JP2007504663A - Thermally conductive materials using conductive nanoparticles - Google Patents

Thermally conductive materials using conductive nanoparticles Download PDF

Info

Publication number
JP2007504663A
JP2007504663A JP2006525337A JP2006525337A JP2007504663A JP 2007504663 A JP2007504663 A JP 2007504663A JP 2006525337 A JP2006525337 A JP 2006525337A JP 2006525337 A JP2006525337 A JP 2006525337A JP 2007504663 A JP2007504663 A JP 2007504663A
Authority
JP
Japan
Prior art keywords
conductive
heat
micron
nanoparticles
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006525337A
Other languages
Japanese (ja)
Inventor
トナピ,サンディープ・シュリカント
ツォン,ホン
シモーネ,ダビデ・ルイス
フィリオン,レイモンド・アルバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2007504663A publication Critical patent/JP2007504663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Conductive Materials (AREA)

Abstract

Thermal interface compositions contain both non-electrically conductive micron-sized fillers and electrically conductive nanoparticles blended with a polymer matrix. Such compositions increase the bulk thermal conductivity of the polymer composites as well as decrease thermal interfacial resistances that exist between thermal interface materials and the corresponding mating surfaces. Such compositions are electrically non-conductive. Formulations containing nanoparticles also show less phase separation of micron-sized particles than formulations without nanoparticles.

Description

本開示は、ポリマーマトリックスの熱伝導性を向上させるために、導電性ナノ粒子をミクロン粒度の非導電性充填剤と併用することに関する。   The present disclosure relates to the use of conductive nanoparticles in combination with micron sized non-conductive fillers to improve the thermal conductivity of a polymer matrix.

多くの電気部品は動作中に熱を発生する。こうした熱が電気部品から効率的に除去されなければ、熱が蓄積してしまう。その結果、電気部品の誤動作又は永久的損傷が起こりかねない。そのため、電気回路及びシステムでは、動作中の熱除去を促進するため、熱管理技術が用いられることが多い。   Many electrical components generate heat during operation. If such heat is not efficiently removed from the electrical components, heat will accumulate. As a result, malfunction or permanent damage of electrical components can occur. For this reason, thermal management techniques are often used in electrical circuits and systems to facilitate heat removal during operation.

熱管理技術は、ある形態のヒートシンクを用いて電気系の高温領域から放熱させることが多い。ヒートシンクは、電気部品と機械的に結合して熱除去に役立つ熱伝導率の高い材料(例えば、典型的には金属)からなる構造体である。比較的簡単な形態では、ヒートシンクは、動作中の電気回路と接した金属片(例えばアルミニウム又は銅)からなるものが挙げられる。電気回路からの熱はユニット間の機械的接触面を通してヒートシンクに流れ込む。   Thermal management techniques often use a form of heat sink to dissipate heat from the high temperature region of the electrical system. A heat sink is a structure made of a material with high thermal conductivity (eg, typically a metal) that is mechanically coupled to an electrical component to aid in heat removal. In a relatively simple form, the heat sink is made of a piece of metal (eg, aluminum or copper) in contact with the electrical circuit in operation. Heat from the electrical circuit flows into the heat sink through the mechanical contact surface between the units.

典型的な電気部品では、動作時にヒートシンクの平面を電気部品の平面に当節して配置し、ある種の形態の接着剤又は固定手段を用いてヒートシンクを適所に保持することによって、ヒートシンクを発熱部品と機械的に結合させる。自明であろうが、ヒートシンクの表面及び部品の表面が完全に平坦又は平滑であることは滅多にないので、通常はそららの表面間に空隙が存在する。周知の通り、向かい合った二つの面の間に空隙が存在すると、それらの表面間の接触面を通した伝熱能力が低下する。こうした空隙は、ヒートシンクの熱管理装置としての有効性及び価値を下げる。この問題に対処するため、伝熱表面間に配置してそれらの間の熱抵抗を低下させるための、熱伝導材料材料(TIM;thermal interface material)と呼ばれるポリマー組成物が開発されている。電気部品に用いられるものを始めとして、多くのTIM用途では、TIMが電気絶縁性であることが必要とされる。また、多くのTIM用途では、発熱部品の熱膨張係数(CTE)がヒートシンクのCTEと(高低)大きく異なる場合に、TIMは発熱部品とヒートシンクの機械的隔離にも十分に対応できるものでなければならない。TIMの厚さ及び材料組成は力学的コンプライアンスの要求によって制限されることがある。TIMの最小厚は、発熱部品及びヒートシンク両者の表面の平面性の程度によって左右される。   In a typical electrical component, the heat sink is heated by placing the heat sink plane against the electrical component plane during operation and holding the heat sink in place with some form of adhesive or securing means. Mechanically coupled to the part. As will be appreciated, there are usually voids between the surfaces of the heat sink and the surface of the component, since they are rarely perfectly flat or smooth. As is well known, the presence of voids between two opposing surfaces reduces the ability to transfer heat through the contact surface between the surfaces. Such voids reduce the effectiveness and value of the heat sink as a thermal management device. In order to address this problem, polymer compositions called thermal interface materials (TIMs) have been developed that are placed between heat transfer surfaces to reduce the thermal resistance between them. Many TIM applications, including those used for electrical components, require that the TIM be electrically insulating. Also, in many TIM applications, if the coefficient of thermal expansion (CTE) of the heat-generating component is significantly different (high or low) from the CTE of the heat sink, the TIM must be sufficiently capable of mechanical isolation between the heat-generating component and the heat sink. Don't be. The TIM thickness and material composition may be limited by mechanical compliance requirements. The minimum thickness of the TIM depends on the degree of planarity of the surfaces of both the heat generating component and the heat sink.

現状の熱伝導材料材料の全体としての熱伝導率はポリマーマトリックスの低い熱伝導率(TIMに通常入っているポリマーに対して約0.2W/m−K)によって大いに制限されている。これらTIMの熱伝導率を上げる目的で、多くのTIM材料には、それよりも熱伝導率の高い(>10W/m−K)粒子が充填してある。ある推定によれば(”Thermally Conductive Polymer Compositions,” D.M. Bigg., Polymer Composites, June 1986, Vol. 7, No.3)、電気絶縁性ポリマー複合材により到達可能な全体としての最高熱伝導率は、基材ポリマーマトリックスの20〜30倍に過ぎない。この数字は、充填剤の熱伝導率が基材ポリマーマトリックスの熱伝導率の100倍を超えてしまうと、充填剤の種類に関わらず殆ど変らない。従って、ポリマー材料の熱伝導率はヒートシンクの熱伝導率に比して低く、その結果として発熱部品からヒートシンクへの熱伝達が不十分ということになる。それに加えて、1)ミクロ又はナノボイド、及び2)充填剤の沈降又は充填剤の粒度より小さい表面の不規則部分へミクロン粒度の充填剤は入って行けないという原因で充填剤の欠如した層に起因する境界面の欠陥によって、効果的な熱伝達性能はさらに低下する。   The overall thermal conductivity of current thermal conductive material is greatly limited by the low thermal conductivity of the polymer matrix (about 0.2 W / m-K for the polymer normally in TIM). In order to increase the thermal conductivity of these TIMs, many TIM materials are filled with particles with higher thermal conductivity (> 10 W / m-K). According to one estimate ("Thermal Conductive Polymer Compositions," DM Bigg., Polymer Compositions, June 1986, Vol. 7, No. 3), the overall maximum heat achievable with electrically insulating polymer composites. The conductivity is only 20-30 times that of the base polymer matrix. This number hardly changes regardless of the type of filler when the thermal conductivity of the filler exceeds 100 times the thermal conductivity of the base polymer matrix. Accordingly, the thermal conductivity of the polymer material is lower than that of the heat sink, and as a result, heat transfer from the heat-generating component to the heat sink is insufficient. In addition, 1) micro- or nano-voids, and 2) in the layer lacking filler due to the sedimentation of the filler or the irregularity of the surface smaller than the particle size of the filler cannot enter the micron-size filler. Due to the resulting interface defects, the effective heat transfer performance is further reduced.

金属及びその他の導電性材料はしばしば熱伝導性材料である一方で、非導電性の用途ではこれらの高性能材料はTIMに使えないか、又は非導電性材料で被覆しなければならない。それではコストが高くなり、熱的性能が低下し、しかも可能性として電気的ショートの原因になり得る非導電性コーティングにおける隙間があるという危険を冒すことになる。それで、たいていの場合非導電性材料を使用せざるを得ず、そのことによって材料選択が制限され、一般的に熱伝導率も限定される。   While metals and other conductive materials are often thermally conductive materials, in non-conductive applications these high performance materials cannot be used for TIMs or must be coated with non-conductive materials. This increases the cost, reduces the thermal performance and risks the possibility of gaps in the non-conductive coating that can potentially cause electrical shorts. Thus, in most cases, non-conductive materials must be used, which limits material selection and generally limits thermal conductivity.

TIMの熱伝導率を上げるための試みには、充填剤に加えて、ナノ粒子の使用も含まれている。例えば米国特許出願第10/426485号には、TIM系の熱伝導率を改良するためにポリマーマトリックス中に非導電性ナノ粒子を使用することが開示されている。しかしながら上で記した理由で、ナノ粒子として使用するための材料の選択は限られている。   Attempts to increase the thermal conductivity of TIMs include the use of nanoparticles in addition to fillers. For example, US patent application Ser. No. 10 / 426,485 discloses the use of non-conductive nanoparticles in a polymer matrix to improve the thermal conductivity of TIM systems. However, for the reasons noted above, the choice of materials for use as nanoparticles is limited.

動作中の発熱が比較的低い他の電気部品では、別の熱冷却手段が利用される。これらの部品はしばしばラップトップパーソナルコンピューター、携帯電話、携帯情報機器及びデジタルカメラなどのポータブルな電子機器内で使われる。これらの部品はしばしば、ハンダ球のアレイによってポリマー材料でできているプリント配線板上に取り付けられる。環境変化及びパワーサイクリングに基づく正常な熱サイクルの間のハンダ接合箇所の完全性に関わる信頼性の懸念から、電気部品の下のハンダ球間の間隙を埋める樹脂アンダーフィル材料を使用することになっている。多くの用途において、主要な熱冷却パスは部品からプリント配線板へのものである。アンダーフィルがなくても、又熱伝導がよくないアンダーフィルがあっても、部品から配線板への熱の通り道はハンダだけである。この熱性能はアンダーフィル樹脂に熱伝導性の充填剤を添加することにより改善できる。この用途分野では、部品I/Oパッドをショートさせるといけないので、樹脂は導電性であってはならない。それ故、アンダーフィル樹脂は非導電性充填剤の使用に限定される。TIM材料の場合と同じように、このことが到達できる熱伝導度の制限になる。それ故、非導電性アンダーフィル材料で、プリント配線板と発熱部品との間を効率的に熱伝達する改良された組成物の必要性が存在する。
米国特許出願第10/426485号明細書 米国特許第6500891号明細書 米国特許第6265471号明細書 米国特許第6060539号明細書 米国特許第5695872号明細書 米国特許第5026748号明細書 ”Thermally Conductive Polymer Compositions,” D.M. Bigg., Polymer Composites, June 1986, Vol. 7, No.3 ”Polymer Handbook”:, Branduf, J.,; Immergut, E.H; Grulke, Eric A; Wiley Interscience Publication, New York, 4th ed.(1999) ”Polymer Data Handbook” Mark, James Oxford University Press, New York (1999) ”Chemistry and Technology of Silicone”, Noll, W.; Academic Press 1968 ”Chemistry and Technology of the Epoxy Resins” B. Ellis (Ed.) Chapman Hall, New York, 1993 ”Epoxy Resins Chemistry and Technology”, edited by C. A. May, Marcel Dekker, New York, 2nd edition, 1988
Other thermal cooling means are utilized for other electrical components that generate relatively low heat during operation. These parts are often used in portable electronic devices such as laptop personal computers, mobile phones, personal digital assistants and digital cameras. These parts are often mounted on printed wiring boards made of polymer material by an array of solder balls. Due to environmental concerns and reliability concerns regarding the integrity of solder joints during normal thermal cycling based on power cycling, resin underfill materials are used to fill the gaps between the solder balls under the electrical components. ing. In many applications, the primary thermal cooling path is from the component to the printed wiring board. Even if there is no underfill or there is an underfill that does not conduct heat well, the only way for the heat from the component to the wiring board is solder. This thermal performance can be improved by adding a thermally conductive filler to the underfill resin. In this field of application, the resin must not be conductive because the component I / O pads must be shorted. Therefore, underfill resins are limited to the use of non-conductive fillers. As with TIM materials, this is a limit on the thermal conductivity that can be reached. Therefore, there is a need for improved compositions that efficiently transfer heat between a printed wiring board and a heat generating component with a non-conductive underfill material.
US patent application Ser. No. 10 / 426,485 US Pat. No. 6,500,951 US Pat. No. 6,265,471 US Pat. No. 6,060,539 US Pat. No. 5,695,872 US Pat. No. 5,026,748 "Thermal Conductive Polymer Compositions," D. M.M. Bigg. , Polymer Compositions, June 1986, Vol. 7, no. 3 “Polymer Handbook”: Branduf, J .; Immergut, E .; H; Gulke, Eric A; Wiley Interscience Publication, New York, 4th ed. (1999) “Polymer Data Handbook” Mark, James Oxford University Press, New York (1999) “Chemistry and Technology of Silicone”, Noll, W .; Academic Press 1968 “Chemistry and Technology of the Epoxy Resins”. Ellis (Ed.) Chapman Hall, New York, 1993 "Epoxy Resins Chemistry and Technology", edited by C.I. A. May, Marcel Dekker, New York, 2nd edition, 1988

それ故、特に非導電性用途において、ヒートシンクと発熱部品との間を効率的に熱伝達する改良された組成物の必要性が存在する。   Therefore, there is a need for improved compositions that efficiently transfer heat between a heat sink and a heat generating component, particularly in non-conductive applications.

