JP7438442B1 - Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles - Google Patents
Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles Download PDFInfo
- Publication number
- JP7438442B1 JP7438442B1 JP2023176614A JP2023176614A JP7438442B1 JP 7438442 B1 JP7438442 B1 JP 7438442B1 JP 2023176614 A JP2023176614 A JP 2023176614A JP 2023176614 A JP2023176614 A JP 2023176614A JP 7438442 B1 JP7438442 B1 JP 7438442B1
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- particles
- mass
- sheet member
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 171
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 171
- 239000002245 particle Substances 0.000 title claims abstract description 168
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000005259 measurement Methods 0.000 claims abstract description 22
- 239000011164 primary particle Substances 0.000 claims abstract description 14
- 238000006073 displacement reaction Methods 0.000 claims abstract description 12
- 238000012360 testing method Methods 0.000 claims abstract description 12
- 238000012937 correction Methods 0.000 claims abstract description 3
- 229920005989 resin Polymers 0.000 claims description 35
- 239000011347 resin Substances 0.000 claims description 35
- 239000002270 dispersing agent Substances 0.000 claims description 30
- 239000002002 slurry Substances 0.000 claims description 27
- 239000011230 binding agent Substances 0.000 claims description 23
- 238000010304 firing Methods 0.000 claims description 23
- 238000005238 degreasing Methods 0.000 claims description 21
- 229920002050 silicone resin Polymers 0.000 claims description 18
- 239000011361 granulated particle Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 239000011256 inorganic filler Substances 0.000 claims description 9
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 238000005469 granulation Methods 0.000 claims description 7
- 230000003179 granulation Effects 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229920001187 thermosetting polymer Polymers 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 239000000945 filler Substances 0.000 abstract description 21
- 238000010586 diagram Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 26
- 239000011342 resin composition Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004898 kneading Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】強度に優れ、シート部材にフィラーとして高充填可能な窒化ホウ素凝集粒子を提供する。【解決手段】本発明の窒化ホウ素凝集粒子は、六方晶窒化ホウ素の一次粒子が凝集した窒化ホウ素凝集粒子であって、前記一次粒子の002面の結晶子径が160Å以上200Å未満であり、万能試験機を使用し、10000Nまでの荷重を加える荷重変位測定において、鱗片状の非凝集窒化ホウ素粒子の荷重変異測定の結果で位置補正することにより得られた凝集破壊の荷重値が標準サンプルの同試験での荷重値に対し2.5倍以上である。【選択図】なしThe present invention provides boron nitride agglomerated particles that have excellent strength and can be highly filled as a filler in a sheet member. [Solution] The boron nitride agglomerated particles of the present invention are boron nitride agglomerated particles in which primary particles of hexagonal boron nitride are agglomerated, and the crystallite diameter of the 002 plane of the primary particles is 160 Å or more and less than 200 Å, and is versatile. In the load displacement measurement using a testing machine that applies a load of up to 10,000 N, the load value of cohesive failure obtained by position correction based on the load variation measurement results of scale-like non-agglomerated boron nitride particles is the same as that of the standard sample. This is more than 2.5 times the load value in the test. [Selection diagram] None
Description
本発明は、窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法に関する。 The present invention relates to boron nitride aggregate particles, a sheet member, and a method for producing boron nitride aggregate particles.
近年、半導体デバイス等における通信の高周波化に伴い、絶縁部材への低誘電特性のニーズが高まっている。六方晶窒化ホウ素(以下、h-BNともいう)は、熱伝導性、電気特性、化学的安定性等に優れるため、放熱部材のフィラーとしての使用が検討されている。しかしながら、h-BNの結晶構造は、層状六方晶構造であり面内の熱伝導率は高いが、層間の熱伝導率は低い。一般的なh-BN粒子はこの結晶構造に起因する鱗片状の粒子形状であるため面内方向の熱伝導率は高いものの、厚み方向の熱伝導率が極端に低く、鱗片状のh-BN粒子をフィラーとして使用すると、放熱部材であるシート部材の樹脂成形工程で配向が発生し、厚み方向の熱伝導率が低下するという問題を有していた。 In recent years, with the increasing frequency of communication in semiconductor devices and the like, there has been an increasing need for low dielectric properties for insulating members. Since hexagonal boron nitride (hereinafter also referred to as h-BN) has excellent thermal conductivity, electrical properties, chemical stability, etc., its use as a filler for heat dissipation members is being considered. However, the crystal structure of h-BN is a layered hexagonal structure, and although the in-plane thermal conductivity is high, the interlayer thermal conductivity is low. General h-BN particles have a scaly particle shape due to this crystal structure, so although their thermal conductivity in the in-plane direction is high, their thermal conductivity in the thickness direction is extremely low. When particles are used as a filler, there is a problem in that orientation occurs during the resin molding process of a sheet member, which is a heat dissipating member, and the thermal conductivity in the thickness direction decreases.
上記問題を解決するものとして、鱗片状のh-BN粒子を球状に凝集させた窒化ホウ素凝集粒子として、結晶子径(002面)が450Å以上、体積基準の平均粒子径が2~20μm、比表面積が10m2/g以上のものが提案されている(例えば、特許文献1および2参照)。
また、結晶子径(002面)が320Å以上、体積基準の平均粒子径が25μm以上、比表面積が8m2/g以下のものも提案されている(例えば、特許文献3~7参照)。
To solve the above problem, boron nitride agglomerated particles, which are made by agglomerating scale-like h-BN particles into a spherical shape, have a crystallite diameter (002 plane) of 450 Å or more, a volume-based average particle diameter of 2 to 20 μm, and a ratio of Those with a surface area of 10 m 2 /g or more have been proposed (see, for example,
Further, crystallites having a crystallite diameter (002 plane) of 320 Å or more, a volume-based average particle diameter of 25 μm or more, and a specific surface area of 8 m 2 /g or less have been proposed (see, for example,
さらに、鱗片状のh-BN粒子の非球状凝集体を含む窒化ホウ素粉末として、結晶子径が300Å以上500Å以下、50%体積累積粒径が20μm以上50μm以下、比表面積が10m2/g未満(例えば、特許文献7参照)、結晶子径が260Å以上1000Å以下、比表面積が5m2/g未満(例えば、特許文献8参照)、結晶子径が250Å以上375Å以下、50%体積累積粒径が30μm以上200μm以下、比表面積が0.1m2/g以上5m2/g未満(例えば、特許文献7参照)のものが提案されている。 Furthermore, boron nitride powder containing non-spherical aggregates of scale-like h-BN particles has a crystallite size of 300 Å or more and 500 Å or less, a 50% volume cumulative particle size of 20 μm or more and 50 μm or less, and a specific surface area of less than 10 m 2 /g. (For example, see Patent Document 7), Crystallite diameter is 260 Å or more and 1000 Å or less, Specific surface area is less than 5 m 2 /g (For example, see Patent Document 8), Crystallite diameter is 250 Å or more and 375 Å or less, 50% volume cumulative particle size is 30 μm or more and 200 μm or less, and the specific surface area is 0.1 m 2 /g or more and less than 5 m 2 /g (for example, see Patent Document 7).
特許文献1~7では、結晶子径が320Å以上の窒化ホウ素凝集粒子が熱伝導性の観点から好ましいとされているが、結晶子径が大きくなると一次粒子径も大きくなり、シート部材として使用する樹脂との混練性が悪くなる。また、一次粒子の接点も少なくなるため、強度が低下し、シート部材を調製する際の樹脂組成物の流動性が低下したり、フィラーの高充填が困難となる。
また、特許文献8~10の窒化ホウ素凝集粒子は、非球状であるため、シート部材を調製する際の樹脂組成物の流動性が低下するおそれがある。
Furthermore, since the boron nitride aggregate particles of Patent Documents 8 to 10 are non-spherical, the fluidity of the resin composition when preparing a sheet member may be reduced.
本発明は、強度に優れ、シート部材にフィラーとして高充填可能な窒化ホウ素凝集粒子を提供することを目的とする。 An object of the present invention is to provide boron nitride agglomerated particles that have excellent strength and can be highly filled as a filler in a sheet member.
上述した課題を解決し、目的を達成するために、本発明に係る窒化ホウ素凝集粒子は、六方晶窒化ホウ素の一次粒子が凝集した窒化ホウ素凝集粒子であって、前記一次粒子の002面の結晶子径が160Å以上200Å未満であり、万能試験機を使用し、10000Nまでの荷重を加える荷重変位測定において、鱗片状の非凝集窒化ホウ素粒子の荷重変異測定の結果で位置補正することにより得られた凝集破壊の荷重値が標準サンプルの同試験での荷重値に対し2.5倍以上である。 In order to solve the above-mentioned problems and achieve the objects, boron nitride aggregate particles according to the present invention are boron nitride aggregate particles in which primary particles of hexagonal boron nitride are aggregated, and the crystals of the 002 plane of the primary particles are aggregated. The particles have a particle diameter of 160 Å or more and less than 200 Å, and are obtained by using a universal testing machine to perform load displacement measurements of up to 10,000 N, and correcting the position based on the results of load variation measurements of scale-like non-agglomerated boron nitride particles. The load value for cohesive failure is 2.5 times or more the load value of the standard sample in the same test.
また、本発明に係るシート部材は、上記の窒化ホウ素凝集粒子と、樹脂と、を含む。 Moreover, the sheet member according to the present invention includes the above-mentioned boron nitride aggregated particles and a resin.
また、本発明に係る窒化ホウ素凝集粒子の製造方法は、上記に記載の窒化ホウ素凝集粒子の製造方法であって、窒化ホウ素粒子と、水と、分散剤と、有機バインダーとを混合し、スラリーを調製するスラリー調製工程と、調整したスラリーを用いて造粒する造粒工程と、造粒した粒子を非酸化性ガス雰囲気下で脱脂する脱脂工程と、脱脂した造粒粒子を非酸化性ガス雰囲気下で焼成する焼成工程と、焼成した粒子を解砕し、分級する分級工程と、を含み、スラリー中の分散剤と有機バインダーに由来する炭素含有物質の割合が、5質量%以上10質量%以下であり、前記焼成工程は、1600℃~1660℃の温度まで300℃/時~600℃/時で昇温して5分~20分焼成する第1焼成工程と、第1焼成温度から1800℃~2200℃の温度まで70℃/時~120℃/時で昇温して10時間~20時間焼成する第2焼成工程と、を含む。 Further, a method for producing boron nitride aggregate particles according to the present invention is a method for producing boron nitride aggregate particles described above, in which boron nitride particles, water, a dispersant, and an organic binder are mixed to form a slurry. a granulation process of granulating the prepared slurry; a degreasing process of degreasing the granulated particles in a non-oxidizing gas atmosphere; The ratio of the carbon-containing substance derived from the dispersant and the organic binder in the slurry is 5% by mass or more and 10% by mass, including a firing step in which the fired particles are fired in an atmosphere, and a classification step in which the fired particles are crushed and classified. % or less, and the firing step includes a first firing step in which the temperature is raised to a temperature of 1600°C to 1660°C at a rate of 300°C/hour to 600°C/hour and fired for 5 to 20 minutes, and a and a second firing step in which the temperature is raised to a temperature of 1800° C. to 2200° C. at a rate of 70° C./hour to 120° C./hour and fired for 10 hours to 20 hours.
本発明によれば、強度に優れ、シート部材にフィラーとして高充填可能な窒化ホウ素凝集粒子を提供することができる。 According to the present invention, it is possible to provide boron nitride agglomerated particles that have excellent strength and can be highly filled as a filler in a sheet member.
以下、本実施の形態にかかる窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法について説明する。 Hereinafter, a method for manufacturing boron nitride aggregated particles, a sheet member, and boron nitride aggregated particles according to the present embodiment will be described.
<窒化ホウ素凝集粒子>
本発明に係る窒化ホウ素凝集粒子は、六方晶窒化ホウ素の一次粒子が凝集した窒化ホウ素凝集粒子であって、一次粒子の002面の結晶子径が160Å以上200Å未満であり、万能試験機を使用し、10000Nまでの荷重を加える荷重変位測定において、鱗片状の非凝集窒化ホウ素粒子の荷重変異測定の結果で位置補正することにより得られた凝集破壊の荷重値が標準サンプルの同試験での荷重値に対し2.5倍以上の窒化ホウ素凝集粒子である。以下、本発明の窒化ホウ素凝集粒子について説明する。
<Boron nitride aggregate particles>
The boron nitride agglomerated particles according to the present invention are boron nitride agglomerated particles in which primary particles of hexagonal boron nitride are agglomerated, and the crystallite diameter of the 002 plane of the primary particles is 160 Å or more and less than 200 Å. However, in load displacement measurements that apply loads of up to 10,000 N, the load value of cohesive failure obtained by position correction based on the results of load variation measurements of scale-shaped non-agglomerated boron nitride particles is the same as the load of the standard sample in the same test. The boron nitride agglomerated particles are more than 2.5 times the value. The boron nitride agglomerated particles of the present invention will be explained below.
本発明に係る窒化ホウ素凝集粒子は、六方晶窒化ホウ素の一次粒子が球状に凝集した窒化ホウ素凝集粒子であって、前記一次粒子の002面の結晶子径が160Å以上200Å未満である。図1は、本実施の形態にかかる窒化ホウ素凝集粒子の002面の結晶子径と強度の関係を示す図である。窒化ホウ素凝集粒子は、焼結温度、保持時間等の製造条件を変えて得たものであり、窒化ホウ素凝集粒子の強度は、002面の結晶子径が200Å近辺で最も高くなることが確認された。本発明に係る窒化ホウ素凝集粒子は、002面の結晶子径が160Å以上200Å未満であるため、強度が高く、シート部材のフィラーとして使用する際の樹脂への混練性にも優れる。なお、窒化ホウ素凝集粒子の結晶子径は窒化ホウ素凝集粒子の粉末のXRD回折により下記の方法で測定したものである。 The boron nitride agglomerated particles according to the present invention are boron nitride agglomerated particles in which primary particles of hexagonal boron nitride are aggregated into a spherical shape, and the crystallite diameter of the 002 plane of the primary particles is 160 Å or more and less than 200 Å. FIG. 1 is a diagram showing the relationship between the crystallite diameter of the 002 plane and the strength of the boron nitride agglomerated particles according to the present embodiment. Boron nitride aggregate particles were obtained by changing manufacturing conditions such as sintering temperature and holding time, and it was confirmed that the strength of boron nitride aggregate particles was highest when the crystallite diameter of the 002 plane was around 200 Å. Ta. Since the boron nitride agglomerated particles according to the present invention have a crystallite diameter of 002 plane of 160 Å or more and less than 200 Å, they have high strength and are excellent in kneading into resin when used as a filler for a sheet member. The crystallite diameter of the boron nitride agglomerated particles was measured by the following method using XRD diffraction of the boron nitride agglomerated particle powder.
結晶子径は、リガク(株)「Ultima IV」を用いて、回折線を測定し、2θ=26.6°のピーク(002面)の半値幅から以下のScherrerの式を用いて求めた。
D = Kλ/βcosθ
D:結晶子径(Å)
K:Scherrer定数(0.9とした)
λ:X線の波長(Å)
β:回折線の半値幅(rad)
θ:ブラッグ角(rad)
なお、βの値として下記式にて補正されたものを用いた。
β=(β0
2-βi2)0.5
β0:窒化ホウ素凝集粒子の測定ピークから得られた半値幅(実測値)
βi:標準試料Siの測定から得た装置由来の半値幅
The crystallite diameter was determined by measuring the diffraction line using Rigaku Co., Ltd.'s "Ultima IV" and using the Scherrer equation below from the half-width of the peak at 2θ=26.6° (002 plane).
D = Kλ/βcosθ
D: Crystallite diameter (Å)
K: Scherrer constant (set to 0.9)
λ: X-ray wavelength (Å)
β: Half width of diffraction line (rad)
θ: Bragg angle (rad)
Note that the value of β was corrected using the following formula.
β=(β 0 2 - βi 2 ) 0.5
β 0 : Half width obtained from the measurement peak of boron nitride agglomerated particles (actual value)
βi: Device-derived half-width obtained from measurement of standard sample Si
本発明に係る窒化ホウ素凝集粒子は、万能試験機を使用し、10000Nまでの荷重を加える荷重変位測定において、鱗片状の非凝集窒化ホウ素粒子の荷重変異測定の結果で位置補正することにより得られた凝集破壊の荷重値が標準サンプルの同試験での荷重値に対し2.5倍以上の窒化ホウ素凝集粒子である。本発明に係る窒化ホウ素凝集粒子は、上記の方法による破壊強度が2.5倍以上であるため、シート部材にフィラーとして高充填された場合でも、破壊されることなく、高い熱伝導率を保持することができる。 The boron nitride agglomerated particles according to the present invention are obtained by using a universal testing machine to perform load displacement measurements of applying loads of up to 10,000 N, and correcting the position based on the results of load variation measurements of scale-like non-agglomerated boron nitride particles. The boron nitride agglomerated particles have a load value of cohesive failure that is 2.5 times or more the load value of the standard sample in the same test. Since the boron nitride agglomerated particles according to the present invention have a breaking strength of 2.5 times or more by the above method, they do not break and maintain high thermal conductivity even when highly filled as a filler in a sheet member. can do.
窒化ホウ素凝集粒子の破壊強度は、以下のようにして測定した。窒化ホウ素凝集粒子100mgを内径7.2mmの金型に投入し、良く均したのち、径7.2mmの金属の押し棒で粉末を圧縮する。粉末の圧縮には東洋精機(株)の万能試験機「VE20D」を用い、10000Nまでの荷重変位測定を実施する。先に鱗片状窒化ホウ素であるSP-2(デンカ(株)製、BN含有量97%、D50:4μm、比表面積:34m2/g)を測定しておき、調製した窒化ホウ素粒子の測定データとSP-2の測定データを10000Nの荷重の点で重ね合わせる(窒化ホウ素凝集粒子のデータの変位をオフセットする)。変位0の点では鱗片状で非凝集粒子のSP-2の荷重は0Nになるが(変位0の時点で凝集が破壊されているとみなせる)、窒化ホウ素凝集粒子では凝集の破壊によって、一定の荷重が生じる。調製した各窒化ホウ素凝集粒子の荷重をモメンティブ社の窒化ホウ素凝集粒子であるPTX60の荷重で除した(PTX60を標準サンプルとし、PTX60の粒子強度の数値を1とした)数値を粒子の破壊強度とした。
The breaking strength of the boron nitride agglomerated particles was measured as follows. 100 mg of boron nitride agglomerated particles are placed in a mold with an inner diameter of 7.2 mm, and after being well leveled, the powder is compressed using a metal push rod with a diameter of 7.2 mm. To compress the powder, a universal testing machine "VE20D" manufactured by Toyo Seiki Co., Ltd. is used to measure load displacement up to 10,000N. SP-2 (manufactured by Denka Co., Ltd., BN content 97%, D50: 4 μm, specific surface area: 34 m 2 /g), which is scaly boron nitride, was previously measured, and the measurement data of the prepared boron nitride particles and SP-2 measurement data are superimposed at the point of a load of 10,000 N (offsetting the displacement of the boron nitride agglomerated particle data). At the point of
本発明に係る窒化ホウ素凝集粒子は、メジアン径が50μm以上100μm以下のものが好ましい。メジアン径を50μm以上とすることによりシート部材に配合した際の熱伝導率を向上することができる。また、100μm以下とすることで、厚さが薄いシート部材にフィラーとして配合した際に、フィラーの浮き出しを防止することができる。 The boron nitride agglomerated particles according to the present invention preferably have a median diameter of 50 μm or more and 100 μm or less. By setting the median diameter to 50 μm or more, the thermal conductivity when blended into a sheet member can be improved. Further, by setting the thickness to 100 μm or less, it is possible to prevent the filler from coming out when it is blended as a filler into a thin sheet member.
本発明に係る窒化ホウ素凝集粒子は、BET比表面積が、30m2/g以上50m2/g以下のものが好ましい。一般に窒化ホウ素をフィラーとして使用する場合、比表面積が小さいほうが樹脂との混練性が良くなり、充填率を向上することができるが、本発明の窒化ホウ素凝集粒子は、六方晶窒化ホウ素の一次粒子が凝集、すなわち鱗片状の六方晶窒化ホウ素の層面(平面)と他の鱗片状の六方晶窒化ホウ素の端面とが結合した立体的な会合構造により球状に凝集した構造を有するため、BET比表面積を30m2/g以上とすることにより一次粒子同士の接点が増加し、凝集粒子の強度を向上することができる。また、シート部材に配合した際、窒化ホウ素凝集粒子と樹脂との接触面積も増加し、フィラーと樹脂の脱離を抑制することができる。またBET比表面積を50m2/g以下とすることにより、樹脂への混練が容易となる。 The boron nitride agglomerated particles according to the present invention preferably have a BET specific surface area of 30 m 2 /g or more and 50 m 2 /g or less. Generally, when boron nitride is used as a filler, the smaller the specific surface area, the better the kneading properties with the resin and the filling rate can be improved. However, the boron nitride aggregate particles of the present invention are primary particles of hexagonal boron nitride. BET specific surface area By setting the surface area to 30 m 2 /g or more, the number of points of contact between primary particles increases, and the strength of the aggregated particles can be improved. Furthermore, when blended into a sheet member, the contact area between the boron nitride aggregate particles and the resin increases, making it possible to suppress desorption of the filler and the resin. Further, by setting the BET specific surface area to 50 m 2 /g or less, kneading into the resin becomes easy.
<窒化ホウ素凝集粒子の製造方法>
本発明に係る窒化ホウ素凝集粒子の製造方法は、窒化ホウ素粒子と、水と、分散剤と、有機バインダーとを混合し、スラリーを調製するスラリー調製工程と、調整したスラリーを用いて造粒する造粒工程と、造粒した粒子を脱脂する脱脂工程と、脱脂した造粒粒子を非酸化性ガス雰囲気下で焼成する焼成工程と、焼成した粒子を解砕し、分級する分級工程と、を含む。まず、窒化ホウ素凝集粒子の製造方法に使用する材料について説明する。
<Method for producing boron nitride agglomerated particles>
The method for producing boron nitride aggregate particles according to the present invention includes a slurry preparation step of mixing boron nitride particles, water, a dispersant, and an organic binder to prepare a slurry, and granulating using the prepared slurry. A granulation step, a degreasing step of defatting the granulated particles, a firing step of firing the defatted granulated particles in a non-oxidizing gas atmosphere, and a classification step of crushing and classifying the fired particles. include. First, the materials used in the method for producing boron nitride aggregate particles will be explained.
本発明に係る窒化ホウ素凝集粒子の製造方法において使用する窒化ホウ素粒子は、特に限定されるものではないが、強度に優れる窒化ホウ素凝集粒子を得る観点から、酸素含有量が10質量%以下のものを工程に使用することができる。窒化ホウ素凝集粒子の酸素含有量は、5質量%以下がさらに好ましい。 The boron nitride particles used in the method for producing boron nitride aggregate particles according to the present invention are not particularly limited, but from the viewpoint of obtaining boron nitride aggregate particles with excellent strength, boron nitride particles have an oxygen content of 10% by mass or less. can be used in the process. The oxygen content of the boron nitride agglomerated particles is more preferably 5% by mass or less.
本発明に係る窒化ホウ素凝集粒子の製造方法において使用する水は、純水が好ましい。水は、窒化ホウ素凝集粒子の製造に影響を与えない範囲で、有機溶媒を含んだものであってもよい。窒化ホウ素凝集粒子の結晶成長抑制の観点では、有機溶媒を含んだものであることが好ましい。 The water used in the method for producing boron nitride aggregate particles according to the present invention is preferably pure water. The water may contain an organic solvent as long as it does not affect the production of boron nitride aggregate particles. From the viewpoint of suppressing crystal growth of boron nitride agglomerated particles, it is preferable that it contains an organic solvent.
本発明に係る窒化ホウ素凝集粒子の製造方法において使用する分散剤は、スラリー中での窒化ホウ素粒子の分散性を高め、窒化ホウ素粒子を均一に分散させるものであればよい。使用できる分散剤としては、ポリカルボン酸系分散剤、アクリル系分散剤、ウレタン系分散剤等を例示することができる。ポリカルボン酸系分散剤、例えば、カルボン酸ポリマーのアルキロールアミン塩、ポリカルボン酸系共重合体が好ましい。カルボン酸ポリマーのアルキロールアミン塩としては、例えば、BYK-Chemie社のDISPERBYK-2010等を使用することができる。ポリカルボン酸系共重合体としては、例えば、ハイケム社のセランダー分散剤S等を使用することができる。 The dispersant used in the method for producing boron nitride agglomerated particles according to the present invention may be any dispersant as long as it enhances the dispersibility of boron nitride particles in the slurry and uniformly disperses the boron nitride particles. Examples of dispersants that can be used include polycarboxylic acid dispersants, acrylic dispersants, and urethane dispersants. Preferred are polycarboxylic acid dispersants, such as alkylolamine salts of carboxylic acid polymers and polycarboxylic acid copolymers. As the alkylolamine salt of a carboxylic acid polymer, for example, DISPERBYK-2010 manufactured by BYK-Chemie can be used. As the polycarboxylic acid copolymer, for example, Selander Dispersant S manufactured by HiChem Co., Ltd. can be used.
本発明に係る窒化ホウ素凝集粒子の製造方法において使用する有機バインダーは、六方晶窒化ホウ素粒子を強固に結びつけ、造粒粒子の形状を安定化するものであればよい。有機バインダーとしては、ポリビニルアルコール、メチルセルロース、ポリフッ化ビニリデン、ボリビニルブチラール、ポリエチレングリコール、グリセロール等を使用することができる。ポリビニルアルコールが好適に使用可能であり、例えば、(株)中京油脂のセルナWF-804等を使用することができる。 The organic binder used in the method for producing aggregated boron nitride particles according to the present invention may be any organic binder as long as it can firmly bind the hexagonal boron nitride particles and stabilize the shape of the granulated particles. As the organic binder, polyvinyl alcohol, methylcellulose, polyvinylidene fluoride, polyvinyl butyral, polyethylene glycol, glycerol, etc. can be used. Polyvinyl alcohol can be suitably used, and for example, Cerna WF-804 manufactured by Chukyo Yushi Co., Ltd. can be used.
本発明に係る窒化ホウ素凝集粒子の製造方法において、スラリー中の炭素含有物質、すなわち分散剤と有機バインダーの合計割合が、5質量%以上10質量%以下である。窒化ホウ素は、スラリー中の酸化ホウ素などの酸化物の存在により結晶成長が促進されるが、スラリー中の分散剤と有機バインダーに含まれる炭素により酸化物を減少し、結晶成長を抑制することができる。スラリー中の分散剤と有機バインダーの合計割合を5質量%以上10質量%以下とすることにより、窒化ホウ素凝集粒子の結晶子径を160Å以上200Å以下に制御することが容易となる。なお、スラリー中の炭素含有量を調整するために、分散剤、有機バインダーに加え、炭素含有成分、例えば、カーボンやパラフィン等に代表される炭化水素等を配合してもよい。 In the method for producing boron nitride aggregate particles according to the present invention, the total proportion of the carbon-containing substance, that is, the dispersant and the organic binder in the slurry is 5% by mass or more and 10% by mass or less. Crystal growth of boron nitride is promoted by the presence of oxides such as boron oxide in the slurry, but the dispersant and carbon contained in the organic binder in the slurry reduce the oxides and suppress crystal growth. can. By setting the total proportion of the dispersant and organic binder in the slurry to 5% by mass or more and 10% by mass or less, it becomes easy to control the crystallite diameter of the boron nitride aggregate particles to 160 Å or more and 200 Å or less. In addition, in order to adjust the carbon content in the slurry, in addition to the dispersant and the organic binder, carbon-containing components such as hydrocarbons such as carbon and paraffin may be added.
本発明に係る窒化ホウ素凝集粒子の製造方法において、スラリーは、窒化ホウ素粒子と、水と、分散剤と、有機バインダーとを、それぞれ、窒化ホウ素粒子を30質量%以上60質量%以下、水を30質量%以上60質量%以下、分散剤を5質量%以上10質量%以下、有機バインダーを1質量%以上4質量%以下の割合で含むことが好ましい。スラリー中の各成分の割合を上記範囲とすることで、強度に優れる窒化ホウ素凝集粒子を製造することができる。また、スラリー中の固形分濃度は、35質量%以上50質量%以下であることが好ましく、全固形分に対する分散剤と有機バインダーに由来する炭素含有物質の割合は、10質量%以上20質量%以下であることが好ましい。 In the method for producing boron nitride agglomerated particles according to the present invention, the slurry contains boron nitride particles, water, a dispersant, and an organic binder. It is preferable that the composition contains 30% by mass or more and 60% by mass or less, a dispersant in a proportion of 5% by mass or more and 10% by mass or less, and an organic binder in a proportion of 1% by mass or more and 4% by mass or less. By setting the ratio of each component in the slurry within the above range, boron nitride aggregate particles with excellent strength can be produced. Further, the solid content concentration in the slurry is preferably 35% by mass or more and 50% by mass or less, and the proportion of the carbon-containing substance derived from the dispersant and the organic binder with respect to the total solid content is 10% by mass or more and 20% by mass. It is preferable that it is below.
続いて、窒化ホウ素凝集粒子の製造方法の各工程について説明する。
スラリー調製工程は、材料である窒化ホウ素粒子と、水と、分散剤と、有機バインダーとを計量し、混合する。混合は、ボールミル、ビーズミル、プラネタリーミキサー、ヘンシェルミキサー、リボンブレンダー等の一般的な混合機を用いて行うことができるが、ボールミルを使用することが好ましい。窒化ホウ素粒子を均一に分散させる観点から、液体の材料を混合した後、固体状の材料を数回に分けて添加、撹拌を繰り返すことが好ましい。
Next, each step of the method for producing boron nitride agglomerated particles will be explained.
In the slurry preparation step, boron nitride particles as materials, water, a dispersant, and an organic binder are weighed and mixed. Mixing can be performed using a general mixer such as a ball mill, bead mill, planetary mixer, Henschel mixer, ribbon blender, etc., but it is preferable to use a ball mill. From the viewpoint of uniformly dispersing the boron nitride particles, it is preferable to mix the liquid material and then add the solid material in several portions and repeat the stirring.
造粒工程は、スプレードライ法、転動法、流動層法、撹拌法などの造粒方法により行うことができる。スプレードライ法により造粒を行うことが好ましい。メジアン径の大きな窒化ホウ素凝集粒子を得るためには、回転式ディスクを備えたものが好ましい。スプレードライ装置等により液滴とされたスラリー粒子は、150℃~200℃で乾燥される。 The granulation process can be performed by a granulation method such as a spray drying method, a rolling method, a fluidized bed method, or a stirring method. It is preferable to carry out granulation by a spray drying method. In order to obtain boron nitride agglomerated particles with a large median diameter, a device equipped with a rotating disk is preferred. Slurry particles formed into droplets using a spray dryer or the like are dried at 150°C to 200°C.
脱脂工程は、造粒した粒子から分散剤および有機バインダー成分等の有機成分を除去する。脱脂工程は、窒素ガス雰囲気下で行う。窒素ガス雰囲気下で脱脂工程を行うことにより、造粒粒子からの炭素の脱離を低減することができ、窒化ホウ素凝集粒子の結晶成長を抑制することができる。脱脂処理は、400℃~600℃まで10℃/時間~40℃/時間で昇温したのち、3時間~6時間加熱すればよいが、温度を変えて2段階で脱脂処理を行うことが好ましい。2段階で脱脂処理を行う場合、第1脱脂工程は、400℃まで8℃/時間~15℃/時間で昇温し、1.5時間~2.5時間加熱し、第2脱脂工程は、600℃まで20℃/時間~40℃/時間で昇温し、2.5時間~3.5時間加熱すればよい。加熱処理後、室温まで冷却する。冷却は自然冷却が好ましい。 In the degreasing step, organic components such as a dispersant and an organic binder component are removed from the granulated particles. The degreasing process is performed under a nitrogen gas atmosphere. By performing the degreasing step in a nitrogen gas atmosphere, desorption of carbon from the granulated particles can be reduced, and crystal growth of the boron nitride agglomerated particles can be suppressed. The degreasing treatment can be carried out by raising the temperature to 400 °C to 600 °C at a rate of 10 °C/hour to 40 °C/hour, and then heating for 3 to 6 hours, but it is preferable to perform the degreasing treatment in two stages by changing the temperature. . When performing the degreasing treatment in two stages, the first degreasing step is to raise the temperature to 400° C. at a rate of 8° C./hour to 15° C./hour and heating for 1.5 to 2.5 hours, and the second degreasing step is as follows: The temperature may be raised to 600°C at a rate of 20°C/hour to 40°C/hour and heated for 2.5 hours to 3.5 hours. After heat treatment, cool to room temperature. Natural cooling is preferable for cooling.
焼成工程は、脱脂した造粒粒子を非酸化性ガス雰囲気下で1800℃以上2200℃以下の温度で10時間~20時間程度加熱する。非酸化性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス等が例示される。焼成工程は、温度を変えて2段階で行うことが好ましい。2段階で焼成処理を行う場合、第1焼成工程は、1600℃~1660℃まで300℃/時間~600℃/時間で昇温し、5分~20分加熱し、第2焼成工程は、1800℃~2200℃まで70℃/時間~120℃/時間で昇温し、10時間~20時間加熱すればよい。 In the firing step, the degreased granulated particles are heated in a non-oxidizing gas atmosphere at a temperature of 1800° C. or more and 2200° C. or less for about 10 to 20 hours. Examples of the non-oxidizing gas include nitrogen gas, helium gas, and argon gas. The firing process is preferably performed in two stages at different temperatures. When performing the firing process in two stages, the first firing step is to raise the temperature to 1,600°C to 1,660°C at a rate of 300°C/hour to 600°C/hour and heat for 5 to 20 minutes, and the second firing step is to The temperature may be raised from 70°C to 2200°C at a rate of 70°C/hour to 120°C/hour and heated for 10 hours to 20 hours.
焼成工程は、容器内に脱脂した造粒粒子を入れて行うこともできる。容器内に造粒粒子を入れて焼成する場合、容器の容量に対する造粒粒子の量が小さいほど結晶成長を抑制することができる。容器内部の高さに対する容器内部に投入した造粒粒子の高さは、5%以上20%以下とすることが好ましい。10%以上15%以下がさらに好ましい。容器材質はカーボン、窒化アルミニウム、炭化珪素、窒化ホウ素などを適宜用いることができる。 The firing step can also be performed by placing the defatted granulated particles in a container. When granulated particles are placed in a container and fired, the smaller the amount of granulated particles relative to the capacity of the container, the more suppressed crystal growth can be. The height of the granulated particles placed inside the container relative to the height inside the container is preferably 5% or more and 20% or less. More preferably, it is 10% or more and 15% or less. As the container material, carbon, aluminum nitride, silicon carbide, boron nitride, etc. can be used as appropriate.
加熱処理後、室温まで冷却する。冷却は、2段階で冷却することが好ましい。2段階で冷却する場合、第1冷却工程は、1200℃~1400℃まで250℃/時間~350℃/時間で降温し、第2冷却工程は、室温まで自然冷却すればよい。 After heat treatment, cool to room temperature. Preferably, the cooling is performed in two stages. In the case of cooling in two stages, the first cooling step may be to lower the temperature from 1200° C. to 1400° C. at a rate of 250° C./hour to 350° C./hour, and the second cooling step may be natural cooling to room temperature.
分級工程は、焼成した窒化ホウ素凝集粒子を解砕し、分級する。解砕は、乳鉢等を使用して行うほか、ジョークラッシャーやロールクラッシャー等を使用して行うことができる。解砕後、振動篩等によって窒化ホウ素凝集粒子を分級する。あるいは、マスコロイダーによって解砕、分級をおこなってもよい。好ましくは、ジョークラッシャーにより解砕後、マスコロイダーで窒化ホウ素凝集粒子の粒径分布を調整し、振動篩によって分級する。 In the classification step, the fired boron nitride aggregate particles are crushed and classified. The crushing can be performed using a mortar or the like, or a jaw crusher, a roll crusher, or the like. After crushing, the boron nitride aggregate particles are classified using a vibrating sieve or the like. Alternatively, crushing and classification may be performed using a mass colloider. Preferably, after crushing with a jaw crusher, the particle size distribution of the boron nitride agglomerated particles is adjusted with a mass colloider, and classified with a vibrating sieve.
<シート部材>
本発明に係るシート部材は、上記した窒化ホウ素凝集粒子と樹脂を含む。シート部材に用いる樹脂としては、特に制限はなく、熱可塑性樹脂、熱硬化性樹脂に加え、各種ゴム、熱可塑性エラストマー等を含むものであってもよい。樹脂としては、耐熱性、寸法安定性等の観点から、熱硬化性樹脂が好適に使用できる。熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ユリア樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ウレタン樹脂、メラミン樹脂等を例示することができる。
<Sheet member>
The sheet member according to the present invention contains the above-described boron nitride agglomerated particles and resin. The resin used for the sheet member is not particularly limited, and may include various rubbers, thermoplastic elastomers, etc. in addition to thermoplastic resins and thermosetting resins. As the resin, a thermosetting resin can be suitably used from the viewpoint of heat resistance, dimensional stability, etc. Examples of the thermosetting resin include epoxy resin, silicone resin, phenol resin, urea resin, unsaturated polyester resin, polyimide resin, urethane resin, and melamine resin.
一般に、窒化ホウ素の表面には水酸基が共有結合しているため、エポキシ樹脂のような極性樹脂への練りこみは良好であるが、極性の低いシリコーン樹脂等には練りこみにくいため、シリコーン樹脂等の低極性樹脂に窒化ホウ素を高濃度で配合する場合、樹脂組成物の粘度が高くなり、混練の際、強度が低い窒化ホウ素凝集粒子は破壊され、熱伝導率が低くなるという問題を有していた。本発明に係る窒化ホウ素凝集粒子は強度に優れるため、シリコーン樹脂などの低極性樹脂を使用したシート部材作製時の高負荷な練り込みにおいても、破壊されることなく熱伝導性を保持でき、好適に使用することができる。 In general, boron nitride has hydroxyl groups covalently bonded to its surface, so it is well kneaded into polar resins such as epoxy resins, but it is difficult to knead into less polar silicone resins, so silicone resins etc. When a high concentration of boron nitride is blended into a low polar resin, the viscosity of the resin composition increases, and during kneading, boron nitride agglomerated particles with low strength are destroyed, resulting in a low thermal conductivity. was. Since the boron nitride agglomerated particles according to the present invention have excellent strength, they can maintain thermal conductivity without being destroyed even during high-load kneading when producing sheet members using low polarity resins such as silicone resins, making them suitable for use. It can be used for.
シリコーン樹脂としては、官能基としてアルケニル基を有し、架橋剤により架橋された付加反応型シリコーン樹脂を好適に使用することができる。シリコーン樹脂は、取り扱い性等を考慮して、2種以上を混合して使用してもよい。例えば、硬化後ゲル状をなすシリコーン樹脂と、硬化後ゴム状をなすシリコーン樹脂とを併用することができる。硬化後ゲル状となすシリコーン樹脂としては、例えば、モメンティブ社「TSE3062」が例示され、硬化後ゴム状となるシリコーン樹脂としては、例えば、モメンティブ社製「TSE3033」を例示することができる。 As the silicone resin, an addition reaction type silicone resin having an alkenyl group as a functional group and crosslinked with a crosslinking agent can be suitably used. Two or more types of silicone resins may be used in combination in consideration of ease of handling and the like. For example, a silicone resin that is gel-like after curing and a silicone resin that is rubber-like after curing can be used together. An example of a silicone resin that becomes gel-like after curing is "TSE3062" manufactured by Momentive, and an example of a silicone resin that becomes rubber-like after curing is "TSE3033" manufactured by Momentive.
本発明に係るシート部材は、窒化ホウ素凝集粒子と樹脂に加え、メジアン径が、窒化ホウ素凝集粒子の1/200~1/2である無機フィラーを含むものであってもよい。無機フィラーとしては、窒化ホウ素、アルミナ、シリカ、窒化アルミニウム、窒化ケイ素および酸化マグネシウムなどが例示され、無機フィラーは2種以上、またはメジアン径の異なる同種を複数併用してもよい。本発明に係る窒化ホウ素凝集粒子とメジアン径の異なる無機フィラーを併用することにより、フィラーの高充填が可能となり、高い熱伝導性を得ることができる。 The sheet member according to the present invention may contain, in addition to the boron nitride aggregated particles and the resin, an inorganic filler whose median diameter is 1/200 to 1/2 of the boron nitride aggregated particles. Examples of the inorganic filler include boron nitride, alumina, silica, aluminum nitride, silicon nitride, and magnesium oxide. Two or more kinds of inorganic fillers, or a plurality of the same kinds having different median diameters may be used in combination. By using the boron nitride agglomerated particles according to the present invention together with inorganic fillers having different median diameters, it becomes possible to fill the filler with a high degree of filling, and high thermal conductivity can be obtained.
本発明に係るシート部材は、窒化ホウ素凝集粒子を20質量%以上60質量%以下、樹脂を20質量%以上60質量%以下、無機フィラーを20質量%以上60質量%以下の割合で含む物が好ましい。上記の含有割合とすることにより、熱伝導性および成形性に優れるシート部材を得ることができる。 The sheet member according to the present invention contains boron nitride aggregate particles in a proportion of 20% by mass to 60% by mass, resin in a proportion of 20% by mass to 60% by mass, and inorganic filler in a proportion of 20% by mass to 60% by mass. preferable. By setting the above content ratio, a sheet member having excellent thermal conductivity and moldability can be obtained.
シート部材の調製は、従来既知の方法を用いることができる。シート部材は、まず、材料を混合して樹脂組成物とし、その後樹脂組成物をシート等の形状に成形する。樹脂として熱硬化性樹脂を使用する場合は、成形後加熱して硬化すればよい。樹脂組成物は、液状の樹脂材料または加熱により溶融した樹脂材料に窒化ホウ素凝集粒子等のフィラーを加えて、自公転式撹拌機、プラネタリーミキサー、ニーダー、単軸または二軸混練機等の混練装置を用いて調整することができる。窒化ホウ素凝集粒子を均一に分散させる観点から、液状の樹脂にフィラーを数回に分けて添加、撹拌を繰り返すことが好ましい。樹脂組成物調製後、射出成形、押出成形、射出圧縮成形、圧縮成形法等により、シート部材に成形することができる。 A conventionally known method can be used to prepare the sheet member. The sheet member is first made by mixing materials to form a resin composition, and then molding the resin composition into a shape such as a sheet. When a thermosetting resin is used as the resin, it may be cured by heating after molding. The resin composition is prepared by adding filler such as boron nitride agglomerated particles to a liquid resin material or a resin material melted by heating, and then kneading the mixture using a rotation-revolution stirrer, a planetary mixer, a kneader, a single-screw or twin-screw kneader, etc. It can be adjusted using a device. From the viewpoint of uniformly dispersing the boron nitride agglomerated particles, it is preferable to add the filler to the liquid resin in several portions and repeat stirring. After the resin composition is prepared, it can be molded into a sheet member by injection molding, extrusion molding, injection compression molding, compression molding, or the like.
シート部材の厚みは、50μm以上10mm以下、より好ましくは100μm以上2mm以下、さらに好ましくは100μm以上1mm以下、特に好ましくは100μm以上500μm以下である。シート部材を使用する電子部品等の軽薄化および熱伝導性の観点から、シート部材の厚さは、100μm以上200μm以下であることが好ましい。 The thickness of the sheet member is 50 μm or more and 10 mm or less, more preferably 100 μm or more and 2 mm or less, even more preferably 100 μm or more and 1 mm or less, particularly preferably 100 μm or more and 500 μm or less. From the viewpoint of reducing the thickness and thermal conductivity of electronic components using the sheet member, the thickness of the sheet member is preferably 100 μm or more and 200 μm or less.
本発明に係る窒化ホウ素凝集粒子は、マイクロプロセッサやパワートランジスタ等の発熱部材からの放熱を目的とするシート部材のフィラーとして好適に使用することができる。本発明に係る窒化ホウ素凝集粒子は強度に優れるため、シリコーン樹脂等の窒化ホウ素と馴染みにくい低極性樹脂に対しても高充填可能であり、高い伝熱効果を奏する。 The boron nitride agglomerated particles according to the present invention can be suitably used as a filler for a sheet member for the purpose of dissipating heat from heat generating members such as microprocessors and power transistors. Since the boron nitride agglomerated particles according to the present invention have excellent strength, they can be highly filled even in low polar resins such as silicone resins that are difficult to be compatible with boron nitride, and exhibit a high heat transfer effect.
以下に本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Examples are shown below to explain the present invention in more detail, but the present invention is not limited to these Examples.
<評価方法>
・メジアン径
Malvern Panalytical社製「MASTERSIZER 3000」を用い、調製した窒化ホウ素凝集粒子の乾式粒度分布測定を実施し、メジアン径を算出した。
・BET比表面積
Micrometrics社製「TriStar II 3020」を用い、窒素ガス吸着によって測定を実施した。
・SEM観察
日本電子(株)の卓上電子顕微鏡「JCM-6000」を用いた。
<Evaluation method>
- Median diameter Dry particle size distribution measurement of the prepared boron nitride aggregate particles was performed using "MASTERSIZER 3000" manufactured by Malvern Panalytical, and the median diameter was calculated.
- BET specific surface area Measurement was performed by nitrogen gas adsorption using "TriStar II 3020" manufactured by Micrometrics.
- SEM observation A tabletop electron microscope "JCM-6000" manufactured by JEOL Ltd. was used.
・結晶子径評価(粉末XRD回折)
リガク(株)「Ultima IV」を用いて、回折線を測定し、2θ=26.6°のピーク(002面)の半値幅から以下のScherrerの式を用いて求めた。
D = Kλ/βcosθ
D:結晶子径(Å)
K:Scherrer定数(0.9とした)
λ:X線の波長(Å)
β:回折線の半値幅(rad)
θ:ブラッグ角(rad)
なお、βの値として下記式にて補正されたものを用いた。
β=(β0
2-βi2)0.5
β0:窒化ホウ素凝集粒子の測定ピークから得られた半値幅(実測値)
βi:標準試料Siの測定から得た装置由来の半値幅
・Crystallite size evaluation (powder XRD diffraction)
Diffraction lines were measured using "Ultima IV" manufactured by Rigaku Corporation, and the half width of the peak at 2θ=26.6° (002 plane) was determined using the following Scherrer equation.
D = Kλ/βcosθ
D: Crystallite diameter (Å)
K: Scherrer constant (set to 0.9)
λ: X-ray wavelength (Å)
β: Half width of diffraction line (rad)
θ: Bragg angle (rad)
Note that the value of β was corrected using the following formula.
β=(β 0 2 - βi 2 ) 0.5
β 0 : Half width obtained from the measurement peak of boron nitride agglomerated particles (actual value)
βi: Device-derived half-width obtained from measurement of standard sample Si
・粒子強度評価
-JIS法-
(株)島津製作所の微小圧縮試験機「MCT510」を用いて、JIS R1639-5およびJIS Z8844に従い破壊強度を測定した。
-社内法-
窒化ホウ素凝集粒子100mgを内径7.2mmの金型に投入し、良く均したのち、径7.2mmの金属の押し棒で粉末を圧縮する。粉末の圧縮には東洋精機(株)の万能試験機「VE20D」を用い、10000Nまでの荷重変位測定を実施する。先に鱗片状窒化ホウ素であるSP-2(デンカ(株)製、BN含有量97%、D50:4μm、比表面積:34m2/g)を測定しておき、調製した窒化ホウ素粒子の測定データとSP-2の測定データを10000Nの荷重の点で重ね合わせる(窒化ホウ素凝集粒子のデータの変位をオフセットする)。変位0の点ではSP-2の荷重は0Nになるが、窒化ホウ素凝集粒子では凝集の破壊によって、一定の荷重が生じる。調製した各窒化ホウ素凝集粒子の荷重を市販の窒化ホウ素凝集粒子であるPTX60の荷重で除した(PTX60の数値を1とした)数値を粒子強度とした。
・Particle strength evaluation - JIS method -
Fracture strength was measured in accordance with JIS R1639-5 and JIS Z8844 using a micro compression testing machine "MCT510" manufactured by Shimadzu Corporation.
-Internal law-
100 mg of boron nitride agglomerated particles are placed in a mold with an inner diameter of 7.2 mm, and after being well leveled, the powder is compressed using a metal push rod with a diameter of 7.2 mm. To compress the powder, a universal testing machine "VE20D" manufactured by Toyo Seiki Co., Ltd. is used to measure load displacement up to 10,000N. SP-2 (manufactured by Denka Co., Ltd., BN content 97%, D50: 4 μm, specific surface area: 34 m 2 /g), which is scaly boron nitride, was previously measured, and the measurement data of the prepared boron nitride particles and SP-2 measurement data are superimposed at the point of a load of 10,000 N (offsetting the displacement of the boron nitride agglomerated particle data). At the point of zero displacement, the load on SP-2 is 0N, but in the case of boron nitride agglomerated particles, a constant load is generated due to the destruction of the agglomeration. The particle strength was determined by dividing the load of each prepared boron nitride agglomerated particle by the load of PTX60, which is a commercially available boron nitride agglomerated particle (the value of PTX60 was taken as 1).
・シートの熱伝導率
シートの測定サンプルの上下面に同じ面積かつ熱電対を差し込む穴が開いているアルミニウム製のブロックを貼りつけ、ブロックで挟まれたサンプルの下面に空冷式のヒートシンクを配し、上面に同じ面積の抵抗加熱式ヒーターを配する。抵抗加熱式ヒーターの上から一定荷重をかけ、ヒーターから一定熱量Qを発生させる。一定時間が経過すると上下熱電対の温度差が一定値△Tになり、熱量Qとサンプルの面積Sからアルミブロックと界面の熱抵抗(Rc)、サンプルの熱抵抗(Rs)を合わせたものRt(Rc+Rs)を算出する。サンプルの厚みを変えて測定を行うことで厚みによって増加する熱抵抗を測定することができ、これは材料の熱伝導率に依存するため、ここからシートの熱伝導率λを得ることができる。本実施例では厚み0.6、0.8、1.0、1.2、1.4mのシートを作製し、熱伝導率を測定した。
Rt=△T・S/Q
λ=d/Rs=d/(Rt-Rc)
Rt:全体の熱抵抗(K・m2/W)
△T:温度差(K)
Q:熱量(W)
S:面積(m2)
λ:熱伝導率(W/m・K)
d:サンプル厚み(m)
Rs:サンプルの熱抵抗(K・m2/W)
Rc:アルミブロックとサンプル界面の熱抵抗(K・m2/W)
・Thermal conductivity of the sheet Aluminum blocks with the same area and holes for inserting thermocouples are pasted on the top and bottom surfaces of the sheet measurement sample, and an air-cooled heat sink is placed on the bottom surface of the sample sandwiched between the blocks. , a resistance heating type heater with the same area is placed on the top surface. A constant load is applied from above the resistance heating type heater to generate a constant amount of heat Q from the heater. After a certain period of time has passed, the temperature difference between the upper and lower thermocouples becomes a constant value △T, and from the amount of heat Q and the area S of the sample, the sum of the thermal resistance (Rc) of the aluminum block and the interface, and the thermal resistance (Rs) of the sample is Rt. (Rc+Rs) is calculated. By performing measurements with different sample thicknesses, it is possible to measure the thermal resistance that increases with thickness, and since this depends on the thermal conductivity of the material, the thermal conductivity λ of the sheet can be obtained from this. In this example, sheets with thicknesses of 0.6, 0.8, 1.0, 1.2, and 1.4 m were produced and their thermal conductivities were measured.
Rt=△T・S/Q
λ=d/Rs=d/(Rt-Rc)
Rt: Overall thermal resistance (K・m 2 /W)
△T: Temperature difference (K)
Q: Heat amount (W)
S: Area (m 2 )
λ: Thermal conductivity (W/m・K)
d: Sample thickness (m)
Rs: Thermal resistance of sample (K・m 2 /W)
Rc: Thermal resistance of the aluminum block and sample interface (K・m 2 /W)
・樹脂への練りこみ性
自公転式撹拌機により樹脂組成物を調製した後、目視により樹脂への窒化ホウ素凝集粒子の混練性を評価した。
〇:樹脂組成物にまとまりがある
△:樹脂組成物の一部にまとまりがない
×:樹脂組成物がバラバラとなりまとまりがない
- Kneadability into resin After a resin composition was prepared using a rotation-revolution stirrer, the kneadability of the boron nitride aggregate particles into the resin was visually evaluated.
〇: The resin composition is cohesive. △: Some parts of the resin composition are not cohesive. ×: The resin composition is scattered and not cohesive.
<使用した材料>
窒化ホウ素粉末・・・・日新リフラテック(株)「ABN」
分散剤・・・・・・・・BYK-Chemie社「DISPERBYK-2010」
またはハイケム社「セランダー分散剤S」
バインダー・・・・・・中京油脂(株)「セルナWF-804」
アルミナフィラー・・・日鉄ケミカル&マテリアル(株)「AX3-15」(メジアン径:4.5±0.6μm)
カーボン・・・・・・・三菱ケミカル(株)「三菱カーボンブラック#30」
マトリクス樹脂・・・・モメンティブ社シリコーン樹脂「TSE3033」
モメンティブ社シリコーン樹脂「TSE3062」
<Materials used>
Boron nitride powder... Nissin Refratec Co., Ltd. "ABN"
Dispersant: BYK-Chemie “DISPERBYK-2010”
Or Hichem's "Selander Dispersant S"
Binder: Chukyo Yushi Co., Ltd. “Serna WF-804”
Alumina filler...Nippon Steel Chemical & Materials Co., Ltd. "AX3-15" (median diameter: 4.5±0.6μm)
Carbon: Mitsubishi Chemical Corporation “Mitsubishi Carbon Black #30”
Matrix resin: Momentive silicone resin “TSE3033”
Momentive silicone resin “TSE3062”
(実施例1)
原料となる窒化ホウ素粉末600g、イオン交換水900g、分散剤のDISPERBYK-2010を72gおよびバインダー30gを混合し、さらにボールミルを使用してスラリーを調製した。ボールミルはポットがナイロンからなり、内径250mm、ポットの容積が17L、ボールとして、Φ25(1.5kg)とΦ12(1kg)の鉄心入りナイロンボールを使用し、回転数50rpmで2時間混合した。
調整したスラリーを(株)プリスの「TR160 ターニング式スプレードライヤー」を使用して窒化ホウ素を造粒した。スプレードライヤーのアトマイザーディスクの回転数を18,000rpm、スラリーの送液量を3kg/時間、乾燥時間を180℃で造粒を行った。
造粒した窒化ホウ素粒子について、窒素ガス雰囲気下、3段階で脱脂を行った。まず、室温から400℃まで、11.2℃/時間で昇温し、400℃で2時間保持後、400℃から600℃まで31.1℃/時間で昇温し、600℃で3時間保持した後、室温まで自然冷却した。脱脂工程の雰囲気は窒素ガスで行った。
脱脂工程後、4段階で窒化ホウ素粒子の焼成を窒素ガス下で行った。まず、室温から1650℃まで、511.6℃/時間で昇温し、1650℃で10分保持後、1650℃から1910℃まで90.2℃/時間で昇温し、1910℃で16時間保持した後、1910℃から1300℃まで310.2℃/時間で降温した後、室温まで自然冷却した。なお、焼成は、窒化ホウ素容器内にサンプルを容器の高さの14.0%まで入れた状態で行った。
加熱処理後の窒化ホウ素粒子をメノウ乳鉢で解砕し、目開き500μmで篩分けをおこなった。篩上の窒化ホウ素粒子は、全量が篩を通るまで解砕、分級を繰り返した。得られた窒化ホウ素凝集粒子について、上記した方法により、メジアン径、BET比表面積、結晶子径を測定し、SEM観察を行った。
(Example 1)
A slurry was prepared by mixing 600 g of boron nitride powder as a raw material, 900 g of ion-exchanged water, 72 g of DISPERBYK-2010 as a dispersant, and 30 g of a binder, and using a ball mill. The ball mill had a pot made of nylon, an inner diameter of 250 mm, a pot volume of 17 L, and nylon balls with iron cores of Φ25 (1.5 kg) and Φ12 (1 kg) as balls, and mixing was carried out at a rotation speed of 50 rpm for 2 hours.
Boron nitride was granulated from the prepared slurry using a "TR160 turning spray dryer" manufactured by Priss Co., Ltd. Granulation was carried out at a spray dryer with an atomizer disk rotating at 18,000 rpm, a slurry feed rate of 3 kg/hour, and a drying time of 180°C.
The granulated boron nitride particles were degreased in three stages under a nitrogen gas atmosphere. First, the temperature was raised from room temperature to 400°C at a rate of 11.2°C/hour, held at 400°C for 2 hours, then the temperature was raised from 400°C to 600°C at a rate of 31.1°C/hour, and held at 600°C for 3 hours. After that, it was naturally cooled to room temperature. The atmosphere for the degreasing step was nitrogen gas.
After the degreasing process, the boron nitride particles were fired in four stages under nitrogen gas. First, the temperature was raised from room temperature to 1650°C at a rate of 511.6°C/hour, held at 1650°C for 10 minutes, then the temperature was raised from 1650°C to 1910°C at a rate of 90.2°C/hour, and held at 1910°C for 16 hours. After that, the temperature was lowered from 1910°C to 1300°C at a rate of 310.2°C/hour, and then naturally cooled to room temperature. Note that the firing was performed with the sample placed in a boron nitride container up to 14.0% of the height of the container.
The boron nitride particles after the heat treatment were crushed in an agate mortar and sieved with an opening of 500 μm. The boron nitride particles on the sieve were repeatedly crushed and classified until the entire amount passed through the sieve. The median diameter, BET specific surface area, and crystallite diameter of the obtained boron nitride agglomerated particles were measured by the method described above, and SEM observation was performed.
また得られた窒化ホウ素凝集粒子と、アルミナフィラー、およびシリコーン樹脂により、シート部材を成形した。
まず、シリコーン樹脂TSE3033(A)1g、TSE3033(B)1g、TSE3062(A)3g、TSE3062(B)3gを、自公転式撹拌機((株)写真化学、SK-300TVS)により、真空下で60秒、550rpmで公転させながら、182rpmで自転させて撹拌した。
その後、シリコーン樹脂に窒化ホウ素凝集粒子、アルミナフィラーを加えて、大気圧下で60秒、1420rpmで公転させながら、781rpmで自転させて撹拌して樹脂組成物を調製した。窒化ホウ素凝集粒子、アルミナフィラーの添加は組成物の状態を確認しながら複数回に分けて行い、合計の添加量が窒化ホウ素凝集粒子7.19g、アルミナフィラー7.83gとなるようにし、添加する度、上記の条件で撹拌を行った。
A sheet member was also molded from the obtained boron nitride aggregated particles, alumina filler, and silicone resin.
First, 1 g of silicone resin TSE3033 (A), 1 g of TSE3033 (B), 3 g of TSE3062 (A), and 3 g of TSE3062 (B) were mixed under vacuum using a revolution-revolution stirrer (SK-300TVS, Photo Chemical Co., Ltd.). The mixture was stirred by rotating at 182 rpm and rotating at 550 rpm for 60 seconds.
Thereafter, boron nitride aggregate particles and alumina filler were added to the silicone resin, and the mixture was stirred under atmospheric pressure for 60 seconds while revolving at 1420 rpm and rotating at 781 rpm to prepare a resin composition. Boron nitride agglomerated particles and alumina filler are added in multiple batches while checking the state of the composition, and the total addition amount is 7.19 g of boron nitride agglomerated particles and 7.83 g of alumina filler. Stirring was performed under the above conditions.
金属製の可動ステージと金属製の回転ロールを任意のギャップに配置することのできる延伸機に、調製した樹脂組成物を離型フィルムに挟み、ギャップを2.5mmとし、ステージとロールの間を通した後、樹脂組成物の片面の離型フィルムを剥がし、当該面を上にした状態で真空デシケータに静置し、ロータリーポンプで真空引きを行って脱泡した(大気圧を基準とした相対圧力-0.1Pa以下で30分以上保持)。
延伸機のギャップを目的のシート厚み(厚み:0.6、0.8、1.0、1.2、1.4mm)に設定し、真空引き後、再度離型フィルムを貼付した樹脂組成物をステージに静置し、ロールとステージの間を通して、目的の厚さのシート部材を成形した。
成形したシート部材は、強制対流型乾燥機により135℃、24時間加熱し、硬化させた。
得られたシート部材について上記の方法により熱伝導率を算出した。
The prepared resin composition was sandwiched between release films in a stretching machine in which a metal movable stage and a metal rotating roll could be placed in an arbitrary gap, and the gap between the stage and the roll was set to 2.5 mm. After passing through the resin composition, the release film on one side of the resin composition was peeled off, and the resin composition was left standing in a vacuum desiccator with that side facing up, and degassed by evacuating with a rotary pump (relative to atmospheric pressure). Pressure: -0.1 Pa or less, maintained for 30 minutes or more).
The gap of the stretching machine was set to the desired sheet thickness (thickness: 0.6, 0.8, 1.0, 1.2, 1.4 mm), and after vacuuming, the resin composition was affixed with a release film again. was placed on a stage and passed between the roll and the stage to form a sheet member of the desired thickness.
The formed sheet member was heated and cured at 135° C. for 24 hours using a forced convection dryer.
The thermal conductivity of the obtained sheet member was calculated by the method described above.
(実施例2)
スラリーにカーボンを1.8g加えた以外は、実施例1と同様にして窒化ホウ素凝集粒子を調製し、得られた窒化ホウ素凝集粒子を使用してシート部材を成形した。
(Example 2)
Boron nitride agglomerated particles were prepared in the same manner as in Example 1, except that 1.8 g of carbon was added to the slurry, and a sheet member was molded using the obtained boron nitride agglomerated particles.
(比較例1)
モメンティブ社製PTX60を使用して、実施例1と同様にしてシート部材を成形した。
(Comparative example 1)
A sheet member was molded in the same manner as in Example 1 using PTX60 manufactured by Momentive.
(比較例2)
バインダーの使用量を18gとし、脱脂工程を大気フロー下で行うとともに窒化ホウ素容器内にサンプルを容器高さの70.0%の高さまで投入した状態で焼成を行った以外は、実施例1と同様にして窒化ホウ素凝集粒子を調製し、得られた窒化ホウ素凝集粒子を使用してシート部材を成形した。
(Comparative example 2)
Example 1 except that the amount of binder used was 18 g, the degreasing process was performed under atmospheric flow, and the firing was performed with the sample placed in the boron nitride container to a height of 70.0% of the container height. Boron nitride aggregated particles were prepared in the same manner, and a sheet member was molded using the obtained boron nitride aggregated particles.
(比較例3)
分散剤の使用量を90g、バインダーの使用量を18gとし、窒化ホウ素容器内にサンプルを容器高さの18.0%の高さまで投入した状態で、1855℃(昇温速度、降温速度は実施例1と同様)で8時間焼成を行った以外は、実施例1と同様にして窒化ホウ素凝集粒子を調製し、得られた窒化ホウ素凝集粒子を使用してシート部材を成形した。
(Comparative example 3)
The amount of dispersant used was 90 g, the amount of binder used was 18 g, and the sample was placed in a boron nitride container to a height of 18.0% of the container height at 1855°C (heating rate and cooling rate were determined by Boron nitride agglomerated particles were prepared in the same manner as in Example 1, except that baking was performed for 8 hours (same as in Example 1), and a sheet member was formed using the obtained boron nitride agglomerated particles.
(比較例4)
分散剤の使用量を90gとし、窒化ホウ素容器内にサンプルを容器高さの18.0%の高さまで投入した状態で、5時間焼成を行った以外は、実施例1と同様にして窒化ホウ素凝集粒子を調製し、得られた窒化ホウ素凝集粒子を使用してシート部材を成形した。
(Comparative example 4)
Boron nitride was prepared in the same manner as in Example 1, except that the amount of dispersant used was 90 g, and the sample was placed in the boron nitride container to a height of 18.0% of the container height, and firing was performed for 5 hours. Aggregated particles were prepared, and a sheet member was molded using the obtained boron nitride agglomerated particles.
(比較例5)
分散剤をセランダーSに変更して90g配合し、脱脂工程を大気フロー下で行うとともに、窒化ホウ素器内にサンプルを容器高さの23.2%の高さまで投入した状態で、5時間焼成を行った以外は、実施例1と同様にして窒化ホウ素凝集粒子を調製し、得られた窒化ホウ素凝集粒子を使用してシート部材を成形した。
(Comparative example 5)
The dispersant was changed to Selander S and 90g was added, and the degreasing process was performed under atmospheric flow, and the sample was placed in a boron nitride container to a height of 23.2% of the container height, and baked for 5 hours. Except for the above steps, boron nitride aggregated particles were prepared in the same manner as in Example 1, and the obtained boron nitride aggregated particles were used to mold a sheet member.
(比較例6)
脱脂工程を大気フロー下で行うとともに、窒化ホウ素器内にサンプルを容器高さの15.1%の高さまで投入した状態で、5時間焼成を行った以外は、実施例1と同様にして窒化ホウ素凝集粒子を調製し、得られた窒化ホウ素凝集粒子を使用してシート部材を成形した。
(Comparative example 6)
Nitriding was carried out in the same manner as in Example 1, except that the degreasing process was carried out under atmospheric flow, and the sample was placed in the boron nitride vessel to a height of 15.1% of the container height, and firing was carried out for 5 hours. Boron aggregated particles were prepared, and a sheet member was molded using the obtained boron nitride aggregated particles.
(比較例7)
分散剤を90g配合し、バインダーを使用せず、脱脂工程を大気フロー下で行うとともに、窒化ホウ素器内にサンプルを容器高さの7.5%の高さまで投入した状態で5時間、焼成を行った以外は、実施例1と同様にして窒化ホウ素凝集粒子を調製し、得られた窒化ホウ素凝集粒子を使用してシート部材を成形した。
(Comparative Example 7)
90g of dispersant was blended, no binder was used, the degreasing process was performed under atmospheric flow, and the sample was placed in a boron nitride container to a height of 7.5% of the container height and fired for 5 hours. Except for the above steps, boron nitride aggregated particles were prepared in the same manner as in Example 1, and the obtained boron nitride aggregated particles were used to mold a sheet member.
表1に示すように、結晶子径が160Å以上200Å以下の実施例1および2の窒化ホウ素凝集粒子は、破壊強度が非常に高く、樹脂への練りこみ性にも優れることが確認された。 As shown in Table 1, it was confirmed that the boron nitride agglomerated particles of Examples 1 and 2 with crystallite diameters of 160 Å or more and 200 Å or less had very high breaking strength and were excellent in kneading into resin.
Claims (13)
前記一次粒子の002面の結晶子径が160Å以上200Å未満であり、
万能試験機を使用し、10000Nまでの荷重を加える荷重変位測定において、鱗片状の非凝集窒化ホウ素粒子の荷重変異測定の結果で位置補正することにより得られた凝集破壊の荷重値が標準サンプルの同試験での荷重値に対し2.5倍以上である、窒化ホウ素凝集粒子。 Boron nitride agglomerated particles in which primary particles of hexagonal boron nitride are agglomerated,
The crystallite diameter of the 002 plane of the primary particle is 160 Å or more and less than 200 Å,
In the load displacement measurement using a universal testing machine and applying a load of up to 10,000 N, the load value of cohesive failure obtained by position correction based on the load variation measurement results of scale-like non-agglomerated boron nitride particles is the same as that of the standard sample. Boron nitride agglomerated particles with a load value of 2.5 times or more in the same test.
BET比表面積が、30m2/g以上50m2/g以下である請求項1に記載の窒化ホウ素凝集粒子。 The median diameter is 50 μm or more and 100 μm or less,
The boron nitride agglomerated particles according to claim 1, having a BET specific surface area of 30 m 2 /g or more and 50 m 2 /g or less.
窒化ホウ素粒子と、水と、分散剤と、有機バインダーとを混合し、スラリーを調製するスラリー調製工程と、
調整したスラリーを用いて造粒する造粒工程と、
造粒した粒子を非酸化性ガス雰囲気下で脱脂する脱脂工程と、
脱脂した造粒粒子を非酸化性ガス雰囲気下で焼成する焼成工程と、
焼成した粒子を解砕し、分級する分級工程と、を含み、
スラリー中の分散剤と有機バインダーに由来する炭素含有物質の割合が、5質量%以上10質量%以下であり、
前記焼成工程は、
1600℃~1660℃の温度まで300℃/時~600℃/時で昇温して5分~20分焼成する第1焼成工程と、
第1焼成温度から1800℃~2200℃の温度まで70℃/時~120℃/時で昇温して10時間~20時間焼成する第2焼成工程と、を含む窒化ホウ素凝集粒子の製造方法。 A method for producing boron nitride agglomerated particles according to claim 1 or 2, comprising:
a slurry preparation step of mixing boron nitride particles, water, a dispersant, and an organic binder to prepare a slurry;
A granulation step of granulating using the adjusted slurry;
a degreasing step of degreasing the granulated particles in a non-oxidizing gas atmosphere;
a firing step of firing the degreased granulated particles in a non-oxidizing gas atmosphere;
A classification step of crushing and classifying the fired particles,
The proportion of carbon-containing substances derived from the dispersant and the organic binder in the slurry is 5% by mass or more and 10% by mass or less,
The firing step includes:
A first firing step of raising the temperature at 300°C/hour to 600°C/hour to a temperature of 1600°C to 1660°C and firing for 5 to 20 minutes;
A method for producing boron nitride agglomerated particles, comprising: a second firing step in which the temperature is raised from the first firing temperature to a temperature of 1800° C. to 2200° C. at a rate of 70° C./hour to 120° C./hour and fired for 10 hours to 20 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023176614A JP7438442B1 (en) | 2023-10-12 | 2023-10-12 | Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023176614A JP7438442B1 (en) | 2023-10-12 | 2023-10-12 | Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP7438442B1 true JP7438442B1 (en) | 2024-02-26 |
Family
ID=90011411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023176614A Active JP7438442B1 (en) | 2023-10-12 | 2023-10-12 | Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7438442B1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5915509B2 (en) | 2011-11-29 | 2016-05-11 | 三菱化学株式会社 | Boron nitride aggregated particles, a composition containing boron nitride aggregated particles, and a three-dimensional integrated circuit having a layer comprising the composition |
JP2016135730A (en) | 2014-02-05 | 2016-07-28 | 三菱化学株式会社 | Boron nitride aggregated particle, and method for producing the same, composition containing the same, and molding containing the same |
WO2017038512A1 (en) | 2015-09-03 | 2017-03-09 | 昭和電工株式会社 | Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet |
WO2020049817A1 (en) | 2018-09-07 | 2020-03-12 | 昭和電工株式会社 | Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same |
JP2020138903A (en) | 2019-02-27 | 2020-09-03 | 三菱ケミカル株式会社 | Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device |
JP2021102540A (en) | 2019-12-25 | 2021-07-15 | デンカ株式会社 | Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same |
JP2021116202A (en) | 2020-01-24 | 2021-08-10 | デンカ株式会社 | Hexagonal boron nitride powder, and sintered body raw material composition |
-
2023
- 2023-10-12 JP JP2023176614A patent/JP7438442B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5915509B2 (en) | 2011-11-29 | 2016-05-11 | 三菱化学株式会社 | Boron nitride aggregated particles, a composition containing boron nitride aggregated particles, and a three-dimensional integrated circuit having a layer comprising the composition |
JP2016135730A (en) | 2014-02-05 | 2016-07-28 | 三菱化学株式会社 | Boron nitride aggregated particle, and method for producing the same, composition containing the same, and molding containing the same |
WO2017038512A1 (en) | 2015-09-03 | 2017-03-09 | 昭和電工株式会社 | Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet |
WO2020049817A1 (en) | 2018-09-07 | 2020-03-12 | 昭和電工株式会社 | Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same |
JP2020138903A (en) | 2019-02-27 | 2020-09-03 | 三菱ケミカル株式会社 | Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device |
JP2021102540A (en) | 2019-12-25 | 2021-07-15 | デンカ株式会社 | Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same |
JP2021116202A (en) | 2020-01-24 | 2021-08-10 | デンカ株式会社 | Hexagonal boron nitride powder, and sintered body raw material composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7207384B2 (en) | Aggregated boron nitride particles, method for producing aggregated boron nitride particles, resin composition containing the aggregated boron nitride particles, molded article, and sheet | |
KR102185730B1 (en) | Aluminum nitride powder | |
JP2019116401A (en) | Hexagonal crystal boron nitride powder and method for producing the same, and composition and heat dissipation member using the same | |
JP7467980B2 (en) | Boron nitride agglomerated powder, heat dissipation sheet, and method for manufacturing semiconductor device | |
JP6500339B2 (en) | Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device | |
JP7517323B2 (en) | Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device | |
JP7291304B2 (en) | Boron nitride powder, heat-dissipating sheet, and method for producing heat-dissipating sheet | |
JP2017036190A (en) | Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle | |
JP6379579B2 (en) | Boron nitride sheet | |
TW202039359A (en) | Method for producing granular boron nitride and granular boron nitride | |
JP7438442B1 (en) | Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles | |
JP7438443B1 (en) | Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles | |
JP2015189609A (en) | Method of producing boron nitride sheet | |
WO2024203519A1 (en) | Method for manufacturing thermally conductive sheet | |
WO2024203527A1 (en) | Method for manufacturing thermally conductive sheet | |
WO2024203513A1 (en) | Thermally conductive sheet and aggregated boron nitride particles | |
JP7506278B1 (en) | Aluminum nitride powder and resin composition | |
JP2024152598A (en) | Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device module | |
JP2024146815A (en) | Boron nitride agglomerated particles, boron nitride agglomerated powder, composite material composition, heat dissipation member, semiconductor device | |
JP2024031217A (en) | Resin sheet, and laminated sheet | |
JP2023108717A (en) | Boron nitride powder, resin composition, cured product of resin composition and method for producing boron nitride powder | |
JP2022106117A (en) | Heat dissipation sheet and manufacturing method of the heat dissipation sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231026 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20231026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7438442 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |