JP2012201106A - Thermoconductive molding and use thereof - Google Patents
Thermoconductive molding and use thereof Download PDFInfo
- Publication number
- JP2012201106A JP2012201106A JP2011071196A JP2011071196A JP2012201106A JP 2012201106 A JP2012201106 A JP 2012201106A JP 2011071196 A JP2011071196 A JP 2011071196A JP 2011071196 A JP2011071196 A JP 2011071196A JP 2012201106 A JP2012201106 A JP 2012201106A
- Authority
- JP
- Japan
- Prior art keywords
- average particle
- heat
- silicone
- nitride powder
- particle diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000465 moulding Methods 0.000 title abstract 4
- 239000002245 particle Substances 0.000 claims abstract description 54
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 38
- 239000000843 powder Substances 0.000 claims abstract description 26
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229920002050 silicone resin Polymers 0.000 claims abstract description 18
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011342 resin composition Substances 0.000 claims abstract description 14
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 238000005520 cutting process Methods 0.000 claims abstract description 6
- 239000011231 conductive filler Substances 0.000 claims description 15
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 15
- 238000003475 lamination Methods 0.000 claims description 5
- 239000000945 filler Substances 0.000 abstract description 7
- 238000010030 laminating Methods 0.000 abstract description 5
- 229910052582 BN Inorganic materials 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 238000007259 addition reaction Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 5
- 239000004945 silicone rubber Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- -1 Polysiloxane Polymers 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、熱伝導性に優れた熱伝導性成形体とその用途に関するものであり、特に電子部品用放熱部材として使用した際に、トランジスタ、サイリスタ、CPU(中央処理装置)等の発熱性電子部品を損傷させることなく、電子機器に組み込むことができる熱伝導性成形体に関するものである。 The present invention relates to a thermally conductive molded article having excellent thermal conductivity and its application, and particularly when used as a heat radiating member for an electronic component, a heat generating electron such as a transistor, a thyristor, or a CPU (central processing unit). The present invention relates to a thermally conductive molded body that can be incorporated into an electronic device without damaging the components.
トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に除去することが重要な問題となっている。従来、このような除熱方法としては、発熱性電子部品を電気絶縁性の放熱シートを介して放熱フィンや金属板に取り付け、熱を逃がすことが一般的に行われており、その放熱シートとしてはシリコーンゴムに熱伝導性フィラーを分散させたものが使用されている。 In heat-generating electronic components such as transistors, thyristors, and CPUs, it is an important problem how to remove heat generated during use. Conventionally, as such a heat removal method, a heat-generating electronic component is generally attached to a heat-radiating fin or a metal plate via an electrically insulating heat-dissipating sheet, and the heat is released. Uses a silicone rubber with a thermally conductive filler dispersed therein.
近年、電子部品内の回路の高集積化に伴いその発熱量も大きくなっており、従来にも増して高い熱伝導性を有する放熱シートが求められてきている。 In recent years, the amount of heat generated has increased with the high integration of circuits in electronic components, and there has been a demand for a heat dissipating sheet having higher thermal conductivity than before.
熱伝導性材料の熱伝導性を向上させるには、これまで酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末といった高い熱伝導性を示すフィラーをポリマーへ含有する手法が一般的であった。さらに六方晶窒化ホウ素粉末をポリマー中で熱流方向と平行に配向させることで高熱伝導化を行うという手法も提案されているが高価格の窒化ホウ素粉末のみを使用することで価格が非常に高いという問題があった(特許文献1〜7)。 In order to improve the thermal conductivity of the thermally conductive material, a method in which a filler having high thermal conductivity such as an aluminum oxide powder, a boron nitride powder, and an aluminum nitride powder is contained in the polymer has been generally used. In addition, a method has been proposed in which hexagonal boron nitride powder is oriented in parallel with the heat flow direction in the polymer to achieve high thermal conductivity, but the price is very high by using only expensive boron nitride powder. There was a problem (patent documents 1 to 7).
本発明の目的は、高い熱伝導性を有し、特に電子部品用放熱部材として好適な熱伝導性成形体を提供することである。 An object of the present invention is to provide a thermally conductive molded article having high thermal conductivity and particularly suitable as a heat radiating member for electronic parts.
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、酸化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。
(2)六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、窒化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。
(3)シリコーン樹脂が質量平均分子量15000〜30000(C)と質量平均分子量400000〜600000(D)のビニル基をもつオルガノポリシロキサンであり、その体積比が(C):(D)=7:3〜5:5であることを特徴とする前記(1)または(2)に記載の熱伝導性成形体。
(4)前記(1)乃至(3)のいずれか一項に記載の熱伝導性成形体を用いた電子部品用放熱部材。
The present invention employs the following means in order to solve the above problems.
(1) The hexagonal boron nitride powder (A) has an average particle size of 20 to 50 μm, the aluminum oxide powder (B) has an average particle size of 0.5 to 5 μm, and (A): (B) Heat conduction characterized by cutting a silicone laminate in which a silicone resin composition containing 7: 3 to 9: 1 heat conductive filler in a volume ratio of 7: 3 to 9: 1 is laminated from the lamination direction. Molded product.
(2) The hexagonal boron nitride powder (A) has an average particle size of 20 to 50 μm, the aluminum nitride powder (B) has an average particle size of 0.5 to 5 μm, and (A): (B) Heat conduction characterized by cutting a silicone laminate in which a silicone resin composition containing 7: 3 to 9: 1 heat conductive filler in a volume ratio of 7: 3 to 9: 1 is laminated from the lamination direction. Molded product.
(3) The silicone resin is an organopolysiloxane having a vinyl group having a weight average molecular weight of 15,000 to 30,000 (C) and a weight average molecular weight of 400,000 to 600,000 (D), and the volume ratio thereof is (C) :( D) = 7: It is 3-5: 5, The heat conductive molded object as described in said (1) or (2) characterized by the above-mentioned.
(4) A heat dissipating member for electronic parts using the heat conductive molded body according to any one of (1) to (3).
本発明によれば、高熱伝導性を示す熱伝導性成形体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the heat conductive molded object which shows high heat conductivity can be provided.
以下、本発明について詳細に説明する。
本発明で使用される熱伝導性フィラーとしては、酸化アルミニウム、窒化ホウ素、窒化アルミニウムをあげることができる。これらのうち、窒化ホウ素は鱗片状粒子の長さ方向の熱伝導性が極めて高く、その特徴をうまく利用すれば高熱伝導性を付与することができるので、本発明には特に好適なものである。また、その窒化ホウ素粒子としては、粉末X線解析法による黒鉛指数(GI)が2.5以下の高結晶性のものが望ましい。
Hereinafter, the present invention will be described in detail.
Examples of the thermally conductive filler used in the present invention include aluminum oxide, boron nitride, and aluminum nitride. Among these, boron nitride has extremely high thermal conductivity in the length direction of the scaly particles, and high thermal conductivity can be imparted if the characteristics are utilized well, and is therefore particularly suitable for the present invention. . The boron nitride particles are preferably highly crystalline with a graphite index (GI) of 2.5 or less by powder X-ray analysis.
本発明で使用する平均粒子径が20〜50μmである窒化ホウ素粒子は平均粒子径が20〜50μmである必要があり、さらに平均粒子径は30〜40μmの範囲のものが好ましい。平均粒子径が50μmより大きくなる粒子と粒子が接触した際のすき間が大きくなり、熱伝導性が減少する傾向にある。反対に平均粒子径が20μmより小さくなるとシリコーン樹脂への六方晶の充填性が悪くなる傾向にあり、熱伝導性が減少する傾向にある。 The boron nitride particles having an average particle diameter of 20 to 50 μm used in the present invention must have an average particle diameter of 20 to 50 μm, and the average particle diameter is preferably in the range of 30 to 40 μm. There is a tendency that the gap between the particles having an average particle diameter larger than 50 μm and the particles becomes larger, and the thermal conductivity tends to decrease. On the other hand, when the average particle size is smaller than 20 μm, the filling property of the hexagonal crystal into the silicone resin tends to deteriorate, and the thermal conductivity tends to decrease.
本発明で使用する平均粒子径が0.5〜5μmである酸化アルミニウム粉末は平均粒子径が0.5〜5μmである必要があり、さらに平均粒子径は0.7〜2μmの範囲のものが好ましい。平均粒子径が5μmより大きくなると六方晶窒化ホウ素粒子と接する酸化アルミニウム粒子の数が減少し、熱伝導性が減少する傾向にある。反対に平均粒子径が0.5μmより小さくなると酸化アルミニウム粉末の充填性が悪くなり、熱伝導性が減少する傾向にある。 The aluminum oxide powder having an average particle size of 0.5 to 5 μm used in the present invention must have an average particle size of 0.5 to 5 μm, and the average particle size is in the range of 0.7 to 2 μm. preferable. When the average particle diameter is larger than 5 μm, the number of aluminum oxide particles in contact with the hexagonal boron nitride particles decreases, and the thermal conductivity tends to decrease. On the other hand, when the average particle diameter is smaller than 0.5 μm, the filling property of the aluminum oxide powder is deteriorated and the thermal conductivity tends to be reduced.
本発明で使用する平均粒子径が0.5〜5μmである窒化アルミニウム粉末は平均粒子径が0.5〜5μmである必要があり、さらに平均粒子径は0.7〜2μmの範囲のものが好ましい。平均粒子径が5μmより大きくなると窒化ホウ素粉末凝集体と接する酸化アルミニウム粒子の数が減少し、熱伝導性が減少する傾向にある。反対に平均粒子径が0.5μmより小さくなると酸化アルミニウム粉末の充填性が悪くなり、熱伝導性が減少する傾向にある。 The aluminum nitride powder having an average particle size of 0.5 to 5 μm used in the present invention needs to have an average particle size of 0.5 to 5 μm, and the average particle size is in the range of 0.7 to 2 μm. preferable. When the average particle diameter is larger than 5 μm, the number of aluminum oxide particles in contact with the boron nitride powder aggregate decreases, and the thermal conductivity tends to decrease. On the other hand, when the average particle diameter is smaller than 0.5 μm, the filling property of the aluminum oxide powder is deteriorated and the thermal conductivity tends to be reduced.
本発明の熱伝導性成形体における熱伝導性フィラーの含有率は、全体積中の40〜70体積%、特に50〜60体積%であることが望ましい。熱伝導性フィラーの含有率が40体積%未満では熱伝導性成形体の熱伝導性が減少する傾向にある。また70体積%を越えると、成形体の機械的強度が損なわれる傾向にある。 The content of the thermally conductive filler in the thermally conductive molded body of the present invention is preferably 40 to 70% by volume, particularly 50 to 60% by volume in the entire volume. If the content rate of a heat conductive filler is less than 40 volume%, it exists in the tendency for the heat conductivity of a heat conductive molded object to reduce. Moreover, when it exceeds 70 volume%, it exists in the tendency for the mechanical strength of a molded object to be impaired.
本発明における平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性材料の粉末の溶液をスポイドを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行う。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算する。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。なお、平均粒子径は粒子の平均直径である。 The average particle diameter in the present invention was measured using “Laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc of pure water and a heat conductive powder to be measured were added to a glass beaker, stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes using an ultrasonic cleaner. The solution of the thermally conductive material powder that had been subjected to the dispersion treatment was added drop by drop to the sampler portion of the apparatus using a dropper, and waited until the absorbance became measurable. The measurement is performed when the absorbance becomes stable in this way. In the laser diffraction type particle size distribution measuring device, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size is obtained by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the average diameter of the particles.
本発明のシリコーン樹脂としては、シリコーンゴムを用いる。シリコーンゴムは柔軟性、形状追随性、電子部品に接触させる際の発熱面への密着性、更には耐熱性が優れているので最適である。 Silicone rubber is used as the silicone resin of the present invention. Silicone rubber is optimal because it is excellent in flexibility, shape followability, adhesion to a heat generating surface when contacting with an electronic component, and heat resistance.
シリコーンゴムの種類としては、ミラブル型シリコーンが代表的なものであるが、総じて所要の柔軟性を発現させることが難しい場合が多いので、高い柔軟性を発現させるためには付加反応型シリコーンが好適である。付加反応型液状シリコーンの具体例としては、一分子中にビニル基とH−Si基の両方を有する一液反応型のオルガノポリシロキサン、または末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどである。例えばモメンティブ・パフォーマンス・マテリアルズ社製、商品名「XE14−B8530A/B」がある。 As a type of silicone rubber, millable type silicone is representative, but since it is often difficult to express the required flexibility as a whole, addition reaction type silicone is suitable for expressing high flexibility. It is. Specific examples of the addition reaction type liquid silicone include a one-component reaction type organopolysiloxane having both a vinyl group and an H-Si group in one molecule, or an organopolysiloxane having a vinyl group at a terminal or side chain and a terminal. Alternatively, it is a two-part silicone with an organopolysiloxane having two or more H-Si groups in the side chain. For example, there is a product name “XE14-B8530A / B” manufactured by Momentive Performance Materials.
本発明で使用される付加反応型シリコーンとして、質量平均分子量10000〜30000と質量平均分子量400000〜600000のビニル基をもつオルガノポリシロキサンが好ましく、特に質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンと質量平均分子量450000〜550000のビニル基を含有したシリコーン系樹脂を用いることが好ましい。質量平均分子量が10000より小さくなると樹脂組成物を形成することが困難となり、質量平均分子量が30000より大きくなると熱伝導性フィラーの充填性が悪くなり、ともに熱伝導性が低減する傾向にある。また質量平均分子量が400000より小さくなると樹脂組成物の形成が困難となり、質量平均分子量が600000より大きくなると熱伝導性フィラーの充填性が悪くなり、熱伝導性が低減する傾向にある。 The addition reaction type silicone used in the present invention is preferably an organopolysiloxane having a vinyl group having a weight average molecular weight of 10,000 to 30,000 and a weight average molecular weight of 400,000 to 600,000, and particularly an organopolysiloxane having a vinyl group having a weight average molecular weight of 15,000 to 25,000. It is preferable to use a silicone resin containing siloxane and a vinyl group having a mass average molecular weight of 450,000 to 550000. When the mass average molecular weight is less than 10,000, it is difficult to form a resin composition, and when the mass average molecular weight is greater than 30000, the filling property of the heat conductive filler is deteriorated, and the thermal conductivity tends to be reduced. When the mass average molecular weight is less than 400,000, it is difficult to form a resin composition, and when the mass average molecular weight is greater than 600,000, the filling property of the heat conductive filler is deteriorated and the thermal conductivity tends to be reduced.
本発明で使用される質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンと質量平均分子量450000〜550000のビニル基をもつオルガノポリシロキサンの配合割合は6:4〜5:5が好ましく、5.5:4.5〜5.8:4.2であることがさらに好ましい。質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンの割合が5より小さくなると、シリコーン樹脂の粘度が高くなり、熱伝導性フィラーを充填しにくくなるため、熱伝導性は減少する傾向にある。また質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンの割合が6より大きくなると、質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンと質量平均分子量450000〜550000のビニル基をもつオルガノポリシロキサンが相分離を起こし、シリコーン樹脂に熱伝導性フィラーを含有しにくくなり、熱伝導性は減少する傾向にある。 The mixing ratio of the organopolysiloxane having a vinyl group having a mass average molecular weight of 15,000 to 25000 and the organopolysiloxane having a mass average molecular weight of 450,000 to 550,000 used in the present invention is preferably 6: 4 to 5: 5. 5: 4.5 to 5.8: 4.2 is more preferable. When the ratio of the organopolysiloxane having a vinyl group having a mass average molecular weight of 15,000 to 25000 is smaller than 5, the viscosity of the silicone resin becomes high and it becomes difficult to fill the heat conductive filler, so that the thermal conductivity tends to decrease. . When the ratio of the organopolysiloxane having a vinyl group having a mass average molecular weight of 15,000 to 25000 is greater than 6, an organopolysiloxane having a vinyl group having a mass average molecular weight of 15,000 to 25000 and an organo having a vinyl group having a mass average molecular weight of 450,000 to 550,000. Polysiloxane causes phase separation, and it becomes difficult to contain a thermally conductive filler in the silicone resin, and the thermal conductivity tends to decrease.
東ソー社製の高温サイズ排除クロマトグラフィーHLC−8121GPC/HTを用い、測定用カラムとしてはTSK−GEL MultiporeHXL−M、ガードカラムとしてはTSK−guardcolumnMPを用いた。展開溶液としてはテトラヒドロフラン(THF)を用い、カラム温度40℃、流量1.0ml/min、送液圧力36kg/cm2にて測定を実施した。分子量は標準ポリスチレン換算の質量平均分子量である。 High temperature size exclusion chromatography HLC-8121GPC / HT manufactured by Tosoh Corporation was used, TSK-GEL MultiporeHXL-M was used as a measurement column, and TSK-guardcolumnMP was used as a guard column. Tetrahydrofuran (THF) was used as a developing solution, and measurement was performed at a column temperature of 40 ° C., a flow rate of 1.0 ml / min, and a liquid feeding pressure of 36 kg / cm 2 . The molecular weight is a mass average molecular weight in terms of standard polystyrene.
本発明のシリコーン樹脂に使用される付加反応型液状シリコーンは、アセチルアルコール類、マレイン酸エステル類などの反応遅延剤、十〜数百μmのアエロジルやシリコーンパウダーなどの増粘剤、難燃剤、顔料などと併用することもできる。 The addition reaction type liquid silicone used in the silicone resin of the present invention includes reaction retarders such as acetyl alcohols and maleates, thickeners such as 10 to several hundred μm aerosil and silicone powder, flame retardants, and pigments. It can also be used together.
本発明の樹脂組成物は、付加反応型液状シリコーンに窒化ホウ素粉末と、酸化アルミニウム粉末又は窒化アルミニウムを添加し、自転・公転ミキサーであるシンキー社製「あわとり練太郎」を用いて混合することで製造することができる。 In the resin composition of the present invention, boron nitride powder and aluminum oxide powder or aluminum nitride are added to addition-reaction type liquid silicone, and mixed using “Awatori Netaro” made by Shinky Co., Ltd., which is a rotation / revolution mixer. Can be manufactured.
平均粒子径20〜50μmである六方晶窒化ホウ素粉末と平均粒子径0.5〜5μmである酸化アルミニウム粉末の配合割合は7:3〜9:1である必要があり、さらに配合割合は7.5:2.5〜8.5:1.5の範囲のものが好ましい。平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が7より小さくなると、フィラーの充填性が悪くなる傾向にある。反対に平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が9より大きくなると、フィラーが緻密に充填しづらくなり、熱伝導性が減少する傾向にある。 The blending ratio of the hexagonal boron nitride powder having an average particle diameter of 20 to 50 μm and the aluminum oxide powder having an average particle diameter of 0.5 to 5 μm needs to be 7: 3 to 9: 1. The thing of the range of 5: 2.5-8.5: 1.5 is preferable. When the ratio of the hexagonal boron nitride powder having an average particle diameter of 20 to 50 μm is smaller than 7, the filler filling property tends to deteriorate. On the other hand, when the ratio of the hexagonal boron nitride powder having an average particle diameter of 20 to 50 μm is larger than 9, the filler becomes difficult to be densely packed and the thermal conductivity tends to decrease.
平均粒子径20〜50μmである六方晶窒化ホウ素粉末と平均粒子径0.5〜5μmである窒化アルミニウム粉末の配合割合は7:3〜9:1である必要があり、さらに配合割合は7.5:2.5〜8.5:1.5の範囲のものが好ましい。平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が7より小さくなると、フィラーの充填性が悪くなる傾向にある。反対に平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が9より大きくなると、フィラーが緻密に充填しづらくなり、熱伝導性が減少する傾向にある。 The blending ratio of the hexagonal boron nitride powder having an average particle diameter of 20 to 50 μm and the aluminum nitride powder having an average particle diameter of 0.5 to 5 μm needs to be 7: 3 to 9: 1. The thing of the range of 5: 2.5-8.5: 1.5 is preferable. When the ratio of the hexagonal boron nitride powder having an average particle diameter of 20 to 50 μm is smaller than 7, the filler filling property tends to deteriorate. On the other hand, when the ratio of the hexagonal boron nitride powder having an average particle diameter of 20 to 50 μm is larger than 9, the filler becomes difficult to be densely packed and the thermal conductivity tends to decrease.
本発明のシリコーン樹脂組成物を積層したシリコーン積層体とは、熱伝導性フィラーとシリコーンゴムの混合物を厚さ1〜6mmに薄板化し、その薄板を厚さ方向へ10〜100枚積層し、10〜100mmの厚さにしたものである。 The silicone laminate obtained by laminating the silicone resin composition of the present invention is obtained by laminating a mixture of a heat conductive filler and silicone rubber to a thickness of 1 to 6 mm, and laminating 10 to 100 thin plates in the thickness direction. The thickness is ˜100 mm.
本発明の熱伝導性成形体の製造方法の一例を示す。付加反応型液状シリコーン及び熱伝導性フィラーを室温下で混合して、シリコーン樹脂組成物のコンパウンドを調整した。このコンパウンドをピストン式又はスクリュー式の押し出し機で押し出して、未硬化の薄板(グリーンシート)に仮成形した後、それを積層し加熱硬化させた後、積層方向から所望の幅に切断する方法があげられる。 An example of the manufacturing method of the heat conductive molded object of this invention is shown. The compound of the silicone resin composition was prepared by mixing an addition reaction type liquid silicone and a heat conductive filler at room temperature. There is a method in which this compound is extruded with a piston-type or screw-type extruder, temporarily formed into an uncured thin plate (green sheet), then laminated and heat-cured, and then cut into a desired width from the lamination direction. can give.
熱伝導率は、ASTM E−1461も準拠した樹脂組成物の熱拡散率、密度、比熱を全て乗じて算出した(熱伝導率=熱拡散率×密度×比熱)。熱拡散率は、試料を幅10mm×10mm×厚み1mmで、加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザー(NETSCH社製 LFA447 Nanoflash)を用い、25℃で測定を行った。密度はアルキメデス法により求めた。比熱はDSC(リガク社製 ThemoPlus Evo DSC8230)を用いて求めた。 The thermal conductivity was calculated by multiplying all of the thermal diffusivity, density, and specific heat of the resin composition in accordance with ASTM E-1461 (thermal conductivity = thermal diffusivity × density × specific heat). The thermal diffusivity was obtained by processing the sample with a width of 10 mm × 10 mm × thickness of 1 mm and using a laser flash method. The measurement was performed at 25 ° C. using a xenon flash analyzer (LFA447 Nanoflash manufactured by NETSCH). The density was determined by the Archimedes method. The specific heat was determined using DSC (ThermoPlus Evo DSC8230 manufactured by Rigaku Corporation).
本発明の熱伝導性成形体は、発熱性電子部品又は熱熱性電子部品の搭載された回路基板と冷却装置との間に挟みこんで使用されるものであるが、冷却装置にあらかじめ貼り付け一体化するなどして電子部品用放熱部材として供給することも可能である。冷却装置としては、例えばヒートシンク、放熱フィン、金属又はセラミックスのケース等があげられ、またはそのセラミックスとしては窒化アルミニウム、窒化ホウ素、炭化珪素、窒化珪素、酸化アルミニウム等があげられる。 The heat conductive molded body of the present invention is used by being sandwiched between a heat generating electronic component or a circuit board on which a thermothermal electronic component is mounted and a cooling device. For example, it can be supplied as a heat radiating member for electronic parts. Examples of the cooling device include a heat sink, a heat radiating fin, a metal or ceramic case, and examples of the ceramic include aluminum nitride, boron nitride, silicon carbide, silicon nitride, and aluminum oxide.
また、上記電子部品用放熱部材が使用される電子機器としては、パーソナルコンピューター、家庭用ゲーム機、電源、自動車、プロジェクター等をあげることができる。 In addition, examples of electronic devices in which the heat dissipating member for electronic parts is used include personal computers, home game machines, power supplies, automobiles, projectors, and the like.
実施例1〜30 比較例1〜18
熱伝導性フィラーとして表1に示される六方晶窒化ホウ素粉末5種類、酸化アルミニウム粉末5種類、窒化アルミニウム粉末5種類、付加反応型シリコーンとして、表2にしめされるD液5種類(白金触媒を含有したビニル基を有するオルガノポリシロキサン)、E液5種類(H−Si基を有するオルガノポリシロキサン及びビニル基を有するオルガノポリシロキサン)、F液5種類(ビニル基を有するオルガノポリシロキサン)を室温下で表3〜7に示す配合(体積%)で、自転・公転ミキサーであるシンキー社製「あわとり練太郎」を用いて、回転速度2000rpmで10分混合して、シリコーン樹脂組成物のコンパウンドを作製した。
Examples 1-30 Comparative Examples 1-18
5 types of hexagonal boron nitride powders, 5 types of aluminum oxide powders, 5 types of aluminum nitride powders shown in Table 1 as thermal conductive fillers, 5 types of D liquids (platinum catalysts) listed in Table 2 as addition reaction type silicones Containing vinyl group-containing organopolysiloxane), E solution 5 types (H-Si group-containing organopolysiloxane and vinyl group-containing organopolysiloxane), and F solution 5 types (vinyl group-containing organopolysiloxane) at room temperature. The compound (volume%) shown in Tables 3 to 7 below was mixed for 10 minutes at a rotational speed of 2000 rpm using “Awatori Nertaro” manufactured by Shinky Co., Ltd., which is a rotating / revolving mixer, and compounded with a silicone resin composition. Was made.
このコンパウンドをスリット(1mm×60mm)付きダイスの固定されたシリンダー構造金型内に充填し、ピストンで圧力をかけながらスリットから押し出して、シリコーン樹脂組成物の未硬化の薄板(グリーンシート)を作製した。 This compound is filled into a cylinder structure mold in which a die with a slit (1 mm × 60 mm) is fixed, and extruded from the slit while applying pressure with a piston to produce an uncured thin sheet (green sheet) of the silicone resin composition. did.
厚さ1mm、幅60mm、長さ120mmのグリーンシート25枚から縦横の長さが50mmの正方形となるようにカッターでグリーンシートを切り出した。そして、正方形のグリーンシート同士の各角を合わせつつ、50mmの高さになるまで50層積層した。その後、乾燥機を用いて150℃で22時間加熱硬化させて、シリコーン積層体を作製した。この1辺の長さが50mmの立方体であるシリコーン積層体をカッターでグリーンシートを重ねた面に対して垂直であり、その辺に対して平行に刃を下ろしながら切断し、本発明のシート状熱伝導性成形体(1mm)を作製した。 A green sheet was cut out from 25 green sheets having a thickness of 1 mm, a width of 60 mm, and a length of 120 mm with a cutter so as to form a square having a length and width of 50 mm. And 50 layers were laminated | stacked until it became a height of 50 mm, aligning each corner | angular of square green sheets. Then, it heat-cured for 22 hours at 150 degreeC using the dryer, and produced the silicone laminated body. This silicone layered body which is a cube with a length of 50 mm on one side is perpendicular to the surface on which the green sheets are stacked with a cutter, and is cut while lowering the blade parallel to the side, thereby forming the sheet-like shape of the present invention A thermally conductive molded body (1 mm) was produced.
上記で得られたシート状熱伝導性成形体について、10mm×10mmに裁断し、熱伝導率を測定した。それらの結果を表3〜7に示す。 About the sheet-like heat conductive molded object obtained above, it cut | judged to 10 mm x 10 mm, and measured thermal conductivity. The results are shown in Tables 3-7.
表3〜表7の実施例と比較例から、本発明の熱伝導性成形体は、優れた熱伝導性を示している。
From the Examples and Comparative Examples in Tables 3 to 7, the thermally conductive molded body of the present invention exhibits excellent thermal conductivity.
Claims (4)
The heat radiating member for electronic components using the heat conductive molded object as described in any one of Claims 1 thru | or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011071196A JP5749536B2 (en) | 2011-03-28 | 2011-03-28 | Thermally conductive moldings and their applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011071196A JP5749536B2 (en) | 2011-03-28 | 2011-03-28 | Thermally conductive moldings and their applications |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012201106A true JP2012201106A (en) | 2012-10-22 |
JP5749536B2 JP5749536B2 (en) | 2015-07-15 |
Family
ID=47182550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011071196A Active JP5749536B2 (en) | 2011-03-28 | 2011-03-28 | Thermally conductive moldings and their applications |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5749536B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017075218A (en) * | 2015-10-14 | 2017-04-20 | 信越化学工業株式会社 | Insulation heat dissipating sheet |
WO2017126608A1 (en) * | 2016-01-19 | 2017-07-27 | 株式会社トクヤマ | Thermally conductive filler composition, use thereof, and method for producing same |
WO2017203924A1 (en) * | 2016-05-24 | 2017-11-30 | 信越化学工業株式会社 | Thermally conductive silicone composition and cured product thereof |
WO2018033992A1 (en) * | 2016-08-18 | 2018-02-22 | デンカ株式会社 | Composition for thermally-conductive grease, thermally-conductive grease, and heat dissipation member |
CN107955375A (en) * | 2017-12-01 | 2018-04-24 | 清华大学深圳研究生院 | Thermally conductive silicone rubber composite material and preparation method thereof |
JP2018162335A (en) * | 2017-03-24 | 2018-10-18 | 株式会社豊田中央研究所 | Heat conductive composite material |
JP2018178032A (en) * | 2017-04-19 | 2018-11-15 | パナソニックIpマネジメント株式会社 | Resin composition, and electronic component and electronic apparatus using the same |
KR20190008999A (en) * | 2016-07-26 | 2019-01-25 | 허니웰 인터내셔날 인코포레이티드 | Gel-type thermal interface material |
US10636613B2 (en) | 2015-08-10 | 2020-04-28 | Canon Electron Tubes & Devices Co., Ltd. | X-ray tube, X-ray tube device, and method of manufacturing X-ray tube device |
JP2021005715A (en) * | 2018-05-29 | 2021-01-14 | デンカ株式会社 | Electronic apparatus and electromagnetic wave shielding heat dissipation sheet |
JP2021514014A (en) * | 2018-02-15 | 2021-06-03 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Gel type thermal interface material |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
WO2022255092A1 (en) * | 2021-06-04 | 2022-12-08 | 日本ゼオン株式会社 | Ceramic sheet and method for producing same |
US11742258B2 (en) | 2020-05-15 | 2023-08-29 | Dexerials Corporation | Thermally conductive sheet and method for manufacturing thermally conductive sheet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1126661A (en) * | 1997-07-01 | 1999-01-29 | Denki Kagaku Kogyo Kk | Radiation spacer |
JP2002294269A (en) * | 2001-03-30 | 2002-10-09 | Geltec Co Ltd | Extrusible crosslinked grease-like radiation material, container in which the material is filled and enclosed, manufacturing method of the container and radiation method using these |
JP2010260225A (en) * | 2009-05-01 | 2010-11-18 | Denki Kagaku Kogyo Kk | Thermoconductive molding and use thereof |
-
2011
- 2011-03-28 JP JP2011071196A patent/JP5749536B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1126661A (en) * | 1997-07-01 | 1999-01-29 | Denki Kagaku Kogyo Kk | Radiation spacer |
JP2002294269A (en) * | 2001-03-30 | 2002-10-09 | Geltec Co Ltd | Extrusible crosslinked grease-like radiation material, container in which the material is filled and enclosed, manufacturing method of the container and radiation method using these |
JP2010260225A (en) * | 2009-05-01 | 2010-11-18 | Denki Kagaku Kogyo Kk | Thermoconductive molding and use thereof |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10636613B2 (en) | 2015-08-10 | 2020-04-28 | Canon Electron Tubes & Devices Co., Ltd. | X-ray tube, X-ray tube device, and method of manufacturing X-ray tube device |
TWI715648B (en) * | 2015-10-14 | 2021-01-11 | 日商信越化學工業股份有限公司 | Insulated heat sink |
JP2017075218A (en) * | 2015-10-14 | 2017-04-20 | 信越化学工業株式会社 | Insulation heat dissipating sheet |
WO2017126608A1 (en) * | 2016-01-19 | 2017-07-27 | 株式会社トクヤマ | Thermally conductive filler composition, use thereof, and method for producing same |
JPWO2017126608A1 (en) * | 2016-01-19 | 2018-11-08 | 株式会社トクヤマ | Thermally conductive filler composition, use and production method thereof |
WO2017203924A1 (en) * | 2016-05-24 | 2017-11-30 | 信越化学工業株式会社 | Thermally conductive silicone composition and cured product thereof |
US10647830B2 (en) | 2016-05-24 | 2020-05-12 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive silicone composition and cured product thereof |
CN109417061A (en) * | 2016-07-26 | 2019-03-01 | 霍尼韦尔国际公司 | Gel-type thermal interfacial material |
KR20190008999A (en) * | 2016-07-26 | 2019-01-25 | 허니웰 인터내셔날 인코포레이티드 | Gel-type thermal interface material |
JP2021064809A (en) * | 2016-07-26 | 2021-04-22 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Gel type thermal interface material |
JP2019525979A (en) * | 2016-07-26 | 2019-09-12 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Gel type thermal interface material |
KR102330536B1 (en) * | 2016-07-26 | 2021-11-24 | 허니웰 인터내셔날 인코포레이티드 | Gel-type thermal interface material |
CN109417061B (en) * | 2016-07-26 | 2023-02-21 | 霍尼韦尔国际公司 | Gel-type thermal interface material |
WO2018033992A1 (en) * | 2016-08-18 | 2018-02-22 | デンカ株式会社 | Composition for thermally-conductive grease, thermally-conductive grease, and heat dissipation member |
US10647094B2 (en) | 2017-03-24 | 2020-05-12 | Toyota Jidosha Kabushiki Kaisha | Thermally conductive composite material |
JP2018162335A (en) * | 2017-03-24 | 2018-10-18 | 株式会社豊田中央研究所 | Heat conductive composite material |
JP2018178032A (en) * | 2017-04-19 | 2018-11-15 | パナソニックIpマネジメント株式会社 | Resin composition, and electronic component and electronic apparatus using the same |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
CN107955375A (en) * | 2017-12-01 | 2018-04-24 | 清华大学深圳研究生院 | Thermally conductive silicone rubber composite material and preparation method thereof |
JP2021514014A (en) * | 2018-02-15 | 2021-06-03 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Gel type thermal interface material |
US11072706B2 (en) | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
JP7423537B2 (en) | 2018-02-15 | 2024-01-29 | ハネウェル・インターナショナル・インコーポレーテッド | Gel type thermal interface material |
JP2021005715A (en) * | 2018-05-29 | 2021-01-14 | デンカ株式会社 | Electronic apparatus and electromagnetic wave shielding heat dissipation sheet |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
US11742258B2 (en) | 2020-05-15 | 2023-08-29 | Dexerials Corporation | Thermally conductive sheet and method for manufacturing thermally conductive sheet |
WO2022255092A1 (en) * | 2021-06-04 | 2022-12-08 | 日本ゼオン株式会社 | Ceramic sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP5749536B2 (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5749536B2 (en) | Thermally conductive moldings and their applications | |
JP5497458B2 (en) | Thermally conductive resin composition | |
JP5405890B2 (en) | Thermally conductive moldings and their applications | |
KR102705102B1 (en) | Insulating heat dissipation sheet | |
TWI767007B (en) | Thermally conductive polyorganosiloxane composition | |
WO2018131486A1 (en) | Thermally conductive resin composition, heat dissipation sheet, heat dissipation member and method for producing same | |
WO2015190270A1 (en) | Heat-conductive sheet | |
JP7220150B2 (en) | Low dielectric constant thermal conductive heat dissipation material | |
JP2010155870A (en) | Thermally conductive compound and method for producing the same | |
TW201215583A (en) | Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same | |
TWI698519B (en) | Thermally conductive sheet and manufacturing method thereof | |
JP6987210B2 (en) | Thermal conductivity sheet | |
WO2021256391A1 (en) | Silicone composition and thermally conductive silicone cured product having high thermal conductivity | |
WO2021044867A1 (en) | Thermally conductive silicone composition and thermally conductive silicone material | |
JP6669258B2 (en) | Thermal conductive sheet | |
JP2011016923A (en) | Thermally conductive silicone composition and thermally conductive silicone molding using the same | |
CN108603034B (en) | Heat conduction member and method for manufacturing heat conduction member | |
JP6473597B2 (en) | Method for producing high thermal conductivity organic / inorganic composite material | |
KR101775288B1 (en) | Silicone composition having excellent long-term storage stability and heat-radiating function | |
JP7136065B2 (en) | THERMALLY CONDUCTIVE SILICONE COMPOSITION AND THERMALLY CONDUCTIVE SILICONE SHEET | |
JP2021195478A (en) | Heat-conductive silicone composition, cured product thereof, and heat radiation sheet | |
JP2006143978A (en) | Heat conductive silicone composition | |
CN110226225A (en) | Heat conductive sheet | |
TW202210585A (en) | Thermally conductive silicone gel composition, thermally conductive silicone sheet, and production methods therefor | |
CN110892025B (en) | Thermal conductive sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150514 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5749536 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |