JP5005538B2 - Nanomaterial-containing organic matrix for increasing bulk thermal conductivity - Google Patents

Nanomaterial-containing organic matrix for increasing bulk thermal conductivity Download PDF

Info

Publication number
JP5005538B2
JP5005538B2 JP2007527154A JP2007527154A JP5005538B2 JP 5005538 B2 JP5005538 B2 JP 5005538B2 JP 2007527154 A JP2007527154 A JP 2007527154A JP 2007527154 A JP2007527154 A JP 2007527154A JP 5005538 B2 JP5005538 B2 JP 5005538B2
Authority
JP
Japan
Prior art keywords
functionalized
organo
colloidal silica
monovalent hydrocarbon
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007527154A
Other languages
Japanese (ja)
Other versions
JP2007538135A (en
Inventor
ツォン,ホン
ルビンツタイン,スラヴォミアー
Original Assignee
モーメンティブ・パフォーマンス・マテリアルズ・インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モーメンティブ・パフォーマンス・マテリアルズ・インク filed Critical モーメンティブ・パフォーマンス・マテリアルズ・インク
Publication of JP2007538135A publication Critical patent/JP2007538135A/en
Application granted granted Critical
Publication of JP5005538B2 publication Critical patent/JP5005538B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • H01L2224/29291The principal constituent being an elastomer, e.g. silicones, isoprene, neoprene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29388Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Description

本発明は、ポリマーマトリックスの熱伝導率を増大させるためのナノ粒子の使用に関する。   The present invention relates to the use of nanoparticles to increase the thermal conductivity of a polymer matrix.

多くの電気部品は動作中に熱を発生する。こうした熱を電気部品から効率的に除去しないと熱が蓄積してしまう。その結果、電気部品の誤動作又は永久的損傷が起こりかねない。そこで、電気回路及びシステムでは、動作中の熱除去を促進するため熱管理技術が用いられることが多い。   Many electrical components generate heat during operation. If such heat is not efficiently removed from the electrical components, heat will accumulate. As a result, malfunction or permanent damage of electrical components can occur. Thus, thermal management techniques are often used in electrical circuits and systems to promote heat removal during operation.

熱管理技術では、ある形態のヒートシンクを用いて電気系の高温領域から放熱させることが多い。ヒートシンクは熱伝導率の高い材料(例えば、典型的には金属)からなる構造体であり、電気部品と機械的に結合して熱除去を促す。比較的簡単な形態では、ヒートシンクは、動作中の電気回路と接触させた金属片(例えばアルミニウム又は銅)からなるものが挙げられる。電気回路からの熱はユニット間の機械的界面を通してヒートシンクに流れ込む。   In thermal management technology, heat is often radiated from a high temperature region of an electric system using a heat sink of a certain form. The heat sink is a structure made of a material having high thermal conductivity (for example, typically metal), and mechanically couples with an electrical component to promote heat removal. In a relatively simple form, the heat sink is made of a piece of metal (eg, aluminum or copper) in contact with the electrical circuit in operation. Heat from the electrical circuit flows into the heat sink through the mechanical interface between the units.

典型的な電気部品では、動作時にヒートシンクの平面を電気部品の平面と接触配置し、ある種の形態の接着剤又は固定手段を用いてヒートシンクを適所に保持することによって、ヒートシンクを発熱部品と機械的に結合させる。自明であろうが、ヒートシンクの表面及び部品の表面が完全に平坦又は平滑であることは滅多にないので、通常はこれらの表面間に空隙が存在する。周知の通り、向かい合った二つの面の間に空隙が存在すると、それらの表面間の界面を通しての伝熱能力が低下する。こうした空隙は、ヒートシンクの熱管理装置としての有効性及び価値を下げる。この問題に対処するため、伝熱表面間に配置してそれらの間の熱抵抗を低下させるためのポリマー組成物が開発されている。現状の熱伝導材料のバルク熱伝導率はポリマーマトリックスの低い熱伝導率(熱伝導材料つまりTIMに典型的にみられるポリマーでは約0.2W/m−K)によって大きく制限されている。ある概算では(“Thermally Conductive Polymer Compositions,” D.M. Bigg., Polymer Composites, June 1986, Vol.7, No.3)、電気絶縁性ポリマー複合材で達成可能な最大バルク熱伝導率は、ベースポリマーマトリックスのわずか20〜30倍にすぎない。この数字は、充填剤の熱伝導率がベースポリマーマトリックスの熱伝導率の100倍を超えると、充填剤の種類とは関係なくほとんど変化しなくなる。そのため、ポリマー材料の熱伝導率はヒートシンクの熱伝導率に比べて低く、発熱部品からヒートシンクへの熱伝達は非効率的になる。加えて、1)ミクロ又はナノボイド並びに2)充填剤の粒度よりも小さい表面凹凸内にミクロン粒度の充填剤が入り込めないため又は充填剤の沈降による充填剤欠乏層に起因する境界面の欠陥によって、効果的な熱伝達性能はさらに低下する。
“Thermally Conductive Polymer Compositions,” D.M. Bigg., Polymer Composites, June 1986, Vol.7, No.3
In a typical electrical component, the heat sink is placed in contact with the heat generating component and the machine by placing the heat sink plane in contact with the electrical component plane in operation and holding the heat sink in place with some form of adhesive or securing means. Combined. As will be appreciated, there are usually voids between these surfaces because the surface of the heat sink and the surface of the component are rarely completely flat or smooth. As is well known, the presence of voids between two opposing surfaces reduces the ability to transfer heat through the interface between those surfaces. Such voids reduce the effectiveness and value of the heat sink as a thermal management device. To address this problem, polymer compositions have been developed for placement between heat transfer surfaces to reduce the thermal resistance between them. The bulk thermal conductivity of current thermal conductive materials is largely limited by the low thermal conductivity of the polymer matrix (about 0.2 W / mK for thermal conductive materials or polymers typically found in TIMs). In one approximation ("Thermal Conductive Polymer Compositions," DM Bigg., Polymer Compositions, June 1986, Vol. 7, No. 3), the maximum bulk thermal conductivity achievable with an electrically insulating polymer composite is Only 20-30 times the base polymer matrix. This number hardly changes regardless of the type of filler when the thermal conductivity of the filler exceeds 100 times the thermal conductivity of the base polymer matrix. Therefore, the thermal conductivity of the polymer material is lower than that of the heat sink, and heat transfer from the heat generating component to the heat sink becomes inefficient. In addition, 1) micro- or nano-voids and 2) micron-sized fillers cannot enter the surface irregularities smaller than the filler particle size or due to interface defects due to filler-deficient layers due to filler settling The effective heat transfer performance is further reduced.
“Thermal Conductive Polymer Compositions,” D. M.M. Bigg. , Polymer Compositions, June 1986, Vol. 7, no. 3

そこで、ヒートシンクと発熱部品との間で効率的に熱伝達する改良組成物に対するニーズが存在する。   Thus, there is a need for improved compositions that efficiently transfer heat between a heat sink and a heat generating component.

本発明に係る熱伝導組成物は、1種以上のオルガノ官能基で官能化されたナノ粒子を有機マトリックス中にブレンドしたものを含む。ある実施形態では、熱伝導組成物はミクロン粒度の充填材粒子も含む。   The thermally conductive composition according to the present invention comprises a blend of nanoparticles functionalized with one or more organofunctional groups in an organic matrix. In some embodiments, the thermally conductive composition also includes micron sized filler particles.

また、オルガノ官能化ナノ粒子を有機マトリックスとブレンドしてなる熱伝導組成物に各々接した発熱部品とヒートシンク又はヒートスプレッダとを備える電気部品についても、本明細書に開示する。   Also disclosed herein is an electrical component comprising a heat generating component and a heat sink or heat spreader each in contact with a thermally conductive composition made by blending organofunctionalized nanoparticles with an organic matrix.

本発明に係る熱伝達効率を増大させる方法は、オルガノ官能化ナノ粒子を有機マトリックスとブレンドしてなる熱伝導組成物を発熱部品とヒートシンク又はヒートスプレッダとの間に挿入する段階を含む。   The method of increasing heat transfer efficiency according to the present invention includes the step of inserting a heat conducting composition comprising an organofunctionalized nanoparticle blended with an organic matrix between a heat generating component and a heat sink or heat spreader.

本発明は、官能化ナノ粒子を有機マトリックスとブレンドしてなる熱伝導組成物を提供する。ナノ粒子は、マトリックスに共有結合していてもよいし、非共有結合力でマトリックス全体に分散していてもよい。本発明のナノ粒子を含有するマトリックスはナノ粒子を含まないマトリックスよりも高い熱伝導率を有する。官能化ナノ粒子は、加工処理と取扱いの容易な粘度を保持したまま、マトリックスのバルク熱伝導率を高める。   The present invention provides a thermally conductive composition comprising functionalized nanoparticles blended with an organic matrix. The nanoparticles may be covalently bonded to the matrix or may be dispersed throughout the matrix with non-covalent forces. The matrix containing the nanoparticles of the present invention has a higher thermal conductivity than the matrix without nanoparticles. Functionalized nanoparticles increase the bulk thermal conductivity of the matrix while retaining a viscosity that is easy to process and handle.

後述のナノ粒子含有有機マトリックスとミクロン粒度の充填材とからなる実施形態に係るポリマー複合材は、ミクロン粒度の充填材と有機マトリックスのみからなる同様のブレンドよりも高い熱伝導率を達成できる。そのため、達成可能な最大バルク熱伝導率が向上する。さらに、ナノ粒子は、ミクロン粒度の充填材では入り込めない表面の細孔及び凹凸に入り込めるので、界面抵抗の影響を低減できる。   A polymer composite according to an embodiment comprising a nanoparticle-containing organic matrix and a micron-sized filler, described below, can achieve a higher thermal conductivity than a similar blend comprising only a micron-sized filler and an organic matrix. This improves the maximum achievable bulk thermal conductivity. Furthermore, since the nanoparticles can enter the pores and irregularities on the surface that cannot be penetrated by the filler having a micron size, the influence of the interface resistance can be reduced.

ポリマーマトリックスにおける熱伝導率の向上は、充填材の沈降が起こって「スキン層」(ミクロ充填材を殆ど又は全く含んでいない層)が現れるような場合に界面抵抗を低減するのにも有利である。スキン層が別の方法で達成可能な熱伝導率よりも高い熱伝導率を有していれば、熱伝達の低下はさほど深刻にはならないであろう。ナノ粒子の配合のもう一つの利点は、これらの微粒子がミクロン粒度の充填材の沈降速度を抑制又は低減して熱伝導材料で充填剤欠乏層が生じる確率を低下させることである。   Increased thermal conductivity in the polymer matrix is also advantageous in reducing interfacial resistance in cases where filler settling occurs and a “skin layer” (a layer containing little or no microfiller) appears. is there. If the skin layer has a higher thermal conductivity than otherwise achievable, the reduction in heat transfer will not be as severe. Another advantage of the nanoparticle formulation is that these particulates reduce or reduce the settling rate of micron sized fillers and reduce the probability of a filler-deficient layer in the thermally conductive material.

官能化することができて有機マトリックスよりも高い熱伝導率を有するナノ粒子であれば、どのようなものも本組成物の製造に使用することができる。適当なナノ粒子としては、特に限定されないが、コロイダルシリカ、かご型シルセスキオキサン(「POSS」)、ナノ粒度の金属酸化物(例えば、アルミナ、チタニア、ジルコニア)、ナノ粒度の金属窒化物(例えば窒化ホウ素、窒化アルミニウム)及びナノ金属粒子(例えば銀、金又は銅ナノ粒子)が挙げられる。特に有用な実施形態では、ナノ粒子はオルガノ官能化POSS材料又はコロイダルシリカである。コロイダルシリカは、水性その他の溶媒中のサブミクロン粒度のシリカ(SiO)粒子の分散体として存在する。コロイダルシリカは、最大約85重量%の二酸化ケイ素(SiO)、通例約80重量%以下の二酸化ケイ素を含有する。コロイダルシリカの粒径は通例約1nm〜約250nmであり、さらに典型的には約5〜約150nmである。 Any nanoparticle that can be functionalized and has a higher thermal conductivity than the organic matrix can be used in the preparation of the composition. Suitable nanoparticles include, but are not limited to, colloidal silica, caged silsesquioxane (“POSS”), nano-sized metal oxides (eg, alumina, titania, zirconia), nano-sized metal nitrides ( For example, boron nitride, aluminum nitride) and nano metal particles (for example, silver, gold or copper nanoparticles). In particularly useful embodiments, the nanoparticles are organofunctionalized POSS material or colloidal silica. Colloidal silica exists as a dispersion of submicron sized silica (SiO 2 ) particles in aqueous or other solvents. Colloidal silica contains up to about 85% by weight silicon dioxide (SiO 2 ), typically up to about 80% by weight silicon dioxide. The particle size of colloidal silica is typically about 1 nm to about 250 nm, and more typically about 5 to about 150 nm.

ナノ粒子は、有機マトリックスとの相溶性を向上させるため官能化される。従って、ナノ粒子に付加される官能基の正確な化学的性状は、選択に係る特定のナノ粒子の化学的性状及びマトリックスの化学的組成を始めとする様々な因子に依存する。また、官能基は反応性でも、非反応性でも、それらの組合せであってもよい。反応性官能基は、ナノ粒子を分散させる有機マトリックス或いは最終組成物が設けられる対合面いずれかと反応できるものである。化学反応によって、ナノ粒子は共有結合を介して有機マトリックス又は対合面に結合する。適当な官能化剤としては、アルキル、アルケニル、アルキニル、シリル、シロキシル、アクリレート、メタクリレート、エポキシド、アリール、ヒドリド、アミノ、ヒドロキシルその他の官能基を有するオルガノアルコキシシラン、オルガノクロロシラン、オルガノアセテートシラン及びオルガノシラザンが挙げられる。官能基をナノ粒子に付加する反応スキームは当業者の技術常識に属する。好都合なことに、官能化ナノ粒子は、有機マトリックスとの混合を容易にする相溶性溶媒中の分散体として製造することができる。特に有用な分散体は固形分が20〜50%ものであるが、分散体を注入又は流動させることができる固形分であればどのような固形分のものであっても使用できる。   The nanoparticles are functionalized to improve compatibility with the organic matrix. Thus, the exact chemical nature of the functional group added to the nanoparticle depends on a variety of factors, including the chemical nature of the particular nanoparticle involved and the chemical composition of the matrix. The functional group may be reactive, non-reactive, or a combination thereof. The reactive functional group is capable of reacting with either the organic matrix in which the nanoparticles are dispersed or the mating surface on which the final composition is provided. By chemical reaction, the nanoparticles bind to the organic matrix or the mating surface via covalent bonds. Suitable functionalizing agents include alkyl, alkenyl, alkynyl, silyl, siloxyl, acrylate, methacrylate, epoxide, aryl, hydride, amino, hydroxyl, and other organoalkoxysilanes, organochlorosilanes, organoacetate silanes, and organosilazanes having other functional groups. Is mentioned. Reaction schemes for adding functional groups to nanoparticles belong to the common general knowledge of those skilled in the art. Conveniently, the functionalized nanoparticles can be produced as a dispersion in a compatible solvent that facilitates mixing with the organic matrix. A particularly useful dispersion has a solid content of 20 to 50%, but any solid content can be used as long as the dispersion can be poured or fluidized.

特に有用な実施形態では、官能化ナノ粒子はオルガノ官能化POSS材料又はオルガノアルコキシシランで官能化されたコロイダルシリカである。   In particularly useful embodiments, the functionalized nanoparticles are colloidal silica functionalized with an organofunctionalized POSS material or an organoalkoxysilane.

コロイダルシリカの官能化に使用されるオルガノアルコキシシランは次式に包含される。   Organoalkoxysilanes used for functionalization of colloidal silica are included in the following formula.

(RSi(OR4−a
式中、Rは各々独立にC1−18一価炭化水素基又はC6−14アリール基であり、C1−18一価炭化水素基は適宜アルキルアクリレート、アルキルメタクリレート、エポキシド、ビニル、アリル、スチレン系、シリル又はシロキシル基でさらに官能化されていてもよく、Rは各々独立にC1−18一価炭化水素基又は水素基であり、「a」は1〜3の整数である。好ましくは、本発明の技術的範囲に属するオルガノアルコキシシランは、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、メタクリルオキシプロピルトリメトキシシラン(MAPTMS)、1−ヘキセニルトリエトキシシラン、n−オクチルトリエトキシシラン、n−ドデシルトリエトキシシラン及び2−(3−ビニル−テトラメチルジシロキシル)−エチルトリメトキシシランである。複数の官能基の組合せも可能である。通例、オルガノアルコキシシランは、コロイダルシリカに含まれる二酸化ケイ素の重量を基準にして約2〜約60重量%存在する。得られたオルガノ官能化コロイダルシリカはpHを中和するため酸又は塩基で処理してもよい。酸又は塩基並びにシラノールとアルコキシシラン基の縮合を促進するその他の触媒も、官能化プロセスの促進に使用できる。かかる触媒としては、有機チタン及び有機スズ化合物、例えば、テトラブチルチタネート、チタンイソプロポキシビス(アセチルアセトナト)、ジブチルスズジラウレート、ジブチルスズジアセテート又はこれらの組合せが挙げられる。
(R 1 ) a Si (OR 2 ) 4-a
In the formula, each R 1 is independently a C 1-18 monovalent hydrocarbon group or a C 6-14 aryl group, and the C 1-18 monovalent hydrocarbon group is appropriately alkyl acrylate, alkyl methacrylate, epoxide, vinyl, allyl. May be further functionalized with styrenic, silyl or siloxyl groups, each R 2 is independently a C 1-18 monovalent hydrocarbon group or hydrogen group, and “a” is an integer from 1 to 3. . Preferably, the organoalkoxysilane belonging to the technical scope of the present invention is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, methacryloxypropyltrimethyl. Methoxysilane (MAPTMS), 1-hexenyltriethoxysilane, n-octyltriethoxysilane, n-dodecyltriethoxysilane and 2- (3-vinyl-tetramethyldisiloxyl) -ethyltrimethoxysilane. Combinations of multiple functional groups are also possible. Typically, the organoalkoxysilane is present from about 2 to about 60% by weight, based on the weight of silicon dioxide contained in the colloidal silica. The resulting organofunctionalized colloidal silica may be treated with an acid or base to neutralize the pH. Acids or bases and other catalysts that promote the condensation of silanol and alkoxysilane groups can also be used to facilitate the functionalization process. Such catalysts include organotitanium and organotin compounds such as tetrabutyl titanate, titanium isopropoxybis (acetylacetonato), dibutyltin dilaurate, dibutyltin diacetate, or combinations thereof.

コロイダルシリカの官能化は、脂肪族アルコールを加えておいた市販のコロイダルシリカ水性分散体にオルガノアルコキシシラン官能化剤を上述の重量比で添加することによって実施できる。得られる脂肪族アルコール中に官能化コロイダルシリカとオルガノアルコキシシラン官能化剤を含む組成物を、本明細書では予備分散体と定義される。適当な脂肪族アルコールとしては、特に限定されないが、イソプロパノール、t−ブタノール、2−ブタノール、1−メトキシ−2−プロパノール及びこれらの組合せが挙げられる。脂肪族アルコールの量は通例、水性コロイダルシリカ予備分散体中に存在する二酸化ケイ素の量の約1〜約25倍である。場合によっては、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジニルオキシ(つまり4−ヒドロキシTEMPO)のような安定剤を予備分散体に添加してもよい。場合によっては、透明予備分散体のpH得を調節するため少量の酸又は塩基を加えてもよい。   The functionalization of the colloidal silica can be carried out by adding the organoalkoxysilane functionalizing agent in the above-mentioned weight ratio to a commercially available colloidal silica aqueous dispersion to which an aliphatic alcohol has been added. A composition comprising a functionalized colloidal silica and an organoalkoxysilane functionalizing agent in the resulting aliphatic alcohol is defined herein as a pre-dispersion. Suitable aliphatic alcohols include, but are not limited to, isopropanol, t-butanol, 2-butanol, 1-methoxy-2-propanol, and combinations thereof. The amount of aliphatic alcohol is typically about 1 to about 25 times the amount of silicon dioxide present in the aqueous colloidal silica predispersion. In some cases, a stabilizer such as 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (ie, 4-hydroxy TEMPO) may be added to the pre-dispersion. In some cases, a small amount of acid or base may be added to adjust the pH of the transparent predispersion.

得られた予備分散体を典型的には約50〜約140℃に約1〜約5時間加熱して、アルコキシシランとコロイダルシリカ表面のOH基との縮合を促進し、コロイダルシリカの官能化を達成する。   The resulting pre-dispersion is typically heated to about 50 to about 140 ° C. for about 1 to about 5 hours to promote condensation of the alkoxysilane with the OH groups on the surface of the colloidal silica to effect functionalization of the colloidal silica. Achieve.

官能化ナノ粒子を有機マトリックスと混合して本発明の組成物を形成する。有機マトリックスはどのようなポリマー材料であってもよい。適当な有機マトリックスとしては、特に限定されないが、ポリジメチルシロキサン樹脂、エポキシ樹脂、アクリレート樹脂、他のオルガノ官能化ポリシロキサン樹脂、ポリイミド樹脂、フルオロカーボン樹脂、ベンゾシクロブテン樹脂、フッ素化ポリアリルエーテル、ポリアミド樹脂、ポリイミドアミド樹脂、フェノールレゾール樹脂、芳香族ポリエステル樹脂、ポリフェニレンエーテル(PPE)樹脂、ビスマレイミドトリアジン樹脂、フルオロ樹脂その他当業者に公知の他のポリマー系が挙げられる。(慣用ポリマーについては、“Polymer Handbook”, Branduf,J, Immergut,E.H, Grulke, Eric A, Wiley Interscience Publication, New York, 4th ed.(1999)、“Polymer Data Handbook”, Mark,James, Oxford University Press, New York (1999)参照。)。好ましい硬化可能な熱硬化性マトリックスは、ラジカル重合、原子移動、ラジカル重合開環重合、開環メタセシス重合、アニオン重合、カチオン重合その他当業者に公知の方法で架橋網目構造を形成し得るアクリレート樹脂、エポキシ樹脂、ポリジメチルシロキサン樹脂その他のオルガノ官能化ポリシロキサン樹脂である。適当な硬化性シリコーン樹脂としては、例えば“Chemistry and Technology of Silicone”, Noll, W., Academic Press 1968に記載の付加硬化型及び縮合硬化型マトリックスが挙げられる。ポリマーマトリックスが硬化性ポリマーでない場合、得られる熱伝導組成物は、製造時に部品を一つに保持し、装置作動中に熱を伝達できるゲル、グリース又は相変化材料として配合できる。特に有用な実施形態では、官能化ナノ粒子との相溶性を向上させるため有機マトリックスは官能化される。   The functionalized nanoparticles are mixed with an organic matrix to form the composition of the present invention. The organic matrix can be any polymeric material. Suitable organic matrices include, but are not limited to, polydimethylsiloxane resins, epoxy resins, acrylate resins, other organofunctionalized polysiloxane resins, polyimide resins, fluorocarbon resins, benzocyclobutene resins, fluorinated polyallyl ethers, polyamides Resins, polyimide amide resins, phenolic resole resins, aromatic polyester resins, polyphenylene ether (PPE) resins, bismaleimide triazine resins, fluororesins and other polymer systems known to those skilled in the art. (For conventional polymers, see "Polymer Handbook", Branduf, J, Immergut, E.H, Gulke, Eric A, Wiley Interscience Publication, New York, 4th ed. (1999), M (See Oxford University Press, New York (1999).) Preferred curable thermosetting matrices include radical polymerization, atom transfer, radical polymerization ring-opening polymerization, ring-opening metathesis polymerization, anionic polymerization, cationic polymerization, and other acrylate resins that can form a crosslinked network structure by methods known to those skilled in the art, Epoxy resins, polydimethylsiloxane resins and other organofunctionalized polysiloxane resins. Suitable curable silicone resins include, for example, “Chemistry and Technology of Silicone”, Noll, W .; , Academic Press 1968, addition curable type and condensation curable type matrix. If the polymer matrix is not a curable polymer, the resulting thermally conductive composition can be formulated as a gel, grease or phase change material that can hold the parts together during manufacture and transfer heat during device operation. In particularly useful embodiments, the organic matrix is functionalized to improve compatibility with the functionalized nanoparticles.

官能化ナノ粒子と有機マトリックスとの混合を促進するため、組成物に適宜1種以上の溶媒を添加してもよい。適当な脂肪族溶媒としては、特に限定されないが、イソプロパノール、1−メトキシ−2−プロパノール、1−メトキシ−2−プロピルアセテート、トルエン、キシレン、n−メチルピロリドン、ジクロロベンゼン及びこれらの組合せが挙げられる。   In order to facilitate mixing of the functionalized nanoparticles and the organic matrix, one or more solvents may be added to the composition as appropriate. Suitable aliphatic solvents include, but are not limited to, isopropanol, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, toluene, xylene, n-methylpyrrolidone, dichlorobenzene, and combinations thereof. .

官能化ナノ粒子と有機マトリックスとの混合法は特に重要ではない。ナノ粒子を予備分散体に配合する場合、予備分散体に有機マトリックス及び適宜溶媒を加えてもよい。   The mixing method of the functionalized nanoparticles and the organic matrix is not particularly important. When the nanoparticles are blended with the preliminary dispersion, an organic matrix and an appropriate solvent may be added to the preliminary dispersion.

酸性又は塩基性不純物を除去するため、組成物を酸若しくは塩基又はイオン交換樹脂で処理してもよい。好適には、この組成物を約0.5〜約250トルの真空及び約20〜約140℃の温度に付せば、溶媒、残留水、それらの組合せのような低沸点成分を実質的に除去することができる。その結果、有機マトリックス中の官能化ナノ粒子の分散体が得られ、本明細書ではこれを最終分散体という。低沸点成分の実質的な除去とは、本明細書中では、低沸点成分の総量の約90%以上の除去と定義される。   The composition may be treated with an acid or base or ion exchange resin to remove acidic or basic impurities. Preferably, the composition is subjected to a vacuum of about 0.5 to about 250 torr and a temperature of about 20 to about 140 ° C. to substantially reduce low boiling components such as solvent, residual water, combinations thereof. Can be removed. The result is a dispersion of functionalized nanoparticles in an organic matrix, referred to herein as the final dispersion. Substantial removal of low boiling components is defined herein as removal of about 90% or more of the total amount of low boiling components.

適宜、官能化コロイダルシリカの予備分散体又は最終分散体をさらに官能化してもよい。低沸点成分を少なくとも部分的に除去した後、官能化コロイダルシリカの残留ヒドロキシル官能基と反応する適当な封鎖剤を予備分散体又は最終分散体中の二酸化ケイ素の存在量の約0.05〜約10倍の量で添加する。低沸点成分の部分的除去とは、本明細書では、低沸点成分の総量の約10%以上、好ましくは低沸点成分の総量の約50%以上の除去をいう。封鎖官能化コロイダルシリカとは、組成物全体に存在する遊離ヒドロキシル基の10%以上、好ましくは20%以上、さらに好ましくは35%以上が封鎖剤との反応で官能化されたものと定義される。官能化コロイダルシリカを有効に封鎖すると、場合によっては最終分散体の室温安定性を向上させることができる。   Optionally, the pre-dispersion or final dispersion of functionalized colloidal silica may be further functionalized. After at least partially removing the low boiling components, a suitable sequestering agent that reacts with the residual hydroxyl functionality of the functionalized colloidal silica is about 0.05 to about the amount of silicon dioxide present in the pre-dispersion or final dispersion. Add in 10 times the amount. Partial removal of low boiling components herein refers to removal of about 10% or more of the total amount of low boiling components, preferably about 50% or more of the total amount of low boiling components. Capped functionalized colloidal silica is defined as having 10% or more, preferably 20% or more, more preferably 35% or more of the free hydroxyl groups present in the overall composition functionalized by reaction with a capping agent. . Effective blockage of the functionalized colloidal silica can improve the room temperature stability of the final dispersion in some cases.

