JP5085972B2 - Insulating sheet and semiconductor device - Google Patents

Insulating sheet and semiconductor device Download PDF

Info

Publication number
JP5085972B2
JP5085972B2 JP2007115032A JP2007115032A JP5085972B2 JP 5085972 B2 JP5085972 B2 JP 5085972B2 JP 2007115032 A JP2007115032 A JP 2007115032A JP 2007115032 A JP2007115032 A JP 2007115032A JP 5085972 B2 JP5085972 B2 JP 5085972B2
Authority
JP
Japan
Prior art keywords
inorganic filler
insulating sheet
thermosetting resin
sheet
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007115032A
Other languages
Japanese (ja)
Other versions
JP2008270678A (en
Inventor
裕基 塩田
浩美 伊藤
秀記 瀧川
研史 三村
利之 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007115032A priority Critical patent/JP5085972B2/en
Publication of JP2008270678A publication Critical patent/JP2008270678A/en
Application granted granted Critical
Publication of JP5085972B2 publication Critical patent/JP5085972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Description

この発明は、高熱伝導性を有する絶縁シートと、この絶縁シートを用いた半導体装置に関するものであり、特に、高熱伝導性であるとともに優れた絶縁特性を有する絶縁シートと、この絶縁シートを用いた半導体装置に関するものである。   The present invention relates to an insulating sheet having high thermal conductivity and a semiconductor device using the insulating sheet, and in particular, an insulating sheet having high thermal conductivity and excellent insulating characteristics, and the insulating sheet are used. The present invention relates to a semiconductor device.

従来、発熱体を有する半導体装置には、半導体装置の発熱体とヒートシンク部材との間に絶縁性を有する熱伝導シートを設け、発熱体からの熱をヒートシンク部材に伝達して放熱させている。
しかし、最近は、電力用半導体素子であるSiCチップの大電流化などによる半導体装置の大容量化、あるいは半導体装置の小型化、高集積化、高周波動作にともない、半導体装置は、高放熱性が要求されている。そのため、半導体装置の発熱体とヒートシンク部材との間に設けられる絶縁性を有する熱伝導シート(この後、絶縁シートと記す)には、熱伝導性の向上が不可欠となっている。
絶縁シートは、発熱体あるいはヒートシンク部材に接着あるいは密着させるため、高い熱伝導性を有する無機粉末を充填材に用いた樹脂で構成されており、その熱伝導性の向上は、充填材の充填率を高くすることにより実現している。
このようなものとして、平均粒径の大きな球状の高熱伝導性無機粉末と平均粒径の小さな球状の高熱伝導性無機粉末との混合物を充填材として用い、充填材である高熱伝導性無機粉末の充填率を高め、熱伝導性を向上させた樹脂組成物が開示されている(例えば特許文献1参照)。
すなわち、上記樹脂組成物は、平均粒径の大きな球状高熱伝導性無機粉末を充填材として用いることにより、樹脂中の無機粉末の充填率を高くしている。そして、このような樹脂組成物より形成される絶縁シートは高い熱伝導性を有しており、この絶縁シートを用いた半導体装置は優れた放熱性を有している。
2. Description of the Related Art Conventionally, a semiconductor device having a heating element is provided with an insulating heat conductive sheet between the heating element of the semiconductor device and a heat sink member, and heat from the heating element is transmitted to the heat sink member to dissipate heat.
However, recently, with the increase in capacity of semiconductor devices due to the increase in current of SiC chips, which are power semiconductor elements, or the downsizing, high integration, and high frequency operation of semiconductor devices, semiconductor devices have high heat dissipation. It is requested. Therefore, an improvement in thermal conductivity is indispensable for an insulating heat conductive sheet (hereinafter referred to as an insulating sheet) provided between a heating element of a semiconductor device and a heat sink member.
The insulating sheet is composed of a resin using an inorganic powder having high thermal conductivity as a filler in order to adhere or closely adhere to a heating element or a heat sink member, and the improvement in thermal conductivity is due to the filling rate of the filler. This is achieved by raising the value.
As such, a mixture of a spherical high thermal conductive inorganic powder having a large average particle diameter and a spherical high thermal conductive inorganic powder having a small average particle diameter is used as a filler, and the high thermal conductive inorganic powder as the filler is used as a filler. A resin composition having an increased filling rate and improved thermal conductivity is disclosed (see, for example, Patent Document 1).
That is, the resin composition uses a spherical high thermal conductive inorganic powder having a large average particle size as a filler, thereby increasing the filling rate of the inorganic powder in the resin. And the insulating sheet formed from such a resin composition has high heat conductivity, and the semiconductor device using this insulating sheet has the outstanding heat dissipation.

特開2003−137627号公報(第3頁、表6)JP2003-137627A (Page 3, Table 6)

半導体装置の高電圧化、小型・高集積化にともない、絶縁シートには高い熱伝導性とともに高い絶縁特性も要求されている。
しかし、高熱伝導性の絶縁シートは、球形の粒径が大きな無機粉末の充填材(この後、無機充填材と記す)を用いることにより、無機充填材の充填率を高くして、高い熱伝導性を得ているので、この絶縁シートに電圧がかかると無機充填材近傍に電界が集中し、絶縁シートの耐電圧が低下するなど絶縁特性に問題があった。
そして、この絶縁シートを用いた半導体装置では、絶縁シートの絶縁特性が低いので、高電圧化、小型化、高集積化が制限されるとの問題があった。
With higher voltage, smaller size, and higher integration of semiconductor devices, insulating sheets are required to have high thermal conductivity and high insulation characteristics.
However, an insulating sheet with high thermal conductivity uses an inorganic powder filler with a large spherical particle size (hereinafter referred to as an inorganic filler), thereby increasing the filling rate of the inorganic filler and increasing the thermal conductivity. Therefore, when a voltage is applied to the insulating sheet, the electric field concentrates in the vicinity of the inorganic filler, and there is a problem in the insulating characteristics such that the withstand voltage of the insulating sheet is lowered.
And in the semiconductor device using this insulating sheet, since the insulating characteristic of the insulating sheet was low, there was a problem that high voltage, miniaturization, and high integration were limited.

本発明は、上述のような課題を解決するためになされたもので、無機充填材が充填され高熱伝導性を有するとともに、耐電圧の低下などが防止され絶縁特性に優れた絶縁シートと、この絶縁シートを用いた小型化、高集積化、高電圧化が可能な半導体装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The insulating sheet is filled with an inorganic filler and has high thermal conductivity. It is an object of the present invention to provide a semiconductor device that can be miniaturized, highly integrated, and high voltage using an insulating sheet.

本発明の絶縁シートは、熱硬化性樹脂中に、無機充填材を含有した絶縁シートであって、粒径が絶縁シートの厚さの1/3〜2/3である無機充填材が、絶縁シートの厚さ方向における中央部に配置されており、絶縁シートの、厚さ方向における中央部以外のシート表面近傍部には、絶縁シートの厚さ方向における中央部に配置されている無機充填材である第1の無機充填材の粒径より小さい粒径の第2の無機充填材のみが分布しており、第2の無機充填材の比誘電率が、第1の無機充填材の比誘電率より小さく、熱硬化性樹脂が、第2の熱硬化性樹脂と、この第2の熱硬化性樹脂の比誘電率より大きく第1の無機充填材の比誘電率より小さい所定の比誘電率を有する第1の熱硬化性樹脂とで形成されており、第1の無機充填材が配置されている絶縁シートの厚さ方向における中央部が、第1の熱硬化性樹脂の層で形成されており、第2の無機充填材のみが分布している絶縁シートの両シート表面部側が、第2の熱硬化性樹脂の層で形成されているものである。 The insulating sheet of the present invention is an insulating sheet containing an inorganic filler in a thermosetting resin, and the inorganic filler whose particle size is 1/3 to 2/3 of the thickness of the insulating sheet is insulated. An inorganic filler that is disposed in the central portion in the thickness direction of the sheet, and in the vicinity of the sheet surface other than the central portion in the thickness direction of the insulating sheet, in the central portion in the thickness direction of the insulating sheet Only the second inorganic filler having a particle size smaller than that of the first inorganic filler is distributed, and the relative dielectric constant of the second inorganic filler is the relative dielectric constant of the first inorganic filler. A predetermined relative dielectric constant smaller than that of the first inorganic filler and greater than the relative dielectric constant of the second thermosetting resin and the second thermosetting resin. And a first thermosetting resin having a first inorganic filler disposed thereon The center part in the thickness direction of the insulating sheet is formed of the first thermosetting resin layer, and both the sheet surface part sides of the insulating sheet in which only the second inorganic filler is distributed are the second It is formed with the thermosetting resin layer .

本発明の絶縁シートは、熱硬化性樹脂中に、無機充填材を含有した絶縁シートであって、粒径が絶縁シートの厚さの1/3〜2/3である無機充填材が、絶縁シートの厚さ方向における中央部に配置されており、絶縁シートの、厚さ方向における中央部以外のシート表面近傍部には、絶縁シートの厚さ方向における中央部に配置されている無機充填材である第1の無機充填材の粒径より小さい粒径の第2の無機充填材のみが分布しており、第2の無機充填材の比誘電率が、第1の無機充填材の比誘電率より小さく、熱硬化性樹脂が、第2の熱硬化性樹脂と、この第2の熱硬化性樹脂の比誘電率より大きく第1の無機充填材の比誘電率より小さい所定の比誘電率を有する第1の熱硬化性樹脂とで形成されており、第1の無機充填材が配置されている絶縁シートの厚さ方向における中央部が、第1の熱硬化性樹脂の層で形成されており、第2の無機充填材のみが分布している絶縁シートの両シート表面部側が、第2の熱硬化性樹脂の層で形成されているものであるので、高熱伝導性と優れた絶縁特性を有している。 The insulating sheet of the present invention is an insulating sheet containing an inorganic filler in a thermosetting resin, and the inorganic filler whose particle size is 1/3 to 2/3 of the thickness of the insulating sheet is insulated. An inorganic filler that is disposed in the central portion in the thickness direction of the sheet, and in the vicinity of the sheet surface other than the central portion in the thickness direction of the insulating sheet, in the central portion in the thickness direction of the insulating sheet Only the second inorganic filler having a particle size smaller than that of the first inorganic filler is distributed, and the relative dielectric constant of the second inorganic filler is the relative dielectric constant of the first inorganic filler. A predetermined relative dielectric constant smaller than that of the first inorganic filler and greater than the relative dielectric constant of the second thermosetting resin and the second thermosetting resin. And a first thermosetting resin having a first inorganic filler disposed thereon The center part in the thickness direction of the insulating sheet is formed of the first thermosetting resin layer, and both the sheet surface part sides of the insulating sheet in which only the second inorganic filler is distributed are the second because those which are formed with a layer of a thermosetting resin, have excellent insulating properties and high thermal conductivity.

実施の形態1.
図1は、本発明の実施の形態1に係る絶縁シートの断面模式図である。
図1に示すように、本実施の形態の絶縁シート40は、熱硬化性樹脂15中に粒径の大きい無機充填材21が充填されている。そして、本実施の形態の絶縁シート40では、粒径の大きい無機充填材21は、絶縁シート40の厚さ方向における中央部に配置されている。
本実施の形態の絶縁シート40に用いられる熱硬化性樹脂15としては、例えば、エポキシ樹脂が挙げられる。また、本実施の形態の絶縁シート40に用いられる、粒径の大きい無機充填材21には、例えば、窒化アルミニウム、酸化アルミニウム、窒化ホウ素および炭化ケイ素などが挙げられる。
本実施の形態では、絶縁シート40に用いる粒径の大きい無機充填材21の粒径Dは、絶縁シート40の厚さの1/3〜2/3の範囲である。粒径の大きい無機充填材21の粒径Dが、絶縁シート40の厚さの1/3より小さいと、熱硬化性樹脂層の厚さが厚くなり、絶縁シート40の熱伝導率が低下する。粒径の大きい無機充填材21の粒径Dが、絶縁シート40の厚さの2/3より大きいと、粒径の大きい無機充填材21が、絶縁シート40表面近傍に存在することとなり、絶縁シート40の耐電圧特性を低下さす。
Embodiment 1 FIG.
FIG. 1 is a schematic sectional view of an insulating sheet according to Embodiment 1 of the present invention.
As shown in FIG. 1, the insulating sheet 40 of the present embodiment is filled with an inorganic filler 21 having a large particle size in a thermosetting resin 15. And in the insulating sheet 40 of this Embodiment, the inorganic filler 21 with a large particle size is arrange | positioned in the center part in the thickness direction of the insulating sheet 40. FIG.
Examples of the thermosetting resin 15 used in the insulating sheet 40 of the present embodiment include an epoxy resin. In addition, examples of the inorganic filler 21 having a large particle size used for the insulating sheet 40 of the present embodiment include aluminum nitride, aluminum oxide, boron nitride, and silicon carbide.
In the present embodiment, the particle size D of the large inorganic filler 21 used for the insulating sheet 40 is in the range of 1/3 to 2/3 of the thickness of the insulating sheet 40. When the particle diameter D of the inorganic filler 21 having a large particle diameter is smaller than 1/3 of the thickness of the insulating sheet 40, the thickness of the thermosetting resin layer is increased, and the thermal conductivity of the insulating sheet 40 is reduced. . If the particle diameter D of the inorganic filler 21 having a large particle diameter is larger than 2/3 of the thickness of the insulating sheet 40, the inorganic filler 21 having a large particle diameter is present in the vicinity of the surface of the insulating sheet 40, so that insulation is achieved. The withstand voltage characteristic of the sheet 40 is reduced.

本実施の形態の絶縁シート40の製造方法について説明する。
第1の方法は、熱硬化性樹脂に粒径の大きい無機充填材21を加え混練して、粒径の大きい無機充填材21を含有した樹脂組成物を調製する。次に、この樹脂組成物を加工し、粒径の大きい無機充填材21を含有した樹脂シートを形成する。次に、熱硬化性樹脂のみの樹脂シートを形成する。
次に、熱硬化性樹脂のみの樹脂シート、粒径の大きい無機充填材21を含有した樹脂シート、熱硬化性樹脂のみの樹脂シートの順に各樹脂シートを積層し接着することにより、両シート表面部が熱硬化性樹脂のみの層で中央部が粒径の大きい無機充填材21を含有した層の積層樹脂シートが作製される。
すなわち、表面近傍の所定の厚さの部分が熱硬化性樹脂のみの層で、中央部に粒径の大きい無機充填材21が配置された絶縁シート40が得られる。
A method for manufacturing the insulating sheet 40 of the present embodiment will be described.
In the first method, an inorganic filler 21 having a large particle size is added to a thermosetting resin and kneaded to prepare a resin composition containing the inorganic filler 21 having a large particle size. Next, this resin composition is processed to form a resin sheet containing the inorganic filler 21 having a large particle size. Next, a resin sheet made only of a thermosetting resin is formed.
Next, by laminating and bonding each resin sheet in the order of a resin sheet made of only thermosetting resin, a resin sheet containing inorganic filler 21 having a large particle size, and a resin sheet made only of thermosetting resin, the surfaces of both sheets A laminated resin sheet having a layer containing the inorganic filler 21 having a portion having only a thermosetting resin and a central portion having a large particle size is produced.
That is, the insulating sheet 40 in which the portion having a predetermined thickness in the vicinity of the surface is a layer made of only a thermosetting resin and the inorganic filler 21 having a large particle size is disposed in the center is obtained.

また、第2の方法は、熱硬化性樹脂に粒径の大きい無機充填材21を加え混練して、粒径の大きい無機充填材21を含有した樹脂組成物を調製する。次に、この樹脂組成物を加工し、粒径の大きい無機充填材21を含有した樹脂シートを形成する。
次に、粒径が大きく重量が重い充填材が樹脂中で沈降しやすい事を利用し、粒径の大きい無機充填材21を含有した樹脂シートを加熱し、樹脂の粘度を低下させることにより、樹脂シートの厚さ方向に対し略垂直な一面側に粒径の大きい無機充填材21を沈降させて集める。次に、樹脂の加熱を継続して、樹脂をBステージ化し、一面側の粒径の大きい無機充填材21を含有する層を固定して、一面側に粒径の大きい無機充填材21を含有する層が存在する樹脂シートを形成する。
次に、この樹脂シートの2枚を用いて、各樹脂シートの一面側どうしを融着することにより、表面近傍の所定の厚さの部分が熱硬化性樹脂のみの層で、中央部に粒径の大きい無機充填材21が配置された絶縁シート40が得られる。
In the second method, the inorganic filler 21 having a large particle size is added to the thermosetting resin and kneaded to prepare a resin composition containing the inorganic filler 21 having a large particle size. Next, this resin composition is processed to form a resin sheet containing the inorganic filler 21 having a large particle size.
Next, by utilizing the fact that the filler having a large particle size and a heavy weight easily settles in the resin, the resin sheet containing the inorganic filler 21 having a large particle size is heated to reduce the viscosity of the resin, The inorganic filler 21 having a large particle size is settled and collected on one side substantially perpendicular to the thickness direction of the resin sheet. Next, the heating of the resin is continued, the resin is B-staged, the layer containing the inorganic filler 21 having a large particle size on one side is fixed, and the inorganic filler 21 having a large particle size is contained on one side. A resin sheet having a layer to be formed is formed.
Next, by using two of these resin sheets, one surface side of each resin sheet is fused together, so that a portion with a predetermined thickness in the vicinity of the surface is a layer of only a thermosetting resin, and particles are formed in the center portion. The insulating sheet 40 in which the inorganic filler 21 having a large diameter is arranged is obtained.

本実施の形態の絶縁シート40の絶縁特性が優れている機構を説明する。
高熱伝導性を得るために絶縁シートに充填される充填材は無機充填材であり、その比誘電率は絶縁シートに用いられる熱硬化性樹脂の比誘電率より高い。そのため、樹脂シートに電圧を印加すると、無機充填材の近傍に電界が集中する。
図2に、樹脂中に充填した無機充填材の粒径と電界増倍率との関係を示す。電界増倍率とは、絶縁シートの無機充填材近傍部の局所電界を絶縁シートの平均電界で除した値である。図2に示すように、粒径の大きい無機充填材ほど電界増倍率は大きくなっており、無機充填材近傍の電界集中が大きくなる。
A mechanism in which the insulating characteristics of the insulating sheet 40 of this embodiment are excellent will be described.
The filler filled in the insulating sheet to obtain high thermal conductivity is an inorganic filler, and the relative dielectric constant thereof is higher than the relative dielectric constant of the thermosetting resin used for the insulating sheet. Therefore, when a voltage is applied to the resin sheet, the electric field concentrates in the vicinity of the inorganic filler.
FIG. 2 shows the relationship between the particle size of the inorganic filler filled in the resin and the electric field multiplication factor. The electric field multiplication factor is a value obtained by dividing the local electric field in the vicinity of the inorganic filler of the insulating sheet by the average electric field of the insulating sheet. As shown in FIG. 2, the electric field multiplication factor increases as the particle size of the inorganic filler increases, and the electric field concentration near the inorganic filler increases.

従来、高熱伝導性の絶縁シートは、無機充填材を高充填しており、そのため、粒径の大きい無機充填材が用いられる。そして、この粒径の大きい無機充填材が、熱硬化性樹脂中に一様に分布しており、絶縁シートのシート表面部にも粒径の大きい無機充填材が存在する。
このような絶縁シートに電圧が印加された場合、絶縁シートのシート表面部にある粒径の大きい無機充填材に高い電界集中がおこり、絶縁シートが半導体やヒートシンク部材と接する界面での耐電圧特性や耐部分放電特性などが低下し、絶縁シートの絶縁特性が低下する。
しかし、本実施の形態の絶縁シート40は、無機充填材が高充填され高熱伝導性であるとともに、シート表面近傍部には粒径の大きい無機充填材21が存在しないので、絶縁シート40のシート表面近傍での電界集中が小さく、絶縁特性が優れている。
Conventionally, a highly heat-conductive insulating sheet is highly filled with an inorganic filler, and therefore, an inorganic filler having a large particle size is used. And this inorganic filler with a large particle size is uniformly distributed in a thermosetting resin, and an inorganic filler with a large particle size exists also in the sheet | seat surface part of an insulating sheet.
When a voltage is applied to such an insulating sheet, a high electric field concentration occurs in the inorganic filler having a large particle size on the sheet surface portion of the insulating sheet, and the withstand voltage characteristics at the interface where the insulating sheet contacts the semiconductor or the heat sink member As a result, the resistance to partial discharge and the like deteriorate, and the insulating properties of the insulating sheet deteriorate.
However, the insulating sheet 40 of the present embodiment is highly filled with an inorganic filler and has high thermal conductivity, and the inorganic filler 21 having a large particle size does not exist in the vicinity of the sheet surface. Electric field concentration in the vicinity of the surface is small and insulation properties are excellent.

実施の形態2.
図3は、本発明の実施の形態2に係る絶縁シートの断面模式図である。
図3に示すように、本実施の形態の絶縁シート50は、熱硬化性樹脂15中に粒径の大きい第1の無機充填材11と第1の無機充填材に比べて粒径が小さい第2の無機充填材12とが充填されている。そして、本実施の形態の絶縁シート50では、第2の無機充填材12は、主に絶縁シート50のシート表面近傍部に分布しているが、第1の無機充填材11は、絶縁シート50の厚さ方向における中央部に配置されている。
本実施の形態の絶縁シート50に用いられる熱硬化性樹脂15としては、例えば、エポキシ樹脂が挙げられる。また、本実施の形態の絶縁シート50に用いられる、第1の無機充填材11および第2の無機充填材12には、例えば、窒化アルミニウム、酸化アルミニウム、窒化ホウ素および炭化ケイ素などが挙げられる。
本実施の形態では、絶縁シート50に用いる第1の無機充填材11の粒径D1は、実施の形態1の粒径の大きい無機充填材の粒径と同様である。
そして、第1の無機充填材11の粒径D1と第2の無機充填材12の粒径D2との比D1/D2は、1より大きく100より小さい範囲である。D1/D2が1以下であると、絶縁シートの表面部の無機充填材の粒径も大きくなり、絶縁性が低下する。D1/D2が100以上であると、かなり粒径の大きい第1の無機充填材を用いることとなり、絶縁シートが厚くなりすぎて、熱伝導性が低下する。
また、無機充填材に窒化アルミニウムを用いた場合は、D1/D2の範囲は3〜10が絶縁特性上好ましい。
Embodiment 2. FIG.
FIG. 3 is a schematic cross-sectional view of an insulating sheet according to Embodiment 2 of the present invention.
As shown in FIG. 3, the insulating sheet 50 according to the present embodiment includes a first inorganic filler 11 having a large particle diameter in the thermosetting resin 15 and a small particle diameter compared to the first inorganic filler. 2 inorganic fillers 12 are filled. And in the insulating sheet 50 of this Embodiment, although the 2nd inorganic filler 12 is mainly distributed in the sheet | seat surface vicinity part of the insulating sheet 50, the 1st inorganic filler 11 is the insulating sheet 50. It is arrange | positioned in the center part in the thickness direction.
Examples of the thermosetting resin 15 used in the insulating sheet 50 of the present embodiment include an epoxy resin. In addition, examples of the first inorganic filler 11 and the second inorganic filler 12 used in the insulating sheet 50 of the present embodiment include aluminum nitride, aluminum oxide, boron nitride, and silicon carbide.
In the present embodiment, the particle diameter D1 of the first inorganic filler 11 used for the insulating sheet 50 is the same as the particle diameter of the inorganic filler having a large particle diameter in the first embodiment.
The ratio D1 / D2 between the particle diameter D1 of the first inorganic filler 11 and the particle diameter D2 of the second inorganic filler 12 is in a range larger than 1 and smaller than 100. When D1 / D2 is 1 or less, the particle size of the inorganic filler on the surface portion of the insulating sheet is also increased, and the insulating property is lowered. When D1 / D2 is 100 or more, the first inorganic filler having a considerably large particle diameter is used, the insulating sheet becomes too thick, and the thermal conductivity is lowered.
When aluminum nitride is used as the inorganic filler, the range of D1 / D2 is preferably 3 to 10 in terms of insulation characteristics.

本実施の形態の絶縁シート50の製造方法について説明する。
第1の方法は、熱硬化性樹脂に第1の無機充填材11を加え混練して、第1の無機充填材11を含有した樹脂組成物を調製する。次に、この樹脂組成物を加工し、第1の無機充填材11を含有した樹脂シートを形成する。
次に、第1の無機充填材11を含有した樹脂シートの形成方法と同様にして、第2の無機充填材12を含有した樹脂シートを形成する。
次に、第2の無機充填材12を含有した樹脂シート、第1の無機充填材11を含有した樹脂シート、第2の無機充填材12を含有した樹脂シートの順に各樹脂シートを積層し接着することにより、両シート表面部が第2の無機充填材12を含有した層で中央部が第1の無機充填材11を含有した層の積層樹脂シートが作製される。
すなわち、シート表面近傍部に粒径の小さい第2の無機充填材12が分布し、中央部に粒径の大きい第1の無機充填材11が配置された絶縁シート50が得られる。
A method for manufacturing the insulating sheet 50 of the present embodiment will be described.
The first method is to add a first inorganic filler 11 to a thermosetting resin and knead to prepare a resin composition containing the first inorganic filler 11. Next, this resin composition is processed to form a resin sheet containing the first inorganic filler 11.
Next, the resin sheet containing the second inorganic filler 12 is formed in the same manner as the method for forming the resin sheet containing the first inorganic filler 11.
Next, each resin sheet is laminated and bonded in the order of a resin sheet containing the second inorganic filler 12, a resin sheet containing the first inorganic filler 11, and a resin sheet containing the second inorganic filler 12. By doing so, a laminated resin sheet having both the sheet surface portions containing the second inorganic filler 12 and the center portion containing the first inorganic filler 11 is produced.
That is, the insulating sheet 50 in which the second inorganic filler 12 having a small particle size is distributed in the vicinity of the sheet surface and the first inorganic filler 11 having a large particle size is arranged in the center is obtained.

また、第2の方法は、熱硬化性樹脂に第1の無機充填材11と第2の無機充填材12とを加え混練して、第1の無機充填材11と第2の無機充填材12を含有した樹脂組成物を調製する。次に、この樹脂組成物を加工し、第1の無機充填材11と第2の無機充填材12とを含有した樹脂シートを形成する。
次に、粒径が大きく重量が重い充填材が樹脂中で沈降しやすい事を利用し、第1の無機充填材11と第2の無機充填材12とを含有した樹脂シートを加熱し、樹脂の粘度を低下させることにより、樹脂シートの厚さ方向に対し略垂直な一面側に粒径の大きい第1の無機充填材11を沈降させて集める。すなわち、樹脂シートの一面側に粒径の大きい第1の無機充填材11を含有する層を形成させ、樹脂シートの一面側に対向する他面側に第2の無機充填材12のみを含有する層を形成する。さらに、樹脂の加熱を継続して、樹脂をBステージ化し、一面側の第1の無機充填材11を含有する層と他面側の第2の無機充填材12のみを含有する層とを固定する。
このようにして、一面側に第1の無機充填材11を含有する層と、一面側と対向する他面側に第2の無機充填材12を含有する層とが存在する樹脂シートを形成する。
次に、この樹脂シートの2枚を用いて、各樹脂シートの一面側どうしを融着することにより、両シート表面部が第2の無機充填材12を含有した層で中央部が第1の無機充填材11を含有した層の積層樹脂シートが作製される。
すなわち、シート表面近傍部に粒径が小さい第2の無機充填材12が分布し、中央部に粒径が大きい第1の無機充填材11が配置された絶縁シートが得られる。
In the second method, the first inorganic filler 11 and the second inorganic filler 12 are added to the thermosetting resin and kneaded, so that the first inorganic filler 11 and the second inorganic filler 12 are mixed. A resin composition containing is prepared. Next, this resin composition is processed to form a resin sheet containing the first inorganic filler 11 and the second inorganic filler 12.
Next, the resin sheet containing the first inorganic filler 11 and the second inorganic filler 12 is heated by utilizing the fact that a filler having a large particle size and a heavy weight easily settles in the resin, The first inorganic filler 11 having a large particle size is settled and collected on one side substantially perpendicular to the thickness direction of the resin sheet. That is, a layer containing the first inorganic filler 11 having a large particle size is formed on one side of the resin sheet, and only the second inorganic filler 12 is contained on the other side facing the one side of the resin sheet. Form a layer. Furthermore, heating of the resin is continued, the resin is B-staged, and the layer containing the first inorganic filler 11 on one side and the layer containing only the second inorganic filler 12 on the other side are fixed. To do.
In this way, a resin sheet is formed in which a layer containing the first inorganic filler 11 on one side and a layer containing the second inorganic filler 12 on the other side facing the one side are formed. .
Next, by using two sheets of this resin sheet, the one surface side of each resin sheet is fused together, so that both sheet surface portions are layers containing the second inorganic filler 12 and the central portion is the first portion. A laminated resin sheet having a layer containing the inorganic filler 11 is produced.
That is, an insulating sheet in which the second inorganic filler 12 having a small particle size is distributed in the vicinity of the sheet surface and the first inorganic filler 11 having a large particle size is arranged in the central portion is obtained.

本実施の形態の絶縁シート50は、無機充填材が高充填され高熱伝導性であるとともに、粒径の大きい第1の無機充填材11は、絶縁シート50の厚さ方向における中央部に配置されており、絶縁シート50のシート表面近傍部には粒径の小さい第2の無機充填材12のみが分布しているので、絶縁シート50のシート表面近傍での電界集中が小さく、絶縁特性が優れている。   The insulating sheet 50 according to the present embodiment is highly filled with an inorganic filler and has high thermal conductivity, and the first inorganic filler 11 having a large particle size is disposed at the central portion in the thickness direction of the insulating sheet 50. Since only the second inorganic filler 12 having a small particle size is distributed in the vicinity of the sheet surface of the insulating sheet 50, the electric field concentration in the vicinity of the sheet surface of the insulating sheet 50 is small, and the insulating characteristics are excellent. ing.

実施の形態3.
本実施の形態の絶縁シートは、実施の形態2の絶縁シート50において、第1の無機充填材11と第2の無機充填材12とに異なる種類の無機充填材を用い、粒径の小さい第2の無機充填材12の比誘電率を、粒径の大きい第1の無機充填材11の比誘電率より小さくしたものである。
本実施の形態の絶縁シートに用いられる無機充填材には、例えば、比誘電率が8〜9の窒化アルミニウム、比誘電率が6〜9の酸化アルミニウム、比誘電率が4〜6の窒化ホウ素および比誘電率が9〜10の炭化ケイ素などが挙げられ、第2の無機充填材12の比誘電率が第1の無機充填材11の比誘電率より小さくなるような組み合わせで用いられる。
Embodiment 3 FIG.
The insulating sheet of the present embodiment uses different types of inorganic fillers for the first inorganic filler 11 and the second inorganic filler 12 in the insulating sheet 50 of the second embodiment, and has a small particle size. The relative dielectric constant of the inorganic filler 12 is smaller than that of the first inorganic filler 11 having a large particle size.
Examples of the inorganic filler used in the insulating sheet of the present embodiment include aluminum nitride having a relative dielectric constant of 8 to 9, aluminum oxide having a relative dielectric constant of 6 to 9, and boron nitride having a relative dielectric constant of 4 to 6. In addition, silicon carbide having a relative dielectric constant of 9 to 10 is used, and the second inorganic filler 12 is used in such a combination that the relative dielectric constant of the second inorganic filler 12 is smaller than that of the first inorganic filler 11.

第2の無機充填材12に比誘電率が約4.5の窒化ホウ素を用い、第1の無機充填材11に比誘電率が約8.5の窒化アルミニウムを用いた場合について説明する。
絶縁シートの熱硬化性樹脂15に用いられるエポキシ樹脂の比誘電率が約4であるので、このエポキシ樹脂との比誘電率の差は、第2の無機充填材12の窒化ホウ素では約0.5となり、第1の無機充填材11の窒化アルミニウムでは約4.5となる。
熱硬化性樹脂15との比誘電率の差が、第1の無機充填材11より第2の無機充填材12のほうが小さいため、絶縁シートのシート表面近傍部にある第2の無機充填材12近傍の局所電界が、第1の無機充填材11近傍の局所電界より小さくなる。
すなわち、本実施の形態の絶縁シートは、高熱伝導性であるとともに、表面近傍部に、第1の無機充填材11に比べ粒径も比誘電率も小さい第2の無機充填材12が分布しているので、電圧が印加された場合の絶縁シートの表面近傍での電界集中がさらに小さくなり、耐電圧と耐部分放電特性との低下が少なく、絶縁特性がさらに優れている。
A case where boron nitride having a relative dielectric constant of about 4.5 is used for the second inorganic filler 12 and aluminum nitride having a relative dielectric constant of about 8.5 is used for the first inorganic filler 11 will be described.
Since the relative dielectric constant of the epoxy resin used for the thermosetting resin 15 of the insulating sheet is about 4, the difference in relative dielectric constant with this epoxy resin is about 0.2 for the boron nitride of the second inorganic filler 12. 5 for aluminum nitride of the first inorganic filler 11.
The difference in relative dielectric constant with the thermosetting resin 15 is smaller in the second inorganic filler 12 than in the first inorganic filler 11, so the second inorganic filler 12 in the vicinity of the sheet surface of the insulating sheet. The local electric field in the vicinity is smaller than the local electric field in the vicinity of the first inorganic filler 11.
That is, the insulating sheet of the present embodiment has high thermal conductivity, and the second inorganic filler 12 having a smaller particle size and relative dielectric constant than the first inorganic filler 11 is distributed in the vicinity of the surface. Therefore, the electric field concentration in the vicinity of the surface of the insulating sheet when a voltage is applied is further reduced, there is little decrease in withstand voltage and partial discharge characteristics, and the insulation characteristics are further excellent.

実施の形態4.
図4に、絶縁シートの表面側樹脂層の厚さLと、樹脂層中の無機充填材の電界増倍率との関係を示す。
絶縁シートの表面側樹脂層の厚さLとは、図5の模式図に示すように、絶縁シート20のシート表面から、このシート表面と対向する無機充填材22の部分までの距離である。
図4に示すように、Lが25μmより小さい範囲では、Lの増加にともない電界増倍率は大きく低下するが、Lが25μm以上になると、電界増倍率の低下は、少なくなり、飽和する。
Embodiment 4 FIG.
In FIG. 4, the relationship between the thickness L of the surface side resin layer of an insulating sheet and the electric field multiplication factor of the inorganic filler in a resin layer is shown.
The thickness L of the surface side resin layer of the insulating sheet is a distance from the sheet surface of the insulating sheet 20 to the portion of the inorganic filler 22 facing the sheet surface, as shown in the schematic diagram of FIG.
As shown in FIG. 4, in the range where L is smaller than 25 μm, the electric field multiplication factor greatly decreases as L increases. However, when L becomes 25 μm or more, the decrease in electric field multiplication factor decreases and becomes saturated.

本実施の形態の絶縁シートは、実施の形態2の絶縁シート50において、第1の無機充填材11に対するLを25μm〜50μm、好ましくは25μm〜30μmとしたものである。
本実施の形態の絶縁シートは、第1の無機充填材11に対するLを25μm以上としたので、第1の無機充填材11近傍の電界集中も低くでき、耐電圧と耐部分放電特性との低下を小さくできる。また、Lを大きくすると絶縁シートが厚くなりすぎ、絶縁シートの熱伝導性が低下するが、本実施の形態の絶縁シートでは、第1の無機充填材11に対するLを50μm以下としたので、熱伝導特性の低下が少ない。
すなわち、本実施の形態の絶縁シートは、第1の無機充填材11に対するLを25μm〜50μmとしたので、絶縁特性と熱伝導性とに優れている。
The insulating sheet of the present embodiment is the same as the insulating sheet 50 of the second embodiment except that L with respect to the first inorganic filler 11 is 25 μm to 50 μm, preferably 25 μm to 30 μm.
In the insulating sheet of the present embodiment, since the L with respect to the first inorganic filler 11 is 25 μm or more, the electric field concentration in the vicinity of the first inorganic filler 11 can be reduced, and the breakdown voltage and the partial discharge resistance are reduced. Can be reduced. Further, when L is increased, the insulating sheet becomes too thick and the thermal conductivity of the insulating sheet is lowered. However, in the insulating sheet of the present embodiment, the L with respect to the first inorganic filler 11 is set to 50 μm or less. There is little decrease in conduction characteristics.
That is, the insulating sheet of the present embodiment is excellent in insulating characteristics and thermal conductivity because L with respect to the first inorganic filler 11 is set to 25 μm to 50 μm.

実施の形態5.
図6は、本発明の実施の形態5に係る絶縁シートの断面模式図である。
図6に示すように、本実施の形態の絶縁シート60は、絶縁シート60の両シート表面部側に設けられた第2の熱硬化性樹脂17中に粒径の小さい第2の無機充填材12を含有した層と、絶縁シート60の厚さ方向における中央部に設けられた第1の熱硬化性樹脂16中に粒径の大きい第1の無機充填材11を含有した層とで構成されている。
そして、第2の熱硬化性樹脂17は、その比誘電率が第1の無機充填材11および第2の無機充填材12の比誘電率より小さいものであり、第1の熱硬化性樹脂16は、その比誘電率が第2の熱硬化性樹脂17の比誘電率より大きく第1の無機充填材11の比誘電率より小さいものである。
すなわち、第1の無機充填材11が、第2の熱硬化性樹脂17より大きい比誘電率の第1の熱硬化性樹脂16中にあるので、第1の無機充填材11と第1の熱硬化性樹脂16との比誘電率の差が、第1の無機充填材11と第2の熱硬化性樹脂17との比誘電率の差より小さくなり、第1の熱硬化性樹脂16が、電界緩和層として作用し、第1の無機充填材11に対する電界集中を抑制し、絶縁シートの耐電圧と耐部分放電特性との低下が防止できる。
Embodiment 5 FIG.
FIG. 6 is a schematic cross-sectional view of an insulating sheet according to Embodiment 5 of the present invention.
As shown in FIG. 6, the insulating sheet 60 of the present embodiment includes a second inorganic filler having a small particle size in the second thermosetting resin 17 provided on both sheet surface portions of the insulating sheet 60. 12 and a layer containing the first inorganic filler 11 having a large particle size in the first thermosetting resin 16 provided in the central portion of the insulating sheet 60 in the thickness direction. ing.
The second thermosetting resin 17 has a relative dielectric constant smaller than that of the first inorganic filler 11 and the second inorganic filler 12, and the first thermosetting resin 16. Has a relative dielectric constant larger than that of the second thermosetting resin 17 and smaller than that of the first inorganic filler 11.
That is, since the first inorganic filler 11 is in the first thermosetting resin 16 having a relative dielectric constant greater than that of the second thermosetting resin 17, the first inorganic filler 11 and the first heat The difference in relative dielectric constant between the curable resin 16 is smaller than the difference in relative dielectric constant between the first inorganic filler 11 and the second thermosetting resin 17, and the first thermosetting resin 16 is It acts as an electric field relaxation layer, suppresses electric field concentration with respect to the first inorganic filler 11, and can prevent a decrease in withstand voltage and partial discharge resistance of the insulating sheet.

電界緩和層として作用する第1の熱硬化性樹脂16は、例えば、第2の熱硬化性樹脂17とは異なる化学構造のエポキシ樹脂を用いるか、あるいは、異なる化学構造のエポキシ樹脂硬化剤を用いることによって実現できる。
また、電界緩和層として作用する第1の熱硬化性樹脂16は、第2の熱硬化性樹脂17に、第1の無機充填材11より比誘電率が小さい第3の無機充填材13を含有させたものでも良い。
As the first thermosetting resin 16 acting as the electric field relaxation layer, for example, an epoxy resin having a chemical structure different from that of the second thermosetting resin 17 is used, or an epoxy resin curing agent having a different chemical structure is used. Can be realized.
The first thermosetting resin 16 acting as an electric field relaxation layer contains the third inorganic filler 13 having a relative dielectric constant smaller than that of the first inorganic filler 11 in the second thermosetting resin 17. It may be the one that you let me.

図7は、本実施の形態の絶縁シートの電界緩和効果を説明する図である。
第1〜第3の絶縁シートのサンプルを調製した。第1のサンプルは、エポキシ樹脂に、第1の無機充填材11としての窒化アルミニウムと、第3の無機充填材13としての窒化アルミニウムより比誘電率が小さい窒化ホウ素と酸化アルミニウムとの混合物を充填したものである。第2のサンプルは、エポキシ樹脂に、第1の無機充填材11としての窒化アルミニウムと、第3の無機充填材13としての窒化アルミニウムより比誘電率が小さい窒化ホウ素を充填したものである。第3のサンプルは、エポキシ樹脂に、第1の無機充填材11としての窒化アルミニウムのみを充填したものである。
図7に、各サンプルの電界緩和の比率を示した。電界緩和の比率とは、第3のサンプルの電界集中率とエポキシ樹脂層中に第1の無機充填材11より比誘電率が低い第3の無機充填材13を充填し、エポキシ樹脂層の比誘電率をエポキシ樹脂単体より高くしたサンプルの電界集中率との比率である。
図7に示すように、第3のサンプルに比べ第1および第2のサンプルは、電界集中率が小さく電界緩和効果が優れている。すなわち、第2の熱硬化性樹脂17に、第1の無機充填材11より小さい第3の無機充填材13を含有させて第2の熱硬化性樹脂17より比誘電率を大きくした第1の熱硬化性樹脂16が、電界緩和層として有効に作用することを示している。
FIG. 7 is a diagram for explaining the electric field relaxation effect of the insulating sheet of the present embodiment.
Samples of first to third insulating sheets were prepared. In the first sample, an epoxy resin is filled with a mixture of aluminum nitride as the first inorganic filler 11 and boron nitride and aluminum oxide having a relative dielectric constant smaller than that of the aluminum nitride as the third inorganic filler 13. It is a thing. In the second sample, an epoxy resin is filled with aluminum nitride as the first inorganic filler 11 and boron nitride having a relative dielectric constant smaller than that of aluminum nitride as the third inorganic filler 13. In the third sample, an epoxy resin is filled only with aluminum nitride as the first inorganic filler 11.
FIG. 7 shows the electric field relaxation ratio of each sample. The ratio of electric field relaxation is the ratio of the electric field concentration of the third sample and the third inorganic filler 13 having a relative dielectric constant lower than that of the first inorganic filler 11 in the epoxy resin layer. This is the ratio of the electric field concentration ratio of the sample whose dielectric constant is higher than that of the epoxy resin alone.
As shown in FIG. 7, the first and second samples have a smaller electric field concentration ratio and an excellent electric field relaxation effect than the third sample. That is, the first thermosetting resin 17 includes the third inorganic filler 13 smaller than the first inorganic filler 11 to increase the relative dielectric constant of the second thermosetting resin 17. It shows that the thermosetting resin 16 acts effectively as an electric field relaxation layer.

実施の形態6.
図8は、本発明の実施の形態6に係る絶縁シートの断面模式図である。
図8に示すように、本実施の形態の絶縁シート70は、実施の形態5の絶縁シートにおいて、比誘電率が第2の熱硬化性樹脂17の比誘電率より大きく第1の無機充填材11の比誘電率より小さい第1の熱硬化性樹脂16でなる層を、第1の無機充填材11における絶縁シートのシート表面と対向する部分に設けたものである。
具体的には、第1の無機充填材11のシート表面と対向する部分において、第1の無機充填材11の断面における樹脂シート厚さ方向の直径の多くとも20%が覆われるように、第1の熱硬化性樹脂16の層が設けられている。
すなわち、本実施の形態の絶縁シートは、比誘電率が第2の熱硬化性樹脂17の比誘電率より大きく第1の無機充填材11の比誘電率より小さい第1の熱硬化性樹脂16の層が、第1の無機充填材11のシート表面と対向する部分に設けられているので、この層が電界緩和層として作用し、第1の無機充填材11に対する電界集中が抑制され、絶縁特性が優れている。それと、電界緩和層が少なくて済むので安価である。
Embodiment 6 FIG.
FIG. 8 is a schematic cross-sectional view of an insulating sheet according to Embodiment 6 of the present invention.
As shown in FIG. 8, the insulating sheet 70 of the present embodiment is the first inorganic filler in the insulating sheet of the fifth embodiment, where the relative dielectric constant is larger than the relative dielectric constant of the second thermosetting resin 17. A layer made of the first thermosetting resin 16 having a dielectric constant smaller than 11 is provided in a portion of the first inorganic filler 11 facing the sheet surface of the insulating sheet.
Specifically, in the portion facing the sheet surface of the first inorganic filler 11, the diameter of the first inorganic filler 11 in the cross section of the first inorganic filler 11 is covered so that at most 20% of the diameter is covered. 1 layer of thermosetting resin 16 is provided.
That is, in the insulating sheet of the present embodiment, the first thermosetting resin 16 has a relative dielectric constant larger than that of the second thermosetting resin 17 and smaller than that of the first inorganic filler 11. Is provided in a portion facing the sheet surface of the first inorganic filler 11, this layer acts as an electric field relaxation layer, electric field concentration on the first inorganic filler 11 is suppressed, and insulation is achieved. Excellent characteristics. In addition, since the electric field relaxation layer is small, it is inexpensive.

実施の形態7.
図9は、本発明の実施の形態7に係るトランスファーモールド型半導体装置の断面模式図である。
図9に示すように、本実施の形態のトランスファーモールド型半導体装置100は、発熱体である電力用半導体素子1と制御用半導体素子7とを搭載したリードフレーム2と、電力用半導体素子1と制御用半導体素子7との電気的接続および電力用半導体素子1とリードフレーム2に形成された外部端子との電気的接続に用いられた金属ワイヤ5と、リードフレーム2の電力用半導体素子1が搭載された部分の面と対向した面、すなわちリードフレーム2の高温部に接合された絶縁シート4と、絶縁シート4におけるリードフレーム2の高温部に接合された面と対向する面に設けられた放熱部材であるヒートシンク部材3と、電力用半導体素子1と制御用半導体素子7とリードフレーム2と金属ワイヤ5と絶縁シート4とヒートシンク部材3とをトランスファーモールド法により封止するモールド樹脂6とで構成されている。しかし、本実施の形態の半導体装置100では、リードフレーム2の外部端子となる部分と、ヒートシンク部材3の絶縁シート4が接合された面と対向する面とが、モールド樹脂6から露出している。
そして、本実施の形態のトランスファーモールド型半導体装置100では、絶縁シート4に実施の形態1ないし6のいずれかの絶縁シートが用いられている。
本実施の形態のトランスファーモールド型半導体装置100は、絶縁シート4に実施の形態1ないし6のいずれかの絶縁シートが用いられているので、高い放熱性と優れた絶縁特性を有し、小型化、高集積化、高電圧化が可能である。
Embodiment 7 FIG.
FIG. 9 is a schematic cross-sectional view of a transfer mold type semiconductor device according to the seventh embodiment of the present invention.
As shown in FIG. 9, the transfer mold type semiconductor device 100 of the present embodiment includes a lead frame 2 on which a power semiconductor element 1 and a control semiconductor element 7 that are heating elements are mounted, and a power semiconductor element 1. A metal wire 5 used for electrical connection with the control semiconductor element 7 and electrical connection between the power semiconductor element 1 and an external terminal formed on the lead frame 2, and the power semiconductor element 1 of the lead frame 2 include Provided on the surface opposite to the surface of the mounted portion, that is, the insulating sheet 4 bonded to the high temperature portion of the lead frame 2 and the surface facing the surface bonded to the high temperature portion of the lead frame 2 in the insulating sheet 4. A heat sink member 3 as a heat radiating member, a power semiconductor element 1, a control semiconductor element 7, a lead frame 2, a metal wire 5, an insulating sheet 4, and a heat sink member 3 It is composed of a mold resin 6 for sealing by a transfer molding method. However, in the semiconductor device 100 according to the present embodiment, the portion serving as the external terminal of the lead frame 2 and the surface facing the surface to which the insulating sheet 4 of the heat sink member 3 is bonded are exposed from the mold resin 6. .
In the transfer mold type semiconductor device 100 of the present embodiment, the insulating sheet of any one of the first to sixth embodiments is used for the insulating sheet 4.
The transfer mold type semiconductor device 100 of the present embodiment uses the insulating sheet of any of the first to sixth embodiments as the insulating sheet 4, and thus has high heat dissipation and excellent insulating characteristics, and is downsized. High integration and high voltage are possible.

図9では、トランスファーモールド型電力半導体装置100が例示されたが、ケース型半導体装置においても、実施の形態1ないし6のいずれかの絶縁シートを用いることができる。
図10は、実施の形態1ないし6のいずれかの絶縁シートが用いられたケース型半導体装置の断面模式図である。
図10に示すように、このケース型半導体装置200は、発熱体である電力用半導体素子1を回路形成面に搭載した回路基板8と、回路基板8の回路形成面と対向する面に接合されたヒートシンク部材3と、ヒートシンク部材3の外周部に接合されたケース9と、ケース9の内側側面に設けられた外部端子91と、外部端子91と電力用半導体素子1とを電気的に接続する金属ワイヤ5と、ケース9とヒートシンク部材3とで形成された凹部に注入され電力用半導体素子1と回路基板8と金属ワイヤ5とを封止するモールド樹脂6と、ヒートシンク3の回路基板8が接合された面と対向する面、すなわちケース型半導体装置200の高温部に接合された絶縁シート4と、絶縁シート4におけるヒートシンク部材3と接合された面と対向する面に設けられた放熱部材であるヒートスプッレダ10とで構成されている。
このケース型半導体装置200も、絶縁シート4に実施の形態1ないし6のいずれかの絶縁シートが用いられているので、トランスファーモールド型半導体装置100と同様な効果を得ることができる。
Although the transfer mold type power semiconductor device 100 is illustrated in FIG. 9, the insulating sheet of any one of the first to sixth embodiments can be used also in the case type semiconductor device.
FIG. 10 is a schematic cross-sectional view of a case-type semiconductor device in which the insulating sheet according to any one of Embodiments 1 to 6 is used.
As shown in FIG. 10, the case type semiconductor device 200 is bonded to a circuit board 8 on which a power semiconductor element 1 as a heating element is mounted on a circuit formation surface, and a surface of the circuit board 8 facing the circuit formation surface. The heat sink member 3, the case 9 joined to the outer periphery of the heat sink member 3, the external terminal 91 provided on the inner side surface of the case 9, the external terminal 91 and the power semiconductor element 1 are electrically connected. A mold resin 6 which is injected into a recess formed by the metal wire 5, the case 9 and the heat sink member 3 and seals the power semiconductor element 1, the circuit board 8 and the metal wire 5, and the circuit board 8 of the heat sink 3 The surface facing the bonded surface, that is, the surface facing the surface bonded to the heat sink member 3 in the insulating sheet 4 and the insulating sheet 4 bonded to the high temperature portion of the case type semiconductor device 200 Is composed of a Hitosupurreda 10 is a heat radiating member provided.
Since this case type semiconductor device 200 uses the insulating sheet of any one of Embodiments 1 to 6 for the insulating sheet 4, the same effects as the transfer mold type semiconductor device 100 can be obtained.

本実施の形態の半導体装置において、電気的接続手段に金属ワイヤが用いられているが、球電極やインターポーザやプリント配線基板やダイレクトリード方式を用いても良い。
また、半導体素子に、Siチップ、SiCチップ、ダイオード、IGBT、その他トランジスタやIC等を用いた半導体装置においても、実施の形態1ないし6のいずれかの絶縁シートを用いることができ、同様な効果が得られる。
また、電極と半導体素子や絶縁基板等とを半田などで電気的に接続した接合型、電極と半導体素子や絶縁基板等とを電極外側方向から内側方向に向けて弾性体やボルト締めなどにより加圧し、電気的に接続した圧接型、これらの複合型のいずれかの半導体装置においても、実施の形態1ないし6のいずれかの絶縁シートを用いることができ、同様な効果が得られる。
また、ヒートシンク一体型および分離型いずれの半導体装置においても、実施の形態1ないし6のいずれかの絶縁シートを用いることができ、同様な効果が得られる。
In the semiconductor device of this embodiment, a metal wire is used as the electrical connection means, but a spherical electrode, an interposer, a printed wiring board, or a direct lead method may be used.
In addition, in a semiconductor device using a Si chip, a SiC chip, a diode, an IGBT, other transistors, ICs, or the like as the semiconductor element, the insulating sheet of any of Embodiments 1 to 6 can be used, and similar effects can be obtained. Is obtained.
Also, a junction type in which an electrode and a semiconductor element, an insulating substrate, etc. are electrically connected by solder, etc., and an electrode and a semiconductor element, an insulating substrate, etc. are applied from the outer side of the electrode to the inner side by an elastic body or bolting. The insulating sheet of any one of Embodiments 1 to 6 can be used in any one of the pressure-contacted and electrically connected pressure contact type and these composite type semiconductor devices, and similar effects can be obtained.
Further, in any of the heat sink integrated type and separated type semiconductor devices, the insulating sheet of any of Embodiments 1 to 6 can be used, and similar effects can be obtained.

本発明に係る絶縁シートは、高放熱性と優れた絶縁特性が必要な半導体装置に有効に利用できる。それと、この絶縁シートを用いた半導体装置は、小型化、高集積化、高電圧化が必要な半導体装置として有効に利用できる。   The insulating sheet according to the present invention can be effectively used for a semiconductor device that requires high heat dissipation and excellent insulating properties. In addition, a semiconductor device using this insulating sheet can be effectively used as a semiconductor device that requires miniaturization, high integration, and high voltage.

本発明の実施の形態1に係る絶縁シートの断面模式図である。It is a cross-sectional schematic diagram of the insulating sheet which concerns on Embodiment 1 of this invention. 絶縁シートにおける樹脂中に充填された無機充填材の粒径と電界増倍率との関係を示す図である。It is a figure which shows the relationship between the particle size of the inorganic filler with which the resin in the insulating sheet was filled, and electric field multiplication factor. 本発明の実施の形態2に係る絶縁シートの断面模式図である。It is a cross-sectional schematic diagram of the insulating sheet which concerns on Embodiment 2 of this invention. 絶縁シートの厚さ方向における表面側樹脂層の厚さLと、樹脂層中の無機充填材の電界増倍率との関係を示す図である。It is a figure which shows the relationship between the thickness L of the surface side resin layer in the thickness direction of an insulating sheet, and the electric field multiplication factor of the inorganic filler in a resin layer. 絶縁シートの厚さ方向における表面側樹脂層の厚さLを説明する図である。It is a figure explaining thickness L of the surface side resin layer in the thickness direction of an insulating sheet. 本発明の実施の形態5に係る絶縁シートの断面模式図である。It is a cross-sectional schematic diagram of the insulating sheet which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る絶縁シートの電界緩和効果を説明する図である。It is a figure explaining the electric field relaxation effect of the insulating sheet which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る絶縁シートの断面模式図である。It is a cross-sectional schematic diagram of the insulating sheet which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係るトランスファーモールド型半導体装置の断面模式図である。It is a cross-sectional schematic diagram of the transfer mold type semiconductor device concerning Embodiment 7 of this invention. 本発明の実施の形態7に係るケース型半導体装置の断面模式図である。It is a cross-sectional schematic diagram of the case type semiconductor device which concerns on Embodiment 7 of this invention.

符号の説明Explanation of symbols

1 電力用半導体素子、2 リードフレーム、3 ヒートシンク部材、
4 絶縁シート、5 金属ワイヤ、6 モールド樹脂、7 制御用半導体素子、
8 回路基板、9 ケース、10 ヒートスプッレダ、11 第1の無機充填材、
12 第2の無機充填材、13 第3の無機充填材、15 熱硬化性樹脂、
16 第1の熱硬化性樹脂、17 第2の熱硬化性樹脂、21,22 無機充填材、
20,40,50,60,70 絶縁シート、91 外部端子、
100 トランスファーモールド型半導体装置、200 ケース型半導体装置。
1 power semiconductor element, 2 lead frame, 3 heat sink member,
4 insulating sheet, 5 metal wire, 6 mold resin, 7 control semiconductor element,
8 circuit board, 9 case, 10 heat spreader, 11 first inorganic filler,
12 second inorganic filler, 13 third inorganic filler, 15 thermosetting resin,
16 first thermosetting resin, 17 second thermosetting resin, 21, 22 inorganic filler,
20, 40, 50, 60, 70 insulation sheet, 91 external terminal,
100 transfer mold type semiconductor device, 200 case type semiconductor device.

Claims (3)

熱硬化性樹脂中に、無機充填材を含有した絶縁シートであって、粒径が上記絶縁シートの厚さの1/3〜2/3である無機充填材が、上記絶縁シートの厚さ方向における中央部に配置されており、
上記絶縁シートの、厚さ方向における中央部以外のシート表面近傍部には、上記絶縁シートの厚さ方向における中央部に配置されている無機充填材である第1の無機充填材の粒径より小さい粒径の第2の無機充填材のみが分布しており、
上記第2の無機充填材の比誘電率が、上記第1の無機充填材の比誘電率より小さく、
上記熱硬化性樹脂が、第2の熱硬化性樹脂と、この第2の熱硬化性樹脂の比誘電率より大きく上記第1の無機充填材の比誘電率より小さい所定の比誘電率を有する第1の熱硬化性樹脂とで形成されており、
上記第1の無機充填材が配置されている上記絶縁シートの厚さ方向における中央部が、上記第1の熱硬化性樹脂の層で形成されており、
上記第2の無機充填材のみが分布している上記絶縁シートの両シート表面部側が、上記第2の熱硬化性樹脂の層で形成されていることを特徴とする絶縁シート。
An insulating sheet containing an inorganic filler in a thermosetting resin, the inorganic filler having a particle size of 1/3 to 2/3 of the thickness of the insulating sheet is the thickness direction of the insulating sheet. In the center of the
From the particle size of the first inorganic filler, which is an inorganic filler disposed in the central portion in the thickness direction of the insulating sheet, in the vicinity of the sheet surface other than the central portion in the thickness direction of the insulating sheet. Only the second inorganic filler of small particle size is distributed,
The relative dielectric constant of the second inorganic filler is smaller than the relative dielectric constant of the first inorganic filler ,
The thermosetting resin has a predetermined relative dielectric constant greater than that of the second thermosetting resin and the second thermosetting resin and smaller than that of the first inorganic filler. Formed with a first thermosetting resin,
The central portion in the thickness direction of the insulating sheet in which the first inorganic filler is disposed is formed of the first thermosetting resin layer,
An insulating sheet characterized in that both sheet surface portions of the insulating sheet in which only the second inorganic filler is distributed are formed of the second thermosetting resin layer .
熱硬化性樹脂中に、無機充填材を含有した絶縁シートであって、粒径が上記絶縁シートの厚さの1/3〜2/3である無機充填材が、上記絶縁シートの厚さ方向における中央部に配置されており、
上記絶縁シートの、厚さ方向における中央部以外のシート表面近傍部には、上記絶縁シートの厚さ方向における中央部に配置されている無機充填材である第1の無機充填材の粒径より小さい粒径の第2の無機充填材のみが分布しており、
上記第2の無機充填材の比誘電率が、上記第1の無機充填材の比誘電率より小さく、
上記熱硬化性樹脂が、第2の熱硬化性樹脂と、この第2の熱硬化性樹脂の比誘電率より大きく上記第1の無機充填材の比誘電率より小さい所定の比誘電率を有する第1の熱硬化性樹脂とで形成されており、
上記第1の無機充填材の、上記絶縁シートの各シート表面と対向する部分であって、上記第1の無機充填材の、上記絶縁シート厚さ方向における直径の多くとも20%を覆う部分が、上記第1の熱硬化性樹脂の層で形成され、この第1の熱硬化性樹脂の層以外の上記絶縁シートにおける熱硬化性樹脂の部分が、上記第2の熱硬化性樹脂で形成されていることを特徴とする絶縁シート。
An insulating sheet containing an inorganic filler in a thermosetting resin, the inorganic filler having a particle size of 1/3 to 2/3 of the thickness of the insulating sheet is the thickness direction of the insulating sheet. In the center of the
From the particle size of the first inorganic filler, which is an inorganic filler disposed in the central portion in the thickness direction of the insulating sheet, in the vicinity of the sheet surface other than the central portion in the thickness direction of the insulating sheet. Only the second inorganic filler of small particle size is distributed,
The relative dielectric constant of the second inorganic filler is smaller than the relative dielectric constant of the first inorganic filler,
The thermosetting resin has a predetermined relative dielectric constant greater than that of the second thermosetting resin and the second thermosetting resin and smaller than that of the first inorganic filler. Formed with a first thermosetting resin,
A portion of the first inorganic filler facing a surface of each sheet of the insulating sheet, the portion covering at least 20% of the diameter of the first inorganic filler in the thickness direction of the insulating sheet. The thermosetting resin portion of the insulating sheet other than the first thermosetting resin layer is formed of the second thermosetting resin. insulating sheet characterized by being.
発熱体である半導体素子と熱的につながった高温部に絶縁シートを介して放熱部材が設けられた半導体装置であって、上記絶縁シートに請求項1または請求項2に記載の絶縁シートを用いたことを特徴とする半導体装置。 A semiconductor device in which a heat radiating member is provided via an insulating sheet in a high temperature portion thermally connected to a semiconductor element as a heating element, wherein the insulating sheet according to claim 1 or 2 is used for the insulating sheet. wherein a be had.
JP2007115032A 2007-04-25 2007-04-25 Insulating sheet and semiconductor device Active JP5085972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115032A JP5085972B2 (en) 2007-04-25 2007-04-25 Insulating sheet and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115032A JP5085972B2 (en) 2007-04-25 2007-04-25 Insulating sheet and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011229441A Division JP5369163B2 (en) 2011-10-19 2011-10-19 Insulating sheet and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008270678A JP2008270678A (en) 2008-11-06
JP5085972B2 true JP5085972B2 (en) 2012-11-28

Family

ID=40049757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115032A Active JP5085972B2 (en) 2007-04-25 2007-04-25 Insulating sheet and semiconductor device

Country Status (1)

Country Link
JP (1) JP5085972B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040565A (en) * 2009-08-11 2011-02-24 Fuji Electric Systems Co Ltd Thermal conductive sheet, semiconductor device using the same, and method of manufacturing the same
JP6683563B2 (en) * 2015-07-21 2020-04-22 積水化学工業株式会社 Adhesive sheet
JP6647139B2 (en) * 2016-05-23 2020-02-14 三菱電機株式会社 Heat dissipation sheet and semiconductor device
WO2019065146A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Heat dissipation sheet and heat dissipation sheet-equipped device
CN111052356B (en) * 2017-09-28 2023-11-21 富士胶片株式会社 Radiating fin and device with radiating fin
JP6844066B2 (en) * 2018-04-17 2021-03-17 積水化学工業株式会社 Insulation sheets, laminates, and substrates
JP2020066648A (en) * 2018-10-22 2020-04-30 株式会社Kri Thermal conductive composite material and heat release sheet
US20220064400A1 (en) * 2018-12-27 2022-03-03 Sumitomo Chemical Company, Limited Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378374B2 (en) * 1993-09-14 2003-02-17 株式会社東芝 Method for manufacturing resin-encapsulated semiconductor device, resin-encapsulated semiconductor device, and resin sheet for encapsulation
JP3189590B2 (en) * 1994-09-20 2001-07-16 東海ゴム工業株式会社 Heat dissipation sheet and its manufacturing method
JP2000281982A (en) * 1999-03-30 2000-10-10 Tokai Rubber Ind Ltd Heat-radiating pressure-sensitive adhesive sheet and preparation thereof
JP4511320B2 (en) * 2004-11-11 2010-07-28 北川工業株式会社 Single-sided adhesive sheet and method for producing the same

Also Published As

Publication number Publication date
JP2008270678A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5085972B2 (en) Insulating sheet and semiconductor device
US9171773B2 (en) Semiconductor device
JP6386746B2 (en) Semiconductor device
JP5369163B2 (en) Insulating sheet and semiconductor device
CN104637910B (en) Semiconductor module and its manufacture method
JP2014199829A (en) Semiconductor module and inverter mounting the same
US20130328200A1 (en) Direct bonded copper substrate and power semiconductor module
WO2018194153A1 (en) Power semiconductor module, electronic component and method for producing power semiconductor module
US11862542B2 (en) Dual side cooling power module and manufacturing method of the same
US9443784B2 (en) Semiconductor module including plate-shaped insulating members having different thickness
US9287201B2 (en) Semiconductor device
JP5391530B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP5845634B2 (en) Semiconductor device
JP2009246063A (en) Cooling structure of power module and semiconductor device using same
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
JP5921723B2 (en) Semiconductor device
CN110098178A (en) Semiconductor devices
CN114080672A (en) Semiconductor device with a plurality of semiconductor chips
JP2017224689A (en) Semiconductor device
JP5975866B2 (en) Power semiconductor device
JP2013229534A (en) Semiconductor device
WO2021193338A1 (en) Semiconductor device
US20170365556A1 (en) Electronic circuit apparatus
JP2013229535A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5085972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250