、好適なマイクロプロセッサで数量的に実行し得る。前記ソフトウエアアプリケーションは、好適な電子コンピュータ又はマイクロプロセッサに備わっており、物理的な性能近似を行うように作動される。しかしながら、他の数値法も、本発明で考慮されている。
図10A及び図10Bは、本発明の実施の形態における情報設定点の典型的なグラフを示す。この例示された実施の形態において、ベースライン(基準線)データは、時間変化する設定点に沿って示されている。グラフ中において、単一の時間変化する設定点が示されているが、これは本発明にとって必須ではない。本発明において、多数の設定点を用いてもよく、これらの時間変化する設定点は前記処理中の様々な時間で配置され得る。加えて、1又は2以上の時間変化する設定点を、各ヒータセグメントに対して用いてもよい。
図11は、本発明の実施の形態における仮想センサに対して、測定されたデータ及びシミュレーションされたデータを示す。前記グラフは、あるレチクル/マスクにおける1つのセグメント(ゾーン)に対して、測定されたデータと、仮想センサの温度データとの比較を示す。動力学的モデルを使用して仮想センサを形成し、印加したヒータ電力及び測定した加熱装置の温度を使用した。前記グラフは、仮想センサがレチクル/マスク温度を追跡記録することができることを示している。
システムの動力学的熱的モデルが一旦得られたら、熱応答を使用して、化学増幅レジスト(CAR)反応の化学増幅及び拡散特性を決定し得る。この目的のために、熱的モデルが上述の反応のモデルとともに、拡張され得る。
露光後ベーク(PEB)処理は熱活性処理であり、フォトレジスト処理における多数の用途を供する。第1に、前記ベークの高温によって、光分解生成物が拡散される。少量の拡散は、入射光及び反射光の干渉によるもたらされる、膜の深さ全体の照射線量における周期的変化である、定常波の影響を最小化するために有用であり得る。PEBの他の主要な目的は、多くの化学増幅レジストのポリマーの溶解性を変性させる酸触媒反応を作用させることである。
化学増幅は、単一の光分解生成物に多くの溶解度変化反応を引き起こすことができるため、非常に重要であり、従って、フォトレジストシステムの感度を増大することができる。ある程度の量の酸輸送は、単一の酸を多くの反応性ポリマーの部位に移動できる点で必要である。しかしながら、名目上露光された領域から露光されていない領域への酸輸送は、レジストの外観寸法の制御を複雑にし得る。これらの反応性システムを介しての酸輸送は、機構的に複雑である。測定結果は、開始材料(酸に対して反応性あり)と生成材料(もはや反応性は無い)との間の酸移動性において非常に大きな差異があるということを示している。
熱処理の影響は、拡散、増幅、及び酸損失の、3つの活性処理を介して典型的にモデル化される。拡散及び増幅に対する活性化エネルギーはいずれも、酸損失に対して高い。反応速度は、通常のアレニウス方程式によって与えられる。
Figure 2007520082
例えば、典型的なレジストに対して、パラメータは、下記の表2で与えられる。
Figure 2007520082
CAR反応は、PEB処理中においてレチクル/マスク中の様々な位置での、加熱量(反応供給物)熱的モデルに組み込まれ得る。加熱量(反応供給物)計算は、熱的軌道の、上昇部位、安定部位、処理部位、及び冷却部位、を含めることで、なされ得るし、これらは単純な“温度での”計算よりもより精度良いものにできる。
例えば、kthエレメントでの加熱量(反応供給物)は、以下のように計算され得る。
Figure 2007520082
上述の計算において、時間軌道T(t)は、上述した多数節の熱的モデルから獲得され得る。
加熱量(反応供給物)のベクトルDは、各エレメントの位置で規定され得る。
Figure 2007520082
ベクトルdの偏差は、動力学的な設定点軌道を用いて、最小化され得る。モデルベースの線形又は非線形制御のアプローチは、制御されるシステムの数学的モデルをコントローラーが備えている、反応供給物をモデル化するために用いられ得る。多変数コントローラーは、線形象限ガウシアン(LQG)方法、最適レギュレータ(LQR)方法、H−無限(H−inf)方法等といった、任意のモデル制御設計に基づくものでもよい。加熱量(反応供給物)モデルは、線形又は非線形であってもよく、そして、SISO又はMIMOのいずれかであってもよい。多変数制御アプローチ(すなわち、MIMO)は、全ての入力及びその影響を、出力に考慮する。物理的モデル、及びデータ駆動モデルといった、加熱量をモデル化するための、いくつかの他のアプローチが利用可能である。
典型的な製法において、前記設定点は、所与の周期の間、一点に保持される。しかしながら、設定点を名目上の値付近の温度における十分小さい“窓”において変化可能とすることで、駆動端部での加熱量(反応供給物)の一様性を達成する際のさらなる自由度が提供される。加熱量(反応供給物)をモデル化するような方法の1つは、熱処理に対する“情報”時間変化設定点の軌跡を用いることである。この目的のために、温度設定点は、情報設定点のベクトル中にパラメータ化され得るし、名目上の設定点付近での時間変化摂動である情報設定点を含むベクトルrを規定し得る。
Figure 2007520082
処理感度マトリックスMは、各制御セグメントに対する各切断点(ブレイクポイント)での小さい温度摂動を作ることにより、形成され得る。加熱量(反応供給物)中に生じた摂動は、以下のように記載され得る。
Figure 2007520082
今、最適化作業は、名目上の軌道から得られた反応供給物ベクトルDにおいてわかるレチクル/マスクの偏差を、得られたdが除去するように、ベクトルrの最適値を発見することの1つになっている。
例えば、感度マトリックスMは、各コントロールセグメントに対する各切断点で1℃の摂動を作ることによって、コントロールの25のセグメントと各セグメントに対する3つの切断点とを有するシステムに対して決定され得る。
情報設定点を形成するときに、レチクル/マスク上で、生じたCD、プロファイル、及び/又は、一様性データは、溶出速度に著しく依存し、様々な位置で加熱量(反応生成物)でも順に依存する。レチクル/マスクに交差する様々な位置で加熱量(反応生成物)、及び、温度設定点偏差に対する加熱量(反応生成物)の感度を計算するための方法は、上述したものである。CD、プロファイル、及び/又は、一様性データは、加熱量(反応生成物)の偏差に比例し得る:Ci=α・Di。それ故、CD、プロファイル、及び/又は、一様性データ、における偏差も、加熱量(反応生成物)の偏差に比例する。そして、CD、プロファイル、及び/又は、一様性データ、における偏差は、のように記述され得る。
Figure 2007520082
それ故、レチクル/マスクに交差する、CD、プロファイル、及び/又は、一様性データ、における偏差は、感度マトリックスMを用いて少なくとも1つの情報設定点を計算することにより、抑制され得る。情報設定点は、下記で与えられる拘束二次最適化問題を解くことによって最適化され得る。
Figure 2007520082
従って、情報設定点を見つける手続きは、以下のようになる。
1)処理を作動させ、そして、選択された位置でレチクル/マスクを交差する、CD、プロファイル、及び/又は、一様性測定を作成する。CD、プロファイル、及び/又は、一様性測定は、いくつかの方法を用いてなされ得る。このような方法の1つは、ODPを用いることである。あるいは、CD、プロファイル、及び/又は、一様性測定データは、フィードフォワードデータから獲得され得る。
2)CD、プロファイル、及び/又は、一様性データに対する所望の値を選択し、所望の値と測定データとの差異である偏差ベクトルdを形成する。例えば、所望の値は、平均値、最小値、最大値、3シグマ値、又は他の計算値であってもよい。
3)情報設定点rを見つけるために、上述した最適化問題を解く。
4)前のステップで見出した設定点とともにレシピを更新して、前記処理を再度行う。例えば、更新した値は、更新したレシピを作動させることによって獲得され得る。
5)所望の、CD、プロファイル、及び/又は、一様性データが得られるまで繰り返す。例えば、所望の一様性は、加熱量偏差に対する少なくとも1つの3シグマ値、レチクル/マスク温度偏差に対する3シグマ値、限界寸法偏差に対する3シグマ値、プロファイル測定偏差に対する3シグマ値、及び、一様性測定偏差に対する3シグマ値、を含み得る。加えて、所望の一様性データは、略1%又はこれ未満であり得る。
反復処理が収束して所望のCD及び/又はプロファイル一様性が一旦獲得されると、その結果は、その後の使用のために、格納され得る。
進行手続を示すために、上述のように計算されたシミュレーションモデル及び感度マトリックスを使用した。予想通り、加熱量(反応供給物)は直接使用した(この加熱量はCDに比例する)。名目上の設定点とともに、加熱量(反応供給物)は、レチクル/マスクに交差する加熱量(反応供給物)は、3シグマ偏差の4.5%であった。
図12は、レチクル/マスクの異なる位置に対する規格化した加熱量(反応供給物)のグラフを示す。これらの典型的な設定点とともに、加熱量(反応供給物)偏差は、3シグマ偏差の14.5%から4.5%に抑制された。他の組の時間変化する設定点とともに、偏差は、1.0%未満であると予想される。
図13〜図15は、異なる曲率を有するレチクル/マスク上の異なる位置に対する結果を示す。図13は、平坦なレチクル/マスクに対する結果を示す。図14は、中心部が外側部分よりも低い、放物線状(パラボラ形状)のレチクル/マスクに対する結果を示し、図15は、中心部が外側部分よりも高い、放物線状(パラボラ形状)のレチクル/マスクに対する結果を示す。典型的なグラフは、レチクル/マスク温度と時間に対して示されている。典型的なグラフは、設定点と時間に対して示されている。また、典型的なグラフは、異なる曲率を有するレチクル/マスク上の異なる位置に対し、規格化された加熱量(反応供給物)に対して示されている。
所望のレチクル/マスクの曲率を表してレチクル/マスクに交差するCD及び/又はプロファイル偏差を最小化するモデルのライブラリーを形成するための方法は、記述されてきた。所与のレチクル/マスクに対して、コントローラーは、熱的制御への適用のための適切なモデルを選択し得る。これを得るために、いくつかの方法が利用可能である。1つのアプローチにおいて、モデルは、レチクル/マスク及び加熱装置のリアルタイム応答を調査することによって、曲率の量を決定する。前記応答に基づいて、好適なモデルを選択する。他のアプローチにおいて、レチクル/マスクに対する組成物データ(n、k値を含みうる)は、コントローラーに送られ得る。前記組成物データに基づいて、コントローラーは、レチクル/マスク応力及び関連するレチクル/マスク曲率を決定し、そして、適切なモデルを選択し得る。
図16は、本発明の実施の形態における熱処理装置を作動するための方法の簡略化したフローチャートを示す。手続き1600は、処理1610で始まる。
処理1620において、熱処理装置は、入手するレチクル/マスクに対するフィードフォワードデータを受信する。このフィードフォワードデータには、CDデータ、プロファイルデータ、一様性データ、屈折率(n)データ及び吸光係数(k)データといった光学データ、並びに、層の数、層の位置、層の組成物、層の一様性、層の密度、及び層の厚さを含みうる、層情報、が含まれ得る。加えて、フィードフォワードデータには、レジストデータ、ブランクデータ、マスクデータ、及び/又は、反射防止層(ARC)データが含まれ得る。
処理1630において、レチクル/マスク応力は、フィードフォワードデータを用いて測定され得る。レチクル/マスク応力は、レチクル/マスクプロファイルを決定するように使用され得る。例えば、レチクル/マスクは、放物線状のプロファイルのような非一様性プロファイルを有し得る。
処理1640において、動力学的熱的モデルは、測定されたレチクル/マスク応力に基づいて入手するレチクル/マスクに対する熱応答を予想するためにも使用され得る。
処理1650において、情報設定点は、加熱装置に関連する複数のセグメントのそれぞれに対して決定される。このようにして、レチクル/マスクが不均一なプロファイルを有している場合であっても、レチクル/マスクに亘って均一な温度が提供される。
処理1660において、手続き1660は終わる。例えば、前記設定点が決定された後、加熱装置は、設定点の値を用いて加熱され得るし、レチクル/マスクは、加熱装置の上に位置し得る。レチクル/マスクが曲がっている場合でさえ、前記レチクル/マスクは比較的短時間で所望の温度に一様に加熱される。
