WO2017175759A1 - Resin molded body - Google Patents

Resin molded body Download PDF

Info

Publication number
WO2017175759A1
WO2017175759A1 PCT/JP2017/014076 JP2017014076W WO2017175759A1 WO 2017175759 A1 WO2017175759 A1 WO 2017175759A1 JP 2017014076 W JP2017014076 W JP 2017014076W WO 2017175759 A1 WO2017175759 A1 WO 2017175759A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin molded
molded body
graphite particles
weight
average particle
Prior art date
Application number
PCT/JP2017/014076
Other languages
French (fr)
Japanese (ja)
Inventor
浩造 中村
和洋 沢
祐介 末永
龍志 松村
Original Assignee
積水化学工業株式会社
積水テクノ成型株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 積水テクノ成型株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017526992A priority Critical patent/JP6310618B2/en
Priority to CN201780017472.XA priority patent/CN108779267B/en
Publication of WO2017175759A1 publication Critical patent/WO2017175759A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a resin molded body having thermal conductivity.
  • a metal plate, a resin molded body having thermal conductivity, or the like is used for a housing of an electronic device such as a communication device used indoors or outdoors and a security camera or a smart meter.
  • Patent Document 1 discloses a resin molded body made of a thermoplastic resin composition containing pitch-based carbon fibers.
  • the pitch-based carbon fibers are oriented in the MD direction (the resin flow direction during injection molding) in the resin molded body. Further, it is described that the ratio ( ⁇ 2 / ⁇ 1) of the thermal conductivity ⁇ 1 in the thickness direction and the thermal conductivity ⁇ 2 in the MD direction is 10 or more.
  • Patent Document 2 discloses a heat radiating chassis which is a molded body (resin molded body) of a heat conductive resin composition.
  • the heat conductive resin composition contains at least one heat conductive filler of graphite, magnesium oxide, and boron nitride. Further, it is described that the blending amount of the heat conductive filler is 10 to 1000 parts by mass with respect to 100 parts by mass of the resin.
  • Patent Document 3 discloses a heat radiating member which is a molded body (resin molded body) of a heat conductive resin composition.
  • the thermally conductive resin composition contains a thermoplastic resin and scaly graphite.
  • the thermoplastic resin is contained in a proportion of 30 to 90% by mass.
  • the scaly graphite is contained in a proportion of 10 to 70% by mass.
  • Patent Document 3 describes that the volume average particle diameter of scaly graphite is 40 to 700 ⁇ m and the aspect ratio is 21 or more.
  • an electronic device such as a security camera or a smart meter, a display device such as an FPD or a car navigation system, or an ECU housing
  • the entire circumference or a part of the housing is a metal die. It is formed from cast products and metal stamped products. Metal die-cast products and metal stamped products are formed so as to cover internal electronic components. In recent years, it has been studied to replace such metal die-cast products and metal press-processed products with resins.
  • Patent Documents 1 to 3 when the resin molded body of Patent Documents 1 to 3 is used for the casing, it may be damaged or deformed when a product such as an electronic device is dropped. That is, the resin molded articles of Patent Documents 1 to 3 were not sufficient in impact resistance.
  • An object of the present invention is to provide a resin molded article excellent in both heat dissipation and impact resistance.
  • the resin molded body according to the present invention is a resin molded body having thermal conductivity and having a main surface, which includes a thermoplastic resin and graphite particles, and the volume average particle diameter of the graphite particles is 0.00. 1 ⁇ m or more and less than 40 ⁇ m, and the content of the graphite particles with respect to 100 parts by weight of the thermoplastic resin is 10 parts by weight or more and 200 parts by weight or less.
  • the thermal conductivity ⁇ x in the x direction, the thermal conductivity ⁇ y in the y direction, and the thermal conductivity in the z direction ⁇ z satisfies min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 3.
  • the main surface is a flat surface or a curved surface.
  • the ⁇ x, the ⁇ y, and the ⁇ z satisfy min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 11.
  • the specific gravity is 1.0 or more and less than 1.4.
  • ⁇ x / ⁇ y satisfies 0.5 or more and 2 or less in the ⁇ x and the ⁇ y.
  • the ⁇ z satisfies ⁇ z ⁇ 2 (W / m ⁇ k).
  • the graphite particles are plate-shaped.
  • the average thickness diameter of the graphite particles is 0.1 ⁇ m or more and less than 10 ⁇ m.
  • the volume average particle size distribution of the graphite particles has two or more different particle size peaks in a range where the volume average particle size is 150 ⁇ m or less.
  • the graphite constituting a minimum particle diameter peak in a volume average particle diameter distribution of 150 ⁇ m or less in the volume average particle diameter distribution of the graphite particles is d1
  • the volume average particle diameter of the graphite particles constituting the maximum particle diameter peak is d2
  • 0.1 ⁇ d1 / d2 ⁇ 0.6 is satisfied.
  • the peak frequency of the minimum particle size peak is p1 (%) in the range where the volume average particle size is 150 ⁇ m or less.
  • the peak frequency of the maximum particle diameter peak is p2 (%), 0.1 ⁇ p1 / p2 ⁇ 0.9 is satisfied.
  • a fiber filler is further included.
  • the content of the fiber filler is 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the thermoplastic resin contains an olefin resin.
  • the olefin-based resin contains an ethylene component, and the content of the ethylene component is 5 to 40% by mass.
  • the temperature indicating the maximum value of the loss tangent of the resin molded body measured by dynamic viscoelasticity measurement at a frequency of 1 Hz and a strain of 0.3% is 20 ° C. It is as follows.
  • the shape is a heat dissipation chassis, a heat dissipation housing, or a heat sink.
  • FIG. 1A is a schematic plan view of a resin molded body obtained in the example
  • FIG. 1B is a schematic cross-sectional view along the line AA.
  • FIG. 2 is a schematic configuration diagram of a housing obtained in the example.
  • FIG. 3 is a diagram showing a volume particle size distribution of graphite particles as an example.
  • FIG. 4 is a schematic diagram of the heat dissipation chassis.
  • FIG. 5 is a schematic diagram of a heat dissipation housing.
  • FIG. 1A is a schematic plan view of a resin molded body obtained in the example
  • FIG. 1B is a schematic cross-sectional view along the line AA.
  • FIG. 2 is a schematic configuration diagram of a housing obtained in the example.
  • FIG. 3 is a diagram showing a volume particle size distribution of graphite particles as an example.
  • the resin molded body of the present invention is a thermally conductive resin molded body having thermal conductivity and a main surface.
  • the resin molded product of the present invention includes a thermoplastic resin and graphite particles.
  • the graphite particles have a volume average particle size (hereinafter sometimes referred to as an average particle size) of 0.1 ⁇ m or more and less than 40 ⁇ m. Content of the said graphite particle is 10 to 200 weight part with respect to 100 weight part of said thermoplastic resins.
  • the resin molded body of the present invention contains graphite particles having an average particle diameter in a specific range at a specific ratio as described above, it is excellent in both heat dissipation and impact resistance. The reason for this can be explained as follows.
  • the interfacial separation occurs between the graphite particles and the resin, and the resin molded body is destroyed.
  • minute interfacial peeling occurs, it is considered that peeling is accelerated up to one graphite particle, but if the area of one graphite particle is small, the peeling area can be reduced.
  • the content if the content of the graphite particles is small, the area of the interface between the graphite particles and the resin, which becomes the starting point of fracture, can be reduced.
  • the graphite particles having an average particle diameter of less than the above upper limit are contained in a content not more than the above upper limit, impact resistance is enhanced.
  • the resin molded body of the present invention contains graphite particles having an average particle diameter of not less than the above lower limit in a content not less than the above lower limit, it has excellent heat dissipation.
  • the thermal conductivity ⁇ x in the x direction, the thermal conductivity ⁇ y in the y direction, and the thermal conductivity ⁇ z in the z direction satisfy min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 3.
  • the x direction is an arbitrary direction along the main surface.
  • the y direction is a direction along the main surface and perpendicular to the x direction.
  • the z direction is the thickness direction of the resin molded body.
  • the thickness direction of the resin molded body is a direction orthogonal to the main surface. Therefore, the z direction is a direction orthogonal to the x direction and the y direction.
  • the main surface may be a flat surface or a curved surface.
  • the main surface is a surface having the largest area among a plurality of surfaces on the outer surface of the resin molded body, and means a continuous surface.
  • the thermal conductivity in each of the x, y, and z directions can be calculated using the following equation (1).
  • the thermal diffusivity in each of the x direction, the y direction, and the z direction can be measured using, for example, a product name: TA33 manufactured by Bethel.
  • min ( ⁇ x, ⁇ y) means a value having a lower thermal conductivity among ⁇ x and ⁇ y. Accordingly, min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 3 means that the ratio of the lower thermal conductivity of ⁇ x and ⁇ y to ⁇ z is 3 or more.
  • the resin molded body of the present invention satisfies min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 3, the thermal conductivity in the plane direction is higher than the thermal conductivity in the thickness direction. Therefore, the resin molding of the present invention is excellent in heat dissipation in the surface direction.
  • the resin molded body of the present invention is excellent in both heat dissipation and impact resistance, it can be suitably used for a communication device indoors and outdoors, a housing of an electronic device such as a security camera or a smart meter.
  • heat dissipation in the surface direction is excellent, it is possible to prevent heat such as sunlight from penetrating into communication devices and electronic devices. Specifically, for example, it is possible to dissipate heat to a surface where the heat of a portion exposed to direct sunlight is shaded. Moreover, it can also suppress that the temperature of a communication apparatus or an electronic device rises partially by dissipating the heat
  • a part of the housing has the shape of a heat radiating fin, it is possible to exert a heat radiating effect. For example, when the CPU or the like becomes high temperature, its operating capability is reduced, so that the heat near the CPU can be dissipated over a wide range.
  • min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 11 more preferably min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 13, particularly preferably min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 15, most preferably min ( ⁇ x, ⁇ y) / ⁇ z ⁇ 17.
  • the upper limit of min ( ⁇ x, ⁇ y) is preferably as high as possible, but is preferably about 20 due to the properties of the material.
  • min ( ⁇ x, ⁇ y) / ⁇ z can be obtained by increasing the volume average particle diameter of graphite particles, increasing the amount of graphite particles added, making the shape of graphite particles like a plate, To increase the orientation of the graphite particles in the X and Y directions, to increase the surface area by exfoliating the graphite particles so as to increase the number of contacts between the particles, or to select multiple types of graphite particles with different volume average particle diameters It can be enlarged by an appropriate method used.
  • ⁇ x / ⁇ y is preferably 0.5 or more and 2 or less in ⁇ x and ⁇ y. In this case, it is possible to dissipate heat more uniformly in the surface direction. In particular, since a portion exposed to direct sunlight (high temperature portion) and a shadow portion (low temperature portion) are not always on the same plane, a configuration in which heat is radiated in any horizontal direction is preferable. Therefore, ⁇ x / ⁇ y is more preferably 0.7 or more, further preferably ⁇ x / ⁇ y is 0.9 or more, more preferably ⁇ x / ⁇ y is 1.6 or less, and further preferably ⁇ x / ⁇ y is 1.2 or less. is there.
  • ⁇ x and ⁇ y preferably satisfy max ( ⁇ x, ⁇ y) ⁇ 1 W / (m ⁇ K).
  • the max ( ⁇ x, ⁇ y) means a value having a higher thermal conductivity among ⁇ x and ⁇ y. Therefore, max ( ⁇ x, ⁇ y) ⁇ 1W / (m ⁇ K) means that the thermal conductivity having the higher thermal conductivity of ⁇ x and ⁇ y is 1 W / (m ⁇ K) or more. Yes.
  • max ( ⁇ x, ⁇ y) is in the above range, the heat dissipation can be further enhanced.
  • ⁇ x and ⁇ y are more preferably max ( ⁇ x, ⁇ y) ⁇ 3 W / (m ⁇ K), and more preferably max ( ⁇ x, ⁇ y) ⁇ 10 W / (m ⁇ K).
  • the upper limit of max ( ⁇ x, ⁇ y) is preferably as high as possible, but is preferably about 20 due to the properties of the material.
  • both ⁇ x and ⁇ y are preferably 1 W / (m ⁇ K) or more, more preferably 3 W / (m ⁇ K) or more, and even more preferably 10 W / (m ⁇ K) or more.
  • ⁇ z preferably satisfies ⁇ z ⁇ 2 (W / m ⁇ k), more preferably ⁇ z ⁇ 1 (W / m ⁇ k).
  • the heat dissipation of the resin molded body can be further enhanced.
  • the impact resistance can be evaluated by conducting a Charpy impact resistance test in a 23 ° C. environment using a notched test piece in accordance with JIS K 7111.
  • the resin molded body of the present invention is preferably a molded body of a resin composition containing a thermoplastic resin and first scaly graphite particles.
  • the resin molded body of the present invention can be obtained by molding the resin composition by a method such as pressing, extrusion, extrusion laminating, or injection molding. Among the above molding methods, injection molding is more preferable because graphite particles can be more uniformly oriented.
  • the resin molded body of the present invention may be a resin composition molded body including a thermoplastic resin and graphite particles other than the first scaly graphite particles.
  • a molded body of a resin composition including a thermoplastic resin and plate-like graphite particles may be used.
  • the graphite particles contained in the resin molded body of the present invention are preferably plate-shaped.
  • the heat dissipation in the surface direction can be further enhanced.
  • the shape of the graphite particle contained in the resin molding of this invention can be measured using a scanning electron microscope (SEM), for example. From the viewpoint of facilitating observation, it is desirable that the test piece cut out from the resin molded body is heated at, for example, 600 ° C. to skip the resin and observe with a scanning electron microscope (SEM).
  • the average thickness diameter of the graphite particles is not particularly limited, but is preferably 0.1 ⁇ m or more and less than 10 ⁇ m.
  • the average thickness diameter of the graphite particles is not less than the above lower limit, the heat dissipation can be further enhanced.
  • the average thickness diameter of the graphite particles is less than the above upper limit, the impact resistance can be further enhanced.
  • the average thickness diameter of the graphite particles can be measured using, for example, a scanning electron microscope (SEM). From the viewpoint of facilitating observation, it is desirable that the test piece cut out from the resin molded body is heated at, for example, 600 ° C. to skip the resin and observe with a scanning electron microscope (SEM). As long as the thickness of the graphite particles can be measured by flying the resin, the test piece may be cut out along the direction along the main surface of the resin molded body, or cut out along the direction perpendicular to the main surface of the resin molded body. May be.
  • SEM scanning electron microscope
  • the volume average particle diameter refers to a value calculated with a volume reference distribution by a laser diffraction method using a laser diffraction / scattering type particle size distribution measuring device in accordance with JIS Z 8825: 2013.
  • the volume average particle size distribution of the graphite particles contained in the resin molded product when the volume average particle size distribution of the graphite particles contained in the resin molded product is measured, it is preferable that the volume average particle size has two or more different particle size peaks in the range of 150 ⁇ m or less. When it has two or more different particle diameter peaks, both heat dissipation and impact resistance can be further enhanced.
  • FIG. 3 shows the volume particle size distribution of graphite particles as an example. In this case, it can be seen that the sample has two different particle size peaks indicated by arrows A and B in FIG.
  • the volume average particle size of the graphite particles constituting the minimum particle size peak is d1, and the maximum particle size peak is constituted.
  • the volume average particle diameter of the graphite particles is d2, it is preferable that 0.1 ⁇ d1 / d2 ⁇ 0.6 is satisfied.
  • d1 / d2 is in the above range, heat dissipation and impact resistance can be further enhanced.
  • d1 / d2 is preferably in the range of 0.1 ⁇ d1 / d2 ⁇ 0.5, and 0.2 ⁇ d1 / d2 ⁇ 0.5. It is more preferable that it is in the range.
  • the peak indicated by arrow A is the minimum particle diameter peak
  • the peak indicated by arrow B is the maximum particle diameter peak.
  • the peak frequency of the minimum particle size peak is p1 (%)
  • the peak frequency of the maximum particle size peak is p2 (%). It is preferable that 0.1 ⁇ p1 / p2 ⁇ 0.9 is satisfied.
  • p1 / p2 is in the above range, heat dissipation and impact resistance can be further enhanced.
  • p1 / p2 is preferably in the range of 0.3 ⁇ p1 / p2 ⁇ 0.8, and 0.4 ⁇ p1 / p2 ⁇ 0.7. It is more preferable that it is in the range.
  • the resin molded body of the present invention preferably has a temperature at which the maximum value of loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz and a strain of 0.3% is 20 ° C. or lower.
  • the temperature which shows the maximum value of the loss tangent of a resin molding is 20 degrees C or less, the falling ball impact strength of a resin molding can be improved further.
  • the maximum value of the loss tangent can be obtained by the same method as the maximum value of the loss tangent of the first resin described later.
  • the resin molded body of the present invention may be in the shape of a heat dissipation chassis, a heat dissipation housing, or a heat sink.
  • FIG. 4 is a schematic diagram of the heat dissipation chassis.
  • the portion indicated by the arrow C in FIG. 4 is the main surface.
  • FIG. 5 is a schematic diagram of a heat dissipation housing.
  • the resin molded body is a heat radiating housing
  • a portion indicated by an arrow D in FIG. 5 is a main surface.
  • the main surface may have an unevenness
  • FIG. 6 is a schematic diagram of a heat sink shape.
  • a portion indicated by an arrow E in FIG. 6 is a main surface.
  • a plurality of surfaces having substantially the same size connected via a small surface and the main surface indicated by the arrow E are also main surfaces.
  • a plurality of main surfaces may exist.
  • thermoplastic resin It does not specifically limit as said thermoplastic resin, A well-known thermoplastic resin can be used. Specific examples of the thermoplastic resin include polyolefin, polystyrene, polyacrylate, polymethacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, polycarbonate, or at least two of these. Examples of the copolymer include seeds. A thermoplastic resin may be used independently and multiple may be used together.
  • thermoplastic resin is preferably a resin having a high elastic modulus.
  • Polyolefin is more preferable because it is inexpensive and easy to mold under heating.
  • the polyolefin is not particularly limited, and a known polyolefin can be used.
  • polyolefins include ethylene, which is an ethylene homopolymer, ethylene- ⁇ -olefin copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-acetic acid
  • Polyethylene resins such as vinyl copolymers, polypropylene resins such as propylene homopolymers, polypropylene resins such as propylene- ⁇ -olefin copolymers, polybutenes such as butene homopolymers, single weights of conjugated dienes such as butadiene and isoprene
  • At least one selected from the group consisting of a polymer or a copolymer can be used. From the viewpoint of further increasing the heat resistance and elastic modulus, the polyolefin is preferably polypropylene.
  • the polyolefin (olefin resin) contains an ethylene component.
  • the content of the ethylene component is preferably 5 to 40% by mass. When content of an ethylene component exists in the said range, heat resistance can be improved further, improving the impact resistance of a resin molding further.
  • the thermoplastic resin has a temperature at which the maximum value of loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz and a strain of 0.3% is ⁇ 10 ° C. It is preferable that the following 2nd resin is included. In this case, the impact resistance of the resin molding can be further improved.
  • the loss tangent can be obtained by measuring in accordance with JIS K 7244-4. Specifically, a test sheet having a width of 5 mm, a length of 24 mm, and a thickness of 0.3 mm is produced. The test sheet thus prepared is obtained by performing temperature dispersion measurement of dynamic viscoelasticity under conditions of a strain amount of 0.3%, a frequency of 1 Hz, and a heating rate of 3 ° C./min.
  • the temperature dispersion measurement of dynamic viscoelasticity can be performed using, for example, a dynamic viscoelasticity measuring apparatus (manufactured by Rheometrics, trade name “RSA”).
  • the polyolefin described above can be used as the first resin.
  • the second resin is not particularly limited, but is preferably a copolymer having an aromatic vinyl block which is a polymer of an aromatic vinyl monomer.
  • a block copolymer having the aromatic vinyl block and a diene block which is a polymer of a conjugated diene monomer is more preferable.
  • the aromatic vinyl monomer is not particularly limited.
  • styrene 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene.
  • 4-tert-butylstyrene tert-butoxystyrene and the like.
  • the conjugated diene monomer is not particularly limited, and examples thereof include conjugated diene having 4 to 12 carbon atoms such as butadiene, isoprene, piperylene, dimethylbutadiene and the like.
  • Examples of such a copolymer having an aromatic vinyl block include styrene elastomers.
  • styrene elastomer examples include styrene-butadiene copolymer (SB), styrene-butadiene-styrene copolymer (SBS), styrene-isoprene copolymer (SI), and styrene-isoprene-styrene copolymer.
  • SIS styrene-ethylene-butylene copolymer
  • SEB styrene-ethylene-butylene-styrene copolymer
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • SEP styrene-ethylene-propylene copolymer
  • SEPS copolymer
  • SEPS copolymer
  • These copolymers may be block copolymers. Further, it may be a linear type or a radial type. These copolymers may be used alone or in combination of two or more.
  • the styrene elastomer is preferably a styrene-ethylene-butylene-styrene block copolymer (SEBS).
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • another polymer such as polyolefin may be used as the second resin.
  • the content of the first resin is preferably 60 parts by weight or more, more preferably 80 parts by weight or more, preferably 95 parts by weight or less, more preferably 90 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. is there.
  • content of 1st resin exists in the said range, the elasticity modulus and heat resistance of a resin molding can be improved further.
  • the content of the second resin is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin. More preferably, it is 20 parts by weight or less.
  • content of 2nd resin exists in the said range, the impact resistance of a resin molding can be improved further.
  • the graphite particles constituting the resin composition may be, for example, at least one flaky graphite among the first to third flaky graphite particles. Furthermore, other graphite particles may be included.
  • the scaly graphite constituting each of the first to third scaly graphite particles is not particularly limited, and graphite, exfoliated graphite, graphene, or the like can be used. From the viewpoint of further increasing the thermal diffusibility, graphite or exfoliated graphite is preferable, and exfoliated graphite is more preferable. From the viewpoint of further improving impact resistance, graphite or exfoliated graphite is preferable, and graphite is more preferable. These may be used alone or in combination.
  • the exfoliated graphite is obtained by exfoliating the original graphite and refers to a graphene sheet laminate that is thinner than the original graphite. The number of graphene sheets laminated in exfoliated graphite should be less than the original graphite.
  • the average particle diameter of the first scaly graphite particles is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the average particle size of the first scaly graphite particles is too small, they are likely to aggregate during melt molding, so that very brittle secondary particles may be formed, and impact resistance may be reduced. .
  • the average particle diameter is too large, the area of one particle is large, and the peeled area is further increased when an impact is applied, so that the molded resin may be destroyed.
  • an average particle diameter means the value calculated by volume reference distribution by the laser diffraction method using the laser diffraction / scattering type particle size distribution measuring apparatus.
  • the content of the first scaly graphite particles is preferably 30 parts by weight or more, more preferably 50 parts by weight or more, preferably 120 parts by weight or less, more preferably 100 parts by weight or less, relative to 100 parts by weight of the thermoplastic resin. It is.
  • content of the said 1st scaly graphite particle is more than the said minimum, the heat dissipation in the surface direction of a resin molding can be improved further.
  • the content of the first scaly graphite particles is too large, the area of the interface that becomes the starting point of the fracture becomes large. Therefore, when the content of the first scaly graphite particles is not more than the above upper limit, Impact properties can be further enhanced.
  • the aspect ratio of the first scaly graphite particles is preferably 3 or more, more preferably 10 or more, still more preferably 30 or more, particularly preferably 50 or more, preferably 300 or less, more preferably 200 or less, still more preferably 100. It is as follows. When the aspect ratio of the first scaly graphite particles is not less than the above lower limit, the heat dissipation in the surface direction can be further enhanced. In addition, when the aspect ratio of the first scaly graphite particles is not more than the above upper limit, the first scaly graphite particles are difficult to curl during molding.
  • an aspect ratio means ratio of the largest dimension in the lamination surface direction of the 1st scaly graphite particle with respect to the thickness of the 1st scaly graphite particle.
  • the thickness of the scaly graphite particles such as the first scaly graphite particles can be measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM). From the viewpoint of making it easier to observe, it is desirable to heat a test piece cut out from the resin molded body at 600 ° C. to skip the resin and observe with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). . As long as the thickness of the scaly graphite particles can be measured by flying the resin, the test piece may be cut out along the direction along the main surface of the resin molded body, or along the direction orthogonal to the main surface of the resin molded body. May be cut out.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the resin molded body of the present invention may further include second flaky graphite particles different from the first flaky graphite particles.
  • the average particle diameter of the second scaly graphite particles is preferably 0.1 ⁇ m or more and less than 40 ⁇ m. By setting the average particle diameter of the second scaly graphite particles within the above range, both heat dissipation and impact resistance can be further enhanced.
  • the first and second scaly graphite particles are preferably densely packed in the plane. In that case, the heat dissipation in the surface direction can be further enhanced.
  • the average particle diameter of the first flaky graphite particles is d1 and the average particle diameter of the second flaky graphite particles is d2, 0.2 ⁇ d2 / d1 ⁇ 0.6 is satisfied.
  • d2 / d1 is within the above range, small particles can enter the gaps between the large particles, and the number of contacts between the scaly graphite particles increases, so that the thermal conductivity in the in-plane direction of the resin molded body and The heat dissipation can be further enhanced. More preferably, 0.25 ⁇ d2 / d1 ⁇ 0.55, and more preferably 0.3 ⁇ d2 / d1 ⁇ 0.5.
  • the total content of the first and second scaly graphite particles is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the sum total of content of the said 1st and 2nd scaly graphite particles is more than the said minimum, the heat dissipation in the surface direction of a resin molding can be improved further.
  • the total content of the first and second scaly graphite particles is too large, the area of the interface that becomes the starting point of the fracture increases, and therefore the first and second scaly graphite particles are When the total content is less than or equal to the above upper limit, impact resistance can be further enhanced.
  • the resin molded body of the present invention may further include third scaly graphite particles having an average particle diameter of 40 ⁇ m or more and 500 ⁇ m or less.
  • third scaly graphite particles having an average particle diameter of 40 ⁇ m or more and 500 ⁇ m or less.
  • the first and third scaly graphite particles are preferably densely packed in the plane. In that case, the heat dissipation in the surface direction can be further enhanced.
  • the average particle size of the third scaly graphite particles is preferably 45 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the average particle diameter of the first flaky graphite particles is d1 and the average particle diameter of the third flaky graphite particles is d3, 0.2 ⁇ d1 / d3 ⁇ 0.6 is satisfied.
  • d1 / d3 is within the above range, small particles can enter the gaps between the large particles, and the number of contacts between the scaly graphite particles increases, so that the thermal conductivity in the in-plane direction of the resin molded body and The heat dissipation can be further enhanced. More preferably, 0.25 ⁇ d1 / d3 ⁇ 0.55, and still more preferably 0.3 ⁇ d1 / d3 ⁇ 0.5.
  • the total content of the first and third scaly graphite particles is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • grains is more than the said minimum, the heat dissipation in the surface direction of a resin molding can be improved further.
  • the total content of the first and third scaly graphite particles is too large, the area of the interface that becomes the starting point of the fracture increases, and therefore the first and third scaly graphite particles are When the total content is less than or equal to the above upper limit, impact resistance can be further enhanced.
  • the content of the third scaly graphite particles is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 60 parts by weight or less, more preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. More preferably, it is 40 parts by weight or less, particularly preferably 30 parts by weight or less.
  • the content of the third scaly graphite particles is within the above range, the heat dissipation in the surface direction can be further enhanced.
  • the graphite particles constituting the resin composition may be exfoliated graphite.
  • exfoliated graphite When exfoliated graphite is included, the heat dissipation in the surface direction can be further enhanced.
  • exfoliated graphite may be used in combination with other graphite particles such as first to third scaly graphite particles.
  • Exfoliated graphite refers to a graphene sheet laminate that is obtained by exfoliating the original graphite and is thinner than the original graphite.
  • exfoliation treatment for obtaining exfoliated graphite either a mechanical exfoliation method using a supercritical fluid or a chemical exfoliation method using an acid may be used.
  • the number of graphene sheets laminated in exfoliated graphite should be less than the original graphite.
  • the total content of the first to third scaly graphite particles and the exfoliated graphite is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the heat dissipation in the surface direction of the resin molded body can be further enhanced.
  • the content of exfoliated graphite is preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. If the exfoliated graphite content is too large, the peel distance when an impact is applied may increase.
  • the content of exfoliated graphite is preferably 10 parts by weight or more, more preferably 30 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the graphite particles may be surface treated. By surface-treating the graphite particles, secondary aggregation between the graphite particles can be prevented, and impact properties can be further improved.
  • the surface treatment agent any of synthetic wax such as polyethylene, natural wax such as stearic acid, and oxidized wax such as oxidized polyethylene wax may be used.
  • the resin molded body of the present invention may further contain a fiber filler.
  • the fiber filler include carbon fiber or glass fiber.
  • the content of the fiber filler is not particularly limited, but is preferably 1 part by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • content of a fiber type filler exists in the said range, the more outstanding fluidity
  • liquidity can be provided with the resin composition of a resin molding.
  • the heat dissipation in the surface direction can be further enhanced.
  • one of ⁇ x and ⁇ y is further increased.
  • the carbon fiber is not particularly limited, and PAN-based or pitch-based carbon fiber can be used. From the viewpoint of further improving the heat dissipation, pitch-based carbon fibers having high thermal conductivity are preferable, and mesophase pitch-based carbon fibers are particularly preferable.
  • the total content of the first to third scaly graphite particles and the carbon fiber is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the heat dissipation in the surface direction of a resin molding can be improved further.
  • the total content of the first to third scaly graphite particles and the carbon fiber is too large, the area of the interface that becomes the starting point of the fracture becomes large. Therefore, the first to third scaly graphite particles and When the total content of carbon fibers is not more than the above upper limit, the impact resistance can be further enhanced. More preferably, the total content of the first scaly graphite particles and carbon fibers is 10 parts by weight or more and 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the content of carbon fiber is preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. Since the carbon fiber has a fiber length larger than that of the scaly graphite, if the carbon fiber content is too large, the peeling distance may be increased when an impact is applied.
  • the carbon fiber content is preferably 10 parts by weight or more, more preferably 30 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin.
  • the resin molded body of the present invention may further contain an inorganic filler.
  • the inorganic filler is not particularly limited, and talc, mica, carbon nanotube, insulating heat conductive filler, or the like can be used.
  • the insulating heat conductive filler is not particularly limited, and examples thereof include aluminum oxide, magnesium oxide, boron nitride, and aluminum nitride. These may be used alone or in combination.
  • the total content of the first to third scaly graphite particles and the inorganic filler is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the total content of the first to third scaly graphite particles and the inorganic filler is not less than the above lower limit, the heat dissipation in the surface direction of the resin molded body can be further enhanced.
  • the total content of the first to third scaly graphite particles and the inorganic filler is too large, the area of the interface that becomes the starting point of the breakage increases, and therefore the first to third scaly shapes described above.
  • the total content of the graphite particles and the inorganic filler is not more than the above upper limit, the impact resistance can be further enhanced. More preferably, the total content of the first scaly graphite particles and the inorganic filler is 10 parts by weight or more and 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the average particle size of the inorganic filler is preferably 0.1 ⁇ m or more, and preferably less than 40 ⁇ m.
  • the content of the inorganic filler is not particularly limited, but is preferably 10 parts by weight or more, more preferably 30 parts by weight or more, and further preferably 50 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin.
  • the content of the insulating heat conductive filler is not less than the above lower limit, the insulating performance can be further enhanced.
  • the content of the inorganic filler is preferably 100 parts by weight or less, more preferably 70 parts by weight or less.
  • the heat dissipation can be further enhanced by setting the content of the inorganic filler to the above upper limit or less.
  • additives include, for example, antioxidants such as phenols, phosphoruss, amines, and sulfurs; ultraviolet absorbers such as benzotriazoles and hydroxyphenyltriazines; metal hazard inhibitors; hexabromobiphenyl ether, decabromo Halogenated flame retardants such as diphenyl ether; flame retardants such as ammonium polyphosphate and trimethyl phosphate; various fillers; antistatic agents such as carbon black; stabilizers; These may be used alone or in combination.
  • the resin molded body manufactured using the resin composition may be plated. By performing the plating process, it is possible to more effectively impart the electromagnetic wave shielding property and the grounding property required for a housing such as an ECU.
  • the type of plating is not particularly limited, but copper plating is preferable. By using copper plating, heat dissipation and impact properties can be further improved.
  • Electromagnetic shielding properties can be measured using the KEC method (KEC: abbreviation for “Kansai Electronics Industry Promotion Center”). More specifically, the electric field strength between a probe with a signal transmitting antenna that transmits a pseudo noise source and a probe with a receiving antenna, and the electric field strength when a sample is inserted between both probes are measured. Can be obtained.
  • the measurement frequency can be set to 100 MHz, for example.
  • the resin molded body of the present invention can be produced, for example, by the following method.
  • a resin composition containing a thermoplastic resin and graphite particles such as first scaly graphite particles and exfoliated graphite is prepared.
  • the resin composition may further contain various materials described above.
  • graphite particles are dispersed in the thermoplastic resin. In this case, the impact resistance of the obtained resin molded product can be further enhanced.
  • the method for dispersing in the thermoplastic resin is not particularly limited, but the thermoplastic resin can be more uniformly dispersed by heating and melting and kneading with the graphite particles.
  • the kneading method is not particularly limited.
  • a kneading method under heating using a kneading device such as a twin screw kneader such as a plast mill, a single screw extruder, a twin screw extruder, a Banbury mixer, or a roll.
  • a kneading device such as a twin screw kneader such as a plast mill, a single screw extruder, a twin screw extruder, a Banbury mixer, or a roll.
  • the method of melt kneading using an extruder is preferable.
  • a resin molded body can be obtained by molding the prepared resin composition by a method such as press processing, extrusion processing, extrusion lamination processing, or injection molding.
  • thermoplastic resin or graphite particles in the resin composition constituting the resin molded body by changing the kind of thermoplastic resin or graphite particles in the resin composition constituting the resin molded body, the blending ratio of each component, etc., thermal conductivity in each direction, impact resistance, etc. Various physical properties can be adjusted as appropriate.
  • the physical properties can be appropriately adjusted according to the intended use.
  • Example 1 100 parts by weight of polypropylene (PP, manufactured by Prime Polymer Co., Ltd., trade name “E-150GK”) as the first thermoplastic resin, and flaky graphite particles having an average particle diameter of 15 ⁇ m as the first flaky graphite particles (Ito Resin composition by melting and kneading 100 parts by weight of graphite product, trade name “CNP15”, average particle diameter 15 ⁇ m) at 200 ° C. using a lab plast mill (product number “R100” manufactured by Toyo Seiki Co., Ltd.). Got.
  • the obtained resin composition was adjusted so as to be 6 mm long ⁇ 6 mm wide ⁇ 5 mm high, placed on a press plate, and heated until the temperature reached 200 ° C. Thereafter, it was formed into a sheet by press working under conditions of a pressure of 20 MPa and a time of 5 minutes. Then, the resin sheet of length 300mm * width 300mm * thickness 2mm was obtained by normal temperature press.
  • PP polypropylene
  • FIG. 1 (a) shows a schematic plan view of the resin molded body 1 obtained
  • FIG. 1 (b) shows a schematic cross-sectional view along the line AA.
  • another resin molded body 1 is prepared by the same method, and a pair of resin molded bodies 1 are sandwiched between clips 2 as shown in FIG. Body 3) was obtained.
  • Example 2 A resin molded body and a casing were obtained in the same manner as in Example 1 except that the addition amount of the first scaly graphite particles was 60 parts by weight.
  • Example 3 As the first flaky graphite particles, 50 parts by weight of flaky graphite particles having an average particle diameter of 15 ⁇ m (trade name “CNP15”, average particle diameter of 15 ⁇ m, manufactured by Ito Graphite Co., Ltd.) are used as the first flaky graphite particles.
  • a resin molded body and a casing were obtained in the same manner as in Example 1 except that 50 parts by weight of scaly graphite particles having a particle diameter of 35 ⁇ m (trade name “CNP35”, average particle diameter of 35 ⁇ m, manufactured by Ito Graphite Co., Ltd.) were used. It was.
  • Example 4 As the first flaky graphite particles, 60 parts by weight of flaky graphite particles having an average particle diameter of 35 ⁇ m (trade name “CNP35”, average particle diameter of 35 ⁇ m, manufactured by Ito Graphite Co., Ltd.) are used as the first flaky graphite particles. Resin molded body and casing in the same manner as in Example 1 except that 40 parts by weight of scaly graphite particles having a particle diameter of 60 ⁇ m (trade name “Z-100”, manufactured by Ito Graphite Co., Ltd., average particle diameter of 60 ⁇ m) were used. Got.
  • CNP35 average particle diameter of 35 ⁇ m
  • Resin molded body and casing in the same manner as in Example 1 except that 40 parts by weight of scaly graphite particles having a particle diameter of 60 ⁇ m (trade name “Z-100”, manufactured by Ito Graphite Co., Ltd., average particle diameter of 60 ⁇ m) were used.
  • Example 5 Except that the addition amount of the first flaky graphite particles was 80 parts by weight, and further 20 parts by weight of carbon fiber (trade name “XN-100” milled fiber, fiber length 50 ⁇ m, manufactured by Nippon Glass Fiber Co., Ltd.) was added. In the same manner as in Example 1, a resin molded body and a casing were obtained.
  • carbon fiber trade name “XN-100” milled fiber, fiber length 50 ⁇ m, manufactured by Nippon Glass Fiber Co., Ltd.
  • Example 6 The same composition as in Example 1 was used except that the amount of polypropylene added was 70 parts by weight and 30 parts by weight of polyethylene (PE, trade name “NOVATEC TM LJ803” manufactured by Nippon Polyethylene Co., Ltd.) was used. (Toyo Seiki Co., Ltd., product number “R100”) was melt kneaded at 140 ° C. to obtain a resin composition. The obtained resin composition was adjusted so as to be 6 mm long ⁇ 6 mm wide ⁇ 5 mm high and placed on a press plate, and heated until the temperature reached 140 ° C. Thereafter, it was formed into a sheet by press working under conditions of a pressure of 20 MPa and a time of 5 minutes. Then, the resin sheet of length 300mm * width 300mm * thickness 2mm was obtained by normal temperature press.
  • PE trade name “NOVATEC TM LJ803” manufactured by Nippon Polyethylene Co., Ltd.
  • the obtained resin sheet was adjusted to a 2 mm ⁇ 5 mm ⁇ 5 mm sheet pellet, and the sheet pellet-shaped resin sheet was put into a 160 t injection molding machine (product number “EC160NP” manufactured by Toshiba Machine Co., Ltd.). Subsequently, it is poured into a mold under a condition that the cylinder temperature at the time of injection molding is 200 ° C., cooled to 60 ° C., and taken out after 1 minute, so that a box-like shape having the same shape as in Example 1 is obtained. A resin molded body was obtained. In the same manner as in Example 1, the obtained resin molded body was sandwiched between clips to obtain a box-shaped housing in a completely closed space.
  • Example 7 Instead of the first scaly graphite particles of Example 4, scaly graphite particles having an average particle diameter of 7 ⁇ m (trade name “PCH7”, average particle diameter of 7 ⁇ m, manufactured by Ito Graphite Co., Ltd.) 60 as the first scaly graphite particles 60 A resin molded body and a casing were obtained in the same manner as in Example 4 except that the weight part was used.
  • PCH7 average particle diameter of 7 ⁇ m
  • Example 8 Instead of the first flaky graphite particles of Example 1, flaky graphite particles having an average particle diameter of 35 ⁇ m as the first flaky graphite particles (manufactured by Ito Graphite Co., Ltd., trade name “CNP35”, average particle diameter of 35 ⁇ m) 100 A resin molded body and a housing were obtained in the same manner as in Example 1 except that the weight part was used.
  • Example 9 80 parts by weight of the first thermoplastic resin (polypropylene) of Example 1 and styrene-ethylene-butylene-styrene copolymer (SEBS, manufactured by Asahi Kasei Chemicals Corporation, trade name “Tuftec H1052” as the second thermoplastic resin. ]) A resin molded body and a casing were obtained in the same manner as in Example 1 except that 20 parts by weight was further added.
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • Example 10 50 parts by weight of the first thermoplastic resin (polypropylene) of Example 1 and 50 parts by weight of an olefin elastomer (manufactured by Dow Chemical Co., trade name “engage 8407”) as the second thermoplastic resin were further added.
  • the same as Example 1 except that 100 parts by weight of flaky graphite particles having an average particle diameter of 35 ⁇ m (trade name “CNP35”, average particle diameter of 35 ⁇ m, manufactured by Ito Graphite Co., Ltd.) were used as the first flaky graphite particles.
  • CNP35 average particle diameter of 35 ⁇ m
  • Example 11 80 parts by weight of the first thermoplastic resin (polypropylene) of Example 10, 20 parts by weight of the second thermoplastic resin (olefin elastomer), 80 parts by weight of the first scaly graphite particles, and flaky A resin molded body and a casing were obtained in the same manner as in Example 10 except that 20 parts by weight of graphite (made by Nippon Graphite Co., Ltd., trade name “UP-35N”, average particle size 30 ⁇ m) was further used.
  • graphite made by Nippon Graphite Co., Ltd., trade name “UP-35N”, average particle size 30 ⁇ m
  • Example 12 instead of the first thermoplastic resin (polypropylene) and exfoliated graphite of Example 11, a mixture comprising 80 parts by weight of polypropylene resin (PP) and 20 parts by weight of glass fiber (trade name “V7100” manufactured by Prime Polymer Co., Ltd.) ) A resin molded body and a casing were obtained in the same manner as in Example 11 except that 100 parts by weight were used.
  • PP polypropylene resin
  • glass fiber trade name “V7100” manufactured by Prime Polymer Co., Ltd.
  • Example 13 Resin molded body and casing in the same manner as in Example 11 except that 20 parts by weight of talc (trade name “Microace MS-K”, manufactured by Nippon Talc Co., Ltd.) was used instead of exfoliated graphite of Example 11. Got.
  • Example 14 The first scaly graphite particles of Example 11 were 40 parts by weight, and the second scaly graphite particles were scaly graphite particles having an average particle diameter of 15 ⁇ m (trade name “CNP15” manufactured by Ito Graphite Co., Ltd., average particle diameter of 15 ⁇ m). ) 30 parts by weight were further added, and 30 parts by weight of flaky graphite particles having an average particle diameter of 60 ⁇ m (trade name “Z-100”, average particle diameter of 60 ⁇ m, manufactured by Ito Graphite Co., Ltd.) were added as the third flake graphite. And the resin molding and the housing
  • Example 15 As the first flaky graphite particles, 50 parts by weight of the flaky graphite particles having an average particle diameter of 7 ⁇ m (trade name “PCH7”, average particle diameter of 7 ⁇ m) manufactured by Ito Graphite Co., Ltd. are used as the first flaky graphite particles.
  • a scaly graphite particle having a mean particle diameter of 120 ⁇ m (Nippon Graphite) was used as the third scaly graphite particle by using 30 parts by weight of a scaly graphite particle having a diameter of 35 ⁇ m (trade name “CNP35” manufactured by Ito Graphite Co., Ltd., average particle diameter 35 ⁇ m).
  • a resin molded body and a casing were obtained in the same manner as in Example 14 except that 20 parts by weight (trade name “F # 2”, average particle size 120 ⁇ m) manufactured by the company was used.
  • Example 16 A resin molded body and a casing were obtained in the same manner as in Example 10 except that a cyclic olefin copolymer (COC, manufactured by Polyplastics, trade name “8007”) was used as the first thermoplastic resin instead of polypropylene. It was.
  • COC cyclic olefin copolymer
  • Example 17 As the first thermoplastic resin, polyamide 6 (PA, product name “CM1007”, manufactured by Toray Industries, Inc.) was used instead of polypropylene, the first scaly graphite particles were not used, and exfoliated graphite ( A resin molded body and a casing were obtained in the same manner as in Example 11 except that the addition amount of Nippon Graphite Co., Ltd. (trade name “UP-35N”, average particle size 30 ⁇ m) was 60 parts by weight.
  • PA product name “CM1007”, manufactured by Toray Industries, Inc.
  • Example 18 As the second thermoplastic resin, a styrene-ethylene-butylene-styrene copolymer (SEBS, manufactured by Asahi Kasei Chemicals Corporation, trade name “Tuftec H1052”) was used instead of the olefin elastomer, and exfoliated graphite (Nippon Graphite) A resin molded body and a casing were obtained in the same manner as in Example 17 except that the addition amount of the product name “UP-35N” manufactured by the company was changed to 20 parts by weight.
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • Tetuftec H1052 exfoliated graphite
  • Example 19 A resin molded body and a casing were obtained in the same manner as in Example 10 except that the addition amount of the first scaly graphite particles was 150 parts by weight.
  • Example 20 90 parts by weight of scaly graphite particles having an average particle diameter of 7 ⁇ m (trade name “PCH7”, average particle diameter of 7 ⁇ m, manufactured by Ito Graphite Co., Ltd.) are used as the first scaly graphite particles, and the average particles are used as the third scaly graphite particles.
  • a resin molded body and a casing were obtained in the same manner as in Example 19 except that 10 parts by weight of scaly graphite particles having a diameter of 120 ⁇ m (trade name “F # 2”, manufactured by Nippon Graphite Co., Ltd., average particle diameter of 120 ⁇ m) were used. It was.
  • Example 21 Resin molding was carried out in the same manner as in Example 19 except that 50 parts by weight of exfoliated graphite (trade name “UP-35N”, average particle diameter 30 ⁇ m, manufactured by Nippon Graphite Co., Ltd.) was used instead of the first flaky graphite particles. A body and housing were obtained.
  • exfoliated graphite trade name “UP-35N”, average particle diameter 30 ⁇ m, manufactured by Nippon Graphite Co., Ltd.
  • Example 22 As the first thermoplastic resin, a cyclic olefin copolymer (COC, manufactured by Polyplastics Co., Ltd., trade name “8007”) is used instead of polypropylene, and scaly graphite particles having an average particle diameter of 7 ⁇ m as the first scaly graphite particles ( A resin molded body and a casing were obtained in the same manner as in Example 10 except that 100 parts by weight of Ito Graphite Co., Ltd. (trade name “PCH7”, average particle diameter: 7 ⁇ m) was used.
  • PCH7 average particle diameter: 7 ⁇ m
  • Example 23 Example 1 except that 150 parts by weight of scaly graphite particles having an average particle diameter of 7 ⁇ m (trade name “PCH7”, average particle diameter of 7 ⁇ m) manufactured by Ito Graphite Co., Ltd.) was used as the first scaly graphite particles. Thus, a resin molded body and a casing were obtained.
  • PCH7 average particle diameter of 7 ⁇ m
  • Example 24 As the first scaly graphite particles, 70 parts by weight of scaly graphite particles having an average particle diameter of 7 ⁇ m (product name “PCH7”, average particle diameter of 7 ⁇ m, manufactured by Ito Graphite Co., Ltd.) is used, and exfoliated graphite having an average particle diameter of 100 ⁇ m (ITEC) Resin in the same manner as in Example 19 except that 30 parts by weight (trade name “iGrafen- ⁇ ”, average particle diameter: 100 ⁇ m) manufactured by the company was used.
  • PCH7 average particle diameter of 7 ⁇ m
  • IRC average particle diameter of 100 ⁇ m
  • Example 25 As the first flaky graphite particles, 80 parts by weight of flaky graphite particles having an average particle diameter of 7 ⁇ m (trade name “PCH7”, average particle diameter of 7 ⁇ m, manufactured by Ito Graphite Co., Ltd.) is used, and exfoliated graphite having an average particle diameter of 100 ⁇ m (ITEC) A resin molded body and a housing were obtained in the same manner as in Example 19 except that 20 parts by weight manufactured by the company and trade name “iGrafen- ⁇ ”, average particle diameter 100 ⁇ m) were used.
  • PCH7 average particle diameter of 7 ⁇ m
  • IRC average particle diameter of 100 ⁇ m
  • Example 26 As the first thermoplastic resin, acrylic-butadiene-styrene resin (ABS, manufactured by Asahi Kasei Co., Ltd., trade name “Stylac IM30”) was used instead of polypropylene, and the first scaly graphite particles were not used. A resin molded body and a casing were prepared in the same manner as in Example 11 except that the amount of exfoliated graphite (trade name “UP-35N” manufactured by Nippon Graphite Co., Ltd., average particle diameter 30 ⁇ m) was 60 parts by weight. Obtained.
  • ABS acrylic-butadiene-styrene resin
  • UP-35N manufactured by Nippon Graphite Co., Ltd., average particle diameter 30 ⁇ m
  • Example 27 As the first flaky graphite particles, 90 parts by weight of flaky graphite particles having an average particle diameter of 7 ⁇ m (product name “PCH7”, average particle diameter of 7 ⁇ m, manufactured by Ito Graphite Co., Ltd.) are used, and exfoliated graphite having an average particle diameter of 100 ⁇ m ( A resin molded body and a casing were obtained in the same manner as in Example 19 except that 10 parts by weight manufactured by ITEC Co., Ltd., trade name “iGrafen- ⁇ ”, average particle diameter 100 ⁇ m) was used.
  • PCH7 average particle diameter of 7 ⁇ m
  • exfoliated graphite having an average particle diameter of 100 ⁇ m A resin molded body and a casing were obtained in the same manner as in Example 19 except that 10 parts by weight manufactured by ITEC Co., Ltd., trade name “iGrafen- ⁇ ”, average particle diameter 100 ⁇ m) was used.
  • Example 28 Resin molded body and casing in the same manner as in Example 17 except that syndiotactic polystyrene (SPS, manufactured by Idemitsu Kosan Co., Ltd., trade name “S105”) was used as the first thermoplastic resin instead of polyamide 6.
  • SPS syndiotactic polystyrene
  • Example 29 A resin molded body and a casing were obtained in the same manner as in Example 1 except that a copper plating of 10 ⁇ m was coated as the plating.
  • Example 1 was used except that instead of the first scaly graphite particles of Example 1, 100 parts by weight of spherical graphite (trade name “SG-BL40”, average particle diameter of 40 ⁇ m, manufactured by Ito Graphite Co., Ltd.) was used. Similarly, a resin molded body and a casing were obtained.
  • spherical graphite trade name “SG-BL40”, average particle diameter of 40 ⁇ m, manufactured by Ito Graphite Co., Ltd.
  • Comparative Example 2 instead of the first scaly graphite particles of Example 1, 100 parts by weight of scaly graphite particles having an average particle diameter of 60 ⁇ m (trade name “Z-100”, average particle diameter of 60 ⁇ m, manufactured by Ito Graphite Co., Ltd.) was used. Except for the above, a resin molded body and a housing were obtained in the same manner as in Example 1.
  • Example 3 Comparative Example 3
  • 150 parts by weight of scaly graphite particles having an average particle diameter of 60 ⁇ m (trade name “Z-100”, average particle diameter of 60 ⁇ m, manufactured by Ito Graphite Co., Ltd.) was used. Except for the above, a resin molded body and a housing were obtained in the same manner as in Example 1.
  • Example 4 Example 1 except that 100 parts by weight of carbon fiber (manufactured by Nippon Glass Fiber Co., Ltd., trade name “XN-100” milled fiber, fiber length 50 ⁇ m) was used instead of the first scaly graphite particles of Example 1. In the same manner as in Example 1, a resin molded body and a casing were obtained.
  • carbon fiber manufactured by Nippon Glass Fiber Co., Ltd., trade name “XN-100” milled fiber, fiber length 50 ⁇ m
  • thermoplastic resin a cyclic olefin copolymer (COC, manufactured by Polyplastics, trade name “8007”) was used instead of polypropylene, and an average particle diameter of 120 ⁇ m was used instead of the first scaly graphite particles.
  • COC cyclic olefin copolymer
  • a resin molded body and a casing were obtained in the same manner as in Example 1 except that 100 parts by weight of flaky graphite particles (manufactured by Nippon Graphite Co., Ltd., trade name “F # 2”, average particle diameter 120 ⁇ m) were used.
  • Comparative Example 6 A casing was obtained in the same manner as in Comparative Example 5 except that polyamide 6 (PA, trade name “CM1007”, manufactured by Toray Industries, Inc.) was used instead of COC.
  • PA polyamide 6
  • Example 8 Example 1 except that 210 parts by weight of scaly graphite particles having an average particle diameter of 7 ⁇ m (trade name “PCH7”, average particle diameter of 7 ⁇ m, manufactured by Ito Graphite Co., Ltd.) were used instead of the first scaly graphite particles. In the same manner as above, a resin molded body and a casing were obtained.
  • PCH7 average particle diameter of 7 ⁇ m
  • Ethylene component content The ethylene component content (concentration) was measured as follows. First, an ethylene- ⁇ -olefin copolymer having a known ethylene content (made by Dow Chemical Co., trade name “engage 8100”, content of ethylene component: 58% by mass) in a homopropylene resin is 5% by mass, 10% A precise balance was blended at a ratio of 20% by mass, 20% by mass, and 30% by mass and completely dissolved with hot xylene. The dissolved solution was coated on a glass plate and a film was prepared.
  • ethylene- ⁇ -olefin copolymer having a known ethylene content made by Dow Chemical Co., trade name “engage 8100”, content of ethylene component: 58% by mass
  • a precise balance was blended at a ratio of 20% by mass, 20% by mass, and 30% by mass and completely dissolved with hot xylene. The dissolved solution was coated on a glass plate and a film was prepared.
  • the film was then measured under the following infrared spectrum measurement conditions, and the absorbance ratio of the polypropylene-based resin polypropylene absorption (1304 cm ⁇ 1 ) to polyethylene absorption (720 cm ⁇ 1 ). Thus, a calibration curve was created. About the thermoplastic resin used by each Example and the comparative example, after producing a film similarly, it measured on the following infrared spectrum measurement conditions, and calculated ethylene component content using the analytical curve created by the said method.
  • volume average particle size (average particle size); The volume average particle size of the graphite particles was measured by particle size analysis-laser diffraction / scattering method in accordance with JIS Z 8825.
  • the test piece cut out from the resin molded body (housing) was heated at 600 ° C. to remove the resin and take out graphite particles.
  • the obtained graphite particles are put into a soap solution (neutral detergent: 0.01%) so that the concentration becomes 2% by weight, and ultrasonic waves are irradiated for 1 minute at an output of 300 w using an ultrasonic homogenizer.
  • the volume particle size distribution of the graphite particles is measured for the suspension using a laser diffraction / scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., product name “Microtrack MT3300”). % Value was calculated as the average volume particle diameter of the graphite particles.
  • FIG. 7 is a view showing the volume particle size distribution of the graphite particles of Example 14. For example, it can be seen that there are two particle diameter peaks in the graphite particles of FIG. In addition, although it mentions and describes on behalf of Example 14, the particle diameter peak number, d1 / d2, and p1 / p2 were calculated
  • d1 / d2 is the volume average particle diameter distribution of graphite particles, and in the range where the volume average particle diameter is 150 ⁇ m or less, the volume average particle diameter constituting the minimum particle diameter peak is d1, and the maximum particle diameter peak is formed. It was determined from the ratio when the volume average particle diameter of the graphite particles used was d2. For example, in FIG. 7, the volume average particle diameter constituting the particle diameter peak indicated by arrow A is d1, and the volume average particle diameter constituting the particle diameter peak indicated by arrow B is d2.
  • p1 / p2 represents the peak frequency of the minimum particle size peak in the range where the volume average particle size is 150 ⁇ m or less in the volume average particle size distribution of the graphite particles, and the peak frequency of the maximum particle size peak is p2 It was obtained from the ratio when (%).
  • the peak frequency of the particle diameter peak indicated by arrow A is p1 (%)
  • the peak frequency of the particle diameter peak indicated by arrow B is p2 (%).
  • Shape and average thickness diameter were measured using a scanning electron microscope (SEM, manufactured by JEOL Ltd., product number “JSM-6330F”). Specifically, a test piece cut out from a resin molded body (housing) is heated at 600 ° C., and the resin is removed to take out graphite particles. The shape is observed with a scanning electron microscope in a state where it is placed on a slide. Then, the thickness of the graphite particles was measured.
  • SEM scanning electron microscope
  • the obtained resin molded product is pelletized, a press sheet is produced at a press temperature of 230 ° C. and a press pressure of 15 MPa, and the specific gravity of the resin molded product (housing) is measured by an underwater replacement method in accordance with JIS K 7112. did.
  • the loss tangent temperature which is the temperature showing the maximum value of the loss tangent, was measured according to JIS K 7244-4. Specifically, a test sheet having a width of 5 mm, a length of 24 mm, and a thickness of 0.3 mm was prepared for the obtained resin molded body. The produced test sheet was obtained by performing temperature dispersion measurement of dynamic viscoelasticity under the conditions of a strain amount of 0.3%, a frequency of 1 Hz, and a heating rate of 3 ° C./min. The temperature dispersion measurement of dynamic viscoelasticity was measured using a dynamic viscoelasticity measuring apparatus (trade name “RSA” manufactured by Rheometrics).
  • a test piece was cut out to a size of 100 mm ⁇ 100 mm from the bottom portion of the housing and used for measurement of thermal conductivity.
  • the thermal conductivity ⁇ x in the x direction Y-direction thermal conductivity ⁇ y and z-direction thermal conductivity ⁇ z were measured using the following equations, respectively.
  • the radiant heat of the irradiated xenon flash may not be detected in the in-plane direction. Therefore, if necessary, the specimen cut out from the housing is melted and heated to cool it. The thickness was reduced by pressing and adjusted to a detectable sample thickness.
  • the specific gravity was measured using a product name “MDS-300” manufactured by ALFAMIRAGE.
  • the specific heat was measured using a product name “DSC-6200” manufactured by Seiko Instruments Inc.
  • Thermal diffusivity evaluation heat dissipation evaluation
  • a test piece was cut out from the bottom part of the casing into a size of 100 mm long ⁇ 100 mm wide ⁇ 1.6 mm thick and used for measurement of thermal diffusivity evaluation.
  • thermocouple was fixed with a tape on the upper side of the test piece that was directly above the heater, and the temperature was measured using the thermocouple.
  • the test piece thickness was 1.6 mm.
  • the heater was heated at a voltage of 8 V using a DC power supply device, and the temperature at the upper central portion of the test piece was measured after 800 seconds (the time when the temperature rise was small and reached the saturation temperature). The lower the temperature, the lower the heat permeability, that is, the heat is diffused to the surroundings.
  • a Charpy impact resistance test was performed on an A-shaped notch conforming to JIS K 7111. Further, as a test apparatus used for the Charpy impact resistance test, a product name “No. 258 universal impact tester” manufactured by Yasuda Seiki Seisakusho Co., Ltd. was used. Further, as a molding machine for injecting the test piece into the mold, a product number “EC160NP” manufactured by Toshiba Machine Co., Ltd. was used.
  • Falling ball impact strength The falling ball impact strength was measured as follows. First, the resin molding was installed on a horizontal surface in a constant temperature room at 23 ° C. Thereafter, an iron ball (weight 0.5 kg) was naturally dropped from a position of a height of 0.1 m in the vertical direction from the upper surface of the resin molded body on the upper surface of the resin molded body. The presence or absence of cracks in the resin molded body due to the dropping of the iron balls was visually observed. If no cracks occur in the resin molded body, the steel ball is naturally dropped on the upper surface of the resin molded body from a position 0.05 m higher in the vertical direction, and the presence or absence of cracks in the resin molded body is visually observed. did.
  • the height of the iron ball is increased every 0.05 m, and the natural falling of the iron ball is repeated, and the minimum height of the iron ball where the crack occurs in the resin molding was measured.
  • Tables 1 to 3 the minimum height of the iron ball is shown in cm.
  • Electromagnetic shielding properties The electromagnetic wave shielding property (electromagnetic wave shielding performance, unit: dB) was measured using a KEC method (KEC: abbreviation for “Kansai Electronics Industry Promotion Center”). More specifically, the electric field strength between a probe with a signal transmitting antenna that transmits a pseudo noise source and a probe with a receiving antenna, and the electric field strength when a sample is inserted between both probes are measured. was determined by The measurement frequency was 100 MHz.

Abstract

Provided is a resin molded body having excellent heat dissipation as well as impact resistance. The resin molded body having thermal conductivity and having a main surface contains a thermoplastic resin and graphite particles, wherein the volume average particle diameter of the graphite particles is at least 0.1 µm and less than 40 µm, the content of the graphite particles is 10-200 parts by weight with respect to 100 parts by weight of the thermoplastic resin, and the thermal conductivity λx in the x-direction, the thermal conductivity λy in the y-direction, and the thermal conductivity λz in the z-direction satisfy min(λx, λy)/ λz≥3, where the x-direction is an arbitrary direction on the main surface, the y-direction is a direction which is on the main surface and perpendicular to the x-direction, and the z-direction is the thickness direction of the resin molded body.

Description

樹脂成形体Resin molded body
 本発明は、熱伝導性を有する樹脂成形体に関する。 The present invention relates to a resin molded body having thermal conductivity.
 従来、屋内外で使用する通信機器や、防犯カメラ又はスマートメータなどの電子機器の筐体には、金属板や、熱伝導性を有する樹脂成形体などが用いられている。 Conventionally, a metal plate, a resin molded body having thermal conductivity, or the like is used for a housing of an electronic device such as a communication device used indoors or outdoors and a security camera or a smart meter.
 下記の特許文献1には、ピッチ系炭素繊維を含有する熱可塑性樹脂組成物からなる樹脂成形体が開示されている。特許文献1では、上記樹脂成形体中において、上記ピッチ系炭素繊維がMD方向(射出成形時の樹脂流れ方向)に配向されている。また、厚み方向の熱伝導率λ1とMD方向の熱伝導率λ2との比(λ2/λ1)が10以上であることが記載されている。 The following Patent Document 1 discloses a resin molded body made of a thermoplastic resin composition containing pitch-based carbon fibers. In Patent Document 1, the pitch-based carbon fibers are oriented in the MD direction (the resin flow direction during injection molding) in the resin molded body. Further, it is described that the ratio (λ2 / λ1) of the thermal conductivity λ1 in the thickness direction and the thermal conductivity λ2 in the MD direction is 10 or more.
 下記の特許文献2には、熱伝導性樹脂組成物の成形体(樹脂成形体)である放熱シャーシが開示されている。特許文献2では、熱伝導性樹脂組成物が、黒鉛、酸化マグネシウム及び窒化ホウ素のうちいずれか1種以上の熱伝導フィラーを含んでいることが記載されている。また、熱伝導フィラーの配合量が、樹脂100質量部に対し、10~1000質量部であることが記載されている。 The following Patent Document 2 discloses a heat radiating chassis which is a molded body (resin molded body) of a heat conductive resin composition. Patent Document 2 describes that the heat conductive resin composition contains at least one heat conductive filler of graphite, magnesium oxide, and boron nitride. Further, it is described that the blending amount of the heat conductive filler is 10 to 1000 parts by mass with respect to 100 parts by mass of the resin.
 下記の特許文献3には、熱伝導性樹脂組成物の成形体(樹脂成形体)である放熱部材が開示されている。特許文献3では、熱伝導性樹脂組成物が、熱可塑性樹脂及び鱗片状黒鉛を含んでいることが記載されている。上記熱可塑性樹脂は、30~90質量%の割合で含有されている。上記鱗片状黒鉛は、10~70質量%の割合で含有されている。また、特許文献3では、鱗片状黒鉛の体積平均粒子径が40~700μmであり、アスペクト比が21以上であることが記載されている。 The following Patent Document 3 discloses a heat radiating member which is a molded body (resin molded body) of a heat conductive resin composition. Patent Document 3 describes that the thermally conductive resin composition contains a thermoplastic resin and scaly graphite. The thermoplastic resin is contained in a proportion of 30 to 90% by mass. The scaly graphite is contained in a proportion of 10 to 70% by mass. Patent Document 3 describes that the volume average particle diameter of scaly graphite is 40 to 700 μm and the aspect ratio is 21 or more.
特開2015-120358号公報JP2015-120358A 特開2008-31359号公報JP 2008-31359 A 国際公開第2015/065662号International Publication No. 2015/066562
 従来、屋内外における無線若しくは有線通信機器、防犯カメラ若しくはスマートメータなどの電子機器、又はFPD若しくはカーナビ等の表示機器やECU筐体においては、筐体の全周又は一部が、金属製のダイキャスト製品や金属プレス加工品により形成されている。金属製のダイキャスト製品や金属プレス加工品は、内部の電子部品を覆うように形成されている。近年、このような金属製のダイキャスト製品や金属プレス加工品を、樹脂により代替することが検討されている。 Conventionally, in an indoor or outdoor wireless or wired communication device, an electronic device such as a security camera or a smart meter, a display device such as an FPD or a car navigation system, or an ECU housing, the entire circumference or a part of the housing is a metal die. It is formed from cast products and metal stamped products. Metal die-cast products and metal stamped products are formed so as to cover internal electronic components. In recent years, it has been studied to replace such metal die-cast products and metal press-processed products with resins.
 しかしながら、特許文献1~3の樹脂成形体を筐体に用いた場合、電子機器などの製品が落下した際に、破損したり、変形したりすることがあった。すなわち、特許文献1~3の樹脂成形体は、耐衝撃性が十分でなかった。 However, when the resin molded body of Patent Documents 1 to 3 is used for the casing, it may be damaged or deformed when a product such as an electronic device is dropped. That is, the resin molded articles of Patent Documents 1 to 3 were not sufficient in impact resistance.
 本発明の目的は、放熱性及び耐衝撃性の双方に優れる樹脂成形体を提供することにある。 An object of the present invention is to provide a resin molded article excellent in both heat dissipation and impact resistance.
 本発明に係る樹脂成形体は、熱伝導性を有し、かつ主面を有する樹脂成形体であって、熱可塑性樹脂と黒鉛粒子とを含み、前記黒鉛粒子の体積平均粒子径が、0.1μm以上、40μm未満であり、前記熱可塑性樹脂100重量部に対する前記黒鉛粒子の含有量が、10重量部以上、200重量部以下であり、前記主面において、任意の方向をx方向及び該x方向に直交する方向をy方向とし、前記樹脂成形体の厚み方向をz方向としたときに、前記x方向の熱伝導率λx、前記y方向の熱伝導率λy及び前記z方向の熱伝導率λzが、min(λx,λy)/λz≧3を満たしている。 The resin molded body according to the present invention is a resin molded body having thermal conductivity and having a main surface, which includes a thermoplastic resin and graphite particles, and the volume average particle diameter of the graphite particles is 0.00. 1 μm or more and less than 40 μm, and the content of the graphite particles with respect to 100 parts by weight of the thermoplastic resin is 10 parts by weight or more and 200 parts by weight or less. When the direction orthogonal to the direction is the y direction and the thickness direction of the resin molding is the z direction, the thermal conductivity λx in the x direction, the thermal conductivity λy in the y direction, and the thermal conductivity in the z direction λz satisfies min (λx, λy) / λz ≧ 3.
 本発明に係る樹脂成形体のある特定の局面では、前記主面が、平面又は曲面である。 In a specific aspect of the resin molded body according to the present invention, the main surface is a flat surface or a curved surface.
 本発明に係る樹脂成形体の別の特定の局面では、前記λx、前記λy及び前記λzが、min(λx,λy)/λz≧11を満たしている。 In another specific aspect of the resin molded body according to the present invention, the λx, the λy, and the λz satisfy min (λx, λy) / λz ≧ 11.
 本発明に係る樹脂成形体の他の特定の局面では、比重が、1.0以上、1.4未満である。 In another specific aspect of the resin molded body according to the present invention, the specific gravity is 1.0 or more and less than 1.4.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記λx及び前記λyにおいて、λx/λyが、0.5以上、2以下を満たしている。 In still another specific aspect of the resin molded body according to the present invention, λx / λy satisfies 0.5 or more and 2 or less in the λx and the λy.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記λzが、λz<2(W/m・k)を満たしている。 In yet another specific aspect of the resin molded body according to the present invention, the λz satisfies λz <2 (W / m · k).
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記黒鉛粒子が板状である。 In yet another specific aspect of the resin molded body according to the present invention, the graphite particles are plate-shaped.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記黒鉛粒子の平均厚み径が、0.1μm以上、10μm未満である。 In still another specific aspect of the resin molded body according to the present invention, the average thickness diameter of the graphite particles is 0.1 μm or more and less than 10 μm.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、2つ以上の異なる粒子径ピークを有する。 In still another specific aspect of the resin molded body according to the present invention, the volume average particle size distribution of the graphite particles has two or more different particle size peaks in a range where the volume average particle size is 150 μm or less.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、最小粒子径ピークを構成している前記黒鉛粒子の体積平均粒子径をd1とし、最大粒子径ピークを構成している前記黒鉛粒子の体積平均粒子径をd2としたときに、0.1≦d1/d2≦0.6を満たしている。 In still another specific aspect of the resin molded body according to the present invention, the graphite constituting a minimum particle diameter peak in a volume average particle diameter distribution of 150 μm or less in the volume average particle diameter distribution of the graphite particles. When the volume average particle diameter of the particles is d1, and the volume average particle diameter of the graphite particles constituting the maximum particle diameter peak is d2, 0.1 ≦ d1 / d2 ≦ 0.6 is satisfied.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、最小粒子径ピークのピーク頻度をp1(%)とし、最大粒子径ピークのピーク頻度をp2(%)としたときに、0.1≦p1/p2≦0.9を満たしている。 In still another specific aspect of the resin molded body according to the present invention, in the volume average particle size distribution of the graphite particles, the peak frequency of the minimum particle size peak is p1 (%) in the range where the volume average particle size is 150 μm or less. ) And the peak frequency of the maximum particle diameter peak is p2 (%), 0.1 ≦ p1 / p2 ≦ 0.9 is satisfied.
 本発明に係る樹脂成形体のさらに他の特定の局面では、繊維系フィラーをさらに含む。 In yet another specific aspect of the resin molded body according to the present invention, a fiber filler is further included.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記繊維系フィラーの含有量が、前記熱可塑性樹脂100質量部に対し、1質量部以上、200質量部以下である。 In still another specific aspect of the resin molded body according to the present invention, the content of the fiber filler is 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記熱可塑性樹脂が、オレフィン系樹脂を含有している。 In yet another specific aspect of the resin molded body according to the present invention, the thermoplastic resin contains an olefin resin.
 本発明に係る樹脂成形体のさらに他の特定の局面では、前記オレフィン系樹脂がエチレン成分を含有し、該エチレン成分の含有量が5~40質量%である。 In still another specific aspect of the resin molded body according to the present invention, the olefin-based resin contains an ethylene component, and the content of the ethylene component is 5 to 40% by mass.
 本発明に係る樹脂成形体のさらに他の特定の局面では、周波数1Hz及び歪み0.3%における動的粘弾性測定により測定される前記樹脂成形体の損失正接の最大値を示す温度が20℃以下である。 In still another specific aspect of the resin molded body according to the present invention, the temperature indicating the maximum value of the loss tangent of the resin molded body measured by dynamic viscoelasticity measurement at a frequency of 1 Hz and a strain of 0.3% is 20 ° C. It is as follows.
 本発明に係る樹脂成形体のさらに他の特定の局面では、放熱シャーシ、放熱筐体、又はヒートシンク形状である。 In still another specific aspect of the resin molded body according to the present invention, the shape is a heat dissipation chassis, a heat dissipation housing, or a heat sink.
 本発明によれば、放熱性及び耐衝撃性の双方に優れる樹脂成形体を提供することができる。 According to the present invention, it is possible to provide a resin molded article that is excellent in both heat dissipation and impact resistance.
図1(a)は、実施例で得られた樹脂成形体の模式的平面図であり、図1(b)は、そのA-A線に沿う模式的断面図である。FIG. 1A is a schematic plan view of a resin molded body obtained in the example, and FIG. 1B is a schematic cross-sectional view along the line AA. 図2は、実施例で得られた筐体の概略構成図である。FIG. 2 is a schematic configuration diagram of a housing obtained in the example. 図3は、一例としての黒鉛粒子の体積粒子径分布を示す図である。FIG. 3 is a diagram showing a volume particle size distribution of graphite particles as an example. 図4は、放熱シャーシの模式図である。FIG. 4 is a schematic diagram of the heat dissipation chassis. 図5は、放熱筐体の模式図である。FIG. 5 is a schematic diagram of a heat dissipation housing. 図6は、ヒートシンク形状の模式図である。FIG. 6 is a schematic diagram of a heat sink shape. 図7は、実施例14における黒鉛粒子の体積粒子径分布を示す図である。7 is a graph showing the volume particle size distribution of graphite particles in Example 14. FIG.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 本発明の樹脂成形体は、熱伝導性を有し、かつ主面を有する熱伝導性樹脂成形体である。本発明の樹脂成形体は、熱可塑性樹脂と、黒鉛粒子とを含む。上記黒鉛粒子の体積平均粒子径(以下、平均粒子径と称する場合があるものとする)は、0.1μm以上、40μm未満である。上記黒鉛粒子の含有量は、上記熱可塑性樹脂100重量部に対し、10重量部以上、200重量部以下である。 The resin molded body of the present invention is a thermally conductive resin molded body having thermal conductivity and a main surface. The resin molded product of the present invention includes a thermoplastic resin and graphite particles. The graphite particles have a volume average particle size (hereinafter sometimes referred to as an average particle size) of 0.1 μm or more and less than 40 μm. Content of the said graphite particle is 10 to 200 weight part with respect to 100 weight part of said thermoplastic resins.
 本発明の樹脂成形体は、上記のように、平均粒子径が特定の範囲にある黒鉛粒子を特定の割合で含むので、放熱性及び耐衝撃性の双方に優れている。この理由は以下のように説明することができる。 Since the resin molded body of the present invention contains graphite particles having an average particle diameter in a specific range at a specific ratio as described above, it is excellent in both heat dissipation and impact resistance. The reason for this can be explained as follows.
 本発明のような樹脂成形体に衝撃を与えたとき、黒鉛粒子及び樹脂の間で界面剥離し、樹脂成形体が破壊される。ここで、微小な界面剥離が生じたときにも、1つの黒鉛粒子分までは剥離が促進されると考えられるが、1つの黒鉛粒子の面積が小さければ剥離面積を小さくすることができる。また、含有量に関しては、黒鉛粒子の含有量が少なければ、破壊の起点となる黒鉛粒子及び樹脂の界面の面積を小さくすることができる。本発明においては、平均粒子径が上記上限未満の黒鉛粒子を、上記上限以下の含有量で含有しているので、耐衝撃性が高められている。 When an impact is applied to the resin molded body as in the present invention, the interfacial separation occurs between the graphite particles and the resin, and the resin molded body is destroyed. Here, even when minute interfacial peeling occurs, it is considered that peeling is accelerated up to one graphite particle, but if the area of one graphite particle is small, the peeling area can be reduced. In addition, regarding the content, if the content of the graphite particles is small, the area of the interface between the graphite particles and the resin, which becomes the starting point of fracture, can be reduced. In the present invention, since the graphite particles having an average particle diameter of less than the above upper limit are contained in a content not more than the above upper limit, impact resistance is enhanced.
 また、本発明の樹脂成形体は、平均粒子径が上記下限以上の黒鉛粒子を上記下限以上の含有量で含有しているので、放熱性に優れている。 Moreover, since the resin molded body of the present invention contains graphite particles having an average particle diameter of not less than the above lower limit in a content not less than the above lower limit, it has excellent heat dissipation.
 特に、本発明の樹脂成形体は、x方向の熱伝導率λx、y方向の熱伝導率λy及びz方向の熱伝導率λzが、min(λx,λy)/λz≧3を満たしている。 Particularly, in the resin molded body of the present invention, the thermal conductivity λx in the x direction, the thermal conductivity λy in the y direction, and the thermal conductivity λz in the z direction satisfy min (λx, λy) / λz ≧ 3.
 x方向は、上記主面に沿う任意の方向である。y方向は、上記主面に沿い、かつx方向に直交する方向である。また、z方向は、樹脂成形体の厚み方向である。樹脂成形体の厚み方向は、上記主面に直交する方向である。従って、z方向は、x方向及びy方向に直交する方向である。なお、上記主面は、平面であってもよく、曲面であってもよい。また、本明細書において主面とは、樹脂成形体の外表面における複数の面のうち最も面積の大きい面であり、連なっている面をいうものとする。 The x direction is an arbitrary direction along the main surface. The y direction is a direction along the main surface and perpendicular to the x direction. The z direction is the thickness direction of the resin molded body. The thickness direction of the resin molded body is a direction orthogonal to the main surface. Therefore, the z direction is a direction orthogonal to the x direction and the y direction. The main surface may be a flat surface or a curved surface. In addition, in this specification, the main surface is a surface having the largest area among a plurality of surfaces on the outer surface of the resin molded body, and means a continuous surface.
 上記x方向、y方向及びz方向の各方向における熱伝導率は、それぞれ、下記式(1)を用いて計算することができる。 The thermal conductivity in each of the x, y, and z directions can be calculated using the following equation (1).
 熱伝導率(W/(m・K))=熱拡散率×比重×比熱  …(1) Thermal conductivity (W / (m · K)) = thermal diffusivity x specific gravity x specific heat (1)
 式(1)において、上記x方向、y方向及びz方向の各方向における熱拡散率は、例えば、べテル社製、品番名:TA33を用いて測定することができる。 In Formula (1), the thermal diffusivity in each of the x direction, the y direction, and the z direction can be measured using, for example, a product name: TA33 manufactured by Bethel.
 上記min(λx,λy)とは、λx及びλyのうち、熱伝導率が低い方の値を意味するものとする。従って、min(λx,λy)/λz≧3は、λx及びλyのうち、低い方の熱伝導率のλzに対する比が、3以上であることを意味している。 The above min (λx, λy) means a value having a lower thermal conductivity among λx and λy. Accordingly, min (λx, λy) / λz ≧ 3 means that the ratio of the lower thermal conductivity of λx and λy to λz is 3 or more.
 本発明の樹脂成形体は、min(λx,λy)/λz≧3であるので、面方向の熱伝導率が、厚み方向の熱伝導率より高くなっている。従って、本発明の樹脂成形体は、面方向における放熱性に優れている。 Since the resin molded body of the present invention satisfies min (λx, λy) / λz ≧ 3, the thermal conductivity in the plane direction is higher than the thermal conductivity in the thickness direction. Therefore, the resin molding of the present invention is excellent in heat dissipation in the surface direction.
 本発明の樹脂成形体は、放熱性及び耐衝撃性の双方に優れているので、屋内外における通信機器や、防犯カメラ又はスマートメータなどの電子機器の筐体に好適に用いることができる。特に、面方向における放熱性に優れているので、通信機器や電子機器の内部に太陽光などの熱が浸透するのを防止することができる。具体的には、例えば直射日光が当たる部分の熱が影となっている面へ放熱することができる。また、筐体内部における発熱部品の熱を面方向に放熱させることで、通信機器や電子機器の温度が部分的に上昇することを抑制することもできる。さらに、筐体の一部が放熱フィンの形状を有せば、放熱効果を発揮することも可能である。例えば、CPUなどが高温になると、その動作能力が低減してしまうので、CPU付近の熱を広範囲に放熱させることができる。 Since the resin molded body of the present invention is excellent in both heat dissipation and impact resistance, it can be suitably used for a communication device indoors and outdoors, a housing of an electronic device such as a security camera or a smart meter. In particular, since heat dissipation in the surface direction is excellent, it is possible to prevent heat such as sunlight from penetrating into communication devices and electronic devices. Specifically, for example, it is possible to dissipate heat to a surface where the heat of a portion exposed to direct sunlight is shaded. Moreover, it can also suppress that the temperature of a communication apparatus or an electronic device rises partially by dissipating the heat | fever of the heat-emitting component in a housing | casing to a surface direction. Furthermore, if a part of the housing has the shape of a heat radiating fin, it is possible to exert a heat radiating effect. For example, when the CPU or the like becomes high temperature, its operating capability is reduced, so that the heat near the CPU can be dissipated over a wide range.
 本発明においては、面方向における熱伝導性をより一層高める観点から、好ましくはmin(λx,λy)/λz≧5であり、より好ましくはmin(λx,λy)/λz≧8であり、さらに好ましくはmin(λx,λy)/λz≧11であり、さらに好ましくはmin(λx,λy)/λz≧13、特に好ましくはmin(λx,λy)/λz≧15、最も好ましくはmin(λx,λy)/λz≧17である。なお、min(λx,λy)の上限値は、高ければ高いほど好ましいが、材料の性質上20程度とすることが望ましい。黒鉛粒子のアスペクト比が寄与するが、黒鉛粒子の厚みが薄くなると黒鉛粒子自身が熱可塑性樹脂の中で丸まってしまい十分な熱伝導特性が得られないことがある。 In the present invention, from the viewpoint of further increasing the thermal conductivity in the plane direction, preferably min (λx, λy) / λz ≧ 5, more preferably min (λx, λy) / λz ≧ 8, Preferably, min (λx, λy) / λz ≧ 11, more preferably min (λx, λy) / λz ≧ 13, particularly preferably min (λx, λy) / λz ≧ 15, most preferably min (λx, λy) / λz ≧ 17. The upper limit of min (λx, λy) is preferably as high as possible, but is preferably about 20 due to the properties of the material. Although the aspect ratio of the graphite particles contributes, if the thickness of the graphite particles is reduced, the graphite particles themselves may be rounded in the thermoplastic resin, and sufficient heat conduction characteristics may not be obtained.
 min(λx,λy)/λzは、例えば、黒鉛粒子の体積平均粒子径を大きくしたり、黒鉛粒子の添加量を多くしたり、黒鉛粒子の形状を板状のような形状にしたり、その板状の黒鉛粒子のX,Y方向への配向性を高めたり、粒子間の接点が増えるよう、黒鉛粒子を薄片化処理して表面積を増やしたり、体積平均粒子径が異なる複数種の黒鉛粒子を用いたりする適宜の方法により大きくすることができる。 For example, min (λx, λy) / λz can be obtained by increasing the volume average particle diameter of graphite particles, increasing the amount of graphite particles added, making the shape of graphite particles like a plate, To increase the orientation of the graphite particles in the X and Y directions, to increase the surface area by exfoliating the graphite particles so as to increase the number of contacts between the particles, or to select multiple types of graphite particles with different volume average particle diameters It can be enlarged by an appropriate method used.
 本発明においては、λx及びλyにおいて、λx/λyが、0.5以上、2以下であることが好ましい。この場合、面方向において、より一層均一に放熱させることができる。特に、直射日光が当たる部分(高温部)と影の部分(低温部)が必ずしも常に同じ面になるとは限らないため、どの水平方向にも放熱する形態が好ましい。よって、より好ましくはλx/λyが0.7以上、さらに好ましくはλx/λyが0.9以上、より好ましくはλx/λyが1.6以下、さらに好ましくはλx/λyが1.2以下である。 In the present invention, λx / λy is preferably 0.5 or more and 2 or less in λx and λy. In this case, it is possible to dissipate heat more uniformly in the surface direction. In particular, since a portion exposed to direct sunlight (high temperature portion) and a shadow portion (low temperature portion) are not always on the same plane, a configuration in which heat is radiated in any horizontal direction is preferable. Therefore, λx / λy is more preferably 0.7 or more, further preferably λx / λy is 0.9 or more, more preferably λx / λy is 1.6 or less, and further preferably λx / λy is 1.2 or less. is there.
