JP5391530B2 - Method for manufacturing thermally conductive resin sheet and method for manufacturing power module - Google Patents

Method for manufacturing thermally conductive resin sheet and method for manufacturing power module Download PDF

Info

Publication number
JP5391530B2
JP5391530B2 JP2007157505A JP2007157505A JP5391530B2 JP 5391530 B2 JP5391530 B2 JP 5391530B2 JP 2007157505 A JP2007157505 A JP 2007157505A JP 2007157505 A JP2007157505 A JP 2007157505A JP 5391530 B2 JP5391530 B2 JP 5391530B2
Authority
JP
Japan
Prior art keywords
filler
cfvc
volume
resin sheet
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007157505A
Other languages
Japanese (ja)
Other versions
JP2008308576A (en
Inventor
隆 西村
秀記 瀧川
研史 三村
浩美 伊藤
敦子 藤野
星紀 平松
圭 山本
利之 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007157505A priority Critical patent/JP5391530B2/en
Publication of JP2008308576A publication Critical patent/JP2008308576A/en
Application granted granted Critical
Publication of JP5391530B2 publication Critical patent/JP5391530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、発熱体から放熱部材へ熱を伝達させるために用いる熱伝導性樹脂層を形成するための熱伝導性樹脂シートに関し、特に電力半導体素子等の発熱体からの熱を放熱部材に伝達させ、かつ絶縁層としても機能する熱伝導性樹脂層を形成するための熱伝導性樹脂シートに関する。また上記熱伝導性樹脂シートを用いたパワーモジュールに関する。   The present invention relates to a heat conductive resin sheet for forming a heat conductive resin layer used for transferring heat from a heat generating element to a heat radiating member, and in particular, transfers heat from a heat generating element such as a power semiconductor element to the heat radiating member. And a heat conductive resin sheet for forming a heat conductive resin layer that also functions as an insulating layer. Moreover, it is related with the power module using the said heat conductive resin sheet.

電気・電子機器の発熱部から放熱部材へ熱を伝達させる熱伝導性樹脂層には、高熱伝導性、絶縁性、接着性の要求から、熱硬化性樹脂に無機充填材を添加した熱伝導性樹脂組成物が用いられている。   The heat conductive resin layer that transfers heat from the heat generating part of the electric / electronic device to the heat radiating member has high heat conductivity, insulation, and adhesive properties. A resin composition is used.

例えば、パワーモジュールにおいては、電力半導体素子を搭載したリードフレームの裏面と放熱部となる金属板との間に設ける熱伝導性樹脂層として、無機充填材を含有した熱硬化性樹脂シートや塗布膜を用いる(例えば、特許文献1参照)。   For example, in a power module, a thermosetting resin sheet or coating film containing an inorganic filler is used as a heat conductive resin layer provided between the back surface of a lead frame on which a power semiconductor element is mounted and a metal plate serving as a heat dissipation part. (For example, refer to Patent Document 1).

CPU等の発熱性電子部品と放熱フィンとの間に介在させる熱伝導性樹脂層として、高熱伝導性の無機粉体を充填した熱硬化性樹脂シートがある(例えば、特許文献2参照)。   As a heat conductive resin layer interposed between a heat-generating electronic component such as a CPU and a heat radiating fin, there is a thermosetting resin sheet filled with highly heat conductive inorganic powder (for example, see Patent Document 2).

また、無機粉体を充填したコンパウンドシートを作製する場合、高い熱伝導性を得るため無機粉体の充填率を上げる方法として、異なる粒径を有する無機粉体を配合することが開示されている(例えば、特許文献3、特許文献4)。   Also, when preparing a compound sheet filled with inorganic powder, it is disclosed that inorganic powders having different particle sizes are blended as a method for increasing the filling rate of inorganic powder in order to obtain high thermal conductivity. (For example, Patent Document 3 and Patent Document 4).

特許文献3は、異なる粒径の無機充填材の接触面積を大きくし、熱伝導性を向上させるものであり、特許文献4は、異なる3種の粒径を有する球状アルミナをビフェニル型エポキシ樹脂に配合し、さらに成形性、耐半田クラック性も向上させている。   Patent Document 3 is to increase the contact area of inorganic fillers having different particle diameters and improve thermal conductivity. Patent Document 4 is to convert spherical alumina having three different particle diameters into biphenyl type epoxy resin. In addition, the moldability and solder crack resistance are improved.

特開2001−196495号公報(第3頁、図1)JP 2001-196495 A (page 3, FIG. 1) 特開2002−167560号公報(第3頁、図1)JP 2002-167560 A (page 3, FIG. 1) 特開平6−310824号公報JP-A-6-310824 特開平7−278415号公報(第7頁、図1)Japanese Patent Laid-Open No. 7-278415 (page 7, FIG. 1)

しかしながら、熱伝導性を向上させるため、樹脂に対する無機充填材の充填率を高くするとボイドが形成され、熱伝導性樹脂シートの電気絶縁性や機械的強度が低下するという問題があった。また樹脂に異なる粒径を有する2種以上の無機充填材を充填する場合、高い熱伝導率を確保するための配合比を決めることが困難であった。   However, when the filling rate of the inorganic filler with respect to the resin is increased in order to improve the thermal conductivity, there is a problem that voids are formed and the electrical insulation and mechanical strength of the thermally conductive resin sheet are lowered. Further, when the resin is filled with two or more inorganic fillers having different particle diameters, it is difficult to determine a blending ratio for ensuring high thermal conductivity.

この発明は、上述の問題点を解決するためになされたものであり、異なる粒径を有する二種以上の無機充填材が高い充填率で充填されて高い熱伝導性が確保され、かつ樹脂が配合させて加工性が確保され、かつボイドが抑制されて良好な電気絶縁性が確保された熱伝導性樹脂シート及びこれを用いたパワーモジュールを得ることを目的としている。   The present invention has been made to solve the above-described problems. Two or more inorganic fillers having different particle sizes are filled at a high filling rate to ensure high thermal conductivity, and a resin is used. It is intended to obtain a heat conductive resin sheet in which workability is ensured by blending and voids are suppressed and good electrical insulation is ensured, and a power module using the same.

この発明に係る熱伝導性樹脂シートの製造方法は、粒径の大きさから二別された電気絶縁性の複数の無機充填材のうち、平均粒径の大きい方を第1充填材とし、小さい方を第2充填材として準備する工程と、
上記第1充填材の臨界体積分率をCFVCとし、
上記第2充填材の臨界体積分率をCFVC2とし、
上記第1充填材の体積と上記第2充填材の体積の和に対する上記第1充填材の体積の比をαとして、
樹脂の体積配合比を
(i)0<(第1充填材の体積)/(無機充填材の総体積)≦α/(α+α/CFVC×CFVC)のとき、(1−α)/CFVC×(1−CFVC)/{1+(1−α)/CFVC×(1−CFVC)}に決定し、
(ii)α/(α+α/CFVC×CFVC)<(第1充填材の体積)/(無機充填材の総体積)<1のとき、(α/CFVC −1)/(α/CFVC )に決定する工程と、
上記体積配合比に基づき、上記樹脂と上記第1充填材と上記第2充填材とを混練してコンパウンドを作製する工程と、
上記コンパウンドを基材に塗布した塗布物を乾燥させた後、加重をかけて圧縮させる工程とを備えたものである。
The manufacturing method of the heat conductive resin sheet which concerns on this invention makes the one with a larger average particle diameter the 1st filler among the several electrically insulating inorganic fillers divided according to the magnitude | size of a particle size, and is small. Preparing one as a second filler,
The critical volume fraction of the first filler is CFVC 1 ;
The critical volume fraction of the second filler is CFVC2,
The ratio of the volume of the first filler to the sum of the volume of the first filler and the volume of the second filler is α,
When (i) 0 <(volume of the first filler) / (total volume of the inorganic filler) ≦ α / (α + α / CFVC 1 × CFVC 2 ) (1−α) / CFVC, 2 × (1-CFVC 2 ) / {1+ (1-α) / CFVC 2 × (1-CFVC 2 )}
(Ii) When α / (α + α / CFVC 1 × CFVC 2 ) <(volume of first filler) / (total volume of inorganic filler) <1, (α / CFVC 1 −1) / (α / CFVC 1 ) the step of determining,
Kneading the resin, the first filler, and the second filler based on the volume blending ratio to produce a compound;
And a step of applying a load and compressing the applied product obtained by applying the compound to a substrate.

この発明に係るパワーモジュールの製造方法は、電力半導体素子を載置したリードフレームに請求項1乃至4のいずれか1項に記載の方法で製造された熱伝導性樹脂シートの硬化体を介して放熱部材を接着する工程を備える。 The method for manufacturing a power module according to the present invention includes a lead frame on which a power semiconductor element is mounted , through a cured body of a thermally conductive resin sheet manufactured by the method according to any one of claims 1 to 4. A step of bonding the heat dissipating member ;

この発明によれば、異なる粒径を有する二種以上の無機充填材が高い充填率で充填されて高い熱伝導性が確保され、かつ樹脂が配合させて加工性が確保され、かつボイドが抑制されて良好な電気絶縁性が確保された熱伝導性樹脂シートを得ることができる。   According to this invention, two or more inorganic fillers having different particle sizes are filled at a high filling rate to ensure high thermal conductivity, and the resin is blended to ensure processability and suppress voids. Thus, it is possible to obtain a heat conductive resin sheet in which good electrical insulation is ensured.

またこの発明の熱伝導性樹脂シートを用いることにより、放熱性、電気絶縁性に優れたパワーモジュールを得ることができる。   Moreover, the power module excellent in heat dissipation and electrical insulation can be obtained by using the heat conductive resin sheet of this invention.

実施の形態1.
塗料技術の分野において、Temple C.Patton(Paint Flow and Pigment Dispersion,p.126〜p.138,1979,John,Wiley & Sons,Inc.)は、バインダーに対して顔料体積濃度(PVC:Pigment Volume Concentration)を増加させていくと、顔料濃度が低いと低い充填率となり、ある配合比で最密充填に到達し、さらに顔料を増やすとボイドが発生することを示し、臨界顔料体積分率(CPVC:Critical Pigment Volume Concentration)とPVCより空隙率φAIRを求めている。
Embodiment 1 FIG.
In the field of paint technology, Temple C.I. Patton (Paint Flow and Pigment Dispersion, p. 126-p. 138, 1979, John, Wiley & Sons, Inc.) increases the pigment volume concentration (PVC: Pigment Volume Concentration) with respect to the binder. When the pigment concentration is low, the filling ratio becomes low, reaching the closest packing at a certain blending ratio, and when the pigment is further increased, it indicates that voids are generated. From the Critical Pigment Volume Concentration (CPVC) and PVC The porosity φ AIR is being calculated.

ここで、熱伝導樹脂シート4について検討する。樹脂3に対して充填材1の体積濃度(FVC:Filler Volume Concentration)を増加させていくと、充填材1の濃度が低い場合ボイド5は発生しにくいものの低充填率状態となり(図1(a))、所定の充填材配合比で最密充填状態に達し(図1(b))、さらに充填材1を増やすと充填材間にボイド5が発生すると考えられる(図1(c))。ここで図1(b)に示される最密充填状態の配合比を、臨界充填材体積分率(CFVC:Critical Filler Volume Concentration)とすると、FVCがCFVC以上の配合比での空隙率φAIRを、1−CFVC/FVCとして求めることができる。 Here, the heat conductive resin sheet 4 is examined. When the volume concentration (FVC: Filler Volume Concentration) of the filler 1 is increased with respect to the resin 3, the void 5 is less likely to be generated when the concentration of the filler 1 is low (FIG. 1 (a)). )), A close-packed state is reached at a predetermined filler blending ratio (FIG. 1 (b)), and it is considered that when the filler 1 is further increased, voids 5 are generated between the fillers (FIG. 1 (c)). Here, when the compounding ratio in the close-packed state shown in FIG. 1B is a critical filler volume concentration (CFVC), the porosity φ AIR at a compounding ratio of FVC equal to or higher than CFVC is expressed as follows. , 1-CFVC / FVC.

さらに、図1(b)の充填材1の最密充填状態において、充填材1(以下第1充填材という)の隙間に、第1充填材1より粒径の小さな第2充填材2を密に埋めることにより、第1充填材1の伝熱路および第2充填材2の伝熱路を形成すれば、より高い熱伝導性が期待できる(図2)。ここで第1充填材1と第2充填材2との隙間をボイド5を発生させない状態で樹脂3で埋めることにより、絶縁性、加工性、接着性を向上できる。   Furthermore, in the close-packed state of the filler 1 in FIG. 1B, the second filler 2 having a smaller particle diameter than the first filler 1 is densely packed in the gap between the fillers 1 (hereinafter referred to as the first filler). If the heat transfer path of the first filler 1 and the heat transfer path of the second filler 2 are formed by burying them in, a higher thermal conductivity can be expected (FIG. 2). Here, by filling the gap between the first filler 1 and the second filler 2 with the resin 3 in a state where no void 5 is generated, the insulation, workability, and adhesion can be improved.

第1充填材1の周囲、あるいは隙間を第2充填材2で埋めることにより伝熱路を確保できていれば、必ずしも第1充填材の体積分率が大きい必要はなく、例えば図3に示すように第2充填材2の体積分率を大きくしてもよい。   If the heat transfer path can be secured by filling the periphery of the first filler 1 or the gap with the second filler 2, the volume fraction of the first filler does not necessarily have to be large. For example, as shown in FIG. Thus, the volume fraction of the second filler 2 may be increased.

図1の一種の充填材を含む熱伝導性樹脂シート4の硬化体を、次の手順で作製し、臨界充填材体積分率を求めた。
まず第1充填材1のみを樹脂3に、第1充填材1の体積濃度FVCを任意に増大させて配合した成形体をいくつか作製した。そしてこれらの成形体を実測した重量と体積から求めた実測密度ρm1と、理想密度ρ(ρ=(第1充填材の重量+樹脂の重量)/(第1充填材の体積+樹脂の体積)から空隙率φA1(φA1=1−ρm1/ρ1)を算出した。さらに図4に示すように充填率と第1充填材1の体積濃度をプロットし、外挿から空隙率が零となる第1充填材1の臨界体積分率CFVCを求めた。
A cured body of the thermally conductive resin sheet 4 containing a kind of filler in FIG. 1 was produced by the following procedure, and the critical filler volume fraction was determined.
First, several molded bodies were prepared in which only the first filler 1 was mixed with the resin 3 and the volume concentration FVC 1 of the first filler 1 was arbitrarily increased. The measured density ρ m1 obtained from the actually measured weight and volume of these molded bodies, and the ideal density ρ 11 = (weight of the first filler + weight of the resin) / (volume of the first filler + resin) The void ratio φ A1A1 = 1−ρ m1 / ρ 1 ) was calculated from the volume of the gas, and the filling rate and the volume concentration of the first filler 1 were plotted as shown in FIG. The critical volume fraction CFVC 1 of the first filler 1 with a rate of zero was determined.

同様にして第2充填材2のみを樹脂3に、第2充填材2の体積濃度FVCを任意に増大させて配合した成形体をいくつか作製し、これらの成形体の実測した重量と体積から求めた実測密度ρm2と、理想密度ρ(ρ=(第1充填材の重量+樹脂の重量)/(第1充填材の体積+樹脂の体積)から空隙率φA2(φA2=1−ρm2/ρ)を算出し、図4に示すように充填率と第2充填材2の体積濃度をプロットして空隙率が零となる第2充填材2の臨界体積分率CFVCを求めた。 Similarly, several molded bodies were prepared by blending only the second filler 2 with the resin 3 and arbitrarily increasing the volume concentration C FVC 2 of the second filler 2, and the measured weights of these molded bodies and From the measured density ρ m2 obtained from the volume and the ideal density ρ 22 = (weight of first filler + weight of resin) / (volume of first filler + volume of resin), porosity φ A2A2 = 1−ρ m2 / ρ 2 ), and the critical volume of the second filler 2 where the porosity is zero by plotting the filling rate and the volume concentration of the second filler 2 as shown in FIG. The rate CFVC 2 was determined.

さらに第1充填材1、第2充填材2それぞれの臨界体積分率CFVC、CFVCから、図2あるいは図3に示す樹脂3と2種の充填材を配合した熱伝導性樹脂シート4の最密充填状態を次のとおり検討した。
(i) 第1充填材1の体積分率が第2充填材2に比べて、比較的小さい低配合比領域(領域I)
領域Iでは、次式で充填材総体積分率φc12、すなわち異なる粒径を有する2種類の充填材を樹脂3に充填した場合のボイド5が発生しない最密充填率を求めることができる。

φc12=(V+V)/(V+V+V) (3)

(ここで、Vは第1充填材1の体積、Vは第2充填材2の体積、Vは樹脂3の体積)

さらに式(3)において、第1充填材1及び第2充填材2の合計体積すなわち充填材総体積(V+V)を1とし、第1充填材体積V1の充填材総体積に対する比をαとした場合次式が成立つ。

=V/CFVC ×(1−CFVC
=(1−α)/CFVC ×(1−CFVC) (4)

したがって、図5における第1充填材、第2充填材、樹脂の体積分率と第1充填材体積/充填材総体積との関係図に示すとおり、ボイド5が許容空隙率以下に抑制される充填材の最密充填状態となる第1充填材、第2充填材、及び樹脂の体積分率は次のとおりとなる。
Furthermore, from the critical volume fractions CFVC 1 and CFVC 2 of the first filler 1 and the second filler 2, respectively, the heat conductive resin sheet 4 containing the resin 3 shown in FIG. 2 or 3 and two kinds of fillers is blended. The close-packed state was examined as follows.
(I) Low volume ratio (region I) in which the volume fraction of the first filler 1 is relatively smaller than that of the second filler 2
In the region I, the filler total volume fraction φ c12 , that is, the closest packing ratio at which no void 5 is generated when two kinds of fillers having different particle diameters are filled in the resin 3 can be obtained by the following equation.

φ c12 = (V 1 + V 2 ) / (V 1 + V 2 + V 3 ) (3)

(Where V 1 is the volume of the first filler 1, V 2 is the volume of the second filler 2, and V 3 is the volume of the resin 3).

Further, in the formula (3), the total volume of the first filler 1 and the second filler 2, that is, the total volume of the filler (V 1 + V 2 ) is 1, and the ratio of the first filler volume V 1 to the total volume of the filler If α is α, the following equation holds.

V 3 = V 2 / CFVC 2 × (1-CFVC 2)
= (1-α) / CFVC 2 × (1-CFVC 2 ) (4)

Therefore, as shown in the relationship diagram of the volume fraction of the first filler, the second filler, and the resin and the first filler volume / total filler volume in FIG. 5, the void 5 is suppressed below the allowable porosity. The volume fractions of the first filler, the second filler, and the resin that are in the closest packing state of the filler are as follows.

第1充填材1の体積分率:
α/{1+(1−α)/CFVC×(1−CFVC)} (5)
第2充填材2の体積分率:
(1−α)/{1+(1−α)/CFVC×(1−CFVC)} (6)
樹脂3の体積分率:
(1−α)/CFVC×(1−CFVC
/{1+(1−α)/CFVC×(1−CFVC)} −φAC (7)
ここで、φACは許容空隙率であるが、ボイドが非常に少ない状態では、φAC≒0とできる。したがって、
(樹脂の体積分率)=(1−α)/CFVC×(1−CFVC
/{1+(1−α)/CFVC×(1−CFVC)} (8)

つまり、上記式(5)(6)(8)に基づき、第1充填材1、第2充填材2、および樹脂の体積配合比を決定すれば、ボイド5が許容空隙率以下に抑制される充填材の最密充填状態となる。現実的には、熱伝導率確保のため第1充填材1、第2充填材2の体積分率の和をCFVC確保することを考慮すれば、ボイド5を抑制する観点より樹脂の体積配合比を増やすことが必要となり、

(i)0<(第1充填材の体積)/(無機充填材の総体積)≦α/(α+α/CFVC×CFVC)のとき

(1−α)/CFVC×(1−CFVC)/{1+(1−α)/CFVC×(1−CFVC)} ≦ (樹脂の体積分率) ≦ 1−CFVC (9)

として、樹脂の体積配合比を決定すればよい。
なお、このとき充填材総体積分率φc12は次式で得られる。

φc12=1/{1+(1−α)/CFVC×(1−CFVC)} (10)
Volume fraction of first filler 1:
α / {1+ (1-α) / CFVC 2 × (1-CFVC 2 )} (5)
Volume fraction of second filler 2:
(1-α) / {1+ (1-α) / CFVC 2 × (1-CFVC 2 )} (6)
Volume fraction of resin 3:
(1-α) / CFVC 2 × (1-CFVC 2 )
/ {1+ (1-α) / CFVC 2 × (1-CFVC 2 )} −φ AC (7)
Here, φ AC is an allowable porosity, but in a state where there are very few voids, φ AC ≈0. Therefore,
(Resin volume fraction) = (1-α) / CFVC 2 × (1-CFVC 2 )
/ {1+ (1-α) / CFVC 2 × (1-CFVC 2 )} (8)

That is, if the volume mixing ratio of the first filler 1, the second filler 2, and the resin is determined based on the above formulas (5), (6), and (8), the void 5 is suppressed to an allowable porosity or less. It becomes the closest packing state of the filler. In reality, considering the securing of CFVC 2 as the sum of the volume fractions of the first filler 1 and the second filler 2 in order to ensure the thermal conductivity, the volume mixing of the resin from the viewpoint of suppressing the void 5 Need to increase the ratio,

(I) When 0 <(Volume of first filler) / (Total volume of inorganic filler) ≦ α / (α + α / CFVC 1 × CFVC 2 )

(1-α) / CFVC 2 × (1-CFVC 2 ) / {1+ (1-α) / CFVC 2 × (1-CFVC 2 )} ≦ (resin volume fraction) ≦ 1-CFVC 2 (9)

As a result, the volume ratio of the resin may be determined.
At this time, the filler total volume fraction φ c12 is obtained by the following equation.

φ c12 = 1 / {1+ ( 1-α) / CFVC 2 × (1-CFVC 2)} (10)

(ii) 一方粒径の大きい第1充填材1の配合比が粒径の小さい第2充填材2に比べて、比較的大きい高配合比領域(領域II)において、同様に充填材体積をV1+V=1とし、粒径の大きい第1充填材体積Vの充填材総体積に対する比をαとした場合、樹脂3の体積V、および充填材の最密充填状態が得られる充填材総体積分率φc12は次式で求めることができる。 (Ii) On the other hand, the volume of the filler is similarly set to V in the high blending ratio region (region II) where the blending ratio of the first filler 1 having a large particle size is relatively large compared to the second filler 2 having a small particle size. When 1 + V 2 = 1 and the ratio of the first filler volume V 1 having a large particle size to the total volume of the filler is α, the volume V 3 of the resin 3 and the filling that provides the closest packed state of the filler The material total volume fraction φ c12 can be obtained by the following equation.

=α/CFVC−1 (11)

/CFVC×(1−CFVC
=(1−α)/CFVC×(1−CFVC) (12)
V 3 = α / CFVC 1 −1 (11)

V 2 / CFVC 2 × (1 -CFVC 2)
= (1-α) / CFVC 2 × (1-CFVC 2 ) (12)

これよりボイド5が許容空隙率以下に抑制される充填材の最密充填状態が得られる各成分の体積分率は、
第1充填材1の体積分率:CFVC (13)

第2充填材2の体積分率:
(1−α)/(α/CFVC) (14)

樹脂3の体積分率:
(α/CFVC−1)/(α/CFVC) −φAC (15)

となる。ここで、φACは許容空隙率であるが、ボイドが非常に少ない状態では、φAC≒0とできる。したがって、
(樹脂の体積分率)=(α/CFVC−1)/(α/CFVC) (16)

つまり、上記式(13)(14)(16)に基づき、第1充填材1、第2充填材2、および樹脂の体積配合比を決定すれば、ボイド5が許容空隙率以下に抑制される充填材の最密充填状態となる。現実的には、熱伝導率確保のため第1充填材1、第2充填材2の体積分率の和をCFVC確保することを考慮すれば、ボイド5を抑制する観点より樹脂の体積配合比を増やすことが必要となり、

(ii)α/(α+α/CFVC×CFVC)<(第1充填材の体積)/(無機充填材の総体積)<1のとき

(α/CFVC−1)/(α/CFVC) ≦ (樹脂の体積分率)
≦ 1−CFVC (17)

として、樹脂の体積配合比を決定すればよい。
なお、このとき充填材総体積分率φc12は次式で得られる。

φc12=1/(α/CFVC) (18)
From this, the volume fraction of each component for obtaining the close-packed state of the filler in which the void 5 is suppressed to an allowable porosity or less is as follows:
Volume fraction of first filler 1: CFVC 1 (13)

Volume fraction of second filler 2:
(1-α) / (α / CFVC 1 ) (14)

Volume fraction of resin 3:
(α / CFVC 1 −1) / (α / CFVC 1 ) −φ AC (15)

It becomes. Here, φ AC is an allowable porosity, but in a state where there are very few voids, φ AC ≈0. Therefore,
(Volume fraction of resin) = (α / CFVC 1 −1) / (α / CFVC 1 ) (16)

That is, if the volume mixing ratio of the first filler 1, the second filler 2, and the resin is determined based on the above formulas (13), (14), and (16), the void 5 can be suppressed to an allowable porosity or less. It becomes the closest packing state of the filler. In reality, considering the securing of CFVC 1 as the sum of the volume fractions of the first filler 1 and the second filler 2 in order to secure the thermal conductivity, the volumetric composition of the resin from the viewpoint of suppressing the void 5 Need to increase the ratio,

(Ii) When α / (α + α / CFVC 1 × CFVC 2 ) <(volume of first filler) / (total volume of inorganic filler) <1

(α / CFVC 1 −1) / (α / CFVC 1 ) ≦ (resin volume fraction)
≦ 1-CFVC 1 (17)

As a result, the volume ratio of the resin may be determined.
At this time, the filler total volume fraction φ c12 is obtained by the following equation.

φ c12 = 1 / (α / CFVC 1 ) (18)

また、図5に示すように、充填材総体積分率φc12は、領域Iと領域IIとの境界で最大となり、第1充填材1の体積分率を増やしてもCFVCが限界となることがわかる。すなわち、ボイドを許容空隙率以下に抑え、充填材総体積分率φc12を上げるためには、第1充填材体積/充填材総体積がα/(α+α/CFVC×CFVC)以下となる領域で、第1充填材1と第2充填材2との配合比を決定することが好ましい。つまり、
0 < V/(V+V) ≦ α/(α+α/CFVC×CFVC)より、

0 < α ≦ α/(α+α/CFVC×CFVC) (19)
Further, as shown in FIG. 5, the filler total volume fraction φ c12 becomes the maximum at the boundary between the region I and the region II, and even if the volume fraction of the first filler 1 is increased, the CFVC 1 becomes the limit. I understand. In other words, suppressed to less than the allowable void porosity, in order to increase the filler overall volume fraction phi c12, the total volume of the first filler volume / filler becomes less α / (1 × CFVC 2 α + α / CFVC) region Thus, it is preferable to determine the blending ratio between the first filler 1 and the second filler 2. That means
From 0 <V 1 / (V 1 + V 2 ) ≦ α / (α + α / CFVC 1 × CFVC 2 ),

0 <α ≦ α / (α + α / CFVC 1 × CFVC 2 ) (19)

以上のように、第1充填材1の臨界体積分率CFVC及び第2充填材2の臨界体積分率CFVCを例えば実験的に求め、第1充填材、第2充填材、樹脂の体積分率と第1充填材体積/充填材総体積との関係を導くことにより、ボイド5が許容空隙率以下となり、かつ充填材を最密充填状態とした最適配合比が得られる。 As described above, the critical volume fraction CFVC 1 of the first filler 1 and the critical volume fraction CFVC 2 of the second filler 2 are obtained experimentally, for example, and the volume of the first filler, the second filler, and the resin is determined. By deriving the relationship between the fraction and the first filler volume / filler total volume, the optimum blending ratio in which the void 5 is less than or equal to the allowable porosity and the filler is in the closest packing state is obtained.

すなわち、粒径の大きな第1充填材1の隙間に理想的に粒径の小さな第2充填材2が配置され、さらにその隙間を樹脂3が埋めるボイド5のない飽和状態に近い状態が実現でき、結果として、充填材の最密充填による熱伝導性確保と、ボイド5が少なく樹脂3により埋められることにより、加工性、接着性、絶縁性を確保できる。このため高信頼性の熱伝導シートを得ることができる。ここで充填材の充填率は充填材総体積分率φc12で与えられる。 That is, the second filler 2 having an ideally small particle diameter is disposed in the gap between the first filler 1 having a large particle diameter, and a state close to a saturated state without voids 5 filling the gap with the resin 3 can be realized. As a result, it is possible to ensure heat conductivity by close-packing of the filler and to be filled with the resin 3 with few voids 5, thereby ensuring workability, adhesion, and insulation. For this reason, a highly reliable heat conductive sheet can be obtained. Here, the filling rate of the filler is given by the filler total volume fraction φc12 .

なお、本実施の形態では、第1充填材1および第2充填材2の粒径は、それぞれの粒径分布より平均値を用いた。二種以上の充填材を用いる場合には、二種に大別して、平均粒径を用いれば同様に数値を求めることができる。   In the present embodiment, the average values of the particle sizes of the first filler 1 and the second filler 2 are used from the respective particle size distributions. When two or more kinds of fillers are used, the numerical values can be similarly obtained by roughly classifying them into two kinds and using the average particle diameter.

実施の形態2.
本発明に係る実施の形態2においては、第1充填材1を粒径30μm程度の略球状の窒化アルミニウム粒子とし、第2充填材2を図6に示す長径Lが5〜15μm程度の扁平状充填材6とし、上記実施の形態1における第2充填材2と置き換えて臨界充填率を求めた。本実施の形態における扁平状充填材6の長径Lとは、図6に示すように扁平状充填剤6の平面部における最長の長さである。本実施の形態において、ボイド5の少ない状態で、かつ第1充填材1のみを充填材とする臨界体積分率CFVCに対し、約35%の充填率の向上が得られ、熱伝導率は約2倍に向上した。
Embodiment 2. FIG.
In Embodiment 2 according to the present invention, the first filler 1 is substantially spherical aluminum nitride particles having a particle diameter of about 30 μm, and the second filler 2 is a flat shape having a major axis L of about 5 to 15 μm shown in FIG. The critical filling rate was obtained by replacing the filler 6 with the second filler 2 in the first embodiment. The major axis L of the flat filler 6 in the present embodiment is the longest length in the flat portion of the flat filler 6 as shown in FIG. In this embodiment, an improvement of the filling factor of about 35% is obtained with respect to the critical volume fraction CFVC 1 in which the number of voids 5 is small and only the first filler 1 is used as the filler, and the thermal conductivity is It improved about twice.

球状の第1充填材1間に扁平状充填材6を介在させることにより、熱伝導性樹脂シート4の厚さ方向に分布する隣接する球状の第1充填材1同士が、扁平状充填材6により繋がれ、伝熱経路を形成するため、熱が熱伝導性樹脂シート4の厚さ方向にさらに伝わり易くなるためである。   By interposing the flat filler 6 between the spherical first fillers 1, the adjacent spherical first fillers 1 distributed in the thickness direction of the heat conductive resin sheet 4 are flattened fillers 6. This is because heat is more easily transmitted in the thickness direction of the heat conductive resin sheet 4 because the heat transfer paths are formed.

なお、本実施の形態において、扁平状充填材6は、図6に示す平板状のものを用いたが、その外縁の形状は限定されず、特に矩形形状とした場合熱伝導性を向上させる効果があることがわかった。材質としては電気絶縁性の酸化アルミニウム(アルミナ)、窒化硼素、炭化珪素などを用いればよい。これらを2種類以上用いてもよい。   In the present embodiment, the flat filler 6 has a flat plate shape as shown in FIG. 6, but the shape of the outer edge is not limited, and the effect of improving the thermal conductivity when it is particularly rectangular. I found out that As a material, electrically insulating aluminum oxide (alumina), boron nitride, silicon carbide, or the like may be used. Two or more of these may be used.

また、上記実施の形態1および実施の形態2において、第1の充填材1は、略球状のものが好ましいが、粉砕された形状で多角体形状であってもよい。材質としては、電気絶縁性の酸化アルミニウム(アルミナ)、酸化珪素(シリカ)、窒化珪素、窒化アルミニウム、炭化珪素、窒化硼素などを用いればよい。これらを2種類以上用いてもよい。   In the first embodiment and the second embodiment, the first filler 1 is preferably substantially spherical, but may be a pulverized polygonal shape. As a material, electrically insulating aluminum oxide (alumina), silicon oxide (silica), silicon nitride, aluminum nitride, silicon carbide, boron nitride, or the like may be used. Two or more of these may be used.

また、上記実施の形態1および実施の形態2において、2種の充填材を用いる例を示したが、第1充填材1、第2充填材2のいずれか、または両方を複数の異なる径の充填材としてもよい。すなわち、2種に限らず、複数の充填材を適用した場合の最密充填を実現する各材料の体積分率が求められ、充填率を著しく向上させることができるため熱伝導率を向上できる。また充填材間は、ボイド5を発生させることなく、樹脂3により埋められているので、絶縁性、加工性、接着性を高めることができる。   Moreover, in the said Embodiment 1 and Embodiment 2, although the example using 2 types of fillers was shown, either the 1st filler 1 and the 2nd filler 2, or both of several different diameters were shown. It is good also as a filler. That is, the volume fraction of each material that achieves the closest packing when a plurality of fillers are applied is not limited to two, and the filling rate can be significantly improved, so that the thermal conductivity can be improved. Further, since the space between the fillers is filled with the resin 3 without generating the void 5, the insulation, workability, and adhesion can be improved.

また、樹脂3としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂などの組成物を用いることができるが、エポキシ樹脂は、熱伝導性樹脂シート4の絶縁性、接着性の観点より、特に好ましい。   Further, as the resin 3, a composition such as an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, or a polyimide resin can be used. The epoxy resin is an insulating property of the heat conductive resin sheet 4. From the viewpoint of adhesiveness, it is particularly preferable.

エポキシ樹脂組成物の主剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、グリシジルーアミノフェノール系エポキシ樹脂が挙げられる。これらのエポキシ樹脂は2種以上を併用しても良い。
エポキシ樹脂組成物の硬化剤としては、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸などの脂環式酸無水物、ドデセニル無水コハク酸などの脂肪族酸無水物、無水フタル酸、無水トリメリット酸などの芳香族酸無水物、ジシアンジアミド、アジピン酸ジヒドラジドなどの有機ジヒドラジド、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン、およびその誘導体、2−メチルイミダゾール、2−エチルー4−メチルイミダゾール、2−フェニルイミダゾールなどのイミダゾール類が挙げられる。これらの硬化剤は2種以上を併用しても良い。
As the main component of the epoxy resin composition, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, alicyclic aliphatic epoxy resin, glycidyl aminophenol type epoxy resin Is mentioned. Two or more of these epoxy resins may be used in combination.
Examples of the curing agent for the epoxy resin composition include alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride, aliphatic acid anhydrides such as dodecenyl succinic anhydride, and anhydride. Aromatic anhydrides such as phthalic acid and trimellitic anhydride, organic dihydrazides such as dicyandiamide and adipic acid dihydrazide, tris (dimethylaminomethyl) phenol, dimethylbenzylamine, 1,8-diazabicyclo (5,4,0) undecene And derivatives thereof, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole and the like. Two or more of these curing agents may be used in combination.

熱伝導性樹脂シート4には、必要に応じてカップリング剤を含有させても良い。用いられるカップリング剤としては、例えばγ―グリシドキシプロピルトリメトキシシラン、N−β(アミノエチル)γ―アミノプロピルトリエトキシシラン、N−フェニル−γ―アミノプロピルトリメトキシシラン、γ―メルカプトプロピルトリメトキシシランなどが挙げられる。上記カップリング剤は2種類以上併用しても良い。
熱伝導性樹脂シート4に上記のようなカップリング剤を含有させると、発熱部となる電子機器の電力半導体素子23を搭載する基材やヒートシンク部材24などとの接着強度が向上し、さらに好ましい。
The heat conductive resin sheet 4 may contain a coupling agent as necessary. Examples of coupling agents used include γ-glycidoxypropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and γ-mercaptopropyl. Examples include trimethoxysilane. Two or more of the above coupling agents may be used in combination.
When the above-described coupling agent is contained in the heat conductive resin sheet 4, the adhesive strength with the base material or the heat sink member 24 on which the power semiconductor element 23 of the electronic device serving as the heat generating portion is mounted is further preferable. .

また、熱伝導性樹脂シート4のマトリックスとなる樹脂3に熱硬化性のエポキシ樹脂組成物を用いた場合、主剤の一部として数平均分子量3000以上のエポキシ樹脂を併用すると、熱伝導性樹脂シート4の柔軟性が向上し、電気・電子機器の発熱部や放熱部に対する密着性が増して、好ましい。数平均分子量3000以上のエポキシ樹脂の配合割合は、主剤の液状エポキシ樹脂100重量部に対して10〜40重量部である。この配合割合が10重量部未満では、上記の密着性の向上が認められない。この配合割合が40重量部より大きいと、熱伝導性樹脂シート硬化体の耐熱性が低下する。   In addition, when a thermosetting epoxy resin composition is used for the resin 3 serving as a matrix of the heat conductive resin sheet 4, when an epoxy resin having a number average molecular weight of 3000 or more is used as a part of the main agent, the heat conductive resin sheet 4 is improved, and the adhesiveness to the heat generating part and the heat radiating part of the electric / electronic device is increased, which is preferable. The compounding ratio of the epoxy resin having a number average molecular weight of 3000 or more is 10 to 40 parts by weight with respect to 100 parts by weight of the liquid epoxy resin as the main agent. When the blending ratio is less than 10 parts by weight, the above-described improvement in adhesion is not recognized. When this mixing ratio is larger than 40 parts by weight, the heat resistance of the thermally conductive resin sheet cured body is lowered.

実施の形態3.
第1充填材1として粒径30μm程度の略球状の窒化アルミニウム、第2充填材2として扁平状充填材6を用い、第1充填材1の体積V1を、充填材総体積V+Vに対して30%と固定し、樹脂体積Vを変化させて熱伝導性樹脂シート4を作製してそれぞれ熱伝導性樹脂シート4の充填材の充填率φ、熱伝導率λを測定した。
図7は、φ/CFVC(CFVC:第1充填材1の臨界充填材体積分率)とV/(V+V)(V:充填材2の体積、V:樹脂3の体積)との関係を、図8は、λ/λCFVC1(λCFVC1:第1充填材のみを臨界充填させた場合の熱伝導率)とV/(V+V)との関係をプロットしたものである。
Embodiment 3 FIG.
A substantially spherical aluminum nitride having a particle size of about 30 μm is used as the first filler 1, and a flat filler 6 is used as the second filler 2, and the volume V1 of the first filler 1 is set to a total volume V 1 + V 2 of the filler. On the other hand, the heat conductive resin sheet 4 was prepared by changing the resin volume V 3 while fixing to 30%, and the filling rate φ and the heat conductivity λ of the filler of the heat conductive resin sheet 4 were measured.
FIG. 7 shows φ / CFVC 1 (CFVC 1 : critical filler volume fraction of first filler 1) and V 2 / (V 2 + V 3 ) (V 2 : volume of filler 2, V 3 : resin 3. FIG. 8 shows the relationship between λ / λ CFVC1CFVC1 : thermal conductivity when only the first filler is critically filled) and V 2 / (V 2 + V 3 ). It is a plot.

図7に示すとおり、第1充填材1のみを臨界充填させた場合(φ=CFVC、φ/CFVC=1)に比べ、第1充填材1および第2充填材2を充填させることにより充填率φが向上できることがわかる。さらにV/(V+V)値が0.66以上で飽和状態となり、充填率は約27%程度向上する。
また熱伝導率については、図8に示すとおり、第1充填材1のみを臨界充填させた場合の熱伝導率λCFVC1(λ/λCFVC1=1)に比較して、V/(V+V)値が0.66程度で約60%向上した。ここで熱伝導率を向上できる好ましい範囲は、第1充填材1のみを臨界充填させた場合の約40%の熱伝導率向上を図ることができる0.6≦V/(V+V)≦0.72であり、さらに好ましい範囲は、約50%の熱伝導率向上を図ることができる0.62≦V/(V+V)≦0.7、最も好ましい範囲は、約60%の熱伝導率向上を図ることができる0.65≦V/(V+V)≦0.675であることがわかる。このようにして、熱伝導率を12W/m・K程度以上に向上できることがわかった。
As shown in FIG. 7, by filling only the first filler 1 and the second filler 2 as compared with the case where only the first filler 1 is critically filled (φ = CFVC 1 , φ / CFVC 1 = 1). It can be seen that the filling rate φ can be improved. Further, when the V 2 / (V 2 + V 3 ) value is 0.66 or more, the saturated state is reached, and the filling rate is improved by about 27%.
Further, as shown in FIG. 8, the thermal conductivity is V 2 / (V 2 ) as compared to the thermal conductivity λ CFVC1 (λ / λ CFVC1 = 1) when only the first filler 1 is critically filled. The + V 3 ) value was about 0.66, which was improved about 60%. Here, a preferable range in which the thermal conductivity can be improved is 0.6 ≦ V 2 / (V 2 + V 3), which can achieve a thermal conductivity improvement of about 40% when only the first filler 1 is critically filled. ) ≦ 0.72, and a more preferable range is 0.62 ≦ V 2 / (V 2 + V 3 ) ≦ 0.7, which can achieve a thermal conductivity improvement of about 50%, and the most preferable range is about It can be seen that 0.65 ≦ V 2 / (V 2 + V 3 ) ≦ 0.675 that can improve the thermal conductivity by 60%. Thus, it was found that the thermal conductivity can be improved to about 12 W / m · K or more.

さらに、図9に比重比ρ/ρo(ρo:各配合比におけるボイドが無い理想密度)とV/(V+V)との関係を、図10にBDV(Break Down Voltage)比BDV/BDVo(BDVo:ボイドが無い場合のBDV値の平均)とV/(V+V)との関係を示した。なおボイドが無い場合のBDV値の平均とは、比重比ρ/ρoがほぼ1の場合、すなわち図9よりV/(V+V)≦0.66のBDV値の平均である。また、ρは成形体を実測した重量と体積から求めた。1−ρ/ρoが空隙率に相当する。BDV測定は、三菱電線製ディスチャージデテクター装置により測定した。 Further, FIG. 9 shows the relationship between the specific gravity ratio ρ / ρo (ρo: ideal density without voids in each compounding ratio) and V 2 / (V 2 + V 3 ), and FIG. 10 shows the BDV (Break Down Voltage) ratio BDV / BDVo: shows the relationship of (BDVo average BDV value when the void is not) and V and 2 / (V 2 + V 3 ). Note that the average BDV value when there is no void is the average BDV value when the specific gravity ratio ρ / ρo is approximately 1, that is, V 2 / (V 2 + V 3 ) ≦ 0.66 from FIG. Moreover, ρ was obtained from the weight and volume obtained by actually measuring the molded body. 1−ρ / ρo corresponds to the porosity. The BDV measurement was performed with a Mitsubishi Electric Cable discharge detector device.

図9より、V/(V+V)値が小さい、すなわち樹脂比率が大きい熱伝導性樹脂シート4では、比重比ρ/ρoはほぼ1となり、空隙率がほぼ0に近い状態となっているが、樹脂体積Vが減少すると、ボイド5が発生するためρ/ρo値が低下することがわかる。同様の関係で図10からBDV値が低下することがわかる。 From FIG. 9, in the heat conductive resin sheet 4 having a small V 2 / (V 2 + V 3 ) value, that is, a large resin ratio, the specific gravity ratio ρ / ρo is almost 1, and the porosity is almost zero. However, it can be seen that when the resin volume V 3 decreases, the void 5 is generated and the ρ / ρo value decreases. From the same relationship, it can be seen from FIG.

さらに図10よりBDV値を確保できるV/(V+V)値は0.675以下であり、図9においてV/(V+V)値が0.675のときのρ/ρo値が0.98であることから、許容空隙率は2%以下であることがわかる。さらに好ましくはV/(V+V)値0.665以下で、許容空隙率は1%以下であることがわかる。 Further, from FIG. 10, the V 2 / (V 2 + V 3 ) value that can secure the BDV value is 0.675 or less, and in FIG. 9 ρ / ρ o when the V 2 / (V 2 + V 3 ) value is 0.675. Since the value is 0.98, it can be seen that the allowable porosity is 2% or less. More preferably, the V 2 / (V 2 + V 3 ) value is 0.665 or less, and the allowable porosity is 1% or less.

なお、本実施の形態において、第1充填材1の体積Vを、充填材総体積V+Vに対して30%と固定した例を示したが、他の配合比においても同様に成立つ。 In the present embodiment, the volume V 1 of the first filler 1 shows a fixed examples and 30% filler total volume V 1 + V 2, similarly established in another mixing ratio One.

実施の形態4.
上記実施の形態1〜3で述べた熱伝導性樹脂シート4のうち、特に充填材の体積分率を著しく高くした熱伝導性樹脂シート4の製造方法を検討した。
Embodiment 4 FIG.
Among the heat conductive resin sheets 4 described in the above first to third embodiments, a method for manufacturing the heat conductive resin sheet 4 in which the volume fraction of the filler was particularly increased was examined.

まず、所定量の熱硬化性樹脂の主剤とこの主剤を硬化させるのに必要な量の硬化剤とを含む熱硬化性樹脂組成物と、この熱硬化性樹脂組成物と例えば同重量の溶剤とを混合し、上記熱硬化性樹脂組成物の溶液とする。   First, a thermosetting resin composition containing a predetermined amount of a main component of a thermosetting resin and an amount of a curing agent necessary to cure the main component, and the thermosetting resin composition and, for example, the same weight of solvent. Are mixed to obtain a solution of the thermosetting resin composition.

次に、上記熱硬化性樹脂組成物の溶液に、第1充填材1と第2充填材2を予め混合させた混合充填材を添加して予備混合する。この予備混合物を例えば3本ロールやニーダなどで混練し、コンパウンドとする。   Next, a mixed filler obtained by mixing the first filler 1 and the second filler 2 in advance is added to the solution of the thermosetting resin composition and premixed. This preliminary mixture is kneaded with, for example, three rolls or a kneader to form a compound.

次に、得られたコンパウンドを、離型処理されたポリエチレンテレフタレート(PET)フィルムや金属箔などの基材に、ドクターブレード法で塗布する。   Next, the obtained compound is applied to a substrate such as a polyethylene terephthalate (PET) film or metal foil that has been subjected to a release treatment by a doctor blade method.

次に、この塗布物を乾燥し、塗布物中の溶剤を揮発させ、シート化し、さらに加熱してBステージ化する。   Next, this coated material is dried, the solvent in the coated material is volatilized, formed into a sheet, and further heated to form a B stage.

次に、熱伝導性樹脂シート4にロールプレスを用いて線圧加重を100kgf/cm程度かけ圧縮させた。   Next, the thermal conductive resin sheet 4 was compressed by applying a linear pressure load of about 100 kgf / cm using a roll press.

なお、粘度が低い熱硬化性樹脂組成物の場合は、溶剤を添加を省略することもできる。硬化促進のために触媒を、接着強度向上のためにカップリング剤などを適宜添加してもよい。   In the case of a thermosetting resin composition having a low viscosity, addition of a solvent can be omitted. A catalyst may be added as appropriate to accelerate curing, and a coupling agent may be added as appropriate to improve adhesive strength.

実施の形態5.
図11は、本発明の実施の形態5に係るパワーモジュールの断面模式図である。
図11に示すように、本実施の形態のパワ−モジュール20は、配線材と放熱部材とを兼ねるリードフレーム22の第1の面に電力半導体素子23が載置されており、リードフレーム22の電力半導体素子23が載置された面に対向する反対側の第2の面に、上記実施の形態1〜4に係る熱伝導性樹脂シート4の硬化体21を介してヒートシンク部材24が設けられている。電力半導体素子23は、やはりリードフレーム22に載置された制御用半導体素子25と金属線26で接続されている。そして、熱伝導性樹脂シートの硬化体21、リードフレーム22、ヒートシンク部材24、電力半導体素子23、制御用半導体素子25、金属線26などのパワーモジュール構成部材はモールド樹脂27により封止されている。
Embodiment 5 FIG.
FIG. 11 is a schematic cross-sectional view of a power module according to Embodiment 5 of the present invention.
As shown in FIG. 11, in the power module 20 of the present embodiment, a power semiconductor element 23 is placed on the first surface of a lead frame 22 that serves as both a wiring member and a heat radiating member. A heat sink member 24 is provided on the second surface opposite to the surface on which the power semiconductor element 23 is placed via the cured body 21 of the heat conductive resin sheet 4 according to the first to fourth embodiments. ing. The power semiconductor element 23 is connected to the control semiconductor element 25 also placed on the lead frame 22 by a metal wire 26. The power module constituent members such as the cured body 21 of the heat conductive resin sheet, the lead frame 22, the heat sink member 24, the power semiconductor element 23, the control semiconductor element 25, and the metal wire 26 are sealed with a mold resin 27. .

本実施の形態のパワーモジュール20は、以下のようにして製造される。まず、リードフレーム22の所定の部分に、電力半導体素子23や制御用半導体素子25を半田などにより接合する。次に、リードフレーム22の電力半導体素子23が載置された面に対向する反対側の第2の面に、Bステージ状の熱伝導性樹脂シート4を介してヒートシンク部材24を積層し、加熱加圧して熱伝導性樹脂シート4を硬化させ、ヒートシンク部材24を接着する。次に、電力半導体素子23と制御用半導体素子25とに、金属線26をワイヤボンド法により接合し、配線を行う。最後に、例えば、トランスファーモールド法により、モールド樹脂27で封止して、パワーモジュール20を完成する。   The power module 20 of the present embodiment is manufactured as follows. First, the power semiconductor element 23 and the control semiconductor element 25 are joined to predetermined portions of the lead frame 22 by soldering or the like. Next, the heat sink member 24 is laminated on the second surface opposite to the surface on which the power semiconductor element 23 of the lead frame 22 is placed via the B-stage-like thermally conductive resin sheet 4 and heated. The heat conductive resin sheet 4 is cured by applying pressure, and the heat sink member 24 is bonded. Next, a metal wire 26 is bonded to the power semiconductor element 23 and the control semiconductor element 25 by a wire bond method, and wiring is performed. Finally, the power module 20 is completed by sealing with a mold resin 27 by, for example, a transfer molding method.

本実施の形態のパワーモジュール20は、パワーモジュールの発熱部である電力半導体素子23を載置したリードフレーム22に、上記実施の形態1〜3に係る熱伝導性樹脂シート4の硬化体21を介してヒートシンク部材24が接着されている。熱伝導性樹脂シートの硬化体21は、電気絶縁性と従来にはない優れた熱伝導性を有しており、電力半導体素子23で発生した熱を高効率にヒートシンク部材24に伝達し放熱できるので、パワーモジュールの小形化と高容量化とを実現できる。   In the power module 20 of the present embodiment, the cured body 21 of the heat conductive resin sheet 4 according to the above first to third embodiments is placed on the lead frame 22 on which the power semiconductor element 23 that is a heat generating part of the power module is placed. The heat sink member 24 is bonded via the gap. The cured body 21 of the thermally conductive resin sheet has electrical insulation and excellent thermal conductivity that has not been conventionally available, and can transmit heat generated in the power semiconductor element 23 to the heat sink member 24 with high efficiency and dissipate heat. Therefore, the power module can be reduced in size and capacity.

なお、本実施の形態では、リードフレーム22とヒートシンク部材24との間に熱伝導性樹脂シート4を介する例について説明したが、本発明に係る熱伝導性樹脂シート4は、電気絶縁性と高熱伝導性を兼ね備えるので、ヒートシンク部材24を省略した構成も実現できる。   In the present embodiment, the example in which the thermally conductive resin sheet 4 is interposed between the lead frame 22 and the heat sink member 24 has been described. However, the thermally conductive resin sheet 4 according to the present invention is electrically insulating and has high heat. Since it has conductivity, a configuration in which the heat sink member 24 is omitted can be realized.

また、本実施の形態では、ヒートシンク部材24がモールド樹脂でモールドされた例を示したが、例えば図12に示すようにケース45に電力半導体素子43、回路基板42、ヒートシンク部材44が設けられ、ケース45外のヒートスプレッダー47が、上記実施の形態1〜4に係る熱伝導性樹脂シート4の硬化体41となっていてもよい。ケース45内はたとえば注型樹脂46で保護されている。図12に示すパワーモジュール40では、回路基板42、ヒートシンク部材44のうち少なくともいずれかが放熱部材として機能する。   Further, in the present embodiment, an example in which the heat sink member 24 is molded with a mold resin has been shown. However, for example, as shown in FIG. 12, a power semiconductor element 43, a circuit board 42, and a heat sink member 44 are provided in a case 45, The heat spreader 47 outside the case 45 may be the cured body 41 of the heat conductive resin sheet 4 according to the first to fourth embodiments. The inside of the case 45 is protected by a casting resin 46, for example. In the power module 40 shown in FIG. 12, at least one of the circuit board 42 and the heat sink member 44 functions as a heat dissipation member.

本発明に係る熱伝導性樹脂シート4は、マトリックスとなる樹脂3をBステージ状態とすることができるので、電力半導体素子43などの発熱部を備えたリードフレームなどの基材と熱伝導性のよい金属製ヒートシンク部材24、44やヒートスプレッダー47とを接着でき、かつ電気絶縁できる。さらに熱伝導性樹脂シート4の硬化物21は充填材の体積分率を向上させたため、高熱伝導性を有し、ボイド5を極端に抑えたので、電気特性を著しく向上させることができる。   In the heat conductive resin sheet 4 according to the present invention, the resin 3 serving as a matrix can be in a B-stage state. Good metal heat sink members 24 and 44 and heat spreader 47 can be bonded and electrically insulated. Furthermore, since the cured product 21 of the heat conductive resin sheet 4 has improved the volume fraction of the filler, it has high heat conductivity and the voids 5 are extremely suppressed, so that the electrical characteristics can be remarkably improved.

本発明の実施の形態1に係る熱伝導性樹脂シートを模式的に示した断面図である。It is sectional drawing which showed typically the heat conductive resin sheet which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱伝導性樹脂シートを模式的に示した断面図である。It is sectional drawing which showed typically the heat conductive resin sheet which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱伝導性樹脂シートを模式的に示した断面図である。It is sectional drawing which showed typically the heat conductive resin sheet which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る充填率と充填材の体積濃度との関係を示した模式図である。It is the schematic diagram which showed the relationship between the filling rate which concerns on Embodiment 1 of this invention, and the volume concentration of a filler. 本発明の実施の形態1に係る第1充填材、第2充填材、樹脂の体積分率と第1充填材の総体積/充填材総体積との関係図である。FIG. 4 is a relationship diagram of the volume fraction of the first filler, the second filler, and the resin according to Embodiment 1 of the present invention and the total volume of the first filler / total volume of the filler. 本発明の実施の形態2に係る第2充填材を模式的に示した斜視図である。It is the perspective view which showed typically the 2nd filler which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るφ/CFVCとV/(V+V)との関係図である。Is a graph showing the relationship between the form 3 to such a φ / CFVC 1 and V 2 / (V 2 + V 3) of the present invention. 本発明の実施の形態3に係るλ/λCFVC1とV/(V+V)との関係図である。FIG. 6 is a relationship diagram between λ / λ CFVC1 and V 2 / (V 2 + V 3 ) according to Embodiment 3 of the present invention. 本発明の実施の形態3に係るρ/ρoとV/(V+V)との関係図である。FIG. 10 is a relationship diagram between ρ / ρo and V 2 / (V 2 + V 3 ) according to Embodiment 3 of the present invention. 本発明の実施の形態3に係るBVD/BDVoとV/(V+V)との関係図である。It is a graph showing the relationship between BVD / BDVo and V 2 / (V 2 + V 3) according to the third embodiment of the present invention. 本発明の実施の形態5に係るパワーモジュール模式的に示した断面図である。It is sectional drawing which showed typically the power module which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係るパワーモジュール模式的に示した断面図である。It is sectional drawing which showed typically the power module which concerns on Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 第1充填材、2 第2充填材、3 樹脂、4 熱伝導性樹脂シート、5 ボイド、6 扁平状充填材、20、40 パワーモジュール、21、41 熱伝導性樹脂シートの硬化体、22 リードフレーム、23、43 電力半導体素子、24、44 ヒートシンク部材、45 ケース、46 注型樹脂、47 ヒートスプレッダー DESCRIPTION OF SYMBOLS 1 1st filler, 2nd 2 filler, 3 resin, 4 thermally conductive resin sheet, 5 void, 6 flat filler, 20, 40 power module, 21, 41 Cured body of thermally conductive resin sheet, 22 Lead frame, 23, 43 Power semiconductor element, 24, 44 Heat sink member, 45 Case, 46 Cast resin, 47 Heat spreader

Claims (5)

粒径の大きさから二別された電気絶縁性の複数の無機充填材のうち、平均粒径の大きい方を第1充填材とし、小さい方を第2充填材として準備する工程と、
上記第1充填材の臨界体積分率をCFVCとし、
上記第2充填材の臨界体積分率をCFVCとし、
上記第1充填材の体積と上記第2充填材の体積の和に対する上記第1充填材の体積の比をαとして、
樹脂の体積配合比を
(i)0<(第1充填材の体積)/(無機充填材の総体積)≦α/(α+α/CFVC×CFVC)のとき、(1−α)/CFVC×(1−CFVC)/{1+(1−α)/CFVC×(1−CFVC)}に決定し、
(ii)α/(α+α/CFVC×CFVC)<(第1充填材の体積)/(無機充填材の総体積)<1のとき、(α/CFVC −1)/(α/CFVC )に決定する工程と、
上記体積配合比に基づき、上記樹脂と上記第1充填材と上記第2充填材とを混練してコンパウンドを作製する工程と、
上記コンパウンドを基材に塗布した塗布物を乾燥させた後、加重をかけて圧縮させる工程とを備えた熱伝導性樹脂シートの製造方法。
Of the plurality of electrically insulating inorganic fillers separated from the size of the particle size, the step of preparing the larger average particle size as the first filler and the smaller one as the second filler;
The critical volume fraction of the first filler is CFVC 1 ;
The critical volume fraction of the second filler is CFVC 2 .
The ratio of the volume of the first filler to the sum of the volume of the first filler and the volume of the second filler is α,
When (i) 0 <(volume of the first filler) / (total volume of the inorganic filler) ≦ α / (α + α / CFVC 1 × CFVC 2 ) (1−α) / CFVC, 2 × (1-CFVC 2 ) / {1+ (1-α) / CFVC 2 × (1-CFVC 2 )}
(Ii) When α / (α + α / CFVC 1 × CFVC 2 ) <(volume of first filler) / (total volume of inorganic filler) <1, (α / CFVC 1 −1) / (α / CFVC 1 ) the step of determining,
Kneading the resin, the first filler, and the second filler based on the volume blending ratio to produce a compound;
A method for producing a thermally conductive resin sheet, comprising: drying an applied material obtained by applying the compound to a base material, and then applying a load to compress the applied material.
第1充填材のみを樹脂に配合した複数の成形体1を作製し実測した実測密度ρm1と理想密度ρから空隙率φA1を算出する工程と、
上記成形体1の上記充填材の体積濃度と上記成形体1の充填率(1−空隙率φA1)とをプロットし、外挿から、上記第1充填材の臨界体積分率CFVCを求める工程と、
第2充填材のみを上記樹脂に配合した複数の成形体2を作製し実測した実測密度ρm2と理想密度ρから空隙率φA2を算出する工程と、
上記成形体2の上記充填材の体積濃度と上記成形体2の充填率(1−空隙率φA2)とをプロットし、外挿から、上記第2充填材の臨界体積分率CFVCを求める工程と
をさらに備えることを特徴とする請求項1記載の熱伝導性樹脂シートの製造方法。
A step of calculating a porosity φ A1 from an actually measured density ρ m1 and an ideal density ρ 1 produced by measuring a plurality of molded bodies 1 in which only the first filler is blended with a resin;
Plotting the volume concentration of the filler of the molded body 1 and the filling rate (1-void ratio φ A1 ) of the molded body 1, the critical volume fraction CFVC 1 of the first filler is obtained by extrapolation. Process,
A step of calculating a porosity φ A2 from an actually measured density ρ m2 and an ideal density ρ 2 which are prepared by actually preparing a plurality of molded bodies 2 in which only the second filler is blended with the resin, and
Plotting the volume concentration of the filler of the molded body 2 and the filling rate of the molded body 2 (1-porosity φ A2 ), the critical volume fraction CFVC 2 of the second filler is obtained from extrapolation. The method for producing a thermally conductive resin sheet according to claim 1, further comprising a step.
空隙率2%以下となるまで、加重をかけて圧縮させることを特徴とする請求項1または2記載の熱伝導性樹脂シートの製造方法。 The method for producing a thermally conductive resin sheet according to claim 1 or 2, wherein compression is applied while applying a load until the porosity becomes 2% or less. 第1充填材は球状充填材、第2充填材は扁平状充填材であることを特徴とする請求項1または2記載の熱伝導性樹脂シートの製造方法。 The method for producing a thermally conductive resin sheet according to claim 1 or 2, wherein the first filler is a spherical filler, and the second filler is a flat filler. 電力半導体素子を載置したリードフレームに請求項1乃至4のいずれか1項に記載の方法で製造された熱伝導性樹脂シートの硬化体を介して放熱部材を接着する工程を備えたパワーモジュールの製造方法。 A power module comprising a step of adhering a heat radiating member to a lead frame on which a power semiconductor element is mounted via a cured body of a thermally conductive resin sheet manufactured by the method according to any one of claims 1 to 4. Manufacturing method.
JP2007157505A 2007-06-14 2007-06-14 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module Active JP5391530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157505A JP5391530B2 (en) 2007-06-14 2007-06-14 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157505A JP5391530B2 (en) 2007-06-14 2007-06-14 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module

Publications (2)

Publication Number Publication Date
JP2008308576A JP2008308576A (en) 2008-12-25
JP5391530B2 true JP5391530B2 (en) 2014-01-15

Family

ID=40236469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157505A Active JP5391530B2 (en) 2007-06-14 2007-06-14 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module

Country Status (1)

Country Link
JP (1) JP5391530B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039066A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet
JP2012039065A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet
JP2012039067A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet and light-emitting diode packaging substrate
TW201139641A (en) * 2010-01-29 2011-11-16 Nitto Denko Corp Heat dissipation structure
JP2013062379A (en) * 2011-09-13 2013-04-04 Nitto Denko Corp Thermally conductive sheet and method for manufacturing the same
JP7242348B2 (en) * 2019-03-06 2023-03-20 リンテック株式会社 Method for manufacturing adhesive heat-dissipating sheet
WO2021019614A1 (en) 2019-07-26 2021-02-04 三菱電機株式会社 Semiconductor device, power conversion device, and manufacturing method for semiconductor device
JP7534243B2 (en) * 2021-03-19 2024-08-14 Necプラットフォームズ株式会社 Multilayer substrate, integrated magnetic device, power supply device, and method of manufacturing multilayer substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310824A (en) * 1993-04-20 1994-11-04 Sumitomo Bakelite Co Ltd Board for metal-base printed circuit
JP2002030223A (en) * 2000-07-18 2002-01-31 Sekisui Chem Co Ltd Thermally conductive resin composition
JP4749631B2 (en) * 2001-09-20 2011-08-17 電気化学工業株式会社 Heat dissipation member
JP3807995B2 (en) * 2002-03-05 2006-08-09 ポリマテック株式会社 Thermally conductive sheet
JP4089636B2 (en) * 2004-02-19 2008-05-28 三菱電機株式会社 Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP4581655B2 (en) * 2004-11-30 2010-11-17 パナソニック株式会社 Heat sink
JP4764220B2 (en) * 2005-03-30 2011-08-31 地方独立行政法人 大阪市立工業研究所 Thermally conductive sheet

Also Published As

Publication number Publication date
JP2008308576A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
US7602051B2 (en) Thermally conductive resin sheet and power module using the same
JP5391530B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP5184543B2 (en) Thermally conductive sheet and power module
US8007897B2 (en) Insulating sheet and method for producing it, and power module comprising the insulating sheet
JP5036696B2 (en) Thermally conductive sheet and power module
JP5208060B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP7073716B2 (en) Thermally conductive resin compositions, thermally conductive sheets and semiconductor devices
JP2008153430A (en) Heatsink substrate and heat conductive sheet, and power module using these
JP5532419B2 (en) Insulating material, metal base substrate, semiconductor module, and manufacturing method thereof
JP6627303B2 (en) Thermal conductive resin composition, laminate for circuit board, circuit board and semiconductor device
JP5063710B2 (en) Power module
JP2008255186A (en) Heat-conductive resin sheet and power module
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP5085972B2 (en) Insulating sheet and semiconductor device
JP6025966B2 (en) Thermally conductive insulating sheet, power module and manufacturing method thereof
JP5369163B2 (en) Insulating sheet and semiconductor device
JP2016155946A (en) Thermosetting resin composition, thermally conductive resin sheet, circuit board, and power module
JP5274007B2 (en) Thermally conductive resin sheet and power module using the same
JP2011100757A (en) Electronic component, and method of manufacturing the same
JP2008010897A (en) Insulating sheet, and power module using same
WO2022019089A1 (en) Power module
JP2015026780A (en) Insulating heat dissipating substrate
JP7330419B1 (en) Heat-dissipating member, heat-dissipating member with base material, and power module
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5391530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250