本開示の熱伝導組成物は非導電性ミクロン粒度の充填剤粒子及び導電性ナノ粒子の両者を含むポリマーマトリックスである。本開示の熱伝導材料材料は非導電性である。本開示の熱伝導組成物は、ヒートシンクと電気部品との間の熱伝導材料材料として又は携帯電子機器中の電子部品のアンダーフィル材料として使用できる。   The thermally conductive composition of the present disclosure is a polymer matrix that includes both non-conductive micron-sized filler particles and conductive nanoparticles. The thermally conductive material of the present disclosure is non-conductive. The thermally conductive composition of the present disclosure can be used as a thermally conductive material between a heat sink and an electrical component or as an underfill material for an electronic component in a portable electronic device.

本開示には、非導電性ミクロン粒度の充填剤粒子及び導電性ナノ粒子の両者を含む熱伝導組成物と各々接触している発熱部品及びヒートシンク即ち放熱板を含む電子部品も又記載してある。一実施形態においては、電気部品がプリント配線板を含むチップである。   The disclosure also describes a heat generating component and an electronic component including a heat sink or heat sink, each in contact with a thermally conductive composition that includes both non-conductive micron-sized filler particles and conductive nanoparticles. . In one embodiment, the electrical component is a chip that includes a printed wiring board.

本開示の熱伝達効率向上方法は、発熱部品とヒートシンク即ち放熱板との間に、非導電性ミクロン粒度の充填剤粒子及び導電性ナノ粒子の両者を含む熱伝導組成物を介在させる段階を含む。発熱部品がチップであるところでは、熱伝導組成物はチップとプリント配線板の間に置く。   The heat transfer efficiency improving method of the present disclosure includes a step of interposing a heat conductive composition including both non-conductive micron-sized filler particles and conductive nanoparticles between a heat-generating component and a heat sink or heat sink. . Where the heat generating component is a chip, the heat conducting composition is placed between the chip and the printed wiring board.

別の実施形態では、本開示の熱伝達効率向上方法には、大きい粒子を使用できない用途において、チップとプリント配線板との間に、導電性ナノ粒子を含む熱伝導組成物を介在させる段階が含まれる。   In another embodiment, the heat transfer efficiency improving method of the present disclosure includes a step of interposing a heat conductive composition including conductive nanoparticles between a chip and a printed wiring board in an application where large particles cannot be used. included.

本開示はポリマーマトリックス中に非導電性のミクロン粒度の充填剤粒子及び導電性ナノ粒子の両者を含む熱伝導組成物を提供する。導電性ナノ粒子は熱伝導組成物の熱伝導率を増大させるために使用する。本開示で使用する「熱伝導組成物」とは、電気装置内の高温領域から熱を取り去るのに役立つ任意の材料であり、電気機器のヒートシンクと発熱部品との間に置かれた熱伝導材料材料(「TIM」)又はチップと基材との間の間隙を埋めて且つ熱サイクルの間に発生した熱を除去することによってチップで使用したハンダの疲労寿命を改善するために、集積回路パッケージ、即ちチップ、で使用するアンダーフィル材料を含めることができる。本開示は、ポリマーマトリックス中に、ミクロン粒度の粒子を機械的又は光学的要求のために使用できない用途において特に使用に適する、導電性のナノ粒子を含み非導電性のミクロン粒度の充填剤を含まない熱伝導組成物をも又提供する。これらの用途は、ミクロン粒度又はそれより大きい粒子がハンダ接合箇所の欠陥の原因になることがわかっている非流動性アンダーフィル用途、ウェハ切断のために透明な樹脂が要求されるウェハレベルのアンダーフィル用途、及びできてくる材料の光学特性からミクロン粒度の粒子が使えない光通信装置の取り付けにおけるアンダーフィル用途を含むが、これらに限定されない。   The present disclosure provides a thermally conductive composition comprising both non-conductive micron-sized filler particles and conductive nanoparticles in a polymer matrix. Conductive nanoparticles are used to increase the thermal conductivity of the thermally conductive composition. As used in this disclosure, a “thermal conductive composition” is any material that helps remove heat from a high temperature region in an electrical device, and is a thermal conductive material placed between a heat sink and a heat generating component of an electrical device. Integrated circuit package to improve the fatigue life of the solder used in the chip by filling material ("TIM") or the gap between the chip and the substrate and removing the heat generated during the thermal cycle In other words, the underfill material used in the chip can be included. The present disclosure includes non-conductive micron-sized fillers, including conductive nanoparticles, that are particularly suitable for use in applications where micron-sized particles cannot be used due to mechanical or optical requirements. There is also provided a non-heat conducting composition. These applications include non-flowable underfill applications where micron-sized or larger particles are known to cause solder joint defects, wafer level under-requirements where a transparent resin is required for wafer cutting. Including, but not limited to, fill applications and underfill applications in the installation of optical communication devices where micron-sized particles cannot be used due to the optical properties of the resulting material.

熱伝導組成物それ自体は非導電性である。本開示の非導電性のミクロン粒度の充填剤粒子及び導電性ナノ粒子を含むマトリックスは、非導電性のミクロン粒度の充填剤粒子とマトリックスとだけの比較用ブレンドよりも高い熱伝導率に到達できる。ナノ粒子はこのようにマトリックスの全体としての熱伝導度を増大させるが、同時に加工及び操作の容易さは失われない粘度を維持する。さらに、ナノ粒子はミクロン粒度の充填剤は到達不可能な表面の微細孔及び不規則箇所の中に入り込むことができ、それにより表面抵抗の効果を減少させる。   The thermally conductive composition itself is non-conductive. A matrix comprising non-conductive micron-sized filler particles and conductive nanoparticles of the present disclosure can reach higher thermal conductivity than a comparative blend of non-conductive micron-sized filler particles and matrix alone . The nanoparticles thus increase the overall thermal conductivity of the matrix, while at the same time maintaining a viscosity that is not lost in ease of processing and manipulation. In addition, the nanoparticles can penetrate into surface micropores and irregularities that are not reachable by micron-sized fillers, thereby reducing the effect of surface resistance.

本開示で利用する有機マトリックスは、硬化性及び非硬化性マトリックスを含め、如何なるポリマー材料でもよい。適当な有機マトリックスは、ポリジメチルシロキサン樹脂、エポキシ樹脂、アクリル系樹脂、その他の有機官能性ポリシロキサン樹脂、ポリイミド樹脂、フルオロカーボン樹脂、ベンゾシクロブテン樹脂、フッ素化ポリアリルエーテル、ポリアミド樹脂、ポリイミドアミド樹脂、フェノールレゾール樹脂、芳香族ポリエステル樹脂、ポリフェニレンエーテル(PPE)樹脂、ビスマレイミドトリアジン樹脂、フッ素樹脂その他当業者に公知のあらゆるポリマー系をも含むが、これらに限定されない。(一般的なポリマーについては、”Polymer Handbook”:, Branduf, J.,; Immergut, E.H; Grulke, Eric A; Wiley Interscience Publication, New York, 4th ed.(1999)及び”Polymer Data Handbook” Mark, James Oxford University Press, New York (1999)を参照のこと)。 The organic matrix utilized in the present disclosure can be any polymeric material, including curable and non-curable matrices. Suitable organic matrices include polydimethylsiloxane resin, epoxy resin, acrylic resin, other organofunctional polysiloxane resin, polyimide resin, fluorocarbon resin, benzocyclobutene resin, fluorinated polyallyl ether, polyamide resin, polyimide amide resin Phenol resole resin, aromatic polyester resin, polyphenylene ether (PPE) resin, bismaleimide triazine resin, fluororesin and any other polymer system known to those skilled in the art, but is not limited thereto. (For general polymers, "Polymer Handbook" :, Branduf, J,;. Immergut, E.H; Grulke, Eric A;. Wiley Interscience Publication, New York, 4 th ed (1999) and "Polymer Data Handbook "See Mark, James Oxford University Press, New York (1999)).

好ましい硬化性ポリマーマトリックスは、フリーラジカル重合、原子移動ラジカル重合、開環重合、開環メタセシス重合、アニオン重合、カチオン重合その他当業者に公知の方法により架橋ネットワークを形成し得るアクリル系樹脂、エポキシ樹脂、ポリジメチルシロキサン樹脂及びその他の有機官能性ポリシロキサン樹脂である。適当な硬化性シリコーン樹脂には、例えば、”Chemistry and Technology of Silicone”, Noll, W.; Academic Press 1968に記載されている付加硬化性及び縮合硬化性マトリックスが含まれる。   Preferred curable polymer matrices include free radical polymerization, atom transfer radical polymerization, ring-opening polymerization, ring-opening metathesis polymerization, anionic polymerization, cationic polymerization and other acrylic resins and epoxy resins that can form a crosslinked network by methods known to those skilled in the art Polydimethylsiloxane resins and other organofunctional polysiloxane resins. Suitable curable silicone resins include, for example, “Chemistry and Technology of Silicone”, Noll, W .; An addition curable and condensation curable matrix as described in Academic Press 1968.

ポリマーマトリックスが硬化性ポリマーでない場合には、できてくる熱伝導組成物を、ゲル、グリース又は装置の成形及び動作中の熱伝達中に部品が離れないようにしておくことができる相変化材料として造ることが可能である。   If the polymer matrix is not a curable polymer, the resulting heat transfer composition can be a gel, grease or phase change material that can keep the parts from separating during heat transfer during molding and operation of the device. It is possible to build.

本開示の組成物の第2成分は、多数の1種以上のミクロン粒度の充填剤である。ミクロン粒度の充填剤は熱伝導性材料であり、補強性でも又は非補強性でもよい。適当なミクロン粒度の充填剤には、ヒュームドシリカ、溶融シリカ、微粉状石英粉末、非晶質シリカ、カーボンブラック、グラファイト、ダイアモンド、水和アルミナ、金属窒化物(例えば、窒化ホウ素、窒化アルミニウム、及び窒化アルミニウムでコートしたシリカ)、金属酸化物(例えば、アルミニウム、マグネシウム、亜鉛、チタン、ジルコニウム、ベリリウム、又は鉄の酸化物)及びこれらの組合せが含まれる。充填剤は通常、全最終組成物の重量を基準にして、約10〜約95重量%存在する。もっと一般的に充填剤は、全最終分散組成物の重量を基準にして、約30〜約90重量%存在する。   The second component of the composition of the present disclosure is a number of one or more micron sized fillers. Micron-sized fillers are thermally conductive materials and may be reinforcing or non-reinforcing. Suitable micron-sized fillers include fumed silica, fused silica, finely divided quartz powder, amorphous silica, carbon black, graphite, diamond, hydrated alumina, metal nitrides (eg, boron nitride, aluminum nitride, And silica coated with aluminum nitride), metal oxides (eg, oxides of aluminum, magnesium, zinc, titanium, zirconium, beryllium, or iron) and combinations thereof. The filler is typically present from about 10 to about 95% by weight, based on the weight of the total final composition. More generally, the filler is present from about 30 to about 90% by weight, based on the weight of the total final dispersion composition.

ミクロン粒度の充填剤の粒子の粒度は、約1〜約100ミクロンの範囲にあり、約10〜約50ミクロンの範囲が好ましい。ミクロン粒度の充填剤のサイズの選択は、その最終用途における目標の接着剤層の厚さ、通常約10〜約150ミクロン、によって確定する。充填剤粒子のサイズは、それが使われる熱伝導組成物の硬化後の厚さ未満であるべきである。   The particle size of the micron sized filler particles is in the range of about 1 to about 100 microns, with a range of about 10 to about 50 microns being preferred. The choice of micron-sized filler size is determined by the target adhesive layer thickness in its end use, usually from about 10 to about 150 microns. The size of the filler particles should be less than the cured thickness of the heat conductive composition in which it is used.