 上記λx及び上記λyは、max(λx,λy)≧1W/(m・K)を満たしていることが好ましい。上記max(λx,λy)は、λx及びλyのうち、熱伝導率が高い方の値を意味するものとする。従って、max(λx,λy)≧1W/(m・K)は、λx及びλyのうち、熱伝導率が高い方の熱伝導率が1W/(m・K)以上であることを意味している。max(λx,λy)が上記範囲にある場合、放熱性をより一層高めることができる。放熱性をさらに一層高める観点から、より好ましくは上記λx及び上記λyが、max(λx,λy)≧3W/(m・K)であり、さらに好ましくはmax(λx,λy)≧10W/(m・K)である。なお、max(λx,λy)の上限値は、高ければ高いほど好ましいが、材料の性質上、20程度とすることが望ましい。本発明においては、λx及びλyの双方が、好ましくは1W/(m・K)以上、より好ましくは3W/(m・K)以上、さらに好ましくは10W/(m・K)以上である。 Λx and λy preferably satisfy max (λx, λy) ≧ 1 W / (m · K). The max (λx, λy) means a value having a higher thermal conductivity among λx and λy. Therefore, max (λx, λy) ≧ 1W / (m · K) means that the thermal conductivity having the higher thermal conductivity of λx and λy is 1 W / (m · K) or more. Yes. When max (λx, λy) is in the above range, the heat dissipation can be further enhanced. From the viewpoint of further improving the heat dissipation, λx and λy are more preferably max (λx, λy) ≧ 3 W / (m · K), and more preferably max (λx, λy) ≧ 10 W / (m・ K). The upper limit of max (λx, λy) is preferably as high as possible, but is preferably about 20 due to the properties of the material. In the present invention, both λx and λy are preferably 1 W / (m · K) or more, more preferably 3 W / (m · K) or more, and even more preferably 10 W / (m · K) or more.
 本発明において、λzは、λz<2(W/m・k)を満たしていることが好ましく、より好ましくはλz<1(W/m・k)である。この場合、樹脂成形体の放熱性をより一層高めることができる。 In the present invention, λz preferably satisfies λz <2 (W / m · k), more preferably λz <1 (W / m · k). In this case, the heat dissipation of the resin molded body can be further enhanced.
 なお、本発明において、耐衝撃性は、JIS K 7111に準拠し、かつノッチ付き試験片にて、23℃環境下でシャルピー耐衝撃性試験を行うことにより評価することができる。 In the present invention, the impact resistance can be evaluated by conducting a Charpy impact resistance test in a 23 ° C. environment using a notched test piece in accordance with JIS K 7111.
 また、本発明の樹脂成形体は、熱可塑性樹脂と第1の鱗片状黒鉛粒子とを含む樹脂組成物の成形体であることが好ましい。本発明の樹脂成形体は、上記樹脂組成物を、例えば、プレス加工、押出加工、押出ラミ加工、または射出成形などの方法によって成形することで得ることができる。上記成形方法のなかでも、黒鉛粒子をより一様に配向させることができることから射出成形がより好ましい。なお、本発明の樹脂成形体は、熱可塑性樹脂と、第1の鱗片状黒鉛粒子以外の黒鉛粒子とを含む樹脂組成物の成形体であってもよい。例えば、熱可塑性樹脂と、板状の黒鉛粒子とを含む樹脂組成物の成形体であってもよい。 The resin molded body of the present invention is preferably a molded body of a resin composition containing a thermoplastic resin and first scaly graphite particles. The resin molded body of the present invention can be obtained by molding the resin composition by a method such as pressing, extrusion, extrusion laminating, or injection molding. Among the above molding methods, injection molding is more preferable because graphite particles can be more uniformly oriented. The resin molded body of the present invention may be a resin composition molded body including a thermoplastic resin and graphite particles other than the first scaly graphite particles. For example, a molded body of a resin composition including a thermoplastic resin and plate-like graphite particles may be used.
 本発明の樹脂成形体に含まれる黒鉛粒子は、板状であることが好ましい。黒鉛粒子が板状である場合、面方向における放熱性をより一層高めることができる。なお、本発明の樹脂成形体に含まれる黒鉛粒子の形状は、例えば、走査型電子顕微鏡(SEM)を用いて測定することができる。より一層観察し易くする観点から、樹脂成形体から切り出した試験片を例えば600℃で加熱することで樹脂を飛ばして走査型電子顕微鏡(SEM)で観察することが望ましい。 The graphite particles contained in the resin molded body of the present invention are preferably plate-shaped. When the graphite particles are plate-like, the heat dissipation in the surface direction can be further enhanced. In addition, the shape of the graphite particle contained in the resin molding of this invention can be measured using a scanning electron microscope (SEM), for example. From the viewpoint of facilitating observation, it is desirable that the test piece cut out from the resin molded body is heated at, for example, 600 ° C. to skip the resin and observe with a scanning electron microscope (SEM).
 黒鉛粒子の平均厚み径は、特に限定されないが、0.1μm以上、10μm未満であることが好ましい。黒鉛粒子の平均厚み径が、上記下限以上である場合、放熱性をより一層高めることができる。一方、黒鉛粒子の平均厚み径が、上記上限未満である場合、耐衝撃性をより一層高めることができる。 The average thickness diameter of the graphite particles is not particularly limited, but is preferably 0.1 μm or more and less than 10 μm. When the average thickness diameter of the graphite particles is not less than the above lower limit, the heat dissipation can be further enhanced. On the other hand, when the average thickness diameter of the graphite particles is less than the above upper limit, the impact resistance can be further enhanced.
 黒鉛粒子の平均厚み径は、例えば、走査型電子顕微鏡(SEM)を用いて測定することができる。より一層観察し易くする観点から、樹脂成形体から切り出した試験片を例えば600℃で加熱することで樹脂を飛ばして走査型電子顕微鏡(SEM)で観察することが望ましい。なお、試験片は、樹脂を飛ばして黒鉛粒子の厚みを測定できる限り、樹脂成形体の主面に沿う方向に沿って切り出してもよく、樹脂成形体の主面に直交する方向に沿って切り出してもよい。 The average thickness diameter of the graphite particles can be measured using, for example, a scanning electron microscope (SEM). From the viewpoint of facilitating observation, it is desirable that the test piece cut out from the resin molded body is heated at, for example, 600 ° C. to skip the resin and observe with a scanning electron microscope (SEM). As long as the thickness of the graphite particles can be measured by flying the resin, the test piece may be cut out along the direction along the main surface of the resin molded body, or cut out along the direction perpendicular to the main surface of the resin molded body. May be.
 また、本発明において、体積平均粒子径とは、JIS Z 8825:2013に準拠し、レーザー回折/散乱式粒度分布測定装置を用いて、レーザー回折法により、体積基準分布で算出した値をいう。 Further, in the present invention, the volume average particle diameter refers to a value calculated with a volume reference distribution by a laser diffraction method using a laser diffraction / scattering type particle size distribution measuring device in accordance with JIS Z 8825: 2013.
 本発明においては、樹脂成形体に含まれる黒鉛粒子の体積平均粒子径分布を測定したときに、体積平均粒子径が150μm以下の範囲において、2つ以上の異なる粒子径ピークを有することが好ましい。2つ以上の異なる粒子径ピークを有する場合、放熱性及び耐衝撃性の双方をより一層高めることができる。なお、図3においては、一例としての黒鉛粒子の体積粒子径分布を示しているが、この場合、図3に矢印A,Bで示す2つの異なる粒子径ピークを有していることがわかる。 In the present invention, when the volume average particle size distribution of the graphite particles contained in the resin molded product is measured, it is preferable that the volume average particle size has two or more different particle size peaks in the range of 150 μm or less. When it has two or more different particle diameter peaks, both heat dissipation and impact resistance can be further enhanced. FIG. 3 shows the volume particle size distribution of graphite particles as an example. In this case, it can be seen that the sample has two different particle size peaks indicated by arrows A and B in FIG.
 本発明においては、上記のように2つ以上の異なる粒子径ピークを有する場合、最小粒子径ピークを構成している黒鉛粒子の体積平均粒子径をd1とし、最大粒子径ピークを構成している黒鉛粒子の体積平均粒子径をd2としたときに、0.1≦d1/d2≦0.6を満たしていることが好ましい。d1/d2が上記範囲内にある場合、放熱性及び耐衝撃性をより一層高めることができる。また、放熱性及び耐熱性をより一層高める観点から、d1/d2は、0.1≦d1/d2≦0.5の範囲内にあることが好ましく、0.2≦d1/d2≦0.5の範囲内にあることがより好ましい。なお、例えば、図3においては、矢印Aで示すピークが最小粒子径ピークであり、矢印Bで示すピークが最大粒子径ピークである。 In the present invention, when there are two or more different particle size peaks as described above, the volume average particle size of the graphite particles constituting the minimum particle size peak is d1, and the maximum particle size peak is constituted. When the volume average particle diameter of the graphite particles is d2, it is preferable that 0.1 ≦ d1 / d2 ≦ 0.6 is satisfied. When d1 / d2 is in the above range, heat dissipation and impact resistance can be further enhanced. Further, from the viewpoint of further improving heat dissipation and heat resistance, d1 / d2 is preferably in the range of 0.1 ≦ d1 / d2 ≦ 0.5, and 0.2 ≦ d1 / d2 ≦ 0.5. It is more preferable that it is in the range. For example, in FIG. 3, the peak indicated by arrow A is the minimum particle diameter peak, and the peak indicated by arrow B is the maximum particle diameter peak.
 また、本発明においては、上記のように2つ以上の異なる粒子径ピークを有する場合、最小粒子径ピークのピーク頻度をp1(%)とし、最大粒子径ピークのピーク頻度をp2(%)としたときに、0.1≦p1/p2≦0.9を満たしていることが好ましい。p1/p2が上記範囲内にある場合、放熱性及び耐衝撃性をより一層高めることができる。また、放熱性及び耐熱性をより一層高める観点から、p1/p2は、0.3≦p1/p2≦0.8の範囲内にあることが好ましく、0.4≦p1/p2≦0.7の範囲内にあることがより好ましい。 In the present invention, when two or more different particle size peaks are present as described above, the peak frequency of the minimum particle size peak is p1 (%), and the peak frequency of the maximum particle size peak is p2 (%). It is preferable that 0.1 ≦ p1 / p2 ≦ 0.9 is satisfied. When p1 / p2 is in the above range, heat dissipation and impact resistance can be further enhanced. Moreover, from the viewpoint of further improving heat dissipation and heat resistance, p1 / p2 is preferably in the range of 0.3 ≦ p1 / p2 ≦ 0.8, and 0.4 ≦ p1 / p2 ≦ 0.7. It is more preferable that it is in the range.
 本発明の樹脂成形体は、周波数1Hz及び歪み0.3%における動的粘弾性測定により測定される損失正接の最大値を示す温度が20℃以下であることが好ましい。樹脂成形体の損失正接の最大値を示す温度が20℃以下である場合、樹脂成形体の落球衝撃強度をより一層高めることができる。損失正接の最大値は、後述する第1の樹脂の損失正接の最大値と同様の方法で求めることができる。 The resin molded body of the present invention preferably has a temperature at which the maximum value of loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz and a strain of 0.3% is 20 ° C. or lower. When the temperature which shows the maximum value of the loss tangent of a resin molding is 20 degrees C or less, the falling ball impact strength of a resin molding can be improved further. The maximum value of the loss tangent can be obtained by the same method as the maximum value of the loss tangent of the first resin described later.
 本発明の樹脂成形体は、放熱シャーシ、放熱筐体、又はヒートシンク形状であってもよい。 The resin molded body of the present invention may be in the shape of a heat dissipation chassis, a heat dissipation housing, or a heat sink.
 図4は、放熱シャーシの模式図である。樹脂成形体が放熱シャーシである場合、図4の矢印Cで示す部分が主面である。 FIG. 4 is a schematic diagram of the heat dissipation chassis. When the resin molded body is a heat dissipation chassis, the portion indicated by the arrow C in FIG. 4 is the main surface.
 図5は、放熱筐体の模式図である。樹脂成形体が放熱筐体である場合、図5の矢印Dで示す部分が主面である。なお、図4及び図5に示すように、主面は凹凸を有していてもよい。 FIG. 5 is a schematic diagram of a heat dissipation housing. When the resin molded body is a heat radiating housing, a portion indicated by an arrow D in FIG. 5 is a main surface. In addition, as shown in FIG.4 and FIG.5, the main surface may have an unevenness | corrugation.
 図6は、ヒートシンク形状の模式図である。樹脂成形体がヒートシンク形状である場合、図6の矢印Eで示す部分が主面である。また、この場合、さらに矢印Eで示す主面と小さな面を介して連結されているほぼ同じ大きさの複数の面も主面となる。このように、複数の主面が存在していてもよい。 FIG. 6 is a schematic diagram of a heat sink shape. When the resin molded body has a heat sink shape, a portion indicated by an arrow E in FIG. 6 is a main surface. Further, in this case, a plurality of surfaces having substantially the same size connected via a small surface and the main surface indicated by the arrow E are also main surfaces. Thus, a plurality of main surfaces may exist.
 以下、上記樹脂組成物及び樹脂成形体を構成する材料の詳細について説明する。 Hereinafter, the details of the material constituting the resin composition and the resin molded body will be described.
 (熱可塑性樹脂)
 上記熱可塑性樹脂としては、特に限定されず、公知の熱可塑性樹脂を用いることができる。熱可塑性樹脂の具体例としては、ポリオレフィン、ポリスチレン、ポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、ポリジメチルシロキサン、ポリカーボネート、又はこれらのうち少なくとも2種の共重合体などが挙げられる。熱可塑性樹脂は、単独で用いてもよく、複数を併用してもよい。
(Thermoplastic resin)
It does not specifically limit as said thermoplastic resin, A well-known thermoplastic resin can be used. Specific examples of the thermoplastic resin include polyolefin, polystyrene, polyacrylate, polymethacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, polycarbonate, or at least two of these. Examples of the copolymer include seeds. A thermoplastic resin may be used independently and multiple may be used together.
 上記熱可塑性樹脂としては、弾性率の高い樹脂であることが好ましい。安価であり、加熱下の成形が容易であることから、ポリオレフィンがより好ましい。 The thermoplastic resin is preferably a resin having a high elastic modulus. Polyolefin is more preferable because it is inexpensive and easy to mold under heating.
 上記ポリオレフィンとしては、特に限定されず、公知のポリオレフィンを用いることができる。ポリオレフィンの具体例としては、エチレン単独重合体であるポリエチレン、エチレン-α-オレフィン共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのポリエチレン系樹脂、プロピレン単独重合体であるポリプロピレン、プロピレン-α-オレフィン共重合体などのポリプロピレン系樹脂、ブテン単独重合体であるポリブテン、ブタジエン、イソプレンなどの共役ジエンの単独重合体又は共重合体からなる群から選択された少なくとも1種を用いることができる。耐熱性や弾性率をより一層高める観点から、上記ポリオレフィンとしては、ポリプロピレンであることが好ましい。 The polyolefin is not particularly limited, and a known polyolefin can be used. Specific examples of polyolefins include ethylene, which is an ethylene homopolymer, ethylene-α-olefin copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-acetic acid Polyethylene resins such as vinyl copolymers, polypropylene resins such as propylene homopolymers, polypropylene resins such as propylene-α-olefin copolymers, polybutenes such as butene homopolymers, single weights of conjugated dienes such as butadiene and isoprene At least one selected from the group consisting of a polymer or a copolymer can be used. From the viewpoint of further increasing the heat resistance and elastic modulus, the polyolefin is preferably polypropylene.
 また、ポリオレフィン(オレフィン系樹脂)は、エチレン成分を含有していることが好ましい。エチレン成分の含有量は、5~40質量%であることが好ましい。エチレン成分の含有量が、上記範囲内にある場合、樹脂成形体の耐衝撃性をより一層高めつつ、耐熱性をより一層高めることができる。 Moreover, it is preferable that the polyolefin (olefin resin) contains an ethylene component. The content of the ethylene component is preferably 5 to 40% by mass. When content of an ethylene component exists in the said range, heat resistance can be improved further, improving the impact resistance of a resin molding further.
 また、上記熱可塑性樹脂は、オレフィン系樹脂からなる第1の樹脂と、周波数1Hz、及び歪み0.3%における動的粘弾性測定により測定される損失正接の最大値を示す温度が-10℃以下である第2の樹脂とを含んでいることが好ましい。この場合、樹脂成形体の耐衝撃性をより一層高めることができる。 The thermoplastic resin has a temperature at which the maximum value of loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz and a strain of 0.3% is −10 ° C. It is preferable that the following 2nd resin is included. In this case, the impact resistance of the resin molding can be further improved.
 上記損失正接は、JIS K 7244-4に準拠して測定することにより求めることができる。具体的には、幅5mm×長さ24mm×厚み0.3mmの試験シートを作製する。作製した試験シートを歪み量0.3%、周波数1Hz及び昇温速度3℃/分の条件下で、動的粘弾性の温度分散測定を行うことにより求められる。動的粘弾性の温度分散測定は、例えば、動的粘弾性測定装置(レオメトリックス社製、商品名「RSA」)を用いて行うことができる。 The loss tangent can be obtained by measuring in accordance with JIS K 7244-4. Specifically, a test sheet having a width of 5 mm, a length of 24 mm, and a thickness of 0.3 mm is produced. The test sheet thus prepared is obtained by performing temperature dispersion measurement of dynamic viscoelasticity under conditions of a strain amount of 0.3%, a frequency of 1 Hz, and a heating rate of 3 ° C./min. The temperature dispersion measurement of dynamic viscoelasticity can be performed using, for example, a dynamic viscoelasticity measuring apparatus (manufactured by Rheometrics, trade name “RSA”).
 第1の樹脂としては、上述したポリオレフィンを用いることができる。また、第2の樹脂としては、特に限定されないが、芳香族ビニルモノマーの重合体である芳香族ビニルブロックを有する共重合体であることが好ましい。上記芳香族ビニルブロックと、共役ジエンモノマーの重合体であるジエンブロックとを有するブロック共重合体であることがより好ましい。 The polyolefin described above can be used as the first resin. The second resin is not particularly limited, but is preferably a copolymer having an aromatic vinyl block which is a polymer of an aromatic vinyl monomer. A block copolymer having the aromatic vinyl block and a diene block which is a polymer of a conjugated diene monomer is more preferable.
 上記芳香族ビニルモノマーとしては、特に限定されないが、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、tert-ブトキシスチレンなどが挙げられる。 The aromatic vinyl monomer is not particularly limited. For example, styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene. 4-tert-butylstyrene, tert-butoxystyrene and the like.
 また、上記共役ジエンモノマーとしては、特に限定されず、例えば、ブタジエン、イソプレン、ピペリレン、ジメチルブタジエンなどの炭素数が4~12の共役ジエンが挙げられる。 The conjugated diene monomer is not particularly limited, and examples thereof include conjugated diene having 4 to 12 carbon atoms such as butadiene, isoprene, piperylene, dimethylbutadiene and the like.
 このような芳香族ビニルブロックを有する共重合体として、スチレン系エラストマーが挙げられる。 Examples of such a copolymer having an aromatic vinyl block include styrene elastomers.
 上記スチレン系エラストマーの具体例としては、スチレン-ブタジエン共重合体(SB)、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-イソプレン共重合体(SI)、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン-ブチレン共重合体(SEB)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、スチレン-エチレン-プロピレン共重合体(SEP)、及びスチレン-エチレン-プロピレン-スチレン共重合体(SEPS)などの共重合体が挙げられる。これらの共重合体はブロック共重合体であってもよい。また、リニア型であっても、ラジアル型であってもよい。これらの共重合体は、単独で用いてもよいし、2種以上を併用してもよい。樹脂成形体の耐衝撃性をより一層高める観点から、上記スチレン系エラストマーは、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)であることが好ましい。なお、本発明においては、上記損失正接が上記範囲を満たす限り、第2の樹脂として、ポリオレフィンなどの他のポリマーを用いてもよい。 Specific examples of the styrene elastomer include styrene-butadiene copolymer (SB), styrene-butadiene-styrene copolymer (SBS), styrene-isoprene copolymer (SI), and styrene-isoprene-styrene copolymer. (SIS), styrene-ethylene-butylene copolymer (SEB), styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-ethylene-propylene copolymer (SEP), and styrene-ethylene-propylene-styrene A copolymer such as a copolymer (SEPS) may be mentioned. These copolymers may be block copolymers. Further, it may be a linear type or a radial type. These copolymers may be used alone or in combination of two or more. From the viewpoint of further improving the impact resistance of the resin molded product, the styrene elastomer is preferably a styrene-ethylene-butylene-styrene block copolymer (SEBS). In the present invention, as long as the loss tangent satisfies the above range, another polymer such as polyolefin may be used as the second resin.
 上記第1の樹脂の含有量は、上記熱可塑性樹脂100重量部に対し、好ましくは60重量部以上、より好ましくは80重量部以上、好ましくは95重量部以下、より好ましくは90重量部以下である。第1の樹脂の含有量が上記範囲内にある場合、樹脂成形体の弾性率や耐熱性をより一層高めることができる。 The content of the first resin is preferably 60 parts by weight or more, more preferably 80 parts by weight or more, preferably 95 parts by weight or less, more preferably 90 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. is there. When content of 1st resin exists in the said range, the elasticity modulus and heat resistance of a resin molding can be improved further.
 上記第2の樹脂の含有量は、上記熱可塑性樹脂100重量部に対し、好ましくは5重量部以上、より好ましくは10重量部以上、好ましくは50重量部以下、より好ましくは40重量部以下、さらに好ましくは20重量部以下である。第2の樹脂の含有量が上記範囲内にある場合、樹脂成形体の耐衝撃性をより一層高めることができる。 The content of the second resin is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin. More preferably, it is 20 parts by weight or less. When content of 2nd resin exists in the said range, the impact resistance of a resin molding can be improved further.
 (第1~第3の鱗片状黒鉛粒子)
 上記樹脂組成物を構成する黒鉛粒子は、例えば、第1~第3の鱗片状黒鉛粒子のうち少なくとも1つの鱗片状黒鉛であってもよい。また、さらに他の黒鉛粒子が含まれていてもよい。
(First to third scaly graphite particles)
The graphite particles constituting the resin composition may be, for example, at least one flaky graphite among the first to third flaky graphite particles. Furthermore, other graphite particles may be included.
 第1~第3の鱗片状黒鉛粒子をそれぞれ構成している鱗片状黒鉛としては、特に限定されないが、黒鉛、薄片化黒鉛又はグラフェンなどを用いることができる。熱拡散性をより一層高める観点から、好ましくは、黒鉛又は薄片化黒鉛であり、より好ましくは薄片化黒鉛である。また、耐衝撃性を一層高める観点からは、好ましくは黒鉛又は薄片化黒鉛であり、より好ましくは黒鉛である。これらは、単独で用いてもよく、複数を併用してもよい。上記薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよい。 The scaly graphite constituting each of the first to third scaly graphite particles is not particularly limited, and graphite, exfoliated graphite, graphene, or the like can be used. From the viewpoint of further increasing the thermal diffusibility, graphite or exfoliated graphite is preferable, and exfoliated graphite is more preferable. From the viewpoint of further improving impact resistance, graphite or exfoliated graphite is preferable, and graphite is more preferable. These may be used alone or in combination. The exfoliated graphite is obtained by exfoliating the original graphite and refers to a graphene sheet laminate that is thinner than the original graphite. The number of graphene sheets laminated in exfoliated graphite should be less than the original graphite.
 第1の鱗片状黒鉛粒子の平均粒子径は、好ましくは1μm以上、より好ましくは5μm以上、好ましくは20μm以下、より好ましくは15μm以下である。 The average particle diameter of the first scaly graphite particles is preferably 1 μm or more, more preferably 5 μm or more, preferably 20 μm or less, more preferably 15 μm or less.
 第1の鱗片状黒鉛粒子の平均粒子径が小さすぎると、溶融成形の際に凝集しやすいことから、非常に脆い二次粒子が形成されることがあり、耐衝撃性が低下することがある。また、平均粒子径が大きすぎると、1つの粒子の面積が大きく、衝撃を与えたときに剥離面積がより一層大きくなることから、樹脂成形体の破壊が生じることがある。 If the average particle size of the first scaly graphite particles is too small, they are likely to aggregate during melt molding, so that very brittle secondary particles may be formed, and impact resistance may be reduced. . On the other hand, if the average particle diameter is too large, the area of one particle is large, and the peeled area is further increased when an impact is applied, so that the molded resin may be destroyed.
 なお、本明細書において、平均粒子径とは、レーザー回折/散乱式粒度分布測定装置を用いて、レーザー回折法により、体積基準分布で算出した値をいう。 In addition, in this specification, an average particle diameter means the value calculated by volume reference distribution by the laser diffraction method using the laser diffraction / scattering type particle size distribution measuring apparatus.
 第1の鱗片状黒鉛粒子の含有量は、熱可塑性樹脂100重量部に対し、好ましくは30重量部以上、より好ましくは50重量部以上、好ましくは120重量部以下、より好ましくは100重量部以下である。上記第1の鱗片状黒鉛粒子の含有量が上記下限以上である場合、樹脂成形体の面方向における放熱性をより一層高めることができる。また、第1の鱗片状黒鉛粒子の含有量が多すぎると破壊の起点となる界面の面積が大きくなることから、上記第1の鱗片状黒鉛粒子の含有量が上記上限以下である場合、耐衝撃性をより一層高めることができる。 The content of the first scaly graphite particles is preferably 30 parts by weight or more, more preferably 50 parts by weight or more, preferably 120 parts by weight or less, more preferably 100 parts by weight or less, relative to 100 parts by weight of the thermoplastic resin. It is. When content of the said 1st scaly graphite particle is more than the said minimum, the heat dissipation in the surface direction of a resin molding can be improved further. In addition, if the content of the first scaly graphite particles is too large, the area of the interface that becomes the starting point of the fracture becomes large. Therefore, when the content of the first scaly graphite particles is not more than the above upper limit, Impact properties can be further enhanced.
 第1の鱗片状黒鉛粒子のアスペクト比は、好ましくは3以上、より好ましくは10以上、さらに好ましくは30以上、特に好ましくは50以上、好ましくは300以下、より好ましくは200以下、さらに好ましくは100以下である。第1の鱗片状黒鉛粒子のアスペクト比が、上記下限以上である場合、面方向における放熱性をより一層高めることができる。また、第1の鱗片状黒鉛粒子のアスペクト比が上記上限以下である場合、成形時に第1の鱗片状黒鉛粒子が丸まり難い。なお、本明細書において、アスペクト比とは、第1の鱗片状黒鉛粒子の厚みに対する第1の鱗片状黒鉛粒子の積層面方向における最大寸法の比をいう。 The aspect ratio of the first scaly graphite particles is preferably 3 or more, more preferably 10 or more, still more preferably 30 or more, particularly preferably 50 or more, preferably 300 or less, more preferably 200 or less, still more preferably 100. It is as follows. When the aspect ratio of the first scaly graphite particles is not less than the above lower limit, the heat dissipation in the surface direction can be further enhanced. In addition, when the aspect ratio of the first scaly graphite particles is not more than the above upper limit, the first scaly graphite particles are difficult to curl during molding. In addition, in this specification, an aspect ratio means ratio of the largest dimension in the lamination surface direction of the 1st scaly graphite particle with respect to the thickness of the 1st scaly graphite particle.
 なお、第1の鱗片状黒鉛粒子などの鱗片状黒鉛粒子の厚みは、例えば、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を用いて測定することができる。より一層観察し易くする観点から、樹脂成形体から切り出した試験片を600℃で加熱することで樹脂を飛ばして透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)で観察することが望ましい。なお、試験片は、樹脂を飛ばして鱗片状黒鉛粒子の厚みを測定できる限り、樹脂成形体の主面に沿う方向に沿って切り出してもよく、樹脂成形体の主面に直交する方向に沿って切り出してもよい。 The thickness of the scaly graphite particles such as the first scaly graphite particles can be measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM). From the viewpoint of making it easier to observe, it is desirable to heat a test piece cut out from the resin molded body at 600 ° C. to skip the resin and observe with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). . As long as the thickness of the scaly graphite particles can be measured by flying the resin, the test piece may be cut out along the direction along the main surface of the resin molded body, or along the direction orthogonal to the main surface of the resin molded body. May be cut out.
 本発明の樹脂成形体は、第1の鱗片状黒鉛粒子とは異なる第2の鱗片状黒鉛粒子をさらに含んでいてもよい。第2の鱗片状黒鉛粒子の平均粒子径は、0.1μm以上、40μm未満であることが好ましい。第2の鱗片状黒鉛粒子の平均粒子径を上記範囲内とすることで、放熱性及び耐衝撃性の双方をより一層高めることができる。第1及び第2の鱗片状黒鉛粒子は、面内において、密に充填されていることが好ましい。その場合、面方向における放熱性をより一層高めることができる。 The resin molded body of the present invention may further include second flaky graphite particles different from the first flaky graphite particles. The average particle diameter of the second scaly graphite particles is preferably 0.1 μm or more and less than 40 μm. By setting the average particle diameter of the second scaly graphite particles within the above range, both heat dissipation and impact resistance can be further enhanced. The first and second scaly graphite particles are preferably densely packed in the plane. In that case, the heat dissipation in the surface direction can be further enhanced.
 第1の鱗片状黒鉛粒子の平均粒子径をd1とし、第2の鱗片状黒鉛粒子の平均粒子径をd2としたときに、0.2≦d2/d1≦0.6を満たしていることが好ましい。d2/d1が上記範囲内にある場合、大きな粒子同士の隙間に小さな粒子を入り込ませることができ、鱗片状黒鉛粒子同士の接点が多くなるので、樹脂成形体の面内方向の熱伝導率及び放熱性をより一層高めることができる。より好ましくは0.25≦d2/d1≦0.55であり、より好ましくは0.3≦d2/d1≦0.5である。 When the average particle diameter of the first flaky graphite particles is d1 and the average particle diameter of the second flaky graphite particles is d2, 0.2 ≦ d2 / d1 ≦ 0.6 is satisfied. preferable. When d2 / d1 is within the above range, small particles can enter the gaps between the large particles, and the number of contacts between the scaly graphite particles increases, so that the thermal conductivity in the in-plane direction of the resin molded body and The heat dissipation can be further enhanced. More preferably, 0.25 ≦ d2 / d1 ≦ 0.55, and more preferably 0.3 ≦ d2 / d1 ≦ 0.5.
 第1及び第2の鱗片状黒鉛粒子の含有量の総和は、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、好ましくは150重量部以下である。上記第1及び第2の鱗片状黒鉛粒子の含有量の総和が上記下限以上である場合、樹脂成形体の面方向における放熱性をより一層高めることができる。また、第1及び第2の鱗片状黒鉛粒子の含有量の総和の含有量が多すぎると破壊の起点となる界面の面積が大きくなることから、上記第1及び第2の鱗片状黒鉛粒子の含有量の総和が上記上限以下である場合、耐衝撃性をより一層高めることができる。 The total content of the first and second scaly graphite particles is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. When the sum total of content of the said 1st and 2nd scaly graphite particles is more than the said minimum, the heat dissipation in the surface direction of a resin molding can be improved further. In addition, if the total content of the first and second scaly graphite particles is too large, the area of the interface that becomes the starting point of the fracture increases, and therefore the first and second scaly graphite particles are When the total content is less than or equal to the above upper limit, impact resistance can be further enhanced.
 本発明の樹脂成形体は、平均粒子径が40μm以上、500μm以下の第3の鱗片状黒鉛粒子をさらに含んでいてもよい。第3の鱗片状黒鉛粒子を含んでいる場合、面方向における放熱性をより一層高めることができる。第1及び第3の鱗片状黒鉛粒子は、面内において、密に充填されていることが好ましい。その場合、面方向における放熱性をより一層高めることができる。 The resin molded body of the present invention may further include third scaly graphite particles having an average particle diameter of 40 μm or more and 500 μm or less. When the 3rd scaly graphite particle is included, the heat dissipation in a surface direction can be improved further. The first and third scaly graphite particles are preferably densely packed in the plane. In that case, the heat dissipation in the surface direction can be further enhanced.
 面方向における放熱性をより一層高める観点から、第3の鱗片状黒鉛粒子の平均粒子径は、好ましくは45μm以上、より好ましくは50μm以上、好ましくは150μm以下、より好ましくは100μm以下である。 From the viewpoint of further improving the heat dissipation in the surface direction, the average particle size of the third scaly graphite particles is preferably 45 μm or more, more preferably 50 μm or more, preferably 150 μm or less, more preferably 100 μm or less.
 第1の鱗片状黒鉛粒子の平均粒子径をd1とし、第3の鱗片状黒鉛粒子の平均粒子径をd3としたときに、0.2≦d1/d3≦0.6を満たしていることが好ましい。d1/d3が上記範囲内にある場合、大きな粒子同士の隙間に小さな粒子を入り込ませることができ、鱗片状黒鉛粒子同士の接点が多くなるので、樹脂成形体の面内方向の熱伝導率及び放熱性をより一層高めることができる。より好ましくは0.25≦d1/d3≦0.55であり、さらに好ましくは0.3≦d1/d3≦0.5である。 When the average particle diameter of the first flaky graphite particles is d1 and the average particle diameter of the third flaky graphite particles is d3, 0.2 ≦ d1 / d3 ≦ 0.6 is satisfied. preferable. When d1 / d3 is within the above range, small particles can enter the gaps between the large particles, and the number of contacts between the scaly graphite particles increases, so that the thermal conductivity in the in-plane direction of the resin molded body and The heat dissipation can be further enhanced. More preferably, 0.25 ≦ d1 / d3 ≦ 0.55, and still more preferably 0.3 ≦ d1 / d3 ≦ 0.5.
 第1及び第3の鱗片状黒鉛粒子の含有量の総和は、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、好ましくは150重量部以下である。上記第1及び第3の鱗片状黒鉛粒子の含有量の総和が上記下限以上である場合、樹脂成形体の面方向における放熱性をより一層高めることができる。また、第1及び第3の鱗片状黒鉛粒子の含有量の総和の含有量が多すぎると破壊の起点となる界面の面積が大きくなることから、上記第1及び第3の鱗片状黒鉛粒子の含有量の総和が上記上限以下である場合、耐衝撃性をより一層高めることができる。 The total content of the first and third scaly graphite particles is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. When the sum total of content of the said 1st and 3rd scaly graphite particle | grains is more than the said minimum, the heat dissipation in the surface direction of a resin molding can be improved further. In addition, if the total content of the first and third scaly graphite particles is too large, the area of the interface that becomes the starting point of the fracture increases, and therefore the first and third scaly graphite particles are When the total content is less than or equal to the above upper limit, impact resistance can be further enhanced.
 第3の鱗片状黒鉛粒子の含有量は、熱可塑性樹脂100重量部に対し、好ましくは5重量部以上、より好ましくは10重量部以上、好ましくは60重量部以下、より好ましくは50重量部以下、さらに好ましくは40重量部以下、特に好ましくは30重量部以下である。第3の鱗片状黒鉛粒子の含有量が上記範囲内である場合、面方向における放熱性をより一層高めることができる。 The content of the third scaly graphite particles is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 60 parts by weight or less, more preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. More preferably, it is 40 parts by weight or less, particularly preferably 30 parts by weight or less. When the content of the third scaly graphite particles is within the above range, the heat dissipation in the surface direction can be further enhanced.
 (薄片化黒鉛)
 上記樹脂組成物を構成する黒鉛粒子は、薄片化黒鉛であってもよい。薄片化黒鉛を含んでいる場合、面方向の放熱性をより一層高めることができる。なお、薄片化黒鉛と、第1~第3の鱗片状黒鉛粒子などの他の黒鉛粒子を併用してもよい。
(Flaky graphite)
The graphite particles constituting the resin composition may be exfoliated graphite. When exfoliated graphite is included, the heat dissipation in the surface direction can be further enhanced. Note that exfoliated graphite may be used in combination with other graphite particles such as first to third scaly graphite particles.
 薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛にするための剥離処理としては、超臨界流体などを用いた機械的剥離法、あるいは酸を用いた化学的剥離法のどちらを用いてもよい。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよい。 Exfoliated graphite refers to a graphene sheet laminate that is obtained by exfoliating the original graphite and is thinner than the original graphite. As the exfoliation treatment for obtaining exfoliated graphite, either a mechanical exfoliation method using a supercritical fluid or a chemical exfoliation method using an acid may be used. The number of graphene sheets laminated in exfoliated graphite should be less than the original graphite.
 第1~第3の鱗片状黒鉛粒子及び薄片化黒鉛の含有量の総和は、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、好ましくは150重量部以下である。第1~第3の鱗片状黒鉛粒子及び薄片化黒鉛の含有量の総和が上記下限以上である場合、樹脂成形体の面方向における放熱性をより一層高めることができる。また、第1~第3の鱗片状黒鉛粒子及び薄片化黒鉛の含有量の総和が多すぎると破壊の起点となる界面の面積が大きくなることから、第1~第3の鱗片状黒鉛粒子及び薄片化黒鉛の含有量の総和が、上記上限以下である場合、耐衝撃性をより一層高めることができる。 The total content of the first to third scaly graphite particles and the exfoliated graphite is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. When the sum of the contents of the first to third scaly graphite particles and the exfoliated graphite is not less than the above lower limit, the heat dissipation in the surface direction of the resin molded body can be further enhanced. In addition, if the total content of the first to third scaly graphite particles and the exfoliated graphite is too large, the area of the interface that becomes the starting point of fracture increases, so the first to third scaly graphite particles and When the total content of exfoliated graphite is not more than the above upper limit, impact resistance can be further enhanced.
 薄片化黒鉛の含有量は、熱可塑性樹脂100重量部に対し、50重量部以下であることが好ましい。薄片化黒鉛の含有量が多すぎると、衝撃を与えたときの剥離距離が大きくなる場合がある。薄片化黒鉛の含有量は、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、より好ましくは30重量部以下である。 The content of exfoliated graphite is preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. If the exfoliated graphite content is too large, the peel distance when an impact is applied may increase. The content of exfoliated graphite is preferably 10 parts by weight or more, more preferably 30 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
 (表面処理)
 黒鉛粒子は表面処理をされていてもよい。黒鉛粒子を表面処理することで、黒鉛粒子同士の二次凝集を防ぎ、衝撃性をより一層向上させることができる。表面処理剤としては、ポリエチレンなどの合成ワックス、ステアリン酸などの天然ワックス、酸化ポリエチレンワックスなどの酸化ワックスのいずれを用いてもよい。
(surface treatment)
The graphite particles may be surface treated. By surface-treating the graphite particles, secondary aggregation between the graphite particles can be prevented, and impact properties can be further improved. As the surface treatment agent, any of synthetic wax such as polyethylene, natural wax such as stearic acid, and oxidized wax such as oxidized polyethylene wax may be used.
 (繊維系フィラー)
 本発明の樹脂成形体は、繊維系フィラーをさらに含んでいてもよい。上記繊維系フィラーとしては、例えば、炭素繊維又はガラス繊維が挙げられる。
(Fiber filler)
The resin molded body of the present invention may further contain a fiber filler. Examples of the fiber filler include carbon fiber or glass fiber.
 繊維系フィラーの含有量は、特に限定されないが、熱可塑性樹脂100重量部に対し、1重量部以上、200重量部以下であることが好ましい。繊維系フィラーの含有量が上記範囲内にある場合、樹脂成形体の樹脂組成物により一層優れた流動性を付与することができる。 The content of the fiber filler is not particularly limited, but is preferably 1 part by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. When content of a fiber type filler exists in the said range, the more outstanding fluidity | liquidity can be provided with the resin composition of a resin molding.
 本発明の樹脂成形体が炭素繊維を含んでいる場合、面方向の放熱性をより一層高めることができる。もっとも、この場合、λx及びλyのうち一方がより一層高められる。 When the resin molded body of the present invention contains carbon fibers, the heat dissipation in the surface direction can be further enhanced. However, in this case, one of λx and λy is further increased.
 炭素繊維としては、特に限定されないが、PAN系若しくはピッチ系の炭素繊維などを用いることができる。放熱性をより一層高める観点からは、ピッチ系の高熱伝導率を有する炭素繊維が好ましく、なかでもメソフェーズピッチ系炭素繊維が好ましい。 The carbon fiber is not particularly limited, and PAN-based or pitch-based carbon fiber can be used. From the viewpoint of further improving the heat dissipation, pitch-based carbon fibers having high thermal conductivity are preferable, and mesophase pitch-based carbon fibers are particularly preferable.
 第1~第3の鱗片状黒鉛粒子及び炭素繊維の含有量の総和は、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、好ましくは150重量部以下である。上記含有量の総和が上記下限以上である場合、樹脂成形体の面方向における放熱性をより一層高めることができる。また、第1~第3の鱗片状黒鉛粒子及び炭素繊維の含有量の総和が多すぎると破壊の起点となる界面の面積が大きくなることから、上記第1~第3の鱗片状黒鉛粒子及び炭素繊維の含有量の総和が、上記上限以下である場合、耐衝撃性をより一層高めることができる。より好ましくは、第1の鱗片状黒鉛粒子及び炭素繊維の含有量の総和が、熱可塑性樹脂100重量部に対し、10重量部以上、150重量部以下である。 The total content of the first to third scaly graphite particles and the carbon fiber is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. When the sum total of the said content is more than the said minimum, the heat dissipation in the surface direction of a resin molding can be improved further. In addition, if the total content of the first to third scaly graphite particles and the carbon fiber is too large, the area of the interface that becomes the starting point of the fracture becomes large. Therefore, the first to third scaly graphite particles and When the total content of carbon fibers is not more than the above upper limit, the impact resistance can be further enhanced. More preferably, the total content of the first scaly graphite particles and carbon fibers is 10 parts by weight or more and 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
 炭素繊維の含有量は、熱可塑性樹脂100重量部に対し、50重量部以下であることが好ましい。炭素繊維は繊維長が鱗片状黒鉛より大きいので、炭素繊維の含有量が多すぎると、衝撃を与えたときの剥離距離が大きくなる場合がある。炭素繊維の含有量は、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、より好ましくは30重量部以下である。 The content of carbon fiber is preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. Since the carbon fiber has a fiber length larger than that of the scaly graphite, if the carbon fiber content is too large, the peeling distance may be increased when an impact is applied. The carbon fiber content is preferably 10 parts by weight or more, more preferably 30 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin.
 (無機フィラー)
 本発明の樹脂成形体は、無機フィラーをさらに含んでいてもよい。無機フィラーとしては、特に限定されるものではないが、タルク、マイカ、カーボンナノチューブ、または絶縁性熱伝導フィラーなどを用いることができる。絶縁性熱伝導フィラーとしては、特に限定はされないが、例えば、酸化アルミニウム、酸化マグネシウム、窒化ホウ素又は窒化アルミニウムなどが挙げられる。これらは、単独で用いてもよく、複数を併用してもよい。無機フィラーを含有することで、樹脂成形体の機械強度をより一層高めることができる。特に、絶縁性熱伝導フィラーを用いることで、絶縁性を高めることができる。
(Inorganic filler)
The resin molded body of the present invention may further contain an inorganic filler. The inorganic filler is not particularly limited, and talc, mica, carbon nanotube, insulating heat conductive filler, or the like can be used. The insulating heat conductive filler is not particularly limited, and examples thereof include aluminum oxide, magnesium oxide, boron nitride, and aluminum nitride. These may be used alone or in combination. By containing the inorganic filler, the mechanical strength of the resin molded body can be further increased. In particular, the insulating property can be enhanced by using an insulating heat conductive filler.
 第1~第3の鱗片状黒鉛粒子及び無機フィラーの含有量の総和は、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、好ましくは150重量部以下である。第1~第3の鱗片状黒鉛粒子及び無機フィラーの含有量の総和が上記下限以上である場合、樹脂成形体の面方向における放熱性をより一層高めることができる。また、第1~第3の鱗片状黒鉛粒子及び無機フィラーの含有量の総和の含有量が多すぎると破壊の起点となる界面の面積が大きくなることから、上記第1~第3の鱗片状黒鉛粒子及び無機フィラーの含有量の総和が上記上限以下である場合、耐衝撃性をより一層高めることができる。より好ましくは、第1の鱗片状黒鉛粒子及び無機フィラーの含有量の総和が、熱可塑性樹脂100重量部に対し、10重量部以上、150重量部以下である。 The total content of the first to third scaly graphite particles and the inorganic filler is preferably 10 parts by weight or more and preferably 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin. When the total content of the first to third scaly graphite particles and the inorganic filler is not less than the above lower limit, the heat dissipation in the surface direction of the resin molded body can be further enhanced. In addition, if the total content of the first to third scaly graphite particles and the inorganic filler is too large, the area of the interface that becomes the starting point of the breakage increases, and therefore the first to third scaly shapes described above. When the total content of the graphite particles and the inorganic filler is not more than the above upper limit, the impact resistance can be further enhanced. More preferably, the total content of the first scaly graphite particles and the inorganic filler is 10 parts by weight or more and 150 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
 放熱性及び耐衝撃性をより一層高める観点から、無機フィラーの平均粒子径は、好ましくは0.1μm以上、好ましくは40μm未満である。 From the viewpoint of further improving heat dissipation and impact resistance, the average particle size of the inorganic filler is preferably 0.1 μm or more, and preferably less than 40 μm.
 無機フィラーの含有量としては、特に限定されないが、熱可塑性樹脂100重量部に対し、好ましくは10重量部以上、より好ましくは30重量部以上、さらに好ましくは50重量部以上である。絶縁性熱伝導フィラーの含有量が上記下限以上である場合、絶縁性能をより一層高めることができる。一方、無機フィラーの含有量は、好ましくは100重量部以下、より好ましくは70重量部以下である。無機フィラーの含有量を、上記上限以下にすることで放熱性をより一層高めることができる。 The content of the inorganic filler is not particularly limited, but is preferably 10 parts by weight or more, more preferably 30 parts by weight or more, and further preferably 50 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin. When the content of the insulating heat conductive filler is not less than the above lower limit, the insulating performance can be further enhanced. On the other hand, the content of the inorganic filler is preferably 100 parts by weight or less, more preferably 70 parts by weight or less. The heat dissipation can be further enhanced by setting the content of the inorganic filler to the above upper limit or less.
 (他の添加剤)
 樹脂成形体中には、任意成分として様々な添加剤が添加されていてもよい。添加剤としては、例えば、フェノール系、リン系、アミン系、イオウ系などの酸化防止剤;ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系などの紫外線吸収剤;金属害防止剤;ヘキサブロモビフェニルエーテル、デカブロモジフェニルエーテルなどのハロゲン化難燃剤;ポリリン酸アンモニウム、トリメチルフォスフェートなどの難燃剤;各種充填剤;カーボンブラックなどの帯電防止剤;安定剤;顔料などが挙げられる。これらは、単独で用いてもよく、複数を併用してもよい。
(Other additives)
Various additives may be added as optional components in the resin molded body. Additives include, for example, antioxidants such as phenols, phosphoruss, amines, and sulfurs; ultraviolet absorbers such as benzotriazoles and hydroxyphenyltriazines; metal hazard inhibitors; hexabromobiphenyl ether, decabromo Halogenated flame retardants such as diphenyl ether; flame retardants such as ammonium polyphosphate and trimethyl phosphate; various fillers; antistatic agents such as carbon black; stabilizers; These may be used alone or in combination.
 (樹脂成形体)
 上記樹脂組成物を用いて製造された樹脂成形体はメッキ加工されていてもよい。メッキ加工することで、ECU等の筐体で求められる電磁波シールド性、アース性をより一層効果的に付与することができる。
(Resin molding)
The resin molded body manufactured using the resin composition may be plated. By performing the plating process, it is possible to more effectively impart the electromagnetic wave shielding property and the grounding property required for a housing such as an ECU.
 メッキの種類としては、特に限定されないが、銅メッキが施されていることが好ましい。銅メッキを用いることで、さらに放熱性と衝撃性をより一層優れたものとすることができる。 The type of plating is not particularly limited, but copper plating is preferable. By using copper plating, heat dissipation and impact properties can be further improved.
 電磁波シールド性(電磁波遮蔽性能、単位;dB)は、KEC法(KEC:「関西電子工業振興センター」の略称)を用いて測定することができる。より具体的には、擬似ノイズ源を発信する信号発信用のアンテナが付いたプローブと受信アンテナが付いたプローブとの間の電界強度、及び両プローブ間に試料を挿入した場合の電界強度を測定することにより求めることができる。測定周波数は、例えば、100MHzとすることができる。 Electromagnetic shielding properties (electromagnetic shielding performance, unit: dB) can be measured using the KEC method (KEC: abbreviation for “Kansai Electronics Industry Promotion Center”). More specifically, the electric field strength between a probe with a signal transmitting antenna that transmits a pseudo noise source and a probe with a receiving antenna, and the electric field strength when a sample is inserted between both probes are measured. Can be obtained. The measurement frequency can be set to 100 MHz, for example.
 (製造方法)
 本発明の樹脂成形体は、例えば、以下の方法により製造することができる。
(Production method)
The resin molded body of the present invention can be produced, for example, by the following method.
 まず、熱可塑性樹脂と、第1の鱗片状黒鉛粒子や薄片化黒鉛などの黒鉛粒子とを含む樹脂組成物を用意する。樹脂組成物中には、上述したさまざまな材料がさらに含まれていてもよい。樹脂組成物中においては、熱可塑性樹脂中に黒鉛粒子が分散されていることが好ましい。この場合、得られる樹脂成形体の耐衝撃性をより一層高めることができる。熱可塑性樹脂中に分散させる方法については、特に限定されないが、熱可塑性樹脂を加熱溶融させて黒鉛粒子と混練することで、より一層均一に分散させることができる。 First, a resin composition containing a thermoplastic resin and graphite particles such as first scaly graphite particles and exfoliated graphite is prepared. The resin composition may further contain various materials described above. In the resin composition, it is preferable that graphite particles are dispersed in the thermoplastic resin. In this case, the impact resistance of the obtained resin molded product can be further enhanced. The method for dispersing in the thermoplastic resin is not particularly limited, but the thermoplastic resin can be more uniformly dispersed by heating and melting and kneading with the graphite particles.
 上記混練方法については、特に限定されないが、例えば、プラストミルなどの二軸スクリュー混練機、単軸押出機、二軸押出機、バンバリーミキサー、ロールなどの混練装置を用いて、加熱下において混練する方法などが挙げられる。これらのなかでも、押出機を用いて溶融混練する方法が好ましい。 The kneading method is not particularly limited. For example, a kneading method under heating using a kneading device such as a twin screw kneader such as a plast mill, a single screw extruder, a twin screw extruder, a Banbury mixer, or a roll. Etc. Among these, the method of melt kneading using an extruder is preferable.
 次に、用意した樹脂組成物を、例えば、プレス加工、押出加工、押出ラミ加工、または射出成形などの方法によって成形することで、樹脂成形体を得ることができる。 Next, a resin molded body can be obtained by molding the prepared resin composition by a method such as press processing, extrusion processing, extrusion lamination processing, or injection molding.
 本発明においては、樹脂成形体を構成する樹脂組成物中における熱可塑性樹脂又は黒鉛粒子の種類や、各成分の配合比率などを変更することによって、各方向における熱伝導性や、耐衝撃性などのさまざまな物性を適宜調整することができる。 In the present invention, by changing the kind of thermoplastic resin or graphite particles in the resin composition constituting the resin molded body, the blending ratio of each component, etc., thermal conductivity in each direction, impact resistance, etc. Various physical properties can be adjusted as appropriate.
 このように本発明の樹脂成形体においては、目的とする用途に応じて、物性を適宜調整することができる。 Thus, in the resin molded body of the present invention, the physical properties can be appropriately adjusted according to the intended use.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明の効果を明らかにする。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the effects of the present invention will be clarified by giving specific examples and comparative examples of the present invention. In addition, this invention is not limited to a following example.
 (実施例1)
 第1の熱可塑性樹脂としてのポリプロピレン(PP、プライムポリマー社製、商品名「E-150GK」)100重量部と、第1の鱗片状黒鉛粒子としての平均粒子径15μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP15」、平均粒子径15μm)100重量部とを、ラボプラストミル(東洋精機社製、品番「R100」)を用いて、200℃で溶融混練することにより樹脂組成物を得た。得られた樹脂組成物を、縦6mm×横6mm×高さ5mmになるように調整してプレス板の上に配置し、温度が200℃になるまで加熱した。その後、圧力20MPa及び時間5分の条件で、プレス加工によりシート状に成形した。続いて、常温プレスすることで縦300mm×横300mm×厚み2mmの樹脂シートを得た。
Example 1
100 parts by weight of polypropylene (PP, manufactured by Prime Polymer Co., Ltd., trade name “E-150GK”) as the first thermoplastic resin, and flaky graphite particles having an average particle diameter of 15 μm as the first flaky graphite particles (Ito Resin composition by melting and kneading 100 parts by weight of graphite product, trade name “CNP15”, average particle diameter 15 μm) at 200 ° C. using a lab plast mill (product number “R100” manufactured by Toyo Seiki Co., Ltd.). Got. The obtained resin composition was adjusted so as to be 6 mm long × 6 mm wide × 5 mm high, placed on a press plate, and heated until the temperature reached 200 ° C. Thereafter, it was formed into a sheet by press working under conditions of a pressure of 20 MPa and a time of 5 minutes. Then, the resin sheet of length 300mm * width 300mm * thickness 2mm was obtained by normal temperature press.
 次に、得られた樹脂シートを遠赤オーブンにて、表裏面の温度が200℃になるまで加熱溶融させた後、金型にて常温プレスすることで、箱状の樹脂成形体を得た。図1(a)に得られた樹脂成形体1の模式的平面図を、図1(b)にそのA-A線に沿う模式的断面図を示す。次に、同様の方法でもう一つの樹脂成形体1を用意し、図2に示すように一対の樹脂成形体1の周囲をクリップ2で挟みこみ完全に閉空間の箱状の筐体(筐体3)を得た。 Next, the obtained resin sheet was heated and melted in a far-red oven until the temperature of the front and back surfaces reached 200 ° C., and then pressed at room temperature with a mold to obtain a box-shaped resin molded body. . FIG. 1 (a) shows a schematic plan view of the resin molded body 1 obtained, and FIG. 1 (b) shows a schematic cross-sectional view along the line AA. Next, another resin molded body 1 is prepared by the same method, and a pair of resin molded bodies 1 are sandwiched between clips 2 as shown in FIG. Body 3) was obtained.
 (実施例2)
 第1の鱗片状黒鉛粒子の添加量を60重量部としたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Example 2)
A resin molded body and a casing were obtained in the same manner as in Example 1 except that the addition amount of the first scaly graphite particles was 60 parts by weight.
 (実施例3)
 第1の鱗片状黒鉛粒子として平均粒子径15μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP15」、平均粒子径15μm)50重量部を用い、さらに第2の鱗片状黒鉛粒子として平均粒子径35μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP35」、平均粒子径35μm)50重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Example 3)
As the first flaky graphite particles, 50 parts by weight of flaky graphite particles having an average particle diameter of 15 μm (trade name “CNP15”, average particle diameter of 15 μm, manufactured by Ito Graphite Co., Ltd.) are used as the first flaky graphite particles. A resin molded body and a casing were obtained in the same manner as in Example 1 except that 50 parts by weight of scaly graphite particles having a particle diameter of 35 μm (trade name “CNP35”, average particle diameter of 35 μm, manufactured by Ito Graphite Co., Ltd.) were used. It was.
 (実施例4)
 第1の鱗片状黒鉛粒子として平均粒子径35μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP35」、平均粒子径35μm)60重量部を用い、さらに第3の鱗片状黒鉛粒子として平均粒子径60μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「Z-100」、平均粒子径60μm)40重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Example 4)
As the first flaky graphite particles, 60 parts by weight of flaky graphite particles having an average particle diameter of 35 μm (trade name “CNP35”, average particle diameter of 35 μm, manufactured by Ito Graphite Co., Ltd.) are used as the first flaky graphite particles. Resin molded body and casing in the same manner as in Example 1 except that 40 parts by weight of scaly graphite particles having a particle diameter of 60 μm (trade name “Z-100”, manufactured by Ito Graphite Co., Ltd., average particle diameter of 60 μm) were used. Got.
 (実施例5)
 第1の鱗片状黒鉛粒子の添加量を80重量部とし、さらに炭素繊維(日本グラスファイバー社製、商品名「XN-100」ミルドファイバー、繊維長50μm)20重量部を添加したこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Example 5)
Except that the addition amount of the first flaky graphite particles was 80 parts by weight, and further 20 parts by weight of carbon fiber (trade name “XN-100” milled fiber, fiber length 50 μm, manufactured by Nippon Glass Fiber Co., Ltd.) was added. In the same manner as in Example 1, a resin molded body and a casing were obtained.
 (実施例6)
 ポリプロピレンの添加量を70重量部とし、さらにポリエチレン(PE、日本ポリエチレン社製、商品名「ノバテックTM LJ803」)30重量部を用いたこと以外は、実施例1と同様の配合とし、ラボプラストミル(東洋精機社製、品番「R100」)を用いて、140℃で溶融混練することにより樹脂組成物を得た。得られた樹脂組成物を、縦6mm×横6mm×高さ5mmになるように調整してプレス板の上に配置し、温度が140℃になるまで加熱した。その後、圧力20MPa及び時間5分の条件で、プレス加工によりシート状に成形した。続いて、常温プレスすることで縦300mm×横300mm×厚み2mmの樹脂シートを得た。
(Example 6)
The same composition as in Example 1 was used except that the amount of polypropylene added was 70 parts by weight and 30 parts by weight of polyethylene (PE, trade name “NOVATEC ™ LJ803” manufactured by Nippon Polyethylene Co., Ltd.) was used. (Toyo Seiki Co., Ltd., product number “R100”) was melt kneaded at 140 ° C. to obtain a resin composition. The obtained resin composition was adjusted so as to be 6 mm long × 6 mm wide × 5 mm high and placed on a press plate, and heated until the temperature reached 140 ° C. Thereafter, it was formed into a sheet by press working under conditions of a pressure of 20 MPa and a time of 5 minutes. Then, the resin sheet of length 300mm * width 300mm * thickness 2mm was obtained by normal temperature press.
 得られた樹脂シートを2mm×5mm×5mmのシートペレット状に調整し、そのシートペレット状の樹脂シートを160tの射出成形機(東芝機械社製、品番「EC160NP」)に投入した。続いて、射出成型時のシリンダー温度が200℃になる条件下で金型に注入し、60℃に冷却して1分経過した後に取り出すことで、実施例1と同様の形状を有する箱状の樹脂成形体を得た。得られた樹脂成形体を実施例1と同様にして、周囲をクリップで挟みこみ完全に閉空間の箱状の筐体を得た。 The obtained resin sheet was adjusted to a 2 mm × 5 mm × 5 mm sheet pellet, and the sheet pellet-shaped resin sheet was put into a 160 t injection molding machine (product number “EC160NP” manufactured by Toshiba Machine Co., Ltd.). Subsequently, it is poured into a mold under a condition that the cylinder temperature at the time of injection molding is 200 ° C., cooled to 60 ° C., and taken out after 1 minute, so that a box-like shape having the same shape as in Example 1 is obtained. A resin molded body was obtained. In the same manner as in Example 1, the obtained resin molded body was sandwiched between clips to obtain a box-shaped housing in a completely closed space.
 (実施例7)
 実施例4の第1の鱗片状黒鉛粒子の代わりに、第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)60重量部を用いたこと以外は、実施例4と同様にして樹脂成形体及び筐体を得た。
(Example 7)
Instead of the first scaly graphite particles of Example 4, scaly graphite particles having an average particle diameter of 7 μm (trade name “PCH7”, average particle diameter of 7 μm, manufactured by Ito Graphite Co., Ltd.) 60 as the first scaly graphite particles 60 A resin molded body and a casing were obtained in the same manner as in Example 4 except that the weight part was used.
 (実施例8)
 実施例1の第1の鱗片状黒鉛粒子の代わりに、第1の鱗片状黒鉛粒子として平均粒子径35μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP35」、平均粒子径35μm)100重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Example 8)
Instead of the first flaky graphite particles of Example 1, flaky graphite particles having an average particle diameter of 35 μm as the first flaky graphite particles (manufactured by Ito Graphite Co., Ltd., trade name “CNP35”, average particle diameter of 35 μm) 100 A resin molded body and a housing were obtained in the same manner as in Example 1 except that the weight part was used.
 (実施例9)
 実施例1の第1の熱可塑性樹脂(ポリプロピレン)を80重量部とし、かつ第2の熱可塑性樹脂としてスチレン-エチレン-ブチレン-スチレン共重合体(SEBS、旭化成ケミカルズ社製、商品名「タフテックH1052」)20重量部をさらに添加したこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
Example 9
80 parts by weight of the first thermoplastic resin (polypropylene) of Example 1 and styrene-ethylene-butylene-styrene copolymer (SEBS, manufactured by Asahi Kasei Chemicals Corporation, trade name “Tuftec H1052” as the second thermoplastic resin. ]) A resin molded body and a casing were obtained in the same manner as in Example 1 except that 20 parts by weight was further added.
 (実施例10)
 実施例1の第1の熱可塑性樹脂(ポリプロピレン)を50重量部とし、かつ第2の熱可塑性樹脂としてオレフィンエラストマー(ダウケミカル社製、商品名「エンゲージ8407」)50重量部をさらに添加し、かつ第1の鱗片状黒鉛粒子として平均粒子径35μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP35」、平均粒子径35μm)100重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Example 10)
50 parts by weight of the first thermoplastic resin (polypropylene) of Example 1 and 50 parts by weight of an olefin elastomer (manufactured by Dow Chemical Co., trade name “engage 8407”) as the second thermoplastic resin were further added. The same as Example 1 except that 100 parts by weight of flaky graphite particles having an average particle diameter of 35 μm (trade name “CNP35”, average particle diameter of 35 μm, manufactured by Ito Graphite Co., Ltd.) were used as the first flaky graphite particles. Thus, a resin molded body and a casing were obtained.
 (実施例11)
 実施例10の第1の熱可塑性樹脂(ポリプロピレン)を80重量部とし、第2の熱可塑性樹脂(オレフィンエラストマー)を20重量部とし、第1の鱗片状黒鉛粒子を80重量部とし、薄片化黒鉛(日本黒鉛社製、商品名「UP-35N」、平均粒子径30μm)20重量部をさらに用いたこと以外は実施例10と同様にして樹脂成形体及び筐体を得た。
(Example 11)
80 parts by weight of the first thermoplastic resin (polypropylene) of Example 10, 20 parts by weight of the second thermoplastic resin (olefin elastomer), 80 parts by weight of the first scaly graphite particles, and flaky A resin molded body and a casing were obtained in the same manner as in Example 10 except that 20 parts by weight of graphite (made by Nippon Graphite Co., Ltd., trade name “UP-35N”, average particle size 30 μm) was further used.
 (実施例12)
 実施例11の第1の熱可塑性樹脂(ポリプロピレン)及び薄片化黒鉛の代わりに、ポリプロピレン樹脂(PP)80重量部とガラス繊維20重量部とからなる混合物(プライムポリマー社製、商品名「V7100」)100重量部を用いたこと以外は、実施例11と同様にして樹脂成形体及び筐体を得た。
(Example 12)
Instead of the first thermoplastic resin (polypropylene) and exfoliated graphite of Example 11, a mixture comprising 80 parts by weight of polypropylene resin (PP) and 20 parts by weight of glass fiber (trade name “V7100” manufactured by Prime Polymer Co., Ltd.) ) A resin molded body and a casing were obtained in the same manner as in Example 11 except that 100 parts by weight were used.
 (実施例13)
 実施例11の薄片化黒鉛の代わりにタルク(日本タルク社製、商品名「ミクロエース MS-K」)20重量部を用いたこと以外は、実施例11と同様にして樹脂成形体及び筐体を得た。
(Example 13)
Resin molded body and casing in the same manner as in Example 11 except that 20 parts by weight of talc (trade name “Microace MS-K”, manufactured by Nippon Talc Co., Ltd.) was used instead of exfoliated graphite of Example 11. Got.
 (実施例14)
 実施例11の第1の鱗片状黒鉛粒子を40重量部とし、第2の鱗片状黒鉛粒子として平均粒子径15μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP15」、平均粒子径15μm)30重量部をさらに添加し、第3の鱗片状黒鉛として平均粒子径60μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「Z-100」、平均粒子径60μm)30重量部をさらに添加し、薄片化黒鉛を添加しなかったこと以外は実施例11と同様にして樹脂成形体及び筐体を得た。
(Example 14)
The first scaly graphite particles of Example 11 were 40 parts by weight, and the second scaly graphite particles were scaly graphite particles having an average particle diameter of 15 μm (trade name “CNP15” manufactured by Ito Graphite Co., Ltd., average particle diameter of 15 μm). ) 30 parts by weight were further added, and 30 parts by weight of flaky graphite particles having an average particle diameter of 60 μm (trade name “Z-100”, average particle diameter of 60 μm, manufactured by Ito Graphite Co., Ltd.) were added as the third flake graphite. And the resin molding and the housing | casing were obtained like Example 11 except not having added exfoliated graphite.
 (実施例15)
 第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)50重量部を用い、第2の鱗片状黒鉛粒子として平均粒子径35μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「CNP35」、平均粒子径35μm)30重量部を用い、第3の鱗片状黒鉛粒子として平均粒子径120μmの鱗片状黒鉛粒子(日本黒鉛社製、商品名「F#2」、平均粒子径120μm)20重量部を用いたこと以外は実施例14と同様にして樹脂成形体及び筐体を得た。
(Example 15)
As the first flaky graphite particles, 50 parts by weight of the flaky graphite particles having an average particle diameter of 7 μm (trade name “PCH7”, average particle diameter of 7 μm) manufactured by Ito Graphite Co., Ltd. are used as the first flaky graphite particles. A scaly graphite particle having a mean particle diameter of 120 μm (Nippon Graphite) was used as the third scaly graphite particle by using 30 parts by weight of a scaly graphite particle having a diameter of 35 μm (trade name “CNP35” manufactured by Ito Graphite Co., Ltd., average particle diameter 35 μm). A resin molded body and a casing were obtained in the same manner as in Example 14 except that 20 parts by weight (trade name “F # 2”, average particle size 120 μm) manufactured by the company was used.
 (実施例16)
 第1の熱可塑性樹脂として、ポリプロピレンの代わりに環状オレフィンコポリマー(COC、ポリプラスチック社製、商品名「8007」)を用いたこと以外は実施例10と同様にして樹脂成形体及び筐体を得た。
(Example 16)
A resin molded body and a casing were obtained in the same manner as in Example 10 except that a cyclic olefin copolymer (COC, manufactured by Polyplastics, trade name “8007”) was used as the first thermoplastic resin instead of polypropylene. It was.
 (実施例17)
 第1の熱可塑性樹脂として、ポリプロピレンの代わりにポリアミド6(PA、東レ社製、商品名「CM1007」)を用いたこと、第1の鱗片状黒鉛粒子を用いなかったこと、及び薄片化黒鉛(日本黒鉛社製、商品名「UP-35N」、平均粒子径30μm)の添加量を60重量部としたこと以外は実施例11と同様にして樹脂成形体及び筐体を得た。
(Example 17)
As the first thermoplastic resin, polyamide 6 (PA, product name “CM1007”, manufactured by Toray Industries, Inc.) was used instead of polypropylene, the first scaly graphite particles were not used, and exfoliated graphite ( A resin molded body and a casing were obtained in the same manner as in Example 11 except that the addition amount of Nippon Graphite Co., Ltd. (trade name “UP-35N”, average particle size 30 μm) was 60 parts by weight.
 (実施例18)
 第2の熱可塑性樹脂として、オレフィンエラストマーの代わりにスチレン-エチレン-ブチレン-スチレン共重合体(SEBS、旭化成ケミカルズ社製、商品名「タフテックH1052」)を用いたこと、及び薄片化黒鉛(日本黒鉛社製、商品名「UP-35N」、平均粒子径30μm)の添加量を20重量部としたこと以外は実施例17と同様にして樹脂成形体及び筐体を得た。
(Example 18)
As the second thermoplastic resin, a styrene-ethylene-butylene-styrene copolymer (SEBS, manufactured by Asahi Kasei Chemicals Corporation, trade name “Tuftec H1052”) was used instead of the olefin elastomer, and exfoliated graphite (Nippon Graphite) A resin molded body and a casing were obtained in the same manner as in Example 17 except that the addition amount of the product name “UP-35N” manufactured by the company was changed to 20 parts by weight.
 (実施例19)
 第1の鱗片状黒鉛粒子の添加量を150重量部としたこと以外は実施例10と同様にして樹脂成形体及び筐体を得た。
(Example 19)
A resin molded body and a casing were obtained in the same manner as in Example 10 except that the addition amount of the first scaly graphite particles was 150 parts by weight.
 (実施例20)
 第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)90重量部を用い、第3の鱗片状黒鉛粒子として平均粒子径120μmの鱗片状黒鉛粒子(日本黒鉛社製、商品名「F#2」、平均粒子径120μm)10重量部を用いたこと以外は実施例19と同様にして樹脂成形体及び筐体を得た。
(Example 20)
90 parts by weight of scaly graphite particles having an average particle diameter of 7 μm (trade name “PCH7”, average particle diameter of 7 μm, manufactured by Ito Graphite Co., Ltd.) are used as the first scaly graphite particles, and the average particles are used as the third scaly graphite particles. A resin molded body and a casing were obtained in the same manner as in Example 19 except that 10 parts by weight of scaly graphite particles having a diameter of 120 μm (trade name “F # 2”, manufactured by Nippon Graphite Co., Ltd., average particle diameter of 120 μm) were used. It was.
 (実施例21)
 第1の鱗片状黒鉛粒子の代わりに薄片化黒鉛(日本黒鉛社製、商品名「UP-35N」、平均粒子径30μm)50重量部を用いたこと以外は実施例19と同様にして樹脂成形体及び筐体を得た。
(Example 21)
Resin molding was carried out in the same manner as in Example 19 except that 50 parts by weight of exfoliated graphite (trade name “UP-35N”, average particle diameter 30 μm, manufactured by Nippon Graphite Co., Ltd.) was used instead of the first flaky graphite particles. A body and housing were obtained.
 (実施例22)
 第1の熱可塑性樹脂として、ポリプロピレンの代わりに環状オレフィンコポリマー(COC、ポリプラスチック社製、商品名「8007」)を用い、第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)100重量部を用いたこと以外は、実施例10と同様にして樹脂成形体及び筐体を得た。
(Example 22)
As the first thermoplastic resin, a cyclic olefin copolymer (COC, manufactured by Polyplastics Co., Ltd., trade name “8007”) is used instead of polypropylene, and scaly graphite particles having an average particle diameter of 7 μm as the first scaly graphite particles ( A resin molded body and a casing were obtained in the same manner as in Example 10 except that 100 parts by weight of Ito Graphite Co., Ltd. (trade name “PCH7”, average particle diameter: 7 μm) was used.
 (実施例23)
 第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)を150重量部を用いたこと以外は実施例10と同様にして樹脂成形体及び筐体を得た。
(Example 23)
Example 1 except that 150 parts by weight of scaly graphite particles having an average particle diameter of 7 μm (trade name “PCH7”, average particle diameter of 7 μm) manufactured by Ito Graphite Co., Ltd.) was used as the first scaly graphite particles. Thus, a resin molded body and a casing were obtained.
 (実施例24)
 第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)70重量部を用い、平均粒子径100μmの薄片化黒鉛(アイテック社製、商品名「iGrafen-α」、平均粒子径100μm)30重量部を用いたこと以外は実施例19と同様にして樹脂。
(Example 24)
As the first scaly graphite particles, 70 parts by weight of scaly graphite particles having an average particle diameter of 7 μm (product name “PCH7”, average particle diameter of 7 μm, manufactured by Ito Graphite Co., Ltd.) is used, and exfoliated graphite having an average particle diameter of 100 μm (ITEC) Resin in the same manner as in Example 19 except that 30 parts by weight (trade name “iGrafen-α”, average particle diameter: 100 μm) manufactured by the company was used.
 (実施例25)
 第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)80重量部を用い、平均粒子径100μmの薄片化黒鉛(アイテック社製、商品名「iGrafen-α」、平均粒子径100μm)20重量部を用いたこと以外は実施例19と同様にして樹脂成形体及び筐体を得た。
(Example 25)
As the first flaky graphite particles, 80 parts by weight of flaky graphite particles having an average particle diameter of 7 μm (trade name “PCH7”, average particle diameter of 7 μm, manufactured by Ito Graphite Co., Ltd.) is used, and exfoliated graphite having an average particle diameter of 100 μm (ITEC) A resin molded body and a housing were obtained in the same manner as in Example 19 except that 20 parts by weight manufactured by the company and trade name “iGrafen-α”, average particle diameter 100 μm) were used.
 (実施例26)
 第1の熱可塑性樹脂として、ポリプロピレンの代わりにアクリル-ブタジエン-スチレン樹脂(ABS、旭化成社製、商品名「スタイラック IM30」)を用いたこと、第1の鱗片状黒鉛粒子を用いなかったこと、及び薄片化黒鉛(日本黒鉛社製、商品名「UP-35N」、平均粒子径30μm)の添加量を60重量部としたこと以外は実施例11と同様にして樹脂成形体及び筐体を得た。
(Example 26)
As the first thermoplastic resin, acrylic-butadiene-styrene resin (ABS, manufactured by Asahi Kasei Co., Ltd., trade name “Stylac IM30”) was used instead of polypropylene, and the first scaly graphite particles were not used. A resin molded body and a casing were prepared in the same manner as in Example 11 except that the amount of exfoliated graphite (trade name “UP-35N” manufactured by Nippon Graphite Co., Ltd., average particle diameter 30 μm) was 60 parts by weight. Obtained.
 (実施例27)
 第1の鱗片状黒鉛粒子として平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)90重量部を用い、さらに平均粒子径100μmの薄片化黒鉛(アイテック社製、商品名「iGrafen-α」、平均粒子径100μm)10重量部を用いたこと以外は実施例19と同様にして樹脂成形体及び筐体を得た。
(Example 27)
As the first flaky graphite particles, 90 parts by weight of flaky graphite particles having an average particle diameter of 7 μm (product name “PCH7”, average particle diameter of 7 μm, manufactured by Ito Graphite Co., Ltd.) are used, and exfoliated graphite having an average particle diameter of 100 μm ( A resin molded body and a casing were obtained in the same manner as in Example 19 except that 10 parts by weight manufactured by ITEC Co., Ltd., trade name “iGrafen-α”, average particle diameter 100 μm) was used.
 (実施例28)
 第1の熱可塑性樹脂として、ポリアミド6の代わりにシンジオタクチックポリスチレン(SPS、出光興産社製、商品名「S105」)を用いたこと以外は実施例17と同様にして樹脂成形体及び筐体を得た。
(Example 28)
Resin molded body and casing in the same manner as in Example 17 except that syndiotactic polystyrene (SPS, manufactured by Idemitsu Kosan Co., Ltd., trade name “S105”) was used as the first thermoplastic resin instead of polyamide 6. Got.
 (実施例29)
 メッキとして銅メッキ10μmを被膜したこと以外は実施例1と同様にして樹脂成形体及び筐体を得た。
(Example 29)
A resin molded body and a casing were obtained in the same manner as in Example 1 except that a copper plating of 10 μm was coated as the plating.
 (比較例1)
 実施例1の第1の鱗片状黒鉛粒子の代わりに、球状黒鉛(伊藤黒鉛社製、商品名「SG-BL40」、平均粒子径40μm)100重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Comparative Example 1)
Example 1 was used except that instead of the first scaly graphite particles of Example 1, 100 parts by weight of spherical graphite (trade name “SG-BL40”, average particle diameter of 40 μm, manufactured by Ito Graphite Co., Ltd.) was used. Similarly, a resin molded body and a casing were obtained.
 (比較例2)
 実施例1の第1の鱗片状黒鉛粒子の代わりに、平均粒子径60μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「Z-100」、平均粒子径60μm)100重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Comparative Example 2)
Instead of the first scaly graphite particles of Example 1, 100 parts by weight of scaly graphite particles having an average particle diameter of 60 μm (trade name “Z-100”, average particle diameter of 60 μm, manufactured by Ito Graphite Co., Ltd.) was used. Except for the above, a resin molded body and a housing were obtained in the same manner as in Example 1.
 (比較例3)
 実施例1の第1の鱗片状黒鉛粒子の代わりに、平均粒子径60μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「Z-100」、平均粒子径60μm)150重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Comparative Example 3)
Instead of the first scaly graphite particles of Example 1, 150 parts by weight of scaly graphite particles having an average particle diameter of 60 μm (trade name “Z-100”, average particle diameter of 60 μm, manufactured by Ito Graphite Co., Ltd.) was used. Except for the above, a resin molded body and a housing were obtained in the same manner as in Example 1.
 (比較例4)
 実施例1の第1の鱗片状黒鉛粒子の代わりに、炭素繊維(日本グラスファイバー社製、商品名「XN-100」ミルドファイバー、繊維長50μm)100重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Comparative Example 4)
Example 1 except that 100 parts by weight of carbon fiber (manufactured by Nippon Glass Fiber Co., Ltd., trade name “XN-100” milled fiber, fiber length 50 μm) was used instead of the first scaly graphite particles of Example 1. In the same manner as in Example 1, a resin molded body and a casing were obtained.
 (比較例5)
 第1の熱可塑性樹脂として、ポリプロピレンの代わりに環状オレフィンコポリマー(COC、ポリプラスチック社製、商品名「8007」)を用いたこと、及び第1の鱗片状黒鉛粒子の代わりに、平均粒子径120μmの鱗片状黒鉛粒子(日本黒鉛社製、商品名「F#2」、平均粒子径120μm)100重量部を用いたこと以外は実施例1と同様にして樹脂成形体及び筐体を得た。
(Comparative Example 5)
As the first thermoplastic resin, a cyclic olefin copolymer (COC, manufactured by Polyplastics, trade name “8007”) was used instead of polypropylene, and an average particle diameter of 120 μm was used instead of the first scaly graphite particles. A resin molded body and a casing were obtained in the same manner as in Example 1 except that 100 parts by weight of flaky graphite particles (manufactured by Nippon Graphite Co., Ltd., trade name “F # 2”, average particle diameter 120 μm) were used.
 (比較例6)
 COCの代わりにポリアミド6(PA、東レ社製、商品名「CM1007」)を用いたこと以外は比較例5と同様にして筐体を得た。
(Comparative Example 6)
A casing was obtained in the same manner as in Comparative Example 5 except that polyamide 6 (PA, trade name “CM1007”, manufactured by Toray Industries, Inc.) was used instead of COC.
 (比較例7)
 第1の鱗片状黒鉛粒子の代わりに、平均粒子径60μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「Z-100」、平均粒子径60μm)5重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Comparative Example 7)
Implementation was performed except that 5 parts by weight of scaly graphite particles having an average particle diameter of 60 μm (made by Ito Graphite Co., Ltd., trade name “Z-100”, average particle diameter of 60 μm) were used instead of the first scaly graphite particles. In the same manner as in Example 1, a resin molded body and a casing were obtained.
 (比較例8)
 第1の鱗片状黒鉛粒子の代わりに、平均粒子径7μmの鱗片状黒鉛粒子(伊藤黒鉛社製、商品名「PCH7」、平均粒子径7μm)210重量部を用いたこと以外は、実施例1と同様にして樹脂成形体及び筐体を得た。
(Comparative Example 8)
Example 1 except that 210 parts by weight of scaly graphite particles having an average particle diameter of 7 μm (trade name “PCH7”, average particle diameter of 7 μm, manufactured by Ito Graphite Co., Ltd.) were used instead of the first scaly graphite particles. In the same manner as above, a resin molded body and a casing were obtained.
 (評価方法)
 実施例及び比較例で得られた樹脂成形体及び筐体について、以下の評価を行った。結果を下記の表1~表3に示す。
(Evaluation methods)
The following evaluation was performed about the resin molding and the housing | casing obtained by the Example and the comparative example. The results are shown in Tables 1 to 3 below.
 エチレン成分含有量;
 エチレン成分含有量(濃度)は下記の要領で測定した。まず、ホモプロピレン樹脂に、エチレン含有量が既知のエチレン-α-オレフィン共重合体(ダウケミカル社製、商品名「エンゲージ 8100」、エチレン成分の含有量:58質量%)を5質量%、10質量%、20質量%、30質量%の割合で精秤配合し、熱キシレンによって完溶させた。溶解した溶液を、ガラス板上に塗布し、フィルムを作製後、下記赤外線スペクトル測定条件により測定し、ポリプロピレン系樹脂のポリプロピレンの吸収(1304cm-1)とポリエチレンの吸収(720cm-1)の吸光度比より、検量線を作成した。各実施例及び比較例で用いた熱可塑性樹脂について、同様にフィルムを作成した後、下記赤外線スペクトル測定条件により測定し、上記方法により作成した検量線を用いて、エチレン成分含有量を算出した。
Ethylene component content;
The ethylene component content (concentration) was measured as follows. First, an ethylene-α-olefin copolymer having a known ethylene content (made by Dow Chemical Co., trade name “engage 8100”, content of ethylene component: 58% by mass) in a homopropylene resin is 5% by mass, 10% A precise balance was blended at a ratio of 20% by mass, 20% by mass, and 30% by mass and completely dissolved with hot xylene. The dissolved solution was coated on a glass plate and a film was prepared. The film was then measured under the following infrared spectrum measurement conditions, and the absorbance ratio of the polypropylene-based resin polypropylene absorption (1304 cm −1 ) to polyethylene absorption (720 cm −1 ). Thus, a calibration curve was created. About the thermoplastic resin used by each Example and the comparative example, after producing a film similarly, it measured on the following infrared spectrum measurement conditions, and calculated ethylene component content using the analytical curve created by the said method.
 [測定条件]
 測定装置:Thermo Electron Corporation社製、製品名「NICOLET 6700」
 測定周波数:4000~500cm-1
 分解能:4cm-1
 スキャン回数:32回
[Measurement condition]
Measuring device: manufactured by Thermo Electron Corporation, product name “NICOLET 6700”
Measurement frequency: 4000 to 500 cm −1
Resolution: 4cm -1
Number of scans: 32
 体積平均粒子径(平均粒子径);
 黒鉛粒子の体積平均粒子径は、JIS Z 8825に準拠して、粒子径解析-レーザー回折/散乱法により測定した。
Volume average particle size (average particle size);
The volume average particle size of the graphite particles was measured by particle size analysis-laser diffraction / scattering method in accordance with JIS Z 8825.
 具体的には、樹脂成形体(筐体)から切り出した試験片を600℃で加熱することで樹脂を飛ばして黒鉛粒子取り出した。得られた黒鉛粒子をその濃度が2重量%となるように石鹸水溶液(中性洗剤:0.01%含有)に投入し、超音波ホモジナイザーを用いて300wの出力で超音波を1分間照射し、これにより懸濁液を得た。次に、懸濁液についてレーザー回折・散乱式の粒度分析測定装置(日機装社製、製品名「マイクロトラックMT3300」)により黒鉛粒子の体積粒子径分布を測定し、この体積粒子径分布の累積50%の値を黒鉛粒子の平均体積粒子径として算出した。 Specifically, the test piece cut out from the resin molded body (housing) was heated at 600 ° C. to remove the resin and take out graphite particles. The obtained graphite particles are put into a soap solution (neutral detergent: 0.01%) so that the concentration becomes 2% by weight, and ultrasonic waves are irradiated for 1 minute at an output of 300 w using an ultrasonic homogenizer. This gave a suspension. Next, the volume particle size distribution of the graphite particles is measured for the suspension using a laser diffraction / scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., product name “Microtrack MT3300”). % Value was calculated as the average volume particle diameter of the graphite particles.
 粒子径ピーク数,d1/d2、p1/p2;
 粒子径ピーク数は、上記体積平均粒子径の欄で得られた体積粒子径分布から求めた。図7は、実施例14の黒鉛粒子の体積粒子径分布を示す図である。例えば、図7の黒鉛粒子では、粒子径ピークが2つ存在していることがわかる。なお、実施例14を代表して取り挙げ説明するが、他の実施例や比較例においても同様にして、粒子径ピーク数,d1/d2、p1/p2を求めた。
Particle diameter peak number, d1 / d2, p1 / p2;
The number of particle diameter peaks was determined from the volume particle diameter distribution obtained in the column of volume average particle diameter. FIG. 7 is a view showing the volume particle size distribution of the graphite particles of Example 14. For example, it can be seen that there are two particle diameter peaks in the graphite particles of FIG. In addition, although it mentions and describes on behalf of Example 14, the particle diameter peak number, d1 / d2, and p1 / p2 were calculated | required similarly in the other Example and the comparative example.
 d1/d2は、黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、最小粒子径ピークを構成している体積平均粒子径をd1とし、最大粒子径ピークを構成している黒鉛粒子の体積平均粒子径をd2としたときの比から求めた。例えば、図7では、矢印Aで示す粒子径ピークを構成している体積平均粒子径がd1であり、矢印Bで示す粒子径ピークを構成している体積平均粒子径がd2である。 d1 / d2 is the volume average particle diameter distribution of graphite particles, and in the range where the volume average particle diameter is 150 μm or less, the volume average particle diameter constituting the minimum particle diameter peak is d1, and the maximum particle diameter peak is formed. It was determined from the ratio when the volume average particle diameter of the graphite particles used was d2. For example, in FIG. 7, the volume average particle diameter constituting the particle diameter peak indicated by arrow A is d1, and the volume average particle diameter constituting the particle diameter peak indicated by arrow B is d2.
 p1/p2は、黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、最小粒子径ピークのピーク頻度をp1(%)とし、最大粒子径ピークのピーク頻度をp2(%)としたときの比から求めた。例えば、図7では、矢印Aで示す粒子径ピークのピーク頻度がp1(%)であり、矢印Bで示す粒子径ピークのピーク頻度がp2(%)である。 p1 / p2 represents the peak frequency of the minimum particle size peak in the range where the volume average particle size is 150 μm or less in the volume average particle size distribution of the graphite particles, and the peak frequency of the maximum particle size peak is p2 It was obtained from the ratio when (%). For example, in FIG. 7, the peak frequency of the particle diameter peak indicated by arrow A is p1 (%), and the peak frequency of the particle diameter peak indicated by arrow B is p2 (%).
 形状及び平均厚み径;
 形状及び平均厚み径は、走査型電子顕微鏡(SEM、日本電子社製、品番「JSM-6330F」)を用いて測定した。具体的には、樹脂成形体(筐体)から切り出した試験片を600℃で加熱することで樹脂を飛ばして黒鉛粒子取り出し、プレパラート上に載せた状態で、走査型電子顕微鏡にて形状を観察し、黒鉛粒子の厚みを計測した。
Shape and average thickness diameter;
The shape and average thickness diameter were measured using a scanning electron microscope (SEM, manufactured by JEOL Ltd., product number “JSM-6330F”). Specifically, a test piece cut out from a resin molded body (housing) is heated at 600 ° C., and the resin is removed to take out graphite particles. The shape is observed with a scanning electron microscope in a state where it is placed on a slide. Then, the thickness of the graphite particles was measured.
 比重;
 得られた樹脂成形体をペレット化し、プレス温度230℃、プレス圧力15MPaにてプレスシートを作製し、JIS K 7112に準拠して水中置換法にて、樹脂成形体(筐体)の比重を測定した。
specific gravity;
The obtained resin molded product is pelletized, a press sheet is produced at a press temperature of 230 ° C. and a press pressure of 15 MPa, and the specific gravity of the resin molded product (housing) is measured by an underwater replacement method in accordance with JIS K 7112. did.
 損失正接温度;
 損失正接の最大値を示す温度である損失正接温度は、JIS K 7244-4に準拠して測定した。具体的には、得られた樹脂成形体について、幅5mm×長さ24mm×厚み0.3mmの試験シートを作製した。作製した試験シートを歪み量0.3%、周波数1Hz及び昇温速度3℃/分の条件下で、動的粘弾性の温度分散測定を行うことにより求めた。動的粘弾性の温度分散測定は、動的粘弾性測定装置(レオメトリックス社製、商品名「RSA」)を用いて測定した。
Loss tangent temperature;
The loss tangent temperature, which is the temperature showing the maximum value of the loss tangent, was measured according to JIS K 7244-4. Specifically, a test sheet having a width of 5 mm, a length of 24 mm, and a thickness of 0.3 mm was prepared for the obtained resin molded body. The produced test sheet was obtained by performing temperature dispersion measurement of dynamic viscoelasticity under the conditions of a strain amount of 0.3%, a frequency of 1 Hz, and a heating rate of 3 ° C./min. The temperature dispersion measurement of dynamic viscoelasticity was measured using a dynamic viscoelasticity measuring apparatus (trade name “RSA” manufactured by Rheometrics).
 熱伝導率の測定;
 筐体の底面部分から100mm×100mmの大きさに試験片を切り出し、熱伝導率の測定に用いた。
Measurement of thermal conductivity;
A test piece was cut out to a size of 100 mm × 100 mm from the bottom portion of the housing and used for measurement of thermal conductivity.
 筐体を構成する試験片の平面または曲面における任意の方向をx方向及び該x方向と直交する方向をy方向とし、試験片の厚み方向をz方向としたとき、x方向の熱伝導率λx、y方向の熱伝導率λy及びz方向の熱伝導率λzを、それぞれ以下の式を用いて測定した。 When the arbitrary direction on the plane or curved surface of the test piece constituting the housing is the x direction, the direction orthogonal to the x direction is the y direction, and the thickness direction of the test piece is the z direction, the thermal conductivity λx in the x direction , Y-direction thermal conductivity λy and z-direction thermal conductivity λz were measured using the following equations, respectively.
 熱伝導率(W/(m・K))=熱拡散率×比重×比熱  …(1) Thermal conductivity (W / (m · K)) = thermal diffusivity x specific gravity x specific heat (1)
 式(1)において、各方向における熱拡散率の測定は、ベテル社製、商品名「TA33」を用いて行った。上記のようにして得られたλx、λy及びλzを用い、min(λx,λy)/λz、λx/λyを得た。 In Formula (1), the measurement of the thermal diffusivity in each direction was performed using a product name “TA33” manufactured by Bethel. Using λx, λy and λz obtained as described above, min (λx, λy) / λz and λx / λy were obtained.
 また、この測定方法にて評価を行なう場合、面内方向については、照射するキセノンフラッシュの放射熱を検出できない場合があるため、必要に応じて筐体から切り抜いた試験片を溶融加熱して冷却プレスすることで厚みを薄くして、検出可能なサンプル厚みに調整することを行なった。 When evaluating with this measurement method, the radiant heat of the irradiated xenon flash may not be detected in the in-plane direction. Therefore, if necessary, the specimen cut out from the housing is melted and heated to cool it. The thickness was reduced by pressing and adjusted to a detectable sample thickness.
 なお、比重は、ALFAMIRAGE社製、商品名「MDS-300」を用いて測定した。また、比熱は、セイコーインスツルメンツ社製、商品名「DSC-6200」を用いて測定した。 The specific gravity was measured using a product name “MDS-300” manufactured by ALFAMIRAGE. The specific heat was measured using a product name “DSC-6200” manufactured by Seiko Instruments Inc.
 熱拡散性の評価(放熱性評価);
 筐体の底面部分から縦100mm×横100mm×厚み1.6mmの大きさに試験片を切り出し、熱拡散性評価の測定に用いた。
Thermal diffusivity evaluation (heat dissipation evaluation);
A test piece was cut out from the bottom part of the casing into a size of 100 mm long × 100 mm wide × 1.6 mm thick and used for measurement of thermal diffusivity evaluation.
 熱拡散性の評価は、試験片の下側中央部にヒーター(坂口電熱社製、品番「マイクロセラミックヒーターMS-5」)を配置し、試験片とヒーターとの間は熱伝導グリス(AINEX社製、品番「GS-04」、熱伝導率3.8W/(m・K))1gを均一に塗布することで接合した。また、ヒーターの真上に当たる試験片の上側には熱電対をテープで固定して、熱電対を用いて温度を測定した。なお、試験片厚みは、1.6mmであった。 For the evaluation of thermal diffusivity, a heater (Sakaguchi Electric Heating Co., Ltd., product number “Micro Ceramic Heater MS-5”) is placed at the center of the lower side of the test piece. The product was joined by uniformly applying 1 g of product number “GS-04” and thermal conductivity 3.8 W / (m · K)). In addition, a thermocouple was fixed with a tape on the upper side of the test piece that was directly above the heater, and the temperature was measured using the thermocouple. The test piece thickness was 1.6 mm.
 ヒーターは、直流電源装置を用いて8Vの電圧で加熱させ、800秒後(ほぼ温度上昇が小さくなり、飽和温度に達している時間)に試験片の上側中央部の温度を測定した。この温度が低いほど熱の浸透性が低いので、すなわち熱を周囲に拡散しているので、放熱性において良好な筐体といえる。 The heater was heated at a voltage of 8 V using a DC power supply device, and the temperature at the upper central portion of the test piece was measured after 800 seconds (the time when the temperature rise was small and reached the saturation temperature). The lower the temperature, the lower the heat permeability, that is, the heat is diffused to the surroundings.
 シャルピー耐衝撃性試験;
 JIS K 7111に準拠し、常温23℃環境下にてシャルピー耐衝撃試験を行った。なお、試験片については、筐体を細かく裁断することでペレット状成型物を作製し、それをJIS K 7111に記載される1号試験片の形状をした金型で、シリンダー温度180~230℃(材料によって適宜調整)の条件にて射出成型することで得た。得られた試験片をJIS K 7111準拠のA形状にするため、ノッチ加工機(安田精機製作所社製、商品名「No.189 ノッチ加工機」)を用いて加工した。続いて、JIS K 7111準拠のA型ノッチにシャルピー耐衝撃性試験の測定を行った。また、シャルピー耐衝撃試験に用いた試験装置は、安田精機製作所社製、商品名「No.258 万能衝撃試験機」を用いた。また、試験片を金型に射出するための成型機は、東芝機械社製、品番「EC160NP」を用いた。
Charpy impact resistance test;
In accordance with JIS K 7111, a Charpy impact resistance test was performed in a normal temperature 23 ° C. environment. For the test piece, a pellet-shaped molded product was prepared by finely cutting the casing, and this was a mold having the shape of the No. 1 test piece described in JIS K 7111, and the cylinder temperature was 180 to 230 ° C. It was obtained by injection molding under the conditions of (adjusted appropriately depending on the material). In order to make the obtained test piece into A shape conforming to JIS K 7111, it was processed using a notch processing machine (trade name “No. 189 notch processing machine” manufactured by Yasuda Seiki Seisakusho Co., Ltd.). Subsequently, a Charpy impact resistance test was performed on an A-shaped notch conforming to JIS K 7111. Further, as a test apparatus used for the Charpy impact resistance test, a product name “No. 258 universal impact tester” manufactured by Yasuda Seiki Seisakusho Co., Ltd. was used. Further, as a molding machine for injecting the test piece into the mold, a product number “EC160NP” manufactured by Toshiba Machine Co., Ltd. was used.
 落球衝撃強度;
 落球衝撃強度は、以下のようにして測定した。まず、樹脂成形体を23℃の恒温室内の水平面上に設置した。その後、樹脂成形体の上面に鉄球(重量0.5kg)を、樹脂成形体の上面から垂直方向において高さ0.1mの位置から自然落下させた。鉄球の落下によって樹脂成形体における割れの発生の有無を目視により観察した。樹脂成形体に割れが発生していない場合には、垂直方向においてさらに0.05m高い位置から樹脂成形体の上面に鉄球を自然落下させて樹脂成形体における割れの発生の有無を目視により観察した。そして、樹脂成形体に割れが発生するまで、鉄球の高さを0.05m毎に高くして鉄球の自然落下を繰り返して、樹脂成形体に割れが発生した最小の鉄球の高さを測定した。なお、表1~表3においては、最小の鉄球の高さの単位をcmで示している。
Falling ball impact strength;
The falling ball impact strength was measured as follows. First, the resin molding was installed on a horizontal surface in a constant temperature room at 23 ° C. Thereafter, an iron ball (weight 0.5 kg) was naturally dropped from a position of a height of 0.1 m in the vertical direction from the upper surface of the resin molded body on the upper surface of the resin molded body. The presence or absence of cracks in the resin molded body due to the dropping of the iron balls was visually observed. If no cracks occur in the resin molded body, the steel ball is naturally dropped on the upper surface of the resin molded body from a position 0.05 m higher in the vertical direction, and the presence or absence of cracks in the resin molded body is visually observed. did. And until the crack occurs in the resin molding, the height of the iron ball is increased every 0.05 m, and the natural falling of the iron ball is repeated, and the minimum height of the iron ball where the crack occurs in the resin molding Was measured. In Tables 1 to 3, the minimum height of the iron ball is shown in cm.
 電磁波シールド性;
 電磁波シールド性(電磁波遮蔽性能、単位;dB)は、KEC法(KEC:「関西電子工業振興センター」の略称)を用いて測定した。より具体的には、擬似ノイズ源を発信する信号発信用のアンテナが付いたプローブと受信アンテナが付いたプローブとの間の電界強度、及び両プローブ間に試料を挿入した場合の電界強度を測定することにより求めた。なお、測定周波数は、100MHzとした。
Electromagnetic shielding properties;
The electromagnetic wave shielding property (electromagnetic wave shielding performance, unit: dB) was measured using a KEC method (KEC: abbreviation for “Kansai Electronics Industry Promotion Center”). More specifically, the electric field strength between a probe with a signal transmitting antenna that transmits a pseudo noise source and a probe with a receiving antenna, and the electric field strength when a sample is inserted between both probes are measured. Was determined by The measurement frequency was 100 MHz.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3から明らかなように、実施例1~29では、全て、熱拡散性の評価が39.9℃以下であり、シャルピー耐衝撃性試験の結果が2.1kJ/m以上であり、かつ落球衝撃強度が60cm以上であった。すなわち、実施例1~29では、放熱性及び耐衝撃性の双方に優れていることが確認できた。 As is apparent from Tables 1 to 3, in Examples 1 to 29, the thermal diffusibility was all evaluated at 39.9 ° C. or lower, and the Charpy impact resistance test result was 2.1 kJ / m 2 or higher. And the falling ball impact strength was 60 cm or more. That is, it was confirmed that Examples 1 to 29 were excellent in both heat dissipation and impact resistance.
1…樹脂成形体
2…クリップ
3…筐体
DESCRIPTION OF SYMBOLS 1 ... Resin molding 2 ... Clip 3 ... Housing

Claims (17)

  1.  熱伝導性を有し、かつ主面を有する樹脂成形体であって、
     熱可塑性樹脂と黒鉛粒子とを含み、
     前記黒鉛粒子の体積平均粒子径が、0.1μm以上、40μm未満であり、
     前記熱可塑性樹脂100重量部に対する前記黒鉛粒子の含有量が、10重量部以上、200重量部以下であり、
     前記主面において、任意の方向をx方向及び該x方向に直交する方向をy方向とし、前記樹脂成形体の厚み方向をz方向としたときに、
     前記x方向の熱伝導率λx、前記y方向の熱伝導率λy及び前記z方向の熱伝導率λzが、min(λx,λy)/λz≧3を満たしている、樹脂成形体。
    A resin molded body having thermal conductivity and having a main surface,
    A thermoplastic resin and graphite particles,
    The graphite particles have a volume average particle diameter of 0.1 μm or more and less than 40 μm,
    Content of the graphite particles with respect to 100 parts by weight of the thermoplastic resin is 10 parts by weight or more and 200 parts by weight or less,
    In the main surface, when an arbitrary direction is an x direction and a direction orthogonal to the x direction is a y direction, and a thickness direction of the resin molded body is a z direction,
    The resin molded product, wherein the thermal conductivity λx in the x direction, the thermal conductivity λy in the y direction, and the thermal conductivity λz in the z direction satisfy min (λx, λy) / λz ≧ 3.
  2.  前記主面が、平面又は曲面である、請求項1に記載の樹脂成形体。 The resin molded body according to claim 1, wherein the main surface is a flat surface or a curved surface.
  3.  前記λx、前記λy及び前記λzが、min(λx,λy)/λz≧11を満たしている、請求項1又は2に記載の樹脂成形体。 The resin molded body according to claim 1 or 2, wherein the λx, the λy, and the λz satisfy min (λx, λy) / λz ≧ 11.
  4.  比重が、1.0以上、1.4未満である、請求項1~3のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 3, wherein the specific gravity is 1.0 or more and less than 1.4.
  5.  前記λx及び前記λyにおいて、λx/λyが、0.5以上、2以下を満たしている、請求項1~4のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 4, wherein, in λx and λy, λx / λy satisfies 0.5 or more and 2 or less.
  6.  前記λzが、λz<2(W/m・k)を満たしている、請求項1~5のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 5, wherein the λz satisfies λz <2 (W / m · k).
  7.  前記黒鉛粒子が板状である、請求項1~6のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 6, wherein the graphite particles are plate-shaped.
  8.  前記黒鉛粒子の平均厚み径が、0.1μm以上、10μm未満である、請求項1~7のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 7, wherein an average thickness diameter of the graphite particles is 0.1 µm or more and less than 10 µm.
  9.  前記黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、2つ以上の異なる粒子径ピークを有する、請求項1~8のいずれか1項に記載の樹脂成形体。 The resin molded product according to any one of claims 1 to 8, wherein the graphite average particle size distribution has two or more different particle size peaks in a volume average particle size distribution of 150 µm or less. .
  10.  前記黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、最小粒子径ピークを構成している前記黒鉛粒子の体積平均粒子径をd1とし、最大粒子径ピークを構成している前記黒鉛粒子の体積平均粒子径をd2としたときに、0.1≦d1/d2≦0.6を満たしている、請求項1~9のいずれか1項に記載の樹脂成形体。 Of the volume average particle size distribution of the graphite particles, in the range where the volume average particle size is 150 μm or less, the volume average particle size of the graphite particles constituting the minimum particle size peak is d1, and the maximum particle size peak is formed. The resin molded product according to any one of claims 1 to 9, wherein 0.1 ≦ d1 / d2 ≦ 0.6 is satisfied when a volume average particle diameter of the graphite particles is d2. .
  11.  前記黒鉛粒子の体積平均粒子径分布のうち、体積平均粒子径が150μm以下の範囲において、最小粒子径ピークのピーク頻度をp1(%)とし、最大粒子径ピークのピーク頻度をp2(%)としたときに、0.1≦p1/p2≦0.9を満たしている、請求項1~10のいずれか1項に記載の樹脂成形体。 In the volume average particle size distribution of the graphite particles, in the range where the volume average particle size is 150 μm or less, the peak frequency of the minimum particle size peak is p1 (%), and the peak frequency of the maximum particle size peak is p2 (%). The resin molded product according to any one of claims 1 to 10, wherein 0.1 ≦ p1 / p2 ≦ 0.9 is satisfied.
  12.  繊維系フィラーをさらに含む、請求項1~11のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 11, further comprising a fiber filler.
  13.  前記繊維系フィラーの含有量が、前記熱可塑性樹脂100重量部に対し、1重量部以上、200重量部以下である、請求項12に記載の樹脂成形体。 The resin molded body according to claim 12, wherein the content of the fiber filler is 1 part by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  14.  前記熱可塑性樹脂が、オレフィン系樹脂を含有している、請求項1~13のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 13, wherein the thermoplastic resin contains an olefin resin.
  15.  前記オレフィン系樹脂がエチレン成分を含有し、該エチレン成分の含有量が5~40質量%である、請求項14に記載の樹脂成形体。 The resin molded product according to claim 14, wherein the olefin-based resin contains an ethylene component, and the content of the ethylene component is 5 to 40% by mass.
  16.  周波数1Hz及び歪み0.3%における動的粘弾性測定により測定される前記樹脂成形体の損失正接の最大値を示す温度が20℃以下である、請求項1~15のいずれか1項に記載の樹脂成形体。 The temperature showing the maximum value of the loss tangent of the resin molded body measured by dynamic viscoelasticity measurement at a frequency of 1 Hz and a strain of 0.3% is 20 ° C or less. Resin molded body.
  17.  放熱シャーシ、放熱筐体、又はヒートシンク形状である、請求項1~16のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 16, which has a heat dissipation chassis, a heat dissipation housing, or a heat sink shape.
PCT/JP2017/014076 2016-04-04 2017-04-04 Resin molded body WO2017175759A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017526992A JP6310618B2 (en) 2016-04-04 2017-04-04 Resin molded body
CN201780017472.XA CN108779267B (en) 2016-04-04 2017-04-04 Resin molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-075114 2016-04-04
JP2016075114 2016-04-04
JP2016236614 2016-12-06
JP2016-236614 2016-12-06

Publications (1)

Publication Number Publication Date
WO2017175759A1 true WO2017175759A1 (en) 2017-10-12

Family

ID=60001259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014076 WO2017175759A1 (en) 2016-04-04 2017-04-04 Resin molded body

Country Status (3)

Country Link
JP (1) JP6310618B2 (en)
CN (2) CN108779267B (en)
WO (1) WO2017175759A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174193A (en) * 2018-03-27 2019-10-10 トヨタ自動車株式会社 Method for predicting degradation of grease, grease, and method for manufacturing grease
WO2022158600A1 (en) * 2021-01-25 2022-07-28 積水テクノ成型株式会社 Resin composition and resin molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175759A1 (en) * 2016-04-04 2017-10-12 積水化学工業株式会社 Resin molded body
JP6569833B1 (en) * 2019-01-11 2019-09-04 住友化学株式会社 Roof member or ceiling member, and building
US20230174837A1 (en) * 2020-03-30 2023-06-08 Toyobo Co., Ltd. Thermally conductive resin composition and molded article comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504663A (en) * 2003-09-03 2007-03-01 ゼネラル・エレクトリック・カンパニイ Thermally conductive materials using conductive nanoparticles
JP2012038763A (en) * 2010-08-03 2012-02-23 Hitachi Chem Co Ltd Heat conducting sheet, method of producing the same, and heat radiator utilizing heat conducting sheet
JP2013048257A (en) * 2010-10-06 2013-03-07 Hitachi Chemical Co Ltd Semiconductor device
WO2013099089A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Anisotropic thermally conductive composition and molded article thereof
WO2014024743A1 (en) * 2012-08-10 2014-02-13 株式会社カネカ Insulative high heat-conducting thermoplastic resin composition
JP2015170660A (en) * 2014-03-05 2015-09-28 加川 清二 Heat radiation sheet having high thermal conductivity and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133245A (en) * 2005-11-11 2007-05-31 Swcc Showa Device Technology Co Ltd Sound absorbing structure
JP2007183482A (en) * 2006-01-10 2007-07-19 Canon Inc Developer carrier and manufacturing method for developer carrier
WO2007114056A1 (en) * 2006-03-30 2007-10-11 Asahi Kasei Chemicals Corporation Resin composition and molded product thereof
WO2009142290A1 (en) * 2008-05-23 2009-11-26 日立化成工業株式会社 Heat radiation sheet and heat radiation device
WO2011010290A1 (en) * 2009-07-24 2011-01-27 Ticona Llc Thermally conductive thermoplastic resin compositions and related applications
WO2017175759A1 (en) * 2016-04-04 2017-10-12 積水化学工業株式会社 Resin molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504663A (en) * 2003-09-03 2007-03-01 ゼネラル・エレクトリック・カンパニイ Thermally conductive materials using conductive nanoparticles
JP2012038763A (en) * 2010-08-03 2012-02-23 Hitachi Chem Co Ltd Heat conducting sheet, method of producing the same, and heat radiator utilizing heat conducting sheet
JP2013048257A (en) * 2010-10-06 2013-03-07 Hitachi Chemical Co Ltd Semiconductor device
WO2013099089A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Anisotropic thermally conductive composition and molded article thereof
WO2014024743A1 (en) * 2012-08-10 2014-02-13 株式会社カネカ Insulative high heat-conducting thermoplastic resin composition
JP2015170660A (en) * 2014-03-05 2015-09-28 加川 清二 Heat radiation sheet having high thermal conductivity and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174193A (en) * 2018-03-27 2019-10-10 トヨタ自動車株式会社 Method for predicting degradation of grease, grease, and method for manufacturing grease
WO2022158600A1 (en) * 2021-01-25 2022-07-28 積水テクノ成型株式会社 Resin composition and resin molded article

Also Published As

Publication number Publication date
CN108779267A (en) 2018-11-09
JPWO2017175759A1 (en) 2018-04-12
CN113817264A (en) 2021-12-21
JP6310618B2 (en) 2018-04-11
CN108779267B (en) 2021-09-14

Similar Documents

Publication Publication Date Title
JP6310618B2 (en) Resin molded body
CN110198989B (en) Resin molded body
Xue et al. Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites
Zhang et al. Thermal properties of graphene filled polymer composite thermal interface materials
TWI668261B (en) Thermal interface material with mixed aspect ratio particle dispersions
JP6152030B2 (en) Thermally conductive foam sheet for electronic equipment
JP6746540B2 (en) Heat conduction sheet
WO2014083890A1 (en) Heat-conducting foam sheet for electronic instruments and heat-conducting laminate for electronic instruments
JP6009917B2 (en) Thermally conductive foam sheet for electronic equipment
Li et al. Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite
JP6815042B2 (en) A resin composition, an article produced from the resin composition, and a method for producing the same.
JP2019167521A (en) Resin molding
JP6182256B1 (en) Resin molded body
JP4746803B2 (en) Thermally conductive electromagnetic shielding sheet
JP6153702B2 (en) Variable thermal conductivity material
JP6298243B2 (en) Thermally conductive laminate for electronic equipment
JP6266890B2 (en) Thermally conductive foam sheet for electronic equipment
US20240092979A1 (en) Resin composition, resin molded article, and method for producing same
JP6266889B2 (en) Thermally conductive foam sheet for electronic equipment
JP6804846B2 (en) Resin molded body
WO2020166584A1 (en) Heat dissipater, heat-dissipating structure, and electronic apparatus
JP2019119752A (en) Thermally conductive elastomer composition and thermally conductive molding
WO2022158601A1 (en) Resin molded article production method and resin molded article formation kit
WO2023182395A1 (en) Resin composition and resin molded body
JP2018053018A (en) Heat-radiation foamed sheet and adhesive tape

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017526992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779137

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779137

Country of ref document: EP

Kind code of ref document: A1