熱処理システムにおいて、様々な種類の温度センサが使用され得る。例えば、センサは、サーモカップル、温度表示レジスタ、放射型温度センサ、及びその類似物を備えうる。バイメタルのサーモカップルが使用され得る。温度表示プラチナレジスタが使用され得る。また、センサには、接触型センサ及び非接触型センサが含まれ得る。加えて、ヒータは、複数の抵抗加熱エレメントを備え得るし、前記抵抗加熱エレメントは、加熱装置の領域に配置され得るし、センサは、前記加熱装置の領域に配置され得る。
本発明における多くの修正及び変形が、上述の教示に照らして可能である。それ故、添付の請求項の範囲内において、特に上述したもの以外にも本発明は実行し得る。
図1は、従来の技術及び本発明の実施の形態によるレチクル/マスクを作成する方法用の概略フローチャートを示す。 図2は、本発明の実施の形態による熱処理装置の概略ブロック線図を示す。 図3は、本発明の実施の形態による加熱装置の概略図を示す。 図4は、本発明の実施の形態におけるモデル開発で使用したヒータ電力とプレート及びマスクの温度のグラフを示す。 図5は、本発明の実施の形態における多変数制御を含むレチクル/マスクシステムの簡略化したブロック線図を示す。 図6は、本発明の実施の形態における多変数制御を含むレチクル/マスクシステムの簡略化したブロック線図を示す。 図7は、本発明の実施の形態における情報設定点コントローラーを含むレチクル/マスクシステムの簡略化したブロック線図を示す。 図8は、本発明の実施の形態における仮想センサの概略代表図を示す。 図9は、本発明の実施の形態における温度制御されたレチクル/マスクシステムの力学的モデルの概略代表図を示す。 図10Aは、本発明の実施の形態における情報設定点の典型的なグラフである。 図10Bは、本発明の実施の形態における情報設定点の典型的なグラフである。 図11は、本発明の実施の形態における仮想センサに対して、測定されたデータ及びシミュレーションされたデータを示す。 図12は、レチクル/マスクの異なる位置に対する規格化した加熱量(反応供給物)のグラフを示す。 図13は、本発明の実施の形態における異なる曲率を有するレチクル/マスク上の異なる位置に対する結果を示す。 図14は、本発明の実施の形態における異なる曲率を有するレチクル/マスク上の異なる位置に対する結果を示す。 図15は、本発明の実施の形態における異なる曲率を有するレチクル/マスク上の異なる位置に対する結果を示す。 図16は、本発明の実施の形態における熱処理装置を作動するための方法の簡略化したフローチャートを示す。
符号の説明
200 熱処理システム
210 処理チャンバ
215 レチクル/マスク
220 保持アセンブリ
230 加熱装置
235 加熱エレメント
240 隔離ユニット
250 搭載アセンブリ
255 冷却エレメント
260 コントローラー

Claims (35)

  1. 以下の処理を有する熱処理システムの作動方法であって、
    複数のセグメントを備える加熱装置上にレチクル/マスクを配置することと、
    前記システムの動力学的な熱的モデルを生成することと、
    前記加熱装置の複数のセグメントそれぞれに対して少なくとも1つの情報設定点を生成する、前記システムの動力学的な熱的モデルを用いて複数の情報設定点を構築することと、
    前記情報設定点の少なくとも1つを用いて各セグメントの実際の温度を制御することと、これにより、レチクル/マスクに亘って制御された温度プロファイルを構築することと、
    を含む、熱処理システムの作動方法。
  2. 前記加熱装置は、
    前記加熱装置上に位置するレチクル/マスクの特性情報又はパラメータを含むフィードフォワードデータを受信することと、
    フィードフォワードデータを用いてレチクル/マスク応力を推定することと、
    前記レチクル/マスクと前記加熱装置との間のギャップに対して熱的モデルを生成することと、
    前記ギャップに対する熱的モデルを、前記システムの動力学的な熱的モデル中に組み込むことと、をさらに含み、
    前記ギャップに対する熱的応答は、前記推定されたレチクル/マスク応力に基づいて予想される、請求項1に記載の熱処理システムの作動方法。
  3. 前記レチクル/マスクの応力を推定する処理は、
    前記フィードフォワードデータから抽出された屈折率(n)データ及び吸光係数(k)データを用いる処理を有する、請求項2に記載の熱処理システムの作動方法。
  4. 前記フィードフォワードデータは、
    少なくとも1つの層の数、層の配置、層の組成物、層の一様性、層の密度、及び、層の厚さ、を含む、層の情報を有する、請求項2に記載の熱処理システムの作動方法。
  5. 前記フィードフォワードデータは、
    前記レチクル/マスクに対する、少なくとも1つの限界寸法(CD)データ、プロファイルデータ、及び一様性データ、を有する、請求項2に記載の熱処理システムの作動方法。
  6. 前記フィードフォワードデータは、
    前記レチクル/マスク上の複数の配置に対する、少なくとも1つの限界寸法(CD)データ、
    前記レチクル/マスク上の複数の配置に対する、プロファイルデータ、及び、
    前記レチクル/マスク上の複数の配置に対する、一様性データ、を有する、請求項2に記載の熱処理システムの作動方法。
  7. 前記複数の配置は、前記レチクル/マスク上に非放射状に位置している、請求項6に記載の熱処理システムの作動方法。
  8. 前記複数の配置は、前記レチクル/マスク上に放射状に位置している、請求項6に記載の熱処理システムの作動方法。
  9. 前記レチクル/マスク及び加熱装置のリアルタイム応答を調査することと、
    前記リアルタイム応答を用いてレチクル/マスクの応力を推定することと、
    前記レチクル/マスクと前記加熱装置との間のギャップに対する熱的モデルを生成することと、
    前記ギャップに対する熱的モデルを、前記システムの動力学的な熱的モデル中に組み込むことと、をさらに含み、
    前記ギャップに対する熱的応答は、前記推定されたレチクル/マスク応力に基づいて予想される、請求項1に記載の熱処理システムの作動方法。
  10. レチクル/マスクの曲率を推定することと、
    前記レチクル/マスクと前記加熱装置との間のギャップに対して熱的モデルを生成することと、
    前記ギャップに対する熱的モデルを、前記システムの動力学的な熱的モデル中に組み込むことと、をさらに含み、
    前記ギャップに対する熱的応答は、前記推定されたレチクル/マスク応力に基づいて予想される、請求項1に記載の熱処理システムの作動方法。
  11. 前記加熱装置のセグメント間の熱的相互作用をモデリングすることと、
    前記熱的相互作用に対する熱的モデルを、前記システムの動力学的な熱的モデル中に組み込むことと、をさらに含む、請求項1に記載の熱処理システムの作動方法。
  12. 前記レチクル/マスクに対する温度を測定するための仮想センサを生成することと、
    前記仮想センサを、前記セグメントの動力学的な熱的モデル中に組み込むことと、をさらに含む、請求項1に記載の熱処理システムの作動方法。
  13. 前記加熱装置と周囲の環境との間の熱的相互作用をモデリングすることと、
    前記熱的相互作用に対する前記モデルを、前記システムの動力学的な熱的モデル中に組み込むことと、をさらに含む、請求項1に記載の熱処理システムの作動方法。
  14. 拡散増幅モデルを生成することと、
    前記拡散増幅モデルを、前記システムの動力学的な熱的モデル中に組み込むことと、をさらに含む、請求項1に記載の熱処理システムの作動方法。
  15. 偏差ベクトルdを生成することと、
    少なくとも1つの情報設定点を含むベクトルr中に、少なくとも1つの公称の設定点を、パラメータ化することと、
    前記動力学的な熱的モデルを用いて感度マトリックスを生成することと、
    下記の式を有する最適化問題を解くことによって、前記少なくとも1つの情報設定点を決定することと、
    Figure 2007520082
    をさらに含み、
    前記偏差ベクトルは、測定データと所望の値との差異を備え、
    min<r、r<rmaxであって、rは少なくとも1つの情報設定点を有するベクトルであり、
    Mは感度マトリックス、
    αは感度マトリックスMに対する測定データに関する比例定数、
    dは前記偏差ベクトル、である、請求項1に記載の熱処理システムの作動方法。
  16. 少なくとも1つの決定された情報設定点とともにレシピを更新することと、
    前記更新されたレシピを作動することと、
    更新された測定データを獲得することと、
    所望の一様性データが得られるまで繰り返すことと、をさらに含む、請求項15に記載の熱処理システムの作動方法。
  17. 前記所望の一様性は、略1%未満の3シグマ偏差を含む、請求項16に記載の熱処理システムの作動方法。
  18. 前記所望の一様性は、略0.5%未満の3シグマ偏差を含む、請求項17に記載の熱処理システムの作動方法。
  19. フィードフォワードデータを受信することと、
    前記フィードフォワードデータから測定データを獲得することと、
    前記所望の値を決定することと、
    をさらに含み、
    前記測定データは、少なくとも1つの限界寸法、プロファイル測定値、及び一様性測定値を有し、
    前記所望の値は、少なくとも1つの所望の限界寸法、所望のプロファイル、及び所望の一様性を有する、請求項15に記載の熱処理システムの作動方法。
  20. 前記加熱装置の各セグメントに対して少なくとも1つの公称設定点を有するレシピを用いて処理を実行することと、
    前記実行された処理から前記測定データを得ることと、
    前記所望の値を決定することと、
    をさらに含み、
    前記測定データは、少なくとも1つの限界寸法、プロファイル測定値、及び一様性測定値を有し、
    前記所望の値は、少なくとも1つの所望の限界寸法、所望のプロファイル、及び所望の一様性を有する、請求項15に記載の熱処理システムの作動方法。
  21. 前記加熱装置の各セグメントに対して温度摂動を作成することと、
    前記温度摂動の結果を用いて感度マトリックスを構築することとを、さらに含む、請求項15に記載の熱処理システムの作動方法。
  22. 前記感度マトリックスMを構築するために、機器搭載のレチクル/マスクを用いることをさらに含む、請求項15に記載の熱処理システムの作動方法。
  23. 各放射状のエレメントの配置での加熱量(反応供給物)の下記のベクトルDを決定することをさらに含み、
    Figure 2007520082
    前記加熱量(反応供給物)における摂動を
    Figure 2007520082
    で特徴づけ、
    ベクトルDにおけるレチクル/マスクの偏差に亘ってベクトルdが除去されるように、前記ベクトルrの値を決定する、請求項15に記載の熱処理システムの作動方法。
  24. 前記所望のCD一様性が獲得されたときに、前記更新されたレシピを格納すること、をさらに含む、請求項16に記載の熱処理システムの作動方法。
  25. 前記加熱装置上にレチクル/マスクを配置することは、前記システムによって処理される前記加熱装置上に前記マスクを配置することを含む、請求項1に記載の熱処理システムの作動方法。
  26. 前記加熱装置上にレチクル/マスクを配置することは、前記システムによって前記加熱装置とともに基板を処理するために前記加熱装置上に前記マスクを配置することを含む、請求項1に記載の熱処理システムの作動方法。
  27. 熱処理システムであって、
    複数のセグメントを備える加熱装置上で前記システムによって処理されるレチクル/マスクを配置するための手段と、
    前記システムの動力学的な熱的モデルを生成するための手段と、
    前記システムの前記動力学的な熱的モデルを用いて複数の情報設定点を構築するための手段と、
    少なくとも1つの情報設定点を用いて各セグメントの実際の温度を制御して、これにより前記レチクル/マスクに亘る所定の温度プロファイルを構築するための手段と、を備え、
    少なくとも1つの前記情報設定点は、前記加熱装置の各セグメントに対して生成される、熱処理システム。
  28. 処理システムであって、
    複数のセグメントを有する温度制御装置と、
    前記システムによって処理されるために、又は、前記システムによってウエハとともに処理するために、温度制御された装置上でレチクル/マスクを支持するための構造と、
    前記システムの動力学的な熱的モデルを提供して、前記温度制御された装置のセグメントに対する複数の情報設定点とともに構築するように、プログラムされたコントローラーと、
    少なくとも1つの情報設定点に応答する温度制御された装置の各セグメントの実際の温度と、を備える、処理システム。
  29. 前記加熱装置は、正方形状であり、
    前記複数のセグメントは、多数の一様に配置された正方形状のセグメントを備える、請求項28に記載の方法。
  30. 各セグメントは、対応する実際の温度に設定するために、加熱又は冷却するための、加熱エレメントを備える、請求項29に記載の方法。
  31. 前記加熱エレメントは、抵抗ヒータを備えている、請求項30に記載の方法。
  32. 前記加熱装置は、冷却エレメントをさらに備えている、請求項30に記載の方法。
  33. 前記加熱装置は、長方形状であり、
    複数のセグメントは、複数の一様に配置された長方形状のセグメントを備える、請求項1に記載の方法。
  34. 少なくとも1つのセグメントは、前記加熱装置の温度を測定するためのセンサエレメントを備える、請求項1に記載の方法。
  35. 前記温度制御装置は、前記システムにおける少なくとも1つの変数パラメータを前記コントローラーに入力するように作動する、少なくとも1つの物理的センサをさらに備え、
    前記コントローラーは、
    前記モデルが前記レチクル/マスクを所定の温度分布に保つための温度制御装置のセグメントを制御するために、前記情報設定点を算出するための前記システム及び前記レチクル/マスクの算出された温度データを含む、前記動力学的な熱的モデルを維持するようにプログラムされている、請求項28に記載の処理システム。
JP2006551333A 2004-01-30 2005-01-19 レチクル/マスクシステムの適合リアルタイム制御 Expired - Fee Related JP4837570B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/769,623 US7025280B2 (en) 2004-01-30 2004-01-30 Adaptive real time control of a reticle/mask system
US10/769,623 2004-01-30
PCT/US2005/002064 WO2005076075A2 (en) 2004-01-30 2005-01-19 Adaptive real time control of a reticle/mask system

Publications (2)

Publication Number Publication Date
JP2007520082A true JP2007520082A (ja) 2007-07-19
JP4837570B2 JP4837570B2 (ja) 2011-12-14

Family

ID=34808180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006551333A Expired - Fee Related JP4837570B2 (ja) 2004-01-30 2005-01-19 レチクル/マスクシステムの適合リアルタイム制御

Country Status (6)

Country Link
US (1) US7025280B2 (ja)
JP (1) JP4837570B2 (ja)
KR (1) KR101129940B1 (ja)
CN (1) CN1910517B (ja)
TW (1) TWI258799B (ja)
WO (1) WO2005076075A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216554A (ja) * 2007-03-02 2008-09-18 Nikon Corp 温度測定装置、走査型露光装置、露光方法及びデバイスの製造方法
WO2010147057A1 (ja) * 2009-06-16 2010-12-23 東京エレクトロン株式会社 基板処理システム用加熱装置の昇温制御方法、コンピュータ記録媒体及び基板処理システム
CN103149793A (zh) * 2013-04-03 2013-06-12 上海安微电子有限公司 一种智能光刻版及其实现方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007070879A1 (en) * 2005-12-17 2007-06-21 Gradient Design Automation, Inc. Simulation of ic temperature distributions using an adaptive 3d grid
US7472363B1 (en) 2004-01-28 2008-12-30 Gradient Design Automation Inc. Semiconductor chip design having thermal awareness across multiple sub-system domains
US7458052B1 (en) 2004-08-30 2008-11-25 Gradient Design Automation, Inc. Method and apparatus for normalizing thermal gradients over semiconductor chip designs
US20090224356A1 (en) * 2004-01-28 2009-09-10 Rajit Chandra Method and apparatus for thermally aware design improvement
US7383520B2 (en) * 2004-08-05 2008-06-03 Gradient Design Automation Inc. Method and apparatus for optimizing thermal management system performance using full-chip thermal analysis of semiconductor chip designs
US7194711B2 (en) * 2004-01-28 2007-03-20 Gradient Design Automation Inc. Method and apparatus for full-chip thermal analysis of semiconductor chip designs
US20090048801A1 (en) * 2004-01-28 2009-02-19 Rajit Chandra Method and apparatus for generating thermal test vectors
US7353471B1 (en) * 2004-08-05 2008-04-01 Gradient Design Automation Inc. Method and apparatus for using full-chip thermal analysis of semiconductor chip designs to compute thermal conductance
US7401304B2 (en) * 2004-01-28 2008-07-15 Gradient Design Automation Inc. Method and apparatus for thermal modeling and analysis of semiconductor chip designs
US7203920B2 (en) * 2004-01-28 2007-04-10 Gradient Design Automation Inc. Method and apparatus for retrofitting semiconductor chip performance analysis tools with full-chip thermal analysis capabilities
US20090077508A1 (en) * 2004-01-28 2009-03-19 Rubin Daniel I Accelerated life testing of semiconductor chips
US8286111B2 (en) * 2004-03-11 2012-10-09 Gradient Design Automation Inc. Thermal simulation using adaptive 3D and hierarchical grid mechanisms
US8019580B1 (en) 2007-04-12 2011-09-13 Gradient Design Automation Inc. Transient thermal analysis
US7262138B1 (en) * 2004-10-01 2007-08-28 Advanced Micro Devices, Inc. Organic BARC with adjustable etch rate
KR100777041B1 (ko) * 2004-10-22 2007-11-16 삼성전자주식회사 열 테스트를 위한 장치 및 방법
US7751908B2 (en) * 2004-12-02 2010-07-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for thermal process control
US7452793B2 (en) * 2005-03-30 2008-11-18 Tokyo Electron Limited Wafer curvature estimation, monitoring, and compensation
US7334202B1 (en) * 2005-06-03 2008-02-19 Advanced Micro Devices, Inc. Optimizing critical dimension uniformity utilizing a resist bake plate simulator
US7388213B2 (en) * 2005-09-23 2008-06-17 Applied Materials, Inc. Method of registering a blank substrate to a pattern generating particle beam apparatus and of correcting alignment during pattern generation
US7445446B2 (en) * 2006-09-29 2008-11-04 Tokyo Electron Limited Method for in-line monitoring and controlling in heat-treating of resist coated wafers
US7625680B2 (en) * 2006-09-29 2009-12-01 Tokyo Electron Limited Method of real time dynamic CD control
PL2097794T5 (pl) 2006-11-03 2018-01-31 Air Prod & Chem System i sposób monitorowania procesu
KR100820650B1 (ko) * 2007-03-15 2008-04-08 주식회사 경동네트웍 난방장치 제어방법
US8761909B2 (en) * 2007-11-30 2014-06-24 Honeywell International Inc. Batch process monitoring using local multivariate trajectories
US8103996B2 (en) 2008-06-24 2012-01-24 Cadence Design Systems, Inc. Method and apparatus for thermal analysis of through-silicon via (TSV)
US8104007B2 (en) * 2008-06-24 2012-01-24 Cadence Design Systems, Inc. Method and apparatus for thermal analysis
US8201113B2 (en) 2008-07-25 2012-06-12 Cadence Design Systems, Inc. Method and apparatus for multi-die thermal analysis
ES2342958B2 (es) * 2008-09-03 2011-07-04 Emite Ingenieria Slne Analizador de multiples entradas y multiples salidas.
US20100186942A1 (en) * 2009-01-23 2010-07-29 Phillips Alton H Reticle error reduction by cooling
US8589827B2 (en) 2009-11-12 2013-11-19 Kla-Tencor Corporation Photoresist simulation
US20120120379A1 (en) * 2009-12-21 2012-05-17 Phillips Alton H System and method for controlling the distortion of a reticle
US8794011B2 (en) 2010-10-15 2014-08-05 Nikon Corporation Method and apparatus for utilizing in-situ measurements techniques in conjunction with thermoelectric chips (TECs)
NL2007577A (en) 2010-11-10 2012-05-14 Asml Netherlands Bv Optimization of source, mask and projection optics.
US9323870B2 (en) 2012-05-01 2016-04-26 Advanced Micro Devices, Inc. Method and apparatus for improved integrated circuit temperature evaluation and IC design
CN103390538B (zh) * 2012-05-08 2016-02-03 中芯国际集成电路制造(上海)有限公司 光刻区机台实时分派方法及系统
CN102929147B (zh) * 2012-10-26 2015-02-18 扬州大学 真空玻璃加工在线控制系统及方法
JP2014239094A (ja) * 2013-06-06 2014-12-18 株式会社ニューフレアテクノロジー マスク基板の温調装置、マスク基板の温調方法
US9574875B2 (en) * 2014-01-21 2017-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer or reticle thermal deformation measuring techniques
KR102227127B1 (ko) * 2014-02-12 2021-03-12 삼성전자주식회사 리소그래피 시뮬레이션을 이용한 디자인룰 생성 장치 및 방법
JP2017538156A (ja) 2014-12-02 2017-12-21 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ方法及び装置
JP6338778B2 (ja) 2014-12-02 2018-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ方法及び装置
US10429749B2 (en) 2015-09-24 2019-10-01 Asml Netherlands B.V. Method of reducing effects of reticle heating and/or cooling in a lithographic process
CN106094925B (zh) * 2016-06-02 2018-08-03 安瑞装甲材料(芜湖)科技有限公司 防弹玻璃生产工艺温控系统
DE102017202945A1 (de) 2017-02-23 2018-08-23 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zum Transformieren von Messdaten einer photolithographischen Maske für den EUV-Bereich von einer ersten Umgebung in eine zweite Umgebung
WO2019081187A1 (en) * 2017-10-25 2019-05-02 Carl Zeiss Smt Gmbh METHOD FOR REGULATING THE TEMPERATURE OF A COMPONENT
CN108549167A (zh) * 2018-05-09 2018-09-18 深圳市华星光电技术有限公司 烘烤装置及烘烤方法
WO2020020564A1 (en) * 2018-07-24 2020-01-30 Asml Netherlands B.V. Substrate positioning device with remote temperature sensor
US10996572B2 (en) * 2019-02-15 2021-05-04 Applied Materials, Inc. Model based dynamic positional correction for digital lithography tools
DE102019112675B9 (de) * 2019-05-15 2022-08-04 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Charakterisierung einer Maske für die Mikrolithographie
KR102263718B1 (ko) * 2019-06-10 2021-06-11 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
US20220170159A1 (en) * 2020-12-01 2022-06-02 Applied Materials, Inc. Multi-zone heater tuning in substrate heater

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118180A (ja) * 1997-06-17 1999-01-12 Sony Corp ベーキング装置
JPH11274030A (ja) * 1998-03-20 1999-10-08 Hitachi Ltd レジスト処理方法および装置ならびにレジスト塗布方法
JP2000509171A (ja) * 1996-01-31 2000-07-18 エイエスエム アメリカ インコーポレイテッド 熱処理のモデル規範型予測制御
JP2001118662A (ja) * 1999-08-09 2001-04-27 Ibiden Co Ltd セラミックヒータ
JP2001274109A (ja) * 2000-03-27 2001-10-05 Toshiba Corp 熱処理方法及び熱処理装置
JP2001274069A (ja) * 2000-03-27 2001-10-05 Toshiba Corp レジストパターン形成方法及び半導体製造システム
JP2002057079A (ja) * 2000-06-26 2002-02-22 Unisem Co Ltd 半導体ウェーハベーク装置
JP2003218015A (ja) * 2002-01-24 2003-07-31 Tokyo Electron Ltd 基板処理装置
JP2003282461A (ja) * 2002-03-27 2003-10-03 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424548A (en) * 1993-09-21 1995-06-13 International Business Machines Corp. Pattern specific calibration for E-beam lithography
KR100223329B1 (ko) * 1995-12-29 1999-10-15 김영환 반도체 소자의 미세 패턴 제조방법
US5742065A (en) * 1997-01-22 1998-04-21 International Business Machines Corporation Heater for membrane mask in an electron-beam lithography system
US5847959A (en) * 1997-01-28 1998-12-08 Etec Systems, Inc. Method and apparatus for run-time correction of proximity effects in pattern generation
US5834785A (en) * 1997-06-06 1998-11-10 Nikon Corporation Method and apparatus to compensate for thermal expansion in a lithographic process
US6424879B1 (en) * 1999-04-13 2002-07-23 Applied Materials, Inc. System and method to correct for distortion caused by bulk heating in a substrate
US6455821B1 (en) * 2000-08-17 2002-09-24 Nikon Corporation System and method to control temperature of an article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509171A (ja) * 1996-01-31 2000-07-18 エイエスエム アメリカ インコーポレイテッド 熱処理のモデル規範型予測制御
JPH118180A (ja) * 1997-06-17 1999-01-12 Sony Corp ベーキング装置
JPH11274030A (ja) * 1998-03-20 1999-10-08 Hitachi Ltd レジスト処理方法および装置ならびにレジスト塗布方法
JP2001118662A (ja) * 1999-08-09 2001-04-27 Ibiden Co Ltd セラミックヒータ
JP2001274109A (ja) * 2000-03-27 2001-10-05 Toshiba Corp 熱処理方法及び熱処理装置
JP2001274069A (ja) * 2000-03-27 2001-10-05 Toshiba Corp レジストパターン形成方法及び半導体製造システム
JP2002057079A (ja) * 2000-06-26 2002-02-22 Unisem Co Ltd 半導体ウェーハベーク装置
JP2003218015A (ja) * 2002-01-24 2003-07-31 Tokyo Electron Ltd 基板処理装置
JP2003282461A (ja) * 2002-03-27 2003-10-03 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216554A (ja) * 2007-03-02 2008-09-18 Nikon Corp 温度測定装置、走査型露光装置、露光方法及びデバイスの製造方法
WO2010147057A1 (ja) * 2009-06-16 2010-12-23 東京エレクトロン株式会社 基板処理システム用加熱装置の昇温制御方法、コンピュータ記録媒体及び基板処理システム
JP2011003601A (ja) * 2009-06-16 2011-01-06 Tokyo Electron Ltd 基板処理システム用加熱装置の昇温制御方法、プログラム、コンピュータ記録媒体及び基板処理システム
KR101198427B1 (ko) 2009-06-16 2012-11-06 도쿄엘렉트론가부시키가이샤 기판 처리 시스템용 가열 장치의 승온 제어 방법, 컴퓨터 기록 매체 및 기판 처리 시스템
CN103149793A (zh) * 2013-04-03 2013-06-12 上海安微电子有限公司 一种智能光刻版及其实现方法
CN103149793B (zh) * 2013-04-03 2015-01-28 上海安微电子有限公司 一种智能光刻版及其实现方法

Also Published As

Publication number Publication date
WO2005076075A2 (en) 2005-08-18
TWI258799B (en) 2006-07-21
US7025280B2 (en) 2006-04-11
KR20060128946A (ko) 2006-12-14
CN1910517A (zh) 2007-02-07
US20050167514A1 (en) 2005-08-04
CN1910517B (zh) 2010-10-27
KR101129940B1 (ko) 2012-03-28
TW200531140A (en) 2005-09-16
WO2005076075A3 (en) 2006-04-27
JP4837570B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4837570B2 (ja) レチクル/マスクシステムの適合リアルタイム制御
JP6792572B6 (ja) リソグラフィ方法およびリソグラフィ装置
US7452793B2 (en) Wafer curvature estimation, monitoring, and compensation
US7101816B2 (en) Methods for adaptive real time control of a thermal processing system
JP5610664B2 (ja) レジストがコーティングされたウエハの熱処理をインラインで監視及び制御する方法
KR101310188B1 (ko) 리소그래피 장치를 제어하는 방법, 디바이스 제조 방법, 리소그래피 장치, 컴퓨터 프로그램 제품, 및 리소그래피 공정의 수학적 모델을 개선하는 방법
JP5610665B2 (ja) リアルタイムの動的cd制御方法
KR20190045282A (ko) 공정 장치를 모니터링하기 위한 방법 및 시스템
TWI402633B (zh) 微影裝置及器件製造方法
US20080228308A1 (en) Critical dimension uniformity optimization
US7334202B1 (en) Optimizing critical dimension uniformity utilizing a resist bake plate simulator
JP2023533491A (ja) パターニングプロセスの調整方法
CN113296367A (zh) 信息处理装置、信息处理方法以及计算机可读记录介质
JP2021534461A (ja) メトトロジ装置
EP4182757B1 (en) A method and apparatus for calculating a spatial map associated with a component
EP4040234A1 (en) A method and system for predicting aberrations in a projection system
US20240077380A1 (en) A method and system for predicting aberrations in a projection system
TW202328805A (zh) 校準倍縮光罩熱效應之方法及系統
US20100104959A1 (en) Lithographic method, apparatus and controller
CN118159912A (zh) 用于校准掩模版热效应的方法和系统
CN116783557A (zh) 用于预测投影系统中的像差的方法和系统
Schaper et al. Applications of mathematical systems science to nanolithography of integrated circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101022

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees