JP2008153430A - Heatsink substrate and heat conductive sheet, and power module using these - Google Patents

Heatsink substrate and heat conductive sheet, and power module using these Download PDF

Info

Publication number
JP2008153430A
JP2008153430A JP2006339845A JP2006339845A JP2008153430A JP 2008153430 A JP2008153430 A JP 2008153430A JP 2006339845 A JP2006339845 A JP 2006339845A JP 2006339845 A JP2006339845 A JP 2006339845A JP 2008153430 A JP2008153430 A JP 2008153430A
Authority
JP
Japan
Prior art keywords
heat
heat conductive
heat dissipation
conductive sheet
radiating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339845A
Other languages
Japanese (ja)
Inventor
Kenji Mimura
研史 三村
Hiromi Ito
浩美 伊藤
Hideki Takigawa
秀記 瀧川
Takashi Nishimura
隆 西村
Kei Yamamoto
圭 山本
Toshiyuki Toyoshima
利之 豊島
Hironori Shioda
裕基 塩田
Atsuko Fujino
敦子 藤野
Seiki Hiramatsu
星紀 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006339845A priority Critical patent/JP2008153430A/en
Publication of JP2008153430A publication Critical patent/JP2008153430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heatsink substrate with a fine concavity and convexity on at least one surface of a heatsink member having a concavity and convexity on the surface filled with a member excellent in the heat conductivity. <P>SOLUTION: The heatsink plate (1) comprises the heatsink members (6, 7) having concavities and convexities on the surface and the heat conductive sheet (8) jointed to the concavities and the convexities. The heat conductive sheet (8) comprises a thermosetting resin (2), a heat conductive microscopic filler (3) having a particle diameter of not more than 1/10 to the concavities and convexities, and inorganic fillers (4, 5) having average particle sizes of not less than 3 μm nor more than 100 μm and a heat conductivity and an insulation property. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電気・電子機器等の発熱対象部から放熱部材へ熱を伝達させるのに用いる熱伝導性シートに関し、特にパワーモジュールの発熱を放熱部材に伝導させる絶縁性の熱伝導性シートおよびこれを用いたパワーモジュールに関するものである。   The present invention relates to a heat conductive sheet used for transferring heat from a heat generation target part such as an electric / electronic device to a heat radiating member, and in particular, an insulating heat conductive sheet that conducts heat generated by a power module to the heat radiating member and the heat conductive sheet. The present invention relates to a power module using

従来、電気・電子機器の発熱部から放熱部材へ熱を伝達させる熱伝導樹脂膜層には、高熱伝導性と絶縁性との要求から、熱硬化性樹脂に無機の充填剤を添加した熱伝導性樹脂組成物が広く用いられている。さらに該無機充填剤の粒径を限定している。
例えば、発熱性電子部品の放熱部材であって、樹脂組成物の熱伝導率を向上させるために窒化アルミニウム粉末の平均粒子径を限定している(例えば、特許文献1参照)。
また、表面に酸化アルミニウム被覆層を有する窒化アルミニウムを充填した高熱伝導性樹脂組成物であって、流動性と充填性を考慮して該窒化アルミニウムの平均粒径を限定している(例えば、特許文献2参照)。
Conventionally, a heat conductive resin film layer that transfers heat from the heat generating part of an electric / electronic device to a heat radiating member has a high heat conductivity and an insulating property. Resin compositions are widely used. Furthermore, the particle size of the inorganic filler is limited.
For example, it is a heat radiating member of an exothermic electronic component, and the average particle diameter of aluminum nitride powder is limited in order to improve the thermal conductivity of the resin composition (see, for example, Patent Document 1).
Further, it is a high thermal conductive resin composition filled with aluminum nitride having an aluminum oxide coating layer on the surface, and the average particle size of the aluminum nitride is limited in consideration of fluidity and filling properties (for example, patents) Reference 2).

特開2001−158610号公報JP 2001-158610 A 特開2002−265794号公報JP 2002-265794 A

電子機器の小型化や電子部品の高性能化に伴い、電子機器や電子部品からの発熱量は大幅に増大しており、電気・電子機器の発熱部から放熱部材へ熱を伝達させる熱伝導性樹脂シートには、さらなる高熱伝導性が要求されている。従来の熱硬化性樹脂に高熱伝導性の無機充填剤を添加する絶縁性の熱伝導性シートでは、添加する無機充填剤の含有率を増やすことや無機充填剤の最密充填により熱伝導性を向上させている。しかし、発熱部材や放熱部材には細かな凹凸があり、その凹凸には無機充填剤が充填されず熱伝導性の低い熱硬化性樹脂層が形成される。そのため発熱部側から熱伝導性シート、及び熱伝導性シートから放熱部材への熱伝達が低下する問題があった。   With the downsizing of electronic devices and higher performance of electronic components, the amount of heat generated from electronic devices and electronic components has increased significantly, and the heat conductivity that transfers heat from the heat generating part of electric and electronic devices to the heat dissipation member The resin sheet is required to have higher thermal conductivity. Insulating thermal conductive sheets that add inorganic fillers with high thermal conductivity to conventional thermosetting resins can increase thermal conductivity by increasing the content of inorganic fillers added or by close packing of inorganic fillers. It is improving. However, the heat generating member and the heat radiating member have fine unevenness, and the unevenness is not filled with an inorganic filler, and a thermosetting resin layer having low thermal conductivity is formed. Therefore, there has been a problem that heat transfer from the heat generating portion side to the heat conductive sheet and from the heat conductive sheet to the heat radiating member is lowered.

この発明の目的は、表面に凹凸を有する放熱部材の少なくともいずれか一方の表面の細かな凹凸が熱伝導性に優れた部材により充填することができる放熱基板並びに熱伝導性シートおよびこれらを用いたパワーモジュールを提供することである。   An object of the present invention is to use a heat radiating substrate, a heat conductive sheet, and a heat radiating substrate in which fine unevenness on at least one surface of a heat radiating member having unevenness on the surface can be filled with a member having excellent heat conductivity. It is to provide a power module.

この発明に係わる放熱基板は、表面に凹凸を有する放熱部材と上記凹凸部に接合される熱伝導性シートを備えた放熱基板であって、上記熱伝導性シートは、熱硬化性樹脂と、上記凹凸に対して10分の1以下の粒子径である熱伝導性微細充填剤と、平均粒径が3μm以上で100μm以下であり、且つ熱伝導性および絶縁性を有する無機充填剤とを備える。   A heat dissipation board according to the present invention is a heat dissipation board provided with a heat dissipation member having unevenness on a surface and a heat conductive sheet bonded to the unevenness portion, and the heat conductive sheet includes a thermosetting resin and the above A heat conductive fine filler having a particle size of 1/10 or less with respect to the unevenness, and an inorganic filler having an average particle size of 3 μm or more and 100 μm or less and having heat conductivity and insulating properties.

この発明に係わる放熱基板の効果は、放熱部材の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤を含有する熱硬化性樹脂が放熱部材の表面の凹凸に充填され、充填された熱硬化性樹脂に熱伝導性が良好な熱伝導性微細充填剤が含まれるので、凹凸に充填された熱硬化性樹脂を単位時間多くの熱が伝導して放熱部材に伝搬することができるということである。   The effect of the heat dissipation substrate according to the present invention is that the thermosetting resin containing a heat conductive fine filler of 1/10 or less of the unevenness on the surface of the heat dissipation member is filled in the unevenness on the surface of the heat dissipation member. Since the heat-curable resin contains a heat-conductive fine filler with good heat conductivity, a large amount of heat can be conducted through the thermosetting resin filled in the irregularities and propagated to the heat radiating member. It can be done.

実施の形態1.
図1は、この発明の実施の形態1に係わる放熱基板の断面模式図である。
この発明の実施の形態1に係わる放熱基板1は、図1に示すように、放熱部材6および放熱部材7、放熱部材6と放熱部材7との間に介設された熱伝導性シート8から構成され、一方の放熱部材6から他方の放熱部材7へ熱を伝導する。そして、放熱部材6と放熱部材7は、相対する面に細かな凹凸が存在する。
放熱部材6および放熱部材7は、銅またはアルミニウムなどの金属が用いられる。そして、放熱部材6および放熱部材7の表面にエッチング処理などによって15μm以下の凹凸を形成する。
Embodiment 1 FIG.
FIG. 1 is a schematic sectional view of a heat dissipation board according to Embodiment 1 of the present invention.
As shown in FIG. 1, the heat dissipation board 1 according to Embodiment 1 of the present invention includes a heat dissipation member 6 and a heat dissipation member 7, and a heat conductive sheet 8 interposed between the heat dissipation member 6 and the heat dissipation member 7. It is configured to conduct heat from one heat radiating member 6 to the other heat radiating member 7. And the heat radiating member 6 and the heat radiating member 7 have a fine unevenness | corrugation in the opposing surface.
The heat radiating member 6 and the heat radiating member 7 are made of metal such as copper or aluminum. And the unevenness | corrugation below 15 micrometers is formed in the surface of the heat radiating member 6 and the heat radiating member 7 by an etching process.

この熱伝導性シート8は、マトリックスとなる熱硬化性樹脂2と、この熱硬化性樹脂2中に分散した粒子が放熱部材6および放熱部材7の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤3と、平均粒径が3μm以上で100μm以下の数種類の熱伝導性無機充填剤4、5とから構成される。   The thermally conductive sheet 8 is composed of a thermosetting resin 2 serving as a matrix, and particles dispersed in the thermosetting resin 2 are one tenth or less of the unevenness of the surfaces of the heat radiating member 6 and the heat radiating member 7. The heat conductive fine filler 3 and several kinds of heat conductive inorganic fillers 4 and 5 having an average particle diameter of 3 μm or more and 100 μm or less are constituted.

粒子が放熱部材6および放熱部材7の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤3は、熱伝導性に優れた銅(Cu)、鉄(Fe)、アルミニウム(Al)、銀(Ag)などの金属類や、窒化ホウ素(BN)、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、炭化珪素(SiC)、結晶シリカ(SiO)などである。なお、これらを2種類以上混ぜて用いてもよい。特に、窒化ホウ素または窒化アルミニウムは熱伝導率が高いので、好ましい。 The heat conductive fine filler 3 whose particle is 1/10 or less of the unevenness of the surfaces of the heat radiating member 6 and the heat radiating member 7 is copper (Cu), iron (Fe), aluminum (Al ), Silver (Ag), and the like, boron nitride (BN), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), crystalline silica (SiO 2 ), and the like. Two or more of these may be mixed and used. In particular, boron nitride or aluminum nitride is preferable because of its high thermal conductivity.

熱伝導性無機充填剤4、5としては、電気絶縁性で熱伝導性に優れた窒化ホウ素(BN)、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、炭化珪素(SiC)、結晶シリカ(SiO)などである。これらを2種類以上混ぜて用いてもよい。特に、窒化ホウ素または窒化アルミニウムは熱伝導率が高いので、好ましい。
また、この実施の形態1に係わる熱伝導性無機充填剤4、5の平均粒子径は3μm以上で100μm以下が好ましく、特に、平均粒子径が10〜70μmであれば熱伝導率と電気絶縁性のバランスがとれるので、さらに好ましい。
Examples of the thermally conductive inorganic fillers 4 and 5 include boron nitride (BN), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), crystal, which are electrically insulating and excellent in thermal conductivity. For example, silica (SiO 2 ). Two or more of these may be mixed and used. In particular, boron nitride or aluminum nitride is preferable because of its high thermal conductivity.
The average particle size of the thermally conductive inorganic fillers 4 and 5 according to the first embodiment is preferably 3 μm or more and 100 μm or less. In particular, when the average particle size is 10 to 70 μm, the thermal conductivity and the electrical insulating property are obtained. Is more preferable.

熱伝導性シート8のマトリックスとなる熱硬化性樹脂2としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂などの組成物を用いることができるが、エポキシ樹脂は、熱伝導性シート8の製造が容易になるので、特に好ましい。   As the thermosetting resin 2 serving as a matrix of the heat conductive sheet 8, a composition such as an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, or a polyimide resin can be used. Since the manufacture of the heat conductive sheet 8 becomes easy, it is particularly preferable.

エポキシ樹脂組成物の主剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、グリシジルーアミノフェノール系エポキシ樹脂を用いることができる。これらエポキシ樹脂組成物の主剤を2種以上混合して用いても良い。   As the main component of the epoxy resin composition, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, alicyclic aliphatic epoxy resin, glycidyl aminophenol type epoxy resin Can be used. You may mix and use 2 or more types of these main ingredients of an epoxy resin composition.

エポキシ樹脂組成物の硬化剤としては、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸などの脂環式酸無水物、ドデセニル無水コハク酸などの脂肪族酸無水物、無水フタル酸、無水トリメリット酸などの芳香族酸無水物、ジシアンジアミド、アジピン酸ジヒドラジドなどの有機ジヒドラジド、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン、およびその誘導体、2−メチルイミダゾール、2−エチルー4−メチルイミダゾール、2−フェニルイミダゾールなどのイミダゾール類を用いることができる。これらエポキシ樹脂組成物の硬化剤を2種以上混合して用いても良い。   Examples of the curing agent for the epoxy resin composition include alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride, aliphatic acid anhydrides such as dodecenyl succinic anhydride, and anhydride. Aromatic acid anhydrides such as phthalic acid and trimellitic anhydride, organic dihydrazides such as dicyandiamide and adipic acid dihydrazide, tris (dimethylaminomethyl) phenol, dimethylbenzylamine, 1,8-diazabicyclo (5,4,0) undecene , And derivatives thereof, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole can be used. Two or more kinds of curing agents for these epoxy resin compositions may be mixed and used.

なお、熱伝導性シート8には、必要に応じてカップリング剤を含有させても良い。用いられるカップリング剤としては、例えばγ―グリシドキシプロピルトリメトキシシラン、N−β(アミノエチル)γ―アミノプロピルトリエトキシシラン、N−フェニル−γ―アミノプロピルトリメトキシシラン、γ―メルカプトプロピルトリメトキシシランなどが挙げられる。これらカップリング剤を2種類以上併用しても良い。
そして、熱伝導性シート8にカップリング剤を含有させると、電気・電子機器の放熱部材6や放熱部材7に対する接着力が向上する。
放熱部材6、7の表面に凹凸を設けるためには、硫酸と過酸化水素の溶液処理、塩化第二鉄の溶液処理、エッチング処理、ブラスト処理、ブラッシング処理、ペーパー処理などがある。
また、放熱部材6、7の表面に熱伝導性シート8との接着性を向上するために、上記カップリング剤などの塗布やクロム酸処理、プラズマ処理やUV照射処理などを施しても良い。
In addition, you may make the heat conductive sheet 8 contain a coupling agent as needed. Examples of coupling agents used include γ-glycidoxypropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and γ-mercaptopropyl. Examples include trimethoxysilane. Two or more of these coupling agents may be used in combination.
When the heat conductive sheet 8 contains a coupling agent, the adhesive force to the heat radiating member 6 and the heat radiating member 7 of the electric / electronic device is improved.
In order to provide unevenness on the surfaces of the heat dissipating members 6 and 7, there are sulfuric acid and hydrogen peroxide solution treatment, ferric chloride solution treatment, etching treatment, blast treatment, brushing treatment, paper treatment, and the like.
Moreover, in order to improve the adhesiveness with the heat conductive sheet 8 on the surface of the heat radiating members 6 and 7, you may perform application | coating of the said coupling agent, a chromic acid process, a plasma process, a UV irradiation process, etc.

次に、この発明の実施の形態1に係わる放熱基板用の熱伝導性シート用プリプレーグの製造方法について説明する。
まず、所定量の主剤とこの主剤を硬化するために必要な量の硬化剤とからなる熱硬化性樹脂組成物と、例えばこの熱硬化性樹脂組成物と同重量の溶剤とを混合して、熱硬化性樹脂組成物の溶液を作製する。
次に、熱硬化性樹脂組成物の溶液に、平均粒径が3μm以上で100μm以下の熱伝導性無機充填剤4、5と粒子径が放熱部材6および放熱部材7の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤3との混合充填剤を添加して予備混合する。
次に、この予備混合物を例えば3本ロールやニーダなどで混練し、熱伝導性シート用コンパウンドを作製する。
次に、この熱伝導性シート用コンパウンドを、離型処理された樹脂シートや直接放熱部材6、7上に、ドクターブレード法により塗布する。
次に、この塗布物中の溶剤を揮発させて塗布物を乾燥して、熱伝導性シート用プリプレーグを作製する。放熱部材6、7の上に直接作製する場合は、放熱部材6、7に貼り付いている状態になる。
Next, the manufacturing method of the prepreg for heat conductive sheets for heat dissipation boards concerning Embodiment 1 of this invention is demonstrated.
First, a thermosetting resin composition composed of a predetermined amount of a main agent and a curing agent in an amount necessary to cure the main agent, and, for example, a solvent of the same weight as the thermosetting resin composition are mixed, A solution of the thermosetting resin composition is prepared.
Next, in the solution of the thermosetting resin composition, the heat conductive inorganic fillers 4 and 5 having an average particle diameter of 3 μm or more and 100 μm or less and the irregularities on the surfaces of the heat radiating member 6 and the heat radiating member 7 A mixed filler with 1/10 or less of the heat conductive fine filler 3 is added and premixed.
Next, the preliminary mixture is kneaded with, for example, a three-roller or a kneader to produce a heat conductive sheet compound.
Next, this compound for heat conductive sheets is apply | coated by the doctor blade method on the resin sheet and the heat radiating members 6 and 7 which were mold-released.
Next, the solvent in the coated material is volatilized and the coated material is dried to prepare a prepreg for a heat conductive sheet. When directly producing on the heat radiating members 6 and 7, it will be in the state stuck on the heat radiating members 6 and 7. FIG.

なお、塗布物を乾燥するとき、必要に応じて加熱をして溶剤の揮発を促進させても良く、熱硬化性樹脂組成物の反応を進め、Bステージ化しても良い。
また、粘度が低い熱硬化性樹脂組成物の場合は、溶剤を添加することなしに、熱硬化性樹脂組成物そのものに、混合充填剤を添加しても良い。
また、カップリング剤などの添加剤は、熱硬化性樹脂組成物と混合充填剤との混練工程までに添加すれば良い。
In addition, when drying a coating material, it may heat as needed to accelerate | stimulate volatilization of a solvent, reaction of a thermosetting resin composition may be advanced, and it may be B-staged.
In the case of a thermosetting resin composition having a low viscosity, a mixed filler may be added to the thermosetting resin composition itself without adding a solvent.
Moreover, what is necessary is just to add additives, such as a coupling agent, by the kneading | mixing process of a thermosetting resin composition and a mixed filler.

次に、このように作製された熱伝導性シート用プリプレーグを用いて放熱部材6と放熱部材7を接着する方法について説明する。
熱伝導性シート用プリプレーグは、マトリックスの熱硬化性樹脂2がBステージ状態であるので、放熱部材6と放熱部材7とで挟んで加熱硬化して、放熱部材6と放熱部材7を接着するとともに電気絶縁する。この放熱基板1は高熱伝導性を有するので、一方の放熱部材6からの熱を他方の放熱部材7へ効率よく伝導することができる。
また、放熱基板1を、放熱部材6または放熱部材7のいずれか一方に接着し、他方をこの硬化した熱伝導性シート8に圧接することにより、一方からの熱を他方へ伝導することができる。
また、熱伝導性シート用プリプレーグを硬化させて得られた熱伝導性シート8を、放熱部材6と放熱部材7とで機械的に挟むことにより、一方からの熱を他方へ伝導することができる。
Next, a method of bonding the heat radiating member 6 and the heat radiating member 7 using the thus prepared prepreg for the heat conductive sheet will be described.
In the prepreg for the heat conductive sheet, since the thermosetting resin 2 of the matrix is in a B-stage state, the heat radiating member 6 and the heat radiating member 7 are sandwiched between the heat radiating member 6 and the heat radiating member 7 to be cured. Insulate electrically. Since the heat dissipation substrate 1 has high thermal conductivity, heat from one heat dissipation member 6 can be efficiently conducted to the other heat dissipation member 7.
Further, by adhering the heat radiating substrate 1 to either the heat radiating member 6 or the heat radiating member 7 and pressing the other to the cured heat conductive sheet 8, heat from one can be conducted to the other. .
Further, the heat conductive sheet 8 obtained by curing the prepreg for the heat conductive sheet is mechanically sandwiched between the heat radiating member 6 and the heat radiating member 7 so that heat from one side can be conducted to the other. .

図2は、比較のため表面に凹凸を有する放熱部材とこの凹凸部に接合される熱伝導性シートを備えた放熱基板において、熱伝導性シートが粒子径の大きな無機充填剤だけを含有する放熱基板の断面模式図である。
粒子径の大きな無機充填剤を含有する熱伝導性シート13から構成される放熱基板11は、図2に示すように、放熱部材6および放熱部材7に設けられた細かな凹凸に無機充填剤が充填されず熱伝導性の低い熱硬化性樹脂層が形成される。そのため熱伝導性無機充填剤が充填されていない熱硬化性樹脂層で熱伝導が少なくなり、放熱基板11の熱伝導率は小さい。
FIG. 2 shows a heat radiating substrate including a heat radiating member having irregularities on the surface and a heat conductive sheet bonded to the concavo-convex portion for comparison, and the heat conductive sheet contains only an inorganic filler having a large particle diameter. It is a cross-sectional schematic diagram of a board | substrate.
As shown in FIG. 2, the heat dissipating substrate 11 composed of the heat conductive sheet 13 containing the inorganic filler having a large particle diameter has the inorganic filler on the fine irregularities provided on the heat dissipating member 6 and the heat dissipating member 7. A thermosetting resin layer that is not filled and has low thermal conductivity is formed. Therefore, heat conduction is reduced in the thermosetting resin layer not filled with the heat conductive inorganic filler, and the heat conductivity of the heat dissipation substrate 11 is small.

他方、この発明の実施の形態1に係わる放熱基板1は、熱伝導性シート8における熱硬化性樹脂2のマトリックス中に平均粒径が3μm以上で100μm以下の熱伝導性無機充填剤4、5と粒子径が放熱部材6および放熱部材7の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤3との混合充填剤を含有したものであり、絶縁性を有するとともに、粒子径の大きな無機充填剤を用いたものより、格段に優れた熱伝導性を有する。   On the other hand, in the heat dissipation substrate 1 according to Embodiment 1 of the present invention, the heat conductive inorganic fillers 4 and 5 having an average particle size of 3 μm or more and 100 μm or less in the matrix of the thermosetting resin 2 in the heat conductive sheet 8. And a particle size of the heat-radiating member 6 and the heat-dissipating member 7 and the heat-conducting fine filler 3 are mixed with a filler that is 1/10 or less of the irregularities on the surface of the heat-dissipating member 6 It has much better thermal conductivity than that using a large-diameter inorganic filler.

また、この実施の形態1に係わる放熱基板1における熱伝導性シート8は、無機充填剤の含有率を極限までに増やさなくても、高い熱伝導率を有するので、熱伝導性シート用コンパウンドの粘度を下げることができ、厚さが薄く、表面が平坦な熱伝導性シート8を得ることができる。
すなわち、厚さを薄くできるので、熱伝導性シート8の厚さ方向の熱抵抗が小さいという効果がある。
また、得られる熱伝導性シート8の表面が平坦であるので、放熱部材6や放熱部材7への密着性が優れており、接触熱抵抗が小さく、熱伝達性が優れている。
Moreover, since the heat conductive sheet 8 in the heat dissipation substrate 1 according to the first embodiment has a high heat conductivity without increasing the content of the inorganic filler to the limit, the heat conductive sheet compound The heat conductive sheet 8 which can reduce a viscosity, is thin, and has a flat surface can be obtained.
That is, since the thickness can be reduced, there is an effect that the thermal resistance in the thickness direction of the heat conductive sheet 8 is small.
Moreover, since the surface of the obtained heat conductive sheet 8 is flat, the adhesiveness to the heat radiating member 6 or the heat radiating member 7 is excellent, the contact thermal resistance is small, and the heat transfer property is excellent.

実施の形態2.
図3は、この発明の実施の形態2に係わる放熱基板12の断面模式図である。
この発明の実施の形態2に係わる放熱基板12は、図3に示すように、放熱部材6および放熱部材7、凹凸部に設けられた粒子径が放熱部材6および放熱部材7の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤3を配合した第1の熱伝導性層9と、その間に設けられた平均粒径が3μm以上で100μm以下の熱伝導性無機充填剤4、5を配合した第2の熱伝導性層10とから構成される。
また、実施の形態2に係わる放熱基板12の第2の熱伝導性層10に、図1に示すように、熱伝導性微細充填剤3をも配合しても良い。
Embodiment 2. FIG.
FIG. 3 is a schematic cross-sectional view of the heat dissipation board 12 according to Embodiment 2 of the present invention.
As shown in FIG. 3, the heat dissipation substrate 12 according to the second embodiment of the present invention has a heat dissipation member 6 and a heat dissipation member 7, and the particle diameters provided on the uneven portions are uneven on the surfaces of the heat dissipation member 6 and the heat dissipation member 7. On the other hand, the 1st heat conductive layer 9 which mix | blended the heat conductive fine filler 3 of 1/10 or less, and the heat conductive inorganic filler 4 with an average particle diameter of 3 micrometers or more and 100 micrometers or less provided between them. 5 and the 2nd heat conductive layer 10 which mix | blended.
Moreover, as shown in FIG. 1, the heat conductive fine filler 3 may also be mix | blended with the 2nd heat conductive layer 10 of the thermal radiation board | substrate 12 concerning Embodiment 2. FIG.

この実施の形態2に係わる放熱基板12においては、一方の放熱部材6から伝導してきた熱を第1の熱伝導性層9を介して第2の熱伝導性層10に伝導し、第2の熱伝導性層10を伝導してきた熱を第1の熱伝導性層9を介して放熱部材7に伝達することができるので、放熱基板12の熱伝導性の大幅向上を実現することができる。   In the heat dissipation board 12 according to the second embodiment, the heat conducted from one heat dissipation member 6 is conducted to the second heat conductive layer 10 via the first heat conductive layer 9, Since the heat conducted through the heat conductive layer 10 can be transmitted to the heat radiating member 7 through the first heat conductive layer 9, the heat conductivity of the heat radiating substrate 12 can be greatly improved.

次に、この発明の実施の形態2に係わる熱伝導性層用プリプレーグの製造方法を説明する。
まず、第1の熱伝導性層9に係わる第1の熱伝導性層用コンパウンドの製造方法を説明する。
所定量の主剤とこの主剤を硬化させるのに必要な量の硬化剤とからなる熱硬化性樹脂組成物と、例えばこの熱硬化性樹脂組成物と同重量の溶剤とを混合し、熱硬化性樹脂組成物の溶液を調整する。
次に、熱硬化性樹脂組成物の溶液に、粒子径が放熱部材6および放熱部材7の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤3を添加して予備混合する。この予備混合物を例えば3本ロールやニーダなどで混練し、第1の熱伝導性層用コンパウンドを作製する。
Next, a method for manufacturing a prepreg for a heat conductive layer according to Embodiment 2 of the present invention will be described.
First, the manufacturing method of the 1st compound for heat conductive layers concerning the 1st heat conductive layer 9 is demonstrated.
A thermosetting resin composition composed of a predetermined amount of a main agent and an amount of a curing agent necessary for curing the main agent and a solvent having the same weight as that of the thermosetting resin composition, for example, are mixed, and thermosetting A solution of the resin composition is prepared.
Next, the heat conductive fine filler 3 having a particle size of 1/10 or less of the irregularities on the surfaces of the heat radiating member 6 and the heat radiating member 7 is added to the solution of the thermosetting resin composition and premixed. . The preliminary mixture is kneaded by, for example, a three-roller or a kneader to produce a first heat conductive layer compound.

次に、第2の熱伝導性層10に係わる第2の熱伝導性層用コンパウンドの製造方法を説明する。
所定量の主剤とこの主剤を硬化させるのに必要な量の硬化剤とからなる熱硬化性樹脂組成物と、例えばこの熱硬化性樹脂組成物と同重量の溶剤とを混合し、熱硬化性樹脂組成物の溶液を調整する。
次に、熱硬化性樹脂組成物の溶液に、平均粒径が3μm以上で100μm以下の熱伝導性無機充填剤4、5を、また必要に応じて熱伝導性微細充填剤3を添加して予備混合する。この予備混合物を例えば3本ロールやニーダなどで混練し、第2の熱伝導性層用コンパウンドを作製する。
Next, the manufacturing method of the 2nd compound for heat conductive layers concerning the 2nd heat conductive layer 10 is demonstrated.
A thermosetting resin composition composed of a predetermined amount of a main agent and an amount of a curing agent necessary for curing the main agent and a solvent having the same weight as that of the thermosetting resin composition, for example, are mixed, and thermosetting A solution of the resin composition is prepared.
Next, thermally conductive inorganic fillers 4 and 5 having an average particle diameter of 3 μm or more and 100 μm or less are added to the solution of the thermosetting resin composition, and if necessary, the thermally conductive fine filler 3 is added. Premix. The preliminary mixture is kneaded with, for example, a three roll or a kneader to produce a second heat conductive layer compound.

次に、第1の熱伝導性層用コンパウンドおよび第2の熱伝導性層用コンパウンドを、離型処理された樹脂シートや直接放熱部材上に、ドクターブレード法により塗布する。
次に、この塗布物中の溶剤を揮発させて塗布物を乾燥して、第1の熱伝導性層用プリプレーグおよび第2の熱伝導性層用プリプレーグを作製する。
Next, the first thermal conductive layer compound and the second thermal conductive layer compound are applied onto the release-treated resin sheet and the direct heat radiation member by a doctor blade method.
Next, the solvent in the coating material is volatilized and the coating material is dried to produce a first prepreg for the heat conductive layer and a second prepreg for the heat conductive layer.

なお、この時、必要に応じて加熱をして、溶剤の揮発を促進させても良く、熱硬化性樹脂組成物の反応を進め、Bステージ化しても良い。
また、粘度が低い熱硬化性樹脂組成物の場合は、溶剤を添加することなしに、熱硬化性樹脂組成物そのものに、混合充填剤を添加しても良い。
また、カップリング剤などの添加剤は、熱硬化性樹脂組成物と混合充填剤との混練工程までに添加すれば良い。
At this time, it may be heated as necessary to promote the volatilization of the solvent, or the reaction of the thermosetting resin composition may be advanced to form a B stage.
In the case of a thermosetting resin composition having a low viscosity, a mixed filler may be added to the thermosetting resin composition itself without adding a solvent.
Moreover, what is necessary is just to add additives, such as a coupling agent, by the kneading | mixing process of a thermosetting resin composition and a mixed filler.

次に、このように作製された第1の熱伝導性層用プリプレーグおよび第2の熱伝導性層用プリプレーグを用いて放熱部材6と放熱部材7を接着する方法について説明する。
放熱部材6と放熱部材7の接着する面にそれぞれ第1の熱伝導性層用プリプレーグを接するように配置し、その第1の熱伝導性層プリプレーグの間に第2の熱伝導性層用プリプレーグを配置し、加圧下で加熱して硬化し、放熱部材6と放熱部材7を接着するとともに電気絶縁する。
Next, a method of bonding the heat radiating member 6 and the heat radiating member 7 using the first prepreg for the heat conductive layer and the second prepreg for the heat conductive layer manufactured as described above will be described.
The first heat conductive layer prepreg is disposed in contact with the surfaces to which the heat radiating member 6 and the heat radiating member 7 are bonded, and the second heat conductive layer prepreg is interposed between the first heat conductive layer prepregs. And is cured by heating under pressure, and the heat radiating member 6 and the heat radiating member 7 are bonded and electrically insulated.

この放熱基板12は高熱伝導性を有するので、一方の放熱部材6からの熱を他方の放熱部材7へ効率よく伝導することができる。
また、熱伝導性シート13を放熱部材6または放熱部材7のいずれか一方に接着し、他方をこの硬化した熱伝導性シート13に圧接することにより、一方からの熱を他方へ伝導することができる。
また、第2の熱伝導性層用プリプレーグを両側から第1の熱伝導性層用プリプレーグで挟んだ状態で加熱硬化して得られた熱伝導性シート13を、放熱部材6と放熱部材7とで挟むことにより、一方の放熱部材6からの熱を他方の放熱部材7へ伝導することができる。
Since this heat dissipation substrate 12 has high thermal conductivity, heat from one heat dissipation member 6 can be efficiently conducted to the other heat dissipation member 7.
Further, by adhering the heat conductive sheet 13 to either the heat radiating member 6 or the heat radiating member 7, and pressing the other to the cured heat conductive sheet 13, heat from one can be conducted to the other. it can.
Further, the heat conductive sheet 13 obtained by heat-curing the second heat conductive layer prepreg sandwiched between the first heat conductive layer prepregs from both sides, the heat radiating member 6, the heat radiating member 7, The heat from one heat radiating member 6 can be conducted to the other heat radiating member 7.

この発明の実施の形態2に係わる放熱基板12は、放熱部材6側と放熱部材7側とに粒子径が放熱部材6および放熱部材7の表面の凹凸に対して10分の1以下の熱伝導性微細充填剤3を含有した第1の熱伝導性層を、その間に平均粒径が3μm以上で100μm以下の熱伝導性無機充填剤4、5、また必要に応じて熱伝導性微細充填剤3を含有した第2の熱伝導性層を形成することにより、絶縁性を有するとともに、粒子径の大きな無機充填剤のみを用いたものより、格段に優れた熱伝導性を有する。   In the heat dissipation board 12 according to the second embodiment of the present invention, the heat conduction is less than 1/10 of the irregularities on the surfaces of the heat dissipation member 6 and the heat dissipation member 7 on the heat dissipation member 6 side and the heat dissipation member 7 side. The first thermally conductive layer containing the conductive fine filler 3 and the thermal conductive inorganic fillers 4 and 5 having an average particle size of 3 μm or more and 100 μm or less therebetween, and optionally the heat conductive fine filler By forming the 2nd heat conductive layer containing 3, it has insulation and it has the heat conductivity markedly superior to what used only the inorganic filler with a large particle diameter.

次に、この発明に係わる放熱基板について6つの実施例と比較のための5つの比較例を示してさらに詳細に説明する。表1には6つの実施例の放熱基板を構成する組成比とレーザーフラッシュ法で測定した熱伝導率を示す。また、表2には5つの比較例の放熱基板を構成する組成比とレーザーフラッシュ法で測定した熱伝導率を示す。なお、表1の実施例6の熱伝導率の値は第1の熱伝導層と第2の熱伝導層を合わせた放熱基板の値である。   Next, the heat dissipation substrate according to the present invention will be described in more detail with reference to six examples and five comparative examples for comparison. Table 1 shows the composition ratios constituting the heat dissipation substrates of the six examples and the thermal conductivity measured by the laser flash method. Table 2 shows the composition ratios constituting the heat dissipation substrates of the five comparative examples and the thermal conductivity measured by the laser flash method. In addition, the value of the heat conductivity of Example 6 of Table 1 is a value of the heat dissipation board | substrate which put together the 1st heat conductive layer and the 2nd heat conductive layer.

Figure 2008153430
Figure 2008153430

Figure 2008153430
Figure 2008153430

実施例1.
主剤である液状のビスフェノールA型エポキシ樹脂{エピコート828(ジャパンエポキシレジン株式会社製)}100重量部と、硬化剤である1−シアノエチル−2−メチルイミダゾール{キュアゾール2PN−CN(四国化成工業株式会社製)}1重量部とからなる熱硬化性樹脂組成物を、溶媒であるメチルエチルケトンの101重量部に添加し、撹拌して、熱硬化性樹脂組成物の溶液を調製する。
次に、熱硬化性樹脂組成物の溶液に、無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを熱硬化性樹脂組成物と無機充填剤の合計体積に対して55体積%(なお、以下の説明において記載されている体積%は同様な意味である)と、熱伝導性微細充填剤として0.05μmの球形形状の窒化アルミニウムを5体積%とを添加し、予備混合する。この予備混合物をさらに、三本ロールにて混練し、熱硬化性樹脂組成物の溶液中に、無機充填剤を均一に分散させた熱伝導性シート用コンパウンドを作製する。
次に、熱伝導性シート用コンパウンドを表面の凹凸が15μmになるようにエッチング処理した厚さ105μmの放熱部材上にドクターブレード法で塗布し、110℃で15分間の加熱乾燥処理をし、厚さが100μmでBステージ状態の熱伝導性シート用プリプレーグを作製する。
次に、熱伝導性シート用プリプレーグを樹脂面が内側になるように2枚重ね、120℃で1時間と160℃で3時間の加熱を行い硬化し実施例1の放熱基板1を得た。そして、この実施例1の放熱基板1の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Example 1.
100 parts by weight of liquid bisphenol A type epoxy resin {Epicoat 828 (Japan Epoxy Resin Co., Ltd.)} as the main agent and 1-cyanoethyl-2-methylimidazole {Cureazole 2PN-CN (Shikoku Chemical Industries, Ltd.) as the curing agent Product)} A thermosetting resin composition consisting of 1 part by weight is added to 101 parts by weight of methyl ethyl ketone as a solvent and stirred to prepare a solution of the thermosetting resin composition.
Next, spherical aluminum nitride having an average particle diameter of 80 μm is added to the solution of the thermosetting resin composition as an inorganic filler by 55% by volume with respect to the total volume of the thermosetting resin composition and the inorganic filler ( In addition, the volume% described in the following description has the same meaning), and 5 volume% of 0.05 μm spherical aluminum nitride as a heat conductive fine filler is added and premixed. The preliminary mixture is further kneaded with three rolls to produce a heat conductive sheet compound in which the inorganic filler is uniformly dispersed in the solution of the thermosetting resin composition.
Next, the thermal conductive sheet compound was applied by a doctor blade method on a heat-dissipating member having a thickness of 105 μm that had been etched so that the surface irregularities were 15 μm, and heat-dried at 110 ° C. for 15 minutes, A prepreg for a thermally conductive sheet in a B stage state with a thickness of 100 μm is prepared.
Next, two prepregs for a heat conductive sheet were stacked so that the resin surface was on the inside, and cured by heating at 120 ° C. for 1 hour and 160 ° C. for 3 hours to obtain the heat dissipation substrate 1 of Example 1. And the heat conductivity of the thickness direction of the thermal radiation board | substrate 1 of this Example 1 was measured with the laser flash method.

実施例2.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを55体積%と、熱伝導性微細充填剤として0.6μmの球形形状の窒化アルミニウムを5体積%とを用いた以外は、実施例1と同様にして実施例2の放熱基板1を作製した。それから、実施例1と同様にして、実施例2の放熱基板1の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Example 2
Implemented except that 55% by volume of spherical aluminum nitride with an average particle size of 80 μm was used as the inorganic filler and 5% by volume of 0.6 μm spherical aluminum nitride as the thermally conductive fine filler. A heat dissipation substrate 1 of Example 2 was produced in the same manner as Example 1. Then, as in Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 1 of Example 2 was measured by the laser flash method.

実施例3.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを30体積%と、平均粒径が18μmで扁平形状の窒化ホウ素を28体積%と、熱伝導性微細充填剤として0.03μmの扁平形状の窒化ホウ素を2体積%とを用いた以外は、実施例1と同様にして実施例3の放熱基板1を作製した。それから、実施例1と同様にして、実施例3の放熱基板1の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Example 3
As the inorganic filler, spherical aluminum nitride having an average particle size of 80 μm is 30% by volume, flat boron nitride having an average particle size of 18 μm and 28% by volume, and 0.03 μm as a thermally conductive fine filler. A heat dissipation substrate 1 of Example 3 was produced in the same manner as Example 1 except that 2% by volume of flat boron nitride was used. Then, in the same manner as in Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 1 of Example 3 was measured by a laser flash method.

実施例4.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを30体積%と、平均粒径が18μmで扁平形状の窒化ホウ素を28体積%と、熱伝導性微細充填剤として0.7μmの扁平形状の窒化ホウ素を2体積%とを用いた以外は、実施例1と同様にして実施例4の放熱基板1を作製した。それから、実施例1と同様にして、実施例4の放熱基板1の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Example 4
As the inorganic filler, 30% by volume of spherical aluminum nitride having an average particle diameter of 80 μm, 28% by volume of flat boron nitride having an average particle diameter of 18 μm, and 0.7 μm as a thermally conductive fine filler A heat dissipation substrate 1 of Example 4 was produced in the same manner as in Example 1 except that 2% by volume of flat boron nitride was used. Then, in the same manner as in Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 1 of Example 4 was measured by a laser flash method.

実施例5.
無機充填剤として、平均粒径が18μmで扁平形状の窒化ホウ素を55体積%と、熱伝導性微細充填剤として0.05μmの球形形状の窒化アルミニウムを2体積%と、0.03μmの扁平形状の窒化ホウ素を3体積%とを用いた以外は、実施例1と同様にして実施例5の放熱基板1を作製した。それから、実施例1と同様にして、実施例5の放熱基板1の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Example 5 FIG.
As an inorganic filler, 55% by volume of flat boron nitride with an average particle diameter of 18 μm, 2% by volume of spherical aluminum nitride of 0.05 μm as a heat conductive fine filler, and a flat shape of 0.03 μm Except that 3% by volume of boron nitride was used, a heat dissipation substrate 1 of Example 5 was produced in the same manner as Example 1. Then, in the same manner as in Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 1 of Example 5 was measured by a laser flash method.

実施例6.
主剤である液状のビスフェノールA型エポキシ樹脂{エピコート828(ジャパンエポキシレジン株式会社製)}100重量部と、硬化剤である1−シアノエチル−2−メチルイミダゾール{キュアゾール2PN−CN(四国化成工業株式会社製)}1重量部とからなる熱硬化性樹脂組成物を、溶媒であるメチルエチルケトンの101重量部に添加し、撹拌して、熱硬化性樹脂組成物の溶液を2つ調製した。
次に、一方の熱硬化性樹脂組成物の溶液に、熱伝導性微細充填剤として0.03μmの扁平形状の窒化ホウ素を熱硬化性樹脂組成物と充填剤の合計体積に対して60体積%を添加し、予備混合した。この予備混合物をさらに、三本ロールにて混練し、熱硬化性樹脂組成物の溶液中に、熱伝導性微罪充填剤を均一に分散させた第1の熱伝導性層用コンパウンドを作製した。
次に、第1の熱伝導性層用コンパウンドを表面の凹凸が5μmになるようにエッチング処理した厚さ105μmの放熱部材上にドクターブレード法で塗布し、110℃で15分間の加熱乾燥処理をし、厚さが50μmでBステージ状態の第1の熱伝導性層用プリプレーグを作製した。
Example 6
100 parts by weight of liquid bisphenol A type epoxy resin {Epicoat 828 (Japan Epoxy Resin Co., Ltd.)} as the main agent and 1-cyanoethyl-2-methylimidazole {Cureazole 2PN-CN (Shikoku Chemical Industries, Ltd.) as the curing agent Manufactured)} A thermosetting resin composition consisting of 1 part by weight was added to 101 parts by weight of methyl ethyl ketone as a solvent and stirred to prepare two solutions of the thermosetting resin composition.
Next, 0.03 μm flat boron nitride as a heat conductive fine filler is added to one thermosetting resin composition solution in an amount of 60% by volume based on the total volume of the thermosetting resin composition and the filler. Was added and premixed. The preliminary mixture was further kneaded with three rolls to prepare a first heat conductive layer compound in which the heat conductive fine charge filler was uniformly dispersed in the solution of the thermosetting resin composition.
Next, the first heat conductive layer compound is applied by a doctor blade method onto a 105 μm thick heat-dissipating member etched so that the surface irregularities are 5 μm, and then heated and dried at 110 ° C. for 15 minutes. Then, a first prepreg for the thermal conductive layer having a thickness of 50 μm and a B stage state was produced.

次に、他方の熱硬化性樹脂組成物の溶液に、無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを熱硬化性樹脂組成物と無機充填剤の合計体積に対して30体積%と平均粒径が18μmの扁平形状の窒化ホウ素を30体積%とを添加し、予備混合した。この予備混合物をさらに、三本ロールにて混練し、熱硬化性樹脂組成物の溶液中に、無機充填剤を均一に分散させた第2の熱伝導性層用コンパウンドを作製した。
次に、第2の熱伝導性層用コンパウンドを厚さ50μmの片面離型処理したポリエチレンテレフタレート(PET)シートの離型処理面上にドクターブレード法で塗布し、110℃で15分間の加熱乾燥処理をし、厚さが100μmでBステージ状態の第2の熱伝導性層用プリプレーグを作製した。
Next, in the solution of the other thermosetting resin composition, spherical aluminum nitride having an average particle diameter of 80 μm is added as an inorganic filler to 30 volumes with respect to the total volume of the thermosetting resin composition and the inorganic filler. % And a flat boron nitride having an average particle diameter of 18 μm and 30% by volume were added and premixed. The preliminary mixture was further kneaded with three rolls to produce a second compound for a heat conductive layer in which the inorganic filler was uniformly dispersed in the solution of the thermosetting resin composition.
Next, the second thermal conductive layer compound was applied on the release treatment surface of a polyethylene terephthalate (PET) sheet having a single-sided release treatment with a thickness of 50 μm by a doctor blade method and dried at 110 ° C. for 15 minutes. After processing, a second prepreg for a thermally conductive layer having a thickness of 100 μm and a B stage state was produced.

次に、1枚の第1の熱伝導性層用プリプレーグと1枚の第2の熱伝導性層用プリプレーグを重ねて真空ラミネーターで間に空気が存在しないように重ね合わせる。それから、重ね合わされた積層体の第2の熱伝導性層用プリプレーグの面に1枚の第1の熱伝導性層用プリプレーグを重ねて真空ラミネーターで間に空気が存在しないように重ね合わせる。これを120℃で1時間と160℃で3時間の加熱を行い実施例6の放熱基板12を作製した。それから、実施例1と同様にして、実施例6の放熱基板12の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。   Next, one prepreg for the first heat conductive layer and one second prepreg for the heat conductive layer are overlapped and overlapped with a vacuum laminator so that no air exists between them. Then, one prepreg for the first thermal conductive layer is superposed on the surface of the prepreg for the second thermal conductive layer of the superposed laminate, and is superposed so that there is no air between them using a vacuum laminator. This was heated at 120 ° C. for 1 hour and at 160 ° C. for 3 hours to produce the heat dissipation substrate 12 of Example 6. Then, similarly to Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 12 of Example 6 was measured by a laser flash method.

比較例1.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを60体積%を用いた以外は、実施例1と同様にして比較例1の放熱基板11を作製した。それから、実施例1と同様にして、比較例1の放熱基板11の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Comparative Example 1
A heat dissipation substrate 11 of Comparative Example 1 was produced in the same manner as in Example 1 except that 60% by volume of spherical aluminum nitride having an average particle diameter of 80 μm was used as the inorganic filler. Then, in the same manner as in Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 11 of Comparative Example 1 was measured by a laser flash method.

比較例2.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを30体積%と、平均粒径が18μmの扁平形状の窒化ホウ素を30体積%とを用いた以外は、実施例1と同様にして比較例2の放熱基板11を作製した。それから、実施例1と同様にして、比較例2の放熱基板11の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Comparative Example 2
Example 1 was used except that 30% by volume of spherical aluminum nitride having an average particle diameter of 80 μm and 30% by volume of flat boron nitride having an average particle diameter of 18 μm were used as inorganic fillers. Thus, the heat dissipation substrate 11 of Comparative Example 2 was produced. Then, similarly to Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 11 of Comparative Example 2 was measured by a laser flash method.

比較例3.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを55体積%と、粒子径が5μmの球形形状の窒化アルミニウムを5体積%とを用いた以外は、実施例1と同様にして比較例3の放熱基板11を作製した。それから、実施例1と同様にして、比較例3の放熱基板11の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Comparative Example 3
Except for using 55% by volume of spherical aluminum nitride having an average particle diameter of 80 μm and 5% by volume of spherical aluminum nitride having a particle diameter of 5 μm as the inorganic filler, the same as in Example 1. A heat dissipation substrate 11 of Comparative Example 3 was produced. Then, in the same manner as in Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 11 of Comparative Example 3 was measured by a laser flash method.

比較例4.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを55体積%と、粒子径が50μmの球形形状の窒化アルミニウムを5体積%とを用いた以外は、実施例1と同様にして比較例4の放熱基板11を作製した。それから、実施例1と同様にして、比較例4の放熱基板11の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Comparative Example 4
Example 1 was used except that 55% by volume of spherical aluminum nitride having an average particle diameter of 80 μm and 5% by volume of spherical aluminum nitride having a particle diameter of 50 μm were used as inorganic fillers. A heat dissipation substrate 11 of Comparative Example 4 was produced. Then, similarly to Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 11 of Comparative Example 4 was measured by a laser flash method.

比較例5.
無機充填剤として、平均粒径が80μmの球形形状の窒化アルミニウムを30体積%と、平均粒径が18μmの扁平形状の窒化ホウ素を28体積%と、粒子径が8μmの扁平形状の窒化ホウ素を2体積%とを用いた以外は、実施例1と同様にして比較例5の放熱基板11を作製した。それから、実施例1と同様にして、比較例5の放熱基板11の厚さ方向の熱伝導率をレーザーフラッシュ法で測定した。
Comparative Example 5
As the inorganic filler, 30% by volume of spherical aluminum nitride having an average particle diameter of 80 μm, 28% by volume of flat boron nitride having an average particle diameter of 18 μm, and flat boron nitride having a particle diameter of 8 μm A heat dissipation substrate 11 of Comparative Example 5 was produced in the same manner as in Example 1 except that 2% by volume was used. Then, in the same manner as in Example 1, the thermal conductivity in the thickness direction of the heat dissipation substrate 11 of Comparative Example 5 was measured by a laser flash method.

図4は、放熱基板の厚さ方向の熱伝導率の無機充填剤として用いた窒化アルミニウムの粒子径に対する依存性を示すグラフである。また、図5は、放熱基板の厚さ方向の熱伝導率の無機充填剤として用いた窒化ホウ素の粒子径に対する依存性を示すグラフである。   FIG. 4 is a graph showing the dependence of the thermal conductivity in the thickness direction of the heat dissipation substrate on the particle size of aluminum nitride used as an inorganic filler. FIG. 5 is a graph showing the dependence of the thermal conductivity in the thickness direction of the heat dissipation substrate on the particle size of boron nitride used as an inorganic filler.

図4と図5から分かるように、配合した熱伝導性の充填剤の粒子径が放熱部材の表面の凹凸15μmの10分の1である1.5μm以下になると放熱基板の熱伝導率は増大する。これに対して、配合した熱伝導性の充填剤の粒子径が放熱部材の表面の凹凸の10分の1を超えると熱伝導性の充填剤がその凹凸内に入り込めなくなり、放熱基板の熱伝導率は低下する。
また、熱伝導性の充填剤の粒子の形状が球形形状または扁平形状のいずれであっても放熱部材の表面の凹凸の10分の1以下の粒子径であれば熱伝導率を増大できる。
As can be seen from FIGS. 4 and 5, the thermal conductivity of the heat-dissipating substrate increases when the particle size of the blended heat-conductive filler is 1.5 μm or less, which is one tenth of the unevenness 15 μm on the surface of the heat-dissipating member. To do. On the other hand, when the particle diameter of the blended heat conductive filler exceeds 1/10 of the unevenness on the surface of the heat dissipation member, the heat conductive filler cannot enter the unevenness, and the heat of the heat dissipation substrate The conductivity decreases.
Moreover, even if the shape of the particle | grains of a heat conductive filler is either spherical shape or flat shape, if it is a particle diameter below 1/10 of the unevenness | corrugation on the surface of a heat radiating member, thermal conductivity can be increased.

また、粒子が球形形状の窒化アルミニウムを用いると窒化アルミニウムの熱伝導率が大きいので、例えば5体積%混合するだけで熱伝導性シートの熱伝導率を増大することができる。
また、粒子が扁平形状の窒化ホウ素を用いると窒化ホウ素の熱伝導率が大きいので、例えば2体積%混合するだけで放熱基板の熱伝導率を増大することができる。
また、実施例5の放熱基板のように球形形状の窒化アルミニウムと扁平形状の窒化ホウ素とを混合して用いても放熱基板の熱伝導率を増大することができる。
In addition, when aluminum nitride having a spherical shape is used, the thermal conductivity of aluminum nitride is large. Therefore, for example, the thermal conductivity of the thermal conductive sheet can be increased only by mixing 5% by volume.
Moreover, since the thermal conductivity of boron nitride is large when the boron nitride having a flat shape is used, the thermal conductivity of the heat dissipation substrate can be increased only by mixing, for example, 2% by volume.
Further, even when a spherical aluminum nitride and a flat boron nitride are mixed and used as in the heat dissipation substrate of Example 5, the thermal conductivity of the heat dissipation substrate can be increased.

また、粒子径の非常に細かい粒子を配合した第1の熱伝導性層9を第2の熱伝導性層10の両側に設けた放熱基板は、実施例6として示すように、熱伝導率が大きく増大することができる。   Moreover, as shown in Example 6, the heat dissipation substrate provided with the first thermal conductive layer 9 containing very fine particles of the particle diameter on both sides of the second thermal conductive layer 10 has a thermal conductivity. It can be greatly increased.

この発明に係わる放熱基板を放熱部材6と放熱部材7との間に介設されたパワーモジュールは、電力半導体素子で発生する熱が熱伝導率の大き放熱基板を経由して放熱部材7としてのヒートシンクに良好に伝搬されるので、大電力の用途に適用することができる。   In the power module in which the heat dissipation board according to the present invention is interposed between the heat dissipation member 6 and the heat dissipation member 7, the heat generated in the power semiconductor element is used as the heat dissipation member 7 via the heat dissipation board having a large thermal conductivity. Since it propagates well to the heat sink, it can be applied to high power applications.

実施の形態3.
上述の実施の形態に係わる熱伝導性シート8、14、または放熱基板1、12を用いて組み立てたパワーモジュールについて説明する。
図6は、表面に凹凸を有するリードフレームおよびヒートシンクを熱伝導性シートで接着し、リードフレーム上に電力半導体素子を実装し、樹脂封止して作製したパワーモジュールの断面図である。
放熱部材としてのリードフレーム19と放熱部材としてのヒートシンク23の表面は細かな凹凸が形成されている。そして、熱伝導性シート用プリプレーグをリードフレーム19とヒートシンク23で両側から挟み、120℃で1時間と160℃で3時間の加熱を行い硬化する。次に、リードフレーム19の熱伝導性シート8の反対の面に電力半導体素子20を実装し、電力半導体素子20の電極とリードフレーム19とをワイア21でワイアボンディングし、その後、樹脂22で封止してパワーモジュール17を作製する。
Embodiment 3 FIG.
The power module assembled using the heat conductive sheets 8 and 14 or the heat dissipation substrates 1 and 12 according to the above-described embodiment will be described.
FIG. 6 is a cross-sectional view of a power module manufactured by bonding a lead frame having an uneven surface and a heat sink with a heat conductive sheet, mounting a power semiconductor element on the lead frame, and sealing with resin.
Fine irregularities are formed on the surfaces of the lead frame 19 as a heat radiating member and the heat sink 23 as a heat radiating member. Then, the prepreg for the heat conductive sheet is sandwiched between the lead frame 19 and the heat sink 23 from both sides, and cured by heating at 120 ° C. for 1 hour and 160 ° C. for 3 hours. Next, the power semiconductor element 20 is mounted on the opposite surface of the lead frame 19 to the heat conductive sheet 8, the electrodes of the power semiconductor element 20 and the lead frame 19 are wire-bonded with the wire 21, and then sealed with the resin 22. It stops and the power module 17 is produced.

図7は、熱伝導性シート用プリプレーグが貼付されたヒートシンクの断面図である。
放熱部材としてのヒートシンク23に熱伝導性シート用コンパウンドをドクターブレード法で塗布し、110℃で15分間の加熱乾燥処理をし、厚さが100μmでBステージ状態の熱伝導性シート用プリプレーグ18を貼付されたヒートシンク23を作製する。それから、ヒートシンク23とリードフレーム19とで熱伝導性シート用プリプレーグ18を介在させて挟み、120℃で1時間と160℃で3時間の加熱を行い硬化する。次に、リードフレーム19の熱伝導性シート8の反対の面に電力半導体素子20を実装し、電力半導体素子20の電極とリードフレーム19とをワイア21でワイアボンディングし、その後、樹脂22で封止してパワーモジュール17を作製する。
FIG. 7 is a cross-sectional view of a heat sink to which a prepreg for a heat conductive sheet is attached.
A compound for thermal conductive sheet is applied to the heat sink 23 as a heat radiating member by a doctor blade method, heat-dried at 110 ° C. for 15 minutes, and a prepreg 18 for thermal conductive sheet in a B stage state with a thickness of 100 μm is obtained. Affixed heat sink 23 is produced. Then, the heat conductive sheet prepreg 18 is interposed between the heat sink 23 and the lead frame 19 and cured by heating at 120 ° C. for 1 hour and 160 ° C. for 3 hours. Next, the power semiconductor element 20 is mounted on the opposite surface of the lead frame 19 to the heat conductive sheet 8, the electrodes of the power semiconductor element 20 and the lead frame 19 are wire-bonded with the wire 21, and then sealed with the resin 22. It stops and the power module 17 is produced.

図8は、熱伝導性シート用プリプレーグが貼付された電極材の断面図である。図9は、熱伝導性シートにより接着されたヒートスプレッダと電極材の断面図である。図10は、電極材上に電力半導体素子が実装されたパワーモジュールの断面図である。
放熱部材としての電極材25に熱伝導性シート用コンパウンドをドクターブレード法で塗布し、110℃で15分間の加熱乾燥処理をし、厚さが100μmでBステージ状態の熱伝導性シート用プリプレーグ18が貼付された電極材25を作製する。それから、ヒートヒートスプレッダ24と電極材25とで熱伝導性シート用プリプレーグ18を介在させて挟み、120℃で1時間と160℃で3時間の加熱を行い硬化する。次に、電極材25をパターン形成して電極を作製し、電極に電力半導体素子20を実装し、電力半導体素子20の電極とリードフレーム19とをワイア21でワイアボンディングし、その後、樹脂22で封止してパワーモジュール30を作製する。
FIG. 8 is a cross-sectional view of an electrode material to which a prepreg for a heat conductive sheet is attached. FIG. 9 is a cross-sectional view of a heat spreader and an electrode material bonded by a heat conductive sheet. FIG. 10 is a cross-sectional view of a power module in which a power semiconductor element is mounted on an electrode material.
A compound for thermal conductive sheet is applied to the electrode member 25 as a heat radiating member by a doctor blade method, heat-dried at 110 ° C. for 15 minutes, and a prepreg 18 for a thermal conductive sheet in a B stage state with a thickness of 100 μm. The electrode material 25 to which is attached is prepared. Then, the heat conductive spreader 24 and the electrode material 25 are sandwiched with the prepreg 18 for heat conductive sheet interposed therebetween, and cured by heating at 120 ° C. for 1 hour and 160 ° C. for 3 hours. Next, the electrode material 25 is patterned to produce an electrode, the power semiconductor element 20 is mounted on the electrode, the electrode of the power semiconductor element 20 and the lead frame 19 are wire-bonded with the wire 21, and then the resin 22 is used. The power module 30 is manufactured by sealing.

図11は、両面に電極材が接着された熱伝導性シートの断面図である。図12は、一方の電極材上に電力半導体素子が実装されたパワーモジュールの断面図である。
放熱部材としての2枚の電極材25で熱伝導性シート用プリプレーグ18を挟み、120℃で1時間と160℃で3時間の加熱を行い硬化する。次に、一方の電極材25をパターン形成して電極を作製し、電極に電力半導体素子20を実装し、電力半導体素子20の電極とリードフレーム19とをワイア21でワイアボンディングし、その後、樹脂22で封止してパワーモジュール31を作製する。
FIG. 11 is a cross-sectional view of a thermally conductive sheet having electrode materials bonded on both sides. FIG. 12 is a cross-sectional view of a power module in which a power semiconductor element is mounted on one electrode material.
The heat conductive sheet prepreg 18 is sandwiched between two electrode members 25 as heat radiating members, and cured by heating at 120 ° C. for 1 hour and 160 ° C. for 3 hours. Next, one electrode material 25 is patterned to produce an electrode, the power semiconductor element 20 is mounted on the electrode, the electrode of the power semiconductor element 20 and the lead frame 19 are wire-bonded with the wire 21, and then the resin The power module 31 is manufactured by sealing with 22.

図13は、スプレッダが放熱接着剤で放熱基板に接着されているパワーモジュールの断面図である。
放熱基板1、12の一方の放熱部材6、7をパターン形成して電極を作製する。それから、例えばシリコーングリスなどの放熱接着剤26でヒートスプレッダ24を接着する。次に、電極に電力半導体素子20を実装し、電力半導体素子20の電極とリードフレーム19とをワイア21でワイアボンディングし、その後、樹脂22で封止してパワーモジュール32を作製する。
FIG. 13 is a cross-sectional view of a power module in which a spreader is bonded to a heat dissipation board with a heat dissipation adhesive.
An electrode is produced by patterning one of the heat dissipating members 6 and 7 of the heat dissipating substrates 1 and 12. Then, the heat spreader 24 is bonded with a heat radiation adhesive 26 such as silicone grease. Next, the power semiconductor element 20 is mounted on the electrode, the electrode of the power semiconductor element 20 and the lead frame 19 are wire-bonded with the wire 21, and then sealed with the resin 22 to produce the power module 32.

この発明の実施の形態1に係わる放熱基板の断面模式図である。It is a cross-sectional schematic diagram of the thermal radiation board | substrate concerning Embodiment 1 of this invention. 比較のための粒子径の大きな無機充填剤を含有する放熱基板の断面模式図である。It is a cross-sectional schematic diagram of the thermal radiation board | substrate containing the inorganic filler with a large particle diameter for a comparison. この発明の実施の形態2に係わる放熱基板の断面模式図である。It is a cross-sectional schematic diagram of the thermal radiation board | substrate concerning Embodiment 2 of this invention. 放熱基板の厚さ方向の熱伝導率の充填剤として用いた窒化アルミニウムの粒子径に対する依存性を示すグラフである。It is a graph which shows the dependence with respect to the particle diameter of the aluminum nitride used as a filler of the thermal conductivity of the thickness direction of a thermal radiation board | substrate. 放熱基板の厚さ方向の熱伝導率の充填剤として用いた窒化ホウ素の粒子径に対する依存性を示すグラフである。It is a graph which shows the dependence with respect to the particle diameter of the boron nitride used as a filler of the thermal conductivity of the thickness direction of a thermal radiation board | substrate. 表面に凹凸を有するリードフレームおよびヒートシンクを熱伝導性シートで接着し、リードフレーム上に電力半導体素子を実装し、樹脂封止して作製したパワーモジュールの断面図である。FIG. 3 is a cross-sectional view of a power module fabricated by bonding a lead frame having an uneven surface and a heat sink with a heat conductive sheet, mounting a power semiconductor element on the lead frame, and sealing with resin. 熱伝導性シート用プリプレーグが貼付されたヒートシンクの断面図である。It is sectional drawing of the heat sink with which the prepreg for heat conductive sheets was stuck. 熱伝導性シート用プリプレーグが貼付された電極材の断面図である。It is sectional drawing of the electrode material on which the prepreg for heat conductive sheets was affixed. 熱伝導性シートにより接着されたヒートスプレッダと電極材の断面図である。It is sectional drawing of the heat spreader and electrode material which were adhere | attached with the heat conductive sheet. 電極材上に電力半導体素子が実装されたパワーモジュールの断面図である。It is sectional drawing of the power module by which the power semiconductor element was mounted on the electrode material. 両面に電極材が接着された熱伝導性シートの断面図である。It is sectional drawing of the heat conductive sheet by which the electrode material was adhere | attached on both surfaces. 一方の電極材上に電力半導体素子が実装されたパワーモジュールの断面図である。It is sectional drawing of the power module with which the power semiconductor element was mounted on one electrode material. スプレッダが放熱接着剤で放熱基板に接着されているパワーモジュールの断面図である。It is sectional drawing of the power module with which the spreader is adhere | attached on the thermal radiation board | substrate with the thermal radiation adhesive.

符号の説明Explanation of symbols

1、11、12 放熱基板、2 熱硬化性樹脂、3 熱伝導性微細充填剤、4 熱伝導性無機充填剤、6、7 放熱部材、8、13、14 熱伝導性シート、9、10 熱伝導性層、17、30、31、32 パワーモジュール、18 熱伝導性シート用プリプレーグ、19 リードフレーム、20 電力半導体素子、21 ワイア、22 樹脂、23 ヒートシンク、24 ヒートスプレッダ、25 電極材、26 放熱接着剤。   1, 11, 12 Heat dissipation substrate, 2 Thermosetting resin, 3 Thermal conductive fine filler, 4 Thermal conductive inorganic filler, 6, 7 Heat dissipation member, 8, 13, 14 Thermal conductive sheet, 9, 10 Heat Conductive layer, 17, 30, 31, 32 Power module, 18 Pre-preg for thermal conductive sheet, 19 Lead frame, 20 Power semiconductor element, 21 Wire, 22 Resin, 23 Heat sink, 24 Heat spreader, 25 Electrode material, 26 Heat radiation adhesion Agent.

Claims (10)

表面に凹凸を有する放熱部材と上記凹凸部に接合される熱伝導性シートを備えた放熱基板であって、
上記熱伝導性シートは、熱硬化性樹脂と、上記凹凸に対して10分の1以下の粒子径である熱伝導性微細充填剤と、平均粒径が3μm以上で100μm以下であり、且つ熱伝導性および絶縁性を有する無機充填剤とを備えることを特徴とする放熱基板。
A heat dissipating board comprising a heat dissipating member having irregularities on the surface and a heat conductive sheet bonded to the irregularities,
The heat conductive sheet includes a thermosetting resin, a heat conductive fine filler having a particle size of 1/10 or less of the unevenness, an average particle size of 3 μm to 100 μm, and heat A heat dissipation substrate comprising an inorganic filler having conductivity and insulation.
上記熱伝導性微細充填剤が扁平形状であることを特徴とする請求項1に記載の放熱基板。   The heat dissipation substrate according to claim 1, wherein the heat conductive fine filler has a flat shape. 上記熱伝導性微細充填剤が球形形状であることを特徴とする請求項1に記載の放熱基板。   The heat dissipation substrate according to claim 1, wherein the heat conductive fine filler has a spherical shape. 上記熱伝導性微細充填剤が扁平形状のものと球形形状のものとが混合されたものであることを特徴とする請求項1に記載の放熱基板。   The heat dissipation substrate according to claim 1, wherein the heat conductive fine filler is a mixture of a flat shape and a spherical shape. 上記扁平形状の熱伝導性微細充填剤が窒化ホウ素であることを特徴とする請求項2に記載の放熱基板。   The heat dissipation substrate according to claim 2, wherein the flat heat conductive fine filler is boron nitride. 上記球形形状の熱伝導性微細充填剤が窒化アルミニウムであることを特徴とする請求項3に記載の放熱基板。   The heat dissipation substrate according to claim 3, wherein the spherical heat conductive fine filler is aluminum nitride. 表面に凹凸を有する放熱部材と少なくともいずれか一方に接合される熱伝導性シートを備えた放熱基板であって、
上記熱伝導性シートは、少なくとも上記放熱部材と接合されている部分が、熱硬化性樹脂と、上記凹凸に対して10分の1以下の粒子径である熱伝導性微細充填剤とを備える第1の熱伝導層を有することを特徴とする放熱基板。
A heat dissipation board provided with a heat conductive sheet bonded to at least one of the heat dissipation member having irregularities on the surface,
The heat conductive sheet includes a thermosetting resin and a heat conductive fine filler having a particle diameter of 1/10 or less with respect to the unevenness, at least at a portion joined to the heat dissipation member. A heat dissipating substrate having one heat conducting layer.
表面に凹凸を有する放熱部材と接合される得る熱伝導性シートであって、
熱硬化性樹脂と上記凹凸に対して10分の1以下の粒子径である熱伝導性微細充填剤から構成される第1の熱伝導層を有することを特徴とする熱伝導性シート。
A heat conductive sheet that can be bonded to a heat dissipation member having irregularities on the surface,
A heat conductive sheet comprising a first heat conductive layer composed of a thermosetting resin and a heat conductive fine filler having a particle size of 1/10 or less of the unevenness.
一方の放熱部材に実装された電力半導体素子と上記電力半導体素子で発生する熱を外部に放熱する他方の放熱部材とを備えるパワーモジュールにおいて、
上記一方の放熱部材から上記他方の放熱部材に上記電力半導体素子で発生する熱を伝達する請求項1乃至7のいずれか一項に記載の放熱基板を有することを特徴とするパワーモジュール。
In a power module comprising a power semiconductor element mounted on one heat radiating member and the other heat radiating member that radiates heat generated in the power semiconductor element to the outside,
A power module comprising the heat dissipation board according to claim 1, wherein heat generated in the power semiconductor element is transferred from the one heat dissipation member to the other heat dissipation member.
一方の放熱部材に実装された電力半導体素子と上記電力半導体素子で発生する熱を外部に放熱する他方の放熱部材とを備えるパワーモジュールにおいて、
上記一方の放熱部材から上記他方の放熱部材に上記電力半導体素子で発生する熱を伝達する請求項8記載の熱伝導性シートを有することを特徴とするパワーモジュール。
In a power module comprising a power semiconductor element mounted on one heat radiating member and the other heat radiating member that radiates heat generated in the power semiconductor element to the outside,
9. A power module comprising the thermally conductive sheet according to claim 8, wherein heat generated in the power semiconductor element is transferred from the one heat radiating member to the other heat radiating member.
JP2006339845A 2006-12-18 2006-12-18 Heatsink substrate and heat conductive sheet, and power module using these Pending JP2008153430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339845A JP2008153430A (en) 2006-12-18 2006-12-18 Heatsink substrate and heat conductive sheet, and power module using these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339845A JP2008153430A (en) 2006-12-18 2006-12-18 Heatsink substrate and heat conductive sheet, and power module using these

Publications (1)

Publication Number Publication Date
JP2008153430A true JP2008153430A (en) 2008-07-03

Family

ID=39655295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339845A Pending JP2008153430A (en) 2006-12-18 2006-12-18 Heatsink substrate and heat conductive sheet, and power module using these

Country Status (1)

Country Link
JP (1) JP2008153430A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094887A (en) * 2008-10-16 2010-04-30 Nitto Shinko Kk Manufacturing method of insulating sheet
JP2010153639A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Power semiconductor device and method for manufacturing the same
JP2010235842A (en) * 2009-03-31 2010-10-21 Mitsubishi Chemicals Corp Thermosetting resin composition containing anisotropic aluminum nitride filler
JP2011006586A (en) * 2009-06-26 2011-01-13 Mitsubishi Electric Corp Thermosetting resin composition, thermal conductive resin sheet, manufacturing method thereof and power module
JP2011515559A (en) * 2008-03-26 2011-05-19 ダイマット,インク. Thermally reinforced electrical insulating adhesive paste
JP2011142129A (en) * 2010-01-05 2011-07-21 Mitsubishi Electric Corp Power module
CN102290384A (en) * 2010-06-17 2011-12-21 富士电机株式会社 Insulating member, metal base substrate, and semiconductor module, and manufacturing methods thereof
WO2012046814A1 (en) * 2010-10-06 2012-04-12 日立化成工業株式会社 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
WO2012132691A1 (en) * 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
JP2013211556A (en) * 2013-04-17 2013-10-10 Denki Kagaku Kogyo Kk Electronic component
JP2013256588A (en) * 2012-06-12 2013-12-26 Kaneka Corp Highly heat conductive thermoplastic resin composition
JP2014107519A (en) * 2012-11-30 2014-06-09 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
US20140290986A1 (en) * 2011-07-12 2014-10-02 Lg Innotek Co., Ltd. Epoxy resin compound and radiant heat circuit board using the same
WO2015012180A1 (en) * 2013-07-22 2015-01-29 ローム株式会社 Power module and manufacturing method thereof
EP2838327A1 (en) 2013-08-16 2015-02-18 NGK Insulators, Ltd. Heat dissipating circuit board and electronic device
JP2015140392A (en) * 2014-01-28 2015-08-03 株式会社神戸製鋼所 Thermally conductive composite material
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module
WO2017126608A1 (en) * 2016-01-19 2017-07-27 株式会社トクヤマ Thermally conductive filler composition, use thereof, and method for producing same
KR20190021230A (en) 2016-06-28 2019-03-05 니폰 제온 가부시키가이샤 Heat sink
WO2019135516A1 (en) * 2018-01-04 2019-07-11 엘지이노텍 주식회사 Heat-radiating substrate
CN111279802A (en) * 2017-09-21 2020-06-12 Lg伊诺特有限公司 Circuit board
JP2021013000A (en) * 2019-07-09 2021-02-04 日本ゼオン株式会社 Manufacturing method of electronic device
KR20210062698A (en) * 2019-01-22 2021-05-31 양쯔 메모리 테크놀로지스 씨오., 엘티디. Integrated circuit packaging structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100969A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Heat radiation member
JP2004327533A (en) * 2003-04-22 2004-11-18 Nissan Motor Co Ltd Semiconductor device and its manufacturing method
WO2005024942A1 (en) * 2003-09-03 2005-03-17 General Electric Company Thermal conductive material utilizing electrically conductive nanoparticles
JP2005232313A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2006156720A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Mounting method of electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100969A (en) * 2001-09-20 2003-04-04 Denki Kagaku Kogyo Kk Heat radiation member
JP2004327533A (en) * 2003-04-22 2004-11-18 Nissan Motor Co Ltd Semiconductor device and its manufacturing method
WO2005024942A1 (en) * 2003-09-03 2005-03-17 General Electric Company Thermal conductive material utilizing electrically conductive nanoparticles
JP2005232313A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2006156720A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Mounting method of electronic component

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515559A (en) * 2008-03-26 2011-05-19 ダイマット,インク. Thermally reinforced electrical insulating adhesive paste
JP2010094887A (en) * 2008-10-16 2010-04-30 Nitto Shinko Kk Manufacturing method of insulating sheet
JP2010153639A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Power semiconductor device and method for manufacturing the same
JP2010235842A (en) * 2009-03-31 2010-10-21 Mitsubishi Chemicals Corp Thermosetting resin composition containing anisotropic aluminum nitride filler
JP2011006586A (en) * 2009-06-26 2011-01-13 Mitsubishi Electric Corp Thermosetting resin composition, thermal conductive resin sheet, manufacturing method thereof and power module
JP2011142129A (en) * 2010-01-05 2011-07-21 Mitsubishi Electric Corp Power module
DE102011077504B4 (en) 2010-06-17 2020-07-02 Fuji Electric Co., Ltd. INSULATING ELEMENT, METAL BASE SUBSTRATE AND SEMICONDUCTOR MODULE AND THEIR PRODUCTION METHOD
CN102290384A (en) * 2010-06-17 2011-12-21 富士电机株式会社 Insulating member, metal base substrate, and semiconductor module, and manufacturing methods thereof
JP2012004352A (en) * 2010-06-17 2012-01-05 Fuji Electric Co Ltd Insulation material, metal base substrate and semiconductor module, and method of manufacturing the same
WO2012046814A1 (en) * 2010-10-06 2012-04-12 日立化成工業株式会社 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
JP5348332B2 (en) * 2010-10-06 2013-11-20 日立化成株式会社 Multilayer resin sheet and method for producing the same, resin sheet laminate and method for producing the same, multilayer resin sheet cured product, multilayer resin sheet with metal foil, and semiconductor device
JP5141853B2 (en) * 2011-03-28 2013-02-13 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
JP2013039834A (en) * 2011-03-28 2013-02-28 Hitachi Chemical Co Ltd Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for manufacturing the same, multilayer resin sheet with metal foil, and semiconductor device
JP2019014261A (en) * 2011-03-28 2019-01-31 日立化成株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
WO2012132691A1 (en) * 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
JP2017019291A (en) * 2011-03-28 2017-01-26 日立化成株式会社 Multilayer resin sheet, resin sheet laminate, multilayer resin sheet cured product and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
US20140290986A1 (en) * 2011-07-12 2014-10-02 Lg Innotek Co., Ltd. Epoxy resin compound and radiant heat circuit board using the same
JP2013256588A (en) * 2012-06-12 2013-12-26 Kaneka Corp Highly heat conductive thermoplastic resin composition
JP2014107519A (en) * 2012-11-30 2014-06-09 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2013211556A (en) * 2013-04-17 2013-10-10 Denki Kagaku Kogyo Kk Electronic component
JP2015023211A (en) * 2013-07-22 2015-02-02 ローム株式会社 Power module and method for manufacturing the same
WO2015012180A1 (en) * 2013-07-22 2015-01-29 ローム株式会社 Power module and manufacturing method thereof
US9721875B2 (en) 2013-07-22 2017-08-01 Rohm Co., Ltd. Power module and fabrication method for the same
EP2838327A1 (en) 2013-08-16 2015-02-18 NGK Insulators, Ltd. Heat dissipating circuit board and electronic device
US9460984B2 (en) 2013-08-16 2016-10-04 Ngk Insulators, Ltd. Heat dissipating circuit board and electronic device
JP2015140392A (en) * 2014-01-28 2015-08-03 株式会社神戸製鋼所 Thermally conductive composite material
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module
WO2017126608A1 (en) * 2016-01-19 2017-07-27 株式会社トクヤマ Thermally conductive filler composition, use thereof, and method for producing same
JPWO2017126608A1 (en) * 2016-01-19 2018-11-08 株式会社トクヤマ Thermally conductive filler composition, use and production method thereof
KR20190021230A (en) 2016-06-28 2019-03-05 니폰 제온 가부시키가이샤 Heat sink
CN111279802B (en) * 2017-09-21 2023-06-30 Lg伊诺特有限公司 Circuit board
CN111279802A (en) * 2017-09-21 2020-06-12 Lg伊诺特有限公司 Circuit board
WO2019135516A1 (en) * 2018-01-04 2019-07-11 엘지이노텍 주식회사 Heat-radiating substrate
CN111557125A (en) * 2018-01-04 2020-08-18 Lg 伊诺特有限公司 Heat radiation substrate
KR20190083496A (en) * 2018-01-04 2019-07-12 엘지이노텍 주식회사 Heat dissipation board
KR102609888B1 (en) * 2018-01-04 2023-12-05 엘지이노텍 주식회사 Heat dissipation board
KR20210062698A (en) * 2019-01-22 2021-05-31 양쯔 메모리 테크놀로지스 씨오., 엘티디. Integrated circuit packaging structure and manufacturing method thereof
KR102603421B1 (en) 2019-01-22 2023-11-17 양쯔 메모리 테크놀로지스 씨오., 엘티디. Integrated circuit packaging structure and manufacturing method thereof
JP2021013000A (en) * 2019-07-09 2021-02-04 日本ゼオン株式会社 Manufacturing method of electronic device
JP7279550B2 (en) 2019-07-09 2023-05-23 日本ゼオン株式会社 Electronic device manufacturing method

Similar Documents

Publication Publication Date Title
JP2008153430A (en) Heatsink substrate and heat conductive sheet, and power module using these
JP4089636B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP4046120B2 (en) Insulating sheet manufacturing method and power module manufacturing method
JP5184543B2 (en) Thermally conductive sheet and power module
JP5036696B2 (en) Thermally conductive sheet and power module
JP5208060B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP5063710B2 (en) Power module
JP5532419B2 (en) Insulating material, metal base substrate, semiconductor module, and manufacturing method thereof
JP2008255186A (en) Heat-conductive resin sheet and power module
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP2012074703A (en) Heat dissipation substrate, manufacturing method therefor, and light-emitting element package including the heat dissipation substrate
JP2009227947A (en) Thermal-conductive resin composition, thermal conductive resin, and power module
JP5274007B2 (en) Thermally conductive resin sheet and power module using the same
JP5791488B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JPWO2018235920A1 (en) Resin material, method for producing resin material, and laminate
JPWO2018235919A1 (en) Heat dissipation sheet, method of manufacturing heat dissipation sheet, and laminated body
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP5391530B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
WO2014142123A1 (en) Thermally conductive insulating sheet, power module, and manufacturing method for same
JPWO2018235918A1 (en) Resin material, method for producing resin material, and laminate
WO2019112048A1 (en) Laminate and electronic device
JP5653280B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JP2008010897A (en) Insulating sheet, and power module using same
JP2016155946A (en) Thermosetting resin composition, thermally conductive resin sheet, circuit board, and power module
WO2015159720A1 (en) Method for producing compound for thermally conductive sheets, method for producing thermally conductive sheet, compound for thermally conductive sheets, thermally conductive sheet and power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315