本開示の組成物の第3成分は導電性ナノ粒子である。本開示で使用する導電性ナノ粒子は、銅、銀、金、白金、パラジウム、グラファイト又はアルミニウムなどの金属、或いはドープしたケイ素又は炭化ケイ素などの半導体材料からなる。本開示で使用する導電性ナノ粒子は、それらの表面に非導電性コーティングを必要としない。   The third component of the composition of the present disclosure is conductive nanoparticles. The conductive nanoparticles used in the present disclosure are made of a metal such as copper, silver, gold, platinum, palladium, graphite or aluminum, or a semiconductor material such as doped silicon or silicon carbide. The conductive nanoparticles used in the present disclosure do not require a non-conductive coating on their surface.

ミクロン粒度の充填剤を有する熱伝導組成物中で使用する場合、導電性ナノ粒子は、通常は全最終組成物の重量を基準にして約3重量%と約50重量%の間の範囲、好ましくは重量で約10%〜30%の範囲で含まれる。この範囲は、体積で熱伝導組成物の約1%〜約25%の範囲、好ましくは体積で全最終組成物の約2%〜約15%の範囲に相当する。   When used in thermally conductive compositions with micron sized fillers, the conductive nanoparticles are usually in the range between about 3% and about 50% by weight, preferably based on the weight of the total final composition. Is included in the range of about 10% to 30% by weight. This range corresponds to a range of about 1% to about 25% of the thermally conductive composition by volume, preferably about 2% to about 15% of the total final composition by volume.

ミクロン粒度の粒子が機械的又は光学的要求のために使用できない熱伝導組成物用途で使用する場合、導電性ナノ粒子は通常、全最終組成物の重量を基準にして、約10〜約85重量%、好ましくは約50〜約75重量%含まれる。   When used in thermally conductive composition applications where micron sized particles cannot be used due to mechanical or optical requirements, the conductive nanoparticles are typically about 10 to about 85 weight based on the weight of the total final composition. %, Preferably about 50 to about 75% by weight.

好ましくは、導電性ナノ粒子は約1〜約250ナノメートルの範囲のサイズのもので、約10〜約100ナノメートルの範囲が好ましい。   Preferably, the conductive nanoparticles are of a size in the range of about 1 to about 250 nanometers, with a range of about 10 to about 100 nanometers being preferred.

本開示の熱伝導組成物は、TIMなどの非導電性用途での使用によく適合しているが、本開示の組成物は又、非導電性であることが要求されるが、熱伝導率、弾性率、誘電率又は屈折率などの他の材料特性の改良が必要な非TIM用途のための樹脂系でも使用できる。かかる材料には、モールド、オーバーモールド、アンダーフィル、ウェハレベルのアンダーフィル、非流動性アンダーフィル及びインターポーザーが含まれる。   Although the thermally conductive compositions of the present disclosure are well suited for use in non-conductive applications such as TIMs, the compositions of the present disclosure are also required to be non-conductive, but the thermal conductivity Resin systems for non-TIM applications that require other material property improvements such as modulus, dielectric constant or refractive index can also be used. Such materials include molds, overmolds, underfills, wafer level underfills, non-flowable underfills and interposers.

ミクロン粒度の充填剤の添加により組成物の熱伝導率は実質的に増加するが、ミクロン粒度の充填剤のポリマーマトリックスの熱伝導率への効果は導電性ナノ粒子の添加によって大きく増幅される。あるミクロン粒度の粒子が別のミクロン粒度の粒子に触れるか又は非常に近くにある領域内の導電性ナノ粒子は、あるミクロン粒度の粒子を別の粒子に熱的に接続する。このことはミクロン粒度の粒子間に、ミクロン粒度粒子間の直接の熱伝導パスに並列して付け加わる熱の通り道を作り出す。このようにして、粒子間及び粒子から表面への熱的連結が増強される。   Although the addition of micron sized fillers substantially increases the thermal conductivity of the composition, the effect of micron sized fillers on the thermal conductivity of the polymer matrix is greatly amplified by the addition of conductive nanoparticles. Conductive nanoparticles in a region where one micron sized particle touches or is very close to another micron sized particle thermally connects one micron sized particle to another. This creates a heat path between the micron-sized particles in parallel with the direct heat conduction path between the micron-sized particles. In this way, the thermal coupling from particle to particle and from particle to surface is enhanced.

例として、熱伝導率約0.12W/m−Kのエポキシアラミドなどのポリマーマトリックスに、80〜90wt%の適当なミクロン粒度の充填剤を加えれば、そのポリマーマトリックスの熱伝導率を約2.0W/m−Kに上げることができる。しかしながら、本開示の導電性ナノ粒子を20〜40重量%加えることにより、ポリマーマトリックスの初めの熱伝導率を0.4〜0.6W/m−Kに上げることができ、ナノ粒子を含まない組成物に比較して3倍〜5倍にできる。このようにして、例えば、熱伝導組成物がTIMである場合、ナノ粒子の入った樹脂に70〜80重量%の適当なミクロン粒度の充填剤を続けて加えると、結果として、ナノ粒子を含まないTIMの2〜3倍に増えた4.0〜6.0W/m−KのTIMができる。ミクロン粒子のみを同程度の高熱伝導率に達するまで添加すると、その結果生成する組成物が非常に粘性になって加工が容易でなくなり、電子装置、特にフリップチップデバイスなどの半導体チップを作製するために必要な流動性がなくなる。さらに、80〜90%の範囲に入るような高重量%で導電性ナノ粒子を充填すれば、TIMが導電性になってしまうであろう。他方、本開示の導電性ナノ粒子を使用すると、充填された樹脂の粘度を、流動特性が不十分になるまで大きく上げることなく、電気的絶縁を保ったまま商業的に使用可能な、増大した熱伝導率を得ることができる。   As an example, if a polymer matrix such as epoxy aramid having a thermal conductivity of about 0.12 W / m-K is added with 80-90 wt% of a suitable micron-sized filler, the thermal conductivity of the polymer matrix is about 2. It can be increased to 0 W / m-K. However, by adding 20-40% by weight of the conductive nanoparticles of the present disclosure, the initial thermal conductivity of the polymer matrix can be increased to 0.4-0.6 W / m-K and does not contain nanoparticles. It can be 3 to 5 times compared to the composition. Thus, for example, if the thermally conductive composition is TIM, adding 70-80% by weight of a suitable micron-sized filler to the resin containing nanoparticles results in the inclusion of nanoparticles. A TIM of 4.0 to 6.0 W / m-K, which is 2 to 3 times higher than a non-TIM If only micron particles are added until the same high thermal conductivity is reached, the resulting composition becomes very viscous and difficult to process, to produce electronic devices, especially semiconductor chips such as flip chip devices. The necessary fluidity is lost. Furthermore, if the conductive nanoparticles are filled at a high weight percentage that falls in the range of 80-90%, the TIM will become conductive. On the other hand, using the conductive nanoparticles of the present disclosure increased the viscosity of the filled resin, which can be used commercially while maintaining electrical insulation, without greatly increasing the flow properties until insufficient. Thermal conductivity can be obtained.

本開示の組成物において、ミクロン粒子はナノ粒子よりも約100〜5000倍大きい。従って本開示のTIMは、約10〜約150ミクロンの範囲の、さらに好ましくは約20〜約70ミクロンの範囲の厚さの接着剤層を有する。   In the compositions of the present disclosure, micron particles are about 100-5000 times larger than nanoparticles. Accordingly, the TIMs of the present disclosure have an adhesive layer with a thickness in the range of about 10 to about 150 microns, more preferably in the range of about 20 to about 70 microns.

本開示によれば、導電性ナノ粒子は、通常非導電性ナノ粒子(コート又は非コート)よりも高い熱伝導率を有し、しかもコートしたナノ粒子よりも製造原価が低い。充填剤と樹脂の間の相分離は起こり難く、保存寿命は長くなり、製品の安定性も得られる。   According to the present disclosure, conductive nanoparticles typically have a higher thermal conductivity than non-conductive nanoparticles (coated or uncoated) and are less expensive to manufacture than coated nanoparticles. Phase separation between filler and resin is unlikely to occur, shelf life is increased, and product stability is also obtained.

ミクロン粒度の充填剤及び導電性ナノ粒子が有機マトリックスと配合されて、本開示の組成物を形成する。ナノ粒子及びミクロン粒度の充填剤を有機マトリックスと配合するのを促進するために、1種又は2種以上の溶媒を、適宜組成物に加えることができる。適当な溶媒には、イソプロパノール、1−メトキシ−2−プロパノール、酢酸1−メトキシ−2−プロピル、トルエン、キシレン、n−メチルピロリドン、ジクロロベンゼン及びこれらの組合せが含まれるが、これらに限定されない。   Micron-sized fillers and conductive nanoparticles are blended with an organic matrix to form the composition of the present disclosure. One or more solvents can be added to the composition as appropriate to facilitate blending the nanoparticles and micron sized fillers with the organic matrix. Suitable solvents include, but are not limited to, isopropanol, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, toluene, xylene, n-methylpyrrolidone, dichlorobenzene, and combinations thereof.

ナノ粒子及びミクロン粒度の充填剤を有機マトリックスと配合する方法は、決定的に重要というものではない。   The method of blending nanoparticles and micron-sized fillers with the organic matrix is not critical.

組成物は、酸性又は塩基性不純物を除くために、酸又は塩基で又はイオン交換樹脂で処理できる。この組成物は、約0.5Torr(0.066kPa)と約250Torr(3.3kPa)の間の範囲及び約20℃と約140℃の間の範囲の温度で真空に引いて、溶媒、残存水、及びそれらの組合せなどのあらゆる低沸点成分を、実質的に除去することができて好都合である。その結果得られるものは、ナノ粒子及びミクロン粒度の充填剤が有機マトリックスに分散したもので、本開示では最終分散物又は最終組成物と称する。低沸点成分の実質的除去とは、本開示においては、低沸点成分の総量の少なくとも約90% の除去として定義する。   The composition can be treated with an acid or base or with an ion exchange resin to remove acidic or basic impurities. The composition is evacuated at a temperature between about 0.5 Torr (0.066 kPa) and about 250 Torr (3.3 kPa) and between about 20 ° C. and about 140 ° C. to remove solvent, residual water Advantageously, any low boiling components such as, and combinations thereof can be substantially removed. The result is a nanoparticle and micron sized filler dispersed in an organic matrix, referred to in this disclosure as the final dispersion or final composition. Substantial removal of low boiling components is defined in this disclosure as removal of at least about 90% of the total amount of low boiling components.

本開示の組成物中のナノ粒子の存在は、ミクロン粒度の充填剤が含まれるとき、組成物の安定性をも改良する。ナノ粒子はミクロン粒度の充填剤の沈降を防止するか又はその速度を減少させ、その結果インターフェイス材料中の充填剤不在層のできやすさを抑える。従って、本開示の熱伝導組成物の導電性ナノ粒子は、ミクロン粒度の充填剤を含むポリマー組成物の相分離を遅延させるためにも又使用できる。ポリマー組成物は、ポリマーマトリックスを用意して、それとポリマー組成物を造るためのミクロン粒度の充填剤とをブレンドして、次に導電性ナノ粒子とポリマー組成物とをブレンドすることによって製造する。   The presence of nanoparticles in the composition of the present disclosure also improves the stability of the composition when micron sized fillers are included. The nanoparticles prevent or reduce the settling of micron sized fillers, thereby reducing the likelihood of a filler-free layer in the interface material. Thus, the conductive nanoparticles of the heat conductive composition of the present disclosure can also be used to retard phase separation of polymer compositions containing micron sized fillers. The polymer composition is prepared by providing a polymer matrix, blending it with a micron particle size filler to make the polymer composition, and then blending the conductive nanoparticles with the polymer composition.

本開示の組成物は他に追加された材料も含んでよい。例えば、最終組成物の硬化を促進するために、最終分散物に硬化触媒を添加することができる。通常触媒添加量は、硬化すべき組成物全体の重量を基準にして約百万分の10部(ppm)と約2%未満との間の範囲である。カチオン硬化触媒の例には、ビスアリルヨードニウム塩(例えば、ヘキサフルオロアンチモン酸ビス(ドデシルフェニル)ヨードニウム、ヘキサフルオロアンチモン酸(オクチルオキシフェニル,フェニル)ヨードニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ビスアリルヨードニウム)、トリアリルスルホニウム塩、及びこれらの組合せなどのオニウム触媒が含まれるが、これらに限定されない。ラジカル硬化触媒には、種々の過酸化物(例えばtert−ブチルペルオキシベンゾエート)、アゾ化合物(例えば2,2’−アゾビス−イソブチルニトリル)及びニトロキシド(例えば4−ヒドロキシ−2,2,6,6−テトラメチルピペリジニルオキシ(即ち4−ヒドロキシTEMPO))が含まれるが、これらに限定されない。付加硬化性シリコーン樹脂に対して好ましい触媒は、種々の8〜10族の遷移金属(例えば、ルテニウム、ロジウム、白金)錯体である。縮合硬化性シリコーンに対して好ましい触媒は、有機スズ又は有機チタン錯体である。触媒の細目にわたる構造は当業者に公知のものである。   The compositions of the present disclosure may also include other added materials. For example, a curing catalyst can be added to the final dispersion to promote curing of the final composition. Usually the amount of catalyst added ranges between about 10 parts per million (ppm) and less than about 2% based on the weight of the entire composition to be cured. Examples of cationic curing catalysts include bisallyliodonium salts (eg, bis (dodecylphenyl) hexafluoroantimonate, iodonium hexafluoroantimonate (octyloxyphenyl, phenyl) iodonium, bisallyliodonium tetrakis (pentafluorophenyl) borate). ), Triallylsulfonium salts, and combinations thereof, including but not limited to. Radical curing catalysts include various peroxides (eg tert-butylperoxybenzoate), azo compounds (eg 2,2′-azobis-isobutylnitrile) and nitroxides (eg 4-hydroxy-2,2,6,6-). Tetramethylpiperidinyloxy (ie, 4-hydroxy TEMPO)), but is not limited thereto. Preferred catalysts for addition curable silicone resins are various Group 8-10 transition metal (eg ruthenium, rhodium, platinum) complexes. Preferred catalysts for condensation curable silicones are organotin or organotitanium complexes. The detailed structure of the catalyst is known to those skilled in the art.

カチオン硬化性ポリマーマトリックスに対しては、場合によって効果的な量のフリーラジカル発生化合物を、適宜使用の試薬として添加することができる。適当なフリーラジカル発生化合物には、芳香族ピナコール、ベンゾインアルキルエーテル、有機過酸化物、及びこれらの組合せが含まれる。フリーラジカル発生化合物は比較的低温でオニウム塩の分解を促進する。   For the cationic curable polymer matrix, an effective amount of a free radical generating compound can be appropriately added as a reagent for use. Suitable free radical generating compounds include aromatic pinacols, benzoin alkyl ethers, organic peroxides, and combinations thereof. Free radical generating compounds promote the decomposition of onium salts at relatively low temperatures.

エポキシ樹脂に対しては、カルボン酸無水物硬化剤及びヒドロキシ基を有する有機化合物などの硬化剤を、適宜使用の試薬として、硬化触媒と共に添加することができる。これらの場合には硬化触媒は、アミン、アルキル置換イミダゾール、イミダゾリウム塩、ホスフィン、金属塩、トリフェニルホスフィン、アルキル−イミダゾール、アルミニウムアセチルアセトネート及びこれらの組合せから選ぶことができるが、これらに限定されない。多官能性アミンなどの硬化剤は、架橋剤として適宜併用できる。代表的なアミンには、エチレンジアミン、プロピレンジアミン、1,2−フェニレンジアミン、1,3−フェニレンジアミン、1,4−フェニレンジアミン、及び2又は3以上のアミノ基を含む任意の他の化合物が含まれるが、これらに限定されない。   To the epoxy resin, a curing agent such as a carboxylic anhydride curing agent and an organic compound having a hydroxy group can be added as a reagent for use together with a curing catalyst. In these cases, the curing catalyst can be selected from, but not limited to, amines, alkyl-substituted imidazoles, imidazolium salts, phosphines, metal salts, triphenylphosphine, alkyl-imidazoles, aluminum acetylacetonates, and combinations thereof. Not. A curing agent such as a polyfunctional amine can be used in combination as a crosslinking agent. Exemplary amines include ethylene diamine, propylene diamine, 1,2-phenylene diamine, 1,3-phenylene diamine, 1,4-phenylene diamine, and any other compound containing two or more amino groups. However, it is not limited to these.

エポキシ樹脂に対して、代表的な無水物硬化剤には、通常、メチルヘキサヒドロフタル酸無水物、1,2−シクロヘキサンジカルボン酸無水物、ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物、フタル酸無水物、ピロメリット酸二無水物、ヘキサヒドロフタル酸無水物、ドデセニルコハク酸無水物、ジクロロマレイン酸無水物、クロレンド酸無水物、テトラクロロフタル酸無水物等々が含まれる。少なくとも2種の無水物硬化剤を含む組合せも又使用してよい。説明となる例が、"Chemistry and Technology of the Epoxy Resins" B. Ellis (Ed.) Chapman Hall, New York, 1993及び"EpoxyResins Chemistry and Technology", edited by C. A. May, Marcel Dekker, New York, 2nd edition, 1988に記載されている。   For epoxy resins, typical anhydride curing agents typically include methylhexahydrophthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, bicyclo [2.2.1] hept-5-ene- 2,3-dicarboxylic acid anhydride, methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid anhydride, phthalic acid anhydride, pyromellitic dianhydride, hexahydrophthalic acid anhydride Products, dodecenyl succinic anhydride, dichloromaleic anhydride, chlorendic anhydride, tetrachlorophthalic anhydride and the like. Combinations comprising at least two anhydride hardeners may also be used. Illustrative examples are "Chemistry and Technology of the Epoxy Resins" B. Ellis (Ed.) Chapman Hall, New York, 1993 and "EpoxyResins Chemistry and Technology", edited by CA May, Marcel Dekker, New York, 2nd edition , 1988.

付加硬化性シリコーン樹脂に対しては、多官能性Si−H含有液状シリコーンなどの架橋剤を、Si−H対ビニルのモル比が調合後で0.5〜5.0及び好ましくは0.9〜2.0の範囲に入るようにして併用することができる。   For addition curable silicone resins, a cross-linking agent such as a polyfunctional Si-H containing liquid silicone may be added at a molar ratio of Si-H to vinyl of 0.5 to 5.0 and preferably 0.9. It can be used in combination so as to fall within the range of ~ 2.0.

付加硬化性シリコーン樹脂に対しては、硬化特性を改良して所望の貯蔵寿命を達成するために、適宜、禁止剤を含ませることが可能である。禁止剤には、ホスフィン化合物、アミン化合物、イソシアヌレート、アルキニルアルコール、マレイン酸エステルその他当業者に公知の化合物が含まれるが、これらに限定されない。   For addition curable silicone resins, inhibitors can be included as appropriate to improve the curing properties and achieve the desired shelf life. Inhibitors include, but are not limited to, phosphine compounds, amine compounds, isocyanurates, alkynyl alcohols, maleates and other compounds known to those skilled in the art.

反応性の有機希釈剤も又、硬化性組成物全体に、組成物の粘度を下げるために加えてよい。反応性希釈剤の例には、3−エチル−3−ヒドロキシメチル−オキセタン、ドデシルグリシジルエーテル、4−ビニル−1−シクロヘキサンジエポキシド、ジ(ベータ−(3,4−エポキシシクロヘキシル)エチル)−テトラメチルジシロキサン、種々のジエン(例えば1,5−ヘキサジエン)、アルケン(例えばn−オクテン)、スチレン系化合物、アクリレート又はメタクリレートを含む化合物(例えばメタクリロキシプロピルトリメトキシシラン)及びこれらの組合せが含まれるが、これらに限定されない。非反応性希釈剤も又、組成物に調合物の粘度を下げるために加えてよい。非反応性希釈剤の例には、低沸点脂肪族炭化水素(例えばオクタン)、トルエン、酢酸エチル、酢酸ブチル、酢酸1−メトキシプロピル、エチレングリコールジメチルエーテル、及びこれらの組合せが含まれるが、これらに限定されない。   Reactive organic diluents may also be added to the overall curable composition to reduce the viscosity of the composition. Examples of reactive diluents include 3-ethyl-3-hydroxymethyl-oxetane, dodecyl glycidyl ether, 4-vinyl-1-cyclohexane diepoxide, di (beta- (3,4-epoxycyclohexyl) ethyl) -tetra Includes methyldisiloxane, various dienes (eg 1,5-hexadiene), alkenes (eg n-octene), styrenic compounds, compounds containing acrylates or methacrylates (eg methacryloxypropyltrimethoxysilane) and combinations thereof However, it is not limited to these. Non-reactive diluents may also be added to the composition to reduce the viscosity of the formulation. Examples of non-reactive diluents include low boiling aliphatic hydrocarbons (eg, octane), toluene, ethyl acetate, butyl acetate, 1-methoxypropyl acetate, ethylene glycol dimethyl ether, and combinations thereof. It is not limited.

接着促進剤も又最終分散物に添加することができて、それにはトリアルコキシオルガノシラン(例えばγ−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、フマル酸ビス(トリメトキシシリルプロピル))が含まれ、効果的な量で、通常は、全最終分散物の約0.01重量%と約2重量%の間の範囲で使用する。   Adhesion promoters can also be added to the final dispersion, including trialkoxyorganosilanes such as γ-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, bis (trimethoxysilylpropyl fumarate). )) Is included and is used in an effective amount, usually in the range between about 0.01% and about 2% by weight of the total final dispersion.

難燃剤は、適宜全最終組成物量に対して約0.5重量%と約20重量%の間の範囲で最終分散物に添加することができる。難燃剤の例には、ホスフォルアミド、リン酸トリフェニル(TPP)、レゾルシノール二リン酸(RDP)、ビスフェノール−a−二リン酸(BPA−DP)、有機ホスフィンオキシド、ハロゲン化エポキシ樹脂(テトラブロモビスフェノールA)、金属酸化物、金属水酸化物、及びこれらの組合せが含まれる。   The flame retardant can be added to the final dispersion as appropriate, in the range between about 0.5% and about 20% by weight relative to the total final composition amount. Examples of flame retardants include phosphoramide, triphenyl phosphate (TPP), resorcinol diphosphate (RDP), bisphenol-a-diphosphate (BPA-DP), organic phosphine oxide, halogenated epoxy resins (tetra Bromobisphenol A), metal oxides, metal hydroxides, and combinations thereof are included.

本開示の組成物を調製するために、有機マトリックスよりも熱伝導率の大きい他の非導電性ナノ粒子も、導電性ナノ粒子と併せて使用することができる。追加に適当な非導電性ナノ粒子には、コロイダルシリカ、多面体オリゴマーシルセスキオキサン(「POSS」)、ナノサイズの金属酸化物(例えば、アルミナ、チタニア、ジルコニア)、及びナノサイズの金属窒化物(例えば、窒化ホウ素、窒化アルミニウム)が含まれるが、これらに限定されない。特に有用な実施形態においては、追加のナノ粒子はそれらが有機マトリックス中に一体化するのを増進するために、官能基をもたせるのであり、有機官能基を付けたPOSS材料又はコロイダルシリカがその例である。コロイダルシリカの粒子サイズは通常、約1ナノメートル(「nm」)と約250nmの間の範囲内にあり、もっと普通には約5nmと約150nmの間の範囲内にある。   Other non-conductive nanoparticles that have a higher thermal conductivity than the organic matrix can also be used in conjunction with the conductive nanoparticles to prepare the compositions of the present disclosure. Additional suitable non-conductive nanoparticles include colloidal silica, polyhedral oligomeric silsesquioxane (“POSS”), nano-sized metal oxides (eg, alumina, titania, zirconia), and nano-sized metal nitrides. (For example, but not limited to boron nitride, aluminum nitride). In a particularly useful embodiment, the additional nanoparticles have functional groups to enhance their integration into the organic matrix, such as organic functionalized POSS materials or colloidal silica. It is. The particle size of colloidal silica is typically in the range between about 1 nanometer (“nm”) and about 250 nm, and more usually in the range between about 5 nm and about 150 nm.

最終組成物は、手で混合することができ、又はドウミキサー、チェンジカンミキサー、プラネタリーミキサー、2軸スクリュー押出し機、2本又は3本ロールミル等々などの標準的な混合装置によって混合することができる。組成物の成分のブレンドは、当業者に使われる任意の方法により、回分式、連続式、又は半連続式で実施できる。   The final composition can be mixed by hand or by standard mixing equipment such as a dough mixer, change can mixer, planetary mixer, twin screw extruder, two or three roll mill, etc. it can. The blending of the components of the composition can be performed in a batch, continuous, or semi-continuous manner by any method used by those skilled in the art.

硬化工程は当業者に公知の任意の方法により実施できる。硬化は、熱硬化、紫外線硬化、マイクロ波硬化、電子線硬化及びこれらの組合せなどの方法によって行う。硬化は通常約20℃と約250℃の間の範囲内の、もっと普通には約20℃と約150℃の間の範囲内の温度で起こる。硬化は、通常約1気圧(「atm」)(0.10MPa)と平方インチ当り約5トン(77.2MPa)の間の範囲内及びもっと普通には約1気圧(0.10MPa)と平方インチ当り約100ポンド(「psi」)(0.69MPa)の間の範囲内の圧力下で起こる。さらに、硬化は、通常約30秒と約5時間の間の範囲内、及びもっと普通には約90秒と約60分の間の範囲内の時間で起こる。硬化した組成物は、適宜、約100℃と約150℃の間の範囲内の温度で、約1時間と約4時間の間の範囲内の時間をかけて後硬化させることができる。   The curing step can be performed by any method known to those skilled in the art. Curing is performed by methods such as thermal curing, ultraviolet curing, microwave curing, electron beam curing, and combinations thereof. Curing typically occurs at a temperature in the range between about 20 ° C and about 250 ° C, more usually in the range between about 20 ° C and about 150 ° C. Curing is typically in the range between about 1 atmosphere (“atm”) (0.10 MPa) and about 5 tons per square inch (77.2 MPa) and more usually about 1 atmosphere (0.10 MPa) and square inches. Occurs under pressures in the range between about 100 pounds per pound ("psi") (0.69 MPa). In addition, curing typically occurs in a time range between about 30 seconds and about 5 hours, and more usually in a range between about 90 seconds and about 60 minutes. The cured composition can optionally be post-cured at a temperature in the range between about 100 ° C. and about 150 ° C. for a time in the range between about 1 hour and about 4 hours.

導電性ナノ粒子の添加は、特に電気部品の部品間のように非導電性の用途の任意の2つの物体の間に置かれたときに、改良した熱伝導率を提供するベースポリマーマトリックスの全体としての熱伝導率を上げるために使われる。さらに本開示の熱伝導組成物は、熱が伝達されるべき任意の2つの部品の表面にもともと存在する熱流に対する界面抵抗を減少させる。本開示の熱伝導組成物は、コンピュータ、半導体などの電子工学における装置、又は部品間の伝熱が必要な任意の装置において使用できる。   The addition of conductive nanoparticles provides an overall base polymer matrix that provides improved thermal conductivity, especially when placed between any two objects in non-conductive applications, such as between electrical component parts. Used to increase the thermal conductivity. Furthermore, the thermally conductive composition of the present disclosure reduces the interfacial resistance to heat flow that is inherently present on the surface of any two parts to which heat is to be transferred. The thermally conductive compositions of the present disclosure can be used in electronic devices such as computers, semiconductors, or any device that requires heat transfer between components.

ある実施形態では、電子部品が発熱部品として半導体チップを含んでいる。かかる場合、発熱部品になり得るものは、チップキャリア、エリアアレイパッケージ、チップスケールパッケージ、又はその他の半導体パッケージ構造である。他の実施形態では、半導体チップそれ自体が発熱部品である。   In one embodiment, the electronic component includes a semiconductor chip as a heat generating component. In such a case, the heat generating component may be a chip carrier, an area array package, a chip scale package, or other semiconductor package structure. In other embodiments, the semiconductor chip itself is a heat generating component.

本開示の熱伝導組成物の塗工は、如何なる当業者によっても達成可能である。従来法には、スクリーン印刷、ステンシル印刷、注入分配及びピックアンドプレイス装置が含まれる。   Application of the thermally conductive composition of the present disclosure can be accomplished by any person skilled in the art. Conventional methods include screen printing, stencil printing, injection dispensing and pick and place equipment.

別の態様では、本開示の組成物はシートに成形して、任意の所望の形に切ることができる。この実施形態で本開示の組成物は、電子部品の間に置き得る予備成形した熱伝導性パッドを作ることに使用できて、有利である。   In another aspect, the composition of the present disclosure can be formed into a sheet and cut into any desired shape. In this embodiment, the composition of the present disclosure can be advantageously used to make a preformed thermally conductive pad that can be placed between electronic components.

ここで、これから添付図面を参照して、本開示をさらに詳細に説明する。図1は本開示の非導電性TIM10の断面である。TIMは電子装置12とヒートシンク即ち放熱板14との間に置かれている。TIM材料は、エポキシ系又はシリコーン系材料などのポリマー樹脂16で、それが又多数の非導電性のミクロン粒度の粒子18及びそれよりも小さい導電性ナノ粒子20を含んでいる。TIMは通常約10〜約150ミクロン、好ましくは約20〜約70ミクロンの接着剤層厚さを有していて、如何なる空隙も埋めて、熱伝達を容易にする。   The present disclosure will now be described in further detail with reference to the accompanying drawings. FIG. 1 is a cross section of a non-conductive TIM 10 of the present disclosure. The TIM is placed between the electronic device 12 and a heat sink or heat sink 14. The TIM material is a polymer resin 16 such as an epoxy-based or silicone-based material, which also includes a number of non-conductive micron-sized particles 18 and smaller conductive nanoparticles 20. The TIM typically has an adhesive layer thickness of about 10 to about 150 microns, preferably about 20 to about 70 microns, filling any voids to facilitate heat transfer.

図2は、図1で示したTIMシステムの断面図の拡大である。この図は2つのミクロン粒度の充填剤粒子18と多数の導電性ナノ粒子20を図示している。この図はあるミクロン粒度の充填剤粒子18と装置表面12との間及び2つのミクロン粒度の充填剤粒子の間の界面領域を強調している。導電性ナノ粒子は樹脂16の領域全体内と同様にこれらの界面区域に存在している。このTIMシステムにおける重要な熱的改良は、3つの界面区域、即ちミクロン粒度の充填剤粒子18から電子装置表面12への区域、ミクロン粒度の充填剤粒子18からミクロン粒度の充填剤粒子18への区域、及びミクロン粒度の充填剤粒子18からヒートシンク(放熱板)14の表面区域(示していない)における改良された熱伝導効果である。   FIG. 2 is an enlarged cross-sectional view of the TIM system shown in FIG. This figure illustrates two micron sized filler particles 18 and a number of conductive nanoparticles 20. This figure highlights the interfacial area between a micron sized filler particle 18 and the device surface 12 and between two micron sized filler particles. Conductive nanoparticles are present in these interfacial areas as well as within the entire region of resin 16. Significant thermal improvements in this TIM system include three interfacial areas: the area from the micron sized filler particles 18 to the electronic device surface 12, the micron sized filler particles 18 to the micron sized filler particles 18. This is an improved heat conduction effect in the area and surface area (not shown) of the heat sink 14 from the micron-sized filler particles 18.

図3は導電性ナノ粒子20及びこれらの粒子がミクロン粒度粒子18からミクロン粒度粒子18への熱伝導率を改善できることを示すTIM拡大部分の断面である。あるミクロン粒度の粒子が別のミクロン粒度の粒子に接触しているか又は非常に接近している領域にある導電性ナノ粒子は、あるミクロン粒度の粒子を別のミクロン粒度の粒子に熱的に連結する。このことはミクロン粒度18の粒子間に、ミクロン粒度粒子間の直接の熱伝導パスに並列して付け加わる複数の熱の通り道を作り出す。ミクロン粒度の粒子が非導電性である限り、導電性ナノ粒子が装置から基材への電気伝導の通路を作ることはない。   FIG. 3 is a cross-section of a TIM enlargement showing conductive nanoparticles 20 and their ability to improve thermal conductivity from micron-sized particles 18 to micron-sized particles 18. Conductive nanoparticles in a region where one micron-sized particle is in contact with or very close to another micron-sized particle thermally couples one micron-sized particle to another micron-sized particle To do. This creates a plurality of heat paths between the micron sized 18 particles in parallel with the direct thermal conduction path between the micron sized particles. As long as the micron-sized particles are non-conductive, the conductive nanoparticles do not create a path for electrical conduction from the device to the substrate.

しかし、ナノ粒子が配向して導電性ナノ粒子が長く数珠つながりになって、TIM接着層を通る直接の電気接続を形成することは、理論的には可能であるものの、TIM中の粒子の量とサイズの組合せから、かかる配向は実際には不可能である。目標のTIM厚さ(10〜150ミクロンの範囲内)、TIM中のナノ粒子の量(重量で約3〜約50%、体積で1〜25%)、及び好ましいナノ粒子サイズ(10〜100ナノメートル)を考慮すると、TIMが導電性になるためには、全て連続した通路で接している200〜5000の導電性ナノ粒子が数珠つなぎになったものが、電子装置12の表面からヒートシンク(放熱板)14の表面に到達できなければならないであろう。当業者に容易にわかるように、特にミクロン粒度の非導電性粒子が存在して導電性ナノ粒子が作る短い通電路を必然的に遮断し、全体としての接続を絶縁するであろう、電子装置12とヒートシンク(放熱板)14との間に、導電性ナノ粒子が連続した通電路を形成し、及びそれにより電気接続を形成することは不可能であろう。   However, although it is theoretically possible that the nanoparticles are oriented and the conductive nanoparticles are long and chained to form a direct electrical connection through the TIM adhesive layer, the amount of particles in the TIM Such an orientation is practically impossible due to the combination of and size. Target TIM thickness (within 10 to 150 microns), amount of nanoparticles in TIM (about 3 to about 50% by weight, 1 to 25% by volume), and preferred nanoparticle size (10 to 100 nanometers) In order for the TIM to become conductive, 200 to 5000 conductive nanoparticles that are all in contact with each other in a continuous path are connected in a daisy chain from the surface of the electronic device 12 (heat dissipation). Plate) 14 surface would have to be reachable. As will be readily appreciated by those skilled in the art, electronic devices that will inevitably block short electrical paths created by conductive nanoparticles, especially in the presence of non-conductive particles of micron size, and insulate the overall connection It would be impossible for the conductive nanoparticles to form a continuous current path between the heat sink 12 and the heat sink 14 and thereby form an electrical connection.

別の実施形態では、本開示の組成物はアンダーフィル材料として電子部品に使用することができる。この実施形態では、導電性ナノ粒子を非導電性ミクロン粒度の粒子をも含むポリマー樹脂に添加するが、その結果生成するマトリックス系は非導電性で、電子部品のためのアンダーフィル材料として使用される。その電子部品は電子部品をプリント配線板に電気的に接続するためにハンダ球を使用するものである。かかる場合、本開示の組成物の用途は、通常、プリント配線板上への部品の組み立て及びハンダのリフローの後になる。別の方法として、部品の取り付けに先立って、配線板にアンダーフィル樹脂を付けることができる。この方法では、樹脂を硬化させているときに、ハンダをリフローする。別の方法では、多数の電子部品及びハンダ球のアレイを含む半導体ウェハに熱伝導性のアンダーフィル樹脂を塗工することが含まれる。ウェハ切断による各部品への分離に続いて、部品をプリント配線板に取り付ける。この方法では、樹脂を硬化するときにハンダをリフローする。   In another embodiment, the composition of the present disclosure can be used in electronic components as an underfill material. In this embodiment, conductive nanoparticles are added to a polymer resin that also contains non-conductive micron-sized particles, but the resulting matrix system is non-conductive and used as an underfill material for electronic components. The The electronic component uses a solder ball to electrically connect the electronic component to a printed wiring board. In such cases, the use of the composition of the present disclosure is usually after assembly of the parts on the printed wiring board and reflow of the solder. Alternatively, an underfill resin can be applied to the wiring board prior to component mounting. In this method, the solder is reflowed while the resin is cured. Another method involves applying a thermally conductive underfill resin to a semiconductor wafer that includes an array of multiple electronic components and solder balls. Following separation into individual parts by wafer cutting, the parts are attached to a printed wiring board. In this method, the solder is reflowed when the resin is cured.

図4は、部品表面38、配線板表面40及びハンダ球32を封止している熱伝導性アンダーフィル36のついたプリント配線板34にハンダ球32によって電気的に接続している発熱部品30の拡大部分の断面である。熱伝導性樹脂16は導電性ナノ粒子20及び非導電性ミクロン粒度粒子18の両者を含んでいる。熱伝導性アンダーフィルは部品と配線板との間の50〜500ミクロンの間隙を満たしている。   FIG. 4 shows a heat generating component 30 electrically connected by a solder ball 32 to a printed wiring board 34 with a thermally conductive underfill 36 sealing the component surface 38, the wiring board surface 40 and the solder ball 32. FIG. The thermally conductive resin 16 includes both conductive nanoparticles 20 and non-conductive micron-sized particles 18. The thermally conductive underfill fills the 50-500 micron gap between the component and the wiring board.

さらに別の実施形態では、導電性ナノ粒子をミクロン粒度の粒子を含まないポリマー樹脂に添加する。その結果生成したマトリックス系は非導電性で、その樹脂は電子部品をプリント配線板に電気的に接続するためにハンダ球を使用する電子部品のアンダーフィル材料として使われる。これらの用途には、ミクロン粒度又はそれよりも大きい粒子がハンダ接合箇所に欠陥を生ずることがわかっている非流動性アンダーフィルへの塗工、ウェハ切断のために透明な樹脂が要求されるウェハレベルのアンダーフィルへの塗工、及び生成する材料の光学的性質からミクロン粒度の粒子は使えない光通信装置の取り付けにおける塗工が含まれるが、これらに限定されない。   In yet another embodiment, the conductive nanoparticles are added to a polymer resin that does not include micron-sized particles. The resulting matrix system is non-conductive and the resin is used as an underfill material for electronic components that use solder balls to electrically connect the electronic components to the printed wiring board. For these applications, wafers that require a transparent resin for application to non-flowable underfill, where wafers with micron size or larger particles are known to cause defects in solder joints, and wafer cutting Application to level underfill, and application in the installation of optical communication devices where micron-sized particles cannot be used due to the optical properties of the resulting material include, but are not limited to.

本開示の熱伝達性を向上させる方法には、発熱部品とポリマーマトリックス、少なくとも1ミクロン粒度の充填剤、及び導電性ナノ粒子のブレンドを含む非導電性の熱伝導組成物とを接触させて配置すること及びヒートシンクを熱伝導組成物と接触させて配置することが含まれる。電子部品がチップである場合、この発熱部品はプリント配線板に接触させて置き、且つ部品とプリント配線板の1以上の電気接点との間に電気接続を形成する。熱伝導組成物、それはポリマーマトリックス、少なくとも1ミクロン粒度の充填剤及び導電性ナノ粒子のブレンドを含むが、それを部品とプリント配線板の間に入れて、それで熱伝導組成物が1以上の電気接続を封止する。別の実施形態では、1以上の電気接続を封止するために使用する熱伝導組成物には、ポリマーマトリックスと導電性ナノ粒子のブレンドが含まれる。   The method of improving heat transfer of the present disclosure includes placing a heat generating component and a non-conductive heat conductive composition in contact with a polymer matrix, a filler of at least 1 micron particle size, and a blend of conductive nanoparticles. And placing the heat sink in contact with the thermally conductive composition. When the electronic component is a chip, the heat generating component is placed in contact with the printed wiring board and an electrical connection is formed between the component and one or more electrical contacts of the printed wiring board. A thermally conductive composition, which comprises a polymer matrix, a blend of at least 1 micron sized filler and conductive nanoparticles, is placed between the component and the printed wiring board so that the thermally conductive composition has one or more electrical connections. Seal. In another embodiment, the thermally conductive composition used to seal one or more electrical connections includes a blend of a polymer matrix and conductive nanoparticles.

その他の実施形態で、熱伝達を増大するための方法は、本開示の熱伝導組成物を、複数の電気接点を含むダイ部位が複数ある半導体ウェハに添付すること及び1以上のハンダ球を複数の接点に配設することを含む。熱伝導組成物は、1以上のハンダ球の頂点が露出するように部分硬化させ、その時間経過後ウェハを個々の半導体チップに切断する。それから個々のチップをプリント配線板上に配置して、プリント配線板の1以上の電気接点と1以上の電気接続を形成するように1以上のハンダ球が並ぶようにする。それから部品と配線板を加熱して、ハンダ球を熔かすと同時に熱伝導組成物を硬化させ、その後それらを冷やしてハンダ球を固化し、且つ熱伝導組成物が1以上の電気接続を封止するように熱伝導組成物を硬化させる。   In other embodiments, a method for increasing heat transfer includes attaching a thermally conductive composition of the present disclosure to a semiconductor wafer having a plurality of die sites including a plurality of electrical contacts and a plurality of one or more solder balls. Disposing at the contact point. The thermally conductive composition is partially cured so that the apexes of one or more solder balls are exposed, and after that time, the wafer is cut into individual semiconductor chips. The individual chips are then placed on a printed wiring board so that one or more solder balls are aligned to form one or more electrical contacts and one or more electrical contacts on the printed wiring board. The components and wiring board are then heated to melt the solder balls and at the same time cure the thermal conductive composition, then cool them to solidify the solder balls, and the thermal conductive composition seals one or more electrical connections. The heat conductive composition is cured as follows.

本開示を代表的な実施形態で例証し説明したが、本開示の趣旨から離れることなく種々な改良及び置き換えが可能であるから、示した詳細に限定するものではない。そのように、ここで開示した本開示のさらなる改良及び同等のことは当業者にとって日常的に過ぎない実験を使ってできることであり、かかる改良及び同等のことは全て、次の特許請求の範囲によって規定したように本開示の趣旨及び意図の範囲内であると信じられる。   While the present disclosure has been illustrated and described with exemplary embodiments, it is not intended to be limited to the details shown because various modifications and substitutions can be made without departing from the spirit of the present disclosure. As such, further modifications and equivalents of the present disclosure disclosed herein may be made using routine experimentation for those of ordinary skill in the art, all such modifications and equivalents being defined by the following claims. It is believed that it is within the spirit and intent of this disclosure as specified.

ミクロン粒度の充填剤粒子及び導電性ナノ粒子の両者を含む非導電性TIMの断面図である。1 is a cross-sectional view of a non-conductive TIM that includes both micron-sized filler particles and conductive nanoparticles. FIG. 導電性ナノ粒子が如何にしてミクロン粒度の充填剤粒子と電子装置との間の熱伝導率を改善するかを示す図1の一部の拡大図である。FIG. 2 is an enlarged view of a portion of FIG. 1 showing how conductive nanoparticles improve thermal conductivity between micron-sized filler particles and an electronic device. ミクロン粒度の充填剤粒子同士間の熱伝導率を改善する導電性ナノ粒子を示すTIM断面の拡大部分の図である。FIG. 4 is an enlarged view of a TIM cross section showing conductive nanoparticles that improve thermal conductivity between micron-sized filler particles. ミクロン粒度の充填剤粒子同士間の熱伝導率を改善する導電性ナノ粒子を利用する電気絶縁性アンダーフィル材料断面の拡大部分の図である。FIG. 4 is an enlarged view of a cross section of an electrically insulating underfill material that utilizes conductive nanoparticles that improve the thermal conductivity between micron-sized filler particles.

Claims (10)

ポリマーマトリックス(16)と1種以上のミクロン粒度の充填材(18)と導電性ナノ粒子(20)とのブレンドを含んでなる熱伝導組成物であって、非導電性である熱伝導組成物(10)。 A thermally conductive composition comprising a blend of a polymer matrix (16), one or more micron-sized fillers (18) and conductive nanoparticles (20), wherein the thermally conductive composition is non-conductive. (10). ミクロン粒度の充填剤(18)が、ヒュームドシリカ、溶融シリカ、微粉状石英粉末、非晶質シリカ、カーボンブラック、グラファイト、ダイアモンド、水和アルミナ、金属窒化物、金属酸化物及びこれらの組合せからなる群から選択される、請求項1記載の熱伝導組成物(10)。 Micron sized fillers (18) from fumed silica, fused silica, finely divided quartz powder, amorphous silica, carbon black, graphite, diamond, hydrated alumina, metal nitride, metal oxide and combinations thereof The heat-conducting composition (10) according to claim 1, selected from the group consisting of: 導電性ナノ粒子(20)が、銅、銀、白金、パラジウム、金、グラファイト、アルミニウム、ドープしたケイ素及び炭化ケイ素からなる群から選択される、請求項1記載の熱伝導組成物(10)。 The thermally conductive composition (10) of claim 1, wherein the conductive nanoparticles (20) are selected from the group consisting of copper, silver, platinum, palladium, gold, graphite, aluminum, doped silicon and silicon carbide. 発熱部品(12)を、ポリマーマトリックス(16)と1種以上のミクロン粒度の充填材(18)と導電性ナノ粒子(20)とのブレンドを含む非導電性熱伝導組成物(10)と接触させて配置し、
ヒートシンク(14)を熱伝導組成物(10)と接触させて配置する
ことを含む熱伝達性を向上させる方法。
Contacting the exothermic component (12) with a non-conductive thermal conductive composition (10) comprising a blend of a polymer matrix (16), one or more micron-sized fillers (18) and conductive nanoparticles (20) And place
A method of improving heat transfer comprising placing a heat sink (14) in contact with a thermally conductive composition (10).
発熱部品(12)と、
ヒートシンク(14)と、
発熱部品(12)とヒートシンク(14)の間に挿入され、ポリマーマトリックス(16)と1種以上のミクロン粒度の充填材(18)と導電性ナノ粒子(20)とのブレンドを含む非導電性熱伝導組成物(10)と
を備える電子部品。
A heat generating component (12);
A heat sink (14);
Non-conductive comprising a blend of a polymer matrix (16), one or more micron-sized fillers (18) and conductive nanoparticles (20) inserted between the heat generating component (12) and the heat sink (14) An electronic component provided with a heat conductive composition (10).
発熱部品(30)をプリント配線板(34)と接触させて配置し、
部品(30)をプリント配線板(34)の1以上の電気接点に接触させて電気接続を形成し、
ポリマーマトリックス(16)と1種以上のミクロン粒度の充填材(18)と導電性ナノ粒子(20)とのブレンドを含む熱伝導組成物(10)を、部品(30)とプリント配線板(34)の間に配設する
ことを含んでなる熱伝達性を向上させる方法であって、熱伝導組成物(10)が1以上の電気接続を封止している、方法。
Place the heat generating component (30) in contact with the printed wiring board (34),
Contacting the component (30) with one or more electrical contacts of the printed wiring board (34) to form an electrical connection;
A thermally conductive composition (10) comprising a blend of a polymer matrix (16), one or more micron-sized fillers (18) and conductive nanoparticles (20) is formed into a component (30) and a printed wiring board (34). The method of improving the heat transfer property comprising disposing between, wherein the thermally conductive composition (10) seals one or more electrical connections.
ポリマーマトリックス(16)と1種以上のミクロン粒度の充填材(18)と導電性ナノ粒子(20)とのブレンドを含む熱伝導組成物(10)を、複数の電気接点を有するダイ部位を複数含む半導体ウェハに塗工し、
複数の接点に1以上のハンダ球(32)を配設し、
1以上のハンダ球(32)の頂点が露出するように熱伝導組成物(10)を部分硬化させ、
ウェハを個々の半導体チップに切断し、
1以上のハンダ球(32)がプリント配線板(34)の1以上の電気接点と整列して1以上の電気接続を形成するように、1以上の半導体チップをプリント配線板(34)上に配設し、
ハンダ球(32)の溶融と熱伝導組成物(10)の硬化が同時に起こるように、1以上の半導体チップと配線板(34)を加熱し、
ハンダ球(32)を固化するとともに熱伝導組成物(10)を硬化させて熱伝導組成物(10)が1以上の電気接続を封止するように、1以上の半導体チップ及び配線板(34)を冷却する、
ことを含んでなる熱伝達性を向上させる方法。
A thermally conductive composition (10) comprising a blend of a polymer matrix (16), one or more micron-sized fillers (18) and conductive nanoparticles (20), and a plurality of die sites having a plurality of electrical contacts. Coating on semiconductor wafers, including
One or more solder balls (32) are arranged at a plurality of contacts,
Partially curing the thermally conductive composition (10) so that the apex of one or more solder balls (32) is exposed;
Cutting the wafer into individual semiconductor chips,
One or more semiconductor chips are placed on the printed wiring board (34) such that the one or more solder balls (32) are aligned with the one or more electrical contacts of the printed wiring board (34) to form one or more electrical connections. Arranged,
Heating one or more semiconductor chips and the wiring board (34) so that melting of the solder balls (32) and curing of the heat conductive composition (10) occur simultaneously;
One or more semiconductor chips and wiring boards (34) so as to solidify the solder balls (32) and cure the heat conductive composition (10) so that the heat conductive composition (10) seals one or more electrical connections. Cooling),
A method of improving heat transfer properties comprising:
ポリマーマトリックス(16)と導電性ナノ粒子(20)とのブレンドを含む熱伝導組成物(10)をプリント配線板(34)に塗工し、
1以上のハンダ球(32)がプリント配線板(34)の1以上の電気接点と整列して1以上の電気接続を形成するように、1以上のハンダ球(32)と1以上の電気接点を含む発熱部品(30)をプリント配線板(34)上に配設し、
ハンダ球(32)の溶融と熱伝導組成物(10)の硬化が同時に起こるように、部品(30)及び配線板(34)を加熱し、
ハンダ球(32)を固化するとともに熱伝導組成物(10)を硬化させて熱伝導組成物(10)が1以上の電気接続を封止するように、部品(30)及び配線板(34)を冷却する、
ことを含んでなる熱伝達性を向上させる方法。
Applying a heat conductive composition (10) comprising a blend of polymer matrix (16) and conductive nanoparticles (20) to a printed wiring board (34);
The one or more solder balls (32) and the one or more electrical contacts such that the one or more solder balls (32) are aligned with the one or more electrical contacts of the printed wiring board (34) to form one or more electrical connections. A heat generating component (30) including
The component (30) and the wiring board (34) are heated so that the melting of the solder sphere (32) and the curing of the heat conductive composition (10) occur simultaneously,
The component (30) and the wiring board (34) so that the solder ball (32) is solidified and the heat conductive composition (10) is cured so that the heat conductive composition (10) seals one or more electrical connections. To cool,
A method of improving heat transfer properties comprising:
発熱部品(30)と、
プリント配線板(34)と、
発熱部品(30)とプリント配線板(34)との間に挿入され、ポリマーマトリックス(16)と導電性ナノ粒子(20)とのブレンドを含む熱伝導組成物(10)と
を備える電子部品。
A heat generating component (30);
A printed wiring board (34);
An electronic component comprising a heat conductive composition (10) inserted between a heat generating component (30) and a printed wiring board (34) and comprising a blend of a polymer matrix (16) and conductive nanoparticles (20).
ポリマーマトリックスと導電性ナノ粒子(20)とのブレンドを含んでなる非導電性アンダーフィル組成物。 A non-conductive underfill composition comprising a blend of a polymer matrix and conductive nanoparticles (20).
JP2006525337A 2003-09-03 2004-08-05 Thermally conductive materials using conductive nanoparticles Pending JP2007504663A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/654,391 US7550097B2 (en) 2003-09-03 2003-09-03 Thermal conductive material utilizing electrically conductive nanoparticles
PCT/US2004/025262 WO2005024942A1 (en) 2003-09-03 2004-08-05 Thermal conductive material utilizing electrically conductive nanoparticles

Publications (1)

Publication Number Publication Date
JP2007504663A true JP2007504663A (en) 2007-03-01

Family

ID=34218081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006525337A Pending JP2007504663A (en) 2003-09-03 2004-08-05 Thermally conductive materials using conductive nanoparticles

Country Status (14)

Country Link
US (1) US7550097B2 (en)
EP (1) EP1665377B1 (en)
JP (1) JP2007504663A (en)
KR (1) KR20060086937A (en)
CN (1) CN1875480A (en)
AT (1) ATE394791T1 (en)
AU (1) AU2004271545A1 (en)
BR (1) BRPI0413776A (en)
CA (1) CA2537830A1 (en)
DE (1) DE602004013608T2 (en)
MX (1) MXPA06002524A (en)
RU (1) RU2006110512A (en)
WO (1) WO2005024942A1 (en)
ZA (1) ZA200602265B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545869A (en) * 2005-06-07 2008-12-18 モーメンティブ・パフォーマンス・マテリアルズ・インク B-stageable film, electronic equipment and related processes
JP2010046826A (en) * 2008-08-19 2010-03-04 General Technology Co Ltd Transfer tool
KR101104224B1 (en) 2009-06-15 2012-01-10 주식회사 이그잭스 organic-inorganic hybrid adhesive
JP2014139328A (en) * 2009-11-05 2014-07-31 Hitachi Chemical Co Ltd Thermopolymerization initiator system and adhesive agent composition
JP2016511303A (en) * 2013-02-04 2016-04-14 シーメンス アクティエンゲゼルシャフト Impregnating resin for electrical insulator, electrical insulator, and method for producing electrical insulator
WO2017175759A1 (en) * 2016-04-04 2017-10-12 積水化学工業株式会社 Resin molded body
JPWO2017073010A1 (en) * 2015-10-27 2018-08-16 ソニー株式会社 Electronics
JP2019192673A (en) * 2018-04-18 2019-10-31 富士電機株式会社 Semiconductor device
WO2021220628A1 (en) * 2020-04-28 2021-11-04 ウシオ電機株式会社 Carbon-fiber-reinforced plastic structure and method for producing same

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078109B2 (en) * 2000-02-25 2006-07-18 Thermagon Inc. Heat spreading thermal interface structure
US7416922B2 (en) * 2003-03-31 2008-08-26 Intel Corporation Heat sink with preattached thermal interface material and method of making same
WO2004109795A2 (en) * 2003-06-06 2004-12-16 Honeywell International Inc. Thermal interconnect system and method of production thereof
US7014093B2 (en) * 2003-06-26 2006-03-21 Intel Corporation Multi-layer polymer-solder hybrid thermal interface material for integrated heat spreader and method of making same
US7527090B2 (en) * 2003-06-30 2009-05-05 Intel Corporation Heat dissipating device with preselected designed interface for thermal interface materials
US7224039B1 (en) * 2003-09-09 2007-05-29 International Technology Center Polymer nanocomposite structures for integrated circuits
US8070988B2 (en) 2003-09-09 2011-12-06 International Technology Center Nano-carbon hybrid structures
US7794629B2 (en) 2003-11-25 2010-09-14 Qinetiq Limited Composite materials
US7300861B2 (en) * 2004-06-24 2007-11-27 Palo Alto Research Center Incorporated Method for interconnecting electronic components using a blend solution to form a conducting layer and an insulating layer
US7351606B2 (en) * 2004-06-24 2008-04-01 Palo Alto Research Center Incorporated Method for forming a bottom gate thin film transistor using a blend solution to form a semiconducting layer and an insulating layer
US20050286234A1 (en) * 2004-06-29 2005-12-29 International Business Machines Corporation Thermally conductive composite interface and methods of fabrication thereof for an electronic assembly
US20060199059A1 (en) * 2005-03-01 2006-09-07 Xu Helen X Ion conductive polymer electrolyte and its membrane electrode assembly
US20060270106A1 (en) * 2005-05-31 2006-11-30 Tz-Cheng Chiu System and method for polymer encapsulated solder lid attach
DE102005028704B4 (en) 2005-06-20 2016-09-08 Infineon Technologies Ag A method of manufacturing a semiconductor device having semiconductor device components embedded in plastic package
US20070131912A1 (en) * 2005-07-08 2007-06-14 Simone Davide L Electrically conductive adhesives
US20070158611A1 (en) * 2005-11-08 2007-07-12 Oldenburg Steven J Compositions comprising nanorods and methods of making and using them
DE102005060860A1 (en) * 2005-12-20 2007-06-28 Robert Bosch Gmbh Electronic component with potting compound
US20080023665A1 (en) * 2006-07-25 2008-01-31 Weiser Martin W Thermal interconnect and interface materials, methods of production and uses thereof
US7632425B1 (en) * 2006-10-06 2009-12-15 General Electric Company Composition and associated method
TW200833752A (en) * 2006-10-23 2008-08-16 Lord Corp Highly filled polymer materials
CN102433105B (en) * 2006-11-01 2014-07-30 日立化成株式会社 Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP2008153430A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Heatsink substrate and heat conductive sheet, and power module using these
US20100249309A1 (en) * 2007-04-05 2010-09-30 Menachem Lewin Nanocomposites and their surfaces
US20090062449A1 (en) * 2007-07-18 2009-03-05 Dongyi Wang Thermally conductive underfill formulations
EP2188834A4 (en) * 2007-09-11 2014-03-19 Dow Corning Composite, thermal interface material containing the composite, and methods for their preparation and use
KR20100069667A (en) * 2007-09-11 2010-06-24 다우 코닝 코포레이션 Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use
US7723419B1 (en) 2007-09-17 2010-05-25 Ovation Polymer Technology & Engineered Materials, Inc. Composition providing through plane thermal conductivity
US7760507B2 (en) 2007-12-26 2010-07-20 The Bergquist Company Thermally and electrically conductive interconnect structures
US9027633B2 (en) * 2008-03-24 2015-05-12 Auburn University Nanoparticle-enhanced phase change materials (NEPCM) with improved thermal energy storage
WO2009131913A2 (en) * 2008-04-21 2009-10-29 Honeywell International Inc. Thermal interconnect and interface materials, methods of production and uses thereof
KR101697790B1 (en) * 2008-04-23 2017-02-01 브레우어 사이언스 인코포레이션 Photosensitive hardmask for microlithography
FR2934705B1 (en) * 2008-07-29 2015-10-02 Univ Toulouse 3 Paul Sabatier ELECTRICALLY CONDUCTIVE COMPOSITE SOLID MATERIAL AND METHOD FOR OBTAINING SUCH MATERIAL
EP2340272A4 (en) * 2008-10-22 2015-09-23 Heraeus Precious Metals North America Conshohocken Llc Electrically conductive polymeric compositions, contacts, assemblies, and methods
US8851159B1 (en) * 2008-12-01 2014-10-07 The Research Foundation For The State University Of New York Method and pattern of dispensing thermal interface materials
US8128868B2 (en) 2009-02-12 2012-03-06 International Business Machines Corporation Grain refinement by precipitate formation in PB-free alloys of tin
US8493746B2 (en) * 2009-02-12 2013-07-23 International Business Machines Corporation Additives for grain fragmentation in Pb-free Sn-based solder
MD249Z (en) * 2009-04-29 2011-02-28 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Process for manufacturing a thermoelectric cooler for the Chip substrate
US8344053B2 (en) * 2009-09-10 2013-01-01 Pixelligent Technologies, Llc Highly conductive composites
US8177878B2 (en) 2009-11-30 2012-05-15 Infineon Technologies Ag Bonding material with exothermically reactive heterostructures
WO2011085224A1 (en) 2010-01-08 2011-07-14 Abs Materials, Inc. Modified sol-gel derived sorbent material and method for using same
WO2011085235A1 (en) 2010-01-08 2011-07-14 Abs Materials, Inc. Porous, swellable, sol-gel derived sensor material and method for using same
WO2011100532A1 (en) 2010-02-12 2011-08-18 Abs Materials, Inc. Sol-gel derived sorbent material containing a sorbate interactive material and method for using the same
WO2011162836A1 (en) 2010-02-17 2011-12-29 Abs Materials, Inc Method for extracting a metal particulate from an aqueous solution using a sol-gel derived sorbent
WO2011156663A1 (en) 2010-06-10 2011-12-15 Abs Materials,Inc Method of treating a material using a sol-gel derived composition
US20110309481A1 (en) * 2010-06-18 2011-12-22 Rui Huang Integrated circuit packaging system with flip chip mounting and method of manufacture thereof
ES2665528T3 (en) 2010-09-30 2018-04-26 Ube Industries, Ltd. Composition of polyamide resin and molded article comprising it
US20120080639A1 (en) * 2010-10-04 2012-04-05 Laird Technologies, Inc. Potato shaped graphite filler, thermal interface materials and emi shielding
WO2012074558A2 (en) 2010-12-03 2012-06-07 Michael Colburn Mixture of graphite and dielectric particles for heat generation and exchange devices
US9045674B2 (en) * 2011-01-25 2015-06-02 International Business Machines Corporation High thermal conductance thermal interface materials based on nanostructured metallic network-polymer composites
US8741998B2 (en) 2011-02-25 2014-06-03 Sabic Innovative Plastics Ip B.V. Thermally conductive and electrically insulative polymer compositions containing a thermally insulative filler and uses thereof
US8552101B2 (en) 2011-02-25 2013-10-08 Sabic Innovative Plastics Ip B.V. Thermally conductive and electrically insulative polymer compositions containing a low thermally conductive filler and uses thereof
EP2688970A4 (en) 2011-03-22 2014-09-17 Nano & Advanced Materials Inst Ltd HIGH PERFORMANCE DIE ATTACH ADHESIVES (DAAs) NANOMATERIALS FOR HIGH BRIGHTNESS LED
NL1038892C2 (en) * 2011-06-24 2013-01-02 Holding B V Ges Heat sinking coating.
US8915617B2 (en) 2011-10-14 2014-12-23 Ovation Polymer Technology And Engineered Materials, Inc. Thermally conductive thermoplastic for light emitting diode fixture assembly
TWI468504B (en) * 2011-11-15 2015-01-11 Yen Hao Huang Enhance the efficiency of heat transfer agent
US8587945B1 (en) 2012-07-27 2013-11-19 Outlast Technologies Llc Systems structures and materials for electronic device cooling
US9303507B2 (en) 2013-01-31 2016-04-05 Saudi Arabian Oil Company Down hole wireless data and power transmission system
US9227347B2 (en) 2013-02-25 2016-01-05 Sabic Global Technologies B.V. Method of making a heat sink assembly, heat sink assemblies made therefrom, and illumants using the heat sink assembly
US10125298B2 (en) * 2013-03-14 2018-11-13 Case Western Reserve University High thermal conductivity graphite and graphene-containing composites
US10269688B2 (en) * 2013-03-14 2019-04-23 General Electric Company Power overlay structure and method of making same
US8987876B2 (en) 2013-03-14 2015-03-24 General Electric Company Power overlay structure and method of making same
US10144848B2 (en) * 2013-05-21 2018-12-04 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Thermally curable coating systems
WO2014204864A1 (en) * 2013-06-21 2014-12-24 Lockheed Martin Corporation Conformable and adhesive solid compositions formed from metal nanopparticles and methods for their production and use
US20150027132A1 (en) * 2013-07-23 2015-01-29 Qiming Zhang Cooling device including an electrocaloric composite
EP3036764B1 (en) * 2013-08-23 2018-06-27 Lockheed Martin Corporation High-power electronic devices containing metal nanoparticle-based thermal interface materials and related methods
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
JP5563175B1 (en) * 2014-03-05 2014-07-30 清二 加川 High thermal conductivity heat dissipation sheet and method for manufacturing the same
US20150279431A1 (en) 2014-04-01 2015-10-01 Micron Technology, Inc. Stacked semiconductor die assemblies with partitioned logic and associated systems and methods
JP5582553B1 (en) * 2014-05-02 2014-09-03 清二 加川 High thermal conductivity heat dissipation sheet and method for manufacturing the same
CN106536609B (en) 2014-07-07 2022-04-29 霍尼韦尔国际公司 Thermal interface material with ion scavenger
TWI656653B (en) 2014-07-10 2019-04-11 日商住友電氣工業股份有限公司 Solar power generation module and solar power generation device
US9841391B2 (en) * 2014-09-09 2017-12-12 LifeSan Scotland Limited Hand-held test meter with integrated thermal channel
EP3227399B1 (en) 2014-12-05 2021-07-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US20160223269A1 (en) * 2015-02-04 2016-08-04 Outlast Technologies, LLC Thermal management films containing phase change materials
US11229147B2 (en) 2015-02-06 2022-01-18 Laird Technologies, Inc. Thermally-conductive electromagnetic interference (EMI) absorbers with silicon carbide
DE102016015994B3 (en) 2015-02-16 2022-12-01 Mitsubishi Electric Corporation semiconductor device
CN106158790B (en) * 2015-04-10 2018-11-16 台达电子工业股份有限公司 power module and its thermal interface structure
TWI563615B (en) * 2015-05-05 2016-12-21 Siliconware Precision Industries Co Ltd Electronic package structure and the manufacture thereof
CN105355610B (en) 2015-08-27 2019-01-18 华为技术有限公司 A kind of circuit device and manufacturing method
US10611931B2 (en) 2015-08-28 2020-04-07 Dupont Electronics, Inc. Electrically conductive adhesives
US10967428B2 (en) 2015-08-28 2021-04-06 Dupont Electronics, Inc. Coated copper particles and use thereof
KR102467418B1 (en) * 2015-10-20 2022-11-15 주식회사 아모그린텍 Graphite composite material, manufacturing method thereof, and electronic control assembly for car including the same
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US9691675B1 (en) 2015-12-22 2017-06-27 Intel Corporation Method for forming an electrical device and electrical devices
CN109072051B (en) 2016-03-08 2023-12-26 霍尼韦尔国际公司 Phase change material
KR102010256B1 (en) * 2016-05-24 2019-08-13 주식회사 아모그린텍 Coil component
KR20170132605A (en) * 2016-05-24 2017-12-04 주식회사 아모그린텍 Electrically insulated and heat radiated coating composition and electrically insulated heat radiator coated with the same
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
KR102172399B1 (en) * 2016-11-22 2020-10-30 전남대학교산학협력단 Capsulated latent heat storage microcapsule and preparation method thereof
US10529641B2 (en) * 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US20180199461A1 (en) * 2017-01-09 2018-07-12 Hamilton Sundstrand Corporation Electronics thermal management
US11004767B2 (en) * 2017-01-19 2021-05-11 Sony Corporation Composite material, electronic apparatus, and method for manufacturing electronic apparatus
JP6258538B1 (en) * 2017-03-14 2018-01-10 有限会社 ナプラ Semiconductor device and manufacturing method thereof
US10457001B2 (en) 2017-04-13 2019-10-29 Infineon Technologies Ag Method for forming a matrix composite layer and workpiece with a matrix composite layer
US10121723B1 (en) * 2017-04-13 2018-11-06 Infineon Technologies Austria Ag Semiconductor component and method for producing a semiconductor component
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
CN111164415A (en) 2017-09-29 2020-05-15 苹果公司 Optical sampling structure for path analysis
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
BR112020010880A2 (en) 2017-12-01 2020-11-10 Arkema Inc. sparkling acrylic composition
CN111557128A (en) 2017-12-27 2020-08-18 3M创新有限公司 Cured epoxy resin compositions, articles, and methods suitable for electronic device housings
TWI654218B (en) 2018-01-08 2019-03-21 財團法人工業技術研究院 Method for forming resin composition and heat conductive material
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US10903184B2 (en) * 2018-08-22 2021-01-26 International Business Machines Corporation Filler particle position and density manipulation with applications in thermal interface materials
WO2020077031A1 (en) * 2018-10-10 2020-04-16 Lord Corporation Highly conductive additives to reduce settling
CN109863596B (en) * 2019-01-22 2020-05-26 长江存储科技有限责任公司 Integrated circuit package structure and manufacturing method thereof
WO2020176095A1 (en) * 2019-02-28 2020-09-03 Bae Systems Information And Electronic Systems Integration Inc. Optically induced phase change materials
CN111669956B (en) 2019-03-06 2024-04-02 天津莱尔德电子材料有限公司 Thermal management and/or electromagnetic interference mitigation materials and related devices and methods
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
CN112447634B (en) * 2019-09-02 2024-03-19 清华大学 Thermal interface material with low Young's modulus and high thermal conductivity as well as preparation method and application thereof
US11198807B2 (en) * 2019-09-23 2021-12-14 International Business Machines Corporation Thermal interface materials with radiative coupling heat transfer
US11430711B2 (en) 2019-11-26 2022-08-30 Aegis Technology Inc. Carbon nanotube enhanced silver paste thermal interface material
US20220025241A1 (en) * 2020-07-27 2022-01-27 Google Llc Thermal interface material and method for making the same
US20220025239A1 (en) * 2020-07-27 2022-01-27 Google Llc Thermal interface material and method for making the same
KR102542423B1 (en) 2020-09-23 2023-06-12 라이르드 테크놀로지스, 아이엔씨 THERMALLY-CONDUCTIVE ElectroMAGNETIC INTERFERENCE (EMI) ABSORBERS
CN116285564A (en) * 2022-12-27 2023-06-23 深圳市鸿合创新信息技术有限责任公司 Coating, preparation method thereof and electronic device
CN116536027B (en) * 2023-05-23 2023-10-17 江西天永诚高分子材料有限公司 Low-stress organosilicon two-component pouring sealant and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677361A (en) * 1992-08-24 1994-03-18 Hitachi Ltd Multi-chip module
JPH1187402A (en) * 1997-09-05 1999-03-30 Matsushita Electric Ind Co Ltd Mounting structure and manufacture thereof
JP2002155110A (en) * 2000-11-22 2002-05-28 Sekisui Chem Co Ltd Polymerizable composition and heat conductive sheet
JP2002270732A (en) * 2001-03-13 2002-09-20 Sharp Corp Electronic component with underfill material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026748A (en) 1990-05-07 1991-06-25 E. I. Du Pont De Nemours And Company Thermally conductive adhesive
DE4401608C1 (en) 1994-01-20 1995-07-27 Siemens Ag Thermally conductive electrically insulating adhesive joint
DE69616186T2 (en) 1995-07-19 2002-07-11 Raytheon Co Epoxy adhesive with thermal conductivity that is stable and flexible at room temperature
US5781412A (en) 1996-11-22 1998-07-14 Parker-Hannifin Corporation Conductive cooling of a heat-generating electronic component using a cured-in-place, thermally-conductive interlayer having a filler of controlled particle size
US6265471B1 (en) 1997-03-03 2001-07-24 Diemat, Inc. High thermally conductive polymeric adhesive
JP3948642B2 (en) * 1998-08-21 2007-07-25 信越化学工業株式会社 Thermally conductive grease composition and semiconductor device using the same
US6228681B1 (en) 1999-03-10 2001-05-08 Fry's Metals, Inc. Flip chip having integral mask and underfill providing two-stage bump formation
TWI257410B (en) * 1999-03-25 2006-07-01 Shinetsu Chemical Co Conductive silicone rubber composition and low-resistance connector
US6500891B1 (en) 2000-05-19 2002-12-31 Loctite Corporation Low viscosity thermally conductive compositions containing spherical thermally conductive particles
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
US7311967B2 (en) 2001-10-18 2007-12-25 Intel Corporation Thermal interface material and electronic assembly having such a thermal interface material
US6761813B2 (en) * 2002-01-31 2004-07-13 Intel Corporation Heat transfer through covalent bonding of thermal interface material
US7013965B2 (en) * 2003-04-29 2006-03-21 General Electric Company Organic matrices containing nanomaterials to enhance bulk thermal conductivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677361A (en) * 1992-08-24 1994-03-18 Hitachi Ltd Multi-chip module
JPH1187402A (en) * 1997-09-05 1999-03-30 Matsushita Electric Ind Co Ltd Mounting structure and manufacture thereof
JP2002155110A (en) * 2000-11-22 2002-05-28 Sekisui Chem Co Ltd Polymerizable composition and heat conductive sheet
JP2002270732A (en) * 2001-03-13 2002-09-20 Sharp Corp Electronic component with underfill material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545869A (en) * 2005-06-07 2008-12-18 モーメンティブ・パフォーマンス・マテリアルズ・インク B-stageable film, electronic equipment and related processes
JP2010046826A (en) * 2008-08-19 2010-03-04 General Technology Co Ltd Transfer tool
KR101104224B1 (en) 2009-06-15 2012-01-10 주식회사 이그잭스 organic-inorganic hybrid adhesive
JP2014139328A (en) * 2009-11-05 2014-07-31 Hitachi Chemical Co Ltd Thermopolymerization initiator system and adhesive agent composition
JP2016511303A (en) * 2013-02-04 2016-04-14 シーメンス アクティエンゲゼルシャフト Impregnating resin for electrical insulator, electrical insulator, and method for producing electrical insulator
US9884950B2 (en) 2013-02-04 2018-02-06 Siemens Aktiengesellschaft Impregnating resin for an electrical insulation body, electrical insulation body, and method for producing the electrical insulation body
JPWO2017073010A1 (en) * 2015-10-27 2018-08-16 ソニー株式会社 Electronics
WO2017175759A1 (en) * 2016-04-04 2017-10-12 積水化学工業株式会社 Resin molded body
JP2019192673A (en) * 2018-04-18 2019-10-31 富士電機株式会社 Semiconductor device
JP7119528B2 (en) 2018-04-18 2022-08-17 富士電機株式会社 semiconductor equipment
WO2021220628A1 (en) * 2020-04-28 2021-11-04 ウシオ電機株式会社 Carbon-fiber-reinforced plastic structure and method for producing same

Also Published As

Publication number Publication date
WO2005024942A1 (en) 2005-03-17
DE602004013608D1 (en) 2008-06-19
AU2004271545A1 (en) 2005-03-17
EP1665377A1 (en) 2006-06-07
KR20060086937A (en) 2006-08-01
RU2006110512A (en) 2007-10-20
CA2537830A1 (en) 2005-03-17
US7550097B2 (en) 2009-06-23
MXPA06002524A (en) 2006-06-20
CN1875480A (en) 2006-12-06
US20050045855A1 (en) 2005-03-03
DE602004013608T2 (en) 2008-08-28
EP1665377B1 (en) 2008-05-07
ATE394791T1 (en) 2008-05-15
ZA200602265B (en) 2007-11-28
BRPI0413776A (en) 2006-10-31

Similar Documents

Publication Publication Date Title
JP2007504663A (en) Thermally conductive materials using conductive nanoparticles
JP5305656B2 (en) Thermally conductive composition and method for producing the same
CA2611381C (en) B-stageable film, electronic device, and associated process
US6974723B2 (en) Gel thermal interface materials comprising fillers having low melting point and electronic packages comprising these gel thermal interface materials
US20050148721A1 (en) Thin bond-line silicone adhesive composition and method for preparing the same
US20070241303A1 (en) Thermally conductive composition and method for preparing the same
EP1754235A2 (en) Thermally conductive compositions and methods of making thereof
JP5005538B2 (en) Nanomaterial-containing organic matrix for increasing bulk thermal conductivity
US20050222323A1 (en) Thermally conductive coating compositions, methods of production and uses thereof
TW201930074A (en) Laminate and electronic device
CN115004358A (en) Thermally conductive sheet, laminate, and semiconductor device
JP2004288560A (en) Conductive adhesion film and semiconductor device using the same
KR100312237B1 (en) Electronic device modules using a thermally conductive compliant sheet
WO2023189030A1 (en) Thermosetting resin composition, resin cured product and composite molded body
JP2023102284A (en) Heat-conductive resin composition, heat-conductive resin sheet, heat dissipation laminate, heat dissipation circuit board, semiconductor device, and power module
Yim et al. Degradation mechanism and reliability of flip chip interconnects using anisotropic conductive adhesives for high current density packaging applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20070713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116