WO2018194153A1 - Power semiconductor module, electronic component and method for producing power semiconductor module - Google Patents

Power semiconductor module, electronic component and method for producing power semiconductor module Download PDF

Info

Publication number
WO2018194153A1
WO2018194153A1 PCT/JP2018/016263 JP2018016263W WO2018194153A1 WO 2018194153 A1 WO2018194153 A1 WO 2018194153A1 JP 2018016263 W JP2018016263 W JP 2018016263W WO 2018194153 A1 WO2018194153 A1 WO 2018194153A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
conductor pattern
power semiconductor
semiconductor module
metal terminal
Prior art date
Application number
PCT/JP2018/016263
Other languages
French (fr)
Japanese (ja)
Inventor
辰則 柳本
堀口 剛司
賢太 中原
裕二 宮崎
康貴 清水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019513697A priority Critical patent/JP6755386B2/en
Priority to CN201880020955.XA priority patent/CN110494977B/en
Publication of WO2018194153A1 publication Critical patent/WO2018194153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power semiconductor module, an electronic component, and a method for manufacturing a power semiconductor module.
  • a power semiconductor device that constitutes a power converter has a structure including switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) and free-wheeling diodes.
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSFETs Metal-Oxide-Semiconductor Field Effect Transistors
  • free-wheeling diodes free-wheeling diodes.
  • an IGBT made of silicon (Si) is used as a switching element, and a pin diode is used as a free-wheeling diode.
  • SiC silicon carbide
  • SiC has a dielectric breakdown strength as high as about 10 times that of Si, and the thickness of the drift layer can be reduced to about 1/10 of a semiconductor element made of Si, a low on-voltage is expected. Furthermore, since a semiconductor element using SiC can operate even at high temperatures, application of SiC as a material for a power semiconductor element reduces the size compared to a conventional power semiconductor device using Si. High efficiency can be realized.
  • Snubber circuit is one of the means to suppress ringing.
  • a conventional power semiconductor module disclosed in Japanese Patent Laid-Open No. 2013-222950 includes a snubber capacitor as a means for suppressing ringing.
  • a capacitor used in a snubber circuit for example, in Japanese Patent Application Laid-Open No. 11-233373 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2015-8270 (Patent Document 3), a thermal shock that a ceramic capacitor receives due to a temperature change is disclosed. Therefore, a ceramic capacitor having a structure in which a terminal member made of a metal plate is soldered to a terminal electrode of a capacitor body is disclosed.
  • JP 2013-222950 A JP-A-11-233373 Japanese Patent Laid-Open No. 2015-8270
  • Patent Document 1 In the power semiconductor module disclosed in Patent Document 1, a printed board (upper board) and an insulating board (lower board) on which a semiconductor element is placed are connected in a circuit via a snubber capacitor. The lower substrate and the capacitor are soldered together.
  • the structure disclosed in Patent Document 1 uses two substrates and is very complicated, and the manufacturing method is complicated. For this reason, there is a problem that the reliability of the solder joint between the snubber capacitor and the substrate cannot be ensured during mounting of the power semiconductor module and during use after mounting.
  • the present invention has been made in order to develop the above-described problems, and provides a power semiconductor module that can suppress ringing that occurs during switching operation of a switching element and has high reliability. Objective.
  • the power semiconductor module includes at least one semiconductor element, a conductor pattern, at least one snubber circuit, a sealing body, an intermediate member, and a bonding material.
  • At least one semiconductor element is connected to the conductor pattern.
  • At least one snubber circuit is electrically connected to the conductor pattern.
  • At least one snubber circuit is a circuit in which a capacitor and a resistor are connected in series.
  • the sealing body seals at least one semiconductor element, conductor pattern, capacitor, and resistor.
  • the intermediate member is connected to the capacitor.
  • the bonding material connects the intermediate member to the conductor pattern.
  • the intermediate member connected to the capacitor is used at the junction between the capacitor and the conductor pattern, the junction between the conductor pattern and the capacitor can be easily mounted, and the junction is formed with high reliability. be able to. For this reason, ringing can be suppressed by the snubber circuit, and the occurrence of problems caused by defects in the junction between the capacitor and the conductor pattern can be suppressed. As a result, a highly reliable power semiconductor module can be obtained.
  • FIG. 5 is a schematic top view of a modification of the capacitor mounting portion of the power semiconductor module shown in FIG. 2.
  • FIG. 4 is an equivalent circuit diagram of a modification of the capacitor mounting portion shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating a top surface and a cross section of a configuration example of a capacitor mounting portion of the power semiconductor module illustrated in FIG. 2. It is a schematic diagram which shows the cross section of the structural example of the resistor mounting part of the power semiconductor module shown in FIG.
  • FIG. 1 It is a schematic diagram which shows the cross section of the modification of the resistor mounting part of the power semiconductor module shown in FIG. It is a schematic diagram which shows the cross section of the modification of the semiconductor module for electric power which concerns on Embodiment 1 of this invention. It is a schematic diagram which shows the cross section of the semiconductor module for electric power which concerns on the modification of Embodiment 1 of this invention. It is a schematic diagram which shows the partial cross section of the semiconductor module for electric power which concerns on Embodiment 2 of this invention. It is a schematic diagram which shows the cross section of the capacitor
  • FIG. 1 is a schematic diagram showing a power conversion circuit in the power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a cross section and a part of the upper surface of the power semiconductor module according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a top surface and a cross section of the capacitor mounting portion of the power semiconductor module illustrated in FIG. 2.
  • 6 is a schematic diagram showing a cross section of the resistor mounting portion of the power semiconductor module shown in FIG.
  • the power semiconductor module according to this embodiment will be described with reference to FIGS.
  • the power conversion device is composed of one power semiconductor module 101 and drives the motor 102.
  • the power semiconductor module 101 three legs 105 a, 105 b, and 105 c are connected in parallel to the power supply 30.
  • Each leg 105a, 105b, 105c includes a positive-side switching element 103P, a positive-side reflux diode 104P, a negative-side switching element 103N, and a negative-side reflux diode 104N, respectively.
  • the positive-side switching element 103P and the positive-side reflux diode 104P that are connected in reverse parallel to each other constitute a positive-side power semiconductor element.
  • the negative-side switching element 103N and the negative-side return diode 104N connected in reverse parallel to each other constitute a negative-side power semiconductor element.
  • the midpoint, which is the connection point between the positive power semiconductor element and the negative power semiconductor element of each leg 105a, 105b, 105c, is connected to the motor 102, respectively.
  • the positive power semiconductor element and the negative power semiconductor element correspond to an example of at least one semiconductor element according to the present embodiment.
  • the snubber circuit 106 is connected in parallel to the series circuit of the positive power semiconductor element and the negative power semiconductor element.
  • the snubber circuit 106 is a circuit in which a capacitor 209 and a resistor 210 are connected in series.
  • the snubber circuit 106 is arranged only in the leg 105c.
  • the snubber circuit 106 may be arranged in another leg 105a, 105b, or any one of the legs 105a to 105c.
  • the snubber circuit 106 may be arranged in one, or the snubber circuit 106 may be arranged in each of all the legs 105a to 105c.
  • SiC-MOSFET as the positive electrode side switching element 103P and the negative electrode side switching element 103N (hereinafter also simply referred to as switching element), and SiC as the positive electrode side freewheeling diode 104P and negative electrode side freewheeling diode 104N (hereinafter also simply referred to as the freewheeling diode).
  • switching element SiC-MOSFET as the positive electrode side switching element 103P and the negative electrode side switching element 103N
  • SiC as the positive electrode side freewheeling diode 104P and negative electrode side freewheeling diode 104N
  • ringing may occur during a switching operation.
  • the ringing is caused by resonance due to the parasitic inductance of the power conversion circuit and the capacitance of the SBD.
  • Such ringing may cause damage to the module when the peak value of the voltage exceeds the rated voltage of the power semiconductor module.
  • the voltage in ringing can cause noise, it is necessary to suppress ringing as much as possible.
  • a snubber circuit 106 is installed in the power converter shown in FIG.
  • the snubber circuit 106 is mounted between the positive electrode of the positive power semiconductor element and the negative electrode of the negative power semiconductor element.
  • FIG. 2 shows a cross-section and a part of the upper surface of an example of the power conversion device in which the power conversion circuit shown in FIG. 1 is mounted.
  • the upper side of FIG. 2 shows a cross section of the power converter, and the lower side of FIG. 2 shows a part of the upper surface of the power converter.
  • the power conversion device according to the present embodiment mainly includes a base plate 201, a base insulating substrate 203, a semiconductor element 204, a snubber circuit, and a case 202.
  • the snubber circuit includes a capacitor 209 that is a ceramic capacitor and a resistor 210.
  • the base insulating substrate 203 mainly includes a plate-shaped insulating material 203b, conductor patterns 203a and 203d to 203h formed on the top surface of the insulating material 203b, and a conductor pattern 203c formed on the back surface of the insulating material 203b.
  • the semiconductor element 204 includes a SiC-MOSFET as the switching element 204a and a SiC-SBD as the freewheeling diode 204b.
  • the switching element 204a may be the positive electrode side switching element 103P or the negative electrode side switching element 103N in FIG.
  • the freewheeling diode 204b may be the positive electrode side freewheeling diode 104P or the negative electrode side freewheeling diode 104N in FIG.
  • the base insulating substrate 203 is joined to the upper surface of the base plate 201 with solder 207b (under-substrate solder). Specifically, the solder 207 b is in contact with the conductor pattern 203 c on the back surface side of the base insulating substrate 203 and the upper surface of the base plate 201.
  • a semiconductor element 204 is joined to the upper surface of the base insulating substrate 203 by solder 207a (under-chip solder).
  • the semiconductor element 204 and the terminal 208 installed in the case 202 are connected by a wiring member 206. Specifically, the wiring member 206 connected to the terminal 208 shown in FIG. 2 is connected to the conductor pattern 203h and the switching element 204a.
  • another wiring member 206 connected to, for example, the source electrode of the switching element 204a is connected to the reflux diode 204b and the conductor pattern 203d.
  • Another wiring member 206 connects the conductor pattern 203 g and the terminal 208.
  • the capacitor 209 and the resistor 210 are placed on the upper surface of the base insulating substrate 203 and connected in series. Specifically, the resistor 210 is disposed so as to connect the conductor pattern 203d and the conductor pattern 203e.
  • the conductor pattern 203e is connected to one electrode of the capacitor 209.
  • a conductor pattern 203f different from the conductor pattern 203e and the electrode on the other side of the capacitor 209 are connected. That is, the capacitor 209 is disposed so as to connect the conductor pattern 203e and the conductor pattern 203f.
  • the capacitor 209 and the resistor 210 are connected in series via the conductor pattern 203e.
  • the conductor pattern 203a is a positive electrode side drain electrode on which the semiconductor element 204 is mounted.
  • the withstand voltage of the capacitor 209 should be selected according to the rated voltage of the power semiconductor device. However, it is desirable that the capacitor 209 has a breakdown voltage equal to or higher than the rated voltage of the power semiconductor device.
  • ceramic capacitors may be connected in series to ensure the withstand voltage with a plurality of ceramic capacitors. At this time, the electrical characteristics of the plurality of capacitors 209 are preferably substantially the same. That is, as shown in the lower plan view of FIG. 2, the independent conductor pattern 203e, conductor pattern 203f, and conductor pattern 203g may be connected in series by the capacitor 209. Although not shown, the conductor pattern 203g is connected to the drain electrode on the negative electrode side.
  • a multilayer ceramic capacitor is assumed as an example of the capacitor 209. However, it has the function of accumulating and discharging electrostatic charges, which is the original function of a capacitor, and if it has sufficient capacitance and withstand voltage for use, a capacitor of any other configuration is used. be able to.
  • the capacitor 209 a thin film capacitor in which high dielectric constant materials are stacked may be used. Such a thin film capacitor can be formed by utilizing, for example, semiconductor manufacturing technology.
  • FIG. 3 is a top schematic view of a modification of the capacitor mounting portion of the power semiconductor module shown in FIG.
  • FIG. 4 is an equivalent circuit diagram of the capacitor mounting portion shown in FIG.
  • two capacitors 209 a and 209 b are mounted on the snubber circuit board 230.
  • three resistors 233a, 233b, and 210 are mounted on the snubber circuit board 230.
  • the snubber circuit substrate 230 includes a ceramic substrate 230a, conductor patterns 230c, 230d, 230e, and 230f disposed on the surface of the ceramic substrate 230a, and a conductor pattern (not shown) disposed on the back side of the ceramic substrate 230a. ).
  • the conductor patterns 230c, 230d, 230e, and 230f are disposed on the surface of the ceramic substrate 230a at a distance from each other.
  • the conductor patterns 230c, 230d, 230e, and 230f are arranged so as to extend substantially parallel to each other.
  • the conductor pattern 230f is electrically connected to the conductor pattern disposed on the back side of the ceramic substrate 230a through the through hole 232.
  • a plurality of through holes 232 are formed.
  • the capacitor 209a connects the conductor pattern 230c and the conductor pattern 230d.
  • the capacitor 209b connects the conductor pattern 230d and the conductor pattern 230e.
  • the resistor 233a connects the conductor pattern 230c and the conductor pattern 230d.
  • the resistor 233b connects the conductor pattern 230d and the conductor pattern 230e.
  • the resistor 210 connects the conductor pattern 230e and the conductor pattern 230f. As can be seen from FIG. 4, the two capacitors 209a and 209b and the resistor 210 are connected in series.
  • the resistor 233a is connected in parallel with the capacitor 209a.
  • the resistor 233b is connected in parallel with the capacitor 209b.
  • resistors 233a and 233b serving as voltage dividing resistors are connected in parallel to the capacitors 209a and 209b in order to evenly divide the voltages to the capacitors 209a and 209b.
  • the resistors 233a and 233b serving as voltage dividing resistors are resistors having a resistance value 1000 times or more that of the resistor 210 connected in series to the capacitors 209a and 209b.
  • the electrical characteristics of the resistors 233a and 233b, which are voltage-dividing resistors connected in parallel to the plurality of capacitors 209a and 209b, are substantially the same.
  • a case 202 is attached along the outer periphery of the base plate 201.
  • the inside of the case 202 is filled with a sealing body 205 so as to cover a part of the base plate 201, the base insulating substrate 203, the semiconductor element 204, the capacitor 209, the resistor 210, the wiring member 206, and the terminal 208.
  • the case 202 may be made of any resin, and is made of, for example, polyphenyl sulfide resin (PPS), polybutylene terephthalate resin (PBT), or polyethylene terephthalate resin (PET).
  • the insulating material 203b of the base insulating substrate 203 is not only a ceramic material such as alumina (Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ), but also a binder material such as an epoxy material or a liquid crystal polymer.
  • An organic insulating layer in which fillers such as silica, alumina, and boron nitride (BN) are kneaded may be used.
  • the conductor pattern 203a and the conductor pattern 203c are, for example, copper (Cu) films, but the surface of the copper film may be subjected to nickel (Ni) plating or silver (Ag) plating.
  • the conductor pattern 203a and the conductor pattern 203c may be those in which the surface of an aluminum (Al) film is subjected to Ni plating or Ag plating.
  • the semiconductor element 204 uses an SiC-MOSFET as the switching element 204a and an SiC-SBD as the freewheeling diode 204b.
  • the silicon (Si) -based Si-IGBT (Insulated Gate Bipolar Transistor) and Si-FWD (Free Wheeling Diode). ) May be used as the switching element 204a and the return diode 204b, respectively.
  • the wiring member 206 disposed on the semiconductor element 204 is, for example, an Al wire, and is joined to the surface of the semiconductor element 204 by wedge bonding. However, the wiring member 206 may be conductive, and for example, a Cu wire may be used.
  • the wiring member 206 may be a plate material instead of a wire shape.
  • a joining method different from wedge bonding may be used.
  • the wiring member 206 and the semiconductor element 204 are joined by solder, an adhesive containing Ag, or an Ag sintered material. You may do it.
  • the under-chip solder 207a is, for example, a solder material based on Sn, but the conductor pattern 203a on the surface side of the base insulating substrate 203 and the semiconductor element 204 may be joined by an Ag sintered material.
  • the sealing body 205 is, for example, silicon gel, but may have an insulating property sufficient for use of the power semiconductor module, and an epoxy material in which a filler is kneaded may be used as the sealing body 205.
  • the capacitor 209 and the conductor patterns 203e and 203f are connected by a solder joint portion 211. It is efficient and preferable that the solder joint portion 211 is formed at the same time in a process in which the semiconductor element 204 is soldered to the conductor pattern 203a or a process in which the base insulating substrate 203 is soldered to the base plate 201. Details of the soldering method will be described below.
  • soldering power modules there are concerns about voids and solder scattering (solder balls) due to the flux contained in the solder paste material, so it is common to apply a solder paste material containing flux. Few. Therefore, in soldering a semiconductor element, a soldering method in which solder is melted while reducing a solder material in a reducing atmosphere may be applied. When the soldering method under the reducing atmosphere is employed, a plate-like solder material is placed on the conductor pattern, and a semiconductor element is placed on the solder material to perform soldering. When the capacitor 209 is soldered to the same surface as the semiconductor element 204 on the base insulating substrate 203, soldering at the same time as the semiconductor element 204 does not increase the number of steps by mounting the capacitor 209, which is very efficient. Is.
  • a plate-like solder material is placed on the conductor pattern, and a soldered portion of the capacitor 209 is placed on the solder material.
  • the capacitor 209 is placed on the conductor patterns 203e and 203f, and a rectangular or spherical solder material is placed in the vicinity thereof.
  • the capacitor 209 is soldered by melting and spreading the solder material.
  • a member made of a solder resist or the like may be printed on the conductor patterns 203e and 203f in advance in order to limit the area where the solder spreads.
  • the method of mounting the capacitor 209 at the same time as the semiconductor element 204 has been described. However, when the base insulating substrate 203 is soldered to the base plate 201, the capacitor 209 is connected to the conductor patterns 203e and 203f by the same type of method. Also good.
  • the capacitor 209 has a density of about 2 g / cm 3 or more and 6 g / cm 3 or less, depending on the size and the number of built-in electrodes. At the time of soldering, the melted solder is pushed out from the region immediately below the capacitor 209 due to its own weight, and the thickness of the solder joint portion 211 is reduced. In addition, if the electrostatic capacitance of the capacitor 209 is in a numerical value range of, for example, 1 nF to 30 nF, the ringing suppression effect is large.
  • FIG. 5 shows a top view and a cross-sectional view illustrating details of a configuration example of a solder joint portion of the capacitor 209.
  • the upper view is a top view and the lower view is a cross-sectional view.
  • Capacitor 209 includes a capacitor body 501a and an external electrode 501b.
  • the capacitor body 501a corresponds to an example of the capacitor according to the present embodiment.
  • the external electrode 501b corresponds to an example of an intermediate member according to this embodiment.
  • the base insulating substrate 203 includes a ceramic substrate 504c, conductor patterns 504a and 504b formed on the upper surface of the ceramic substrate 504c, and a conductor pattern 504d formed on the lower surface of the ceramic substrate 504c.
  • the external electrode 501b is connected to the positive conductor pattern 504a and the negative conductor pattern 504b by a solder joint 211.
  • the solder joint portion 211 corresponds to an example of the joining material according to the present embodiment.
  • Solder resists 503a and 503b are formed on the positive conductor pattern 504a and the negative conductor pattern 504b to prevent the solder from spreading.
  • a capacitor 209 is mounted on the solder resist 503b.
  • the thickness of the solder resists 503a and 503b is, for example, not less than 10 ⁇ m and not more than 30 ⁇ m.
  • the melted solder is spread by the weight of the capacitor 209 to form a solder joint portion 211 connected to the ceramic capacitor external electrode 501b. Therefore, the thickness of the solder disposed between the ceramic capacitor external electrode 501b and the conductive pattern 504a of the base insulating substrate 203 can be ensured only approximately equal to the thickness of the solder resist 503b. For this reason, when the thickness of the solder resist 503b is not sufficient, there is a problem that only the thickness of the solder joint portion 211 that is insufficient to obtain the joint life required as the joint reliability of the power module can be secured. .
  • the resistor 210 may be directly formed between the positive conductor pattern 504 a and the negative conductor pattern 504 b of the base insulating substrate 203. Specifically, the resistor 210 is formed on the surface of the ceramic substrate 504c exposed between the conductor pattern 504a and the conductor pattern 504b at a portion where the end of the conductor pattern 504a and the end of the conductor pattern 504b face each other. To the end portions of the conductor patterns 504a and 504b. The resistor 210 is connected to the end portions of the conductor patterns 504a and 504b.
  • a paste agent that becomes the resistor 210 is disposed on the surface of the substrate material to be the base insulating substrate 203.
  • the paste agent is made of a conductor component such as ruthenium oxide (RuO 2 ) and a binder.
  • the paste agent is disposed in a region where the resistor 210 is to be formed using a printing method or the like.
  • the caking agent is used to adhere the resistor 210 to the ceramic substrate 504c.
  • the base material to which the paste agent is applied is baked to produce the base insulating substrate 203, and at the same time, the resistor 210 is formed by heating the paste agent.
  • the resistor 210 is not directly formed on the base insulating substrate 203 as described above, but as a single component in which the resistor film 506a is formed on the ceramic plate 506b as a support as shown in FIG. May be prepared.
  • the resistor 210 shown in FIG. 7 is disposed on the surface of the base insulating substrate 203.
  • the base insulating substrate 203 includes a ceramic substrate 504c, conductor patterns 504a, 504b, and 504e disposed on the surface of the ceramic substrate 504c, and a conductor pattern 504d disposed on the back surface of the ceramic substrate 504c.
  • the resistor 210 is connected to the surface of the conductor pattern 504e via a solder 508.
  • the solder 508 connects the ceramic plate 506b of the resistor 210 and the conductor pattern 504e.
  • the ceramic plate 506b is made of ceramics such as alumina (Al 2 O 3 ) and aluminum nitride (AlN).
  • the conductor pattern 504e may be connected to either the positive conductor pattern 504a or the negative conductor pattern 504b.
  • a plurality of bonding pads 506 c may be formed on the upper surface of the resistor 210.
  • the conductor pattern 504a for the positive electrode and the conductor pattern 504b for the negative electrode are connected so that the wiring material 507 bonded so as to connect the conductor pattern 504a and the bonding pad 506c, and the conductor pattern 504b and another bonding pad 506c.
  • the wiring member 507 bonded and the resistor 210 may be electrically connected.
  • the base plate 201 shown in FIG. 2 may be an AlSiC plate or a Cu plate. However, if the base plate 201 has sufficient strength to use the power semiconductor device, as shown in FIG. 2), that is, the conductor layer 203i on the back surface side of the base insulating substrate 203 may be exposed as it is.
  • the conductor layer 203i may be made of, for example, copper (Cu).
  • FIG. 8 is a schematic diagram showing a cross section of a modified example of the power semiconductor module described above.
  • the power semiconductor module shown in FIG. 8 basically has the same configuration as that of the power semiconductor module shown in FIG. 2, but does not include the base plate 201 (see FIG. 2), and the base insulating substrate.
  • the capacitor 209 in the power semiconductor module shown in FIG. 8 has a structure in which a metal terminal 306b is connected to a capacitor body 306a.
  • the metal terminal 306b is connected to the end face side of the capacitor body 306a.
  • the metal terminal 306b is formed to extend toward the lower side of the capacitor body 306a.
  • the lower end of the metal terminal 306b is connected to the conductor patterns 203e and 203f via the solder joints 211.
  • a space is formed between the capacitor body 306a and the insulating material 203b.
  • the capacitor body 306a corresponds to an example of the capacitor according to the present embodiment.
  • the metal terminal 306b corresponds to an example of an intermediate member according to the present embodiment.
  • the solder joint portion 211 corresponds to an example of the joining material according to the present embodiment.
  • the capacitor 209 is soldered to the conductor patterns 203e and 203f
  • the conductor patterns 203e and 203f to be soldered are made of Cu
  • the linear expansion coefficient between the conductor patterns 203e and 203f and the capacitor 209 Due to this difference, solidification shrinkage of the solder material during soldering, warping deformation of the base insulating substrate 203, and warping deformation of the base plate 201 (see FIG. 2) occur.
  • the capacitor 209 is broken or the joint life of the solder joint 211 is extremely reduced.
  • the resistor 210 is provided, there is a problem that the resistor 210 is peeled off from the conductor patterns 203d and 203e or the life of the solder joint portion of the resistor 210 is extremely reduced.
  • the inside of the power semiconductor module is sealed with the sealing body 205 made of the above-described epoxy resin, so that the epoxy resin becomes the conductor patterns 203a, 203d to 203f, the capacitor 209, and the resistor.
  • the epoxy resin becomes the conductor patterns 203a, 203d to 203f, the capacitor 209, and the resistor.
  • warping and deformation of the base insulating substrate 203 or the base plate 201 can be suppressed. For this reason, it is possible to reduce the stress generated in the capacitor main body portions 501a and 306a of the capacitor 209, the stress generated in the resistance film of the resistor 210, and the stress generated in the solder joint portion 211.
  • the capacitor 209 and the resistor 210 generate heat when energized. Due to the self-heating of the capacitor 209 and the resistor 210, the electrical characteristics of the capacitor 209 and the resistor 210 change. For this reason, it is necessary to efficiently release the heat caused by the above-described self-heating to the outside.
  • the heat dissipation of the power semiconductor module is improved by using an epoxy resin having a thermal conductivity higher than that of the gel material as the sealing body 205.
  • the thermal conductivity of the epoxy resin can be adjusted by the kind and content of fillers that are mixed. Further, as described above, the type and content of the filler are closely related to the linear expansion characteristics of the cured epoxy resin. For this reason, it is preferable that the thermal conductivity of the sealing body 205 is 0.5 W / m ⁇ K or more and 5 W / m ⁇ K or less.
  • a sealing body 205 made of an epoxy resin.
  • an epoxy resin whose filler material and filler content are adjusted so that the linear expansion coefficient of the epoxy resin when cured is close to the Cu linear expansion coefficient of 16.8 ppm / ° C. It is preferable to use as the body 205.
  • the warping behavior of the conductor layer 203i is caused by the structure on the conductor layer 203i, specifically, the insulating material 203b, the conductor patterns 203a, 203d to 203f, 203h, the semiconductor element 204 such as the switching element 204a and the free wheel diode 204b. Influenced by members. Therefore, it is not necessary to limit the linear expansion coefficient of the epoxy material constituting the sealing body 205 to 16.8 ppm / ° C., and by appropriately selecting the linear expansion coefficient in the range of 10 ppm / ° C. to 20 ppm / ° C. The warping behavior of the layer 203i may be suppressed.
  • an upper sealing body 215 made of a material different from the sealing body 205 is sealed. You may arrange on top. For example, an insulating material may be used as the upper sealing body 215.
  • the height of the capacitor 209 is arbitrarily selected depending on the capacitance required for the capacitor 209, and the height is, for example, in the range of 1 mm to 3.5 mm. Therefore, the height from the conductor pattern 203a to the upper surface of the sealing body 205 is preferably at least 1 mm.
  • the loop height of the wiring member 206 is preferably as low as possible because the wiring inductance increases as the loop height increases. For example, it is preferable that the height from the conductor pattern 203a to the top which is the highest part of the loop of the wiring member 206 is 4 mm or less.
  • the sealing body 205 seals the joint portion between the wiring member 206 and the semiconductor element 204 and the wiring member 206, only the effect that the joint portion of the wiring member 206 can be reinforced can be obtained. In addition, when an expensive epoxy material is used as the sealing body 205, an effect that the amount of the epoxy material used can be reduced is also obtained.
  • the same material as that of the sealing body 205 may be used for the sealing body 215, but a material having physical properties different from that of the sealing body 205 may be used.
  • silicon gel may be used as the material of the sealing body 215, and the sealing body 205 may be an epoxy resin in which at least one of the filler type and content is changed.
  • the sealing body is made of a different material in the middle of the loop of the wiring member 206, that is, when the interface between the sealing body 205 and the sealing body 215 is located in the middle of the loop of the wiring member 206, the sealing body Due to the difference in the linear expansion coefficient between 205 and the sealing body 215, the loop of the wiring member 206 receives stress.
  • the loop of the wiring member 206 in the vicinity of the interface is subjected to stress due to the expansion and contraction of the sealing bodies 205 and 215 that are repeatedly generated due to heat generation during use of the power semiconductor module. Fatigue failure may occur. Therefore, it is preferable that the height of the sealing body 205 is a height at which both the wiring member 206 and the capacitor 209 are covered.
  • the power semiconductor module shown in FIGS. 1 and 2 includes at least one semiconductor element 204, conductor patterns 203a, 203d to 203f, and at least one semiconductor element.
  • a snubber circuit 106 and a sealing body 205 are provided.
  • the semiconductor element 204 for example, at least one positive electrode side switching element 103P and a positive electrode side freewheeling diode 104P that are positive electrode power semiconductor elements, and at least one negative electrode side switching element 103N that is a negative electrode power semiconductor element and And a negative electrode side reflux diode 104N.
  • At least one semiconductor element 204 is connected to the conductor pattern 203a.
  • At least one snubber circuit 106 is a circuit in which a capacitor body 306a (see FIG. 8) as a capacitor and a resistor 210 are connected in series.
  • the sealing body 205 seals at least one semiconductor element 204, conductor patterns 203d to 203f as conductor layers, the capacitor body 306a, and the resistor 210.
  • the capacitor body 306a is connected to a metal terminal 306b (see FIG. 8) as an intermediate member.
  • the metal terminal 306b is connected to the conductor patterns 203e and 203f by a solder joint portion 211 as a joining material. As shown in FIG.
  • the sealing body 205 includes at least one semiconductor element 204, conductor patterns 203d to 203f as conductor layers, a capacitor body 306a, a metal terminal 306b as an intermediate member, and a solder joint as a bonding material. 211 and the resistor 210 may be sealed. That is, the sealing body 205 may seal all the components arranged on the base insulating substrate 203.
  • the power semiconductor module shown in FIGS. 1 and 2 includes at least one positive-side power semiconductor element, that is, a positive-side switching element 103P and a positive-side reflux diode 104P, and at least one negative-electrode.
  • Negative electrode side switching element 103N and negative electrode side reflux diode 104N which are side power semiconductor elements, conductor pattern 203a, conductor patterns 203d to 203f as conductor layers, at least one snubber circuit 106, and sealing body 205 Prepare.
  • the conductor pattern 203a includes at least one positive-side power semiconductor element 103P and a positive-side reflux diode 104P, and at least one negative-side power semiconductor element 103N and a negative-side reflux circuit.
  • the semiconductor element 204 which is one of the diodes 104N, is connected.
  • the conductor patterns 203d to 203f as the conductor layers are formed of the same layer as the conductor pattern 203a.
  • At least one snubber circuit 106 is a circuit in which a capacitor 209 and a resistor 210 are connected in series.
  • the sealing body 205 seals at least one positive power semiconductor element, at least one negative power semiconductor element, conductor patterns 203d to 203f as a conductor layer, a capacitor 209, and a resistor 210. At least one of the capacitor 209 and the resistor 210 is connected to conductor patterns 203d to 203f as conductor layers.
  • the sealing body 205 includes an epoxy resin.
  • the sealing body 205 since the epoxy resin is used as the sealing body 205, the deformation of the conductor patterns 203a, 203d to 203f, 230c to 230f can be suppressed by the sealing body 205. For this reason, it is possible to suppress the occurrence of stress due to the above deformation at the joint between the conductor patterns 203d to 203f, 230c to 230f and the capacitors 209, 209a, 209b or the resistor 210. As a result, a highly reliable power semiconductor module can be obtained.
  • the configuration of the power semiconductor module can be simplified as compared with the case where a substrate different from the substrate on which the power semiconductor element is mounted is prepared for the snubber circuit.
  • the capacitors 209a and 209b, the resistors 210, 233a, and 233b, etc. are provided on the snubber circuit board 230 in advance. Since the snubber circuit can be prepared by mounting the snubber circuit, the snubber circuit can be applied to power semiconductor modules having different configurations.
  • the sealing body 205 may have a thermal conductivity of 0.5 W / m ⁇ K to 5 W / m ⁇ K.
  • the sealing body 205 may have a linear expansion coefficient of 10 ppm / ° C. or more and 20 ppm / ° C. or less.
  • the heat of the capacitor 209 can be easily released to the outside of the power semiconductor module through the sealing body 205. For this reason, it is possible to prevent the temperature of the capacitor 209 from rising excessively. As a result, the temperature characteristics of the capacitor 209 can be prevented from affecting the electrical characteristics of the power semiconductor module, and a power semiconductor module that exhibits stable electrical characteristics can be realized.
  • the resistor 210 when the resistor 210 generates heat during use of the power semiconductor module, the heat of the resistor 210 can be easily released to the outside of the power semiconductor module through the sealing body 205. For this reason, it can prevent that the temperature of the resistor 210 rises excessively. As a result, it is possible to prevent the temperature characteristics of the resistor 210 from affecting the electrical characteristics of the power semiconductor module, and to realize a power semiconductor module that exhibits stable electrical characteristics.
  • the sealing body 205 is arranged so that the capacitor 209 is embedded. As shown in FIG. 9, the power semiconductor module further includes an upper sealing body 215 disposed on the sealing body 205.
  • the sealing body 205 is disposed in a region that contacts the constituent member of the power semiconductor module such as the capacitor 209, and an insulator other than the sealing body 205 is provided in a portion that does not directly contact the constituent member. Since the upper sealing body 215 made of is disposed, the amount of the sealing body 205 containing an epoxy resin can be reduced. Therefore, the manufacturing cost of the power semiconductor module can be reduced by using a lower cost material than the sealing body 205 as the upper sealing body 215.
  • the semiconductor element 204 which is at least one positive power semiconductor element and at least one negative power semiconductor element is formed of a wide band gap semiconductor.
  • the semiconductor element 204 is made of a wide band gap semiconductor, in addition to suppressing ringing, high-speed switching operation and high-temperature operation are possible.
  • the wide band gap semiconductor is one selected from the group consisting of silicon carbide (SiC), gallium nitride (GaN), diamond, and gallium oxide.
  • SiC silicon carbide
  • GaN gallium nitride
  • diamond gallium oxide
  • FIG. 10 is a schematic diagram showing a partial cross section of the power semiconductor module according to the second embodiment of the present invention.
  • the power semiconductor module shown in FIG. 10 basically has the same configuration as that of the power semiconductor module according to the first embodiment, but a ceramic capacitor with a metal terminal is applied as the capacitor 209.
  • Capacitor 209 mainly includes a capacitor body 306a including an external electrode formed on an end face, and a metal terminal 306b connected to the external electrode of capacitor body 306a.
  • the power semiconductor module according to the present disclosure includes at least one positive electrode side switching semiconductor element 103P and positive electrode side freewheeling diode 104P, which are positive electrode power semiconductor elements, and at least one negative electrode power semiconductor element.
  • Negative electrode side switching element 103N and negative electrode side reflux diode 104N conductor pattern 303a, conductor patterns 303b and 303c as conductor layers, and at least one snubber circuit.
  • a semiconductor element 204 that is one of at least one positive power semiconductor element and at least one negative power semiconductor element is connected to the conductor pattern 303a.
  • the conductor patterns 303b and 303c are configured by the same layer as the conductor pattern 303a.
  • At least one snubber circuit is a circuit in which a capacitor 209 and a resistor 210 (see FIG. 1) are connected in series. At least one of the capacitor 209 and the resistor 210 is connected to the conductor patterns 303b and 303c.
  • Capacitor 209 includes a capacitor body 306a and a metal terminal 306b connected to capacitor body 306a. The metal terminal 306b is connected to the conductor patterns 303b and 303c.
  • the stress generated during soldering can be absorbed by the metal terminal 306b. For this reason, it becomes possible not only to prevent the capacitor main body 306a from cracking but also to reduce the stress generated at the solder joints 307 between the conductor patterns 303b and 303c and the metal terminal 306b. As a result, an unprecedented effect that the long-term reliability of the solder joint portion 307 is improved can be obtained.
  • an insulating layer 304 is formed on a base member 305 made of copper (Cu).
  • Conductive patterns 303a, 303b, and 303c are formed on the insulating layer 304.
  • a power semiconductor element 204 is bonded onto the conductor pattern 303 a by a die bond material 302.
  • a conductor pattern 303b and a conductor pattern 303c are formed as conductor patterns that are located on the same plane as the conductor pattern 303a on which the semiconductor element 204 is mounted and are configured by the same layer.
  • the conductor pattern 303b and the conductor pattern 303c are connected by a capacitor 209 that is a ceramic capacitor with a metal terminal.
  • the conductor pattern 303a and the conductor pattern 303b are connected by a wiring member 206, for example.
  • the capacitor 209 includes the capacitor main body 306a and a pair of metal terminals 306b connected to the external electrodes located at the connection portion 306c which is the end face of the capacitor main body 306a.
  • the connection portion 306c is a connection portion between the capacitor body 306a and the metal terminal 306b.
  • a tip portion located on the opposite side to the base portion connected to the capacitor main body 306a is a connection portion connected to the conductor patterns 303b and 303c.
  • tip part of the metal terminal 306b is soldered with the conductor patterns 303b and 303c.
  • solder joint portion 307 is formed between the connection portion of the metal terminal 306b and the conductor patterns 303b and 303c. Further, a solder restricting portion 308 made of a solder resist is formed on the conductor patterns 303b and 303c so that the solder does not spread out and the shape of the solder joint portion 307 does not become unstable. The solder restricting portion 308 is formed on the conductor patterns 303b and 303c in advance before soldering.
  • Capacitor 209 is a ceramic capacitor mainly composed of calcium zirconate, for example, but may be a ceramic capacitor mainly composed of barium titanate.
  • the capacitor 209 may be made of a material that can obtain desired electrical characteristics.
  • the size of the capacitor 209 can be arbitrarily selected as long as it has electrically required characteristics.
  • the size of the capacitor main body 306a is 3.2 mm ⁇ 1.6 mm (3216 size), 3.2 mm ⁇ 2.5 mm (3225 size), 4.5 mm ⁇ 3.2 mm (4532 size). Values such as 5.7 mm ⁇ 5.0 mm (5750 size) can be adopted.
  • the metal terminal 306b is a frame material mainly composed of copper, for example.
  • the metal terminal 306b may be made of a conductive material such as 42 alloy (Fe—Ni alloy) which is a general lead frame material.
  • the material of the metal terminal 306b is a material mainly composed of Cu having a higher thermal conductivity.
  • the external electrode located at the connection portion 306c between the capacitor body 306a and the metal terminal 306b is made of, for example, solder containing tin (Sn) as a main component.
  • solder containing tin (Sn) As a material of the external electrode, any material may be used as long as the melting point is not lower than that of the solder constituting the solder joint 307 at the tip of the metal terminal 306b.
  • the capacitor body 306a which is one ceramic capacitor, is connected to the metal terminal 306b.
  • a plurality of capacitor bodies 306a are stacked in multiple stages to form a set of metal terminals.
  • the capacitor body 306a may be configured by connecting the capacitor main body 306a in parallel by a pair of metal terminals 306b and 306c to satisfy the required electrical characteristics.
  • FIG. 11 is a schematic diagram showing a cross section of a capacitor of a power semiconductor module according to a modification of the second embodiment of the present invention. In FIG.
  • capacitor bodies 306a are stacked and connected by a set of metal terminals 306b and 306c to form one capacitor 209.
  • the number of capacitor main bodies 306a to be stacked may be two or four or more, and is appropriately selected so as to match the required electrical characteristics.
  • a set of metal terminals 306b and 306c corresponds to an example of an intermediate member according to the present embodiment.
  • the capacitor body 501a is mounted close to the conductor patterns 504a and 504b as shown in FIG.
  • a space 220 (see FIG. 5) formed between 209 and the ceramic substrate 504c, which is an insulating layer, is equivalent to the sum of the thicknesses of the conductor patterns 504a and 504b and the solder resist 503b.
  • the thicknesses and widths of the conductor patterns 504a and 504b are designed according to the current to be supplied to the conductor patterns 504a and 504b, but the thickness may be about 0.2 mm. It is common.
  • the thickness of the solder resists 503a and 503b is, for example, not less than 10 ⁇ m and not more than 30 ⁇ m. Therefore, the distance between the lower part of the capacitor 209 and the ceramic substrate 504c is about 0.21 mm to 0.23 mm.
  • the sealing body 205 having a high viscosity is applied, it is difficult to completely encapsulate the sealing body 205 without a gap in the space 220 between the lower portion of the capacitor 209 and the ceramic substrate 504c.
  • the gap in the sealing body 205 in this embodiment is assumed to have a diameter of 50 ⁇ m or more.
  • the space 220 may be filled with a highly permeable underfill agent to ensure insulation.
  • the underfill agent any insulator can be used. For example, an epoxy resin or a silicon resin may be used.
  • the conductor pattern as the conductor layer includes the conductor pattern 504a as the first conductor pattern and the second conductor pattern 504a spaced apart from the conductor pattern 504a. And a conductor pattern 504b as a conductor pattern.
  • the capacitor 209 is arranged so as to connect the conductor pattern 504a and the conductor pattern 504b.
  • the power semiconductor module is disposed in a space 220 surrounded by the capacitor 209, the conductor pattern 504a, and the conductor pattern 504b, and includes an underfill agent as an insulator made of a material different from that of the sealing body 205.
  • the above-described underfill agent may be disposed, for example, in a space located under the capacitor body 306a of the capacitor 209 shown in FIG. 10 or FIG.
  • the underfill agent may be disposed, for example, so as to separate between the conductor pattern 303b and the conductor pattern 303c under the capacitor main body 306a.
  • the resin used as the sealing body 205 has poor fluidity, only the resin component in the sealing body 205 selectively flows into the space below the capacitor 209, and the filler component does not flow into the space. To do.
  • the thermal conductivity of the sealing body 205 is locally reduced and the linear expansion coefficient of the sealing body 205 is increased.
  • a defect that the capacitor 209 breaks after sealing may occur.
  • the viscosity of the epoxy resin used as the sealing body 205 is desirably smaller, but the viscosity varies depending on the type of filler and the content of the filler. Therefore, for example, the viscosity of the resin to be the sealing body 205 is preferably in the range of 10 Pa ⁇ s to 100 Pa ⁇ s.
  • the height H1 of the capacitor 209 with a metal terminal the wiring inductance due to the metal terminal 306b increases as the height H1 increases. Therefore, as shown in FIG. 10, the height H1 is preferably lower than the loop height H2 of the wiring member 206.
  • the capacitor 209 includes a capacitor body 306a and a metal terminal 306b connected to the capacitor body 306a.
  • the metal terminal 306b is connected to conductor patterns 303b and 303c as conductor layers.
  • the configuration of the power semiconductor module can be simplified as compared with the case, and since the junction portion between the conductor patterns 303b and 303c and the capacitor 209 can be easily mounted, the junction portion can be formed with high reliability. For this reason, ringing can be suppressed by the snubber circuit, and occurrence of problems due to defects in the joint portion between the capacitor 209 and the conductor patterns 303b and 303c can be suppressed.
  • the power semiconductor module includes a wiring member 206 connected to any one of at least one positive power semiconductor element and at least one negative power semiconductor element, that is, the semiconductor element 204. As shown in FIG. 10, the height H1 from the conductor patterns 303b and 303c to the top of the capacitor 209 is lower than the height H2 from the conductor patterns 303b and 303c to the top of the wiring member 206.
  • the inductance of the metal terminal 306b increases as the length of the metal terminal 306b connecting the capacitor body 306a and the conductor patterns 303b and 303c increases, the height H1 to the top of the capacitor 209 is set to the top of the wiring member 206.
  • the height H2 lower than the height H2, it is possible to prevent the metal terminal 306b from becoming too long.
  • an increase in inductance due to the metal terminal 306b can be suppressed, and an increase in wiring inductance of the entire power semiconductor module can be suppressed. For this reason, the surge voltage when ringing occurs can be suppressed.
  • FIG. 12 is a schematic diagram showing a cross section of the power semiconductor module according to the third embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing a partial cross section of the power semiconductor module according to Embodiment 3 of the present invention shown in FIG.
  • the power semiconductor module shown in FIG. 12 basically has the same configuration as that of the power semiconductor module shown in FIG. 8, but is a ceramic capacitor with metal terminals that forms a snubber circuit as shown in FIG.
  • the capacitor 209 and the resistor 210 are not on the same layer as the semiconductor element 204, but are mounted on the snubber circuit board 230, and the snubber circuit board 230 is soldered to the conductor pattern 203j on the upper side of the power semiconductor module. The point of joining is different.
  • description will be made with reference to FIGS. 12 and 13.
  • FIG. 13 is an enlarged partial cross-sectional view of the periphery of the capacitor 209 with a metal terminal and the resistor 210 forming the snubber circuit of the power semiconductor module.
  • a capacitor 209 and a resistor 210 are mounted on a snubber circuit substrate 230.
  • the snubber circuit substrate 230 includes a ceramic substrate 230a which is an insulating substrate, conductor patterns 230c, 230d and 230e disposed on the surface of the ceramic substrate 230a, and a conductor pattern 230b disposed on the back side of the ceramic substrate 230a. including.
  • the conductor patterns 230c, 230d, and 230e are disposed on the surface of the ceramic substrate 230a at a distance from each other.
  • the arrangement of the conductor patterns 230c, 230d, and 230e can be arbitrarily determined. For example, they may be arranged so as to extend substantially parallel to each other.
  • the conductor pattern 230b disposed on the back surface of the ceramic substrate 230a is connected to the conductor pattern 203j on the insulating material 203b by solder 231.
  • the snubber circuit board 230 corresponds to an example of the intermediate member according to the present embodiment.
  • Capacitor 209 corresponds to an example of a capacitor according to this embodiment.
  • the solder 231 corresponds to an example of the bonding material according to the present embodiment.
  • a substrate made of another insulating material may be used as the insulating substrate instead of the ceramic substrate 230a.
  • a resin substrate may be used instead of the ceramic substrate 230a.
  • the capacitor 209 includes a capacitor main body 306a and a metal terminal 306b.
  • the capacitor 209 connects the conductor pattern 230c and the conductor pattern 230d.
  • the resistor 210 connects the conductor pattern 230d and the conductor pattern 230e.
  • the capacitor 209 and the resistor 210 are connected in series.
  • the conductor pattern 230e is connected to the semiconductor element 204 and the like by the wiring member 206.
  • the use of the ceramic capacitor with metal terminals as the capacitor 209 as described above suppresses the generation of voids due to the low fluidity of the resin to be the sealing body 205. You can get an unprecedented effect.
  • a capacitor 209 with a metal terminal and a resistor 210 are connected in series to the conductor patterns 230c, 230d, and 230e on the upper side of the snubber circuit board 230.
  • the conductor pattern 230c includes at least one positive-side power semiconductor element 103P and positive-side reflux diode 104P, and at least one negative-side power semiconductor element 103N and negative-side reflux diode.
  • a semiconductor element 204 which is one of 104N is connected.
  • the ceramic substrate 230a is a substrate made of an arbitrary insulating material.
  • the ceramic substrate 230a is a substrate made of alumina (AL 2 O 3 ), aluminum nitride (AlN), silicon nitride (SiN), or the like.
  • the resistor 210 is formed by disposing a paste material such as ruthenium oxide (Ru 2 O) to be the resistor 210 on the surface of the ceramic substrate 230a using a printing method or the like.
  • the Ag paste material may be disposed on the front surface and the back surface of the ceramic substrate 230a by a printing method or the like. By firing the Ag paste material arranged in this way, the upper conductor patterns 230c, 230d, 230e and the lower conductor pattern 230b can be obtained.
  • the snubber circuit board can be obtained by mounting the capacitor 209 on the snubber circuit board 230 thus obtained by soldering in a process different from the manufacturing process of the power semiconductor module. Further, in the step of soldering the semiconductor element 204 of the power semiconductor module to the conductor pattern 203a, the snubber circuit board on which the capacitor 209 is mounted is simultaneously connected to the conductor pattern 203j. Further, the wiring member 206, the case 202, and the like are connected to the base insulating substrate 203 on which the snubber circuit board and the semiconductor element 204 are mounted, and the sealing body 205 is formed so as to cover the semiconductor element 204 and the like. The power semiconductor module shown is obtained.
  • the method for manufacturing a power semiconductor module is a snubber that is a circuit in which a capacitor body 306a as a capacitor and a resistor 210 are connected in series.
  • a method of manufacturing a power semiconductor module including a circuit comprising a step of connecting a capacitor to an intermediate member on which a snubber circuit is formed.
  • the intermediate member includes a ceramic substrate 230a as an example of an insulating substrate having a surface, and conductor patterns 230b, 230c, 230d, and 230e that are conductor patterns for a snubber circuit formed on the surface of the ceramic substrate 230a.
  • the method for manufacturing a power semiconductor module further includes a step of placing a ceramic substrate 230a in which a capacitor body 306a is connected to conductor patterns 230c and 203d on a base insulating substrate 203 having a surface. On the surface of the base insulating substrate 203, at least one positive power semiconductor element and at least one negative power semiconductor element 204, at least one positive power semiconductor element and at least one negative power element Conductor patterns 203a, 203h, and 203j to which any one of the semiconductor elements 204 as the side power semiconductor elements is connected are arranged.
  • the ceramic substrate 230 is connected to the conductor pattern 203 j of the base insulating substrate 203. After that, by performing steps such as installation of the case 202 and the wiring member 206 and formation of the sealing body 205, a power semiconductor module incorporating a snubber circuit as shown in FIG. 12 is obtained.
  • the snubber circuit board 230 can be used as it is for a plurality of types of power semiconductor modules having different configurations. Therefore, when the arrangement of the power semiconductor element 204 and the layout of the wiring member 206 are changed, it is not necessary to redesign the snubber circuit, and the man-hour and cost required for designing the power semiconductor module can be reduced.
  • FIG. 14 is a schematic diagram showing a partial cross section of a power semiconductor module according to a modification of the third embodiment of the present invention.
  • the power semiconductor module including the snubber circuit board 230 shown in FIG. 14 has basically the same configuration as the power semiconductor module shown in FIGS. 12 and 13, but the configuration of the snubber circuit board 230 is the same. This is different from the power semiconductor module shown in FIGS. That is, in the power semiconductor module shown in FIG. 14, in the snubber circuit substrate 230, a through hole 232 that penetrates the ceramic substrate 230a from the conductor pattern 230e toward the lower conductor pattern 230b is formed.
  • the conductor pattern 230e and the conductor pattern 230b are connected by the through hole 232 or a via filled in the through hole 232 with a conductor.
  • the snubber circuit board 230 and the upper conductor pattern 203j of the power semiconductor module are connected by solder 231.
  • the conductor pattern 203j is connected to the conductor pattern 203a (see FIG. 12) on the upper side of the power semiconductor module through the wiring member 206.
  • the power semiconductor module shown in FIG. 14 can obtain the same effects as those of the power semiconductor module shown in FIG. 12 and FIG. Further, in the power semiconductor module shown in FIG. 14, by providing the through hole 232, it is not necessary to secure an area for joining the wiring member 206 on the conductor pattern 230 e on the upper side of the snubber circuit substrate 230. Therefore, the area of the conductor pattern 230e can be reduced, and the snubber circuit board 230 can be reduced in size. Further, by installing the through hole 232 in the vicinity of the resistor 210, it is possible to efficiently dissipate heat generated when a current flows through the snubber circuit in the direction of the base insulating substrate 203 of the power semiconductor module.
  • FIG. 15 is a schematic diagram showing a partial cross section of a power semiconductor module according to a modification of the third embodiment of the present invention.
  • FIG. 15 corresponds to FIG.
  • the power semiconductor module disclosed in FIG. 15 basically has the same configuration as that of the power semiconductor module disclosed in FIG. 13, but is not a capacitor 209 with metal terminals disclosed in FIG.
  • the power semiconductor module shown in FIG. 13 is different from the power semiconductor module shown in FIG. 13 in that a capacitor 209 which is a ceramic capacitor having no terminals is provided.
  • the reliability required for the power semiconductor module can be ensured without installing the metal terminal 306b on the capacitor 209 as shown in FIG.
  • the ceramic substrate 230a having a ceramic support as an insulator is described.
  • the snubber circuit is formed on a circuit board having a resin support such as a printed circuit board, By sealing with the sealing body 205 by an epoxy resin etc., the stress which generate
  • FIG. 16 is a schematic diagram showing a partial cross section of a power semiconductor module according to a modification of the third embodiment of the present invention.
  • FIG. 16 corresponds to FIG.
  • the power semiconductor module disclosed in FIG. 16 basically has the same configuration as that of the power semiconductor module disclosed in FIG. 14, but is not a capacitor 209 with metal terminals disclosed in FIG.
  • the power semiconductor module shown in FIG. 14 is different from the power semiconductor module shown in FIG. 14 in that a capacitor 209 which is a ceramic capacitor having no terminals is provided. Even with such a configuration, the same effect as that of the power semiconductor module disclosed in FIG. 14 can be obtained. Further, the same effect as that of the power semiconductor module shown in FIG. 15 can be obtained.
  • the capacitor 209 by mounting the capacitor 209 on the ceramic substrate 230a having a linear expansion coefficient close to that of the ceramic capacitor, the stress generated in the solder joint portion 211 of the capacitor 209 is reduced. For this reason, it becomes possible to improve the joining reliability of the capacitor 209.
  • the solder restricting portion 308 as shown in FIG. 11 is formed on the surface of the conductor patterns 230c and 230d in the region located under the capacitor body 306b. May be.
  • the solder restricting portion 308 as an insulator may be made of a material different from that of the sealing body 205.
  • the solder resist 503b shown in FIG. 5 may be formed on the surface of the conductor patterns 230c and 230d in the region located under the capacitor 209. Instead of the solder resist 503b as an insulator, another insulator may be disposed at the position.
  • FIG. 17 is a schematic diagram showing a partial cross section of a capacitor and an upper surface of a connection portion of a power semiconductor module according to Embodiment 4 of the present invention.
  • the power semiconductor module shown in FIG. 17 basically has the same configuration as that of the power semiconductor module according to the second embodiment. However, as shown in FIG. 17, the conductor pattern 404 is connected to the metal terminal 306b of the capacitor 209. The configuration of the connecting portion 401c to be connected is different. This will be described below. Note that the upper diagram in FIG. 17 shows a partial cross section of the capacitor and the connection portion, and the lower diagram shows a top view of the connection portion.
  • a capacitor 209 which is a ceramic capacitor with a metal terminal, mainly includes a capacitor body 306a and a metal terminal 306b.
  • a connection portion 401c with the conductor pattern 404 is formed at the tip of the metal terminal 306b.
  • the metal terminal 306b has a main body side portion 401b that is connected to the connection portion 401c and connected to the capacitor main body 306a.
  • the direction in which the connecting portion 401c extends intersects the direction in which the main body side portion 401b extends.
  • the angle at which the main body side portion 401b and the connecting portion 401c intersect is preferably 80 ° to 100 °, may be 85 ° to 95 °, and may be 90 °.
  • the connecting portion 401c is provided with a convex portion 401d in order to ensure the solder thickness T1 of the solder joint portion 402.
  • the convex portion 401d is, for example, a portion obtained by plastic deformation of a part of the connecting portion 401c into a convex shape.
  • the convex portion 401d may be formed by arranging an arbitrary material such as a conductor or an insulator in a convex shape on the surface of the connection portion 401c.
  • a solder resist 403 is printed on the surface of the conductor pattern 404 in order to stabilize the shape of the solder joint portion 402.
  • the plurality of solder resists 403 are disposed so as to sandwich the region where the connection portion 401 c is disposed in order to define the outer periphery of the solder joint portion 402.
  • the convex portion 401d of the connecting portion 401c of the metal terminal 306b may be formed by pressing the metal terminal 306b in a lead frame state before connecting the metal terminal 306b to the capacitor body 306a.
  • FIG. 18 to 23 are schematic views showing the top surface of the capacitor connecting portion of the power semiconductor module according to the modification of the fourth embodiment of the present invention, and show a modification of the configuration of the connecting portion 401c.
  • the convex portion 401d may be arranged at a position shifted from the center in the connection portion 401c of the metal terminal 306b.
  • a plurality of convex portions 401d for example, two convex portions 401d may be arranged on the connecting portion 401c.
  • the number of convex portions 401d arranged in the connecting portion 401d may be four or more.
  • the direction which provided the some convex part 401d can suppress generation
  • the height of the convex portion 401d only needs to secure a thickness T1 that can sufficiently secure the bonding reliability of the solder joint portion 402.
  • the height (thickness T1) of the convex portion 401d is set to 50 ⁇ m or more and 300 ⁇ m or less. be able to.
  • the convex portion 401d shown in FIG. 17 was formed by plastically deforming the connecting portion 401c into a protruding shape, but as shown in FIG. 21, a through hole is formed at the tip portion of the convex portion 401d. Also good.
  • the convex portion 401d of the connecting portion 401c shown in FIG. 21 forms a through hole by punching a part of the portion that should become the convex portion 401d when the connecting portion 401c is pressed.
  • the punching direction at the time of the press working may be a direction from the mounting surface side where the capacitor main body 306a is connected to the metal terminal 306b toward the surface side in contact with the conductor pattern 404.
  • the return at the time of punching occurs on the side of the surface in contact with the conductor pattern 404, so that the return becomes the convex portion 401d.
  • the return height at the time of punching may be 30 ⁇ m or more and 300 ⁇ m or less.
  • the number of through holes should just be one or more, and it is desirable to provide a plurality of convex portions 401d in which the through holes are formed.
  • the bonding area between the metal terminal 306b and the solder increases as compared with the conventional case. As a result, not only the bonding strength between the metal terminal 306b and the conductor pattern 404 is improved, but also the bonding reliability can be improved.
  • the angle ⁇ 2 formed by the connection portion 401c located on the tip side of the metal terminal 306b and the main body side portion 401b may be an acute angle.
  • an angle ⁇ 1 formed between the connecting portion 401c and the surface of the conductor pattern 404 on the connecting portion side between the connecting portion 401c and the main body side portion 401b also exceeds 0 °.
  • connection portion 401c is inclined with respect to the surface of the conductor pattern 404, the thickness of the solder constituting the solder joint portion 402 can be increased. In addition, it is possible to obtain an effect that it is easy to determine how much the solder 402 has been wetted by the connection portion 401c by visual inspection.
  • the angle ⁇ 2 formed by the connection portion 401c located on the tip side of the metal terminal 306b and the main body side portion 401b may be an obtuse angle.
  • an angle ⁇ 3 formed between the connection portion 401c and the surface of the conductor pattern 404 on the front end side of the connection portion 401c also exceeds 0 °.
  • the thickness of the solder constituting the solder joint portion 402 can be increased as in the configuration shown in FIG.
  • solder material When a rectangular or spherical solder material is placed in the vicinity of the capacitor 209 and soldered, the molten solder material must be wet and spread so that the solder material is wet and spread under the connection portion 401c of the metal terminal 306b. . Also in this case, it is difficult to secure the solder thickness under the connection portion 401c for obtaining sufficient bonding reliability. Therefore, as shown in FIGS. 17 to 21, by providing the convex portion 401d on the lower surface (back surface) of the connecting portion 401c of the metal terminal 306b, it is possible to sufficiently secure the thickness of the solder under the metal terminal 306b.
  • the metal terminal 306 b includes a connection portion 401 c connected to the conductor pattern 404.
  • a protruding portion 401d having a shape protruding toward the conductor pattern 404 is formed on a part of the connecting portion 401c.
  • the power semiconductor module includes a solder joint 402 including solder as a conductive joint member disposed between a portion other than a part of the connection portion 401 c and the conductor pattern 404.
  • the convex portion 401d is formed in a part of the connecting portion 401c, the thickness of the solder as the joining member can be ensured by the protruding height of the convex portion 401d. As a result, the reliability of the joint structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
  • a through-hole 401e may be formed in the convex portion 401d as shown in FIG.
  • the convex portion 401d can be easily formed by plastically deforming a part of the connection portion 401c.
  • the solder as a joining member can be arrange
  • the metal terminal 306b includes a connection portion 401c and a main body side portion 401b.
  • the connection part 401 c is connected to the conductor pattern 404.
  • the main body side portion 401b is connected to the capacitor main body 306a along with the connection portion 401c.
  • the extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 22, the angle ⁇ 2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an acute angle.
  • the metal terminal 306b includes a connection portion 401c and a main body side portion 401b.
  • the connection part 401 c is connected to the conductor pattern 404.
  • the main body side portion 401b is connected to the capacitor main body 306a along with the connection portion 401c.
  • the extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 23, the angle ⁇ 2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an obtuse angle.
  • the connecting portion 401c is placed on the surface of the conductor pattern 404. It will be in the state inclined with respect to it. For this reason, when solder is disposed as a joining member between the conductor pattern 404 and the connection portion 401c, a sufficient thickness of the solder can be secured. For this reason, the reliability of the junction structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
  • a capacitor 209 as an electronic component according to the present disclosure includes a capacitor main body 306a as a ceramic electronic component main body and a metal terminal 306b.
  • Capacitor body 306a has two end faces facing each other and includes external electrodes formed on the two end faces.
  • the metal terminal 306b is connected to an external electrode.
  • the metal terminal 306b includes a connection portion 401c to be connected to a conductor pattern 404 as an external conductor layer. As shown in FIGS. 17 to 21, a convex portion 401d is formed on a part of the connecting portion 401c.
  • the convex portion 401d is formed on a part of the connecting portion 401c, when the conductor pattern 404 and the connecting portion 401c are connected via solder as a joining member, the convex portion 401d
  • the thickness of the solder can be ensured by the protruding height.
  • the reliability of the joint structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
  • a through hole 401e may be formed in the convex portion 401d as shown in FIG.
  • the convex portion 401d can be easily formed by plastically deforming a part of the connection portion 401c.
  • solder can be disposed inside the through hole 401e, the contact area between the solder and the connection portion 401c can be increased, and the reliability of the joint structure can be further increased.
  • the electronic component according to the present disclosure includes a capacitor main body 306a as a ceramic electronic component main body and a metal terminal 306b.
  • Capacitor body 306a has two end faces facing each other and includes external electrodes formed on the two end faces.
  • the metal terminal 306b is connected to an external electrode.
  • the metal terminal 306b includes a connection portion 401c to be connected to a conductor pattern 404 as an external conductor layer, and a main body side portion 401b that is connected to the connection portion 401c and connected to the capacitor main body 306a.
  • the extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 22, the angle ⁇ 2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an acute angle.
  • the electronic component according to the present disclosure includes a capacitor main body 306a as a ceramic electronic component main body and a metal terminal 306b.
  • Capacitor body 306a has two end faces facing each other and includes external electrodes formed on the two end faces.
  • the metal terminal 306b is connected to an external electrode.
  • the metal terminal 306b includes a connection portion 401c to be connected to a conductor pattern 404 as an external conductor layer, and a main body side portion 401b that is connected to the connection portion 401c and connected to the capacitor main body 306a.
  • the extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 23, the angle ⁇ 2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an obtuse angle.
  • the connecting portion 401c is placed on the surface of the conductor pattern 404. It will be in the state inclined with respect to it. For this reason, when the solder as the joining member is disposed between the conductor pattern 404 and the connection portion 401c, a sufficient thickness of the solder can be secured. For this reason, the reliability of the junction structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
  • the power semiconductor module includes at least one positive-side power semiconductor element 103P and positive-side return diode 104P, and at least one negative-side power.
  • One of at least one positive power semiconductor element and at least one negative power semiconductor element is electrically connected to the conductor pattern.
  • Capacitor 209 is electrically connected to the conductor pattern.
  • the thickness of the joining member such as solder is sufficiently increased. It can be secured. As a result, it is possible to obtain a power semiconductor module capable of extending the service life with improved reliability of the joint structure.
  • the power semiconductor module includes a sealing body 205 (see FIG. 2).
  • the sealing body 205 seals the semiconductor element 204 corresponding to at least one positive power semiconductor element and at least one negative power semiconductor element, and the capacitor 209 as an electronic component.
  • the sealing body contains an epoxy resin.
  • the power semiconductor module includes a conductor pattern 404 as a conductor layer.
  • the conductor pattern 404 is composed of the same layer as the conductor pattern on which the semiconductor element 204 is mounted.
  • a capacitor 209 as an electronic component is connected to the conductor pattern 404.
  • the capacitor 209 as an electronic component is connected to the conductor pattern 404 formed of the same layer as the conductor pattern, a substrate different from the substrate on which the conductor pattern or the like is formed is replaced with a capacitor as an electronic component.
  • the configuration of the power semiconductor module can be simplified as compared with the case of using for mounting 209, and the bonding portion between the conductor pattern 404 and the capacitor 209 as an electronic component can be easily mounted, so that the bonding portion is highly reliable. Can be formed.
  • an underfill agent may be disposed in a space located under the capacitor body 306a.
  • the underfill agent may be made of a material different from that of the sealing body 205.
  • the power semiconductor module includes at least one semiconductor element 204, conductor patterns 203a, 203e, 203f, 203j, and at least one.
  • the semiconductor element 204 for example, at least one positive electrode side switching element 103P and a positive electrode side freewheeling diode 104P that are positive electrode power semiconductor elements, and at least one negative electrode side switching element 103N that is a negative electrode power semiconductor element and And a negative electrode side reflux diode 104N.
  • At least one semiconductor element 204 is connected to the conductor pattern 203a.
  • At least one snubber circuit 106 is electrically connected to the conductor pattern 203j (see FIG. 12) or the conductor pattern 203d (see FIG. 8).
  • the at least one snubber circuit 106 is a circuit in which the capacitor 209 in FIG. 12 as a capacitor or the capacitor main body 306a in FIG.
  • the sealing body 205 seals at least one semiconductor element 204, the conductor patterns 203a, 203e, 203f, and 203j, the capacitor 209 in FIG. 12 as a capacitor, or the capacitor body 306b and the resistor 210 in FIG.
  • the snubber circuit board 230 (see FIG. 12) or the metal terminal 306b (see FIG. 8) as an intermediate member is connected to the capacitor 209 in FIG. 12 or the capacitor body 306b in FIG.
  • a solder 231 (see FIG. 12) or a solder joint portion 211 (see FIG. 8) as a joining material connects the member to the conductor patterns 203j, 203e, and 203f.
  • At least one snubber circuit 106 may include at least one capacitor 209b as an additional capacitor and resistors 233a and 233b as parallel resistors, as shown in FIGS. .
  • At least one additional capacitor 209 b may be connected in series with the capacitor 209 a and the resistor 210.
  • Resistors 233a and 233b as parallel resistors may be connected in parallel with each of capacitor 209a and at least one additional capacitor 209b.
  • the intermediate member may include a ceramic substrate 230a as an insulating substrate and conductor patterns 230c to 230e as snubber circuit conductor patterns.
  • Ceramic substrate 230a has a surface.
  • the conductor patterns 230c to 230e may be formed on the surface of the ceramic substrate 230a.
  • the capacitor 209 may be connected to the snubber conductor patterns 230c and 230d.
  • the snubber circuit conductor pattern may include a conductor pattern 230c as a first conductor pattern and a conductor pattern 230d as a second conductor pattern.
  • the conductor pattern 230d is disposed at a distance from the conductor pattern 230c.
  • the capacitor 209 may be disposed so as to connect the conductor pattern 230c and the conductor pattern 230d.
  • the power semiconductor module may include an underfill agent as an insulator.
  • the insulator may be disposed in a space 220 surrounded by the capacitor 209, the conductor pattern 230c, and the conductor pattern 230d, and may be made of a material different from that of the sealing body 205.
  • the capacitor 209 may include a capacitor body 501a and an external electrode 501b formed on the surface of the capacitor body 501a, as shown in FIG.
  • the external electrode 501b may be connected to conductor patterns 230c and 230d as snubber circuit conductor patterns.
  • the capacitor 209 may include a capacitor main body 306a and a metal terminal 306b connected to the capacitor main body 306a.
  • the metal terminal 306b may be connected to conductor patterns 230c and 230d as snubber circuit conductor patterns.
  • the intermediate member may include a metal terminal 306b connected to a capacitor body 306a as a capacitor as shown in FIG.
  • the metal terminal 306b may be connected to the conductor patterns 203e and 203f by a solder joint portion 211 as a joining material.
  • the conductor pattern may include a conductor pattern 303b as a first conductor pattern and a conductor pattern 303c as a second conductor pattern, as shown in FIG.
  • the conductor pattern 303c may be arranged at a distance from the conductor pattern 303b.
  • the capacitor 209 may be disposed so as to connect the conductor pattern 303b and the conductor pattern 303c.
  • the power semiconductor module may include an underfill agent as an insulator. The underfill agent may be disposed in a space surrounded by the capacitor 209, the conductor pattern 303b, and the conductor pattern 303c, and may be made of a material different from that of the sealing body 205.
  • the metal terminal 401b may include a connection portion 401c connected to the conductor pattern 404 as shown in FIGS.
  • a protruding portion 401d having a shape protruding toward the conductor pattern 404 may be formed on a part of the connecting portion 401c.
  • the solder joint portion 402 as a joining material may be a conductive material disposed between a portion other than a part of the connection portion 401 c and the conductor pattern 404.
  • a through hole 401e may be formed in the convex portion 401d as shown in FIG.
  • the metal terminal includes a connection portion 401c connected to the conductor pattern 404 and a main body connected to the connection portion 401c and connected to a capacitor main body 306a as a capacitor.
  • the side portion 401b may be included.
  • the extending direction of the connecting portion 401c may intersect the extending direction of the main body side portion 401b.
  • the angle ⁇ 2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c may be an acute angle.
  • the angle ⁇ 2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c may be an obtuse angle. Further, the angle ⁇ 2 may be a right angle.
  • the power semiconductor module may further include a wiring member 206.
  • the wiring member 206 may be connected to at least one semiconductor element 204 that is one of at least one positive power semiconductor element and at least one negative power semiconductor element. As shown in FIG. 10, the height H1 from the conductor pattern 303c to the top of the capacitor 209 may be lower than the height H2 from the conductor pattern 303b to the top of the wiring member 206.
  • the present disclosure is advantageously applied to a ceramic electronic component capable of stabilizing the bonding quality at the time of mounting and a power semiconductor module in which the ceramic electronic component is mounted and an IGBT, a MOSFET, or the like is used as a switching element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a power semiconductor device which is capable of suppressing ringing that occurs during a switching operation of a switching element, and which has high reliability. A power semiconductor module according to the present invention is provided with: a semiconductor element (204); conductor patterns (203a, 203d-203f); a snubber circuit; a sealing body (205); a metal terminal (306b) that functions as an intermediate member; and a solder bonding part (211) that functions as a bonding material. The semiconductor element (204) is connected to the conductor patterns (203a, 203d-203f). The snubber circuit (106) is a circuit wherein a capacitor main body part (306a) and a resistor (210) are connected in series with each other. The sealing body (205) seals the semiconductor element (204), the conductor patterns (203a, 203d-203f, 203h), the capacitor main body part (306a) and the resistor (210). The metal terminal (306b), which is connected to the capacitor main body part (306a), is connected to the conductor patterns (203e, 203f) by means of the solder bonding part (211).

Description

電力用半導体モジュール、電子部品および電力用半導体モジュールの製造方法Power semiconductor module, electronic component, and method for manufacturing power semiconductor module
 この発明は、電力用半導体モジュール、電子部品および電力用半導体モジュールの製造方法に関する。 The present invention relates to a power semiconductor module, an electronic component, and a method for manufacturing a power semiconductor module.
 電力変換器を構成する電力用半導体装置は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等のスイッチング素子と還流ダイオードとを備えた構造を有する。一般には、珪素(Si)を材料としたIGBTをスイッチング素子として、pinダイオードを還流ダイオードとして用いる。近年、Siよりワイドバンドギャップを有する炭化珪素(SiC)を用いた電力用半導体装置が開発されている。SiCは絶縁破壊強度がSiの約10倍と高く、ドリフト層の厚みをSiからなる半導体素子の約1/10に低減し得る事から低オン電圧化が期待されている。さらに、SiCを用いた半導体素子は高温でも動作が可能である事から、SiCを電力用半導体素子の材料として適用する事で、従来のSiを適用した電力用半導体装置に比較して小型化、高効率化が実現可能となる。 2. Description of the Related Art A power semiconductor device that constitutes a power converter has a structure including switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) and free-wheeling diodes. In general, an IGBT made of silicon (Si) is used as a switching element, and a pin diode is used as a free-wheeling diode. In recent years, power semiconductor devices using silicon carbide (SiC) having a wider band gap than Si have been developed. Since SiC has a dielectric breakdown strength as high as about 10 times that of Si, and the thickness of the drift layer can be reduced to about 1/10 of a semiconductor element made of Si, a low on-voltage is expected. Furthermore, since a semiconductor element using SiC can operate even at high temperatures, application of SiC as a material for a power semiconductor element reduces the size compared to a conventional power semiconductor device using Si. High efficiency can be realized.
 電力用半導体素子の材料としてSiCを適用する場合、スイッチング素子としてMOSFETを、還流ダイオードとしてSBD(Schottky Barrier Diode)を適用する事が可能となる。しかしながら、還流ダイオードとしてSiC-SBDを用いた電力用半導体装置では、スイッチング動作時においてリンギングが発生する事が知られている。リンギングは、電力変換回路の寄生インダクタンスとSBDの容量による共振に起因するものである。このようなリンギングは、その電圧のピーク値が電力用半導体装置の定格電圧を超えるとモジュールの破損を引き起こす恐れがある。また、リンギングの電圧変動はノイズの原因となりうることから極力抑制する必要がある。SiC-MOSFETに代表されるワイドバンドギャップ半導体を用いたスイッチング素子では、高速なスイッチング動作が可能であるという特長を最大限に引き出すために、リンギングの抑制が重要な課題となっている。 When SiC is applied as a material for a power semiconductor element, it is possible to apply a MOSFET as a switching element and an SBD (Schottky Barrier Diode) as a free-wheeling diode. However, in a power semiconductor device using SiC-SBD as a freewheeling diode, it is known that ringing occurs during a switching operation. The ringing is caused by resonance due to the parasitic inductance of the power conversion circuit and the capacitance of the SBD. Such ringing may cause damage to the module when the peak value of the voltage exceeds the rated voltage of the power semiconductor device. Further, since the voltage fluctuation of ringing can cause noise, it is necessary to suppress it as much as possible. In a switching element using a wide band gap semiconductor typified by SiC-MOSFET, suppression of ringing is an important issue in order to maximize the feature that high-speed switching operation is possible.
 リンギング抑制する手段の一つとしてスナバ回路の適用がある。たとえば、特開2013-222950号公報(特許文献1)に開示された従来の電力用半導体モジュールは、リンギングを抑制する手段としてスナバコンデンサを内蔵している。また、スナバ回路に用いられるコンデンサに関連して、たとえば特開平11-233373号公報(特許文献2)および特開2015-8270号公報(特許文献3)では、セラミックコンデンサが温度変化により受ける熱衝撃のために破壊される事を防止するため、コンデンサ本体の端子電極に金属板からなる端子部材がはんだ付けされた構造のセラミックコンデンサが開示されている。 Snubber circuit is one of the means to suppress ringing. For example, a conventional power semiconductor module disclosed in Japanese Patent Laid-Open No. 2013-222950 (Patent Document 1) includes a snubber capacitor as a means for suppressing ringing. Further, regarding a capacitor used in a snubber circuit, for example, in Japanese Patent Application Laid-Open No. 11-233373 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2015-8270 (Patent Document 3), a thermal shock that a ceramic capacitor receives due to a temperature change is disclosed. Therefore, a ceramic capacitor having a structure in which a terminal member made of a metal plate is soldered to a terminal electrode of a capacitor body is disclosed.
特開2013-222950号公報JP 2013-222950 A 特開平11-233373号公報JP-A-11-233373 特開2015-8270号公報Japanese Patent Laid-Open No. 2015-8270
 特許文献1の電力用半導体モジュールでは、プリント基板(上基板)と半導体素子を載置した絶縁基板(下基板)とをスナバコンデンサを介して回路的に接続している。下基板などとコンデンサとははんだ接合されている。しかし、特許文献1に開示された上記構造は2つの基板を用いたものであって非常に複雑で、また、その製造方法は煩雑なものである。そのため、当該電力用半導体モジュールの実装時および実装後の使用中におけるスナバコンデンサと基板とのはんだ接合部の信頼性が確保出来ないと言う課題があった。 In the power semiconductor module disclosed in Patent Document 1, a printed board (upper board) and an insulating board (lower board) on which a semiconductor element is placed are connected in a circuit via a snubber capacitor. The lower substrate and the capacitor are soldered together. However, the structure disclosed in Patent Document 1 uses two substrates and is very complicated, and the manufacturing method is complicated. For this reason, there is a problem that the reliability of the solder joint between the snubber capacitor and the substrate cannot be ensured during mounting of the power semiconductor module and during use after mounting.
 また、特許文献2および特許文献3に開示されたコンデンサでは、当該コンデンサの端子部材と基板との接合部について、その信頼性を向上させる手段について言及されていない。当該接合部の信頼性は、電力用半導体モジュールの信頼性を左右する要因の1つである。 Further, in the capacitors disclosed in Patent Document 2 and Patent Document 3, there is no mention of means for improving the reliability of the joint portion between the terminal member of the capacitor and the substrate. The reliability of the junction is one of the factors that influence the reliability of the power semiconductor module.
 本発明は、上記のような課題を開発するためになされたものであり、スイッチング素子のスイッチング動作時に発生するリンギングを抑制する事ができ、高い信頼性を有する電力用半導体モジュールを提供する事を目的とする。 The present invention has been made in order to develop the above-described problems, and provides a power semiconductor module that can suppress ringing that occurs during switching operation of a switching element and has high reliability. Objective.
 本開示に従った電力用半導体モジュールは、少なくとも1つの半導体素子と、導体パターンと、少なくとも1つのスナバ回路と、封止体と、中間部材と、接合材とを備える。導体パターンには、少なくとも1つの半導体素子が接続される。少なくとも1つのスナバ回路は、導体パターンと電気的に接続される。少なくとも1つのスナバ回路は、コンデンサと抵抗体とが直列に接続された回路である。封止体は、少なくとも1つの半導体素子、導体パターン、コンデンサおよび抵抗体を封止する。中間部材はコンデンサと接続される。接合材は、当該中間部材を導体パターンに接続する。 The power semiconductor module according to the present disclosure includes at least one semiconductor element, a conductor pattern, at least one snubber circuit, a sealing body, an intermediate member, and a bonding material. At least one semiconductor element is connected to the conductor pattern. At least one snubber circuit is electrically connected to the conductor pattern. At least one snubber circuit is a circuit in which a capacitor and a resistor are connected in series. The sealing body seals at least one semiconductor element, conductor pattern, capacitor, and resistor. The intermediate member is connected to the capacitor. The bonding material connects the intermediate member to the conductor pattern.
 本開示によれば、コンデンサと導体パターンとの接合部にコンデンサに接続された中間部材を利用するため、導体パターンとコンデンサとの接合部の実装が容易になり当該接合部を信頼性高く形成することができる。このため、スナバ回路によりリンギングを抑制できるとともに、コンデンサと導体パターンとの接合部の不良などに起因する問題の発生を抑制できる。この結果、信頼性の高い電力用半導体モジュールを得ることができる。 According to the present disclosure, since the intermediate member connected to the capacitor is used at the junction between the capacitor and the conductor pattern, the junction between the conductor pattern and the capacitor can be easily mounted, and the junction is formed with high reliability. be able to. For this reason, ringing can be suppressed by the snubber circuit, and the occurrence of problems caused by defects in the junction between the capacitor and the conductor pattern can be suppressed. As a result, a highly reliable power semiconductor module can be obtained.
本発明の実施の形態1に係る電力変換装置における電力変換回路を示す模式図である。It is a schematic diagram which shows the power converter circuit in the power converter device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電力用半導体モジュールの断面および上面の一部を示す模式図である。It is a schematic diagram which shows a part of the cross section and upper surface of the power semiconductor module which concerns on Embodiment 1 of this invention. 図2に示した電力用半導体モジュールのコンデンサ実装部の変形例の上面模式図である。FIG. 5 is a schematic top view of a modification of the capacitor mounting portion of the power semiconductor module shown in FIG. 2. 図3に示したコンデンサ実装部の変形例の等価回路図である。FIG. 4 is an equivalent circuit diagram of a modification of the capacitor mounting portion shown in FIG. 3. 図2に示した電力用半導体モジュールのコンデンサ実装部の構成例の上面および断面を示す模式図である。FIG. 3 is a schematic diagram illustrating a top surface and a cross section of a configuration example of a capacitor mounting portion of the power semiconductor module illustrated in FIG. 2. 図2に示した電力用半導体モジュールの抵抗体実装部の構成例の断面を示す模式図である。It is a schematic diagram which shows the cross section of the structural example of the resistor mounting part of the power semiconductor module shown in FIG. 図2に示した電力用半導体モジュールの抵抗体実装部の変形例の断面を示す模式図である。It is a schematic diagram which shows the cross section of the modification of the resistor mounting part of the power semiconductor module shown in FIG. 本発明の実施の形態1に係る電力用半導体モジュールの変形例の断面を示す模式図である。It is a schematic diagram which shows the cross section of the modification of the semiconductor module for electric power which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の変形例に係る電力用半導体モジュールの断面を示す模式図である。It is a schematic diagram which shows the cross section of the semiconductor module for electric power which concerns on the modification of Embodiment 1 of this invention. 本発明の実施の形態2に係る電力用半導体モジュールの部分断面を示す模式図である。It is a schematic diagram which shows the partial cross section of the semiconductor module for electric power which concerns on Embodiment 2 of this invention. 本発明の実施の形態2の変形例に係る電力用半導体モジュールのコンデンサの断面を示す模式図である。It is a schematic diagram which shows the cross section of the capacitor | condenser of the semiconductor module for electric power which concerns on the modification of Embodiment 2 of this invention. 本発明の実施の形態3に係る電力用半導体モジュールの断面を示す模式図である。It is a schematic diagram which shows the cross section of the semiconductor module for electric power which concerns on Embodiment 3 of this invention. 本発明の実施の形態3のに係る電力用半導体モジュールの部分断面を示す模式図である。It is a schematic diagram which shows the partial cross section of the semiconductor module for electric power which concerns on Embodiment 3 of this invention. 本発明の実施の形態3の変形例に係る電力用半導体モジュールの部分断面を示す模式図である。It is a schematic diagram which shows the partial cross section of the semiconductor module for electric power which concerns on the modification of Embodiment 3 of this invention. 本発明の実施の形態3の変形例に係る電力用半導体モジュールの部分断面を示す模式図である。It is a schematic diagram which shows the partial cross section of the semiconductor module for electric power which concerns on the modification of Embodiment 3 of this invention. 本発明の実施の形態3の変形例に係る電力用半導体モジュールの部分断面を示す模式図である。It is a schematic diagram which shows the partial cross section of the semiconductor module for electric power which concerns on the modification of Embodiment 3 of this invention. 本発明の実施の形態4に係る電力用半導体モジュールのコンデンサの部分断面および接続部の上面を示す模式図である。It is a schematic diagram which shows the partial cross section of the capacitor | condenser of the power semiconductor module which concerns on Embodiment 4 of this invention, and the upper surface of a connection part. 本発明の実施の形態4の変形例に係る電力用半導体モジュールのコンデンサの接続部の上面を示す模式図である。It is a schematic diagram which shows the upper surface of the connection part of the capacitor | condenser of the semiconductor module for electric power which concerns on the modification of Embodiment 4 of this invention. 本発明の実施の形態4の変形例に係る電力用半導体モジュールのコンデンサの接続部の上面を示す模式図である。It is a schematic diagram which shows the upper surface of the connection part of the capacitor | condenser of the semiconductor module for electric power which concerns on the modification of Embodiment 4 of this invention. 本発明の実施の形態4の変形例に係る電力用半導体モジュールのコンデンサの接続部の上面を示す模式図である。It is a schematic diagram which shows the upper surface of the connection part of the capacitor | condenser of the semiconductor module for electric power which concerns on the modification of Embodiment 4 of this invention. 本発明の実施の形態4の変形例に係る電力用半導体モジュールのコンデンサの部分断面および接続部の上面を示す模式図である。It is a schematic diagram which shows the partial cross section of the capacitor | condenser of the power semiconductor module which concerns on the modification of Embodiment 4 of this invention, and the upper surface of a connection part. 本発明の実施の形態4の変形例に係る電力用半導体モジュールのコンデンサの部分断面を示す模式図である。It is a schematic diagram which shows the partial cross section of the capacitor | condenser of the semiconductor module for electric power which concerns on the modification of Embodiment 4 of this invention. 本発明の実施の形態4の変形例に係る電力用半導体モジュールのコンデンサの部分断面を示す模式図である。It is a schematic diagram which shows the partial cross section of the capacitor | condenser of the semiconductor module for electric power which concerns on the modification of Embodiment 4 of this invention.
 以下、図面を参照しながら本発明の実施の形態について説明する。以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
 実施の形態1.
 <電力用半導体モジュールの構成>
 図1は、本発明の実施の形態1に係る電力変換装置における電力変換回路を示す模式図である。図2は、本発明の実施の形態1に係る電力用半導体モジュールの断面および上面の一部を示す模式図である。図5は、図2に示した電力用半導体モジュールのコンデンサ実装部の上面および断面を示す模式図である。図6は、図2に示した電力用半導体モジュールの抵抗体実装部の断面を示す模式図である。図1~図6を用いて、本実施形態に係る電力用半導体モジュールを説明する。
Embodiment 1 FIG.
<Configuration of power semiconductor module>
FIG. 1 is a schematic diagram showing a power conversion circuit in the power conversion device according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram showing a cross section and a part of the upper surface of the power semiconductor module according to the first embodiment of the present invention. FIG. 5 is a schematic diagram illustrating a top surface and a cross section of the capacitor mounting portion of the power semiconductor module illustrated in FIG. 2. 6 is a schematic diagram showing a cross section of the resistor mounting portion of the power semiconductor module shown in FIG. The power semiconductor module according to this embodiment will be described with reference to FIGS.
 図1では、電力変換装置は一つの電力用半導体モジュール101で構成され、モーター102を駆動する。電力用半導体モジュール101は、3つのレグ105a、105b、105cが電源30に対して並列に接続されている。各レグ105a、105b、105cは、それぞれ正極側スイッチング素子103Pと正極側還流ダイオード104Pと負極側スイッチング素子103Nと負極側還流ダイオード104Nとを含む。 In FIG. 1, the power conversion device is composed of one power semiconductor module 101 and drives the motor 102. In the power semiconductor module 101, three legs 105 a, 105 b, and 105 c are connected in parallel to the power supply 30. Each leg 105a, 105b, 105c includes a positive-side switching element 103P, a positive-side reflux diode 104P, a negative-side switching element 103N, and a negative-side reflux diode 104N, respectively.
 レグ105a、105b、105cでは、互いに逆並列接続された正極側スイッチング素子103Pと正極側還流ダイオード104Pとが正極側電力用半導体素子を構成している。また、互いに逆並列接続された負極側スイッチング素子103Nと負極側還流ダイオード104Nとが負極側電力用半導体素子を構成している。各レグ105a、105b、105cの正極側電力用半導体素子と負極側電力用半導体素子との接続点である中点がそれぞれモーター102と接続される。上記正極側電力用半導体素子および上記負極側電力用半導体素子が、本実施の形態に係る少なくとも1つの半導体素子の一例に相当する。 In the legs 105a, 105b, and 105c, the positive-side switching element 103P and the positive-side reflux diode 104P that are connected in reverse parallel to each other constitute a positive-side power semiconductor element. The negative-side switching element 103N and the negative-side return diode 104N connected in reverse parallel to each other constitute a negative-side power semiconductor element. The midpoint, which is the connection point between the positive power semiconductor element and the negative power semiconductor element of each leg 105a, 105b, 105c, is connected to the motor 102, respectively. The positive power semiconductor element and the negative power semiconductor element correspond to an example of at least one semiconductor element according to the present embodiment.
 レグ105cでは、正極側電力用半導体素子と負極側電力用半導体素子との直列回路に対して、スナバ回路106が並列に接続されている。スナバ回路106は、コンデンサ209と抵抗体210とが直列に接続された回路である。なお、図1に示した回路では、スナバ回路106はレグ105cのみに配置されているが、スナバ回路106を他のレグ105a、105bに配置してもよいし、レグ105a~105cのいずれか二つにスナバ回路106を配置してもよいし、すべてのレグ105a~105cのそれぞれにスナバ回路106を配置してもよい。 In the leg 105c, the snubber circuit 106 is connected in parallel to the series circuit of the positive power semiconductor element and the negative power semiconductor element. The snubber circuit 106 is a circuit in which a capacitor 209 and a resistor 210 are connected in series. In the circuit shown in FIG. 1, the snubber circuit 106 is arranged only in the leg 105c. However, the snubber circuit 106 may be arranged in another leg 105a, 105b, or any one of the legs 105a to 105c. The snubber circuit 106 may be arranged in one, or the snubber circuit 106 may be arranged in each of all the legs 105a to 105c.
 以下では、正極側スイッチング素子103Pおよび負極側スイッチング素子103N(以下、単にスイッチング素子とも呼ぶ)としてSiC-MOSFET、正極側還流ダイオード104Pおよび負極側還流ダイオード104N(以下、単に還流ダイオードとも呼ぶ)としてSiC-SBDを適用した例について説明する。 Hereinafter, SiC-MOSFET as the positive electrode side switching element 103P and the negative electrode side switching element 103N (hereinafter also simply referred to as switching element), and SiC as the positive electrode side freewheeling diode 104P and negative electrode side freewheeling diode 104N (hereinafter also simply referred to as the freewheeling diode). -An example in which SBD is applied will be described.
 図1に示したように、電力変換回路における還流ダイオードとしてSiC-SBDを搭載した電力用半導体モジュールを用いた場合、スイッチング動作時にリンギングが発生する場合がある。リンギングは、上述のように電力変換回路の寄生インダクタンスとSBDの容量とによる共振に起因するものである。このようなリンギングは、その電圧のピーク値が電力用半導体モジュールの定格電圧を超えると、当該モジュールの破損を引き起こしかねない。また、リンギングにおける電圧はノイズの原因となりうることから、リンギングを極力抑制する必要がある。 As shown in FIG. 1, when a power semiconductor module equipped with SiC-SBD is used as a freewheeling diode in a power conversion circuit, ringing may occur during a switching operation. As described above, the ringing is caused by resonance due to the parasitic inductance of the power conversion circuit and the capacitance of the SBD. Such ringing may cause damage to the module when the peak value of the voltage exceeds the rated voltage of the power semiconductor module. Moreover, since the voltage in ringing can cause noise, it is necessary to suppress ringing as much as possible.
 このようなリンギングの抑制に有効な手段として、図1に示す電力変換装置ではスナバ回路106を設置している。スナバ回路106は正極側電力用半導体素子の正電極と負極側電力用半導体素子の負電極の間に実装される。 As an effective means for suppressing such ringing, a snubber circuit 106 is installed in the power converter shown in FIG. The snubber circuit 106 is mounted between the positive electrode of the positive power semiconductor element and the negative electrode of the negative power semiconductor element.
 図2は、図1に示した電力変換回路を実装した電力変換装置の一例の断面および上面の一部を示している。図2の上側は電力変換装置の断面を示し、図2の下側は電力変換装置の上面の一部を示している。図2に示すように、本実施の形態に係る電力変換装置は、ベース板201と、ベース絶縁基板203と、半導体素子204と、スナバ回路と、ケース202とを主に備える。スナバ回路は、セラミックコンデンサであるコンデンサ209と抵抗体210とにより構成される。ベース絶縁基板203は、板状の絶縁材203bと、絶縁材203bの上面に形成された導体パターン203a、203d~203hと、絶縁材203bの裏面に形成された導体パターン203cとを主に含む。半導体素子204はスイッチング素子204aとしてのSiC-MOSFET、および還流ダイオード204bとしてのSiC-SBDを含む。たとえば、スイッチング素子204aは図1における正極側スイッチング素子103Pまたは負極側スイッチング素子103Nであってもよい。また、還流ダイオード204bは、図1における正極側還流ダイオード104Pまたは負極側還流ダイオード104Nであってもよい。 FIG. 2 shows a cross-section and a part of the upper surface of an example of the power conversion device in which the power conversion circuit shown in FIG. 1 is mounted. The upper side of FIG. 2 shows a cross section of the power converter, and the lower side of FIG. 2 shows a part of the upper surface of the power converter. As shown in FIG. 2, the power conversion device according to the present embodiment mainly includes a base plate 201, a base insulating substrate 203, a semiconductor element 204, a snubber circuit, and a case 202. The snubber circuit includes a capacitor 209 that is a ceramic capacitor and a resistor 210. The base insulating substrate 203 mainly includes a plate-shaped insulating material 203b, conductor patterns 203a and 203d to 203h formed on the top surface of the insulating material 203b, and a conductor pattern 203c formed on the back surface of the insulating material 203b. The semiconductor element 204 includes a SiC-MOSFET as the switching element 204a and a SiC-SBD as the freewheeling diode 204b. For example, the switching element 204a may be the positive electrode side switching element 103P or the negative electrode side switching element 103N in FIG. Further, the freewheeling diode 204b may be the positive electrode side freewheeling diode 104P or the negative electrode side freewheeling diode 104N in FIG.
 図2に示す電力変換装置では、ベース板201の上面にベース絶縁基板203がはんだ207b(基板下はんだ)により接合されている。具体的には、はんだ207bはベース絶縁基板203の裏面側の導体パターン203cとベース板201の上面とに接触している。ベース絶縁基板203の上面には半導体素子204がはんだ207a(チップ下はんだ)により接合されている。半導体素子204とケース202に設置された端子208とは、配線部材206により結線されている。具体的には、図2に示された端子208に接続された配線部材206は、導体パターン203hおよびスイッチング素子204aと接続されている。また、スイッチング素子204aのたとえばソース電極と接続された他の配線部材206は、還流ダイオード204bおよび導体パターン203dと接続されている。別の配線部材206は、導体パターン203gと端子208とを接続する。 2, the base insulating substrate 203 is joined to the upper surface of the base plate 201 with solder 207b (under-substrate solder). Specifically, the solder 207 b is in contact with the conductor pattern 203 c on the back surface side of the base insulating substrate 203 and the upper surface of the base plate 201. A semiconductor element 204 is joined to the upper surface of the base insulating substrate 203 by solder 207a (under-chip solder). The semiconductor element 204 and the terminal 208 installed in the case 202 are connected by a wiring member 206. Specifically, the wiring member 206 connected to the terminal 208 shown in FIG. 2 is connected to the conductor pattern 203h and the switching element 204a. Further, another wiring member 206 connected to, for example, the source electrode of the switching element 204a is connected to the reflux diode 204b and the conductor pattern 203d. Another wiring member 206 connects the conductor pattern 203 g and the terminal 208.
 コンデンサ209と抵抗体210とはベース絶縁基板203の上面に載置され、直列に接続されている。具体的には、抵抗体210は導体パターン203dと導体パターン203eとの間を繋ぐように配置されている。導体パターン203eはコンデンサ209の一方の形の電極と接続されている。導体パターン203eとは異なる導体パターン203fとコンデンサ209のもう一方の側の電極とは接続されている。つまり、コンデンサ209は、導体パターン203eと導体パターン203fとを繋ぐように配置されている。コンデンサ209と抵抗体210とは導体パターン203eを介して直列に接続されている。 The capacitor 209 and the resistor 210 are placed on the upper surface of the base insulating substrate 203 and connected in series. Specifically, the resistor 210 is disposed so as to connect the conductor pattern 203d and the conductor pattern 203e. The conductor pattern 203e is connected to one electrode of the capacitor 209. A conductor pattern 203f different from the conductor pattern 203e and the electrode on the other side of the capacitor 209 are connected. That is, the capacitor 209 is disposed so as to connect the conductor pattern 203e and the conductor pattern 203f. The capacitor 209 and the resistor 210 are connected in series via the conductor pattern 203e.
 導体パターン203aは半導体素子204を載置した正極側ドレイン電極である。スナバ回路を形成するコンデンサ209において、コンデンサ209の耐圧は電力用半導体装置の定格電圧により選択されるべきものである。しかし、コンデンサ209は、電力用半導体装置の定格電圧以上の耐圧を有している事が望ましい。一つのコンデンサ209で耐圧を満たさない場合は、セラミックコンデンサを直列に接続して複数のセラミックコンデンサで耐圧を確保しても良い。この際に、複数のコンデンサ209の電気的特性は実質的に同じである事が好ましい。すなわち、図2の下側の平面図に示すように、それぞれ独立した導体パターン203eと導体パターン203fと導体パターン203gをコンデンサ209により直列に接続してもよい。なお、図示しないが導体パターン203gは負極側のドレイン電極と接続されている。 The conductor pattern 203a is a positive electrode side drain electrode on which the semiconductor element 204 is mounted. In the capacitor 209 forming the snubber circuit, the withstand voltage of the capacitor 209 should be selected according to the rated voltage of the power semiconductor device. However, it is desirable that the capacitor 209 has a breakdown voltage equal to or higher than the rated voltage of the power semiconductor device. When one capacitor 209 does not satisfy the withstand voltage, ceramic capacitors may be connected in series to ensure the withstand voltage with a plurality of ceramic capacitors. At this time, the electrical characteristics of the plurality of capacitors 209 are preferably substantially the same. That is, as shown in the lower plan view of FIG. 2, the independent conductor pattern 203e, conductor pattern 203f, and conductor pattern 203g may be connected in series by the capacitor 209. Although not shown, the conductor pattern 203g is connected to the drain electrode on the negative electrode side.
 なお、本発明の実施の形態では、コンデンサ209の一例として積層セラミックコンデンサを想定して説明する。しかし、コンデンサの本来の機能である、静電荷を蓄えたり放出したりする機能を有しており、使用にあたり十分な静電容量と耐圧を有していれば他の任意の構成のコンデンサを用いることができる。たとえば、コンデンサ209として、高誘電率材料を積層化した薄膜コンデンサを用いてもよい。このような薄膜コンデンサは、例えば、半導体製造技術を活用して形成できる。 In the embodiment of the present invention, a multilayer ceramic capacitor is assumed as an example of the capacitor 209. However, it has the function of accumulating and discharging electrostatic charges, which is the original function of a capacitor, and if it has sufficient capacitance and withstand voltage for use, a capacitor of any other configuration is used. be able to. For example, as the capacitor 209, a thin film capacitor in which high dielectric constant materials are stacked may be used. Such a thin film capacitor can be formed by utilizing, for example, semiconductor manufacturing technology.
 また、図3に示すように、複数のコンデンサ209a、209bを直列に接続する構成としてもよい。図3は、図2に示した電力用半導体モジュールのコンデンサ実装部の変形例の上面模式図である。図4は、図3に示したコンデンサ実装部の等価回路図である。図3に示すように、2つのコンデンサ209a、209bがスナバ回路用基板230に搭載されている。さらに、3つの抵抗体233a、233b、210がスナバ回路用基板230に搭載されている。 Further, as shown in FIG. 3, a plurality of capacitors 209a and 209b may be connected in series. FIG. 3 is a top schematic view of a modification of the capacitor mounting portion of the power semiconductor module shown in FIG. FIG. 4 is an equivalent circuit diagram of the capacitor mounting portion shown in FIG. As shown in FIG. 3, two capacitors 209 a and 209 b are mounted on the snubber circuit board 230. Further, three resistors 233a, 233b, and 210 are mounted on the snubber circuit board 230.
 スナバ回路用基板230は、セラミック基板230aと、当該セラミック基板230aの表面上に配置された導体パターン230c、230d、230e、230fと、セラミック基板230aの裏面側に配置された導体パターン(図示せず)とを含む。導体パターン230c、230d、230e、230fは、互いに間隔を隔ててセラミック基板230aの表面上に配置されている。導体パターン230c、230d、230e、230fは互いにほぼ平行に延びるように配置されている。導体パターン230fはスルーホール232によりセラミック基板230aの裏面側に配置された導体パターンと電気的に接続されている。スルーホール232は複数形成されている。 The snubber circuit substrate 230 includes a ceramic substrate 230a, conductor patterns 230c, 230d, 230e, and 230f disposed on the surface of the ceramic substrate 230a, and a conductor pattern (not shown) disposed on the back side of the ceramic substrate 230a. ). The conductor patterns 230c, 230d, 230e, and 230f are disposed on the surface of the ceramic substrate 230a at a distance from each other. The conductor patterns 230c, 230d, 230e, and 230f are arranged so as to extend substantially parallel to each other. The conductor pattern 230f is electrically connected to the conductor pattern disposed on the back side of the ceramic substrate 230a through the through hole 232. A plurality of through holes 232 are formed.
 コンデンサ209aは導体パターン230cと導体パターン230dとを接続する。コンデンサ209bは導体パターン230dと導体パターン230eとを接続する。抵抗体233aは導体パターン230cと導体パターン230dとを接続する。抵抗体233bは導体パターン230dと導体パターン230eとを接続する。抵抗体210は導体パターン230eと導体パターン230fとを接続する。図4からもわかるように、2つのコンデンサ209a、209bおよび抵抗体210は直列に接続されている。抵抗体233aはコンデンサ209aと並列に接続されている。抵抗体233bはコンデンサ209bと並列に接続されている。すなわち、各コンデンサ209a、209bに均等に電圧を分圧するために、各コンデンサ209a、209bに並列に分圧抵抗としての抵抗体233a、233bが接続されている。ここで、分圧抵抗としての抵抗体233a、233bは、コンデンサ209a、209bに直列接続された抵抗体210に比較して、1000倍以上の抵抗値を有する抵抗体であることが好ましい。また、複数のコンデンサ209a、209bに並列接続される各分圧抵抗である抵抗体233a、233bの電気的特性は実質的に同じである事が好ましい。 The capacitor 209a connects the conductor pattern 230c and the conductor pattern 230d. The capacitor 209b connects the conductor pattern 230d and the conductor pattern 230e. The resistor 233a connects the conductor pattern 230c and the conductor pattern 230d. The resistor 233b connects the conductor pattern 230d and the conductor pattern 230e. The resistor 210 connects the conductor pattern 230e and the conductor pattern 230f. As can be seen from FIG. 4, the two capacitors 209a and 209b and the resistor 210 are connected in series. The resistor 233a is connected in parallel with the capacitor 209a. The resistor 233b is connected in parallel with the capacitor 209b. That is, resistors 233a and 233b serving as voltage dividing resistors are connected in parallel to the capacitors 209a and 209b in order to evenly divide the voltages to the capacitors 209a and 209b. Here, it is preferable that the resistors 233a and 233b serving as voltage dividing resistors are resistors having a resistance value 1000 times or more that of the resistor 210 connected in series to the capacitors 209a and 209b. Moreover, it is preferable that the electrical characteristics of the resistors 233a and 233b, which are voltage-dividing resistors connected in parallel to the plurality of capacitors 209a and 209b, are substantially the same.
 ベース板201の外周に沿って、ケース202が取り付けられている。ベース板201、ベース絶縁基板203、半導体素子204、コンデンサ209、抵抗体210、配線部材206、端子208の一部を覆うように、ケース202内部は封止体205により満たされている。 A case 202 is attached along the outer periphery of the base plate 201. The inside of the case 202 is filled with a sealing body 205 so as to cover a part of the base plate 201, the base insulating substrate 203, the semiconductor element 204, the capacitor 209, the resistor 210, the wiring member 206, and the terminal 208.
 ケース202は任意の樹脂により構成してもよいが、たとえばポリフェニルサルファイド樹脂(PPS)またはポリブチレンテレフタレート樹脂(PBT)またはポリエチレンテレフタレート樹脂(PET)からなる。ベース絶縁基板203の絶縁材203bはアルミナ(Al)、窒化アルミニウム(AlN)、および窒化珪素(Si)などのセラミックス材だけでなく、エポキシ材や液晶ポリマーなどのバインダー材にシリカ、アルミナ、および窒化ホウ素(BN)などのフィラーが混練されたような有機絶縁層であってもよい。また、導体パターン203aおよび導体パターン203cはたとえば銅(Cu)膜であるが、銅膜の表面にニッケル(Ni)めっきまたは銀(Ag)めっきが施されていてもよい。導体パターン203aおよび導体パターン203cは、アルミニウム(Al)膜の表面にNiめっきまたはAgめっきが施されたものでもよい。 The case 202 may be made of any resin, and is made of, for example, polyphenyl sulfide resin (PPS), polybutylene terephthalate resin (PBT), or polyethylene terephthalate resin (PET). The insulating material 203b of the base insulating substrate 203 is not only a ceramic material such as alumina (Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ), but also a binder material such as an epoxy material or a liquid crystal polymer. An organic insulating layer in which fillers such as silica, alumina, and boron nitride (BN) are kneaded may be used. The conductor pattern 203a and the conductor pattern 203c are, for example, copper (Cu) films, but the surface of the copper film may be subjected to nickel (Ni) plating or silver (Ag) plating. The conductor pattern 203a and the conductor pattern 203c may be those in which the surface of an aluminum (Al) film is subjected to Ni plating or Ag plating.
 半導体素子204はスイッチング素子204aとしてSiC―MOSFET、還流ダイオード204bとしてSiC―SBDを用いている、珪素(Si)を基材とするSi―IGBT(Insulated Gate Bipolar Transistor)およびSi―FWD(Free Wheeling Diode)をそれぞれスイッチング素子204aおよび還流ダイオード204bとして用いてもよい。半導体素子204上に配置される配線部材206はたとえばAlワイヤであり、ウェッジボンディングにより半導体素子204表面と接合されている。ただし、配線部材206としては導電性があればよく、例えばCuワイヤを用いてもよい。また、配線部材206はワイヤ形状ではなく板材であってもよい。配線部材206と半導体素子204との接合は、ウェッジボンディングとは異なる接合方法を用いてもよい。たとえば、半導体素子204上面に例えばNi/Auめっき、Cuめっき、またはAgめっきを施してある場合、はんだ、Agを含有した接着剤、またはAg焼結材により配線部材206と半導体素子204とを接合していてもよい。チップ下はんだ207aはたとえばSnを基材としたはんだ材であるが、Ag焼結材によりベース絶縁基板203表面側の導体パターン203aと半導体素子204とを接合していてもよい。封止体205はたとえばシリコンゲルであるが、電力用半導体モジュールの使用に当たり十分な絶縁性を有していればよく、封止体205としてフィラーが混練されたエポキシ材を用いてもよい。 The semiconductor element 204 uses an SiC-MOSFET as the switching element 204a and an SiC-SBD as the freewheeling diode 204b. The silicon (Si) -based Si-IGBT (Insulated Gate Bipolar Transistor) and Si-FWD (Free Wheeling Diode). ) May be used as the switching element 204a and the return diode 204b, respectively. The wiring member 206 disposed on the semiconductor element 204 is, for example, an Al wire, and is joined to the surface of the semiconductor element 204 by wedge bonding. However, the wiring member 206 may be conductive, and for example, a Cu wire may be used. The wiring member 206 may be a plate material instead of a wire shape. For joining the wiring member 206 and the semiconductor element 204, a joining method different from wedge bonding may be used. For example, when the upper surface of the semiconductor element 204 is subjected to, for example, Ni / Au plating, Cu plating, or Ag plating, the wiring member 206 and the semiconductor element 204 are joined by solder, an adhesive containing Ag, or an Ag sintered material. You may do it. The under-chip solder 207a is, for example, a solder material based on Sn, but the conductor pattern 203a on the surface side of the base insulating substrate 203 and the semiconductor element 204 may be joined by an Ag sintered material. The sealing body 205 is, for example, silicon gel, but may have an insulating property sufficient for use of the power semiconductor module, and an epoxy material in which a filler is kneaded may be used as the sealing body 205.
 ここで、コンデンサ209と導体パターン203e、203fとははんだ接合部211により接続されている。当該はんだ接合部211は、半導体素子204が導体パターン203aにはんだ付けされる工程、もしくは、ベース絶縁基板203がベース板201とはんだ付けされる工程において同時に形成される事が効率的で好ましい。はんだ付け工法については、以下詳細を説明する。 Here, the capacitor 209 and the conductor patterns 203e and 203f are connected by a solder joint portion 211. It is efficient and preferable that the solder joint portion 211 is formed at the same time in a process in which the semiconductor element 204 is soldered to the conductor pattern 203a or a process in which the base insulating substrate 203 is soldered to the base plate 201. Details of the soldering method will be described below.
 パワーモジュールのはんだ付けでは、はんだペースト材に含有されるフラックスに起因するボイド発生やはんだの飛散(はんだボール)が懸念されることから、フラックスを含有したはんだペースト材を適用する事は一般的に少ない。そこで、半導体素子のはんだ付けでは、還元雰囲気下ではんだ材を還元しながらはんだを溶融させるはんだ付け工法を適用する場合がある。この還元雰囲気下でのはんだ付け工法を採用する場合、板状のはんだ材を導体パターン上に載置して、更に当該はんだ材の上に半導体素子を載置してはんだ付けを実施する。コンデンサ209をベース絶縁基板203上の半導体素子204と同一面にはんだ付けする際に、半導体素子204と同時にはんだ付けする事は、コンデンサ209を実装する事による工数増加を招かない事から非常に効率的である。 When soldering power modules, there are concerns about voids and solder scattering (solder balls) due to the flux contained in the solder paste material, so it is common to apply a solder paste material containing flux. Few. Therefore, in soldering a semiconductor element, a soldering method in which solder is melted while reducing a solder material in a reducing atmosphere may be applied. When the soldering method under the reducing atmosphere is employed, a plate-like solder material is placed on the conductor pattern, and a semiconductor element is placed on the solder material to perform soldering. When the capacitor 209 is soldered to the same surface as the semiconductor element 204 on the base insulating substrate 203, soldering at the same time as the semiconductor element 204 does not increase the number of steps by mounting the capacitor 209, which is very efficient. Is.
 具体的には、板状のはんだ材を導体パターンの上に載置して、更にそのはんだ材上にコンデンサ209のはんだ付け部を載置する。もしくは、導体パターン203e、203fの上にコンデンサ209を載置して、その近傍に矩形状もしくは球状のはんだ材を載置する。この状態ではんだ材を溶融して濡れ広げる事でコンデンサ209をはんだ付けする。この際、はんだの濡れ広がる領域を限定するためにソルダーレジストなどからなる部材を導体パターン203e、203f上に予め印刷しておいてもよい。ここでは、半導体素子204と同時にコンデンサ209を実装する工法について記載したが、ベース絶縁基板203をベース板201にはんだ付けする際に、同種の方法でコンデンサ209を導体パターン203e、203fに接続してもよい。 Specifically, a plate-like solder material is placed on the conductor pattern, and a soldered portion of the capacitor 209 is placed on the solder material. Alternatively, the capacitor 209 is placed on the conductor patterns 203e and 203f, and a rectangular or spherical solder material is placed in the vicinity thereof. In this state, the capacitor 209 is soldered by melting and spreading the solder material. At this time, a member made of a solder resist or the like may be printed on the conductor patterns 203e and 203f in advance in order to limit the area where the solder spreads. Here, the method of mounting the capacitor 209 at the same time as the semiconductor element 204 has been described. However, when the base insulating substrate 203 is soldered to the base plate 201, the capacitor 209 is connected to the conductor patterns 203e and 203f by the same type of method. Also good.
 コンデンサ209はサイズや内蔵される電極枚数に依存するが、およそ2g/cm以上6g/cm以下の密度を有する。はんだ付け時には、コンデンサ209の自重により、溶融したはんだがコンデンサ209の直下の領域から押し出され、はんだ接合部211の厚みは薄くなる。なお、コンデンサ209の静電容量は、たとえば1nF以上30nF以下といった数値範囲であればリンギング抑制効果が大きい。 The capacitor 209 has a density of about 2 g / cm 3 or more and 6 g / cm 3 or less, depending on the size and the number of built-in electrodes. At the time of soldering, the melted solder is pushed out from the region immediately below the capacitor 209 due to its own weight, and the thickness of the solder joint portion 211 is reduced. In addition, if the electrostatic capacitance of the capacitor 209 is in a numerical value range of, for example, 1 nF to 30 nF, the ringing suppression effect is large.
 図5はコンデンサ209のはんだ接合部の構成例の詳細を図示した上面図と断面図とを示している。図5において上側の図が上面図であり、下側の図が断面図である。コンデンサ209はコンデンサ本体501aと外部電極501bとを含む。図5に示した構成では、コンデンサ本体501aが本実施の形態に係るコンデンサの一例に相当する。また、外部電極501bが本実施の形態に係る中間部材の一例に相当する。ベース絶縁基板203は、セラミック基板504cと、当該セラミック基板504cの上面上に形成された導体パターン504a、504bと、セラミック基板504cの下面上に形成された導体パターン504dとを含む。外部電極501bは、正極側の導体パターン504aおよび負極側の導体パターン504bと、はんだ接合部211により接続されている。はんだ接合部211が本実施の形態に係る接合材の一例に相当する。正極側の導体パターン504aおよび負極側の導体パターン504bの上にははんだが濡れ広がる事を防止するためのソルダーレジスト503a、503bが形成されている。ソルダーレジスト503bの上にコンデンサ209が搭載されている。ソルダーレジスト503a、503bの厚みはたとえば10μm以上30μm以下である。溶融したはんだがコンデンサ209の自重により押し広げられて、セラミックコンデンサ外部電極501bと接続されたはんだ接合部211を形成する。そのため、セラミックコンデンサ外部電極501bとベース絶縁基板203の導体パターン504aとの間に配置されるはんだ厚さはソルダーレジスト503bの厚みとほぼ同等しか確保が出来ない。このため、ソルダーレジスト503bの厚みが十分ではない場合、パワーモジュールの接合信頼性として要求される接合寿命を得るには不十分なはんだ接合部211の厚さしか確保出来ないと言う課題があった。 FIG. 5 shows a top view and a cross-sectional view illustrating details of a configuration example of a solder joint portion of the capacitor 209. In FIG. 5, the upper view is a top view and the lower view is a cross-sectional view. Capacitor 209 includes a capacitor body 501a and an external electrode 501b. In the configuration shown in FIG. 5, the capacitor body 501a corresponds to an example of the capacitor according to the present embodiment. The external electrode 501b corresponds to an example of an intermediate member according to this embodiment. The base insulating substrate 203 includes a ceramic substrate 504c, conductor patterns 504a and 504b formed on the upper surface of the ceramic substrate 504c, and a conductor pattern 504d formed on the lower surface of the ceramic substrate 504c. The external electrode 501b is connected to the positive conductor pattern 504a and the negative conductor pattern 504b by a solder joint 211. The solder joint portion 211 corresponds to an example of the joining material according to the present embodiment. Solder resists 503a and 503b are formed on the positive conductor pattern 504a and the negative conductor pattern 504b to prevent the solder from spreading. A capacitor 209 is mounted on the solder resist 503b. The thickness of the solder resists 503a and 503b is, for example, not less than 10 μm and not more than 30 μm. The melted solder is spread by the weight of the capacitor 209 to form a solder joint portion 211 connected to the ceramic capacitor external electrode 501b. Therefore, the thickness of the solder disposed between the ceramic capacitor external electrode 501b and the conductive pattern 504a of the base insulating substrate 203 can be ensured only approximately equal to the thickness of the solder resist 503b. For this reason, when the thickness of the solder resist 503b is not sufficient, there is a problem that only the thickness of the solder joint portion 211 that is insufficient to obtain the joint life required as the joint reliability of the power module can be secured. .
 抵抗体210はその抵抗値がたとえば1Ω以上20Ω以下程度であれば、リンギング抑制効果が大きい。図6に示すように、抵抗体210は、ベース絶縁基板203の正極側の導体パターン504aと負極側の導体パターン504bとの間に直接形成されていてもよい。具体的には、抵抗体210は、導体パターン504aの端部と導体パターン504bの端部とが対向する部分において、導体パターン504aと導体パターン504bとの間にて露出するセラミック基板504cの表面上から導体パターン504a、504bの上記端部上にまで延びるように形成されている。抵抗体210は導体パターン504a、504bの上記端部と接続されている。 If the resistance value of the resistor 210 is, for example, about 1Ω to 20Ω, the ringing suppression effect is large. As shown in FIG. 6, the resistor 210 may be directly formed between the positive conductor pattern 504 a and the negative conductor pattern 504 b of the base insulating substrate 203. Specifically, the resistor 210 is formed on the surface of the ceramic substrate 504c exposed between the conductor pattern 504a and the conductor pattern 504b at a portion where the end of the conductor pattern 504a and the end of the conductor pattern 504b face each other. To the end portions of the conductor patterns 504a and 504b. The resistor 210 is connected to the end portions of the conductor patterns 504a and 504b.
 このような抵抗体210の製造方法としては、以下のような方法を用いることができる。たとえば、ベース絶縁基板203の製造工程における焼成工程前に、ベース絶縁基板203となるべき基板材料の表面に抵抗体210となるペースト剤を配置する。ペースト剤は、酸化ルテニウム(RuO)などの導体成分および固結剤などからなる。ペースト剤は抵抗体210が形成されるべき領域に印刷法などを用いて配置する。固結剤は、セラミック基板504cへ抵抗体210を付着させるために用いられる。その後、当該ペースト剤が塗布された基板材料を焼成してベース絶縁基板203を製造すると同時に、ペースト剤を加熱することで抵抗体210を形成する。 As a method for manufacturing such a resistor 210, the following method can be used. For example, before the baking process in the manufacturing process of the base insulating substrate 203, a paste agent that becomes the resistor 210 is disposed on the surface of the substrate material to be the base insulating substrate 203. The paste agent is made of a conductor component such as ruthenium oxide (RuO 2 ) and a binder. The paste agent is disposed in a region where the resistor 210 is to be formed using a printing method or the like. The caking agent is used to adhere the resistor 210 to the ceramic substrate 504c. After that, the base material to which the paste agent is applied is baked to produce the base insulating substrate 203, and at the same time, the resistor 210 is formed by heating the paste agent.
 また、上述のようにベース絶縁基板203上に直接抵抗体210を形成する方法ではなく、図7に示すように支持体としてのセラミック板506b上に抵抗膜506aを形成した部品単体として抵抗体210を準備してもよい。図7に示す抵抗体210は、ベース絶縁基板203の表面上に配置されている。ベース絶縁基板203は、セラミック基板504cと、セラミック基板504cの表面上に配置された導体パターン504a、504b、504eと、セラミック基板504cの裏面上に配置された導体パターン504dとを含む。抵抗体210は導体パターン504eの表面上にはんだ508を介して接続されている。はんだ508は抵抗体210のセラミック板506bと導体パターン504eとを接続する。 In addition, the resistor 210 is not directly formed on the base insulating substrate 203 as described above, but as a single component in which the resistor film 506a is formed on the ceramic plate 506b as a support as shown in FIG. May be prepared. The resistor 210 shown in FIG. 7 is disposed on the surface of the base insulating substrate 203. The base insulating substrate 203 includes a ceramic substrate 504c, conductor patterns 504a, 504b, and 504e disposed on the surface of the ceramic substrate 504c, and a conductor pattern 504d disposed on the back surface of the ceramic substrate 504c. The resistor 210 is connected to the surface of the conductor pattern 504e via a solder 508. The solder 508 connects the ceramic plate 506b of the resistor 210 and the conductor pattern 504e.
 セラミック板506bはアルミナ(Al)および窒化アルミニウム(AlN)などのセラミックスからなる。なお、導体パターン504eは正極用の導体パターン504aもしくは負極用の導体パターン504bのいずれかと接続してあってもよい。抵抗体210の上面に複数のボンディングパッド506cを形成しておいてもよい。正極用の導体パターン504aと負極用の導体パターン504bとは、導体パターン504aとボンディングパッド506cとを繋ぐようにボンディングされた配線材507と、導体パターン504bと他のボンディングパッド506cとを繋ぐようにボンディングされた配線材507と、抵抗体210とを介して電気的に接続されていてもよい。 The ceramic plate 506b is made of ceramics such as alumina (Al 2 O 3 ) and aluminum nitride (AlN). The conductor pattern 504e may be connected to either the positive conductor pattern 504a or the negative conductor pattern 504b. A plurality of bonding pads 506 c may be formed on the upper surface of the resistor 210. The conductor pattern 504a for the positive electrode and the conductor pattern 504b for the negative electrode are connected so that the wiring material 507 bonded so as to connect the conductor pattern 504a and the bonding pad 506c, and the conductor pattern 504b and another bonding pad 506c. The wiring member 507 bonded and the resistor 210 may be electrically connected.
 ここで、図2に示したベース板201はAlSiC板やCu板でも良いが、電力用半導体装置を使用するに当たり十分な強度を有するのであれば、図8に示すように、ベース板201(図2参照)が無い構造、すなわちベース絶縁基板203の裏面側の導体層203iがそのまま露出していてもよい。導体層203iはたとえば銅(Cu)からなっていてもよい。図8は、上述した電力用半導体モジュールの変形例の断面を示す模式図である。図8に示した電力用半導体モジュールは、基本的には図2に示した電力用半導体モジュールと同様の構成を備えるが、ベース板201(図2参照)を備えていない点、およびベース絶縁基板203の外周部に直接ケース202が接続されている点、およびコンデンサ209の形状が、図2に示した電力用半導体モジュールと異なっている。図8に示した電力用半導体モジュールにおけるコンデンサ209は、コンデンサ本体306aに金属端子306bが接続された構造を有する。金属端子306bはコンデンサ本体306aの端面側に接続されている。金属端子306bはコンデンサ本体306aの下側に向けて延びるように形成されている。金属端子306bの下側の端部が導体パターン203e、203fとはんだ接合部211を介して接続されている。コンデンサ本体306aと絶縁材203bとの間には空間が形成されている。図8に示した構成では、コンデンサ本体306aが本実施の形態に係るコンデンサの一例に相当する。また、金属端子306bが本実施の形態に係る中間部材の一例に相当する。また、はんだ接合部211が本実施の形態に係る接合材の一例に相当する。 Here, the base plate 201 shown in FIG. 2 may be an AlSiC plate or a Cu plate. However, if the base plate 201 has sufficient strength to use the power semiconductor device, as shown in FIG. 2), that is, the conductor layer 203i on the back surface side of the base insulating substrate 203 may be exposed as it is. The conductor layer 203i may be made of, for example, copper (Cu). FIG. 8 is a schematic diagram showing a cross section of a modified example of the power semiconductor module described above. The power semiconductor module shown in FIG. 8 basically has the same configuration as that of the power semiconductor module shown in FIG. 2, but does not include the base plate 201 (see FIG. 2), and the base insulating substrate. The point that the case 202 is directly connected to the outer peripheral part of 203 and the shape of the capacitor 209 are different from the power semiconductor module shown in FIG. The capacitor 209 in the power semiconductor module shown in FIG. 8 has a structure in which a metal terminal 306b is connected to a capacitor body 306a. The metal terminal 306b is connected to the end face side of the capacitor body 306a. The metal terminal 306b is formed to extend toward the lower side of the capacitor body 306a. The lower end of the metal terminal 306b is connected to the conductor patterns 203e and 203f via the solder joints 211. A space is formed between the capacitor body 306a and the insulating material 203b. In the configuration shown in FIG. 8, the capacitor body 306a corresponds to an example of the capacitor according to the present embodiment. Further, the metal terminal 306b corresponds to an example of an intermediate member according to the present embodiment. Also, the solder joint portion 211 corresponds to an example of the joining material according to the present embodiment.
 ここで、コンデンサ209を導体パターン203e、203fとはんだ付けする場合、はんだ付けされる導体パターン203e、203fがたとえばCuから構成されていると、当該導体パターン203e、203fとコンデンサ209との線膨張率の差に起因して、はんだ付け時のはんだ材の凝固収縮、ベース絶縁基板203の反り変形、さらにはベース板201(図2参照)の反り変形が発生する。この結果、コンデンサ209が割れる、あるいははんだ接合部211の接合部寿命が極端に低下するといった問題が発生する。さらに、抵抗体210を備えている場合、抵抗体210が導体パターン203d、203eから剥離する、あるいは抵抗体210のはんだ接合部の寿命が極端に低下する、といった問題があった。 Here, when the capacitor 209 is soldered to the conductor patterns 203e and 203f, if the conductor patterns 203e and 203f to be soldered are made of Cu, for example, the linear expansion coefficient between the conductor patterns 203e and 203f and the capacitor 209 Due to this difference, solidification shrinkage of the solder material during soldering, warping deformation of the base insulating substrate 203, and warping deformation of the base plate 201 (see FIG. 2) occur. As a result, there arises a problem that the capacitor 209 is broken or the joint life of the solder joint 211 is extremely reduced. Further, when the resistor 210 is provided, there is a problem that the resistor 210 is peeled off from the conductor patterns 203d and 203e or the life of the solder joint portion of the resistor 210 is extremely reduced.
 このような問題を解決するために、前述のエポキシ樹脂からなる封止体205により電力用半導体モジュール内部を封止する事により、エポキシ樹脂が導体パターン203a、203d~203f、コンデンサ209、および抵抗体210と十分に密着しているだけでなく、ベース絶縁基板203またはベース板201(図2参照)の反りや変形を抑制できる。このため、コンデンサ209のコンデンサ本体部501a、306aに発生する応力、抵抗体210の抵抗膜に発生する応力、およびはんだ接合部211に発生する応力を低減させる事が可能となる。 In order to solve such a problem, the inside of the power semiconductor module is sealed with the sealing body 205 made of the above-described epoxy resin, so that the epoxy resin becomes the conductor patterns 203a, 203d to 203f, the capacitor 209, and the resistor. In addition to being in close contact with 210, warping and deformation of the base insulating substrate 203 or the base plate 201 (see FIG. 2) can be suppressed. For this reason, it is possible to reduce the stress generated in the capacitor main body portions 501a and 306a of the capacitor 209, the stress generated in the resistance film of the resistor 210, and the stress generated in the solder joint portion 211.
 更には、通電時にコンデンサ209や抵抗体210は発熱する。このコンデンサ209および抵抗体210の自己発熱により、コンデンサ209や抵抗体210の電気特性は変動してしまう。このため、上述した自己発熱に起因する熱を効率的に外部へ放出する必要がある。封止体205としてゲル材料を用いる場合と比較して、当該ゲル材料より熱伝導率が大きいエポキシ樹脂を封止体205として用いる事により、電力用半導体モジュールの放熱性が向上する。エポキシ樹脂の熱伝導率は混廉するフィラーの種類や含有量により調整が可能である。また、前述の通りフィラーの種類および含有量は硬化したエポキシ樹脂の線膨張特性とも密接に関連する。このため、封止体205の熱伝導率は0.5W/m・K以上5W/m・K以下である事が好ましい。 Furthermore, the capacitor 209 and the resistor 210 generate heat when energized. Due to the self-heating of the capacitor 209 and the resistor 210, the electrical characteristics of the capacitor 209 and the resistor 210 change. For this reason, it is necessary to efficiently release the heat caused by the above-described self-heating to the outside. Compared with the case where a gel material is used as the sealing body 205, the heat dissipation of the power semiconductor module is improved by using an epoxy resin having a thermal conductivity higher than that of the gel material as the sealing body 205. The thermal conductivity of the epoxy resin can be adjusted by the kind and content of fillers that are mixed. Further, as described above, the type and content of the filler are closely related to the linear expansion characteristics of the cured epoxy resin. For this reason, it is preferable that the thermal conductivity of the sealing body 205 is 0.5 W / m · K or more and 5 W / m · K or less.
 特に、図8で示すように、図2で示したベース板201がなく絶縁材203bの裏面に直接接するように形成されたCuからなる導体層203iが露出している構造では、通電時の半導体素子204の発熱による導体層203iの線膨張に整合して当該導体層203iなどの反り変形を抑制するため、エポキシ樹脂による封止体205を用いることが好ましい。具体的には、硬化した際のエポキシ樹脂の線膨張率がCuの線膨張率16.8ppm/℃に近い値になるように、フィラー材の材質およびフィラー含有量を調整したエポキシ樹脂を封止体205として用いる事が好ましい。 In particular, as shown in FIG. 8, in the structure in which the conductor layer 203i made of Cu formed so as to be in direct contact with the back surface of the insulating material 203b without the base plate 201 shown in FIG. In order to match the linear expansion of the conductor layer 203i due to heat generation of the element 204 and suppress warping deformation of the conductor layer 203i and the like, it is preferable to use a sealing body 205 made of an epoxy resin. Specifically, an epoxy resin whose filler material and filler content are adjusted so that the linear expansion coefficient of the epoxy resin when cured is close to the Cu linear expansion coefficient of 16.8 ppm / ° C. It is preferable to use as the body 205.
 更には、導体層203iの反り挙動は、導体層203i上の構造、具体的には絶縁材203b、導体パターン203a、203d~203f、203h、スイッチング素子204aおよび還流ダイオード204bなどの半導体素子204といった構成部材の影響を受ける。そのため、封止体205を構成するエポキシ材の線膨張率は16.8ppm/℃に限定する必要はなく、線膨張率を10ppm/℃以上20ppm/℃以下の範囲で適宜選択することにより、導体層203iの反り挙動を抑制してもよい。 Furthermore, the warping behavior of the conductor layer 203i is caused by the structure on the conductor layer 203i, specifically, the insulating material 203b, the conductor patterns 203a, 203d to 203f, 203h, the semiconductor element 204 such as the switching element 204a and the free wheel diode 204b. Influenced by members. Therefore, it is not necessary to limit the linear expansion coefficient of the epoxy material constituting the sealing body 205 to 16.8 ppm / ° C., and by appropriately selecting the linear expansion coefficient in the range of 10 ppm / ° C. to 20 ppm / ° C. The warping behavior of the layer 203i may be suppressed.
 また、図9に示す通り、コンデンサ209が覆われる高さまでエポキシ材からなる封止体205によって封止した後、たとえば封止体205とは異なる材料からなる上部封止体215を封止体205上に配置してもよい。上部封止体215としてはたとえば絶縁材を用いてもよい。 Further, as shown in FIG. 9, after sealing with a sealing body 205 made of an epoxy material up to a height at which the capacitor 209 is covered, for example, an upper sealing body 215 made of a material different from the sealing body 205 is sealed. You may arrange on top. For example, an insulating material may be used as the upper sealing body 215.
 具体的には、コンデンサ209の高さは当該コンデンサ209に必要な静電容量により任意に選択されるものであるが、当該高さはたとえば1mm以上3.5mm以下の範囲である。そのため、導体パターン203aから封止体205の上部表面までの高さは少なくとも1mm以上である事が好ましい。一方で、配線部材206のループ高さは、ループ高さが高くなる事で配線インダクタンスが大きくなる事から、できるだけ低い方が好ましい。たとえば、導体パターン203aから配線部材206のループの最高部である頂部までの高さが4mm以下である事が好ましい。また、封止体205は、配線部材206と半導体素子204との接合部および配線部材206を封止するので、配線部材206の上記接合部を補強する事が可能となる効果が得られるだけでなく、封止体205として高価なエポキシ材を用いる場合に、当該エポキシ材の使用量を少なくする事が出来るという効果も得られる。 Specifically, the height of the capacitor 209 is arbitrarily selected depending on the capacitance required for the capacitor 209, and the height is, for example, in the range of 1 mm to 3.5 mm. Therefore, the height from the conductor pattern 203a to the upper surface of the sealing body 205 is preferably at least 1 mm. On the other hand, the loop height of the wiring member 206 is preferably as low as possible because the wiring inductance increases as the loop height increases. For example, it is preferable that the height from the conductor pattern 203a to the top which is the highest part of the loop of the wiring member 206 is 4 mm or less. In addition, since the sealing body 205 seals the joint portion between the wiring member 206 and the semiconductor element 204 and the wiring member 206, only the effect that the joint portion of the wiring member 206 can be reinforced can be obtained. In addition, when an expensive epoxy material is used as the sealing body 205, an effect that the amount of the epoxy material used can be reduced is also obtained.
 ここで封止体215は、封止体205と同じ材質を用いてもよいが、封止体205と異なる物性の材料を用いてもよい。例えば、封止体215の材料として、シリコンゲルを用いてもよく、封止体205とはフィラーの種類および含有量の少なくともいずれか一方を変更したエポキシ樹脂を用いてもよい。しかしながら、配線部材206のループの途中で封止体が異なる材料になる、つまり配線部材206のループの途中に封止体205と封止体215との界面が位置する構造となると、封止体205と封止体215との線膨張率の違いから、配線部材206のループが応力を受ける。具体的には、上記界面近傍の配線部材206のループは、電力用半導体モジュールの使用中の発熱によって繰り返し発生する封止体205、215の膨張収縮に起因する応力を受けて細り、結果的に疲労破壊が生じる場合がある。そのため、封止体205の高さは、配線部材206およびコンデンサ209のいずれもが覆われる高さであることが好ましい。 Here, the same material as that of the sealing body 205 may be used for the sealing body 215, but a material having physical properties different from that of the sealing body 205 may be used. For example, silicon gel may be used as the material of the sealing body 215, and the sealing body 205 may be an epoxy resin in which at least one of the filler type and content is changed. However, when the sealing body is made of a different material in the middle of the loop of the wiring member 206, that is, when the interface between the sealing body 205 and the sealing body 215 is located in the middle of the loop of the wiring member 206, the sealing body Due to the difference in the linear expansion coefficient between 205 and the sealing body 215, the loop of the wiring member 206 receives stress. Specifically, the loop of the wiring member 206 in the vicinity of the interface is subjected to stress due to the expansion and contraction of the sealing bodies 205 and 215 that are repeatedly generated due to heat generation during use of the power semiconductor module. Fatigue failure may occur. Therefore, it is preferable that the height of the sealing body 205 is a height at which both the wiring member 206 and the capacitor 209 are covered.
 上述した電力用半導体モジュールの特徴的な構成を要約すれば、図1および図2に示した電力用半導体モジュールは、少なくとも1つの半導体素子204と、導体パターン203a、203d~203fと、少なくとも1つのスナバ回路106と、封止体205とを備える。半導体素子204の一例としては、たとえば少なくとも1つの正極側電力用半導体素子である正極側スイッチング素子103Pおよび正極側還流ダイオード104Pと、少なくとも1つの負極側電力用半導体素子である負極側スイッチング素子103Nおよび負極側還流ダイオード104Nとが挙げられる。導体パターン203aには、少なくとも1つの半導体素子204が接続される。少なくとも1つのスナバ回路106は、コンデンサとしてのコンデンサ本体306a(図8参照)と抵抗体210とが直列に接続された回路である。封止体205は、少なくとも1つの半導体素子204、導体層としての導体パターン203d~203f、コンデンサ本体306aおよび抵抗体210を封止する。コンデンサ本体306aは、中間部材としての金属端子306b(図8参照)と接続される。接合材としてのはんだ接合部211により金属端子306bが導体パターン203e、203fに接続されている。なお、封止体205は、図8に示すように少なくとも1つの半導体素子204、導体層としての導体パターン203d~203f、コンデンサ本体306a、中間部材としての金属端子306b、接合材としてのはんだ接合部211、および抵抗体210を封止してもよい。つまり、封止体205はベース絶縁基板203上に配置されたすべての構成要素を封止してもよい。 To summarize the characteristic configuration of the power semiconductor module described above, the power semiconductor module shown in FIGS. 1 and 2 includes at least one semiconductor element 204, conductor patterns 203a, 203d to 203f, and at least one semiconductor element. A snubber circuit 106 and a sealing body 205 are provided. As an example of the semiconductor element 204, for example, at least one positive electrode side switching element 103P and a positive electrode side freewheeling diode 104P that are positive electrode power semiconductor elements, and at least one negative electrode side switching element 103N that is a negative electrode power semiconductor element and And a negative electrode side reflux diode 104N. At least one semiconductor element 204 is connected to the conductor pattern 203a. At least one snubber circuit 106 is a circuit in which a capacitor body 306a (see FIG. 8) as a capacitor and a resistor 210 are connected in series. The sealing body 205 seals at least one semiconductor element 204, conductor patterns 203d to 203f as conductor layers, the capacitor body 306a, and the resistor 210. The capacitor body 306a is connected to a metal terminal 306b (see FIG. 8) as an intermediate member. The metal terminal 306b is connected to the conductor patterns 203e and 203f by a solder joint portion 211 as a joining material. As shown in FIG. 8, the sealing body 205 includes at least one semiconductor element 204, conductor patterns 203d to 203f as conductor layers, a capacitor body 306a, a metal terminal 306b as an intermediate member, and a solder joint as a bonding material. 211 and the resistor 210 may be sealed. That is, the sealing body 205 may seal all the components arranged on the base insulating substrate 203.
 また、異なる観点から言えば、図1および図2に示した電力用半導体モジュールは、少なくとも1つの正極側電力用半導体素子である正極側スイッチング素子103Pおよび正極側還流ダイオード104Pと、少なくとも1つの負極側電力用半導体素子である負極側スイッチング素子103Nおよび負極側還流ダイオード104Nと、導体パターン203aと、導体層としての導体パターン203d~203fと、少なくとも1つのスナバ回路106と、封止体205とを備える。導体パターン203aには、少なくとも1つの正極側電力用半導体素子である正極側スイッチング素子103Pおよび正極側還流ダイオード104P、および少なくとも1つの負極側電力用半導体素子である負極側スイッチング素子103Nおよび負極側還流ダイオード104N、のいずれか一方である半導体素子204が接続される。導体層としての導体パターン203d~203fは、導体パターン203aと同一レイヤにより構成される。少なくとも1つのスナバ回路106は、コンデンサ209と抵抗体210とが直列に接続された回路である。封止体205は、少なくとも1つの正極側電力用半導体素子、少なくとも1つの負極側電力用半導体素子、導体層としての導体パターン203d~203f、コンデンサ209および抵抗体210を封止する。コンデンサ209および抵抗体210の少なくともいずれか一方は、導体層としての導体パターン203d~203fに接続される。封止体205はエポキシ樹脂を含む。 From a different point of view, the power semiconductor module shown in FIGS. 1 and 2 includes at least one positive-side power semiconductor element, that is, a positive-side switching element 103P and a positive-side reflux diode 104P, and at least one negative-electrode. Negative electrode side switching element 103N and negative electrode side reflux diode 104N, which are side power semiconductor elements, conductor pattern 203a, conductor patterns 203d to 203f as conductor layers, at least one snubber circuit 106, and sealing body 205 Prepare. The conductor pattern 203a includes at least one positive-side power semiconductor element 103P and a positive-side reflux diode 104P, and at least one negative-side power semiconductor element 103N and a negative-side reflux circuit. The semiconductor element 204, which is one of the diodes 104N, is connected. The conductor patterns 203d to 203f as the conductor layers are formed of the same layer as the conductor pattern 203a. At least one snubber circuit 106 is a circuit in which a capacitor 209 and a resistor 210 are connected in series. The sealing body 205 seals at least one positive power semiconductor element, at least one negative power semiconductor element, conductor patterns 203d to 203f as a conductor layer, a capacitor 209, and a resistor 210. At least one of the capacitor 209 and the resistor 210 is connected to conductor patterns 203d to 203f as conductor layers. The sealing body 205 includes an epoxy resin.
 <作用効果>
 図1~図9に示した電力用半導体モジュールによれば、導体パターン203d~203g、230c~230fとコンデンサ209、209a、209bまたは抵抗体210との接合部の実装が容易なため当該接合部を信頼性高く形成することができる。このため、スナバ回路106によりリンギングを抑制できるとともに、コンデンサ209、209a、209bまたは抵抗体210と導体パターン203d~203g、230c~230fとの接合部の不良などに起因する問題の発生を抑制できる。さらに、封止体205としてエポキシ樹脂を用いるため、導体パターン203a、203d~203f、230c~230fの変形を封止体205により抑制できる。このため、当該導体パターン203d~203f、230c~230fとコンデンサ209、209a、209bまたは抵抗体210との接合部における上記変形に起因する応力の発生を抑制できる。この結果、信頼性の高い電力用半導体モジュールを得ることができる。
<Effect>
According to the power semiconductor module shown in FIG. 1 to FIG. 9, since it is easy to mount the junction between the conductor patterns 203d to 203g, 230c to 230f and the capacitors 209, 209a, 209b or the resistor 210, the junction is It can be formed with high reliability. For this reason, ringing can be suppressed by the snubber circuit 106, and occurrence of problems due to defects in the joints between the capacitors 209, 209a, 209b or the resistor 210 and the conductor patterns 203d to 203g, 230c to 230f can be suppressed. Further, since the epoxy resin is used as the sealing body 205, the deformation of the conductor patterns 203a, 203d to 203f, 230c to 230f can be suppressed by the sealing body 205. For this reason, it is possible to suppress the occurrence of stress due to the above deformation at the joint between the conductor patterns 203d to 203f, 230c to 230f and the capacitors 209, 209a, 209b or the resistor 210. As a result, a highly reliable power semiconductor module can be obtained.
 さらに、図1および図2に示した電力用半導体モジュールでは、スナバ回路106を構成するコンデンサ209と抵抗体210との少なくとも一方が導体パターン203aと同一レイヤにより構成される導体パターン203d~203fに接続されているので、電力用半導体素子が実装される基板とは別の基板をスナバ回路用に準備する場合より電力用半導体モジュールの構成を簡略化できる。また、図3および図4に示したスナバ回路用基板230に実装されたスナバ回路を含む電力用半導体モジュールでは、当該スナバ回路用基板230にあらかじめコンデンサ209a、209b、抵抗体210、233a、233bなどを実装してスナバ回路を準備しておくことができるので、当該スナバ回路を異なる構成の電力用半導体モジュールに適用することができる。 Further, in the power semiconductor module shown in FIGS. 1 and 2, at least one of the capacitor 209 and the resistor 210 constituting the snubber circuit 106 is connected to the conductor patterns 203d to 203f constituted by the same layer as the conductor pattern 203a. Therefore, the configuration of the power semiconductor module can be simplified as compared with the case where a substrate different from the substrate on which the power semiconductor element is mounted is prepared for the snubber circuit. Further, in the power semiconductor module including the snubber circuit mounted on the snubber circuit board 230 shown in FIGS. 3 and 4, the capacitors 209a and 209b, the resistors 210, 233a, and 233b, etc. are provided on the snubber circuit board 230 in advance. Since the snubber circuit can be prepared by mounting the snubber circuit, the snubber circuit can be applied to power semiconductor modules having different configurations.
 上記電力用半導体モジュールにおいて、封止体205は、熱伝導率が0.5W/m・K以上5W/m・K以下であってもよい。封止体205は、線膨張係数が10ppm/℃以上20ppm/℃以下であってもよい。 In the power semiconductor module, the sealing body 205 may have a thermal conductivity of 0.5 W / m · K to 5 W / m · K. The sealing body 205 may have a linear expansion coefficient of 10 ppm / ° C. or more and 20 ppm / ° C. or less.
 この場合、電力用半導体モジュールの使用時にコンデンサ209が発熱したときに、封止体205を介して当該コンデンサ209の熱を電力用半導体モジュールの外部へ容易に放出することができる。このため、コンデンサ209の温度が過剰に上昇することを防止できる。この結果、コンデンサ209の温度特性が電力用半導体モジュールの電気的特性に影響を与えることを防止し、安定した電気的特性を示す電力用半導体モジュールを実現できる。同様に、電力用半導体モジュールの使用時に抵抗体210が発熱したときに、封止体205を介して当該抵抗体210の熱を電力用半導体モジュールの外部へ容易に放出することができる。このため、抵抗体210の温度が過剰に上昇することを防止できる。この結果、抵抗体210の温度特性が電力用半導体モジュールの電気的特性に影響を与えることを防止し、安定した電気的特性を示す電力用半導体モジュールを実現できる。 In this case, when the capacitor 209 generates heat when the power semiconductor module is used, the heat of the capacitor 209 can be easily released to the outside of the power semiconductor module through the sealing body 205. For this reason, it is possible to prevent the temperature of the capacitor 209 from rising excessively. As a result, the temperature characteristics of the capacitor 209 can be prevented from affecting the electrical characteristics of the power semiconductor module, and a power semiconductor module that exhibits stable electrical characteristics can be realized. Similarly, when the resistor 210 generates heat during use of the power semiconductor module, the heat of the resistor 210 can be easily released to the outside of the power semiconductor module through the sealing body 205. For this reason, it can prevent that the temperature of the resistor 210 rises excessively. As a result, it is possible to prevent the temperature characteristics of the resistor 210 from affecting the electrical characteristics of the power semiconductor module, and to realize a power semiconductor module that exhibits stable electrical characteristics.
 上記電力用半導体モジュールにおいて、封止体205は、コンデンサ209が埋設された状態となるように配置されている。図9に示すように、電力用半導体モジュールは、封止体205上に配置された上部封止体215をさらに備える。 In the power semiconductor module, the sealing body 205 is arranged so that the capacitor 209 is embedded. As shown in FIG. 9, the power semiconductor module further includes an upper sealing body 215 disposed on the sealing body 205.
 この場合、コンデンサ209などの電力用半導体モジュールの構成部材に接触する領域は封止体205を配置し、当該構成部材と直接接触しない部分には、たとえば封止体205とは別の絶縁体などからなる上部封止体215を配置するので、エポキシ樹脂を含む封止体205の使用量を低減できる。したがって、上部封止体215として封止体205よりコストの安価な材料を用いることで、電力用半導体モジュールの製造コストを低減できる。 In this case, the sealing body 205 is disposed in a region that contacts the constituent member of the power semiconductor module such as the capacitor 209, and an insulator other than the sealing body 205 is provided in a portion that does not directly contact the constituent member. Since the upper sealing body 215 made of is disposed, the amount of the sealing body 205 containing an epoxy resin can be reduced. Therefore, the manufacturing cost of the power semiconductor module can be reduced by using a lower cost material than the sealing body 205 as the upper sealing body 215.
 上記電力用半導体モジュールにおいて、少なくとも1つの正極側電力用半導体素子および少なくとも1つの負極側電力用半導体素子である半導体素子204は、ワイドバンドギャップ半導体からなる。この場合、上記半導体素子204がワイドバンドギャップ半導体からなるため、リンギングの抑制に加え、高速スイッチング動作および高温動作が可能になる。 In the power semiconductor module, the semiconductor element 204 which is at least one positive power semiconductor element and at least one negative power semiconductor element is formed of a wide band gap semiconductor. In this case, since the semiconductor element 204 is made of a wide band gap semiconductor, in addition to suppressing ringing, high-speed switching operation and high-temperature operation are possible.
 上記電力用半導体モジュールにおいて、ワイドバンドギャップ半導体は、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンド、酸化ガリウムからなる群から選択される1つである。この場合、上記のような半導体材料により半導体素子204を構成することで、リンギングの抑制、高速スイッチング動作、高温動作に加え、高耐圧化が可能な電力用半導体モジュールを得ることができる。 In the power semiconductor module, the wide band gap semiconductor is one selected from the group consisting of silicon carbide (SiC), gallium nitride (GaN), diamond, and gallium oxide. In this case, by configuring the semiconductor element 204 with the semiconductor material as described above, it is possible to obtain a power semiconductor module capable of increasing the breakdown voltage in addition to suppressing ringing, high-speed switching operation, and high-temperature operation.
 実施の形態2.
 上述した実施の形態1に係る電力用半導体モジュールにおいては、封止体205としてエポキシ樹脂を用いた構成を特徴として説明した。一方、以下説明する実施の形態2に係る電力用半導体モジュールでは、これに限らず、コンデンサ209のセラミック割れを抑制し、はんだ接合部211の長寿命化を図る手段について図10を用いて説明する。図10は、本発明の実施の形態2に係る電力用半導体モジュールの部分断面を示す模式図である。
Embodiment 2. FIG.
In the power semiconductor module according to the first embodiment described above, the configuration using an epoxy resin as the sealing body 205 has been described as a feature. On the other hand, the power semiconductor module according to the second embodiment described below is not limited to this, and means for suppressing ceramic cracking of the capacitor 209 and extending the life of the solder joint 211 will be described with reference to FIG. . FIG. 10 is a schematic diagram showing a partial cross section of the power semiconductor module according to the second embodiment of the present invention.
 図10に示す電力用半導体モジュールは、基本的には実施の形態1に係る電力用半導体モジュールと同様の構成を備えるが、コンデンサ209として金属端子付きセラミックコンデンサを適用する。コンデンサ209は、端面に形成された外部電極を含むコンデンサ本体306aと、コンデンサ本体306aの外部電極に接続された金属端子306bとを主に含む。異なる観点から言えば、本開示に従った電力用半導体モジュールは、少なくとも1つの正極側電力用半導体素子である正極側スイッチング素子103Pおよび正極側還流ダイオード104Pと、少なくとも1つの負極側電力用半導体素子である負極側スイッチング素子103Nおよび負極側還流ダイオード104Nと、導体パターン303aと、導体層としての導体パターン303b、303cと、少なくとも1つのスナバ回路とを備える。導体パターン303aには、少なくとも1つの正極側電力用半導体素子および少なくとも1つの負極側電力用半導体素子のいずれか一方である半導体素子204が接続される。導体パターン303b、303cは、導体パターン303aと同一レイヤにより構成される。少なくとも1つのスナバ回路は、コンデンサ209と抵抗体210(図1参照)とが直列に接続された回路である。コンデンサ209および抵抗体210の少なくともいずれか一方は、導体パターン303b、303cに接続される。コンデンサ209は、コンデンサ本体306aと、コンデンサ本体306aに接続された金属端子306bとを含む。金属端子306bは導体パターン303b、303cに接続さている。 The power semiconductor module shown in FIG. 10 basically has the same configuration as that of the power semiconductor module according to the first embodiment, but a ceramic capacitor with a metal terminal is applied as the capacitor 209. Capacitor 209 mainly includes a capacitor body 306a including an external electrode formed on an end face, and a metal terminal 306b connected to the external electrode of capacitor body 306a. From a different point of view, the power semiconductor module according to the present disclosure includes at least one positive electrode side switching semiconductor element 103P and positive electrode side freewheeling diode 104P, which are positive electrode power semiconductor elements, and at least one negative electrode power semiconductor element. Negative electrode side switching element 103N and negative electrode side reflux diode 104N, conductor pattern 303a, conductor patterns 303b and 303c as conductor layers, and at least one snubber circuit. A semiconductor element 204 that is one of at least one positive power semiconductor element and at least one negative power semiconductor element is connected to the conductor pattern 303a. The conductor patterns 303b and 303c are configured by the same layer as the conductor pattern 303a. At least one snubber circuit is a circuit in which a capacitor 209 and a resistor 210 (see FIG. 1) are connected in series. At least one of the capacitor 209 and the resistor 210 is connected to the conductor patterns 303b and 303c. Capacitor 209 includes a capacitor body 306a and a metal terminal 306b connected to capacitor body 306a. The metal terminal 306b is connected to the conductor patterns 303b and 303c.
 このような構成により、はんだ付け時に発生する応力を金属端子306bで吸収することができる。このため、コンデンサ本体306aの割れを防ぐ事が可能になるだけでなく、導体パターン303b、303cと金属端子306bのはんだ接合部307に発生する応力を低減できる。この結果、はんだ接合部307の長期信頼性が向上すると言う従来にない効果を得る事が出来る。 With such a configuration, the stress generated during soldering can be absorbed by the metal terminal 306b. For this reason, it becomes possible not only to prevent the capacitor main body 306a from cracking but also to reduce the stress generated at the solder joints 307 between the conductor patterns 303b and 303c and the metal terminal 306b. As a result, an unprecedented effect that the long-term reliability of the solder joint portion 307 is improved can be obtained.
 以下、図10を用いてより詳細に説明する。図10に示した電力用半導体モジュールでは、銅(Cu)からなるベース部材305の上に絶縁層304が形成されている。絶縁層304上には導体パターン303a、303b、303cが形成されている。導体パターン303a上には電力用の半導体素子204がダイボンド材302により接合されている。半導体素子204が搭載された導体パターン303aと同一面に位置し、同一レイヤにより構成される導体パターンとして導体パターン303bと導体パターン303cとがそれぞれ形成されている。導体パターン303bと導体パターン303cとは金属端子付きセラミックコンデンサであるコンデンサ209により接続されている。なお、導体パターン303aと導体パターン303bとは例えば配線部材206により接続されている。 Hereinafter, this will be described in more detail with reference to FIG. In the power semiconductor module shown in FIG. 10, an insulating layer 304 is formed on a base member 305 made of copper (Cu). Conductive patterns 303a, 303b, and 303c are formed on the insulating layer 304. A power semiconductor element 204 is bonded onto the conductor pattern 303 a by a die bond material 302. A conductor pattern 303b and a conductor pattern 303c are formed as conductor patterns that are located on the same plane as the conductor pattern 303a on which the semiconductor element 204 is mounted and are configured by the same layer. The conductor pattern 303b and the conductor pattern 303c are connected by a capacitor 209 that is a ceramic capacitor with a metal terminal. The conductor pattern 303a and the conductor pattern 303b are connected by a wiring member 206, for example.
 コンデンサ209は、上述のようにコンデンサ本体306aと、当該コンデンサ本体306aの端面である接続部306cに位置する外部電極と接続された一対の金属端子306bとを含む。接続部306cはコンデンサ本体306aと金属端子306bとの接続部となっている。金属端子306bにおいて、コンデンサ本体306aと接続された根元部と反対側に位置する先端部が導体パターン303b、303cと接続される接続部となっている。金属端子306bの先端部である接続部は、導体パターン303b、303cとはんだ付けされている。つまり、金属端子306bの接続部と導体パターン303b、303cとの間にははんだ接合部307が形成されている。また、はんだが濡れ広がってはんだ接合部307の形状が不安定にならないように、導体パターン303b、303c上にはソルダーレジストからなるはんだ規制部308が形成されている。はんだ規制部308ははんだ付け前に予め導体パターン303b、303c上に形成されている。 As described above, the capacitor 209 includes the capacitor main body 306a and a pair of metal terminals 306b connected to the external electrodes located at the connection portion 306c which is the end face of the capacitor main body 306a. The connection portion 306c is a connection portion between the capacitor body 306a and the metal terminal 306b. In the metal terminal 306b, a tip portion located on the opposite side to the base portion connected to the capacitor main body 306a is a connection portion connected to the conductor patterns 303b and 303c. The connection part which is the front-end | tip part of the metal terminal 306b is soldered with the conductor patterns 303b and 303c. That is, the solder joint portion 307 is formed between the connection portion of the metal terminal 306b and the conductor patterns 303b and 303c. Further, a solder restricting portion 308 made of a solder resist is formed on the conductor patterns 303b and 303c so that the solder does not spread out and the shape of the solder joint portion 307 does not become unstable. The solder restricting portion 308 is formed on the conductor patterns 303b and 303c in advance before soldering.
 ここで、金属端子付きセラミックコンデンサであるコンデンサ209の構成について説明する。コンデンサ209は、たとえばジルコン酸カルシウムを主成分とするセラミックコンデンサであるが、チタン酸バリウムを主成分とするセラミックコンデンサであってもよい。コンデンサ209は所望の電気特性が得られる材料から構成されていればよい。コンデンサ209のサイズは電気的に必要とする特性を有しているものであれば任意に選択できる。たとえば、コンデンサ本体306aのサイズは、縦×横のサイズが3.2mm×1.6mm(3216サイズ)、3.2mm×2.5mm(3225サイズ)、4.5mm×3.2mm(4532サイズ)、5.7mm×5.0mm(5750サイズ)、といった値を採用できる。また、コンデンサ209の高さは電気特性により任意に選択されるが、たとえば当該高さを1.0mm以上3.5mm以下とすることができる。金属端子306bはたとえば銅を主成分とするフレーム材である。金属端子306bの材料としては導電性を有していれば良く、たとえば一般的なリードフレーム材である42アロイ(Fe-Ni合金)であっても良い。本開示においては、コンデンサ209から発熱する熱を放熱する経路として金属端子306bを利用するため、より熱伝導率が大きいCuを主成分とする材質を金属端子306bの材料とすることが望ましい。また、コンデンサ本体306aと金属端子306bとの接続部306cに位置する外部電極は、たとえば錫(Sn)を主成分とするはんだからなることが望ましい。外部電極の材料としては、金属端子306b先端のはんだ接合部307を構成するはんだよりも融点が低くない材料であれば良い。 Here, the configuration of the capacitor 209 which is a ceramic capacitor with a metal terminal will be described. Capacitor 209 is a ceramic capacitor mainly composed of calcium zirconate, for example, but may be a ceramic capacitor mainly composed of barium titanate. The capacitor 209 may be made of a material that can obtain desired electrical characteristics. The size of the capacitor 209 can be arbitrarily selected as long as it has electrically required characteristics. For example, the size of the capacitor main body 306a is 3.2 mm × 1.6 mm (3216 size), 3.2 mm × 2.5 mm (3225 size), 4.5 mm × 3.2 mm (4532 size). Values such as 5.7 mm × 5.0 mm (5750 size) can be adopted. Moreover, although the height of the capacitor | condenser 209 is arbitrarily selected by an electrical property, the said height can be 1.0 mm or more and 3.5 mm or less, for example. The metal terminal 306b is a frame material mainly composed of copper, for example. The metal terminal 306b may be made of a conductive material such as 42 alloy (Fe—Ni alloy) which is a general lead frame material. In the present disclosure, since the metal terminal 306b is used as a path for radiating the heat generated from the capacitor 209, it is desirable that the material of the metal terminal 306b is a material mainly composed of Cu having a higher thermal conductivity. In addition, it is desirable that the external electrode located at the connection portion 306c between the capacitor body 306a and the metal terminal 306b is made of, for example, solder containing tin (Sn) as a main component. As a material of the external electrode, any material may be used as long as the melting point is not lower than that of the solder constituting the solder joint 307 at the tip of the metal terminal 306b.
 本実施の形態においては、一つのセラミックコンデンサであるコンデンサ本体306aを金属端子306bに接続しているが、図11に示すように、複数のコンデンサ本体306aを多段に積み上げて、1組の金属端子306b、306cによりこれら複数のコンデンサ本体306aを接続することで、一つの部品としてもよい。このようにコンデンサ本体306aを1組の金属端子306b、306cにより並列に接続することで、必要な電気特性を満たしたコンデンサ209を構成してもよい。図11は、本発明の実施の形態2の変形例に係る電力用半導体モジュールのコンデンサの断面を示す模式図である。図11では、3つのコンデンサ本体306aを積層して1組の金属端子306b、306cにより接続し、1つのコンデンサ209としている。なお、積層するコンデンサ本体306aの数は、2でも、4以上でもよく、必要な電気的特性に整合するように適宜選択される。図11に示す構成では、1組の金属端子306b、306cが本実施の形態に係る中間部材の一例に相当する。 In the present embodiment, the capacitor body 306a, which is one ceramic capacitor, is connected to the metal terminal 306b. However, as shown in FIG. 11, a plurality of capacitor bodies 306a are stacked in multiple stages to form a set of metal terminals. By connecting the plurality of capacitor main bodies 306a by 306b and 306c, a single component may be used. In this way, the capacitor body 306a may be configured by connecting the capacitor main body 306a in parallel by a pair of metal terminals 306b and 306c to satisfy the required electrical characteristics. FIG. 11 is a schematic diagram showing a cross section of a capacitor of a power semiconductor module according to a modification of the second embodiment of the present invention. In FIG. 11, three capacitor bodies 306a are stacked and connected by a set of metal terminals 306b and 306c to form one capacitor 209. The number of capacitor main bodies 306a to be stacked may be two or four or more, and is appropriately selected so as to match the required electrical characteristics. In the configuration shown in FIG. 11, a set of metal terminals 306b and 306c corresponds to an example of an intermediate member according to the present embodiment.
 ここで、実施の形態1で説明したように、図10に示したような金属端子306bがなく、図5に示すようにコンデンサ本体501aを導体パターン504a、504bに近接して実装する場合、コンデンサ209と絶縁層であるセラミック基板504cとの間に形成される空間220(図5参照)は、導体パターン504a、504bとソルダーレジスト503bとのそれぞれの厚さの総和と同等になる。図5に示す構造において、導体パターン504a、504bの厚さと幅とは、当該導体パターン504a、504bに通電したい電流に応じて設計されるが、当該厚さについては0.2mm程度とする事が一般的である。また、上述のようにソルダーレジスト503a、503bの厚みはたとえば10μm以上30μm以下である。このため、コンデンサ209の下部とセラミック基板504cとの距離は0.21mm~0.23mm程度となる。粘度が高い封止体205を適用する場合、コンデンサ209の下部とセラミック基板504cとの間の空間220に、封止体205を空隙なく完全に封入する事は困難である。ここで、封止体205により封止した後に、セラミック基板504cとコンデンサ209との間に空隙が生じる場合、直径50μm以上の空隙が存在すれば超音波探傷装置(SAT:Scanning Acoustic Tomograph)により空隙の判別が可能である。そのため、本実施の形態における封止体205における空隙は直径50μm以上のものとする。 Here, as described in the first embodiment, there is no metal terminal 306b as shown in FIG. 10, and when the capacitor body 501a is mounted close to the conductor patterns 504a and 504b as shown in FIG. A space 220 (see FIG. 5) formed between 209 and the ceramic substrate 504c, which is an insulating layer, is equivalent to the sum of the thicknesses of the conductor patterns 504a and 504b and the solder resist 503b. In the structure shown in FIG. 5, the thicknesses and widths of the conductor patterns 504a and 504b are designed according to the current to be supplied to the conductor patterns 504a and 504b, but the thickness may be about 0.2 mm. It is common. Further, as described above, the thickness of the solder resists 503a and 503b is, for example, not less than 10 μm and not more than 30 μm. Therefore, the distance between the lower part of the capacitor 209 and the ceramic substrate 504c is about 0.21 mm to 0.23 mm. When the sealing body 205 having a high viscosity is applied, it is difficult to completely encapsulate the sealing body 205 without a gap in the space 220 between the lower portion of the capacitor 209 and the ceramic substrate 504c. Here, in the case where a gap is generated between the ceramic substrate 504c and the capacitor 209 after sealing with the sealing body 205, if a gap having a diameter of 50 μm or more exists, the gap is detected by an ultrasonic flaw detector (SAT: Scanning Acoustic Tomograph). Can be determined. Therefore, the gap in the sealing body 205 in this embodiment is assumed to have a diameter of 50 μm or more.
 ここで、導体パターン504a、504bには、P、N間の電圧が掛かるため、絶縁距離を十分に確保しておかなければならない。一方、コンデンサ本体501aと導体パターン504a、504bとにより形成される挟空間である空間220にボイドが発生することで、導体パターン504a、504b間の絶縁が十分に確保出来なくなる可能性がある。このため、当該空間220を浸入性の高いアンダーフィル剤で埋めてしまい、絶縁性を確保してもよい。アンダーフィル剤としては、任意の絶縁体を用いることができるが、たとえばエポキシ系の樹脂またはシリコン系の樹脂を用いてもよい。 Here, since a voltage between P and N is applied to the conductor patterns 504a and 504b, a sufficient insulation distance must be secured. On the other hand, if a void is generated in the space 220 that is a sandwiching space formed by the capacitor body 501a and the conductor patterns 504a and 504b, there is a possibility that sufficient insulation between the conductor patterns 504a and 504b cannot be secured. For this reason, the space 220 may be filled with a highly permeable underfill agent to ensure insulation. As the underfill agent, any insulator can be used. For example, an epoxy resin or a silicon resin may be used.
 上述した構成を異なる観点から言えば、上述した電力用半導体モジュールにおいて、導体層としての導体パターンは、第1導体パターンとしての導体パターン504aと、導体パターン504aと間隔を隔てて配置された第2導体パターンとしての導体パターン504bとを含む。コンデンサ209は導体パターン504aと導体パターン504bとを繋ぐように配置される。電力用半導体モジュールは、コンデンサ209と導体パターン504aと導体パターン504bとに囲まれた空間220に配置され、封止体205とは異なる材料からなる絶縁体としてのアンダーフィル剤を備える。なお、上述したアンダーフィル剤は、たとえば図10または図11に示したコンデンサ209のコンデンサ本体306a下に位置する空間に配置されてもよい。この場合、アンダーフィル剤は、たとえばコンデンサ本体306a下において導体パターン303bと導体パターン303cとの間を分離するように配置されてもよい。 Speaking from a different point of view of the above-described configuration, in the above-described power semiconductor module, the conductor pattern as the conductor layer includes the conductor pattern 504a as the first conductor pattern and the second conductor pattern 504a spaced apart from the conductor pattern 504a. And a conductor pattern 504b as a conductor pattern. The capacitor 209 is arranged so as to connect the conductor pattern 504a and the conductor pattern 504b. The power semiconductor module is disposed in a space 220 surrounded by the capacitor 209, the conductor pattern 504a, and the conductor pattern 504b, and includes an underfill agent as an insulator made of a material different from that of the sealing body 205. Note that the above-described underfill agent may be disposed, for example, in a space located under the capacitor body 306a of the capacitor 209 shown in FIG. 10 or FIG. In this case, the underfill agent may be disposed, for example, so as to separate between the conductor pattern 303b and the conductor pattern 303c under the capacitor main body 306a.
 封止体205により封止してコンデンサ209と絶縁層としてのセラミック基板504cとの間に空隙が生じている状態では、通電時に半導体素子204およびコンデンサ209から繰り返し発生する熱により、コンデンサ209に応力が繰り返し発生する。当該応力の値がコンデンサ209の破壊強度以上の場合、コンデンサ209に応力が集中して当該コンデンサ209が割れる。しかし、図10および図11に示すような金属端子付きコンデンサをコンデンサ209として適用する事により、コンデンサ本体306aと絶縁層304との間の空間を広げる事が可能となる。このため、高粘度の封止体205を封入するときに、当該空間での空隙の発生を抑制可能となる。コンデンサ本体306aと絶縁層304との間の距離が1.0mm以上確保できれば、上述した封止体205での空隙の発生は大幅に抑制される。このように、図10および図11に示したような金属端子付きのコンデンサ209を適用する事で、封止体205の封止時に発生する空隙を抑制出来ると言う効果を得る事が出来る。なお、コンデンサ209の下の空間にアンダーフィル剤を配置してもよい。 In a state where a gap is generated between the capacitor 209 and the ceramic substrate 504c as an insulating layer after being sealed by the sealing body 205, stress is applied to the capacitor 209 due to heat repeatedly generated from the semiconductor element 204 and the capacitor 209 when energized. Repeatedly occurs. When the value of the stress is greater than or equal to the breaking strength of the capacitor 209, the stress concentrates on the capacitor 209 and the capacitor 209 is broken. However, by applying a capacitor with a metal terminal as shown in FIGS. 10 and 11 as the capacitor 209, the space between the capacitor body 306a and the insulating layer 304 can be widened. For this reason, when enclosing the highly viscous sealing body 205, generation | occurrence | production of the space | gap in the said space can be suppressed. If the distance between the capacitor main body 306a and the insulating layer 304 can be ensured to be 1.0 mm or more, the generation of the gap in the sealing body 205 described above is significantly suppressed. As described above, by applying the capacitor 209 with metal terminals as shown in FIGS. 10 and 11, it is possible to obtain an effect that the gap generated when the sealing body 205 is sealed can be suppressed. An underfill agent may be disposed in the space below the capacitor 209.
 特に封止体205となる樹脂の流動性が悪いと、コンデンサ209の下部の空間にだけ、封止体205中の樹脂成分だけが選択的に流れ込み、フィラー成分が当該空間に流れ込まない現象が発生する。この場合、コンデンサ209の下部の空間では、フィラー成分が不足することに起因して、局所的に封止体205の熱伝導率が低くなり封止体205の線膨張係数が大きくなる。この結果、封止後にコンデンサ209が割れるという不良が発生することがあった。コンデンサ209として上記のように金属端子付きセラミックコンデンサを用いることで、上記のように封止体205となるべき樹脂の流動性が低いことに起因する空隙の発生を抑制する、という今までにない効果を得る事ができた。なお、封止体205となるエポキシ樹脂の粘度はより小さい方が望ましいが、フィラーの種類およびフィラーの含有量により当該粘度は異なる。そのため、たとえば封止体205となる樹脂の粘度は、10Pa・s以上100Pa・s以下、といった範囲である事が好ましい。 In particular, if the resin used as the sealing body 205 has poor fluidity, only the resin component in the sealing body 205 selectively flows into the space below the capacitor 209, and the filler component does not flow into the space. To do. In this case, in the space below the capacitor 209, due to the lack of the filler component, the thermal conductivity of the sealing body 205 is locally reduced and the linear expansion coefficient of the sealing body 205 is increased. As a result, a defect that the capacitor 209 breaks after sealing may occur. By using a ceramic capacitor with a metal terminal as the capacitor 209 as described above, it has never been possible to suppress the generation of voids due to the low fluidity of the resin to be the sealing body 205 as described above. I was able to get an effect. Note that the viscosity of the epoxy resin used as the sealing body 205 is desirably smaller, but the viscosity varies depending on the type of filler and the content of the filler. Therefore, for example, the viscosity of the resin to be the sealing body 205 is preferably in the range of 10 Pa · s to 100 Pa · s.
 図10および図11に示すような金属端子付きセラミックコンデンサをコンデンサ209として電力用半導体モジュールに内蔵する事で、コンデンサ209のはんだ付け時およびCuからなるベース部材305の反り変形により発生する応力を、金属端子306bにより緩和できる。このため、コンデンサ209の割れを抑制するだけでなく、金属端子306bの先端側に位置するはんだ接合部307に発生する応力を緩和すると言う効果が得られる。さらに、通電時に半導体素子204およびコンデンサ209から発生する熱を、金属端子306bを伝熱経路として、効率的にベース部材305に伝える事が可能になると言う従来には無かった効果が得られる。更に、封止体205としてエポキシ樹脂を用いて封止する事で、コンデンサ209として金属端子付きセラミックコンデンサを用いる事により得られる上記効果をより顕著なものにできる。 By incorporating a ceramic capacitor with a metal terminal as shown in FIG. 10 and FIG. 11 in a power semiconductor module as a capacitor 209, stress generated by solder deformation of the capacitor 209 and warping deformation of the base member 305 made of Cu, It can be mitigated by the metal terminal 306b. For this reason, the effect of not only suppressing the crack of the capacitor 209 but also relaxing the stress generated in the solder joint portion 307 located on the front end side of the metal terminal 306b is obtained. Furthermore, an effect that has not been achieved in the past can be obtained that heat generated from the semiconductor element 204 and the capacitor 209 during energization can be efficiently transmitted to the base member 305 using the metal terminal 306b as a heat transfer path. Furthermore, by sealing with an epoxy resin as the sealing body 205, the above-mentioned effect obtained by using a ceramic capacitor with a metal terminal as the capacitor 209 can be made more remarkable.
 また、図10に示すように、金属端子付きのコンデンサ209の高さH1について、当該高さH1が高くなるほど金属端子306bによる配線インダクタンスが大きくなる。そのため、図10に示すように、配線部材206のループ高さH2より当該高さH1は低い事が好ましい。 Further, as shown in FIG. 10, regarding the height H1 of the capacitor 209 with a metal terminal, the wiring inductance due to the metal terminal 306b increases as the height H1 increases. Therefore, as shown in FIG. 10, the height H1 is preferably lower than the loop height H2 of the wiring member 206.
 <作用効果>
 上記電力用半導体モジュールにおいて、コンデンサ209は、コンデンサ本体306aと、コンデンサ本体306aに接続された金属端子306bとを含む。金属端子306bは導体層としての導体パターン303b、303cに接続さている。
<Effect>
In the power semiconductor module, the capacitor 209 includes a capacitor body 306a and a metal terminal 306b connected to the capacitor body 306a. The metal terminal 306b is connected to conductor patterns 303b and 303c as conductor layers.
 このようにすれば、コンデンサ209を導体パターン303b、303cに接続するときにはんだ付けなどを実施する際に、当該はんだ付けに伴って発生する熱応力を金属端子306bで吸収することで、コンデンサ本体306aが当該応力により破損するといった問題の発生を抑制できる。さらに、スナバ回路を構成するコンデンサ209が導体パターン303aと同一レイヤにより構成される導体パターン303b、303cに接続されているので、ベース部材305とは別の基板を、スナバ回路用に新たに準備する場合より電力用半導体モジュールの構成を簡略化できるとともに、当該導体パターン303b、303cとコンデンサ209との接合部の実装が容易なため当該接合部を信頼性高く形成することができる。このため、スナバ回路によりリンギングを抑制できるとともに、コンデンサ209と導体パターン303b、303cとの接合部の不良などに起因する問題の発生を抑制できる。 In this way, when the soldering or the like is performed when the capacitor 209 is connected to the conductor patterns 303b and 303c, the thermal stress generated by the soldering is absorbed by the metal terminal 306b. Generation | occurrence | production of the problem that 306a breaks with the said stress can be suppressed. Furthermore, since the capacitor 209 constituting the snubber circuit is connected to the conductor patterns 303b and 303c constituted by the same layer as the conductor pattern 303a, a substrate different from the base member 305 is newly prepared for the snubber circuit. The configuration of the power semiconductor module can be simplified as compared with the case, and since the junction portion between the conductor patterns 303b and 303c and the capacitor 209 can be easily mounted, the junction portion can be formed with high reliability. For this reason, ringing can be suppressed by the snubber circuit, and occurrence of problems due to defects in the joint portion between the capacitor 209 and the conductor patterns 303b and 303c can be suppressed.
 上記電力用半導体モジュールは、少なくとも1つの正極側電力用半導体素子および少なくとも1つの負極側電力用半導体素子のいずれか、すなわち半導体素子204に接続された配線部材206を備える。図10に示すように、導体パターン303b、303cから配線部材206の頂部までの高さH2より、導体パターン303b、303cからコンデンサ209の頂部までの高さH1が低い。 The power semiconductor module includes a wiring member 206 connected to any one of at least one positive power semiconductor element and at least one negative power semiconductor element, that is, the semiconductor element 204. As shown in FIG. 10, the height H1 from the conductor patterns 303b and 303c to the top of the capacitor 209 is lower than the height H2 from the conductor patterns 303b and 303c to the top of the wiring member 206.
 この場合、コンデンサ本体306aと導体パターン303b、303cとを接続する金属端子306bの長さが長くなるほど金属端子306bによるインダクタンスが大きくなるため、コンデンサ209の頂部までの高さH1を配線部材206の頂部までの高さH2より低くしておくことで、金属端子306bの長さが長くなりすぎることを防止できる。この結果、金属端子306bによるインダクタンスの増大を抑制でき、電力用半導体モジュール全体の配線インダクタンスの増加を抑制できる。このため、リンギング発生時のサージ電圧を抑制できる。 In this case, since the inductance of the metal terminal 306b increases as the length of the metal terminal 306b connecting the capacitor body 306a and the conductor patterns 303b and 303c increases, the height H1 to the top of the capacitor 209 is set to the top of the wiring member 206. By making the height H2 lower than the height H2, it is possible to prevent the metal terminal 306b from becoming too long. As a result, an increase in inductance due to the metal terminal 306b can be suppressed, and an increase in wiring inductance of the entire power semiconductor module can be suppressed. For this reason, the surge voltage when ringing occurs can be suppressed.
 実施の形態3.
 図12は、本発明の実施の形態3に係る電力用半導体モジュールの断面を示す模式図である。図13は、図12に示した本発明の実施の形態3に係る電力用半導体モジュールの部分断面を示す模式図である。図12に示した電力用半導体モジュールは基本的には図8に示した電力用半導体モジュールと同様の構成を備えるが、図12に示すように、スナバ回路を形成する金属端子付きセラミックコンデンサであるコンデンサ209と、抵抗器210とを半導体素子204と同一レイヤではなく、スナバ回路用基板230に搭載している点、およびスナバ回路用基板230を電力用半導体モジュールの上側の導体パターン203jにはんだ231により接合している点が異なる。以下、図12および図13を用いて説明する。
Embodiment 3 FIG.
FIG. 12 is a schematic diagram showing a cross section of the power semiconductor module according to the third embodiment of the present invention. FIG. 13 is a schematic diagram showing a partial cross section of the power semiconductor module according to Embodiment 3 of the present invention shown in FIG. The power semiconductor module shown in FIG. 12 basically has the same configuration as that of the power semiconductor module shown in FIG. 8, but is a ceramic capacitor with metal terminals that forms a snubber circuit as shown in FIG. The capacitor 209 and the resistor 210 are not on the same layer as the semiconductor element 204, but are mounted on the snubber circuit board 230, and the snubber circuit board 230 is soldered to the conductor pattern 203j on the upper side of the power semiconductor module. The point of joining is different. Hereinafter, description will be made with reference to FIGS. 12 and 13.
 図13は電力用半導体モジュールのスナバ回路を形成する金属端子付のコンデンサ209と抵抗器210との周囲を拡大した部分断面図である。図12および図13に示す電力用半導体モジュールでは、コンデンサ209および抵抗体210がスナバ回路用基板230に搭載されている。 FIG. 13 is an enlarged partial cross-sectional view of the periphery of the capacitor 209 with a metal terminal and the resistor 210 forming the snubber circuit of the power semiconductor module. In the power semiconductor module shown in FIGS. 12 and 13, a capacitor 209 and a resistor 210 are mounted on a snubber circuit substrate 230.
 スナバ回路用基板230は、絶縁基板であるセラミック基板230aと、当該セラミック基板230aの表面上に配置された導体パターン230c、230d、230eと、セラミック基板230aの裏面側に配置された導体パターン230bとを含む。導体パターン230c、230d、230eは、互いに間隔を隔ててセラミック基板230aの表面上に配置されている。導体パターン230c、230d、230eの配置は任意に決定できるが、たとえばこれらは互いにほぼ平行に延びるように配置されていてもよい。セラミック基板230aの裏面上に配置された導体パターン230bははんだ231により絶縁材203b上の導体パターン203jに接続されている。図12および図13に示した構成では、スナバ回路用基板230が本実施の形態に係る中間部材の一例に相当する。また、コンデンサ209が本実施の形態に係るコンデンサの一例に相当する。また、はんだ231が本実施の形態に係る接合材の一例に相当する。なお、スナバ回路用基板230において、セラミック基板230aに代えて他の絶縁材料からなる基板を絶縁基板として用いてもよい。たとえば、セラミック基板230aに代えて樹脂製の基板を用いてもよい。 The snubber circuit substrate 230 includes a ceramic substrate 230a which is an insulating substrate, conductor patterns 230c, 230d and 230e disposed on the surface of the ceramic substrate 230a, and a conductor pattern 230b disposed on the back side of the ceramic substrate 230a. including. The conductor patterns 230c, 230d, and 230e are disposed on the surface of the ceramic substrate 230a at a distance from each other. The arrangement of the conductor patterns 230c, 230d, and 230e can be arbitrarily determined. For example, they may be arranged so as to extend substantially parallel to each other. The conductor pattern 230b disposed on the back surface of the ceramic substrate 230a is connected to the conductor pattern 203j on the insulating material 203b by solder 231. In the configuration shown in FIGS. 12 and 13, the snubber circuit board 230 corresponds to an example of the intermediate member according to the present embodiment. Capacitor 209 corresponds to an example of a capacitor according to this embodiment. The solder 231 corresponds to an example of the bonding material according to the present embodiment. In the snubber circuit substrate 230, a substrate made of another insulating material may be used as the insulating substrate instead of the ceramic substrate 230a. For example, a resin substrate may be used instead of the ceramic substrate 230a.
 コンデンサ209はコンデンサ本体部306aと金属端子306bとを含む。コンデンサ209は導体パターン230cと導体パターン230dとを接続する。抵抗体210は導体パターン230dと導体パターン230eとを接続する。コンデンサ209と抵抗体210とは直列に接続されている。導体パターン230eは配線部材206により半導体素子204などと接続されている。実施の形態2と同様に、コンデンサ209として上記のように金属端子付きセラミックコンデンサを用いることで、封止体205となるべき樹脂の流動性が低いことに起因する空隙の発生を抑制する、という今までにない効果を得る事ができる。 The capacitor 209 includes a capacitor main body 306a and a metal terminal 306b. The capacitor 209 connects the conductor pattern 230c and the conductor pattern 230d. The resistor 210 connects the conductor pattern 230d and the conductor pattern 230e. The capacitor 209 and the resistor 210 are connected in series. The conductor pattern 230e is connected to the semiconductor element 204 and the like by the wiring member 206. Similarly to the second embodiment, the use of the ceramic capacitor with metal terminals as the capacitor 209 as described above suppresses the generation of voids due to the low fluidity of the resin to be the sealing body 205. You can get an unprecedented effect.
 スナバ回路用基板230の上側の導体パターン230c、230d、230eには、金属端子付きのコンデンサ209と抵抗体210とが直列に接続されている。導体パターン230cは、少なくとも一つの正極側電力用半導体素子である正極側スイッチング素子103Pおよび正極側還流ダイオード104P、および少なくとも一つの負極側電力用半導体素子である負極側スイッチング素子103Nおよび負極側還流ダイオード104Nのいずれか一方である半導体素子204が接続されている。 A capacitor 209 with a metal terminal and a resistor 210 are connected in series to the conductor patterns 230c, 230d, and 230e on the upper side of the snubber circuit board 230. The conductor pattern 230c includes at least one positive-side power semiconductor element 103P and positive-side reflux diode 104P, and at least one negative-side power semiconductor element 103N and negative-side reflux diode. A semiconductor element 204 which is one of 104N is connected.
 具体的には、セラミック基板230aは任意の絶縁材料からなる基板であるが、たとえば、アルミナ(AL)や窒化アルミニウム(AlN)や窒化けい素(SiN)などからなる基板である。抵抗体210は、セラミック基板230aの表面に、抵抗体210になる酸化ルテニウム(RuO)などのペースト材を印刷法などを用いて配置して形成する。また、抵抗体210になるペースト材を印刷する手法と同様に、Agペースト材を印刷法などによりセラミック基板230aの表面および裏面に配置してもよい。このように配置されたAgペースト材を焼成することにより、上側の導体パターン230c、230d、230eおよび下側の導体パターン230bを得ることができる。 Specifically, the ceramic substrate 230a is a substrate made of an arbitrary insulating material. For example, the ceramic substrate 230a is a substrate made of alumina (AL 2 O 3 ), aluminum nitride (AlN), silicon nitride (SiN), or the like. The resistor 210 is formed by disposing a paste material such as ruthenium oxide (Ru 2 O) to be the resistor 210 on the surface of the ceramic substrate 230a using a printing method or the like. Further, similarly to the method of printing the paste material that becomes the resistor 210, the Ag paste material may be disposed on the front surface and the back surface of the ceramic substrate 230a by a printing method or the like. By firing the Ag paste material arranged in this way, the upper conductor patterns 230c, 230d, 230e and the lower conductor pattern 230b can be obtained.
 このようにして得られたスナバ回路用基板230に、電力用半導体モジュールの製造工程とは異なる工程においてコンデンサ209をはんだ付けにより実装することで、スナバ回路基板が得られる。さらに、電力用半導体モジュールの半導体素子204を導体パターン203aにはんだ付けする工程において、コンデンサ209が実装されたスナバ回路基板を同時に導体パターン203jに接続する。さらに、スナバ回路基板および半導体素子204が実装されたベース絶縁基板203に配線部材206、ケース202などを接続し、半導体素子204などを覆うように封止体205を形成することで、図12に示す電力用半導体モジュールが得られる。 The snubber circuit board can be obtained by mounting the capacitor 209 on the snubber circuit board 230 thus obtained by soldering in a process different from the manufacturing process of the power semiconductor module. Further, in the step of soldering the semiconductor element 204 of the power semiconductor module to the conductor pattern 203a, the snubber circuit board on which the capacitor 209 is mounted is simultaneously connected to the conductor pattern 203j. Further, the wiring member 206, the case 202, and the like are connected to the base insulating substrate 203 on which the snubber circuit board and the semiconductor element 204 are mounted, and the sealing body 205 is formed so as to cover the semiconductor element 204 and the like. The power semiconductor module shown is obtained.
 上述した電力用半導体モジュールの製造方法の特徴的な構成を要約すれば、上記電力用半導体モジュールの製造方法は、コンデンサとしてのコンデンサ本体306aと抵抗体210とが直列に接続された回路であるスナバ回路を備える電力用半導体モジュールの製造方法であって、スナバ回路が形成される中間部材にコンデンサを接続する工程を備える。当該中間部材は、表面を有する絶縁基板の一例としてのセラミック基板230aと、当該セラミック基板230aの表面に形成されたスナバ回路用導体パターンである導体パターン230b、230c、230d、230eとを含む。上記接続する工程では、コンデンサ本体306a金属端子306bを介して導体パターン230c、203dに接続される。上記電力用半導体モジュールの製造方法は、さらに、コンデンサ本体部306aが導電体パターン230c、203dに接続されたセラミック基板230aを、表面を有するベース絶縁基板203に設置する工程を備える。ベース絶縁基板203の表面上には、少なくとも1つの正極側電力用半導体素子および少なくとも1つの負極側電力用半導体素子である半導体素子204と、少なくとも1つの正極側電力用半導体素子および少なくとも1つの負極側電力用半導体素子である半導体素子204のいずれか一方が接続される導体パターン203a、203h、203jと、が配置される。ベース絶縁基板203に設置する工程では、セラミック基板230がベース絶縁基板203の導体パターン203jに接続される。その後、ケース202や配線部材206の設置、封止体205の形成などの工程を実施することで、図12に示すようなスナバ回路を内蔵した電力用半導体モジュールが得られる。 To summarize the characteristic configuration of the method for manufacturing a power semiconductor module described above, the method for manufacturing a power semiconductor module is a snubber that is a circuit in which a capacitor body 306a as a capacitor and a resistor 210 are connected in series. A method of manufacturing a power semiconductor module including a circuit, comprising a step of connecting a capacitor to an intermediate member on which a snubber circuit is formed. The intermediate member includes a ceramic substrate 230a as an example of an insulating substrate having a surface, and conductor patterns 230b, 230c, 230d, and 230e that are conductor patterns for a snubber circuit formed on the surface of the ceramic substrate 230a. In the connecting step, the conductor patterns 230c and 203d are connected via the capacitor body 306a and the metal terminal 306b. The method for manufacturing a power semiconductor module further includes a step of placing a ceramic substrate 230a in which a capacitor body 306a is connected to conductor patterns 230c and 203d on a base insulating substrate 203 having a surface. On the surface of the base insulating substrate 203, at least one positive power semiconductor element and at least one negative power semiconductor element 204, at least one positive power semiconductor element and at least one negative power element Conductor patterns 203a, 203h, and 203j to which any one of the semiconductor elements 204 as the side power semiconductor elements is connected are arranged. In the step of installing on the base insulating substrate 203, the ceramic substrate 230 is connected to the conductor pattern 203 j of the base insulating substrate 203. After that, by performing steps such as installation of the case 202 and the wiring member 206 and formation of the sealing body 205, a power semiconductor module incorporating a snubber circuit as shown in FIG. 12 is obtained.
 また、製品開発において、構成の異なる複数種類の電力用半導体モジュールに対して、スナバ回路用基板230をそのまま流用する事が可能となる。したがって、電力用半導体素子204の配置や配線部材206のレイアウトを変更する場合において、スナバ回路を新たに設計し直す必要がなく、電力用半導体モジュールの設計に要する工数およびコストを低減できる。 In product development, the snubber circuit board 230 can be used as it is for a plurality of types of power semiconductor modules having different configurations. Therefore, when the arrangement of the power semiconductor element 204 and the layout of the wiring member 206 are changed, it is not necessary to redesign the snubber circuit, and the man-hour and cost required for designing the power semiconductor module can be reduced.
 図14は、本発明の実施の形態3の変形例に係る電力用半導体モジュールの部分断面を示す模式図である。図14に示したスナバ回路用基板230を備える電力用半導体モジュールは、基本的には図12および図13に示した電力用半導体モジュールと同様の構成を備えるが、スナバ回路用基板230の構成が図12および図13に示した電力用半導体モジュールと異なっている。すなわち、図14に示した電力用半導体モジュールでは、スナバ回路用基板230において導体パターン230eから下側の導体パターン230bに向かってセラミック基板230aを貫通するスルーホール232が形成されている。当該スルーホール232もしくは当該スルーホール232内が導電体で充填されたヴィアにより、導体パターン230eと導体パターン230bが接続されている。スナバ回路用基板230と電力用半導体モジュールの上側の導体パターン203jとは、はんだ231により接続されている。導体パターン203jには配線部材206を通じて電力用半導体モジュールの上側の導体パターン203a(図12参照)へと接続されている。 FIG. 14 is a schematic diagram showing a partial cross section of a power semiconductor module according to a modification of the third embodiment of the present invention. The power semiconductor module including the snubber circuit board 230 shown in FIG. 14 has basically the same configuration as the power semiconductor module shown in FIGS. 12 and 13, but the configuration of the snubber circuit board 230 is the same. This is different from the power semiconductor module shown in FIGS. That is, in the power semiconductor module shown in FIG. 14, in the snubber circuit substrate 230, a through hole 232 that penetrates the ceramic substrate 230a from the conductor pattern 230e toward the lower conductor pattern 230b is formed. The conductor pattern 230e and the conductor pattern 230b are connected by the through hole 232 or a via filled in the through hole 232 with a conductor. The snubber circuit board 230 and the upper conductor pattern 203j of the power semiconductor module are connected by solder 231. The conductor pattern 203j is connected to the conductor pattern 203a (see FIG. 12) on the upper side of the power semiconductor module through the wiring member 206.
 図14に示した電力用半導体モジュールでは、図12および図13に示した電力用半導体モジュールと同様の効果を得ることができる。さらに、図14に示した電力用半導体モジュールでは、スルーホール232を設ける事で、スナバ回路用基板230の上側の導体パターン230e上に配線部材206を接合するための面積を確保する必要がない。そのため、導体パターン230eの面積を削減する事が可能となり、スナバ回路用基板230を小型化できる。また、スルーホール232を抵抗体210の近傍に設置することで、スナバ回路に電流が流された際の発熱を電力用半導体モジュールのベース絶縁基板203方向に効率的に放熱する事ができる。 The power semiconductor module shown in FIG. 14 can obtain the same effects as those of the power semiconductor module shown in FIG. 12 and FIG. Further, in the power semiconductor module shown in FIG. 14, by providing the through hole 232, it is not necessary to secure an area for joining the wiring member 206 on the conductor pattern 230 e on the upper side of the snubber circuit substrate 230. Therefore, the area of the conductor pattern 230e can be reduced, and the snubber circuit board 230 can be reduced in size. Further, by installing the through hole 232 in the vicinity of the resistor 210, it is possible to efficiently dissipate heat generated when a current flows through the snubber circuit in the direction of the base insulating substrate 203 of the power semiconductor module.
 図15は、本発明の実施の形態3の変形例に係る電力用半導体モジュールの部分断面を示す模式図である。図15は、図13に対応している。図15に開示された電力用半導体モジュールは、基本的には図13に開示された電力用半導体モジュールと同様の構成を備えるが、図13に開示された金属端子付きのコンデンサ209ではなく、金属端子が設置されていないセラミックコンデンサであるコンデンサ209を備える点が図13に示した電力用半導体モジュールと異なっている。セラミックコンデンサと線膨張係数が近いセラミック基板230a上にコンデンサ209を実装することで、コンデンサ209のはんだ接合部211に生じる応力が少なくなる。このため、コンデンサ209の接合信頼性を向上することが可能となる。したがって、図13に示すようにコンデンサ209に金属端子306bを設置しなくても、電力半導体モジュールに求められる信頼性を確保する事ができる。なお、本実施の形態では絶縁体であるセラミックを支持体とするセラミック基板230aについて記載したが、プリント基板のような樹脂を支持体とした回路基板にスナバ回路を形成した構造であっても、エポキシ樹脂などによる封止体205により封止している事で、プリント基板のはんだ接合部211に発生する応力を小さく出来る。そのため、このような構成によっても電力用半導体モジュールに求められる信頼性を確保する事が可能である。 FIG. 15 is a schematic diagram showing a partial cross section of a power semiconductor module according to a modification of the third embodiment of the present invention. FIG. 15 corresponds to FIG. The power semiconductor module disclosed in FIG. 15 basically has the same configuration as that of the power semiconductor module disclosed in FIG. 13, but is not a capacitor 209 with metal terminals disclosed in FIG. The power semiconductor module shown in FIG. 13 is different from the power semiconductor module shown in FIG. 13 in that a capacitor 209 which is a ceramic capacitor having no terminals is provided. By mounting the capacitor 209 on the ceramic substrate 230a having a linear expansion coefficient close to that of the ceramic capacitor, the stress generated in the solder joint portion 211 of the capacitor 209 is reduced. For this reason, it becomes possible to improve the joining reliability of the capacitor 209. Therefore, the reliability required for the power semiconductor module can be ensured without installing the metal terminal 306b on the capacitor 209 as shown in FIG. In this embodiment, the ceramic substrate 230a having a ceramic support as an insulator is described. However, even if the snubber circuit is formed on a circuit board having a resin support such as a printed circuit board, By sealing with the sealing body 205 by an epoxy resin etc., the stress which generate | occur | produces in the solder joint part 211 of a printed circuit board can be made small. Therefore, even with such a configuration, it is possible to ensure the reliability required for the power semiconductor module.
 図16は、本発明の実施の形態3の変形例に係る電力用半導体モジュールの部分断面を示す模式図である。図16は、図14に対応している。図16に開示された電力用半導体モジュールは、基本的には図14に開示された電力用半導体モジュールと同様の構成を備えるが、図14に開示された金属端子付きのコンデンサ209ではなく、金属端子が設置されていないセラミックコンデンサであるコンデンサ209を備える点が図14に示した電力用半導体モジュールと異なっている。このような構成によっても、図14に開示された電力用半導体モジュールと同様の効果を得ることができる。さらに、図15に示した電力用半導体モジュールと同様の効果も得られる。すなわち、セラミックコンデンサと線膨張係数が近いセラミック基板230a上にコンデンサ209を実装することで、コンデンサ209のはんだ接合部211に生じる応力が少なくなる。このため、コンデンサ209の接合信頼性を向上することが可能となる。 FIG. 16 is a schematic diagram showing a partial cross section of a power semiconductor module according to a modification of the third embodiment of the present invention. FIG. 16 corresponds to FIG. The power semiconductor module disclosed in FIG. 16 basically has the same configuration as that of the power semiconductor module disclosed in FIG. 14, but is not a capacitor 209 with metal terminals disclosed in FIG. The power semiconductor module shown in FIG. 14 is different from the power semiconductor module shown in FIG. 14 in that a capacitor 209 which is a ceramic capacitor having no terminals is provided. Even with such a configuration, the same effect as that of the power semiconductor module disclosed in FIG. 14 can be obtained. Further, the same effect as that of the power semiconductor module shown in FIG. 15 can be obtained. That is, by mounting the capacitor 209 on the ceramic substrate 230a having a linear expansion coefficient close to that of the ceramic capacitor, the stress generated in the solder joint portion 211 of the capacitor 209 is reduced. For this reason, it becomes possible to improve the joining reliability of the capacitor 209.
 なお、上述した図12~図16に示した電力用半導体モジュールにおいて、上述した実施の形態1または実施の形態2において説明した特徴を追加してもよい。たとえば、図12~図14に示した電力用半導体モジュールにて、コンデンサ本体306b下に位置する領域であって導体パターン230c、230dの表面に、図11に示したようなはんだ規制部308を形成してもよい。絶縁体としてのはんだ規制部308は、封止体205とは異なる材料により構成されてもよい。また、図15および図16に示した電力用半導体モジュールにて、コンデンサ209下に位置する領域であって導体パターン230c、230dの表面に、図5に示しソルダーレジスト503bを形成してもよい。絶縁体としてのソルダーレジスト503bに代えて、他の絶縁体を当該位置に配置してもよい。 In the power semiconductor module shown in FIGS. 12 to 16, the features described in the first embodiment or the second embodiment may be added. For example, in the power semiconductor module shown in FIGS. 12 to 14, the solder restricting portion 308 as shown in FIG. 11 is formed on the surface of the conductor patterns 230c and 230d in the region located under the capacitor body 306b. May be. The solder restricting portion 308 as an insulator may be made of a material different from that of the sealing body 205. Further, in the power semiconductor module shown in FIGS. 15 and 16, the solder resist 503b shown in FIG. 5 may be formed on the surface of the conductor patterns 230c and 230d in the region located under the capacitor 209. Instead of the solder resist 503b as an insulator, another insulator may be disposed at the position.
 実施の形態4.
 図17は、本発明の実施の形態4に係る電力用半導体モジュールのコンデンサの部分断面および接続部の上面を示す模式図である。図17に示した電力用半導体モジュールは、基本的には実施の形態2に係る電力用半導体モジュールと同様の構成を備えるが、図17に示すようにコンデンサ209の金属端子306bにおいて導体パターン404と接続される接続部401cの構成が異なっている。以下、説明する。なお、図17の上側の図はコンデンサおよび接続部の部分断面を示し、下側の図は接続部の上面図を示す。
Embodiment 4 FIG.
FIG. 17 is a schematic diagram showing a partial cross section of a capacitor and an upper surface of a connection portion of a power semiconductor module according to Embodiment 4 of the present invention. The power semiconductor module shown in FIG. 17 basically has the same configuration as that of the power semiconductor module according to the second embodiment. However, as shown in FIG. 17, the conductor pattern 404 is connected to the metal terminal 306b of the capacitor 209. The configuration of the connecting portion 401c to be connected is different. This will be described below. Note that the upper diagram in FIG. 17 shows a partial cross section of the capacitor and the connection portion, and the lower diagram shows a top view of the connection portion.
 図17に示すように、金属端子付きセラミックコンデンサであるコンデンサ209(図2参照)は、コンデンサ本体306aと、金属端子306bとを主に含む。金属端子306bの先端には、導体パターン404との接続部401cが形成されている。金属端子306bは、接続部401cに連なりコンデンサ本体306aに接続される本体側部401bを有する。本体側部401bの延在する方向に対して、接続部401cの延在する方向は交差している。本体側部401bと接続部401cの交差する角度は好ましくは80°以上100°以下であり、85°以上95°以下でもよく、90°でもよい。 As shown in FIG. 17, a capacitor 209 (see FIG. 2), which is a ceramic capacitor with a metal terminal, mainly includes a capacitor body 306a and a metal terminal 306b. A connection portion 401c with the conductor pattern 404 is formed at the tip of the metal terminal 306b. The metal terminal 306b has a main body side portion 401b that is connected to the connection portion 401c and connected to the capacitor main body 306a. The direction in which the connecting portion 401c extends intersects the direction in which the main body side portion 401b extends. The angle at which the main body side portion 401b and the connecting portion 401c intersect is preferably 80 ° to 100 °, may be 85 ° to 95 °, and may be 90 °.
 接続部401cには、はんだ接合部402のはんだ厚T1を確保するために凸部401dが設けられている。凸部401dは、図17に示すように、たとえば接続部401cの一部を凸状に塑性変形させた部分である。凸部401dは、接続部401cの表面に導電体または絶縁体など任意の材料を凸状に配置して形成してもよい。なお、はんだ接合部402の形状を安定化するため、導体パターン404の表面上にはソルダーレジスト403が印刷されている。複数のソルダーレジスト403は、はんだ接合部402の外周を規定するため、接続部401cが配置された領域を挟むように配置されている。 The connecting portion 401c is provided with a convex portion 401d in order to ensure the solder thickness T1 of the solder joint portion 402. As shown in FIG. 17, the convex portion 401d is, for example, a portion obtained by plastic deformation of a part of the connecting portion 401c into a convex shape. The convex portion 401d may be formed by arranging an arbitrary material such as a conductor or an insulator in a convex shape on the surface of the connection portion 401c. Note that a solder resist 403 is printed on the surface of the conductor pattern 404 in order to stabilize the shape of the solder joint portion 402. The plurality of solder resists 403 are disposed so as to sandwich the region where the connection portion 401 c is disposed in order to define the outer periphery of the solder joint portion 402.
 金属端子306bの接続部401cにおける凸部401dは、コンデンサ本体306aに金属端子306bを接続する前であって、金属端子306bがリードフレーム状態においてプレスにより形成してもよい。 The convex portion 401d of the connecting portion 401c of the metal terminal 306b may be formed by pressing the metal terminal 306b in a lead frame state before connecting the metal terminal 306b to the capacitor body 306a.
 図18~図23は、本発明の実施の形態4の変形例に係る電力用半導体モジュールのコンデンサの接続部の上面を示す模式図であって、接続部401cの構成の変形例を示している。図18に示すように、凸部401dは金属端子306bの接続部401cにおいて中央からずれた位置に配置されていてもよい。また、図19に示すように、接続部401cに複数の凸部401d、たとえば2つの凸部401dを配置してもよい。あるいは、図20に示すように、接続部401cに3つの凸部401dを配置してもよい。接続部401dに配置される凸部401dの数は、4つ以上でもよい。このように複数の凸部401dを設けている方が、コンデンサ209の導体パターン404に対する傾きの発生を確実に抑制できる。凸部401dの高さは、はんだ接合部402の接合信頼性が十分に確保出来る厚さT1が確保出来れば良く、たとえば当該凸部401dの高さ(厚さT1)を50μm以上300μm以下とすることができる。 18 to 23 are schematic views showing the top surface of the capacitor connecting portion of the power semiconductor module according to the modification of the fourth embodiment of the present invention, and show a modification of the configuration of the connecting portion 401c. . As shown in FIG. 18, the convex portion 401d may be arranged at a position shifted from the center in the connection portion 401c of the metal terminal 306b. In addition, as shown in FIG. 19, a plurality of convex portions 401d, for example, two convex portions 401d may be arranged on the connecting portion 401c. Or as shown in FIG. 20, you may arrange | position three convex parts 401d in the connection part 401c. The number of convex portions 401d arranged in the connecting portion 401d may be four or more. Thus, the direction which provided the some convex part 401d can suppress generation | occurrence | production of the inclination with respect to the conductor pattern 404 of the capacitor | condenser 209 reliably. The height of the convex portion 401d only needs to secure a thickness T1 that can sufficiently secure the bonding reliability of the solder joint portion 402. For example, the height (thickness T1) of the convex portion 401d is set to 50 μm or more and 300 μm or less. be able to.
 また、図17に示した凸部401dは、接続部401cを突起状に塑性変形させて形成されていたが、図21に示すように、凸部401dの先端部に貫通孔が形成されていてもよい。図21に示した接続部401cの凸部401dは、たとえば接続部401cに対するプレス加工時に凸部401dとなるべき部分の一部を打ち抜いて貫通孔を形成している。このとき、当該プレス加工時の打抜き方向を、金属端子306bにおいてコンデンサ本体306aが接続される搭載面側から、導体パターン404に接する面側に向かう方向としてもよい。このようにすれば、打抜き時の返しが導体パターン404に接する面側に生じることで、当該返しが凸部401dとなる。この際に打抜き時の返しの高さは同様に30μm以上300μm以下としてもよい。また、貫通孔の数も一つ以上であれば良く、当該貫通孔が形成された凸部401dを複数個設けてある事が望ましい。この場合、貫通孔にはんだが濡れ広がる事で、金属端子306bとはんだとの接合面積が従来に比較して増加する。この結果、金属端子306bと導体パターン404との接合強度が向上するだけでなく、接合信頼性を向上させる事ができる。 Further, the convex portion 401d shown in FIG. 17 was formed by plastically deforming the connecting portion 401c into a protruding shape, but as shown in FIG. 21, a through hole is formed at the tip portion of the convex portion 401d. Also good. The convex portion 401d of the connecting portion 401c shown in FIG. 21 forms a through hole by punching a part of the portion that should become the convex portion 401d when the connecting portion 401c is pressed. At this time, the punching direction at the time of the press working may be a direction from the mounting surface side where the capacitor main body 306a is connected to the metal terminal 306b toward the surface side in contact with the conductor pattern 404. In this way, the return at the time of punching occurs on the side of the surface in contact with the conductor pattern 404, so that the return becomes the convex portion 401d. At this time, the return height at the time of punching may be 30 μm or more and 300 μm or less. Moreover, the number of through holes should just be one or more, and it is desirable to provide a plurality of convex portions 401d in which the through holes are formed. In this case, when the solder spreads in the through hole, the bonding area between the metal terminal 306b and the solder increases as compared with the conventional case. As a result, not only the bonding strength between the metal terminal 306b and the conductor pattern 404 is improved, but also the bonding reliability can be improved.
 上述のように、金属端子付きセラミックコンデンサであるコンデンサ209と導体パターン404との接合部であるはんだ接合部402のはんだ厚を確保する事で、当該はんだ接合部402の接合信頼性を向上させる事が出来る。そこで、図22に示すように、金属端子306bの先端側に位置する接続部401cと、本体側部401bとのなす角度θ2が鋭角であってもよい。この場合、接続部401cと導体パターン404の表面とが、接続部401cと本体側部401bとの連結部側でなす角度θ1も0°越えとなる。このように接続部401cが導体パターン404の表面に対して傾斜した状態となることで、はんだ接合部402を構成するはんだの厚みを厚くすることができる。また、接続部401cにはんだ402がどこまで濡れあがっているかを外観目視検査にて判断が容易になるという効果が得られる。 As described above, it is possible to improve the bonding reliability of the solder joint 402 by securing the solder thickness of the solder joint 402 which is a joint between the capacitor 209 which is a ceramic capacitor with a metal terminal and the conductor pattern 404. I can do it. Therefore, as shown in FIG. 22, the angle θ2 formed by the connection portion 401c located on the tip side of the metal terminal 306b and the main body side portion 401b may be an acute angle. In this case, an angle θ1 formed between the connecting portion 401c and the surface of the conductor pattern 404 on the connecting portion side between the connecting portion 401c and the main body side portion 401b also exceeds 0 °. As described above, since the connection portion 401c is inclined with respect to the surface of the conductor pattern 404, the thickness of the solder constituting the solder joint portion 402 can be increased. In addition, it is possible to obtain an effect that it is easy to determine how much the solder 402 has been wetted by the connection portion 401c by visual inspection.
 また、図23に示すように、金属端子306bの先端側に位置する接続部401cと、本体側部401bとのなす角度θ2が鈍角であってもよい。この場合、接続部401cと導体パターン404の表面とが、接続部401cの先端側でなす角度θ3も0°越えとなる。このように接続部401cが導体パターン404の表面に対して傾斜した状態となることで、図22に示した構成と同様に、はんだ接合部402を構成するはんだの厚みを厚くすることができる。また、接続部401cにはんだ402がどこまで濡れあがっているかを外観目視検査にて判断が容易になるという効果が得られる。 Further, as shown in FIG. 23, the angle θ2 formed by the connection portion 401c located on the tip side of the metal terminal 306b and the main body side portion 401b may be an obtuse angle. In this case, an angle θ3 formed between the connection portion 401c and the surface of the conductor pattern 404 on the front end side of the connection portion 401c also exceeds 0 °. As described above, since the connection portion 401c is inclined with respect to the surface of the conductor pattern 404, the thickness of the solder constituting the solder joint portion 402 can be increased as in the configuration shown in FIG. In addition, it is possible to obtain an effect that it is easy to determine how much the solder 402 has been wetted by the connection portion 401c by visual inspection.
 <作用効果>
 ここで、上述したコンデンサ209のはんだ付けについて従来のプリント基板上へのはんだ付けを想定すると、以下のようなプロセスが考えられる。すなわち、フラックスを含有したはんだペーストを導体パターン404上に印刷した上に、コンデンサ209を載置して加熱することではんだ付けする。このようにすれば、金属端子306bの接続部401c下にはんだが濡れ広がる事が出来る。しかし、コンデンサ209の自重により濡れ拡がったはんだが接続部401cの下から押し出されて、接続部401c下のはんだ厚を十分に確保する事が難しかった。また、コンデンサ209の近傍に矩形状もしくは球状のはんだ材を載置してはんだ付けする際は、溶融したはんだ材が濡れ広がる事で金属端子306bの接続部401c下にはんだ材が濡れ広がらねばならない。この場合も、十分な接合信頼性を得るための接続部401c下のはんだ厚を確保する事が困難であった。そこで図17~図21に示すように金属端子306bの接続部401cにおける下面(裏面)に凸部401dを設ける事で、金属端子306b下のはんだの厚みを十分に確保する事を可能にした。
<Effect>
Here, assuming the conventional soldering of the capacitor 209 on the printed circuit board, the following process can be considered. That is, after solder paste containing flux is printed on the conductor pattern 404, the capacitor 209 is placed and soldered by heating. In this way, the solder can spread under the connecting portion 401c of the metal terminal 306b. However, it has been difficult to ensure a sufficient solder thickness under the connecting portion 401c because the solder wetted and spread by the weight of the capacitor 209 is pushed out from under the connecting portion 401c. When a rectangular or spherical solder material is placed in the vicinity of the capacitor 209 and soldered, the molten solder material must be wet and spread so that the solder material is wet and spread under the connection portion 401c of the metal terminal 306b. . Also in this case, it is difficult to secure the solder thickness under the connection portion 401c for obtaining sufficient bonding reliability. Therefore, as shown in FIGS. 17 to 21, by providing the convex portion 401d on the lower surface (back surface) of the connecting portion 401c of the metal terminal 306b, it is possible to sufficiently secure the thickness of the solder under the metal terminal 306b.
 すなわち、上記電力用半導体モジュールにおいて、金属端子306bは、導体パターン404と接続される接続部401cを含む。接続部401cの一部には導体パターン404側に向かって突出した形状である凸部401dが形成される。電力用半導体モジュールは、接続部401cの一部以外の部分と導体パターン404との間に配置された導電性の接合部材としてのはんだを含むはんだ接合部402を備える。 That is, in the power semiconductor module, the metal terminal 306 b includes a connection portion 401 c connected to the conductor pattern 404. A protruding portion 401d having a shape protruding toward the conductor pattern 404 is formed on a part of the connecting portion 401c. The power semiconductor module includes a solder joint 402 including solder as a conductive joint member disposed between a portion other than a part of the connection portion 401 c and the conductor pattern 404.
 この場合、接続部401cの一部に凸部401dが形成されているため、当該凸部401dの突出高さだけ接合部材としてのはんだの厚みを確保することができる。この結果、はんだにより接続部401cと導体パターン404とが接続された接合構造の信頼性を向上させることができる。 In this case, since the convex portion 401d is formed in a part of the connecting portion 401c, the thickness of the solder as the joining member can be ensured by the protruding height of the convex portion 401d. As a result, the reliability of the joint structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
 上記電力用半導体モジュールにおいて、図21に示すように凸部401dには貫通孔401eが形成されていてもよい。この場合、金属端子306bの接続部401cに貫通孔401eを形成するときに当該接続部401cの一部を塑性変形させることで、凸部401dを容易に形成できる。また、貫通孔401eの内部にも接合部材としてのはんだを配置することができるので、当該はんだと接続部401cとの接触面積を大きくでき、接合構造の信頼性をより高めることができる。 In the power semiconductor module, a through-hole 401e may be formed in the convex portion 401d as shown in FIG. In this case, when the through hole 401e is formed in the connection portion 401c of the metal terminal 306b, the convex portion 401d can be easily formed by plastically deforming a part of the connection portion 401c. Moreover, since the solder as a joining member can be arrange | positioned also inside the through-hole 401e, the contact area of the said solder and the connection part 401c can be enlarged, and the reliability of joining structure can be improved more.
 上記電力用半導体モジュールにおいて、金属端子306bは、接続部401cと本体側部401bとを含む。接続部401cは、導体パターン404と接続される。本体側部401bは、接続部401cに連なりコンデンサ本体306aに接続される。本体側部401bの延在方向に対して接続部401cの延在方向は交差している。図22に示すように本体側部401bの延在方向と接続部401cの延在方向とのなす角度θ2は鋭角である。 In the power semiconductor module, the metal terminal 306b includes a connection portion 401c and a main body side portion 401b. The connection part 401 c is connected to the conductor pattern 404. The main body side portion 401b is connected to the capacitor main body 306a along with the connection portion 401c. The extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 22, the angle θ2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an acute angle.
 上記電力用半導体モジュールにおいて、金属端子306bは、接続部401cと本体側部401bとを含む。接続部401cは導体パターン404と接続される。本体側部401bは、接続部401cに連なりコンデンサ本体306aに接続される。本体側部401bの延在方向に対して接続部401cの延在方向は交差している。図23に示すように本体側部401bの延在方向と接続部401cの延在方向とのなす角度θ2は鈍角である。 In the power semiconductor module, the metal terminal 306b includes a connection portion 401c and a main body side portion 401b. The connection part 401 c is connected to the conductor pattern 404. The main body side portion 401b is connected to the capacitor main body 306a along with the connection portion 401c. The extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 23, the angle θ2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an obtuse angle.
 この場合、導体パターン404の表面に対してほぼ垂直な方向に本体側部401bの延在方向が沿うように、コンデンサ209を導体パターン404と接続すれば、接続部401cは導体パターン404の表面に対して傾斜した状態となる。このため、導体パターン404と接続部401cとの間に接合部材としてはんだを配置するときに、当該はんだの厚さを十分に確保できる。このため、はんだにより接続部401cと導体パターン404とが接続された接合構造の信頼性を向上させることができる。 In this case, if the capacitor 209 is connected to the conductor pattern 404 so that the extending direction of the main body side portion 401b is along a direction substantially perpendicular to the surface of the conductor pattern 404, the connecting portion 401c is placed on the surface of the conductor pattern 404. It will be in the state inclined with respect to it. For this reason, when solder is disposed as a joining member between the conductor pattern 404 and the connection portion 401c, a sufficient thickness of the solder can be secured. For this reason, the reliability of the junction structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
 本開示に従った電子部品としてのコンデンサ209は、セラミック電子部品本体としてのコンデンサ本体306aと、金属端子306bとを備える。コンデンサ本体306aは、互いに対向する2つの端面を有し、2つの端面上に形成された外部電極を含む。金属端子306bは、外部電極に接続される。金属端子306bは、外部の導体層としての導体パターン404と接続されるべき接続部401cを含む。図17~図21に示すように、接続部401cの一部には凸部401dが形成されている。 A capacitor 209 as an electronic component according to the present disclosure includes a capacitor main body 306a as a ceramic electronic component main body and a metal terminal 306b. Capacitor body 306a has two end faces facing each other and includes external electrodes formed on the two end faces. The metal terminal 306b is connected to an external electrode. The metal terminal 306b includes a connection portion 401c to be connected to a conductor pattern 404 as an external conductor layer. As shown in FIGS. 17 to 21, a convex portion 401d is formed on a part of the connecting portion 401c.
 このようにすれば、接続部401cの一部に凸部401dが形成されているため、導体パターン404と接続部401cとを接合部材であるはんだを介して接続する場合に、当該凸部401dの突出高さだけはんだの厚みを確保することができる。この結果、はんだにより接続部401cと導体パターン404とが接続された接合構造の信頼性を向上させることができる。 In this way, since the convex portion 401d is formed on a part of the connecting portion 401c, when the conductor pattern 404 and the connecting portion 401c are connected via solder as a joining member, the convex portion 401d The thickness of the solder can be ensured by the protruding height. As a result, the reliability of the joint structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
 上記電子部品において、図21に示すように凸部401dには貫通孔401eが形成されていてもよい。この場合、金属端子306bの接続部401cに貫通孔401eを形成するときに当該接続部401cの一部を塑性変形させることで、凸部401dを容易に形成できる。また、貫通孔401eの内部にもはんだを配置することができるので、当該はんだと接続部401cとの接触面積を大きくでき、接合構造の信頼性をより高めることができる。 In the electronic component, a through hole 401e may be formed in the convex portion 401d as shown in FIG. In this case, when the through hole 401e is formed in the connection portion 401c of the metal terminal 306b, the convex portion 401d can be easily formed by plastically deforming a part of the connection portion 401c. In addition, since solder can be disposed inside the through hole 401e, the contact area between the solder and the connection portion 401c can be increased, and the reliability of the joint structure can be further increased.
 本開示に従った電子部品は、セラミック電子部品本体としてのコンデンサ本体306aと、金属端子306bとを備える。コンデンサ本体306aは、互いに対向する2つの端面を有し、2つの端面上に形成された外部電極を含む。金属端子306bは、外部電極に接続される。金属端子306bは、外部の導体層としての導体パターン404と接続されるべき接続部401cと、接続部401cに連なりコンデンサ本体306aに接続される本体側部401bとを含む。本体側部401bの延在方向に対して接続部401cの延在方向は交差している。図22に示すように本体側部401bの延在方向と接続部401cの延在方向とのなす角度θ2は鋭角である。 The electronic component according to the present disclosure includes a capacitor main body 306a as a ceramic electronic component main body and a metal terminal 306b. Capacitor body 306a has two end faces facing each other and includes external electrodes formed on the two end faces. The metal terminal 306b is connected to an external electrode. The metal terminal 306b includes a connection portion 401c to be connected to a conductor pattern 404 as an external conductor layer, and a main body side portion 401b that is connected to the connection portion 401c and connected to the capacitor main body 306a. The extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 22, the angle θ2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an acute angle.
 本開示に従った電子部品は、セラミック電子部品本体としてのコンデンサ本体306aと、金属端子306bとを備える。コンデンサ本体306aは、互いに対向する2つの端面を有し、2つの端面上に形成された外部電極を含む。金属端子306bは、外部電極に接続される。金属端子306bは、外部の導体層としての導体パターン404と接続されるべき接続部401cと、接続部401cに連なりコンデンサ本体306aに接続される本体側部401bとを含む。本体側部401bの延在方向に対して接続部401cの延在方向は交差している。図23に示すように本体側部401bの延在方向と接続部401cの延在方向とのなす角度θ2は鈍角である。 The electronic component according to the present disclosure includes a capacitor main body 306a as a ceramic electronic component main body and a metal terminal 306b. Capacitor body 306a has two end faces facing each other and includes external electrodes formed on the two end faces. The metal terminal 306b is connected to an external electrode. The metal terminal 306b includes a connection portion 401c to be connected to a conductor pattern 404 as an external conductor layer, and a main body side portion 401b that is connected to the connection portion 401c and connected to the capacitor main body 306a. The extending direction of the connecting portion 401c intersects the extending direction of the main body side portion 401b. As shown in FIG. 23, the angle θ2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c is an obtuse angle.
 この場合、導体パターン404の表面に対してほぼ垂直な方向に本体側部401bの延在方向が沿うように、電子部品を導体パターン404と接続すれば、接続部401cは導体パターン404の表面に対して傾斜した状態となる。このため、導体パターン404と接続部401cとの間に接合部材としてのはんだを配置するときに、当該はんだの厚さを十分に確保できる。このため、はんだにより接続部401cと導体パターン404とが接続された接合構造の信頼性を向上させることができる。 In this case, if the electronic component is connected to the conductor pattern 404 so that the extending direction of the main body side portion 401b is along a direction substantially perpendicular to the surface of the conductor pattern 404, the connecting portion 401c is placed on the surface of the conductor pattern 404. It will be in the state inclined with respect to it. For this reason, when the solder as the joining member is disposed between the conductor pattern 404 and the connection portion 401c, a sufficient thickness of the solder can be secured. For this reason, the reliability of the junction structure in which the connection portion 401c and the conductor pattern 404 are connected by solder can be improved.
 本開示に従った電力用半導体モジュールは、図1および図2に示すように少なくとも1つの正極側電力用半導体素子である正極側スイッチング素子103Pおよび正極側還流ダイオード104Pと、少なくとも1つの負極側電力用半導体素子である負極側スイッチング素子103Nおよび負極側還流ダイオード104Nと、導体パターンと、上記電子部品としてのコンデンサ209とを備える。導体パターンには、少なくとも1つの正極側電力用半導体素子および少なくとも1つの負極側電力用半導体素子のいずれか一方が電気的に接続される。コンデンサ209は、導体パターンと電気的に接続される。 As shown in FIGS. 1 and 2, the power semiconductor module according to the present disclosure includes at least one positive-side power semiconductor element 103P and positive-side return diode 104P, and at least one negative-side power. A negative electrode side switching element 103N and a negative electrode side reflux diode 104N, which are semiconductor elements for use, a conductor pattern, and a capacitor 209 as the electronic component. One of at least one positive power semiconductor element and at least one negative power semiconductor element is electrically connected to the conductor pattern. Capacitor 209 is electrically connected to the conductor pattern.
 このようにすれば、電子部品としてのコンデンサ209の接続部401cと、導体パターンと電気的につながった導体層である導体パターン404との接合構造において、はんだなどの接合部材の厚さを十分に確保できる。この結果、接合構造の信頼性が向上した、長寿命化が可能な電力用半導体モジュールを得ることができる。 In this way, in the joint structure between the connection portion 401c of the capacitor 209 as an electronic component and the conductor pattern 404 that is a conductor layer electrically connected to the conductor pattern, the thickness of the joining member such as solder is sufficiently increased. It can be secured. As a result, it is possible to obtain a power semiconductor module capable of extending the service life with improved reliability of the joint structure.
 上記電力用半導体モジュールは、封止体205(図2参照)を備える。封止体205は、少なくとも1つの正極側電力用半導体素子と少なくとも1つの負極側電力用半導体素子とに対応する半導体素子204、および電子部品としてのコンデンサ209を封止する。封止体はエポキシ樹脂を含む。 The power semiconductor module includes a sealing body 205 (see FIG. 2). The sealing body 205 seals the semiconductor element 204 corresponding to at least one positive power semiconductor element and at least one negative power semiconductor element, and the capacitor 209 as an electronic component. The sealing body contains an epoxy resin.
 この場合、封止体205としてエポキシ樹脂を用いるため、コンデンサ209が接続された導体パターン404など電子部品近傍の構造の変形を封止体により抑制できる。このため、当該コンデンサ209近傍における上記変形に起因する応力の発生を抑制できる。 In this case, since an epoxy resin is used as the sealing body 205, deformation of the structure near the electronic component such as the conductor pattern 404 to which the capacitor 209 is connected can be suppressed by the sealing body. For this reason, generation | occurrence | production of the stress resulting from the said deformation | transformation in the said capacitor | condenser 209 vicinity can be suppressed.
 上記電力用半導体モジュールは、導体層としての導体パターン404を備える。導体パターン404は、半導体素子204が搭載された導体パターンと同一レイヤにより構成される。電子部品としてのコンデンサ209は導体パターン404に接続されている。 The power semiconductor module includes a conductor pattern 404 as a conductor layer. The conductor pattern 404 is composed of the same layer as the conductor pattern on which the semiconductor element 204 is mounted. A capacitor 209 as an electronic component is connected to the conductor pattern 404.
 この場合、電子部品としてのコンデンサ209が、導体パターンと同一レイヤにより構成される導体パターン404に接続されているので、導体パターンなどが形成された基板とは別の基板を、電子部品としてのコンデンサ209を実装するために用いる場合より、電力用半導体モジュールの構成を簡略化できるとともに、当該導体パターン404と電子部品としてのコンデンサ209との接合部の実装が容易なため当該接合部を信頼性高く形成することができる。 In this case, since the capacitor 209 as an electronic component is connected to the conductor pattern 404 formed of the same layer as the conductor pattern, a substrate different from the substrate on which the conductor pattern or the like is formed is replaced with a capacitor as an electronic component. The configuration of the power semiconductor module can be simplified as compared with the case of using for mounting 209, and the bonding portion between the conductor pattern 404 and the capacitor 209 as an electronic component can be easily mounted, so that the bonding portion is highly reliable. Can be formed.
 また、上記電力用半導体モジュールにおいて、コンデンサ本体306a下に位置する空間にアンダーフィル剤が配置されていてもよい。アンダーフィル剤は封止体205とは異なる材料から構成されていてもよい。 In the power semiconductor module, an underfill agent may be disposed in a space located under the capacitor body 306a. The underfill agent may be made of a material different from that of the sealing body 205.
 上述した各実施の形態に係る電力用半導体モジュールの特徴的な構成を要約すれば、電力用半導体モジュールは、少なくとも1つの半導体素子204と、導体パターン203a、203e、203f、203j、と、少なくとも1つのスナバ回路106と、封止体215と、中間部材としてのスナバ回路用基板230(図12参照)または金属端子306b(図8参照)と、接合材としてのはんだ231(図12参照)またははんだ接合部211(図8参照)とを備える。半導体素子204の一例としては、たとえば少なくとも1つの正極側電力用半導体素子である正極側スイッチング素子103Pおよび正極側還流ダイオード104Pと、少なくとも1つの負極側電力用半導体素子である負極側スイッチング素子103Nおよび負極側還流ダイオード104Nとが挙げられる。導体パターン203aには、少なくとも1つの半導体素子204が接続される。少なくとも1つのスナバ回路106は、導体パターン203j(図12参照)または導体パターン203d(図8参照)と電気的に接続される。少なくとも1つのスナバ回路106は、コンデンサとしての図12のコンデンサ209または図8のコンデンサ本体306aと抵抗体210とが直列に接続された回路である。封止体205は、少なくとも1つの半導体素子204、導体パターン203a、203e、203f、203j、コンデンサとしての図12のコンデンサ209または図8のコンデンサ本体306bおよび抵抗体210を封止する。中間部材としてのスナバ回路用基板230(図12参照)または金属端子306b(図8参照)はコンデンサとしての図12のコンデンサ209または図8のコンデンサ本体306bと接続される。接合材としてのはんだ231(図12参照)またははんだ接合部211(図8参照)は、当該部材を導体パターン203j、203e、203fに接続する。 To summarize the characteristic configuration of the power semiconductor module according to each of the above-described embodiments, the power semiconductor module includes at least one semiconductor element 204, conductor patterns 203a, 203e, 203f, 203j, and at least one. Snubber circuit 106, sealing body 215, snubber circuit substrate 230 (see FIG. 12) or metal terminal 306b (see FIG. 8) as an intermediate member, and solder 231 (see FIG. 12) or solder as a bonding material A joining portion 211 (see FIG. 8). As an example of the semiconductor element 204, for example, at least one positive electrode side switching element 103P and a positive electrode side freewheeling diode 104P that are positive electrode power semiconductor elements, and at least one negative electrode side switching element 103N that is a negative electrode power semiconductor element and And a negative electrode side reflux diode 104N. At least one semiconductor element 204 is connected to the conductor pattern 203a. At least one snubber circuit 106 is electrically connected to the conductor pattern 203j (see FIG. 12) or the conductor pattern 203d (see FIG. 8). The at least one snubber circuit 106 is a circuit in which the capacitor 209 in FIG. 12 as a capacitor or the capacitor main body 306a in FIG. 8 and the resistor 210 are connected in series. The sealing body 205 seals at least one semiconductor element 204, the conductor patterns 203a, 203e, 203f, and 203j, the capacitor 209 in FIG. 12 as a capacitor, or the capacitor body 306b and the resistor 210 in FIG. The snubber circuit board 230 (see FIG. 12) or the metal terminal 306b (see FIG. 8) as an intermediate member is connected to the capacitor 209 in FIG. 12 or the capacitor body 306b in FIG. A solder 231 (see FIG. 12) or a solder joint portion 211 (see FIG. 8) as a joining material connects the member to the conductor patterns 203j, 203e, and 203f.
 上記電力用半導体モジュールにおいて、少なくとも1つのスナバ回路106は、図3および図4に示すように、少なくとも1つの追加コンデンサとしてのコンデンサ209bと並列抵抗体としての抵抗体233a、233bとを含んでもよい。少なくとの1つの追加コンデンサ209bは、上記コンデンサ209aおよび抵抗体210と直列に接続されてもよい。並列抵抗体としての抵抗体233a、233bは、コンデンサ209aおよび少なくとも1つの追加コンデンサ209bのそれぞれと並列に接続されてもよい。 In the power semiconductor module, at least one snubber circuit 106 may include at least one capacitor 209b as an additional capacitor and resistors 233a and 233b as parallel resistors, as shown in FIGS. . At least one additional capacitor 209 b may be connected in series with the capacitor 209 a and the resistor 210. Resistors 233a and 233b as parallel resistors may be connected in parallel with each of capacitor 209a and at least one additional capacitor 209b.
 上記電力用半導体モジュールにおいて、図12に示すように、中間部材は、絶縁基板としてのセラミック基板230aと、スナバ回路用導体パターンとしての導体パターン230c~230eとを含んでもよい。セラミック基板230aは表面を有する。導体パターン230c~230eは、セラミック基板230aの表面に形成されてもよい。コンデンサ209はスナバ導体パターン230c、230dに接続されてもよい。 In the above power semiconductor module, as shown in FIG. 12, the intermediate member may include a ceramic substrate 230a as an insulating substrate and conductor patterns 230c to 230e as snubber circuit conductor patterns. Ceramic substrate 230a has a surface. The conductor patterns 230c to 230e may be formed on the surface of the ceramic substrate 230a. The capacitor 209 may be connected to the snubber conductor patterns 230c and 230d.
 上記電力用半導体モジュールにおいて、スナバ回路用導体パターンは、第1導体パターンとしての導体パターン230cと、第2導体パターンとしての導体パターン230dとを含んでもよい。導体パターン230dは、導体パターン230cと間隔を隔てて配置される。コンデンサ209は導体パターン230cと導体パターン230dとを繋ぐように配置されてもよい。電力用半導体モジュールは、絶縁体としてのアンダーフィル剤を備えてもよい。絶縁体は、コンデンサ209と導体パターン230cと導体パターン230dとに囲まれた空間220に配置され、封止体205とは異なる材料からなっていてもよい。 In the power semiconductor module, the snubber circuit conductor pattern may include a conductor pattern 230c as a first conductor pattern and a conductor pattern 230d as a second conductor pattern. The conductor pattern 230d is disposed at a distance from the conductor pattern 230c. The capacitor 209 may be disposed so as to connect the conductor pattern 230c and the conductor pattern 230d. The power semiconductor module may include an underfill agent as an insulator. The insulator may be disposed in a space 220 surrounded by the capacitor 209, the conductor pattern 230c, and the conductor pattern 230d, and may be made of a material different from that of the sealing body 205.
 図15および図16に示す上記電力用半導体モジュールにおいて、コンデンサ209は、図5に示すように、コンデンサ本体501aと、当該コンデンサ本体501aの表面に形成された外部電極501bとを含んでもよい。外部電極501bはスナバ回路用導体パターンとしての導体パターン230c、230dに接続されてもよい。 15 and 16, the capacitor 209 may include a capacitor body 501a and an external electrode 501b formed on the surface of the capacitor body 501a, as shown in FIG. The external electrode 501b may be connected to conductor patterns 230c and 230d as snubber circuit conductor patterns.
 図12~図14に示した上記電力用半導体モジュールにおいて、コンデンサ209は、コンデンサ本体306aと、当該コンデンサ本体306aに接続された金属端子306bとを含んでもよい。金属端子306bはスナバ回路用導体パターンとしての導体パターン230c、230dに接続されてもよい。 12 to 14, the capacitor 209 may include a capacitor main body 306a and a metal terminal 306b connected to the capacitor main body 306a. The metal terminal 306b may be connected to conductor patterns 230c and 230d as snubber circuit conductor patterns.
 上記電力用半導体モジュールにおいて、中間部材は、図8などに示すようにコンデンサとしてのコンデンサ本体306aに接続された金属端子306bを含んでもよい。金属端子306bは導体パターン203e、203fに接合材としてのはんだ接合部211により接続されてもよい。 In the power semiconductor module, the intermediate member may include a metal terminal 306b connected to a capacitor body 306a as a capacitor as shown in FIG. The metal terminal 306b may be connected to the conductor patterns 203e and 203f by a solder joint portion 211 as a joining material.
 上記電力用半導体モジュールにおいて、導体パターンは、図11に示すように、第1導体パターンとしての導体パターン303bと、第2導体パターンとしての導体パターン303cとを含んでもよい。導体パターン303cは、導体パターン303bと間隔を隔てて配置されてもよい。コンデンサ209は導体パターン303bと導体パターン303cとを繋ぐように配置されてもよい。電力用半導体モジュールは、絶縁体としてのアンダーフィル剤を備えてもよい。アンダーフィル剤は、コンデンサ209と導体パターン303bと導体パターン303cとに囲まれた空間に配置され、封止体205とは異なる材料からなっていてもよい。 In the power semiconductor module, the conductor pattern may include a conductor pattern 303b as a first conductor pattern and a conductor pattern 303c as a second conductor pattern, as shown in FIG. The conductor pattern 303c may be arranged at a distance from the conductor pattern 303b. The capacitor 209 may be disposed so as to connect the conductor pattern 303b and the conductor pattern 303c. The power semiconductor module may include an underfill agent as an insulator. The underfill agent may be disposed in a space surrounded by the capacitor 209, the conductor pattern 303b, and the conductor pattern 303c, and may be made of a material different from that of the sealing body 205.
 上記電力用半導体モジュールにおいて、図17~図21に示すように、金属端子401bは、導体パターン404と接続される接続部401cを含んでもよい。接続部401cの一部には導体パターン404側に向かって突出した形状である凸部401dが形成されてもよい。接合材としてのはんだ接合部402は、接続部401cの一部以外の部分と導体パターン404との間に配置された導電性の材料であってもよい。 In the power semiconductor module, the metal terminal 401b may include a connection portion 401c connected to the conductor pattern 404 as shown in FIGS. A protruding portion 401d having a shape protruding toward the conductor pattern 404 may be formed on a part of the connecting portion 401c. The solder joint portion 402 as a joining material may be a conductive material disposed between a portion other than a part of the connection portion 401 c and the conductor pattern 404.
 上記電力用半導体モジュールにおいて、図21に示すように凸部401dには貫通孔401eが形成されてもよい。 In the power semiconductor module, a through hole 401e may be formed in the convex portion 401d as shown in FIG.
 上記電力用半導体モジュールにおいて、金属端子は、図22または図23に示すように、導体パターン404と接続される接続部401cと、当該接続部401cに連なりコンデンサとしてのコンデンサ本体306aに接続される本体側部401bとを含んでもよい。本体側部401bの延在方向に対して接続部401cの延在方向は交差していてもよい。図22に示すように、本体側部401bの延在方向と接続部401cの延在方向とのなす角度θ2は鋭角であってもよい。あるいは、図23に示すように、本体側部401bの延在方向と接続部401cの延在方向とのなす角度θ2は鈍角であってもよい。また、当該角度θ2は直角でもよい。 In the power semiconductor module, as shown in FIG. 22 or FIG. 23, the metal terminal includes a connection portion 401c connected to the conductor pattern 404 and a main body connected to the connection portion 401c and connected to a capacitor main body 306a as a capacitor. The side portion 401b may be included. The extending direction of the connecting portion 401c may intersect the extending direction of the main body side portion 401b. As shown in FIG. 22, the angle θ2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c may be an acute angle. Alternatively, as shown in FIG. 23, the angle θ2 formed by the extending direction of the main body side portion 401b and the extending direction of the connecting portion 401c may be an obtuse angle. Further, the angle θ2 may be a right angle.
 上記電力用半導体モジュールは、配線部材206をさらに備えてもよい。配線部材206は、少なくとも1つの正極側電力用半導体素子および少なくとも1つの負極側電力用半導体素子のいずれかである少なくとも1つの半導体素子204に接続されてもよい。図10に示すように、導体パターン303bから配線部材206の頂部までの高さH2より、導体パターン303cからコンデンサ209の頂部までの高さH1が低くてもよい。 The power semiconductor module may further include a wiring member 206. The wiring member 206 may be connected to at least one semiconductor element 204 that is one of at least one positive power semiconductor element and at least one negative power semiconductor element. As shown in FIG. 10, the height H1 from the conductor pattern 303c to the top of the capacitor 209 may be lower than the height H2 from the conductor pattern 303b to the top of the wiring member 206.
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態および実施例に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiments of the present invention have been described above, the above-described embodiments can be variously modified. Further, the scope of the present invention is not limited to the above-described embodiments and examples. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本開示は、実装時の接合品質が安定化可能なセラミック電子部品とこのセラミック電子部品を実装し、IGBTやMOSFET等をスイッチング素子とする電力用半導体モジュールに有利に適用される。 The present disclosure is advantageously applied to a ceramic electronic component capable of stabilizing the bonding quality at the time of mounting and a power semiconductor module in which the ceramic electronic component is mounted and an IGBT, a MOSFET, or the like is used as a switching element.
 30 電源、101 電力用半導体モジュール、102 モーター、103N 負極側スイッチング素子、103P 正極側スイッチング素子、104N 負極側還流ダイオード、104P 正極側還流ダイオード、105a~105c レグ、106 スナバ回路、201 ベース板、202 ケース、203 ベース絶縁基板、203a,203c,203d,203e,203f,203g,203h,203j,230b,230c,230d,230e,230f,303a,303b,303c,404,504a,504b,504d,504e 導体パターン、203b 絶縁材、203i 導体層、204 半導体素子、204a スイッチング素子、204b 還流ダイオード、205 封止体、206 配線部材、207b,508 はんだ、208 端子、209 コンデンサ、210 抵抗体、211,307,402 はんだ接合部、215 上部封止体、220 空間、232 スルーホール、302 ダイボンド材、304 絶縁層、305 ベース部材、306a,306b,501a コンデンサ本体、306b 金属端子、306c,401c,401d 接続部、308 はんだ規制部、401b 本体側部、401d 凸部、401e 貫通孔、403,503a,503b ソルダーレジスト、501a コンデンサ本体部、501b 外部電極、230a,504c セラミック基板、506a 抵抗膜、506b セラミック板、506c ボンディングパッド、507 配線材。 30 power source, 101 power semiconductor module, 102 motor, 103N negative side switching element, 103P positive side switching element, 104N negative side reflux diode, 104P positive side reflux diode, 105a to 105c leg, 106 snubber circuit, 201 base plate, 202 Case, 203 base insulating substrate, 203a, 203c, 203d, 203e, 203f, 203g, 203h, 203j, 230b, 230c, 230d, 230e, 230f, 303a, 303b, 303c, 404, 504a, 504b, 504d, 504e Conductor pattern , 203b insulating material, 203i conductor layer, 204 semiconductor element, 204a switching element, 204b reflux diode, 205 sealing body, 206 wiring member, 07b, 508 solder, 208 terminal, 209 capacitor, 210 resistor, 211, 307, 402 solder joint, 215 upper sealing body, 220 space, 232 through hole, 302 die bond material, 304 insulating layer, 305 base member, 306a , 306b, 501a capacitor main body, 306b metal terminal, 306c, 401c, 401d connecting part, 308 solder regulating part, 401b main body side part, 401d convex part, 401e through hole, 403, 503a, 503b solder resist, 501a capacitor main part, 501b external electrode, 230a, 504c ceramic substrate, 506a resistive film, 506b ceramic plate, 506c bonding pad, 507 wiring material.

Claims (23)

  1.  少なくとも1つの半導体素子と、
     前記少なくとも1つの半導体素子が接続される導体パターンと、
     前記導体パターンと電気的に接続される少なくとも1つのスナバ回路とを備え、
     前記少なくとも1つのスナバ回路は、コンデンサと抵抗体とが直列に接続された回路であり、さらに、
     前記少なくとも1つの半導体素子、前記導体パターン、前記コンデンサおよび前記抵抗体を封止する封止体と、
     前記コンデンサと接続される中間部材と、
     前記中間部材を前記導体パターンに接続する接合材とを備える、電力用半導体モジュール。
    At least one semiconductor element;
    A conductor pattern to which the at least one semiconductor element is connected;
    And at least one snubber circuit electrically connected to the conductor pattern,
    The at least one snubber circuit is a circuit in which a capacitor and a resistor are connected in series, and
    A sealing body that seals the at least one semiconductor element, the conductor pattern, the capacitor, and the resistor;
    An intermediate member connected to the capacitor;
    A power semiconductor module comprising: a bonding material that connects the intermediate member to the conductor pattern.
  2.  前記少なくとも1つのスナバ回路は、
     前記コンデンサおよび前記抵抗体と直列に接続された少なくとも1つの追加コンデンサと、
     前記コンデンサおよび前記少なくとも1つの追加コンデンサのそれぞれと並列に接続された並列抵抗体とを含む、請求項1に記載の電力用半導体モジュール。
    The at least one snubber circuit is
    At least one additional capacitor connected in series with the capacitor and the resistor;
    The power semiconductor module according to claim 1, comprising a parallel resistor connected in parallel with each of the capacitor and the at least one additional capacitor.
  3.  前記中間部材は、
     表面を有する絶縁基板と、
     前記絶縁基板の前記表面に形成されたスナバ回路用導体パターンとを含み、
     前記コンデンサは前記スナバ回路用導体パターンに接続されている、請求項1または2に記載の電力用半導体モジュール。
    The intermediate member is
    An insulating substrate having a surface;
    A snubber circuit conductor pattern formed on the surface of the insulating substrate,
    The power semiconductor module according to claim 1, wherein the capacitor is connected to the conductor pattern for the snubber circuit.
  4.  前記スナバ回路用導体パターンは、第1導体パターンと、前記第1導体パターンと間隔を隔てて配置された第2導体パターンとを含み、
     前記コンデンサは前記第1導体パターンと前記第2導体パターンとを繋ぐように配置され、
     前記コンデンサと前記第1導体パターンと前記第2導体パターンとに囲まれた空間に配置され、前記封止体とは異なる材料からなる絶縁体を備える、請求項3に記載の電力用半導体モジュール。
    The snubber circuit conductor pattern includes a first conductor pattern and a second conductor pattern disposed at a distance from the first conductor pattern;
    The capacitor is arranged to connect the first conductor pattern and the second conductor pattern,
    4. The power semiconductor module according to claim 3, comprising an insulator made of a material different from that of the sealing body, which is disposed in a space surrounded by the capacitor, the first conductor pattern, and the second conductor pattern.
  5.  前記コンデンサは、
     コンデンサ本体部と、
     前記コンデンサ本体部の表面に形成された外部電極とを含み、
     前記外部電極は前記スナバ回路用導体パターンに接続されている、請求項3または4に記載の電力用半導体モジュール。
    The capacitor is
    A capacitor body,
    An external electrode formed on the surface of the capacitor body,
    The power semiconductor module according to claim 3 or 4, wherein the external electrode is connected to the conductor pattern for the snubber circuit.
  6.  前記コンデンサは、
     コンデンサ本体と、
     前記コンデンサ本体に接続された金属端子とを含み、
     前記金属端子は前記スナバ回路用導体パターンに接続さている、請求項3または4に記載の電力用半導体モジュール。
    The capacitor is
    A capacitor body;
    A metal terminal connected to the capacitor body,
    The power semiconductor module according to claim 3 or 4, wherein the metal terminal is connected to the conductor pattern for the snubber circuit.
  7.  前記中間部材は、前記コンデンサに接続された金属端子を含み、
     前記金属端子は前記導体パターンに前記接合材により接続されている、請求項1または2に記載の電力用半導体モジュール。
    The intermediate member includes a metal terminal connected to the capacitor,
    The power semiconductor module according to claim 1, wherein the metal terminal is connected to the conductor pattern by the bonding material.
  8.  前記導体パターンは、第1導体パターンと、前記第1導体パターンと間隔を隔てて配置された第2導体パターンとを含み、
     前記コンデンサは前記第1導体パターンと前記第2導体パターンとを繋ぐように配置され、
     前記コンデンサと前記第1導体パターンと前記第2導体パターンとに囲まれた空間に配置され、前記封止体とは異なる材料からなる絶縁体を備える、請求項7に記載の電力用半導体モジュール。
    The conductor pattern includes a first conductor pattern and a second conductor pattern disposed at a distance from the first conductor pattern,
    The capacitor is arranged to connect the first conductor pattern and the second conductor pattern,
    The power semiconductor module according to claim 7, further comprising an insulator made of a material different from that of the sealing body, which is disposed in a space surrounded by the capacitor, the first conductor pattern, and the second conductor pattern.
  9.  前記金属端子は、前記導体パターンと接続される接続部を含み、
     前記接続部の一部には前記導体パターン側に向かって突出した形状である凸部が形成され、
     前記接合材は、前記接続部の前記一部以外の部分と前記導体パターンとの間に配置された導電性の材料である、請求項7または8に記載の電力用半導体モジュール。
    The metal terminal includes a connection portion connected to the conductor pattern,
    A convex part that is a shape protruding toward the conductor pattern side is formed on a part of the connection part,
    The power semiconductor module according to claim 7 or 8, wherein the bonding material is a conductive material disposed between a portion other than the part of the connection portion and the conductor pattern.
  10.  前記凸部には貫通孔が形成されている、請求項9に記載の電力用半導体モジュール。 The power semiconductor module according to claim 9, wherein a through hole is formed in the convex portion.
  11.  前記金属端子は、前記導体パターンと接続される接続部と、前記接続部に連なり前記コンデンサに接続される本体側部とを含み、
     前記本体側部の延在方向に対して前記接続部の延在方向は交差しており、
     前記本体側部の延在方向と前記接続部の延在方向とのなす角度は鋭角である、請求項7または8に記載の電力用半導体モジュール。
    The metal terminal includes a connection part connected to the conductor pattern, and a main body side part connected to the capacitor connected to the connection part,
    The extending direction of the connecting portion intersects the extending direction of the main body side portion,
    The power semiconductor module according to claim 7 or 8, wherein an angle formed between the extending direction of the main body side portion and the extending direction of the connecting portion is an acute angle.
  12.  前記金属端子は、前記導体パターンと接続される接続部と、前記接続部に連なり前記コンデンサに接続される本体側部とを含み、
     前記本体側部の延在方向に対して前記接続部の延在方向は交差しており、
     前記本体側部の延在方向と前記接続部の延在方向とのなす角度は鈍角である、請求項7または8に記載の電力用半導体モジュール。
    The metal terminal includes a connection part connected to the conductor pattern, and a main body side part connected to the capacitor connected to the connection part,
    The extending direction of the connecting portion intersects the extending direction of the main body side portion,
    The power semiconductor module according to claim 7 or 8, wherein an angle formed between the extending direction of the main body side portion and the extending direction of the connecting portion is an obtuse angle.
  13.  前記封止体は、前記コンデンサが埋設された状態となるように配置されており、
     前記封止体上に配置された上部封止体をさらに備える、請求項1~12のいずれか1項に記載の電力用半導体モジュール。
    The sealing body is arranged so that the capacitor is embedded,
    The power semiconductor module according to any one of claims 1 to 12, further comprising an upper sealing body disposed on the sealing body.
  14.  前記少なくとも1つの半導体素子に接続された配線部材をさらに備え、
     前記導体パターンから前記配線部材の頂部までの高さより、前記導体パターンから前記コンデンサの頂部までの高さが低い、請求項1~13のいずれか1項に記載の電力用半導体モジュール。
    A wiring member connected to the at least one semiconductor element;
    The power semiconductor module according to any one of claims 1 to 13, wherein a height from the conductor pattern to the top of the capacitor is lower than a height from the conductor pattern to the top of the wiring member.
  15.  互いに対向する2つの端面を有し、前記2つの端面上に形成された外部電極を含むセラミック電子部品本体と、
     前記外部電極に接続された金属端子とを備え、
     前記金属端子は、外部の導体層と接続されるべき接続部を含み、
     前記接続部の一部には凸部が形成されている、電子部品。
    A ceramic electronic component body having two end faces facing each other and including external electrodes formed on the two end faces;
    A metal terminal connected to the external electrode,
    The metal terminal includes a connection portion to be connected to an external conductor layer,
    An electronic component, wherein a convex portion is formed on a part of the connection portion.
  16.  前記凸部には貫通孔が形成されている、請求項15に記載の電子部品。 The electronic component according to claim 15, wherein a through hole is formed in the convex portion.
  17.  互いに対向する2つの端面を有し、前記2つの端面上に形成された外部電極を含むセラミック電子部品本体と、
     前記外部電極に接続された金属端子とを備え、
     前記金属端子は、外部の導体層と接続されるべき接続部と、前記接続部に連なり前記セラミック電子部品本体に接続される本体側部とを含み、
     前記本体側部の延在方向に対して前記接続部の延在方向は交差しており、
     前記本体側部の延在方向と前記接続部の延在方向とのなす角度は鋭角である、電子部品。
    A ceramic electronic component body having two end faces facing each other and including external electrodes formed on the two end faces;
    A metal terminal connected to the external electrode,
    The metal terminal includes a connection part to be connected to an external conductor layer, and a main body side part connected to the ceramic electronic component main body connected to the connection part,
    The extending direction of the connecting portion intersects the extending direction of the main body side portion,
    An electronic component, wherein an angle formed between the extending direction of the main body side portion and the extending direction of the connecting portion is an acute angle.
  18.  互いに対向する2つの端面を有し、前記2つの端面上に形成された外部電極を含むセラミック電子部品本体と、
     前記外部電極に接続された金属端子とを備え、
     前記金属端子は、外部の導体層と接続されるべき接続部と、前記接続部に連なり前記セラミック電子部品本体に接続される本体側部とを含み、
     前記本体側部の延在方向に対して前記接続部の延在方向は交差しており、
     前記本体側部の延在方向と前記接続部の延在方向とのなす角度は鈍角である、電子部品。
    A ceramic electronic component body having two end faces facing each other and including external electrodes formed on the two end faces;
    A metal terminal connected to the external electrode,
    The metal terminal includes a connection part to be connected to an external conductor layer, and a main body side part connected to the ceramic electronic component main body connected to the connection part,
    The extending direction of the connecting portion intersects the extending direction of the main body side portion,
    An electronic component, wherein an angle formed between the extending direction of the main body side portion and the extending direction of the connecting portion is an obtuse angle.
  19.  少なくとも1つの半導体素子と、
     前記少なくとも1つの半導体素子が接続される導体パターンと、
     前記導体パターンと電気的に接続された、請求項15~18のいずれか1項に記載の電子部品とを備える電力用半導体モジュール。
    At least one semiconductor element;
    A conductor pattern to which the at least one semiconductor element is connected;
    A power semiconductor module comprising the electronic component according to any one of claims 15 to 18, which is electrically connected to the conductor pattern.
  20.  前記少なくとも1つの半導体素子、前記導体パターン、および前記電子部品を封止する封止体を備える、請求項19に記載の電力用半導体モジュール。 The power semiconductor module according to claim 19, comprising a sealing body that seals the at least one semiconductor element, the conductor pattern, and the electronic component.
  21.  前記少なくとも1つの半導体素子は、ワイドバンドギャップ半導体からなる、請求項1~14、19、20のいずれか1項に記載の電力用半導体モジュール。 The power semiconductor module according to any one of claims 1 to 14, 19, and 20, wherein the at least one semiconductor element is made of a wide band gap semiconductor.
  22.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、ダイヤモンド、酸化ガリウムからなる群から選択される1つである、請求項21に記載の電力用半導体モジュール。 The power semiconductor module according to claim 21, wherein the wide band gap semiconductor is one selected from the group consisting of silicon carbide, gallium nitride, diamond, and gallium oxide.
  23.  コンデンサと抵抗体とが直列に接続された回路であるスナバ回路を備える電力用半導体モジュールの製造方法であって、
     前記スナバ回路が形成される中間部材に前記コンデンサを接続する工程を備え、
     前記中間部材は、表面を有する絶縁基板と、
     前記絶縁基板の前記表面に形成されたスナバ回路用導体パターンとを含み、
     前記接続する工程では、前記コンデンサが前記スナバ回路用導体パターンに接続され、さらに、
     前記コンデンサが前記スナバ回路用導体パターンに接続された前記絶縁基板を、表面を有するベース絶縁基板に設置する工程を備え、
     前記ベース絶縁基板の前記表面上には、
     少なくとも1つの半導体素子と、
     前記少なくとも1つの半導体素子が接続される導体パターンと、が配置され、
     前記ベース絶縁基板に設置する工程では、前記絶縁基板が前記ベース絶縁基板の前記導体パターンに接続される、電力用半導体モジュールの製造方法。
    A method for producing a power semiconductor module comprising a snubber circuit, which is a circuit in which a capacitor and a resistor are connected in series,
    Connecting the capacitor to an intermediate member on which the snubber circuit is formed,
    The intermediate member includes an insulating substrate having a surface;
    A snubber circuit conductor pattern formed on the surface of the insulating substrate,
    In the connecting step, the capacitor is connected to the conductor pattern for snubber circuit,
    The capacitor is connected to the conductor pattern for the snubber circuit, and the step of installing the insulating substrate on a base insulating substrate having a surface,
    On the surface of the base insulating substrate,
    At least one semiconductor element;
    A conductor pattern to which the at least one semiconductor element is connected, and
    The method of manufacturing a power semiconductor module, wherein, in the step of installing on the base insulating substrate, the insulating substrate is connected to the conductor pattern of the base insulating substrate.
PCT/JP2018/016263 2017-04-21 2018-04-20 Power semiconductor module, electronic component and method for producing power semiconductor module WO2018194153A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019513697A JP6755386B2 (en) 2017-04-21 2018-04-20 Manufacturing method of power semiconductor module and power semiconductor module
CN201880020955.XA CN110494977B (en) 2017-04-21 2018-04-20 Power semiconductor module, electronic component, and method for manufacturing power semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084625 2017-04-21
JP2017084625 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018194153A1 true WO2018194153A1 (en) 2018-10-25

Family

ID=63855855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016263 WO2018194153A1 (en) 2017-04-21 2018-04-20 Power semiconductor module, electronic component and method for producing power semiconductor module

Country Status (3)

Country Link
JP (1) JP6755386B2 (en)
CN (1) CN110494977B (en)
WO (1) WO2018194153A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062042A (en) * 2017-09-26 2019-04-18 太陽誘電株式会社 Electronic component with metal terminal and electronic component mounted circuit board
US20200395867A1 (en) * 2018-02-20 2020-12-17 Mitsubishi Electric Corporation Power semiconductor module and power conversion apparatus including the same
CN113632216A (en) * 2019-03-27 2021-11-09 NexFi技术株式会社 Power substrate and high-voltage module provided with same
WO2021229837A1 (en) * 2020-05-12 2021-11-18 住友電気工業株式会社 Semiconductor device
US11610873B2 (en) 2020-02-10 2023-03-21 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
JP7419781B2 (en) 2019-12-10 2024-01-23 富士電機株式会社 semiconductor module
WO2024057860A1 (en) * 2022-09-13 2024-03-21 ローム株式会社 Semiconductor device
JP7459672B2 (en) 2020-06-10 2024-04-02 住友電気工業株式会社 semiconductor equipment
US11988688B2 (en) 2019-05-29 2024-05-21 Mitsubishi Electric Corporation Voltage dividing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151952A (en) * 1984-08-22 1986-03-14 Hitachi Ltd Semiconductor device
JPS6315034U (en) * 1986-07-15 1988-02-01
JPH0529108U (en) * 1991-09-24 1993-04-16 株式会社トーキン Surface mount component terminals
JP2009225612A (en) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp Power module
JP2010123614A (en) * 2008-11-17 2010-06-03 Murata Mfg Co Ltd Ceramic capacitor and electronic component equipped with the same
JP2012210153A (en) * 2012-08-03 2012-10-25 Daikin Ind Ltd Electric power conversion apparatus
WO2014097798A1 (en) * 2012-12-18 2014-06-26 富士電機株式会社 Semiconductor device
JP2015126342A (en) * 2013-12-26 2015-07-06 ローム株式会社 Power circuit and power module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528980A (en) * 2014-08-08 2016-02-10 Reinhausen Maschf Scheubeck Voltage balancing in series connected power switches

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151952A (en) * 1984-08-22 1986-03-14 Hitachi Ltd Semiconductor device
JPS6315034U (en) * 1986-07-15 1988-02-01
JPH0529108U (en) * 1991-09-24 1993-04-16 株式会社トーキン Surface mount component terminals
JP2009225612A (en) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp Power module
JP2010123614A (en) * 2008-11-17 2010-06-03 Murata Mfg Co Ltd Ceramic capacitor and electronic component equipped with the same
JP2012210153A (en) * 2012-08-03 2012-10-25 Daikin Ind Ltd Electric power conversion apparatus
WO2014097798A1 (en) * 2012-12-18 2014-06-26 富士電機株式会社 Semiconductor device
JP2015126342A (en) * 2013-12-26 2015-07-06 ローム株式会社 Power circuit and power module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062042A (en) * 2017-09-26 2019-04-18 太陽誘電株式会社 Electronic component with metal terminal and electronic component mounted circuit board
US20200395867A1 (en) * 2018-02-20 2020-12-17 Mitsubishi Electric Corporation Power semiconductor module and power conversion apparatus including the same
US11711025B2 (en) * 2018-02-20 2023-07-25 Mitsubishi Electric Corporation Power semiconductor module and power conversion apparatus including the same
CN113632216A (en) * 2019-03-27 2021-11-09 NexFi技术株式会社 Power substrate and high-voltage module provided with same
US11988688B2 (en) 2019-05-29 2024-05-21 Mitsubishi Electric Corporation Voltage dividing device
JP7419781B2 (en) 2019-12-10 2024-01-23 富士電機株式会社 semiconductor module
US11610873B2 (en) 2020-02-10 2023-03-21 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
WO2021229837A1 (en) * 2020-05-12 2021-11-18 住友電気工業株式会社 Semiconductor device
JP7459672B2 (en) 2020-06-10 2024-04-02 住友電気工業株式会社 semiconductor equipment
WO2024057860A1 (en) * 2022-09-13 2024-03-21 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
CN110494977B (en) 2023-04-18
JP6755386B2 (en) 2020-09-16
CN110494977A (en) 2019-11-22
JPWO2018194153A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018194153A1 (en) Power semiconductor module, electronic component and method for producing power semiconductor module
US9171773B2 (en) Semiconductor device
US9420731B2 (en) Electronic power device and method of fabricating an electronic power device
US8018047B2 (en) Power semiconductor module including a multilayer substrate
US10276522B2 (en) Power module
WO2016152258A1 (en) Semiconductor device
US9324684B2 (en) Semiconductor device and manufacturing method thereof
US20180233424A1 (en) Semiconductor package device
JP7241163B2 (en) Electronic module and manufacturing method thereof
US9385107B2 (en) Multichip device including a substrate
US9524929B2 (en) Semiconductor module package and method of manufacturing the same
JP2007012831A (en) Power semiconductor device
WO2020241238A1 (en) Semiconductor device
US20150237718A1 (en) Power semiconductor device
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP5899952B2 (en) Semiconductor module
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
US20230075200A1 (en) Power module and method for manufacturing same
WO2018198747A1 (en) Semiconductor device
JP6248803B2 (en) Power semiconductor module
CN112823416A (en) Surface-mounted thermal buffer
JP2019087757A (en) Semiconductor device
JP2020129605A (en) Semiconductor module, semiconductor device, and method of manufacturing the same
JP2004296837A (en) Semiconductor device
JP2021114537A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787248

Country of ref document: EP

Kind code of ref document: A1