好ましい封鎖剤としては、シリル化剤のような、ヒドロキシルと反応性の物質が挙げられる。シリル化剤の例としては、特に限定されないが、ヘキサメチルジシラザン(HMDZ)、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、N−(トリメチルシリル)ジエチルアミン、1−(トリメチルシリル)イミダゾール、トリメチルクロロシラン、ペンタメチルクロロジシロキサン、ペンタメチルジシロキサン及びこれらの組合せが挙げられる。最終分散体を次いで約20〜約140℃で約0.5〜約48時間加熱する。得られた混合物を濾過する。予備分散体を封鎖剤と反応させた場合、1種以上の有機マトリックス組成物を添加して最終分散体を形成する。有機材料中の官能化コロイダルシリカの混合物を約0.5〜約250トルの圧力で濃縮して最終濃縮分散体を形成する。このプロセスで、溶媒、残留水、封鎖剤とヒドロキシル基の副生物、過剰の封鎖剤及びこれらの組合せのような低沸点成分が実質的に除去される。   Preferred sequestering agents include hydroxyl reactive materials such as silylating agents. Examples of silylating agents include, but are not limited to, hexamethyldisilazane (HMDZ), tetramethyldisilazane, divinyltetramethyldisilazane, diphenyltetramethyldisilazane, N- (trimethylsilyl) diethylamine, 1- (trimethylsilyl) Examples include imidazole, trimethylchlorosilane, pentamethylchlorodisiloxane, pentamethyldisiloxane, and combinations thereof. The final dispersion is then heated at about 20 to about 140 ° C. for about 0.5 to about 48 hours. The resulting mixture is filtered. When the pre-dispersion is reacted with a sequestering agent, one or more organic matrix compositions are added to form the final dispersion. The mixture of functionalized colloidal silica in the organic material is concentrated at a pressure of about 0.5 to about 250 torr to form a final concentrated dispersion. This process substantially removes low boiling components such as solvents, residual water, sequestering and hydroxyl side products, excess sequestering agents and combinations thereof.

適宜、最終分散体組成物全体をミクロン粒度の充填材とブレンドしてもよい。ミクロン粒度の充填材を添加すると、組成物の熱伝導率を実質的に増大させることができる。従って、ミクロ充填材の添加によって、ポリマーマトリックスの熱伝導率に対する官能化ナノ粒子の効果が大きく増幅される。例として、ポリマーマトリックスの熱伝導率が0.2W/m−Kの場合、適当なミクロ充填材を80〜90wt%添加すると熱伝導率を2.0W/m−Kに高めることができる。しかし、本発明に従って官能化ナノ粒子を添加すると、ポリマーマトリックスの初期熱伝導率をさらに0.3W/m−K以上に高めることができ、上記と同量のミクロン粒度の充填材の添加で熱伝導率が約3W/m−Kに上昇し、ナノ粒子を含まない組成物に比べて50%増大する。ミクロ粒子だけの添加によって熱伝導率を3W/m−Kに高めると、非常に粘稠な組成物が得られ、加工処理が容易ではなく、電子装置、特にフリップ/チップ装置の製造で必要とされる程度に流動しない。一方、本発明に従ってナノ粒子を使用すると、容易に加工処理できる十分な低粘度を保持したまま、熱伝導率が増大する。   Optionally, the entire final dispersion composition may be blended with a micron sized filler. The addition of micron sized fillers can substantially increase the thermal conductivity of the composition. Thus, the addition of microfillers greatly amplifies the effect of functionalized nanoparticles on the thermal conductivity of the polymer matrix. For example, when the thermal conductivity of the polymer matrix is 0.2 W / m-K, the thermal conductivity can be increased to 2.0 W / m-K by adding 80 to 90 wt% of an appropriate micro filler. However, the addition of functionalized nanoparticles according to the present invention can further increase the initial thermal conductivity of the polymer matrix to 0.3 W / m-K or more, and the addition of the same amount of micron-sized filler as described above can increase the thermal conductivity. The conductivity increases to about 3 W / m-K, an increase of 50% compared to the composition without nanoparticles. When the thermal conductivity is increased to 3 W / m-K by adding only microparticles, a very viscous composition is obtained, which is not easy to process and is necessary for the manufacture of electronic devices, especially flip / chip devices. Does not flow as much as possible. On the other hand, the use of nanoparticles according to the present invention increases the thermal conductivity while maintaining a sufficiently low viscosity that can be easily processed.

充填材はミクロン粒度の熱伝導性材料であり、補強用のものでも非補強用のものでもよい。充填材としては、例えば、ヒュームドシリカ、溶融シリカ、石英微粉、非晶質シリカ、カーボンブラック、グラファイト、ダイヤモンド、金属(例えば銀、金、アルミニウム、銅)、炭化ケイ素、アルミニウム水和物、金属窒化物(例えば窒化ホウ素、窒化アルミニウム)、金属酸化物(例えば酸化アルミニウム、酸化亜鉛、二酸化チタン又は酸化鉄)及びこれらの組合せが挙げられる。充填材が存在する場合、通例、最終組成物全体の重量を基準にして約10〜約95重量%の量で存在する。さらに典型的には、充填材は、最終分散体組成物全体の重量を基準にして約20〜約90重量%の量で存在する。   The filler is a heat conductive material having a micron particle size, and may be reinforcing or non-reinforcing. Examples of the filler include fumed silica, fused silica, quartz fine powder, amorphous silica, carbon black, graphite, diamond, metal (for example, silver, gold, aluminum, copper), silicon carbide, aluminum hydrate, metal Examples include nitrides (eg, boron nitride, aluminum nitride), metal oxides (eg, aluminum oxide, zinc oxide, titanium dioxide, or iron oxide), and combinations thereof. When present, the filler is typically present in an amount of about 10 to about 95 weight percent, based on the weight of the entire final composition. More typically, the filler is present in an amount of about 20 to about 90% by weight, based on the total weight of the final dispersion composition.

本組成物におけるナノ粒子の存在によって、ミクロ充填材の存在する組成物の安定性も向上する。ナノ粒子は、同量のミクロ充填材を含んでいるがナノ粒子を含まない組成物に比べて、組成物を収容した容器の底へのミクロ粒子の沈降を抑制することが判明した。   The presence of nanoparticles in the composition also improves the stability of the composition in the presence of microfillers. Nanoparticles have been found to suppress sedimentation of microparticles to the bottom of a container containing the composition as compared to a composition containing the same amount of microfiller but no nanoparticles.

最終組成物の硬化を促進するため、最終分散体に硬化触媒を添加してもよい。通例、触媒は、硬化性組成物全体の約10ppm〜約10重量%の量で存在する。カチオン型硬化触媒の例としては、特に限定されないが、ビスアリールヨードニウム塩(例えば、ヘキサフルオロアンチモン酸ビス(ドデシルフェニル)ヨードニウム、ヘキサフルオロアンチモン酸(オクチルオキシフェニルフェニル)ヨードニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ビスアリールヨードニウム)、トリアリールスルホニウム塩及びこれらの組合せのようなオニウム触媒が挙げられる。ラジカル硬化触媒の例としては、特に限定されないが、各種のペルオキシド(例えばtert−ブチルペルオキシベンゾエート)、アゾ化合物(例えば2−2’−アゾビス−イソブチルニトリル)及びニトロキシド(例えば4−ヒドロキシTEMPO)が挙げられる。付加硬化型シリコーン樹脂については、好ましい触媒は様々な第8〜10族遷移金属(例えばルテニウム、ロジウム、白金)錯体である。縮合硬化型シリコーンについては、好ましい触媒はオルガノスズ又はオルガノチタン錯体である。これらの触媒の構造の詳細は当業者に公知である。   A curing catalyst may be added to the final dispersion to promote curing of the final composition. Typically, the catalyst is present in an amount from about 10 ppm to about 10% by weight of the total curable composition. Examples of the cationic curing catalyst include, but are not limited to, bisaryliodonium salts (for example, bis (dodecylphenyl) iodonium hexafluoroantimonate, hexafluoroantimonic acid (octyloxyphenylphenyl) iodonium, tetrakis (pentafluorophenyl) Onium catalysts such as bisaryliodonium borate), triarylsulfonium salts, and combinations thereof. Examples of the radical curing catalyst include, but are not limited to, various peroxides (for example, tert-butylperoxybenzoate), azo compounds (for example, 2-2′-azobis-isobutylnitrile), and nitroxides (for example, 4-hydroxy TEMPO). It is done. For addition curable silicone resins, preferred catalysts are various Group 8-10 transition metal (eg, ruthenium, rhodium, platinum) complexes. For condensation curable silicones, the preferred catalyst is an organotin or organotitanium complex. Details of the structure of these catalysts are known to those skilled in the art.

カチオン型硬化性マトリックスについては、適宜、有効量のラジカル発生化合物、例えば芳香族ピナコール、ベンゾインアルキルエーテル、有機ペルオキシド及びこれらの組合せを任意成分として添加してもよい。ラジカル発生化合物は低温でのオニウム塩の分解を促進する。   For the cationic curable matrix, an effective amount of a radical generating compound such as aromatic pinacol, benzoin alkyl ether, organic peroxide and a combination thereof may be added as an optional component. The radical generating compound accelerates the decomposition of the onium salt at a low temperature.

エポキシ樹脂では、カルボン酸無水物系硬化剤及びヒドロキシル基含有有機化合物のような硬化剤を任意成分として硬化触媒と共に添加してもよい。この場合、硬化触媒は、特に限定されないが、アミン、アルキル置換イミダゾール、イミダゾリウム塩、ホスフィン、金属塩、トリフェニルホスフィン、アルキル−イミダゾール及びアルミニウムアセチルアセトナト並びにこれらの組合せから選択できる。エポキシ樹脂については、適宜、多官能性アミンのような硬化剤を架橋剤として配合してもよい。代表的なアミンとしては、特に限定されないが、エチレンジアミン、プロピレンジアミン、1,2−フェニレンジアミン、1,3−フェニレンジアミン、1,4−フェニレンジアミンその他2以上のアミノ基を有する化合物が挙げられる。   In the epoxy resin, a curing agent such as a carboxylic acid anhydride-based curing agent and a hydroxyl group-containing organic compound may be added as an optional component together with the curing catalyst. In this case, the curing catalyst is not particularly limited and can be selected from amines, alkyl-substituted imidazoles, imidazolium salts, phosphines, metal salts, triphenylphosphine, alkyl-imidazoles and aluminum acetylacetonates and combinations thereof. About an epoxy resin, you may mix | blend hardener like polyfunctional amine as a crosslinking agent suitably. Representative amines include, but are not limited to, ethylenediamine, propylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, and other compounds having two or more amino groups.

エポキシ樹脂について、代表的な無水物硬化剤としては、メチルヘキサヒドロフタル酸無水物、1,2−シクロヘキサンジカルボン酸無水物、ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物、無水フタル酸、ピロメリト酸二無水物、ヘキサヒドロフタル酸無水物、無水ドデセニルコハク酸、無水ジクロロマレイン酸、無水クロレンド酸、無水テトラクロロフタル酸などが挙げられる。2種以上の無水物系硬化剤を含む組合せも使用することができる。具体例は、“Chemistry and Technology of the Epoxy Resins” B. Ellis (Ed.) Chapman Hall, New York, 1993及び“Epoxy Resins Chemistry and Technology”, edited by C.A.May, Marcel Dekker, New York, 2nd edition, 1988に記載されている。   For epoxy resins, representative anhydride curing agents include methylhexahydrophthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, bicyclo [2.2.1] hept-5-ene-2,3- Dicarboxylic anhydride, methylbicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic anhydride, phthalic anhydride, pyromellitic dianhydride, hexahydrophthalic anhydride, dodecenyl succinic anhydride, Examples thereof include dichloromaleic anhydride, chlorendic anhydride, and tetrachlorophthalic anhydride. Combinations comprising two or more anhydride hardeners can also be used. A specific example is “Chemistry and Technology of the Epoxy Resins”. Ellis (Ed.) Chapman Hall, New York, 1993 and “Epoxy Resins Chemistry and Technology”, edited by C.I. A. May, Marcel Dekker, New York, 2nd edition, 1988.

付加硬化型シリコーン樹脂では、最終配合物中のSi−H/ビニルモル比が0.5〜5.0、好ましくは0.9〜2.0となるように、多官能性Si−H含有シリコーン流体のような架橋剤を配合できる。   In addition curable silicone resins, polyfunctional Si—H containing silicone fluids such that the Si—H / vinyl molar ratio in the final formulation is 0.5 to 5.0, preferably 0.9 to 2.0. A crosslinking agent such as

付加硬化型シリコーン樹脂では、硬化特性を変化させて所望の貯蔵安定性を達成するため、適宜、抑制剤を配合してもよい。抑制剤としては、特に限定されないが、ホスフィン化合物、アミン化合物、イソシアヌレート、アルキニルアルコール、マレイン酸エステルその他当業者に公知の化合物が挙げられる。   In the addition-curable silicone resin, an inhibitor may be appropriately blended in order to achieve desired storage stability by changing the curing characteristics. Examples of the inhibitor include, but are not limited to, phosphine compounds, amine compounds, isocyanurates, alkynyl alcohols, maleic esters and other compounds known to those skilled in the art.

また、組成物の粘度を低減するため、反応性有機希釈剤を硬化性組成物全体に添加してもよい。反応性希釈剤の例としては、特に限定されないが、3−エチル−3−ヒドロキシメチル−オキセタン、ドデシルグリシジルエーテル、4−ビニル−1−シクロヘキサンジエポキシド、ジ(β−(3,4−エポキシシクロヘキシル)エチル)−テトラメチルジシロキサン、各種ジエン(例えば1,5−ヘキサジエン)、アルケン(例えばn−オクテン)、アルケン、スチレン系化合物、アクリレート又はメタクリレート含有化合物(例えば、メタクリルオキシプロピルトリメトキシシラン)及びこれらの組合せが挙げられる。処方物の粘度を低減するため非反応性希釈剤を組成物に添加してもよい。非反応性希釈剤の例としては、特に限定されないが、低沸点脂肪族炭化水素(例えばオクタン)、トルエン、エチルアセテート、ブチルアセテート、1−メトキシプロピルアセテート、エチレングリコール、ジメチルエーテル、及びこれらの組合せが挙げられる。   Moreover, in order to reduce the viscosity of a composition, you may add a reactive organic diluent to the whole curable composition. Examples of reactive diluents include, but are not limited to, 3-ethyl-3-hydroxymethyl-oxetane, dodecyl glycidyl ether, 4-vinyl-1-cyclohexane diepoxide, di (β- (3,4-epoxycyclohexyl). ) Ethyl) -tetramethyldisiloxane, various dienes (eg 1,5-hexadiene), alkenes (eg n-octene), alkenes, styrenic compounds, acrylates or methacrylate-containing compounds (eg methacryloxypropyltrimethoxysilane) and These combinations are mentioned. Non-reactive diluents may be added to the composition to reduce the viscosity of the formulation. Examples of non-reactive diluents include, but are not limited to, low boiling aliphatic hydrocarbons (eg, octane), toluene, ethyl acetate, butyl acetate, 1-methoxypropyl acetate, ethylene glycol, dimethyl ether, and combinations thereof. Can be mentioned.

トリアルコキシオルガノシランのような有効量の接着促進剤を最終分散体全体に使用してもよく、例として、γ−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビス(トリメトキシシリルプロピル)フマレートなどが挙げられる。有効量は通例最終分散体全体を基準にして約0.01〜約2重量%である。   Effective amounts of adhesion promoters such as trialkoxyorganosilanes may be used throughout the final dispersion, for example, γ-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, bis (trimethoxy And silylpropyl) fumarate. Effective amounts are typically from about 0.01 to about 2% by weight based on the total final dispersion.

適宜、難燃剤も、最終分散体全体の量に対して約0.5〜約20重量%で最終分散体全体に使用できる。難燃剤の例としては、ホスホルアミド、トリフェニルホスフェート(TPP)、レゾルシノールジホスフェート(RDP)、ビスフェノール−A−ジホスフェート(BPA−DP)、有機ホスフィンオキシド、ハロゲン化エポキシ樹脂(テトラブロモビスフェノールA)、金属酸化物、金属水酸化物及びこれらの組合せが挙げられる。   Optionally, a flame retardant can also be used throughout the final dispersion at about 0.5 to about 20 weight percent based on the total amount of the final dispersion. Examples of flame retardants include phosphoramide, triphenyl phosphate (TPP), resorcinol diphosphate (RDP), bisphenol-A-diphosphate (BPA-DP), organic phosphine oxide, halogenated epoxy resin (tetrabromobisphenol A), Examples include metal oxides, metal hydroxides, and combinations thereof.

最終分散体組成物は手練りしてもよいし、ドウミキサー、チェーンカンミキサー、プラネタリーミキサー、二軸押出機、二本又は三本ロールミルのような慣用混合装置で混合してもよい。分散体成分のブレンディングは、当業者が用いる任意の手段により回分法、連続法又は半連続法で実施できる。   The final dispersion composition may be kneaded by hand or mixed with conventional mixing equipment such as a dough mixer, chain can mixer, planetary mixer, twin screw extruder, two or three roll mill. The blending of the dispersion components can be carried out by a batch method, a continuous method or a semi-continuous method by any means used by those skilled in the art.

硬化プロセスは当業者に公知の方法で実施できる。硬化は熱硬化、UV光硬化、マイクロ波硬化、電子ビーム硬化及びこれらの組合せのような方法で実施できる。硬化は通例約20〜約250℃、さらに典型的には約20〜約150℃の温度で起こる。硬化は通例約1気圧(「atm」)〜約5トン/平方インチ、さらに典型的には約1気圧〜約100ポンド/平方インチ(「psi」)の圧力で起こる。また、硬化は、通例約30秒〜約5時間、さらに典型的には約90秒〜約60分間で起こる。適宜、硬化組成物を約100〜約150℃の温度で約1〜約4時間後硬化してもよい。   The curing process can be carried out by methods known to those skilled in the art. Curing can be performed by methods such as thermal curing, UV light curing, microwave curing, electron beam curing, and combinations thereof. Curing typically occurs at a temperature of about 20 to about 250 ° C, more typically about 20 to about 150 ° C. Curing typically occurs at a pressure of from about 1 atmosphere ("atm") to about 5 tons / square inch, more typically from about 1 atmosphere to about 100 pounds / square inch ("psi"). Curing typically occurs from about 30 seconds to about 5 hours, more typically from about 90 seconds to about 60 minutes. Optionally, the cured composition may be post-cured at a temperature of about 100 to about 150 ° C. for about 1 to about 4 hours.

官能化ナノ粒子の添加は、ベースポリマーマトリックスのバルク熱伝導率増大させるために用いられ、特に電気部品の部材間のような2つの物体間に配置したときの熱伝導率を向上させる。また、本発明の熱伝導組成物は、上述のような熱が伝わる2つの部品の表面に本質的に存在する界面熱抵抗を低減する。本発明の熱伝導組成物は、コンピューター、半導体のような電子装置又は部品間の熱伝達が必要とされるあらゆる装置に使用できる。例えば、図1に概略を示すように、本発明の熱伝導組成物2は半導体チップ3とヒートシンク1の間に介在させれば、空隙を埋めて熱伝達を促すことができる。本発明の熱伝導組成物の層2は20〜150ミクロン程度に薄くでき、それでも所望の効果を与える。本発明の熱伝導組成物の施工は、当技術分野で公知の方法で達成できる。慣用法としては、スクリーン印刷、孔版印刷、シリング分配及びピックアンドプレース装置が挙げられる。   The addition of functionalized nanoparticles is used to increase the bulk thermal conductivity of the base polymer matrix and improves the thermal conductivity, especially when placed between two objects, such as between components of an electrical component. Moreover, the heat conductive composition of this invention reduces the interfacial thermal resistance which exists essentially on the surface of two components which the above heat | fever transfers. The heat conducting composition of the present invention can be used in electronic devices such as computers and semiconductors or any device that requires heat transfer between components. For example, as schematically shown in FIG. 1, if the heat conductive composition 2 of the present invention is interposed between the semiconductor chip 3 and the heat sink 1, the gap can be filled to promote heat transfer. The layer 2 of the heat conducting composition of the present invention can be as thin as 20-150 microns and still provide the desired effect. The application of the heat conductive composition of the present invention can be accomplished by methods known in the art. Conventional methods include screen printing, stencil printing, shilling distribution and pick and place equipment.

別の態様では、本発明の組成物をシートに成形して所望の形状にカットしてもよい。この実施形態では、本発明の組成物は好適には熱伝導パッドとして用いられ、電子部品間に配置される。   In another embodiment, the composition of the present invention may be formed into a sheet and cut into a desired shape. In this embodiment, the composition of the present invention is preferably used as a thermally conductive pad and placed between electronic components.

以上、本発明の好ましい実施形態などについて説明してきたが、特許請求の範囲に記載された本発明の技術的範囲に属する他の実施形態は当業者には自明であろう。   Although the preferred embodiments of the present invention have been described above, other embodiments belonging to the technical scope of the present invention described in the claims will be obvious to those skilled in the art.

参考例1
4.95gの分散体組成物は、31wt%(wt%は未官能化コロイダルSiOを基準)のメタクリルオキシプロピルトリメトキシシラン(「MAPTMS」)官能化コロイダルSiO(20nm)とアクリルオキシ末端ポリジメチルシロキサン(Gelest社製DMSU22、MW約1000〜1200)からなるものであった。さらに、2gのMAPTMS、0.13gのヨードニウム塩(GE Silicones社製UV9380c)及び45.6gのアルミナ(昭和電工(株)製AS10)を分散体組成物にブレンドした。アルミナの添加量は配合物全体の86.5wt%であった。分散体組成物を120℃で硬化させた。分散体組成物の熱伝導率を測定したところ、室温で2.6W/m−K±0.05、100℃で2.55W/m−Kであった。比較として、アクリレート単独の熱伝導率は86.5wt%のアルミナ(平均粒径=38ミクロン)を充填したとき100℃で約1.4〜1.9w/m−Kである。表1参照。
Reference example 1
4.95 g of the dispersion composition consisted of 31 wt% (wt% based on unfunctionalized colloidal SiO 2 ) methacryloxypropyltrimethoxysilane (“MAPPTMS”) functionalized colloidal SiO 2 (20 nm) and acryloxy-terminated poly. It consisted of dimethylsiloxane (Gelest DMSU22, MW about 1000-1200). Further, 2 g of MAPTMS, 0.13 g of iodonium salt (UV 9380c manufactured by GE Silicones) and 45.6 g of alumina (AS10 manufactured by Showa Denko KK) were blended into the dispersion composition. The amount of alumina added was 86.5 wt% of the total formulation. The dispersion composition was cured at 120 ° C. When the thermal conductivity of the dispersion composition was measured, it was 2.6 W / mK ± 0.05 at room temperature and 2.55 W / mK at 100 ° C. As a comparison, the thermal conductivity of acrylate alone is about 1.4 to 1.9 w / m-K at 100 ° C. when filled with 86.5 wt% alumina (average particle size = 38 microns). See Table 1.

参考例2
1.82gのオクタキス(ジメチルシロキシ−T8−シルセキオキサン)(T OSiMe2H、Gelest社製)、0.73gの1,5−ヘキサメチル−トリシロキサン(MDM GE Silicones社製)、1.53gの1,3−ジビニルテトラメチルジシロキサン(GE Silicones社製)、1.04gのビニル末端ポリジメチルシロキサン(Gelest社製、MW9400)DMSV22、適当な触媒及び20gのアルミナ(昭和電工(株)製AS−40及び住友化学(株)製AA04)の分散体組成物をブレンドした。アルミナの添加量は配合物全体の約80wt%であった。分散体組成物を80℃で硬化させた。分散体組成物の熱伝導率を測定したところ、室温で1.99W/m−K±0.15、100℃で1.70W/m−K±0.10であった。比較として、ポリジメチルシロキサン(「PDMS」)の熱伝導率は80wt%のアルミナ(平均粒径はAS40では10μm、AA04では0.4μm)を充填したとき約1.00W/m−Kである。表1参照。
Reference example 2
1.82 g octakis (dimethylsiloxy-T8-silsesquioxane) (T 8 OSiMe2H , Gelest), 0.73 g 1,5-hexamethyl-trisiloxane ( MH DM H GE Silicones), 1.53 g 1,3-divinyltetramethyldisiloxane (manufactured by GE Silicones), 1.04 g of vinyl-terminated polydimethylsiloxane (manufactured by Gelest, MW9400) DMSV22, a suitable catalyst and 20 g of alumina (AS-manufactured by Showa Denko KK) 40 and a dispersion composition of Sumitomo Chemical Co., Ltd. AA04). The amount of alumina added was about 80 wt% of the total formulation. The dispersion composition was cured at 80 ° C. When the thermal conductivity of the dispersion composition was measured, it was 1.99 W / mK ± 0.15 at room temperature and 1.70 W / mK ± 0.10 at 100 ° C. For comparison, the thermal conductivity of polydimethylsiloxane (“PDMS”) is about 1.00 W / m-K when filled with 80 wt% alumina (average particle size is 10 μm for AS40 and 0.4 μm for AA04). See Table 1.

参考例3
7gのGE Silicones社製FCS100(1,6−ヘキサンジオールジアクリレート中に40wt%のMAPTMS官能化コロイダルSiOを含む)、0.14gのヨードニウム塩(GE Silicones社製UV9380c)及び43gのアルミナ(昭和電工(株)製AS50及び住友化学(株)製AA04)を含む分散体組成物をブレンドした。アルミナの添加量は配合物全体の86wt%であった。分散体の熱伝導率を測定したところ、室温で3.35W/m−K±0.20W/m−K、100℃で3.25W/m−K±0.15であった。比較として、アクリレートの熱伝導率は86.5wt%のアルミナ(平均粒径はAS50では10μm、住友化学(株)製では0.4μm)を充填したとき100℃で約1.4〜1.9w/m−Kである。表1参照。
Reference example 3
7 g GE Silicones FCS100 (40 wt% MAPTMS functionalized colloidal SiO 2 in 1,6-hexanediol diacrylate), 0.14 g iodonium salt (GE Silicones UV9380c) and 43 g alumina (Showa) A dispersion composition containing AS50 manufactured by Electric Works Co., Ltd. and AA04 manufactured by Sumitomo Chemical Co., Ltd.) was blended. The amount of alumina added was 86 wt% of the total formulation. When the thermal conductivity of the dispersion was measured, it was 3.35 W / m-K ± 0.20 W / m-K at room temperature and 3.25 W / m-K ± 0.15 at 100 ° C. For comparison, the thermal conductivity of acrylate is about 1.4 to 1.9 w at 100 ° C. when 86.5 wt% alumina (average particle size is 10 μm for AS50, 0.4 μm for Sumitomo Chemical Co., Ltd.). / M-K. See Table 1.

参考例4
最終分散体は、脂環式エポキシ樹脂(Dow社製UVR6105)中に、56wt%のフェニルトリメトキシシラン官能化コロイダルシリカ(SiO含量及び官能基を基準)、触媒として1wt%のヨードニウム塩(GE Silicones社製UV9392c)及び0.5wt%のベンゾイルピナコール(Aldrich社製)からなるものであった。分散体を156℃で5分間硬化させ、測定したところ熱伝導率は25℃で0.37W/m−Kであった。ナノ粒子を含まない典型的なエポキシの熱伝導率は25℃で0.2〜0.25W/m−Kである。
Reference example 4
The final dispersion consisted of 56 wt% phenyltrimethoxysilane functionalized colloidal silica (based on SiO 2 content and functional groups), 1 wt% iodonium salt (GE) as catalyst in alicyclic epoxy resin (UVR6105 from Dow). It consisted of UV9392c manufactured by Silicones) and 0.5 wt% benzoylpinacol (manufactured by Aldrich). The dispersion was cured at 156 ° C. for 5 minutes and measured to have a thermal conductivity of 0.37 W / m-K at 25 ° C. The thermal conductivity of a typical epoxy without nanoparticles is 0.2-0.25 W / m-K at 25 ° C.

実施例1
最終分散体は、ビニル末端ポリジメチル−コ−ジフェニル−シロキサン(Gelest社製PDV1625)中の、フェニルトリメトキシシランで官能化してさらにヘキサメチルジシラジン(HMDZ)で末端封鎖した22wt%のコロイダルシリカからなるものであった。コロイダルシリカ及び縮合官能基のwt%は約27%である。最終分散体5.33gを、0.04gの白金触媒パッケージ(最終配合物中の[Pt]=7.5ppm)及び0.14gのポリジメチル−コ−メチルヒドリド−シロキサン(GE Silicones社製88466)と混合した。最終配合物は流動性の材料であった。上記組成物を150℃で1時間硬化させてバルク熱伝導率0.17W/m−Kの材料を得た。
Example 1
The final dispersion is composed of 22 wt% colloidal silica functionalized with phenyltrimethoxysilane and end-capped with hexamethyldisilazine (HMDZ) in vinyl-terminated polydimethyl-co-diphenyl-siloxane (Gelest PDV1625). It was. The wt% of colloidal silica and condensed functional groups is about 27%. 5.33 g of the final dispersion was added to 0.04 g of a platinum catalyst package ([Pt] = 7.5 ppm in the final formulation) and 0.14 g of polydimethyl-co-methylhydrido-siloxane (GE Silicones 88466). Mixed with. The final formulation was a flowable material. The composition was cured at 150 ° C. for 1 hour to obtain a material having a bulk thermal conductivity of 0.17 W / m-K.

参考例5
10.06gのビニル末端ポリジメチル−コ−ジフェニル−シロキサン(Gelest社製PDV1625)、0.38gのポリジメチル−コ−メチルヒドリド−シロキサン(GE Silicones社製88466)、1.10gのフェニルトリメトキシシラン及び0.10gの触媒パッケージ(最終配合物中の目標[Pt]=7.5ppm)からなるストック溶液を調製した。このストック溶液2.76gを、0.44gの溶融シリカ(電気化学工業(株)製、平均粒径=5ミクロン)及び0.35gの二重処理ヒュームドシリカ(GE Silicones社製88318)と混合した。この混合物は非流動性の高粘度ペーストであった。
Reference Example 5
10.06 g vinyl-terminated polydimethyl-co-diphenyl-siloxane (PDV1625 from Gelest), 0.38 g polydimethyl-co-methylhydrido-siloxane (88466 from GE Silicones), 1.10 g phenyltrimethoxysilane And a 0.10 g catalyst package (target [Pt] = 7.5 ppm in final formulation) was prepared. 2.76 g of this stock solution was mixed with 0.44 g of fused silica (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size = 5 microns) and 0.35 g of double-treated fumed silica (88318, manufactured by GE Silicones). did. This mixture was a non-flowable high viscosity paste.

この組成物を150℃で1時間硬化させた。バルク熱伝導率は実施例1と同じく25℃で0.17W/m−Kであった。 The composition was cured at 150 ° C. for 1 hour. The bulk thermal conductivity was 0.17 W / m-K at 25 ° C. as in Example 1 .

実施例7
実施例5に記載の適量の最終分散体をシリンジから、8×8mmアルミニウムクーポンの上に手作業でX字形に形成した。その上に第2のアルミニウムクーポンを載置して、得られたサンドイッチ構造体を150℃のオーブンに1時間入れて硬化を完了させた。このTIM層の接合面(ボンドライン)厚さは16.8ミクロンである。TIM層の有効熱伝導率は25℃で0.18W/m−Kである。TIM層を通しての総熱抵抗は94mm−K/Wであった。
Example 7
An appropriate amount of the final dispersion described in Example 5 was manually formed into an X-shape from a syringe on an 8 × 8 mm aluminum coupon. A second aluminum coupon was placed thereon, and the resulting sandwich structure was placed in an oven at 150 ° C. for 1 hour to complete the curing. The TIM layer has a bonding surface (bond line) thickness of 16.8 microns. The effective thermal conductivity of the TIM layer is 0.18 W / m-K at 25 ° C. The total thermal resistance through the TIM layer was 94 mm 2 -K / W.

同様の3層サンドイッチ構造体を参考例5に記載の配合物で作成した。接合面厚さは23ミクロンであり、TIM層の有効熱伝導率は25℃で0.13W/m−Kであった。TIM層を通しての総熱抵抗は173mm−K/Wであった。 A similar three-layer sandwich structure was made with the formulation described in Reference Example 5 . The joint surface thickness was 23 microns, and the effective thermal conductivity of the TIM layer was 0.13 W / m-K at 25 ° C. The total thermal resistance through the TIM layer was 173 mm 2 -K / W.

以上、本発明の好ましい実施形態などについて説明してきたが、特許請求の範囲に記載された本発明の技術的範囲に属する他の実施形態は当業者には自明であろう。   Although the preferred embodiments of the present invention have been described above, other embodiments belonging to the technical scope of the present invention described in the claims will be obvious to those skilled in the art.

図1は、本発明に係る電気部品の概略図である。FIG. 1 is a schematic view of an electrical component according to the present invention.

Claims (7)

オルガノ官能化ナノ粒子と硬化性ポリマーマトリックスとのブレンドを含んでなる熱伝導組成物であって、
前記オルガノ官能化ナノ粒子は、オルガノ官能化コロイダルシリカであり、オルガノ官能化コロイダルシリカはコロイダルシリカを下記式
(RSi(OR4−a
(上記式中、Rは各々独立にC1―18一価炭化水素基であり、該一価炭化水素基は、アルキルアクリレート、アルキルメタクリレート、エポキシド、ビニル、アリル、スチレン系、シリル又はシロキシル基でさらに官能化されている。Rは各々独立にC1―18一価炭化水素基又は水素基であり、aは1〜3の整数である。)
で表されるオルガノアルコキシシランで官能化し、さらにシリル化剤で官能化したものであり、前記シリル化剤は、ヘキサメチルジシラザン、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、N−(トリメチルシリル)ジエチルアミン、1−(トリメチルシリル)イミダゾール、トリメチルクロロシラン、ペンタメチルクロロジシロキサン、ペンタメチルジシロキサン及びこれらの組合せから選ばれる少なくとも1つである、熱伝導組成物。
A thermally conductive composition comprising a blend of organofunctionalized nanoparticles and a curable polymer matrix comprising:
The organo-functionalized nanoparticles are organo-functionalized colloidal silica, organo-functionalized colloidal silica is colloidal silica mosquito the formula
(R 1 ) a Si (OR 2 ) 4-a
(In the above formula, each R 1 is independently a C 1-18 monovalent hydrocarbon group, and the monovalent hydrocarbon group is an alkyl acrylate, alkyl methacrylate, epoxide, vinyl, allyl, styrenic, silyl or siloxyl group. And each R 2 is independently a C 1-18 monovalent hydrocarbon group or a hydrogen group, and a is an integer of 1 to 3. )
Functionalized with an organoalkoxysilane represented in state, and are not further functionalized with a silylating agent, the silylating agent, hexamethyldisilazane, tetramethyldisilazane, divinyltetramethyldisilazane, diphenyl tetramethyl silazane, N- (trimethylsilyl) diethylamine, 1- (trimethylsilyl) imidazole, trimethylchlorosilane, pentamethyl chloro disiloxane, Ru least 1 Tsudea selected from pentamethyl disiloxane, and combinations thereof, thermally conductive composition.
前記硬化性ポリマーマトリックスがアクリレート樹脂であり、
前記Rがアルキルアクリレート又はアルキルメタクリレートで官能化されたC1―18一価炭化水素基である請求項1記載の熱伝導組成物。
The curable polymer matrix is an acrylate resin;
The heat conducting composition according to claim 1, wherein R 1 is a C 1-18 monovalent hydrocarbon group functionalized with alkyl acrylate or alkyl methacrylate.
さらにミクロン粒度の充填材を含む、請求項1又は請求項2記載の熱伝導組成物。  Furthermore, the heat conductive composition of Claim 1 or Claim 2 containing the filler of a micron particle size. 発熱部品(3)を、硬化性ポリマーマトリックスとオルガノ官能化ナノ粒子とのブレンドを含んでなる熱伝導組成物(2)と接触させて配置する段階、及び
ヒートシンク(1)を熱伝導組成物(2)と接触させて配置する段階
を含んでなる、熱伝達性を増大させる方法であって、
前記オルガノ官能化ナノ粒子は、オルガノ官能化コロイダルシリカであり、オルガノ官能化コロイダルシリカはコロイダルシリカを下記式
(RSi(OR4−a
(上記式中、Rは各々独立にC1―18一価炭化水素基であり、該一価炭化水素基は、アルキルアクリレート、アルキルメタクリレート、エポキシド、ビニル、アリル、スチレン系、シリル又はシロキシル基でさらに官能化されている。Rは各々独立にC1―18一価炭化水素基又は水素基であり、aは1〜3の整数である。)
で表されるオルガノアルコキシシランで官能化し、さらにシリル化剤で官能化したものであり、前記シリル化剤は、ヘキサメチルジシラザン、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、N−(トリメチルシリル)ジエチルアミン、1−(トリメチルシリル)イミダゾール、トリメチルクロロシラン、ペンタメチルクロロジシロキサン、ペンタメチルジシロキサン及びこれらの組合せから選ばれる少なくとも1つである、方法。
Stage heat generating component (3) is placed in contact with the thermally conductive composition comprising a blend of a curable polymer matrix and organo-functionalized nanoparticles (2), and the heat sink (1) a thermally conductive composition ( 2) a method for increasing heat transfer, comprising the step of placing in contact with
The organo-functionalized nanoparticles are organo-functionalized colloidal silica, organo-functionalized colloidal silica is colloidal silica mosquito the formula
(R 1 ) a Si (OR 2 ) 4-a
(In the above formula, each R 1 is independently a C 1-18 monovalent hydrocarbon group, and the monovalent hydrocarbon group is an alkyl acrylate, alkyl methacrylate, epoxide, vinyl, allyl, styrenic, silyl or siloxyl group. And each R 2 is independently a C 1-18 monovalent hydrocarbon group or a hydrogen group, and a is an integer of 1 to 3. )
Functionalized with an organoalkoxysilane represented in state, and are not further functionalized with a silylating agent, the silylating agent, hexamethyldisilazane, tetramethyldisilazane, divinyltetramethyldisilazane, diphenyl tetramethyl silazane, N- (trimethylsilyl) diethylamine, 1- (trimethylsilyl) imidazole, trimethylchlorosilane, pentamethyl chloro disiloxane, Ru least 1 Tsudea selected from pentamethyl disiloxane, and combinations thereof, methods.
発熱部分(3)、
ヒートシンク(1)、及び
発熱部分(3)と前記ヒートシンク(1)との間に介在する熱伝導組成物(2)
を備える電子部品であって、前記熱伝導組成物(2)が硬化性ポリマーマトリックスとオルガノ官能化ナノ粒子とのブレンドを含んでなり、
前記オルガノ官能化ナノ粒子は、オルガノ官能化コロイダルシリカであり、オルガノ官能化コロイダルシリカはコロイダルシリカを下記式
(RSi(OR4−a
(上記式中、Rは各々独立にC1―18一価炭化水素基であり、該一価炭化水素基は、アルキルアクリレート、アルキルメタクリレート、エポキシド、ビニル、アリル、スチレン系、シリル又はシロキシル基でさらに官能化されている。Rは各々独立にC1―18一価炭化水素基又は水素基であり、aは1〜3の整数である。)
で表されるオルガノアルコキシシランで官能化し、さらにシリル化剤で官能化したものであり、前記シリル化剤は、ヘキサメチルジシラザン、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、N−(トリメチルシリル)ジエチルアミン、1−(トリメチルシリル)イミダゾール、トリメチルクロロシラン、ペンタメチルクロロジシロキサン、ペンタメチルジシロキサン及びこれらの組合せから選ばれる少なくとも1つである、電子部品。
Exothermic part (3),
Heat sink (1), and heat conductive composition (2) interposed between heat generating portion (3) and heat sink (1)
An electronic component comprising the thermally conductive composition (2) comprises a blend of a curable polymer matrix and organo-functionalized nanoparticles,
The organo-functionalized nanoparticles are organo-functionalized colloidal silica, organo-functionalized colloidal silica is colloidal silica mosquito the formula
(R 1 ) a Si (OR 2 ) 4-a
(In the above formula, each R 1 is independently a C 1-18 monovalent hydrocarbon group, and the monovalent hydrocarbon group is an alkyl acrylate, alkyl methacrylate, epoxide, vinyl, allyl, styrenic, silyl or siloxyl group. And each R 2 is independently a C 1-18 monovalent hydrocarbon group or a hydrogen group, and a is an integer of 1 to 3. )
Functionalized with an organoalkoxysilane represented in state, and are not further functionalized with a silylating agent, the silylating agent, hexamethyldisilazane, tetramethyldisilazane, divinyltetramethyldisilazane, diphenyl tetramethyl silazane, N- (trimethylsilyl) diethylamine, 1- (trimethylsilyl) imidazole, trimethylchlorosilane, pentamethyl chloro disiloxane, Ru least 1 Tsudea selected from pentamethyl disiloxane, and combinations thereof, the electronic component.
熱伝導組成物(2)が予め形成されたパッドからなる、請求項5記載の電子部品。  The electronic component according to claim 5, wherein the heat conductive composition (2) comprises a pre-formed pad. ミクロン粒度の充填剤を充填したポリマー組成物の相分離を遅延させる方法であって、オルガノ官能化ナノ粒子を硬化性ポリマー組成物にブレンドすることを含んでなり、
前記オルガノ官能化ナノ粒子は、オルガノ官能化コロイダルシリカであり、オルガノ官能化コロイダルシリカはコロイダルシリカを下記式
(RSi(OR4−a
(上記式中、Rは各々独立にC1―18一価炭化水素基であり、該一価炭化水素基は、アルキルアクリレート、アルキルメタクリレート、エポキシド、ビニル、アリル、スチレン系、シリル又はシロキシル基でさらに官能化されている。Rは各々独立にC1―18一価炭化水素基又は水素基であり、aは1〜3の整数である。)
で表されるオルガノアルコキシシランで官能化し、さらにシリル化剤で官能化したものであり、前記シリル化剤は、ヘキサメチルジシラザン、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、N−(トリメチルシリル)ジエチルアミン、1−(トリメチルシリル)イミダゾール、トリメチルクロロシラン、ペンタメチルクロロジシロキサン、ペンタメチルジシロキサン及びこれらの組合せから選ばれる少なくとも1つである、方法。
Micron particle size of the filler to a method of delaying the phase separation of the filled polymer composition comprises a blending organo-functionalized nanoparticles in the curable polymer composition,
The organo-functionalized nanoparticles are organo-functionalized colloidal silica, organo-functionalized colloidal silica is colloidal silica mosquito the formula
(R 1 ) a Si (OR 2 ) 4-a
(In the above formula, each R 1 is independently a C 1-18 monovalent hydrocarbon group, and the monovalent hydrocarbon group is an alkyl acrylate, alkyl methacrylate, epoxide, vinyl, allyl, styrenic, silyl or siloxyl group. And each R 2 is independently a C 1-18 monovalent hydrocarbon group or a hydrogen group, and a is an integer of 1 to 3. )
Functionalized with an organoalkoxysilane represented in state, and are not further functionalized with a silylating agent, the silylating agent, hexamethyldisilazane, tetramethyldisilazane, divinyltetramethyldisilazane, diphenyl tetramethyl silazane, N- (trimethylsilyl) diethylamine, 1- (trimethylsilyl) imidazole, trimethylchlorosilane, pentamethyl chloro disiloxane, Ru least 1 Tsudea selected from pentamethyl disiloxane, and combinations thereof, methods.
JP2007527154A 2004-05-20 2004-05-20 Nanomaterial-containing organic matrix for increasing bulk thermal conductivity Expired - Fee Related JP5005538B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/015745 WO2005119771A1 (en) 2004-05-20 2004-05-20 Organic matrices containing nanomaterials to enhance bulk thermal conductivity

Publications (2)

Publication Number Publication Date
JP2007538135A JP2007538135A (en) 2007-12-27
JP5005538B2 true JP5005538B2 (en) 2012-08-22

Family

ID=34958661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007527154A Expired - Fee Related JP5005538B2 (en) 2004-05-20 2004-05-20 Nanomaterial-containing organic matrix for increasing bulk thermal conductivity

Country Status (6)

Country Link
EP (1) EP1751796A1 (en)
JP (1) JP5005538B2 (en)
KR (1) KR101116506B1 (en)
CN (1) CN100578769C (en)
BR (1) BRPI0418816A (en)
WO (1) WO2005119771A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592045B2 (en) * 2004-06-15 2009-09-22 Siemens Energy, Inc. Seeding of HTC fillers to form dendritic structures
JP5103364B2 (en) * 2008-11-17 2012-12-19 日東電工株式会社 Manufacturing method of heat conductive sheet
US20120128869A1 (en) * 2010-09-29 2012-05-24 Empire Technology Development Llc Phase change energy storage in ceramic nanotube composites
CN103378022B (en) * 2012-04-13 2016-06-08 普罗旺斯科技(深圳)有限公司 Fin and manufacture method thereof
US8946333B2 (en) * 2012-09-19 2015-02-03 Momentive Performance Materials Inc. Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
US10174433B2 (en) 2013-12-05 2019-01-08 Honeywell International Inc. Stannous methanesulfonate solution with adjusted pH
JP2017522418A (en) * 2014-06-27 2017-08-10 コーニング インコーポレイテッド UV curable coating composition for glass based on epoxy / oxetane compound, epoxy functionalized silsesquioxane and epoxy functionalized nanoparticles
JP6401310B2 (en) 2014-07-07 2018-10-10 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Thermal interface material with ion scavenger
US9482477B2 (en) * 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
SG11201704238YA (en) 2014-12-05 2017-06-29 Honeywell Int Inc High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
EP3426746B1 (en) 2016-03-08 2021-07-14 Honeywell International Inc. Phase change material
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US20210395594A1 (en) * 2018-10-10 2021-12-23 Lord Corporation Highly conductive additives to reduce settling
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935919B2 (en) * 1991-05-31 1999-08-16 住友ベークライト株式会社 Insulating resin paste
KR970002120A (en) * 1995-06-20 1997-01-24 구자홍 Cooking control device of electronic cooker
US20020123285A1 (en) * 2000-02-22 2002-09-05 Dana David E. Electronic supports and methods and apparatus for forming apertures in electronic supports
ES2246319T3 (en) * 2000-03-24 2006-02-16 Hybrid Plastics Llp NANO-STRUCTURED CHEMICALS AS ALLOY AGENTS IN POLYMERS.
US6797758B2 (en) * 2000-04-05 2004-09-28 The Bergquist Company Morphing fillers and thermal interface materials
US20020058140A1 (en) * 2000-09-18 2002-05-16 Dana David E. Glass fiber coating for inhibiting conductive anodic filament formation in electronic supports
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
AU2002248226A1 (en) * 2001-12-20 2003-07-30 Cognitek Management Systems, Inc. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
JP2003342021A (en) * 2002-05-28 2003-12-03 Polymatech Co Ltd Aluminum oxide powder composition and heat-conductive molding containing the same
DE10241510A1 (en) * 2002-09-07 2004-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Preparation of nano composites by organic modification of nano filler useful as a paint, adhesive, casting composition, in aircraft construction, electronics, automobile finishing, and as a parquet flooring lacquer
US20040102529A1 (en) * 2002-11-22 2004-05-27 Campbell John Robert Functionalized colloidal silica, dispersions and methods made thereby

Also Published As

Publication number Publication date
EP1751796A1 (en) 2007-02-14
WO2005119771A1 (en) 2005-12-15
BRPI0418816A (en) 2007-11-13
CN100578769C (en) 2010-01-06
CN1989614A (en) 2007-06-27
KR101116506B1 (en) 2012-03-13
JP2007538135A (en) 2007-12-27
KR20070010201A (en) 2007-01-22

Similar Documents

Publication Publication Date Title
US7013965B2 (en) Organic matrices containing nanomaterials to enhance bulk thermal conductivity
JP5005538B2 (en) Nanomaterial-containing organic matrix for increasing bulk thermal conductivity
US7550097B2 (en) Thermal conductive material utilizing electrically conductive nanoparticles
JP5305656B2 (en) Thermally conductive composition and method for producing the same
JP5887056B2 (en) Thermal interface material
US20050148721A1 (en) Thin bond-line silicone adhesive composition and method for preparing the same
US20060275608A1 (en) B-stageable film, electronic device, and associated process
JP2006507210A (en) Functionalized colloidal silica, dispersions and methods
ZA200601712B (en) Nano-filled composite materials with exceptionally high glass transition temperature
JP2010511738A (en) Silicone adhesive composition and method for preparing the same
AU2004271534A1 (en) Solvent-modified resin system containing filler that has high Tg, transparency and good reliability in wafer level underfill applications
JP2006507395A (en) Curable epoxy composition, method and article
US20050266263A1 (en) Refractory solid, adhesive composition, and device, and associated method
JP7452304B2 (en) Composition for heat dissipation member, heat dissipation member, electronic device, and method for producing heat dissipation member
CN117004187A (en) Resin dispersion liquid of modified nano silicon dioxide particles, preparation method and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100908

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110329

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110427

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111005

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111026

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111201

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees