WO2017126608A1 - Thermally conductive filler composition, use thereof, and method for producing same - Google Patents

Thermally conductive filler composition, use thereof, and method for producing same Download PDF

Info

Publication number
WO2017126608A1
WO2017126608A1 PCT/JP2017/001758 JP2017001758W WO2017126608A1 WO 2017126608 A1 WO2017126608 A1 WO 2017126608A1 JP 2017001758 W JP2017001758 W JP 2017001758W WO 2017126608 A1 WO2017126608 A1 WO 2017126608A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
volume
nitride powder
parts
resin
Prior art date
Application number
PCT/JP2017/001758
Other languages
French (fr)
Japanese (ja)
Inventor
藤波 恭一
誠司 今澄
猛 王
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2017562889A priority Critical patent/JP6826544B2/en
Publication of WO2017126608A1 publication Critical patent/WO2017126608A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a thermally conductive filler composition for a thermally conductive molded article that can be suitably used as a heat dissipation material for electronic devices and parts.
  • the present invention also relates to a thermally conductive resin composition using the thermally conductive filler composition, a molded article thereof, a method of producing the filler composition, a method of producing the thermally conductive resin composition, and a thermally conductive molded article It relates to the manufacturing method.
  • Such materials include thermal interface materials, organic heat dissipating sheets, heat dissipating paints, heat dissipating resin substrates, insulating layers of metal base substrates, thermally conductive molded articles used for thermally conductive sealants, etc. Its use is expanding rapidly. These materials are materials used to relieve the thermal resistance of a path for dissipating heat generated from a semiconductor element to a heat sink, a housing or the like, and are used in various forms.
  • a thermally conductive molded product is a composite material in which a thermally conductive filler is mixed with a resin such as an epoxy resin or a silicone resin, and a metal oxide is often used as the thermally conductive filler.
  • the thermally conductive molded body molded by the composite material using the metal oxide has a thermal conductivity of about 1 to 3 W / m ⁇ K.
  • aluminum nitride has attracted attention as a substance having a higher thermal conductivity
  • a thermally conductive molded body in which an aluminum nitride powder is blended as a thermally conductive filler has been studied.
  • Higher thermal conductivity is realized in a thermally conductive compact using such aluminum nitride powder as a thermally conductive filler, and thermal conductivity of about 3 to 5 W / m ⁇ K can be achieved It is.
  • blended the heat conductive filler has been increased, it has come to be anticipated as a substitute material of alumina ceramics.
  • the heat conductivity required for the heat conductive molded body to replace alumina ceramics is 10 W / m ⁇ K or more.
  • Patent Document 1 an attempt is made to realize a higher thermal conductivity by blending an aluminum nitride powder and a hexagonal boron nitride powder (Patent Document 1) ).
  • the thermal conductivity remains at less than 10 W / m ⁇ K simply by simply blending the aluminum nitride powder and the hexagonal boron nitride powder. From the above, there is a need for a thermally conductive filler that can realize a thermally conductive molded body capable of exhibiting a high degree of thermal conductivity of 10 W / m ⁇ K or more.
  • an object of the present invention is to provide a thermally conductive filler composition which contributes to the realization of a thermally conductive molded article having a high thermal conductivity of 10 W / m ⁇ K or more.
  • hexagonal boron nitride powder having a specific average particle diameter and an average aspect ratio as a heat conductive filler which is a raw material of a heat conductive molded body. It has been found that the above-mentioned object can be achieved by blending at a specific ratio the aluminum nitride powder having a specific average particle diameter and the above, and the present invention has been completed.
  • the present invention provides a filler composition
  • a filler composition comprising (A) hexagonal boron nitride powder having an average aspect ratio of 2 to 40 and an average particle size of 2 to 60 ⁇ m, and (B) aluminum nitride powder having an average particle size of 10 to 100 ⁇ m.
  • the thermally conductive filler composition is characterized in that it is a thermally conductive filler composition having a proportion of (A) of 5 to 40% by volume and a proportion of (B) of 40 to 95% by volume.
  • the above-mentioned thermally conductive filler composition may further contain (C) an aluminum nitride powder having an average particle diameter of 0.1 to 3 ⁇ m in a proportion of 30% by volume or less. .
  • Another invention is a thermally conductive resin composition
  • a thermally conductive resin composition comprising 100 parts by volume to 1000 parts by volume of the above-mentioned filler composition with respect to 100 parts by volume of a curable resin.
  • the thermally conductive molded body using the thermally conductive filler composition of the present invention realizes a heat dissipation material capable of expressing a high thermal conductivity of 10 W / m ⁇ K or more, and, for example, as a substrate for heat dissipation of electronic components It can be used suitably.
  • volume% used in the present specification is the volume of each component calculated from the mass / true density from the mass of each component and the true density, and the value of each component calculated with respect to the total volume of the components Mean percentage of volume.
  • volume is also based on the volume of each component calculated from mass / true density.
  • filler composition after mixing it can confirm by an electron micrograph.
  • the average aspect ratio of the (A) hexagonal boron nitride powder in the present invention is 2 to 40, preferably 3 to 10.
  • the average aspect ratio exceeds 40, the thermal conductivity in the thickness direction of the plate-like thermally conductive molded product produced by mixing the resin and the thermally conductive filler becomes low.
  • the average aspect ratio is increased, the proportion of hexagonal boron nitride particles oriented in the surface direction of the thermally conductive compact is increased, and as a result, the thermal conductivity of the thermally conductive compact is lowered.
  • the average aspect ratio is less than 2, the thermal conductivity is lowered because the crystallinity of the hexagonal boron nitride particles is reduced.
  • the average aspect ratio is 3 to 10
  • the crystallinity of the hexagonal boron nitride particles blended in the heat conductive compact is high, the particle orientation is small, and furthermore, the mixing of air bubbles into the heat conductive compact, etc. is also small.
  • the highest thermal conductivity is achieved.
  • the average particle size of the hexagonal boron nitride powder in the present invention is 2 to 60 ⁇ m, preferably 4 to 30 ⁇ m.
  • the average particle size is smaller than 2 ⁇ m, the crystallinity of hexagonal boron nitride particles is low, and high thermal conductivity can not be obtained.
  • hexagonal boron nitride particles are oriented in parallel to the surface direction of the thermally conductive molded product, the formation of the thermally conductive path becomes insufficient, and the thermal conductivity becomes low.
  • the average particle size is 4 to 30 ⁇ m, the packing property is good, it is easy to handle as a thermally conductive resin composition, and high thermal conductivity can be obtained.
  • the said average particle diameter is a volume-based arithmetic mean value measured by the laser diffraction type particle size distribution measuring apparatus.
  • the reduction nitriding method in which boron oxide or boric acid and carbon such as carbon black are made to coexist and reacted in a nitrogen stream is the hexagonal nitride of the present invention. It is preferable because boron powder can be easily obtained. Furthermore, in the reduction nitriding method, a method in which an alkali metal compound or an alkaline earth metal compound is allowed to coexist is particularly preferable because the boron nitride powder of the present invention can be obtained in a high yield.
  • a particularly preferable example of the reduction nitriding method is described in JP-A-2015-212217, and according to this method, a hexagonal boron nitride powder having a predetermined aspect ratio and good crystallinity can be obtained.
  • the aluminum nitride powder (B) having an average particle size of 10 to 100 ⁇ m in the present invention is not particularly limited as long as it is a known aluminum nitride powder having an average particle size of 10 to 100 ⁇ m.
  • the average particle size of the aluminum nitride powder (B) is preferably 15 to 60 ⁇ m, and more preferably 18 to 42 ⁇ m.
  • the average particle size is an arithmetic mean value measured by a laser diffraction type particle size distribution measuring apparatus.
  • the aluminum nitride powder is not particularly limited, and can be produced, for example, by a known or known method such as a reduction nitriding method, a direct nitriding method, and a sintering method.
  • a reduction nitriding method grain growth is carried out using an oxide such as an alkali metal oxide or an alkaline earth metal oxide, or a grain growth agent such as sulfur or a sulfur-containing compound.
  • the (B) aluminum nitride powder produced by the sintering method of being granulated by the method and then sintered is suitably used in the present invention.
  • the aluminum nitride granule sintering method described in JP-A-2003-267708 is preferable.
  • the thermally conductive filler composition of the present invention may further contain (C) an aluminum nitride powder having an average particle size of 0.1 to 3 ⁇ m in addition to the above (A) powder and (B) powder.
  • the powder (C) those obtained by a known method such as reduction nitriding method or direct nitriding method can be used without particular limitation as long as the average particle diameter is in the range of 0.1 to 3 ⁇ m.
  • the average particle size is also an arithmetic mean value measured by a laser diffraction type particle size distribution measuring apparatus.
  • aluminum nitride powder (C) having an average particle diameter of 0.1 to 3 ⁇ m manufactured by a reduction nitriding method is preferable from the viewpoint of stability in the air.
  • the average particle size of the aluminum nitride powder (C) is preferably in the range of 0.5 to 2 ⁇ m, more preferably 0.8 to 1.8 ⁇ m.
  • the composition of each filler is (A) 5 to 40% by volume of hexagonal boron nitride powder, preferably 20 to 40% by volume, and (B) aluminum nitride powder 40 to 95% by volume, preferably 50 to 80% by volume, the proportion of (C) small particles of aluminum nitride powder is 0 to 30% by volume, preferably 2 to 15% by volume.
  • the proportion of the hexagonal boron nitride powder (A) is less than 5% by volume, the thermal conductivity is low when it is formed into a thermally conductive compact containing the thermally conductive filler composition.
  • the blending amount is more than 40% by volume, the strength of the thermally conductive molded body is lowered, and there is a problem that the adhesive strength in the case of bonding with metal etc. is lowered.
  • the proportion of the aluminum nitride powder (B) is less than 40% by volume or greater than 95% by volume, the thermal conductivity of the thermally conductive molded article is low.
  • the aluminum nitride powder may not be contained, but by blending it, it is possible to suppress the reduction of the thermal conductivity due to the inclusion of air bubbles when it is made a thermally conductive molded body than when it is not blended Play. Also, the relatively small grained aluminum nitride powder (C) is filled in the gaps between the relatively large grained hexagonal boron nitride powder (A) and the aluminum nitride powder (B), so that the heat conduction path is formed densely. Therefore, the thermal conductivity is improved. In addition, when the aluminum nitride powder (C) is too small, mixing of air bubbles is likely to occur at the time of production of the formed body.
  • the aluminum nitride powder (C) is too large, it will be difficult to fill the gaps between the hexagonal boron nitride powder (A) and the aluminum nitride powder (B). Moreover, when the said (C) powder exceeds 30 volume%, the heat conductivity when it is set as a thermally conductive molded object will become low by the specific surface area of a thermally conductive filler composition increasing.
  • the method for preparing the thermally conductive filler composition of the present invention is not particularly limited, and it is produced by mixing the respective fillers constituting the thermally conductive filler composition by a known mixing method.
  • the mixing of the respective fillers may be a dry method or a wet method using a kneader described later.
  • the thermally conductive filler composition of the present invention contains hexagonal boron nitride powder (A) and relatively large-grained aluminum nitride powder (B) as raw materials as described above, and further, if desired, relatively small-grained aluminum nitride Contains powder (C).
  • hexagonal boron nitride powder (A) and relatively large-grained aluminum nitride powder (B) as raw materials as described above
  • a powder having a narrow particle size distribution as the raw material aluminum nitride powder.
  • (A ') It is preferable to use a powder having a relatively uniform shape and a narrow particle size distribution, and the aspect ratio is preferably 3 to 10, and the particle size is 4 to 30 ⁇ m. It is preferable to be in the range of
  • the particle size distribution of the (B ') aluminum nitride powder is also preferably narrow, and the particle size is preferably in the range of 15 to 60 ⁇ m.
  • the ratio of (A ′) hexagonal boron nitride powder having a specific aspect ratio and particle diameter and (B ′) aluminum nitride powder having a specific particle diameter may be within the above range, There may be a hexagonal boron nitride powder outside the aspect ratio and particle size or an aluminum nitride powder outside the predetermined particle size.
  • the thermally conductive filler composition of the present invention can also be used as a raw material for preparing further thermally conductive filler compositions by further mixing other thermally conductive fillers and other components.
  • These other components are 100 parts by volume of the components (A), (B) and (C) or 100 parts by volume of the components (A '), (B') and (C '). It may be contained in a proportion of 20 parts by volume or less.
  • the thermally conductive filler composition contains filler components other than hexagonal boron nitride powder and aluminum nitride powder, the other filler components are not included in the calculation of “volume%”. That is, “volume%” in the thermally conductive filler composition of the present invention is calculated based on the volumes of hexagonal boron nitride powder and aluminum nitride powder.
  • the thermally conductive resin composition to be the thermally conductive molded article of the present invention contains the thermally conductive filler composition in an amount of 100 to 1000 parts by volume, preferably 200 to 500 parts by volume, per 100 parts by volume of the resin. Do. When the thermally conductive filler composition is less than 100 parts by volume, the thermal conductivity of the resulting thermally conductive molded article is low, and sufficient characteristics can not be obtained. On the other hand, if it exceeds 1000 parts by volume, the viscosity at the time of mixing is significantly increased, the workability is extremely deteriorated, and further, mixing failure occurs to cause problems such as a decrease in thermal conductivity.
  • the blending amount of the thermally conductive filler composition is 200 to 500 parts by volume with respect to 100 parts by volume of the resin, the content of the thermally conductive filler composition having high thermal conductivity is increased, and mixing of air bubbles is also avoided. Highest thermal conductivity can be achieved.
  • a curable heat conductive resin composition using a thermosetting resin or a photo-curing resin as a resin is preferable because of easy shape control.
  • a curable thermally conductive resin composition employing a thermosetting resin as the resin is most preferable because it does not require properties such as light transmittance and has few restrictions on curing conditions.
  • the resin contained in the resin composition is not particularly limited, but, for example, polyethylene, polypropylene, ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer Polymer, polyvinyl alcohol, polyacetal, fluorocarbon resin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6 naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, Polyphenylene ether (PPE) resin, modified PPE resin, aliphatic polyamides, aromatic polyamides, polyimide, polyamideimide, polymethacrylic acid (polymethyl methacrylate etc.
  • PPE Polyphenylene ether
  • Thermoplastic resins such as polymethacrylic acid esters), polyacrylic acids, polycarbonates, polyphenylene sulfides, polysulfones, polyether sulfones, polyether nitriles, polyether ketones, polyether ketones, polyether ether ketones, poly ketones, liquid crystal polymers, ionomers, epoxy resins, Examples thereof include curable acrylic resins, curable urethane resins, curable silicone resins, phenolic resins, curable polyimide resins, curable modified PPE, and curable resins such as curable PPE. Among these resins, a curable resin is preferable from the viewpoint of producing a thermally conductive molded body.
  • the above-mentioned heat conductive resin composition a polymerization initiator, a polymerization inhibitor, a polymerization retarder, a coupling agent, a plasticizer, a UV absorber, a pigment, which is known as a compounding agent of the resin composition, if necessary
  • the composition may contain known additives such as dyes, antibacterial agents, organic fillers, organic-inorganic composite fillers and the like. Moreover, you may contain the other inorganic filler in the range which does not impair the effect of this invention. These other components may be contained in the thermally conductive resin composition in a proportion of 10% by mass or less.
  • the (A) hexagonal boron nitride powder, (B) aluminum nitride powder, and (C) aluminum nitride powder as needed are mixed with the resin at a predetermined volume ratio. It can be manufactured by doing.
  • the mixing of these components can be carried out, for example, by a dry method or a wet method using a known kneader such as a roll, a kneader, a Banbury mixer, an autorotation / revolution mixer, a grinder, or a mortar.
  • the order of mixing is not particularly limited, and after all the powders of (A) to (C) are mixed beforehand to obtain a filler composition, the filler composition may be kneaded with a resin, It is also possible to mix each powder into the resin sequentially.
  • the heat conductive molded body of the present invention is obtained by molding the above-mentioned heat conductive resin composition.
  • a molding method a known method may be adopted, and when the resin is a thermoplastic resin, it may be softened at a high temperature and then cooled as a desired shape, and when the resin is a thermosetting resin, The thermosetting resin may be formed in a desired shape, or when the resin is a photocurable resin, the light curing may be performed in a desired shape.
  • the thermally conductive molded article of the present invention is not particularly limited as long as the compounding amount of the thermally conductive filler composition to the resin falls within a predetermined range.
  • a specific molding method for example, when producing a thermally conductive molded body from a thermally conductive resin composition, it is solidified after being molded so that a shear stress is applied in a direction parallel to the plate-like surface. It can be produced by Examples of such a molding method include press molding, extrusion molding, tape casting and the like. In the case of press molding, the molding pressure is about 1 to 20 MPa, preferably about 2 to 15 MPa. By applying an appropriate molding pressure, the orientation of the filler can be controlled, and it becomes easy to form a heat conduction path.
  • the thermally conductive molded body of the present invention includes the above-described thermally conductive filler composition of the present invention, and the content of each filler is as described above.
  • the content of the resin component and the filler in the thermally conductive molded body can be determined, for example, by a change in weight when the thermally conductive molded body is burned at 700 ° C. in an air atmosphere in a thermobalance.
  • content of each filler can be performed by scanning electron microscope observation. Specifically, a secondary electron image is captured by a scanning electron microscope, and the particle diameter of 100 particles is individually measured to assign (A) particles, (B) particles, and (C) particles.
  • the volume can be calculated from the particle diameter of each particle, and the content of (A) particles, (B) particles, and (C) particles can be determined from the ratio to the total volume.
  • the contents of (A ') particles, (B') particles, and (C ') particles can be determined.
  • each component used in the Example is the following. ⁇ Mixture of 100 parts by mass of resin epoxy resin (jER 807, manufactured by Mitsubishi Chemical Co., Ltd.) and 32 parts by mass of curing agent (jER Cure 113, manufactured by Mitsubishi Chemical Co., Ltd.)
  • Aluminum nitride powder AlN01 Aluminum nitride having an average particle diameter of 1 ⁇ m (manufactured by Tokuyama Co., Ltd., HF-01) AlN 30: Aluminum nitride AlN with an average particle diameter of 30 ⁇ m
  • AlN Aluminum nitride with an average particle diameter of 80 ⁇ m (Furukawa Electronics Co., Ltd., FAN-f80)
  • the above-mentioned hexagonal boron nitride powders BN02, BN03, BN04 and aluminum nitride powder AlN30 were produced as follows.
  • Production Example 1 (Manufacturing of BN 02) 100 g of boric anhydride, 40 g of carbon black, and 28 g of calcium carbonate are mixed in a ball mill, and the mixture is heated to 1500 ° C. at 15 ° C./min under a nitrogen gas atmosphere using a graphite-made Tammann furnace, 1500 ° C. Then, the temperature is raised to 1800 ° C. at 15 ° C./min, nitriding treatment is performed at 1800 ° C. for 2 hours, and further hydrochloric acid washing is performed to obtain a high purity white hexagonal boron nitride powder.
  • the BN powder obtained by the above method had an average aspect ratio of 4.0 and an average particle diameter of 12 ⁇ m.
  • Example 1 14 volume% of boron nitride (BN02) having an average aspect ratio of 4.0 and an average particle diameter of 12 ⁇ m as filler (A) and 86 volume% of aluminum nitride (AlN 80) having an average particle diameter of 80 ⁇ m as filler (B)
  • the thermally conductive filler composition was prepared by mixing.

Abstract

[Problem] To provide a thermally conductive filler composition capable of achieving a thermally conductive molded product having high thermal conductivity. [Solution] This filler composition has a composition comprising: (A) from 5 to 40 vol%, preferably from 20 to 40 vol%, of a hexagonal boron nitride powder having an average aspect ratio from 2 to 40 and an average particle diameter from 2 to 60 µm; and (B) from 40 to 95 vol%, preferably from 50 to 80 vol%, of an aluminum nitride powder having an average particle diameter from 10 to 100 µm.

Description

熱伝導性フィラー組成物、その利用および製法Thermally conductive filler composition, use thereof and preparation method
 本発明は電子機器・部品の放熱材料として好適に使用できる熱伝導性成形体用の熱伝導性フィラー組成物に関する。また、本発明は該熱伝導性フィラー組成物を用いた熱伝導性樹脂組成物、その成形体、該フィラー組成物の製造方法、熱伝導性樹脂組成物の製造方法および熱伝導性成形体の製造方法に関する。 The present invention relates to a thermally conductive filler composition for a thermally conductive molded article that can be suitably used as a heat dissipation material for electronic devices and parts. The present invention also relates to a thermally conductive resin composition using the thermally conductive filler composition, a molded article thereof, a method of producing the filler composition, a method of producing the thermally conductive resin composition, and a thermally conductive molded article It relates to the manufacturing method.
 近年、半導体デバイスのパワー密度上昇に伴い、デバイスに使用される材料には、より高度な放熱特性が求められている。このような材料として、サーマルインターフェイスマテリアル、有機系放熱シート、放熱塗料、放熱樹脂基板、メタルベース基板の絶縁層、熱伝導性封止剤等の用に供される熱伝導性成形体があり、その使用量は急速に拡大している。これらの材料は、半導体素子から発生する熱をヒートシンクまたは筐体等に逃がす経路の熱抵抗を緩和するため等に使用される材料であり、多用な形態で使用される。 In recent years, with the increase in power density of semiconductor devices, more advanced heat dissipation characteristics are required of materials used for the devices. Such materials include thermal interface materials, organic heat dissipating sheets, heat dissipating paints, heat dissipating resin substrates, insulating layers of metal base substrates, thermally conductive molded articles used for thermally conductive sealants, etc. Its use is expanding rapidly. These materials are materials used to relieve the thermal resistance of a path for dissipating heat generated from a semiconductor element to a heat sink, a housing or the like, and are used in various forms.
 一般に、熱伝導性成形体は、熱伝導性フィラーをエポキシ樹脂やシリコーン樹脂の様な樹脂に配合した複合材料であり、熱伝導性フィラーとしては金属酸化物が多く用いられている。 Generally, a thermally conductive molded product is a composite material in which a thermally conductive filler is mixed with a resin such as an epoxy resin or a silicone resin, and a metal oxide is often used as the thermally conductive filler.
 上記金属酸化物を用いた複合材料により成形される熱伝導性成形体は、熱伝導率が1~3W/m・K程度に留まるものである。このため、近年では、より熱伝導率の高い物質として窒化アルミニウムが注目されており、熱伝導性フィラーとして窒化アルミニウム粉末を配合した熱伝導性成形体が検討されている。このような窒化アルミニウム粉末を熱伝導性フィラーとして採用した熱伝導性成形体では、より高い熱伝導率が実現されており、3~5W/m・K程度の熱伝導率を実現することが可能である。 The thermally conductive molded body molded by the composite material using the metal oxide has a thermal conductivity of about 1 to 3 W / m · K. For this reason, in recent years, aluminum nitride has attracted attention as a substance having a higher thermal conductivity, and a thermally conductive molded body in which an aluminum nitride powder is blended as a thermally conductive filler has been studied. Higher thermal conductivity is realized in a thermally conductive compact using such aluminum nitride powder as a thermally conductive filler, and thermal conductivity of about 3 to 5 W / m · K can be achieved It is.
 以上のように、熱伝導性フィラーを配合した熱伝導性成形体の熱伝導率が高まってきたことから、アルミナセラミックスの代替材料として期待されるようになってきた。熱伝導性成形体がアルミナセラミックスを代替し得るために必要となる熱伝導率は10W/m・K以上とされている。より高度な熱伝導率を有する熱伝導性成形体を実現するために窒化アルミニウム粉末と六方晶窒化ホウ素粉末を配合することで更なる高熱伝導率化を実現する試みがなされている(特許文献1)。 As mentioned above, since the heat conductivity of the heat conductive molded object which mix | blended the heat conductive filler has been increased, it has come to be anticipated as a substitute material of alumina ceramics. The heat conductivity required for the heat conductive molded body to replace alumina ceramics is 10 W / m · K or more. In order to realize a thermal conductive molded body having a higher thermal conductivity, an attempt is made to realize a higher thermal conductivity by blending an aluminum nitride powder and a hexagonal boron nitride powder (Patent Document 1) ).
特開2014-105297号公報JP, 2014-105297, A
 しかしながら、特許文献1に示されているように、窒化アルミニウム粉末と六方晶窒化ホウ素粉末を単純に配合しただけでは、熱伝導率が10W/m・K未満に留まる。以上のことから、10W/m・K以上の高度な熱伝導率を発揮し得る熱伝導性成形体を実現可能な熱伝導性フィラーが求められている。 However, as shown in Patent Document 1, the thermal conductivity remains at less than 10 W / m · K simply by simply blending the aluminum nitride powder and the hexagonal boron nitride powder. From the above, there is a need for a thermally conductive filler that can realize a thermally conductive molded body capable of exhibiting a high degree of thermal conductivity of 10 W / m · K or more.
 従って、本発明の目的は、10W/m・K以上の高い熱伝導率を有する熱伝導性成形体を実現するに資する熱伝導性フィラー組成物を提供することにある。 Accordingly, an object of the present invention is to provide a thermally conductive filler composition which contributes to the realization of a thermally conductive molded article having a high thermal conductivity of 10 W / m · K or more.
 本発明者らは上記問題点を解決すべく鋭意研究を重ねた結果、熱伝導性成形体の原料となる熱伝導性フィラーとして、特定の平均粒子径と平均アスペクト比を有する六方晶窒化ホウ素粉末と特定の平均粒子径を有する窒化アルミニウム粉末とを特定割合で配合することで、上記目的を達成することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that hexagonal boron nitride powder having a specific average particle diameter and an average aspect ratio as a heat conductive filler which is a raw material of a heat conductive molded body. It has been found that the above-mentioned object can be achieved by blending at a specific ratio the aluminum nitride powder having a specific average particle diameter and the above, and the present invention has been completed.
 すなわち、本発明は、(A)平均アスペクト比が2~40、平均粒子径が2~60μmの六方晶窒化ホウ素粉末、(B)平均粒子径が10~100μmの窒化アルミニウム粉末を含むフィラー組成物であって、(A)の割合が5~40体積%、(B)の割合が40~95体積%ある熱伝導性フィラー組成物であることを特徴とする熱伝導性フィラー組成物である。 That is, the present invention provides a filler composition comprising (A) hexagonal boron nitride powder having an average aspect ratio of 2 to 40 and an average particle size of 2 to 60 μm, and (B) aluminum nitride powder having an average particle size of 10 to 100 μm. The thermally conductive filler composition is characterized in that it is a thermally conductive filler composition having a proportion of (A) of 5 to 40% by volume and a proportion of (B) of 40 to 95% by volume.
 また、本発明の別の態様では、上記熱伝導性フィラー組成物は、さらに、(C)平均粒子径0.1~3μmの窒化アルミニウム粉末を、30体積%以下の割合で含んでいてもよい。 Further, in another aspect of the present invention, the above-mentioned thermally conductive filler composition may further contain (C) an aluminum nitride powder having an average particle diameter of 0.1 to 3 μm in a proportion of 30% by volume or less. .
 本発明の他の好ましい態様に係る熱伝導性フィラー組成物は、(A’)アスペクト比が2~40、粒子径が2~60μmの六方晶窒化ホウ素粉末を5~40体積%、(B’)粒子径が10~100μmの窒化アルミニウム粉末を40~95体積%含み、さらに必要に応じ、(C’)粒子径0.1~3μmの窒化アルミニウム粉末を、30体積%以下の割合で含んでいても良い。 The thermally conductive filler composition according to another preferred embodiment of the present invention comprises (A ′) 5 to 40% by volume of hexagonal boron nitride powder having an aspect ratio of 2 to 40 and a particle diameter of 2 to 60 μm (B ′ ) Containing 40 to 95% by volume of aluminum nitride powder having a particle size of 10 to 100 μm, and optionally containing (C ′) an aluminum nitride powder having a particle size of 0.1 to 3 μm in a proportion of 30% by volume or less It may be
 また、別の発明は硬化性樹脂100体積部に対し、上記フィラー組成物を100体積部~1000体積部含むことを特徴とする熱伝導性樹脂組成物である。 Another invention is a thermally conductive resin composition comprising 100 parts by volume to 1000 parts by volume of the above-mentioned filler composition with respect to 100 parts by volume of a curable resin.
 また、更に別の発明は、上記の熱伝導性樹脂組成物を硬化してなる熱伝導性成形体である。 Still another invention is a thermally conductive molded body obtained by curing the above thermally conductive resin composition.
 本発明の熱伝導性フィラー組成物を用いた熱伝導性成形体により、10W/m・K以上の高い熱伝導率を発現し得る放熱材料が実現され、例えば、電子部品放熱用の基板等として好適に使用することができる。 The thermally conductive molded body using the thermally conductive filler composition of the present invention realizes a heat dissipation material capable of expressing a high thermal conductivity of 10 W / m · K or more, and, for example, as a substrate for heat dissipation of electronic components It can be used suitably.
 本発明の熱伝導性フィラー組成物は、(A)平均アスペクト比が2~40、平均粒子径が2~60μmの六方晶窒化ホウ素粉末、(B)平均粒子径が10~100μmの窒化アルミニウム粉末、および必要に応じ(C)平均粒子径0.1~3μmの窒化アルミニウム粉末を含むフィラー組成物である。また、該熱伝導性フィラー組成物において、各フィラーの構成は(A)の割合が5~40体積%、(B)の割合が40~95体積%、(C)の割合が0~30体積%である。
 なお、本明細書で使用する「体積%」は、各成分の質量と、真密度とから、各成分の体積を質量/真密度から算出し、成分の合計体積に対して求めた各成分の体積の百分率を意味する。「体積部」も質量/真密度から算出される各成分の体積に基づく。また、混合後のフィラー組成物については、電子顕微鏡写真により確認できる。
The thermally conductive filler composition of the present invention comprises (A) hexagonal boron nitride powder having an average aspect ratio of 2 to 40 and an average particle size of 2 to 60 μm, and (B) aluminum nitride powder having an average particle size of 10 to 100 μm. And, optionally, (C) a filler composition comprising an aluminum nitride powder having an average particle size of 0.1 to 3 μm. In the thermally conductive filler composition, the composition of each filler is 5 to 40% by volume of (A), 40 to 95% by volume of (B), and 0 to 30 volumes of (C). %.
The “volume%” used in the present specification is the volume of each component calculated from the mass / true density from the mass of each component and the true density, and the value of each component calculated with respect to the total volume of the components Mean percentage of volume. The “volume” is also based on the volume of each component calculated from mass / true density. Moreover, about the filler composition after mixing, it can confirm by an electron micrograph.
 本発明における(A)六方晶窒化ホウ素粉末の平均アスペクト比は2~40、好ましくは3~10である。平均アスペクト比が40を超える場合、樹脂と熱伝導性フィラーを混合して製造される板状の熱伝導性成形体の厚み方向の熱伝導率が低くなる。平均アスペクト比が高くなった場合、六方晶窒化ホウ素粒子が熱伝導性成形体の面方向へ配向する割合が高くなり、結果として熱伝導性成形体の熱伝導率が低くなる。また、平均アスペクト比が2未満である場合、六方晶窒化ホウ素粒子の結晶性が低下することから熱伝導率が低くなる。平均アスペクト比が3~10の場合、熱伝導性成形体に配合された六方晶窒化ホウ素粒子の結晶性が高く、粒子配向が少なく、更に熱伝導性成形体への気泡の混入等も少ないため、最も高い熱伝導率が実現される。 The average aspect ratio of the (A) hexagonal boron nitride powder in the present invention is 2 to 40, preferably 3 to 10. When the average aspect ratio exceeds 40, the thermal conductivity in the thickness direction of the plate-like thermally conductive molded product produced by mixing the resin and the thermally conductive filler becomes low. When the average aspect ratio is increased, the proportion of hexagonal boron nitride particles oriented in the surface direction of the thermally conductive compact is increased, and as a result, the thermal conductivity of the thermally conductive compact is lowered. When the average aspect ratio is less than 2, the thermal conductivity is lowered because the crystallinity of the hexagonal boron nitride particles is reduced. When the average aspect ratio is 3 to 10, the crystallinity of the hexagonal boron nitride particles blended in the heat conductive compact is high, the particle orientation is small, and furthermore, the mixing of air bubbles into the heat conductive compact, etc. is also small. The highest thermal conductivity is achieved.
 ここで、平均アスペクト比は異方性物質の形状を定義するのに用いられるパラメータであり、板状物質においては長径と短径の比率で定義される。本発明における平均アスペクト比は、走査型電子顕微鏡で観察したBN粒子の長径を短径で除することにより算出されるパラメータであり、50粒子の観察結果の相加平均値として算出したものである。 Here, the average aspect ratio is a parameter used to define the shape of the anisotropic substance, and in the case of a plate-like substance, it is defined by the ratio of the major axis to the minor axis. The average aspect ratio in the present invention is a parameter calculated by dividing the major axis of BN particles observed by a scanning electron microscope by the minor axis, and is calculated as the arithmetic mean of the observation results of 50 particles. .
 本発明における六方晶窒化ホウ素粉末の平均粒子径は2~60μm、好ましくは4~30μmである。平均粒子径が2μmより小さい場合、六方晶窒化ホウ素粒子の結晶性が低く、高い熱伝導率が得られない。また、平均粒子径が60μmより大きい場合、六方晶窒化ホウ素粒子が熱伝導性成形体の面方向と平行に配向してしまい、熱伝導パスの形成が不十分になり、熱伝導率が低くなる。平均粒子径が4~30μmである場合、充填性が良好で熱伝導性樹脂組成物として扱い易く、高い熱伝導率を得ることが出来る。 The average particle size of the hexagonal boron nitride powder in the present invention is 2 to 60 μm, preferably 4 to 30 μm. When the average particle size is smaller than 2 μm, the crystallinity of hexagonal boron nitride particles is low, and high thermal conductivity can not be obtained. In addition, when the average particle size is larger than 60 μm, hexagonal boron nitride particles are oriented in parallel to the surface direction of the thermally conductive molded product, the formation of the thermally conductive path becomes insufficient, and the thermal conductivity becomes low. . When the average particle size is 4 to 30 μm, the packing property is good, it is easy to handle as a thermally conductive resin composition, and high thermal conductivity can be obtained.
 当該平均粒子径は、レーザー回折式粒度分布測定装置により測定した体積基準の相加平均値である。 The said average particle diameter is a volume-based arithmetic mean value measured by the laser diffraction type particle size distribution measuring apparatus.
 本発明において、六方晶窒化ホウ素粉末の製造方法は特に限定されないが、例えば酸化ホウ素或いはホウ酸と、窒素あるいはアンモニアを反応させる方法、ホウ酸やホウ化アルカリと、尿素、グアニジン、メラミン等の有機窒素化合物を高温の窒素-アンモニア雰囲気中で反応させる方法、ホウ酸ナトリウムと塩化アンモニウムをアンモニア雰囲気中で反応させる方法、三塩化ホウ素とアンモニアを高温で反応させる方法等が挙げられる。中でも、酸化ホウ素或いはホウ酸と、窒素あるいはアンモニアを反応させる方法において、酸化ホウ素或いはホウ酸と、カーボンブラック等の炭素を共存させ窒素気流中で反応させる還元窒化法は、本発明の六方晶窒化ホウ素粉末を容易に得ることが出来るために好ましい。更には、還元窒化法において、アルカリ金属化合物やアルカリ土類金属化合物を共存させる方法は、高い収率で本発明の窒化ホウ素粉末が得られるため、特に好ましい。還元窒化法の特に好ましい例は、特開2015―212217号公報に記載され、この方法によれば、所定のアスペクト比を有し、かつ結晶性の良好な六方晶窒化ホウ素粉末が得られる。 In the present invention, the method for producing hexagonal boron nitride powder is not particularly limited, but, for example, a method of reacting boron oxide or boric acid with nitrogen or ammonia, boric acid or alkali borate, and organic substances such as urea, guanidine, melamine etc. A method of reacting a nitrogen compound in a high temperature nitrogen-ammonia atmosphere, a method of reacting sodium borate and ammonium chloride in an ammonia atmosphere, a method of reacting boron trichloride and ammonia at a high temperature, and the like can be mentioned. Among them, in the method of reacting boron oxide or boric acid with nitrogen or ammonia, the reduction nitriding method in which boron oxide or boric acid and carbon such as carbon black are made to coexist and reacted in a nitrogen stream is the hexagonal nitride of the present invention. It is preferable because boron powder can be easily obtained. Furthermore, in the reduction nitriding method, a method in which an alkali metal compound or an alkaline earth metal compound is allowed to coexist is particularly preferable because the boron nitride powder of the present invention can be obtained in a high yield. A particularly preferable example of the reduction nitriding method is described in JP-A-2015-212217, and according to this method, a hexagonal boron nitride powder having a predetermined aspect ratio and good crystallinity can be obtained.
 本発明における(B)平均粒子径が10~100μmの窒化アルミニウム粉末は、平均粒子径が10~100μmの公知の窒化アルミニウム粉末である限り特に制限はなく用いられる。なお、窒化アルミニウム粉末(B)の粒子径が小さいと、六方晶窒化ホウ素粉末が配向しやすくなる傾向がある。したがって、窒化アルミニウム粉末(B)の平均粒子径は15~60μmであることが好ましく、18~42μmであることがさらに好ましい。ここで、平均粒子径はレーザー回折式粒度分布測定装置により測定される相加平均値である。 The aluminum nitride powder (B) having an average particle size of 10 to 100 μm in the present invention is not particularly limited as long as it is a known aluminum nitride powder having an average particle size of 10 to 100 μm. When the particle diameter of the aluminum nitride powder (B) is small, the hexagonal boron nitride powder tends to be easily oriented. Therefore, the average particle size of the aluminum nitride powder (B) is preferably 15 to 60 μm, and more preferably 18 to 42 μm. Here, the average particle size is an arithmetic mean value measured by a laser diffraction type particle size distribution measuring apparatus.
 当該窒化アルミニウム粉末は、特に制限なく、例えば、還元窒化法、直接窒化法、焼結法等の公知または公知に準ずる方法により製造できる。中でも、還元窒化法において、アルカリ金属酸化物やアルカリ土類金属酸化物等の酸化物や硫黄あるいは含硫黄化合物等の粒成長剤を用いて粒成長させる方法や、窒化アルミニウム粒子をスプレードライ等の手法で造粒した後で焼結させる焼結法で製造された(B)窒化アルミニウム粉末は本発明において好適に用いられる。また、比較的大粒の窒化アルミニウム粉末を得る上では、たとえば特開2003-267708号公報に記載の窒化アルミニウム顆粒焼結法が好ましい。 The aluminum nitride powder is not particularly limited, and can be produced, for example, by a known or known method such as a reduction nitriding method, a direct nitriding method, and a sintering method. Among them, in the reduction nitriding method, grain growth is carried out using an oxide such as an alkali metal oxide or an alkaline earth metal oxide, or a grain growth agent such as sulfur or a sulfur-containing compound, The (B) aluminum nitride powder produced by the sintering method of being granulated by the method and then sintered is suitably used in the present invention. Further, in order to obtain relatively large-grained aluminum nitride powder, for example, the aluminum nitride granule sintering method described in JP-A-2003-267708 is preferable.
 本発明の熱伝導性フィラー組成物は上記(A)粉末及び(B)粉末に加えて、さらに(C)平均粒子径0.1~3μmの窒化アルミニウム粉末を含んでいてもよい。当該(C)粉末は、平均粒子径が0.1~3μmの範囲であれば、還元窒化法、直接窒化法など公知の方法によって得られるものが特に制限無く用いられる。当該平均粒子径もレーザー回折式粒度分布測定装置により測定される相加平均値である。 The thermally conductive filler composition of the present invention may further contain (C) an aluminum nitride powder having an average particle size of 0.1 to 3 μm in addition to the above (A) powder and (B) powder. As the powder (C), those obtained by a known method such as reduction nitriding method or direct nitriding method can be used without particular limitation as long as the average particle diameter is in the range of 0.1 to 3 μm. The average particle size is also an arithmetic mean value measured by a laser diffraction type particle size distribution measuring apparatus.
 中でも還元窒化法で製造される平均粒子径0.1~3μmの窒化アルミニウム粉末(C)は、大気中での安定性の観点で好ましい。また、窒化アルミニウム粉末(C)の平均粒子径は、好ましくは0.5~2μm、さらに好ましくは0.8~1.8μmの範囲にある。 Among them, aluminum nitride powder (C) having an average particle diameter of 0.1 to 3 μm manufactured by a reduction nitriding method is preferable from the viewpoint of stability in the air. The average particle size of the aluminum nitride powder (C) is preferably in the range of 0.5 to 2 μm, more preferably 0.8 to 1.8 μm.
 本発明の熱伝導性フィラー組成物において、各フィラーの構成は(A)六方晶窒化ホウ素粉末の割合が5~40体積%、好ましくは20~40体積%、(B)窒化アルミニウム粉末の割合が40~95体積%、好ましくは50~80体積%、(C)小粒の窒化アルミニウム粉末の割合が0~30体積%、好ましくは2~15体積%である。 In the thermally conductive filler composition of the present invention, the composition of each filler is (A) 5 to 40% by volume of hexagonal boron nitride powder, preferably 20 to 40% by volume, and (B) aluminum nitride powder 40 to 95% by volume, preferably 50 to 80% by volume, the proportion of (C) small particles of aluminum nitride powder is 0 to 30% by volume, preferably 2 to 15% by volume.
 (A)六方晶窒化ホウ素粉末の割合が5体積%未満の場合、当該熱伝導性フィラー組成物を配合した熱伝導性成形体とした時の熱伝導率が低い。また、40体積%よりも配合量が多いと、熱伝導性成形体の強度が低下し、金属等と接合した場合の接着強度が低下するといった問題を生ずる。(B)窒化アルミニウム粉末の割合が40体積%未満または95体積%より大きい場合、熱伝導性成形体とした時の熱伝導率が低くなる。 When the proportion of the hexagonal boron nitride powder (A) is less than 5% by volume, the thermal conductivity is low when it is formed into a thermally conductive compact containing the thermally conductive filler composition. On the other hand, if the blending amount is more than 40% by volume, the strength of the thermally conductive molded body is lowered, and there is a problem that the adhesive strength in the case of bonding with metal etc. is lowered. When the proportion of the aluminum nitride powder (B) is less than 40% by volume or greater than 95% by volume, the thermal conductivity of the thermally conductive molded article is low.
 (C)窒化アルミニウム粉末は、含まれなくても良いが、これを配合することにより、配合しない場合よりも熱伝導性成形体とした時に気泡の混入による熱伝導率の低下を抑制出来るという効果を奏す。また、比較的小粒の窒化アルミニウム粉末(C)が、比較的大粒の六方晶窒化ホウ素粉末(A)および窒化アルミニウム粉末(B)の隙間に充填されることで、熱伝導パスが密に形成されるため、熱伝導性が向上する。なお、窒化アルミニウム粉末(C)が小さすぎると、成形体の製造時に気泡の混入を招きやすい。また窒化アルミニウム粉末(C)が大きすぎると、六方晶窒化ホウ素粉末(A)および窒化アルミニウム粉末(B)の隙間に充填され難くなる。また、当該(C)粉末が30体積%を超えた場合、熱伝導性フィラー組成物の比表面積が増えることで熱伝導性成形体とした時の熱伝導率が低くなる。 (C) The aluminum nitride powder may not be contained, but by blending it, it is possible to suppress the reduction of the thermal conductivity due to the inclusion of air bubbles when it is made a thermally conductive molded body than when it is not blended Play. Also, the relatively small grained aluminum nitride powder (C) is filled in the gaps between the relatively large grained hexagonal boron nitride powder (A) and the aluminum nitride powder (B), so that the heat conduction path is formed densely. Therefore, the thermal conductivity is improved. In addition, when the aluminum nitride powder (C) is too small, mixing of air bubbles is likely to occur at the time of production of the formed body. If the aluminum nitride powder (C) is too large, it will be difficult to fill the gaps between the hexagonal boron nitride powder (A) and the aluminum nitride powder (B). Moreover, when the said (C) powder exceeds 30 volume%, the heat conductivity when it is set as a thermally conductive molded object will become low by the specific surface area of a thermally conductive filler composition increasing.
 本発明の熱伝導性フィラー組成物を調製する方法は、特に限定されず、熱伝導性フィラー組成物を構成する各フィラーを公知の混合方法で混合することで製造される。各フィラーの混合は、後述の混練機を用いた、乾式法であってもよく、湿式法であってもよい。また、熱伝導性フィラー組成物を樹脂と混合する用途の場合、熱伝導性フィラー組成物を構成する各フィラーと樹脂を同時に混合することも可能である。 The method for preparing the thermally conductive filler composition of the present invention is not particularly limited, and it is produced by mixing the respective fillers constituting the thermally conductive filler composition by a known mixing method. The mixing of the respective fillers may be a dry method or a wet method using a kneader described later. Moreover, in the case of the use which mixes a thermally conductive filler composition with resin, it is also possible to mix simultaneously each filler and resin which comprise a thermally conductive filler composition.
 本発明の熱伝導性フィラー組成物は、上記のように原料として、六方晶窒化ホウ素粉末(A)および比較的大粒の窒化アルミニウム粉末(B)とを含み、さらに所望により比較的小粒の窒化アルミニウム粉末(C)を含む。ここで、原料六方晶窒化ホウ素粉末(A)は、比較的均一な形状を有し、また粒度分布が狭い粉末を使用することが好ましい。同様に原料窒化アルミニウム粉末としても粒度分布の狭い粉末を使用することが好ましい。 The thermally conductive filler composition of the present invention contains hexagonal boron nitride powder (A) and relatively large-grained aluminum nitride powder (B) as raw materials as described above, and further, if desired, relatively small-grained aluminum nitride Contains powder (C). Here, it is preferable to use a powder having a relatively uniform shape and a narrow particle size distribution, as the raw material hexagonal boron nitride powder (A). Similarly, it is preferable to use a powder having a narrow particle size distribution as the raw material aluminum nitride powder.
 したがって、本発明の他の観点に係る熱伝導性フィラー組成物は、
(A’)アスペクト比が2~40、粒子径が2~60μmの六方晶窒化ホウ素粉末を5~40体積%、好ましくは20~40体積%、さらに好ましくは25~35体積%含み、
(B’)粒子径が10~100μmの窒化アルミニウム粉末を40~95体積%、好ましくは50~80体積%、さらに好ましくは55~75体積%含む。
Therefore, the thermally conductive filler composition according to another aspect of the present invention is
(A ′) 5 to 40% by volume, preferably 20 to 40% by volume, more preferably 25 to 35% by volume of hexagonal boron nitride powder having an aspect ratio of 2 to 40 and a particle diameter of 2 to 60 μm
(B ′) 40 to 95% by volume, preferably 50 to 80% by volume, and more preferably 55 to 75% by volume of an aluminum nitride powder having a particle size of 10 to 100 μm.
 (A’)六方晶窒化ホウ素粉末は、比較的均一な形状を有し、また粒度分布が狭い粉末を使用することが好ましく、そのアスペクト比は3~10が好ましく、また粒子径は4~30μmの範囲にあることが好ましい。 (A ') It is preferable to use a powder having a relatively uniform shape and a narrow particle size distribution, and the aspect ratio is preferably 3 to 10, and the particle size is 4 to 30 μm. It is preferable to be in the range of
 (B’)窒化アルミニウム粉末も粒度分布が狭いことが好ましく、粒子径が15~60μmの範囲にあることが好ましい。 The particle size distribution of the (B ') aluminum nitride powder is also preferably narrow, and the particle size is preferably in the range of 15 to 60 μm.
 なお、本発明では、特定のアスペクト比および粒子径を有する(A’)六方晶窒化ホウ素粉末および特定の粒子径を有する(B’)窒化アルミニウム粉末の割合が上記範囲にあればよく、所定のアスペクト比および粒子径を外れる六方晶窒化ホウ素粉末あるいは所定の粒子径を外れる窒化アルミニウム粉末が存在していてもよい。 In the present invention, the ratio of (A ′) hexagonal boron nitride powder having a specific aspect ratio and particle diameter and (B ′) aluminum nitride powder having a specific particle diameter may be within the above range, There may be a hexagonal boron nitride powder outside the aspect ratio and particle size or an aluminum nitride powder outside the predetermined particle size.
 また、本発明の他の好ましい観点に係る熱伝導性フィラー組成物は、上記(A’)および(B’)に加えてさらに、(C’)粒子径0.1~3μmの窒化アルミニウム粉末を、30体積%以下、好ましくは2~15体積%、さらに好ましくは4~15体積%の割合で含んでいてもよい。(C’)窒化アルミニウム粉末も粒度分布が狭いことが好ましく、粒子径が0.5~2μmの範囲にあることが好ましい。 In addition to the above (A ′) and (B ′), the thermally conductive filler composition according to another preferred aspect of the present invention further comprises (C ′) an aluminum nitride powder having a particle diameter of 0.1 to 3 μm. And 30% by volume or less, preferably 2 to 15% by volume, and more preferably 4 to 15% by volume. The particle size distribution of the (C ′) aluminum nitride powder is also preferably narrow, and the particle size is preferably in the range of 0.5 to 2 μm.
 熱伝導性フィラー組成物における各フィラー成分の含有量は、たとえば走査型電子顕微鏡観察により行うことが出来る。具体的には走査型電子顕微鏡で二次電子像を撮像し、100粒子の粒子径を個々に測定し(A’)粒子、(B’)粒子、(C’)粒子の帰属をする。各粒子の粒子径から体積を算出し、全体積に対する割合から(A’)粒子、(B’)粒子、(C’)粒子の含有率を求めることが出来る。(A’)六方晶窒化ホウ素粉末と、窒化アルミニウム粉末(B’)および(C’)とは、形状が明らかに異なり、二次電子の発生量も異なるので明瞭に識別できる。また、電子線マイクロアナライザ等により粒子構成元素を特定することもできる。さらに、窒化アルミニウム粉末(B’)と(C’)とは、粒子の大きさに基づいて識別できる。 The content of each filler component in the thermally conductive filler composition can be determined, for example, by scanning electron microscopy. Specifically, a secondary electron image is imaged with a scanning electron microscope, and the particle diameter of 100 particles is individually measured to assign (A ') particles, (B') particles, and (C ') particles. The volume can be calculated from the particle diameter of each particle, and the content of (A ') particles, (B') particles, and (C ') particles can be determined from the ratio to the total volume. The (A ') hexagonal boron nitride powder and the aluminum nitride powders (B') and (C ') are clearly different in shape and the generation amount of secondary electrons is also different, so they can be clearly distinguished. In addition, it is also possible to specify a particle constituent element by an electron beam micro analyzer or the like. Furthermore, the aluminum nitride powders (B ') and (C') can be distinguished based on the size of the particles.
 本発明の熱伝導性フィラー組成物は、更に他の熱伝導性フィラーや、その他の成分を混合して、更なる熱伝導性フィラー組成物を調製する原料とすることも可能である。これら他の成分は、(A)成分、(B)成分および(C)成分の合計100体積部あるいは(A’)成分、(B’)成分および(C’)成分の合計100体積部に対して、20体積部以下の割合で含まれていても良い。なお、熱伝導性フィラー組成物が六方晶窒化ホウ素粉末および窒化アルミニウム粉末以外のフィラー成分を含む場合には、他のフィラー成分は、「体積%」の計算には算入しない。すなわち、本発明の熱伝導性フィラー組成物における「体積%」は、六方晶窒化ホウ素粉末および窒化アルミニウム粉末の体積に基づいて算出される。 The thermally conductive filler composition of the present invention can also be used as a raw material for preparing further thermally conductive filler compositions by further mixing other thermally conductive fillers and other components. These other components are 100 parts by volume of the components (A), (B) and (C) or 100 parts by volume of the components (A '), (B') and (C '). It may be contained in a proportion of 20 parts by volume or less. When the thermally conductive filler composition contains filler components other than hexagonal boron nitride powder and aluminum nitride powder, the other filler components are not included in the calculation of “volume%”. That is, “volume%” in the thermally conductive filler composition of the present invention is calculated based on the volumes of hexagonal boron nitride powder and aluminum nitride powder.
 本発明の熱伝導性フィラー組成物は制限無く公知の用途に使用することが出来るが、後述する樹脂と混合し熱伝導性樹脂組成物あるいは熱伝導性成形体とすることでポリマー系放熱シートやフェイズチェンジシート等のサーマルインターフェイスマテリアル、放熱テープ、放熱グリース、放熱接着剤、ギャップフィラー等の有機系放熱シート類、放熱塗料、放熱コート等の放熱塗料類、PWBベース樹脂基板、CCLベース樹脂基板等の放熱樹脂基板、アルミベース基板、銅ベース基板等のメタルベース基板の絶縁層、パワーデバイス用封止材等の用途に好ましく用いることが出来る。 The thermally conductive filler composition of the present invention can be used for known applications without limitation, but it is mixed with a resin to be described later to form a thermally conductive resin composition or a thermally conductive molded article, thereby obtaining a polymer heat-dissipating sheet or Thermal interface materials such as phase change sheets, heat release tapes, heat release greases, heat release adhesives, organic heat release sheets such as gap fillers, heat release paint, heat release paint such as heat release coat, PWB base resin board, CCL base resin board etc It can be preferably used for applications such as the heat-dissipation resin substrate of the above, an insulating layer of a metal base substrate such as an aluminum base substrate and a copper base substrate, and a sealing material for power devices.
 本発明の熱伝導性成形体となる熱伝導性樹脂組成物は、樹脂100体積部に対して、熱伝導性フィラー組成物を100~1000体積部、好ましくは200~500体積部の範囲で含有する。熱伝導性フィラー組成物が100体積部未満の場合は得られる熱伝導性成形体の熱伝導率が低くなり、十分な特性を得ることができない。また、1000体積部を超える場合には、混合時の粘度が著しく上昇し、作業性が極めて悪くなり、更には、混合不良が発生し、熱伝導性低下を招く等の問題が生ずる。熱伝導性フィラー組成物の配合量が樹脂100体積部に対して200~500体積部の場合、高い熱伝導率を有する熱伝導性フィラー組成物の含有量が高まり、かつ気泡の混入等も避けられることから、最も高い熱伝導率を達成し得る。 The thermally conductive resin composition to be the thermally conductive molded article of the present invention contains the thermally conductive filler composition in an amount of 100 to 1000 parts by volume, preferably 200 to 500 parts by volume, per 100 parts by volume of the resin. Do. When the thermally conductive filler composition is less than 100 parts by volume, the thermal conductivity of the resulting thermally conductive molded article is low, and sufficient characteristics can not be obtained. On the other hand, if it exceeds 1000 parts by volume, the viscosity at the time of mixing is significantly increased, the workability is extremely deteriorated, and further, mixing failure occurs to cause problems such as a decrease in thermal conductivity. When the blending amount of the thermally conductive filler composition is 200 to 500 parts by volume with respect to 100 parts by volume of the resin, the content of the thermally conductive filler composition having high thermal conductivity is increased, and mixing of air bubbles is also avoided. Highest thermal conductivity can be achieved.
 上記熱伝導性樹脂組成物の中でも、樹脂として熱硬化性樹脂や光硬化樹脂を用いた硬化性熱伝導性樹脂組成物は、形状制御のし易さから好ましい。特に、樹脂として熱硬化性樹脂を採用した硬化性熱伝導性樹脂組成物は、光透過性等の性質が不要であり、硬化条件の制約が少ないため、最も好ましい。 Among the above-described heat conductive resin compositions, a curable heat conductive resin composition using a thermosetting resin or a photo-curing resin as a resin is preferable because of easy shape control. In particular, a curable thermally conductive resin composition employing a thermosetting resin as the resin is most preferable because it does not require properties such as light transmittance and has few restrictions on curing conditions.
 該樹脂組成物に含有される樹脂に特に限定はないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリアセタール、フッ素樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6ナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、ABS樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸類(ポリメタクリル酸メチル等のポリメタクリル酸エステル)、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリケトン、液晶ポリマー、アイオノマーなどの熱可塑性樹脂;エポキシ樹脂、硬化性アクリル樹脂、硬化性ウレタン樹脂、硬化性シリコーン樹脂、フェノール樹脂、硬化性ポリイミド樹脂、硬化型変性PPE、および硬化型PPEなどの硬化性樹脂等が挙げられる。これら樹脂の中でも、熱伝導性成形体作製の点では、硬化性樹脂が好ましい。特に、エポキシ樹脂、硬化性シリコーン樹脂は、その形状制御のし易さから最も好ましい。なお、硬化性樹脂を用いる場合には、硬化時間を短縮し確実に硬化するために所定の硬化剤を併用することが好ましい。硬化剤を使用する場合には、硬化剤の体積も樹脂の体積に算入する。 The resin contained in the resin composition is not particularly limited, but, for example, polyethylene, polypropylene, ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer Polymer, polyvinyl alcohol, polyacetal, fluorocarbon resin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6 naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, Polyphenylene ether (PPE) resin, modified PPE resin, aliphatic polyamides, aromatic polyamides, polyimide, polyamideimide, polymethacrylic acid (polymethyl methacrylate etc. Thermoplastic resins such as polymethacrylic acid esters), polyacrylic acids, polycarbonates, polyphenylene sulfides, polysulfones, polyether sulfones, polyether nitriles, polyether ketones, polyether ketones, polyether ether ketones, poly ketones, liquid crystal polymers, ionomers, epoxy resins, Examples thereof include curable acrylic resins, curable urethane resins, curable silicone resins, phenolic resins, curable polyimide resins, curable modified PPE, and curable resins such as curable PPE. Among these resins, a curable resin is preferable from the viewpoint of producing a thermally conductive molded body. In particular, epoxy resins and curable silicone resins are most preferable because of their ease of shape control. When a curable resin is used, it is preferable to use a predetermined curing agent in combination in order to shorten the curing time and ensure curing. When a curing agent is used, the volume of the curing agent is also included in the volume of the resin.
 また、上記熱伝導性樹脂組成物には、必要に応じて樹脂組成物の配合剤として公知の重合開始剤、重合禁止剤、重合遅延剤、カップリング剤、可塑剤、紫外線吸収剤、顔料、染料、抗菌剤、有機フィラー、有機無機複合フィラーなどの公知の添加剤を含んでもよい。また、本発明の効果を損なわない範囲で他の無機フィラーを含んでいてもよい。これら他の成分は、熱伝導性樹脂組成物中に、10質量%以下の割合で含まれていても良い。 In the above-mentioned heat conductive resin composition, a polymerization initiator, a polymerization inhibitor, a polymerization retarder, a coupling agent, a plasticizer, a UV absorber, a pigment, which is known as a compounding agent of the resin composition, if necessary The composition may contain known additives such as dyes, antibacterial agents, organic fillers, organic-inorganic composite fillers and the like. Moreover, you may contain the other inorganic filler in the range which does not impair the effect of this invention. These other components may be contained in the thermally conductive resin composition in a proportion of 10% by mass or less.
 本発明の熱伝導性樹脂組成物は、前記(A)六方晶窒化ホウ素粉末、(B)窒化アルミニウム粉末、および必要に応じ(C)窒化アルミニウム粉末を所定の体積比にて、前記樹脂と混合することで製造できる。これら各成分の混合は、例えば、ロール、ニーダ、バンバリーミキサー、自転・公転ミキサー、擂潰機、乳鉢等の公知の混練機を用いた乾式法または湿式法により行うことができる。なお混合順は特に限定されるものではなく、予め(A)~(C)の全ての粉末を混合してフィラー組成物を得た後、該フィラー組成物を樹脂と混練しても良いし、各粉末を順次、樹脂へと混合していく方法でもよい。 In the thermally conductive resin composition of the present invention, the (A) hexagonal boron nitride powder, (B) aluminum nitride powder, and (C) aluminum nitride powder as needed are mixed with the resin at a predetermined volume ratio. It can be manufactured by doing. The mixing of these components can be carried out, for example, by a dry method or a wet method using a known kneader such as a roll, a kneader, a Banbury mixer, an autorotation / revolution mixer, a grinder, or a mortar. The order of mixing is not particularly limited, and after all the powders of (A) to (C) are mixed beforehand to obtain a filler composition, the filler composition may be kneaded with a resin, It is also possible to mix each powder into the resin sequentially.
 本発明の熱伝導性成形体は、上記熱伝導性樹脂組成物を成形することにより得られる。成型方法は公知の方法を採用すれば良く、樹脂が熱可塑性樹脂の場合には、高温で軟化させた後、所望の形状として冷却すれば良いし、樹脂が熱硬化性樹脂の場合には、所望の形状で熱硬化、また樹脂が光硬化性樹脂の場合には、所望形状で光硬化等をさせればよい。 The heat conductive molded body of the present invention is obtained by molding the above-mentioned heat conductive resin composition. As a molding method, a known method may be adopted, and when the resin is a thermoplastic resin, it may be softened at a high temperature and then cooled as a desired shape, and when the resin is a thermosetting resin, The thermosetting resin may be formed in a desired shape, or when the resin is a photocurable resin, the light curing may be performed in a desired shape.
 本発明の熱伝導性成形体は、熱伝導性フィラー組成物の樹脂に対する配合量が所定の範囲となる限り特に制限されない。具体的な成形方法としては、例えば、熱伝導性樹脂組成物から熱伝導性成形体を作製する際に、板状面に対して平行な方向にせん断応力が係る様に成形した後固化することにより作製することができる。このような成形方法としては、例えば、プレス成形、押出成形、テープキャスティングなどが挙げられる。プレス成形の場合、成形圧は1~20MPa程度、好ましくは2~15MPa程度が好ましい。適度な成形圧を付加することで、フィラーの配向が制御でき、熱伝導パスを形成しやすくなる。 The thermally conductive molded article of the present invention is not particularly limited as long as the compounding amount of the thermally conductive filler composition to the resin falls within a predetermined range. As a specific molding method, for example, when producing a thermally conductive molded body from a thermally conductive resin composition, it is solidified after being molded so that a shear stress is applied in a direction parallel to the plate-like surface. It can be produced by Examples of such a molding method include press molding, extrusion molding, tape casting and the like. In the case of press molding, the molding pressure is about 1 to 20 MPa, preferably about 2 to 15 MPa. By applying an appropriate molding pressure, the orientation of the filler can be controlled, and it becomes easy to form a heat conduction path.
 本発明の熱伝導性成形体には、上記した本発明の熱伝導性フィラー組成物が含まれ、各フィラーの含有量は、上記のとおりである。 The thermally conductive molded body of the present invention includes the above-described thermally conductive filler composition of the present invention, and the content of each filler is as described above.
 なお、熱伝導性成形体における樹脂成分とフィラーの含有量は、たとえば熱伝導性成型体を熱天秤中で空気雰囲気中700℃で燃焼させた時に重量変化により求めることが出来る。また、各フィラーの含有量は、走査型電子顕微鏡観察により行うことが出来る。具体的には走査型電子顕微鏡で二次電子像を撮像し、100粒子の粒子径を個々に測定し(A)粒子、(B)粒子、(C)粒子の帰属をする。各粒子の粒子径から体積を算出し、全体積に対する割合から(A)粒子、(B)粒子、(C)粒子の含有率を求めることができる。同様に、(A’)粒子、(B’)粒子、(C’)粒子の含有率を求めることができる。 The content of the resin component and the filler in the thermally conductive molded body can be determined, for example, by a change in weight when the thermally conductive molded body is burned at 700 ° C. in an air atmosphere in a thermobalance. Moreover, content of each filler can be performed by scanning electron microscope observation. Specifically, a secondary electron image is captured by a scanning electron microscope, and the particle diameter of 100 particles is individually measured to assign (A) particles, (B) particles, and (C) particles. The volume can be calculated from the particle diameter of each particle, and the content of (A) particles, (B) particles, and (C) particles can be determined from the ratio to the total volume. Similarly, the contents of (A ') particles, (B') particles, and (C ') particles can be determined.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
 なお、実施例において用いた各成分は、以下のものである。
・樹脂
エポキシ樹脂(三菱化学株式会社製jER807)100質量部と硬化剤(三菱化学株式会社製jERキュア113)32質量部との混合物
In addition, each component used in the Example is the following.
· Mixture of 100 parts by mass of resin epoxy resin (jER 807, manufactured by Mitsubishi Chemical Co., Ltd.) and 32 parts by mass of curing agent (jER Cure 113, manufactured by Mitsubishi Chemical Co., Ltd.)
・フィラー
(A)六方晶窒化ホウ素粉末
BN01: 平均アスペクト比180.0、平均粒子径18μmの窒化ホウ素(デンカ株式会社製、SGP)
BN02: 平均アスペクト比4.0、平均粒子径12μmの窒化ホウ素
BN03: 平均アスペクト比5.2、平均粒子径18μmの窒化ホウ素
BN04: 平均アスペクト比10.6、平均粒子径21μmの窒化ホウ素
· Filler (A) hexagonal boron nitride powder BN 01: boron nitride having an average aspect ratio of 180.0 and an average particle diameter of 18 μm (manufactured by Denka Co., Ltd., SGP)
BN 02: boron nitride BN 03 having an average aspect ratio of 4.0 and an average particle diameter of 12 μm boron nitride BN 04 having an average aspect ratio of 5.2 and an average particle diameter of 18 μm: boron nitride having an average aspect ratio of 10.6 and an average particle diameter of 21 μm
(B)窒化アルミニウム粉末
AlN01: 平均粒子径1μmの窒化アルミニウム(株式会社トクヤマ製、HF-01)
AlN30: 平均粒子径30μmの窒化アルミニウム
AlN80: 平均粒子径80μmの窒化アルミニウム(古河電子株式会社、FAN-f80)
 上記の六方晶窒化ホウ素粉末BN02、BN03、BN04および窒化アルミニウム粉末AlN30は、以下のように製造した。
(B) Aluminum nitride powder AlN01: Aluminum nitride having an average particle diameter of 1 μm (manufactured by Tokuyama Co., Ltd., HF-01)
AlN 30: Aluminum nitride AlN with an average particle diameter of 30 μm AlN: Aluminum nitride with an average particle diameter of 80 μm (Furukawa Electronics Co., Ltd., FAN-f80)
The above-mentioned hexagonal boron nitride powders BN02, BN03, BN04 and aluminum nitride powder AlN30 were produced as follows.
[製造例1]
(BN02の製造)
 無水ホウ酸100g、カーボンブラック40g、及び炭酸カルシウム28gをボールミルにて混合し、該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1500℃まで昇温し、1500℃で4時間保持した後、15℃/分で1800℃まで昇温し、1800℃、2時間窒化処理し、さらに塩酸洗浄を行い、高純度な白色の六方晶窒化ホウ素粉末を得た。上記の方法によって得られたBN粉末は、平均アスペクト比4.0、平均粒径12μmであった。
Production Example 1
(Manufacturing of BN 02)
100 g of boric anhydride, 40 g of carbon black, and 28 g of calcium carbonate are mixed in a ball mill, and the mixture is heated to 1500 ° C. at 15 ° C./min under a nitrogen gas atmosphere using a graphite-made Tammann furnace, 1500 ° C. Then, the temperature is raised to 1800 ° C. at 15 ° C./min, nitriding treatment is performed at 1800 ° C. for 2 hours, and further hydrochloric acid washing is performed to obtain a high purity white hexagonal boron nitride powder. The BN powder obtained by the above method had an average aspect ratio of 4.0 and an average particle diameter of 12 μm.
[製造例2]
(BN03の製造)
 無水ホウ酸100g、カーボンブラック40g、及び炭酸カルシウム28gをボールミルにて混合し、該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1500℃まで昇温し、1500℃で4時間保持した後、15℃/分で1800℃まで昇温し、1900℃、2時間窒化処理し、さらに塩酸洗浄を行い、高純度な白色の六方晶窒化ホウ素粉末を得た。上記の方法によって得られたBN粉末は、平均アスペクト比5.2、平均粒子径18μmであった。
Production Example 2
(Manufacturing of BN03)
100 g of boric anhydride, 40 g of carbon black, and 28 g of calcium carbonate are mixed in a ball mill, and the mixture is heated to 1500 ° C. at 15 ° C./min under a nitrogen gas atmosphere using a graphite-made Tammann furnace, 1500 ° C. Then, the temperature was raised to 1800 ° C. at 15 ° C./min, nitriding was performed at 1900 ° C. for 2 hours, and further hydrochloric acid washing was performed to obtain a high purity white hexagonal boron nitride powder. The BN powder obtained by the above method had an average aspect ratio of 5.2 and an average particle size of 18 μm.
[製造例3]
(BN04の製造)
 無水ホウ酸100g、カーボンブラック40g、及び炭酸カルシウム28gをボールミルにて混合し、該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1500℃まで昇温し、1500℃で4時間保持した後、15℃/分で1800℃まで昇温し、1950℃、2時間窒化処理し、さらに塩酸洗浄を行い、高純度な白色の六方晶窒化ホウ素粉末を得た。上記の方法によって得られたBN粉末は、平均アスペクト比10.6、平均粒子径21μmであった。
[Production Example 3]
(Manufacturing of BN04)
100 g of boric anhydride, 40 g of carbon black, and 28 g of calcium carbonate are mixed in a ball mill, and the mixture is heated to 1500 ° C. at 15 ° C./min under a nitrogen gas atmosphere using a graphite-made Tammann furnace, 1500 ° C. Then, the temperature was raised to 1800 ° C. at 15 ° C./min, nitriding was performed at 1950 ° C. for 2 hours, and further hydrochloric acid washing was performed to obtain a highly pure white hexagonal boron nitride powder. The BN powder obtained by the above method had an average aspect ratio of 10.6 and an average particle size of 21 μm.
[製造例4]
(AlN30の製造)
 内容積50Lのナイロン製ポットに鉄心入りナイロンボールを入れ、次いで、平均粒子径1.4μm、比表面積2.7m/gの窒化アルミニウム粉末(Hグレード;(株)トクヤマ製)100重量部、酸化イットリウム5.0重量部及び界面活性剤としてヘキサグリセリンモノオレート1.0重量部、結合剤としてメタクリル酸ブチル2.0重量部、トルエン溶媒100重量部エタノール溶媒25重量部を投入して、十分にボールミル混合した後、白色のスラリーを得た。こうして得られたスラリーをスプレードライヤーにより100℃で造粒した。得られた造粒体を、バッチ式カーボン炉を使用して窒素気流中1760℃で8時間加熱処理を行った。上記の方法によって得られたAlN焼結粉体は、平均粒径30μmであった。
Production Example 4
(Manufacture of AlN 30)
Iron cored nylon balls are placed in a nylon pot with an inner volume of 50 L, then 100 parts by weight of aluminum nitride powder (H grade; manufactured by Tokuyama Co., Ltd.) having an average particle diameter of 1.4 μm and a specific surface area of 2.7 m 2 / g, A sufficient amount of 5.0 parts by weight of yttrium oxide, 1.0 part by weight of hexaglycerin monooleate as a surfactant, 2.0 parts by weight of butyl methacrylate as a binder, 100 parts by weight of toluene solvent and 25 parts by weight of ethanol solvent The mixture was ball mill mixed to obtain a white slurry. The slurry thus obtained was granulated at 100 ° C. by a spray dryer. The obtained granulated body was subjected to heat treatment at 1760 ° C. for 8 hours in a nitrogen stream using a batch carbon furnace. The AlN sintered powder obtained by the above method had an average particle diameter of 30 μm.
 [実施例1]
 フィラー(A)として、平均アスペクト比4.0、平均粒子径12μmの窒化ホウ素(BN02)を14体積%、フィラー(B)として平均粒子径80μmの窒化アルミニウム(AlN80)を86体積%、それぞれ量り取り混合することで熱伝導性フィラー組成物を調製した。
Example 1
14 volume% of boron nitride (BN02) having an average aspect ratio of 4.0 and an average particle diameter of 12 μm as filler (A) and 86 volume% of aluminum nitride (AlN 80) having an average particle diameter of 80 μm as filler (B) The thermally conductive filler composition was prepared by mixing.
 エポキシ樹脂(三菱化学株式会社製jER807)100質量部と硬化剤(三菱化学株式会社製jERキュア113)32質量部をマグネチックスターラーで混合した樹脂100体積部に対し、前記熱伝導性フィラー組成物を233体積部加え、倉敷紡績株式会社製自転公転型ミキサー(マゼルスターKK-50S)を用いて混合し、熱伝導性樹脂組成物とした。当該熱伝導性樹脂組成物を金型に注型し、熱プレスを使用し、温度120℃、圧力5MPa、保持時間1時間の条件で硬化させ、直径10mm、厚さ1mmのシート状の熱伝導性成形体を作製した。レーザーフラッシュ法により測定した熱伝導率は10.6W/m・Kであった。 The thermally conductive filler composition is based on 100 parts by volume of a resin obtained by mixing 100 parts by mass of an epoxy resin (jER 807 manufactured by Mitsubishi Chemical Corporation) and 32 parts by mass of a curing agent (jER cure 113 manufactured by Mitsubishi Chemical Corporation) with a magnetic stirrer. And 233 parts by volume, and mixed using Kurashiki Spinning Co., Ltd. rotary revolution type mixer (Mazelle Star KK-50S) to obtain a thermally conductive resin composition. The heat conductive resin composition is cast in a mold and cured using a heat press at a temperature of 120 ° C., a pressure of 5 MPa, and a holding time of 1 hour, and a sheet of heat conduction of 10 mm in diameter and 1 mm in thickness Was produced. The thermal conductivity measured by the laser flash method was 10.6 W / m · K.
 [実施例2~10]
 フィラー各成分の種類および配合を表1に記載したように変更した以外、実施例1と同様の評価を行った。熱伝導率の測定結果をそれぞれ表1に示す。
[Examples 2 to 10]
Evaluation similar to Example 1 was performed except having changed the kind and combination of each component of the filler as described in Table 1. The measurement results of the thermal conductivity are shown in Table 1 respectively.
 [比較例1]
 フィラー(A)として、平均アスペクト比180.0、平均粒子径18μmの窒化ホウ素(BN01)を14体積%、フィラー(B)として平均粒子径30μmの窒化アルミニウム(AlN30)を86体積%、それぞれ量り取り混合することで熱伝導性フィラー組成物を調製した。
Comparative Example 1
14 volume% of boron nitride (BN01) having an average aspect ratio of 180.0 and an average particle diameter of 18 μm as filler (A), 86 volume% of aluminum nitride (AlN 30) having an average particle diameter of 30 μm as filler (B) The thermally conductive filler composition was prepared by mixing.
 エポキシ樹脂(三菱化学株式会社製jER807)100質量部と硬化剤(三菱化学株式会社製jERキュア113)32質量部をマグネチックスターラーで混合した樹脂100体積部に対し、前記熱伝導性フィラー組成物を233体積部加え、倉敷紡績株式会社製自転公転型ミキサー(マゼルスターKK-50S)を用いて混合し、熱伝導性樹脂組成物とした。当該熱伝導性樹脂組成物を金型に注型し、熱プレスを使用し、温度120℃、圧力5MPa、保持時間1時間の条件で硬化させ、直径10mm、厚さ1mmのシート状の熱伝導性成形体を作製した。レーザーフラッシュ法により測定した熱伝導率は7.3W/m・Kであった。 The thermally conductive filler composition is based on 100 parts by volume of a resin obtained by mixing 100 parts by mass of an epoxy resin (jER 807 manufactured by Mitsubishi Chemical Corporation) and 32 parts by mass of a curing agent (jER cure 113 manufactured by Mitsubishi Chemical Corporation) with a magnetic stirrer. And 233 parts by volume, and mixed using Kurashiki Spinning Co., Ltd. rotary revolution type mixer (Mazelle Star KK-50S) to obtain a thermally conductive resin composition. The heat conductive resin composition is cast in a mold and cured using a heat press at a temperature of 120 ° C., a pressure of 5 MPa, and a holding time of 1 hour, and a sheet of heat conduction of 10 mm in diameter and 1 mm in thickness Was produced. The thermal conductivity measured by the laser flash method was 7.3 W / m · K.
 [比較例2]
 フィラー(A)として、平均アスペクト比180.0、平均粒子径18μmの窒化ホウ素(BN01)を用いた以外、実施例1と同様の作製方法で試料の作製を行ったが、熱伝導性樹脂組成物が粉状となってしまい、シート状の熱伝導性成形体を作製することが出来なかった。
Comparative Example 2
A sample was prepared in the same manner as in Example 1 except that boron nitride (BN01) having an average aspect ratio of 180.0 and an average particle size of 18 μm was used as the filler (A), but the thermally conductive resin composition The material became powdery, and a sheet-like thermally conductive molded product could not be produced.
 [比較例3~5]
 フィラー各成分の種類および配合を表1に記載したように変更した以外、実施例1と同様の評価を行った。熱伝導率の測定結果は、それぞれ表1に示すように実施例1~10と比較して低い値となった。
[Comparative examples 3 to 5]
Evaluation similar to Example 1 was performed except having changed the kind and combination of each component of the filler as described in Table 1. The measurement results of the thermal conductivity were lower than those of Examples 1 to 10 as shown in Table 1, respectively.
 [実施例11]
 実施例3と同様にして、熱伝導性フィラー組成物を調製した。得られた組成物の走査型電子顕微鏡観察において、(視野100μm×150μm)の領域で、BN粉のアスペクト比、粒子径を求め、AlN粉の粒子径を求める。5か所以上の視野において同様の測定をした。測定結果を合算した結果、アスペクト比が2~40、粒子径が2~60μmの六方晶窒化ホウ素粉末の体積が、BN粉とAlN粉の合計体積に対して18体積%であり、粒子径が10~100μmの窒化アルミニウム粉末の体積は76体積%であった。粒子径が0.1~3μmの窒化アルミニウム粉末の体積は6体積%であった。
 上記熱伝導性フィラー組成物を用いて、実施例1と同様にして成形体を得た。
[Example 11]
A thermally conductive filler composition was prepared as in Example 3. In the scanning electron microscope observation of the obtained composition, the aspect ratio of BN powder and the particle diameter are determined in the area of (field of view 100 μm × 150 μm), and the particle diameter of AlN powder is determined. Similar measurements were made in more than 5 fields of view. As a result of adding the measurement results, the volume of hexagonal boron nitride powder having an aspect ratio of 2 to 40 and a particle diameter of 2 to 60 μm is 18% by volume with respect to the total volume of BN powder and AlN powder, and the particle diameter is The volume of the aluminum nitride powder of 10 to 100 μm was 76% by volume. The volume of the aluminum nitride powder having a particle size of 0.1 to 3 μm was 6% by volume.
A molded product was obtained in the same manner as Example 1 using the above-mentioned heat conductive filler composition.
 [実施例12]
 実施例6と同様にして、熱伝導性フィラー組成物を調製した。得られた組成物の走査型電子顕微鏡観察において、(視野100μm×150μm)の領域で、BN粉のアスペクト比、粒子径を求め、AlN粉の粒子径を求める。5か所以上の視野において同様の測定をした。測定結果を合算した結果、アスペクト比が2~40、粒子径が2~60μmの六方晶窒化ホウ素粉末の体積が、BN粉とAlN粉の合計体積に対して30体積%であり、粒子径が15~60μmの窒化アルミニウム粉末の体積は61体積%であった。粒子径が0.5~2μmの窒化アルミニウム粉末の体積は9体積%であった。
 上記熱伝導性フィラー組成物を用いて、実施例1と同様にして成形体を得た。

Figure JPOXMLDOC01-appb-T000001
[Example 12]
A thermally conductive filler composition was prepared as in Example 6. In the scanning electron microscope observation of the obtained composition, the aspect ratio of BN powder and the particle diameter are determined in the area of (field of view 100 μm × 150 μm), and the particle diameter of AlN powder is determined. Similar measurements were made in more than 5 fields of view. As a result of adding the measurement results, the volume of hexagonal boron nitride powder having an aspect ratio of 2 to 40 and a particle diameter of 2 to 60 μm is 30% by volume with respect to the total volume of BN powder and AlN powder, and the particle diameter is The volume of the 15 to 60 μm aluminum nitride powder was 61% by volume. The volume of the aluminum nitride powder having a particle size of 0.5 to 2 μm was 9% by volume.
A molded product was obtained in the same manner as Example 1 using the above-mentioned heat conductive filler composition.

Figure JPOXMLDOC01-appb-T000001

Claims (15)

  1. (A)平均アスペクト比が2~40、平均粒子径が2~60μmの六方晶窒化ホウ素粉末、(B)平均粒子径が10~100μmの窒化アルミニウム粉末を含むフィラー組成物であって、(A)の割合が5~40体積%、(B)の割合が40~95体積%ある熱伝導性フィラー組成物。 A filler composition comprising (A) hexagonal boron nitride powder having an average aspect ratio of 2 to 40 and an average particle size of 2 to 60 μm, and (B) aluminum nitride powder having an average particle size of 10 to 100 μm A thermally conductive filler composition having a proportion of 5 to 40% by volume and a proportion of 40 to 95% by volume of (B).
  2. さらに、(C)平均粒子径0.1~3μmの窒化アルミニウム粉末を、30体積%以下の割合で含む請求項1に記載の熱伝導性フィラー組成物。 The thermally conductive filler composition according to claim 1, further comprising (C) an aluminum nitride powder having an average particle size of 0.1 to 3 μm in a proportion of 30% by volume or less.
  3. (A’)アスペクト比が2~40、粒子径が2~60μmの六方晶窒化ホウ素粉末、(B’)粒子径が10~100μmの窒化アルミニウム粉末を含みフィラー組成物であって、(A’)の割合が5~40体積%、(B)の割合が40~95体積%である熱伝導性フィラー組成物。 A filler composition comprising hexagonal boron nitride powder having an aspect ratio of 2 to 40 and a particle diameter of 2 to 60 μm, and aluminum nitride powder having a particle diameter of 10 to 100 μm (A ′) A thermally conductive filler composition having a proportion of 5 to 40% by volume, and a proportion of (B) of 40 to 95% by volume.
  4.  さらに、(C’)粒子径0.1~3μmの窒化アルミニウム粉末を、30体積%以下の割合で含む請求項3に記載の熱伝導性フィラー組成物。 The thermally conductive filler composition according to claim 3, further comprising (C ') an aluminum nitride powder having a particle diameter of 0.1 to 3 μm in a proportion of 30% by volume or less.
  5. 硬化性樹脂100体積部に対し、請求項1に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性樹脂組成物。 A thermally conductive resin composition comprising 100 to 1000 parts by volume of the thermally conductive filler composition according to claim 1 with respect to 100 parts by volume of a curable resin.
  6. 硬化性樹脂100体積部に対し、請求項2に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性樹脂組成物。 A thermally conductive resin composition comprising 100 to 1000 parts by volume of the thermally conductive filler composition according to claim 2 with respect to 100 parts by volume of a curable resin.
  7. 硬化性樹脂100体積部に対し、請求項3に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性樹脂組成物。 A thermally conductive resin composition comprising 100 parts by volume to 1000 parts by volume of the thermally conductive filler composition according to claim 3 with respect to 100 parts by volume of a curable resin.
  8. 硬化性樹脂100体積部に対し、請求項4に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性樹脂組成物。 A thermally conductive resin composition comprising 100 to 1000 parts by volume of the thermally conductive filler composition according to claim 4 with respect to 100 parts by volume of a curable resin.
  9. 樹脂100体積部に対し、請求項1に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性成形体。 A thermally conductive molded article comprising 100 to 1000 parts by volume of the thermally conductive filler composition according to claim 1 with respect to 100 parts by volume of a resin.
  10. 樹脂100体積部に対し、請求項2に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性成形体。 A thermally conductive molded body comprising 100 to 1000 parts by volume of the thermally conductive filler composition according to claim 2 with respect to 100 parts by volume of a resin.
  11. 樹脂100体積部に対し、請求項3に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性成形体。 A thermally conductive molded body comprising 100 to 1000 parts by volume of the thermally conductive filler composition according to claim 3 with respect to 100 parts by volume of a resin.
  12. 樹脂100体積部に対し、請求項4に記載の熱伝導性フィラー組成物を100体積部~1000体積部含む熱伝導性成形体。 A thermally conductive molded article comprising 100 to 1000 parts by volume of the thermally conductive filler composition according to claim 4 with respect to 100 parts by volume of a resin.
  13. (A)平均アスペクト比が2~40、平均粒子径が2~60μmの六方晶窒化ホウ素粉末を5~40体積部、(B)平均粒子径が10~100μmの窒化アルミニウム粉末を40~95体積部、及び(C)平均粒子径0.1~3μmの窒化アルミニウム粉末を0~30体積部(但し、(A)粉末、(B)粉末及び(C)粉末の合計量を100体積部とする)を混合する熱伝導性フィラー組成物の製造方法。 (A) 5 to 40 parts by volume of hexagonal boron nitride powder having an average aspect ratio of 2 to 40 and an average particle size of 2 to 60 μm, and (B) 40 to 95 volumes of aluminum nitride powder having an average particle size of 10 to 100 μm And (C) 0 to 30 parts by volume of aluminum nitride powder having an average particle diameter of 0.1 to 3 μm (however, the total amount of (A) powder, (B) powder and (C) powder is 100 parts by volume) A method of producing a thermally conductive filler composition, comprising mixing
  14. 樹脂100体積部に対し、熱伝導性フィラー組成物を100~1000体積部混合する熱伝導性樹脂組成物の製造方法であって、前記熱伝導性フィラーが、(A)平均アスペクト比が2~40、平均粒子径が2~60μmの六方晶窒化ホウ素粉末を5~40体積%、(B)平均粒子径が10~100μmの窒化アルミニウム粉末を40~95体積%、及び(C)平均粒子径0.1~3μmの窒化アルミニウム粉末を0~30体積%(但し、(A)粉末、(B)粉末及び(C)粉末の合計量を100体積%とする)含む、熱伝導性樹脂組成物の製造方法。 A method for producing a thermally conductive resin composition, comprising mixing 100 to 1000 parts by volume of the thermally conductive filler composition with respect to 100 parts by volume of the resin, wherein the thermally conductive filler has (A) an average aspect ratio of 2 to 40, 5 to 40% by volume of hexagonal boron nitride powder having an average particle size of 2 to 60 μm, 40 to 95 volume% of aluminum nitride powder having an average particle size of 10 to 100 μm, and (C) an average particle size Thermally conductive resin composition comprising 0 to 30% by volume of aluminum nitride powder of 0.1 to 3 μm (provided that the total amount of (A) powder, (B) powder and (C) powder is 100% by volume) Manufacturing method.
  15. 請求項14記載の方法で熱伝導性樹脂組成物を製造し、ついでこれを成形する熱伝導性樹脂成形体の製造方法。 A method for producing a thermally conductive resin molded product, comprising producing the thermally conductive resin composition according to the method of claim 14 and then molding the composition.
PCT/JP2017/001758 2016-01-19 2017-01-19 Thermally conductive filler composition, use thereof, and method for producing same WO2017126608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562889A JP6826544B2 (en) 2016-01-19 2017-01-19 Thermally conductive filler composition, its use and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-007752 2016-01-19
JP2016007752 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126608A1 true WO2017126608A1 (en) 2017-07-27

Family

ID=59362427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001758 WO2017126608A1 (en) 2016-01-19 2017-01-19 Thermally conductive filler composition, use thereof, and method for producing same

Country Status (2)

Country Link
JP (1) JP6826544B2 (en)
WO (1) WO2017126608A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074247A1 (en) * 2016-10-18 2018-04-26 信越化学工業株式会社 Thermoconductive silicone composition
WO2018124126A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
JP2019176100A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Heat dissipation substrate
JP2019206456A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same
JP2019206455A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same
KR20220075852A (en) * 2020-11-30 2022-06-08 주식회사 신성티씨 Substrate for power electronic module comprising organic-inorganic composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117210712B (en) * 2023-11-09 2024-02-02 成都先进金属材料产业技术研究院股份有限公司 Liquid metal thermal interface composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121393A (en) * 2000-10-12 2002-04-23 Sekisui Chem Co Ltd Thermally conductive resin composition and thermally conductive sheet
JP2008153430A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Heatsink substrate and heat conductive sheet, and power module using these
JP2009004536A (en) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2012201106A (en) * 2011-03-28 2012-10-22 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
JP2014105297A (en) * 2012-11-28 2014-06-09 Tokuyama Corp Sheet-like molded body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121393A (en) * 2000-10-12 2002-04-23 Sekisui Chem Co Ltd Thermally conductive resin composition and thermally conductive sheet
JP2008153430A (en) * 2006-12-18 2008-07-03 Mitsubishi Electric Corp Heatsink substrate and heat conductive sheet, and power module using these
JP2009004536A (en) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2012201106A (en) * 2011-03-28 2012-10-22 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
JP2014105297A (en) * 2012-11-28 2014-06-09 Tokuyama Corp Sheet-like molded body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018074247A1 (en) * 2016-10-18 2019-01-17 信越化学工業株式会社 Thermally conductive silicone composition
WO2018074247A1 (en) * 2016-10-18 2018-04-26 信越化学工業株式会社 Thermoconductive silicone composition
US11248154B2 (en) 2016-10-18 2022-02-15 Shin-Etsu Chemical Co., Ltd. Thermoconductive silicone composition
WO2018124126A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
JPWO2018124126A1 (en) * 2016-12-28 2019-06-27 昭和電工株式会社 Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
US11577957B2 (en) 2016-12-28 2023-02-14 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
JP7069967B2 (en) 2018-03-29 2022-05-18 Tdk株式会社 Heat dissipation board
JP2019176100A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Heat dissipation substrate
JP2019206455A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same
JP7138481B2 (en) 2018-05-30 2022-09-16 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
JP7138482B2 (en) 2018-05-30 2022-09-16 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
JP2019206456A (en) * 2018-05-30 2019-12-05 株式会社トクヤマ Hexagonal crystal boron nitride powder and method for producing the same
KR20220075852A (en) * 2020-11-30 2022-06-08 주식회사 신성티씨 Substrate for power electronic module comprising organic-inorganic composite
KR102449297B1 (en) 2020-11-30 2022-09-30 주식회사 신성티씨 Substrate for power electronic module comprising organic-inorganic composite

Also Published As

Publication number Publication date
JP6826544B2 (en) 2021-02-03
JPWO2017126608A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2017126608A1 (en) Thermally conductive filler composition, use thereof, and method for producing same
JP7207384B2 (en) Aggregated boron nitride particles, method for producing aggregated boron nitride particles, resin composition containing the aggregated boron nitride particles, molded article, and sheet
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP5565312B2 (en) Method for producing zinc oxide particles
TWI718560B (en) Hexagonal boron nitride powder and its manufacturing method, its composition and heat dissipation material
TWI610884B (en) Aluminum nitride powder
JP6950148B2 (en) Aluminum Nitride-Boron Nitride Composite Agglomerated Particles and Their Manufacturing Methods
TWI818901B (en) Hexagonal boron nitride powder and manufacturing method thereof
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
JP6527904B2 (en) Resin composition, article produced therefrom, and method of producing the same
JP2014105297A (en) Sheet-like molded body
JP6379579B2 (en) Boron nitride sheet
JP6786047B2 (en) Method of manufacturing heat conductive sheet
JP7292941B2 (en) Aluminum nitride composite filler
JP2016124908A (en) Resin molded body
JP2022041651A (en) Inorganic filler, boron nitride composition, method of producing inorganic filler, and method of producing boron nitride composition
JP2015189609A (en) Method of producing boron nitride sheet
JP7289019B2 (en) Boron nitride powder and resin composition
JP7438442B1 (en) Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles
Zhou et al. Preparation of High Thermal Conductivity Vat Photopolymerization Used UV-Curable Resin Synergistically Enhanced by Silicon Nitride and Boron Nitride
JP2023094095A (en) Curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741485

Country of ref document: EP

Kind code of ref document: A1