JP2007328841A - 近接場発生素子および情報記録装置 - Google Patents

近接場発生素子および情報記録装置 Download PDF

Info

Publication number
JP2007328841A
JP2007328841A JP2006157846A JP2006157846A JP2007328841A JP 2007328841 A JP2007328841 A JP 2007328841A JP 2006157846 A JP2006157846 A JP 2006157846A JP 2006157846 A JP2006157846 A JP 2006157846A JP 2007328841 A JP2007328841 A JP 2007328841A
Authority
JP
Japan
Prior art keywords
field
optical waveguide
light
generating element
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006157846A
Other languages
English (en)
Inventor
Ippei Suzuki
一平 鈴木
Yoshiteru Murakami
善照 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006157846A priority Critical patent/JP2007328841A/ja
Publication of JP2007328841A publication Critical patent/JP2007328841A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】より高出力の近接場を発生させることができる近接場発生素子および情報記録装置を提供する。
【解決手段】近接場発生素子1は、光源と、上記光源からの光が内部を伝播する光導波路2と、光入射面7および近接場出力面8の間に所定の厚みを有する金属膜3とを備えている。金属膜3は、光導波路2より伝播された光が照射されることにより近接場を発生する入射側搾取部4aが光入射面7に設けられており、入射側搾取部4aにおいて発生した近接場を出力する出力側搾取部4bが近接場出力面8に設けられている。さらに、金属膜3は、入射側搾取部4aにおいて発生した近接場を出力側搾取部4bへと伝播する伝播用搾取部4cが設けられており、入射側搾取部4aを含む、光入射面7から金属膜3の厚み方向に少なくとも一部が光導波路2に嵌入するように、光導波路2に積層されている。
【選択図】図1

Description

本発明は、高出力の近接場を発生する近接場発生素子および情報記録装置に関するものである。
光が集光される焦点、いわゆる光スポットを小径化することにより、種々の分野における種々の高密度化が可能となる。例えば、レーザ光を用いて記録媒体へのデータの記録・再生を行う光記録分野では、高密度記録再生が可能となる。また、レーザ光を用いて樹脂・ガラス等の加工を行う光加工の分野では、より微細な加工を行うことが可能となる。さらに、顕微鏡等を用いた測定分野では、測定分解能を向上させることができる。
そのため、光記録、光加工、顕微鏡による測定等の光を利用する各分野において、従来から光スポットの小径化が望まれてきた。しかし、光スポットの大きさは、通常の光では光の回折限界によって光の波長程度に制限されてしまい、それ以上の小径化は困難であった。そこで、通常の光を用いて光の回折限界よりも小さな光スポットを形成する方法として、局所的に存在する近接場の利用が注目されている。
近接場とは、光の波長よりも小さな微小構造物、例えば開口部のような構造物に光を入射することにより発生し、該開口部のごく近傍にのみ局在する光(電磁場)である。上記開口部近傍において発生した近接場は、該開口部のごく近傍に留まり、他の部分へと伝播しない。
光源から開口部に光を入射させた場合、該開口部の径が該光の波長よりも大きいときには、該光は該開口部に部分的に遮られるが、近接場を発生することなく、そのまま伝搬光として該開口部を透過する。しかし、開口部の径が入射光の波長よりも小さいときには、該光は該開口部をほとんど透過しなくなり、近接場が該開口部近傍に発生する。そして、発生した近接場は開口部の径と略同一のサイズの強度分布を持つために、該開口部周辺においては光の回折限界よりも小径化された光スポットが得られる。
しかし、一般的に、近接場の強度は、光源からの光をレンズにより集光させた光スポットの強度と比べて非常に弱い。そこで、近接場の強度を増強するために様々な技術が研究されている。そのひとつに、表面プラズモンポラリトンを用いた近接場増強がある。表面プラズモンポラリトンとは、金属表面に生じる電子波(plasmon)のことである。近接場と表面プラズモンポラリトンとは、金属表面で共鳴し融合することにより、強めあったり弱めあったりといった相互干渉が生じる。そして、この相互干渉を利用することにより、近接場の強度を強めることが可能である。
このようにして増強された近接場は、光アシスト磁気記録方式において、磁気記録媒体の温度を上昇させるために用いることにより100Gb/inchを超える磁気記録密度を達成することができる。光アシスト磁気記録方式とは、光記録分野において、次世代高密度磁気記録の有望な技術として注目を浴びており、熱揺らぎに強い高保磁力を有する磁気記録媒体に対して磁気記録を行うものである。具体的には、磁気記録媒体の表面に光を集光し、局所的に該磁気記録媒体の温度を上げることにより、該磁気記録媒体の保磁力を減少させる。これにより、通常の磁気ヘッドを用いて、上記磁気記録媒体に磁気記録することが可能となる。
近接場を用いて光アシスト磁気記録を行うための技術が、特許文献1に記載されている。特許文献1に記載された近接場発生素子101は、光による磁気記録媒体の加熱と、磁気による記録とを同時に行うことが可能な構成である。近接場発生素子101について、図11を参照して説明する。図11(a)は近接場と磁場とを同時に発生することが可能な従来の近接場発生素子101の概略構成を示す平面図であり、図11(b)は図11(a)の電流方向とは垂直な方向であって、狭窄部を通る断面図である。
近接場発生素子101は、図11(a)・図11(b)に示すように、図示しない光源と、電流が狭窄される狭窄部104を有した導体103が積層された光導波路102とを備えている。そして、導体103に電流105を流すことによって、電流105が狭窄部104において狭窄され、狭窄部104周辺に磁場が発生する。同時に、上記光源からの光を光導波路102に入射させることにより、入射光106は全反射を繰り返しながら光導波路102内を伝播し、狭窄部104に入射される。これにより、導体103の入射光106が入射される入射面側の狭窄部104において、近接場が発生する。発生した近接場は、表面プラズモンポラリトンとカップリングし、導体103の入射面とは反対側の面の狭窄部104まで伝播し、再び近接場へと変換され、出力される。
このように、近接場発生素子101は、狭窄部104に対して光を入射するために光導波路102を用いることにより、入射光106と出力される近接場とを分離することができる。そのため、強度の強い入射光106と出力される近接場が混在せず、近接場のみを出力することが可能となる。また、光導波路102および導体103は、半導体で用いられるリソグラフィー技術を用いて同時に作成することができため、容易に加工やアッセンブリ等を行うことができる。
特開2004−303299号公報(公開日平成16年10月28日)
しかしながら、上記従来の構成では、光導波路102を用いることにより、入射光106の入射方向が導体103の入射表面に対し略平行となるため、発生する近接場の強度が弱くなるという問題があった。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡易な構成で、より高出力の近接場を発生させることができる近接場発生素子および情報記録装置を提供するものである。
本発明の近接場発生素子は、上記課題を解決するために、光源と、上記光源からの光が内部を屈折率導波により伝播する光導波路と、第1面と、該第1面とは反対側の第2面との間に所定の厚みを有する導体とを備え、上記導体は、上記第1面に、上記光導波路より伝播された光が照射されることにより近接場を発生する近接場発生源が設けられており、上記第2面に、上記近接場発生源において発生した近接場を出力する近接場出力部が設けられており、上記近接場発生源と上記近接場出力部との間には、該近接場発生源において発生した近接場を該近接場出力部へと伝播する近接場伝播路が設けられており、上記近接場発生源を含む、上記第1面から上記導体の厚み方向に少なくとも一部が上記光導波路に嵌入するように、該光導波路に積層されていることを特徴としている。
上記構成により、上記光源から照射された光は、上記光導波路内を屈折率導波により伝播し、上記導体の第1面に設けられた近接場発生源に入射光として入射される。これにより、上記近接場発生源において、近接場が発生する。この近接場は、上記導体上において、表面プラズモンポラリトンに変換される。そして、上記表面プラズモンポラリトンは、上記導体の第1面側から該第1面とは反対側の第2面側まで設けられた近接場伝播路を通り、導体の厚み方向に伝播する。そして、上記第2面側に伝播された表面プラズモンポラリトンは、該第2面に設けられた近接場出力部において、再度近接場となり、出力される。
上記導体は、上記近接場発生源を含む、上記第1面から該導体の厚み方向に少なくとも一部が上記光導波路に嵌入するように、該光導波路に積層されているために、該導体の該近接場発生源において近接場が発生しやすい。このため、上記近接場出力部から最終的に出力される近接場を増強することができる。このように、本発明の近接場発生素子は、簡易な構成により、高出力の近接場を発生させることが可能となる。また、高出力の近接場が必要ない場合には、光源からの出力を調節することにより、近接場の出力を低くすることが可能となり、消費電力を低減できる。
また、本発明の近接場発生素子では、上記光導波路よりも低い屈折率を有し、該光導波路に積層された透明層を備え、上記導体は、上記透明層側から上記近接場発生源を含む上記第1面から該導体の厚み方向に少なくとも一部が上記光導波路に嵌入するように該透明層および該光導波路に嵌入しており、かつ、上記第2面が該透明層から露出していてもよい。
表面プラズモンポラリトンの伝播効率は、上記導体表面の微細な変化によって大きな影響を受ける。この影響を抑制するためには、上記導体表面の酸化を防止することにより、該導体表面の経時変化を小さくする必要がある。
そのため、上記構成により、上記導体が空気と接触する部分を少なくしている。その結果、上記導体表面の酸化を抑制することができ、該導体表面の経時変化を小さくすることが可能となる。そして、長期にわたり上記導体の近接場の増強効果を維持することが可能となる。また、上記光導波路に上記光導波路よりも低い屈折率を有する透明層を積層させることにより、該光導波路のみで構成されている場合と比較して、該光導波路の機械的強度を高めることができる。
また、本発明の近接場発生素子では、前記光導波路内を伝播する光は、略直線偏光を有しており、該光の電場が前記導体の第1面に対する垂直成分を含んでいてもよい。
上記光源から照射された光を、上記光導波路内において僅かな減衰で伝播するためには、全反射の条件を一定にする必要がある。そのため、上記光源から照射される光は略直線偏光を有している。また、上記近接場発生源において発生した近接場と表面プラズモンポラリトンとが効率よくカップリングするためには、上記導体表面に対して垂直成分を持つ電場を生じさせる必要がある。すなわち、近接場の強度を増強させるために寄与する光は、上記導体の第1面に対して垂直の電場成分を持つ光である。そのため、本発明の構成にすることにより、上記導体の第1面に対して垂直の電場成分を持たせることができ、効率良く近接場の強度を増強することが可能となる。
また、本発明の近接場発生素子では、上記導体は、銀、金、アルミニウム、白金もしくは銅、または該金属を含む合金からなっていてもよい。
上述した金属は、表面プラズモンポラリトンが発生しやすく、かつ、伝播しやすいものである。そのため、上記構成により、上記導体の表面プラズモンポラリトンの発生効率および伝播効率を高めることができる。その結果、上記近接場発生源で生じたより多くの近接場が、上記導体表面において表面プラズモンポラリトンとカップリングし、相互干渉により該近接場の強度を強めることができる。
また、本発明の近接場発生素子では、上記導体の上記光導波路への嵌入深さは、該光導波路の厚みの1/2以下であってもよい。
上記構成により、上記導体に設けられた上記近接場発生源において発生する近接場の強度は、光源から照射された光の強度と同等以上にすることができる。
また、本発明の近接場発生素子では、上記導体の上記光導波路への嵌入深さは、該光導波路の厚みの1/4〜1/8の範囲内であってもよい。
上記構成により、上記導体に設けられた上記近接場発生源において発生する近接場の強度は、該導体を上記光導波路の上面から底面までの様々な位置に設けた場合において、特に高い近接場の強度とすることができる。
また、本発明の近接場発生素子では、上記光導波路は、上記光源からの光が入射する端部とは反対側の端部において、該光の伝播方向に対して垂直に設けられた反射面を備えていてもよい。
上記光源から照射され、上記光導波路内を伝播する入射光は、上記導体表面を通過したのち該光源からの光が入射する端部とは反対側の端部に到達する。上記反射面が上記光導波路に設けられていない場合、到達した上記光はそのまま外部に放射される。そこで、本発明の構成にすることにより、到達した上記光を上記反射面により反射光として再び上記導体に照射することができる。そのため、入射光および反射光を近接場の光源として利用することができ、上記近接場発生源から発生する近接場の強度を大きくすることができる。
また、本発明の近接場発生素子では、上記導体表面には、酸化を防止するための酸化防止膜が設けられていてもよい。
上記構成により、上記導体表面の酸化を抑制することができ、該導体表面の経時変化を小さくすることが可能である。そのため、上記導体は長期にわたり近接場の増強効果を維持することが可能となる。また、近接場は到達距離が短いため、記録等に用いる場合には記録媒体との距離を100nm以下に保つ必要があるが、上記導体と上記光導波路との接触面の反対側の面に酸化防止膜を設けることにより、記録媒体等との接触による上記近接場発生源の破壊を抑制することもできる。
また、本発明の近接場発生素子は、上記導体は、上記近接場出力部近傍で磁場を発生させる電流経路を有していてもよい。
上記構成により、上記導体の電流経路に電流を流すことにより、上記近接場出力部近傍で磁場を発生させることができ、上記近接場発生源に光を照射することにより、該近接場出力部において近接場を発生させることができる。すなわち、上記近接場出力部近傍において、磁界および近接場を発生させることができ、所望の位置で磁界および近接場を得ることができる近接場発生素子を簡単な構成の導体によって提供することができる。
また、本発明の情報記録装置は、上述した近接場発生素子と、上記近接場出力部からの近接場により情報記録媒体を昇温するとともに、上記電流経路で発生する磁界により該情報記録媒体の所定の位置に情報を記録するために、該近接場発生素子を該情報記録媒体の所定の位置へ移動させる移動手段とを備えることを特徴としている。
上記構成により、情報記録媒体の所望の位置に近接場発生素子を移動することができる。そのため、情報記録媒体の所望の位置において、上記近接場発生素子は該情報記録媒体の微小領域を昇温するとともに、電流経路で発生する強い磁界によって磁気記録することが可能である。このように、光の回折限界を越えた微小領域での近接場による光アシスト磁気記録のための情報記録装置を実現することができる。また、強い近接場を得ることができるので、情報記録媒体を高温まで昇温することが可能であり、高保磁力を有する情報記録媒体に対する記録を行う情報記録装置を提供することができる。
本発明の近接場発生素子は、以上のように、光源と、上記光源からの光が内部を屈折率導波により伝播する光導波路と、第1面と、該第1面とは反対側の第2面との間に所定の厚みを有する導体とを備え、上記導体は、上記第1面に、上記光導波路より伝播された光が照射されることにより近接場を発生する近接場発生源が設けられており、上記第2面に、上記近接場発生源において発生した近接場を出力する近接場出力部が設けられており、上記近接場発生源と上記近接場出力部との間には、該近接場発生源において発生した近接場を該近接場出力部へと伝播する近接場伝播路が設けられており、上記近接場発生源を含む、上記第1面から上記導体の厚み方向に少なくとも一部が上記光導波路に嵌入するように、該光導波路に積層されていることを特徴としている。
上記構成により、上記導体は、上記近接場発生源を含む、上記第1面から該導体の厚み方向に少なくとも一部が上記光導波路に嵌入するように、該光導波路に積層されているために、該導体の該近接場発生源において近接場が発生しやすい。このため、上記近接場出力部から最終的に出力される近接場を増強することができる。このように、本発明の近接場発生素子は、簡易な構成により、高出力の近接場を発生させることが可能となる。
本発明の実施形態について図1〜図10に基づいて説明すると以下の通りである。
本発明の近接場発生素子は、光源と、上記光源からの光が内部を屈折率導波により伝播する光導波路と、第1面と、該第1面とは反対側の第2面との間に所定の厚みを有する導体とを備えている。上記導体は、上記第1面に、上記光導波路より伝播された光が照射されることにより近接場を発生する近接場発生源が設けられており、上記第2面に、上記近接場発生源において発生した近接場を出力する近接場出力部が設けられており、上記近接場発生源と上記近接場出力部との間には、該近接場発生源において発生した近接場を該近接場出力部へと伝播する近接場伝播路が設けられている。そして、上記導体は、上記近接場発生源を含む、上記第1面から上記導体の厚み方向に少なくとも一部が上記光導波路に嵌入するように、該光導波路に積層されており、上記光源からの光が該光導波路内を伝播し該近接場発生源に照射されると、該近接場発生源において近接場を発生する。
上記近接場発生源において発生した近接場は、上記導体表面の表面プラズモンポラリトンとカップリングする。そして、上記近接場は上記導体に設けられた上記近接場伝播路を伝播し、該導体の上記第2面に設けられた近接場出力部に到達する。そして、上記近接場出力部において近接場が出力される。
なお、表面プラズモンポラリトンとは、金属表面に生じる電子波(plasmon)のことである。近接場と表面プラズモンポラリトンとは、金属表面でカップリングすることにより、強めあったり弱めあったりといった相互干渉が生じ、該近接場を増強させる。
〔第1実施形態〕
本発明の第1実施形態に係る近接場発生素子1の構成について図1〜8を参照して具体的に説明する。図1(a)は本発明の第1実施形態に係る近接場発生素子1の概略構成を示す平面図であり、図1(b)は図1(a)の電流方向とは垂直な方向であって、狭窄部を通る断面図である。
近接場発生素子1は、図1(a)・図1(b)に示すように、光導波路2と、金属膜(導体)3とを備えている。
光導波路2は、図示しない光源から照射された入射光6をその内部において伝播するためのものであり、高屈折率の透明誘電体や光透過性が高い有機材料等から構成される数百nm〜数十μmの膜厚を有する薄膜である。一般的に、透明誘電体としては石英ガラスや半導体材料等の無機材料が用いられ、有機材料としてはPMMA(ポリメチルメタクリレート)等が用いられる。PMMA以外の有機材料としては、例えば、ポリイミド系樹脂{ポリイミド樹脂、ポリ(イミド・イソインドロキナゾリンジオンイミド)樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリエステルイミド樹脂等}、シリコーン系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリキノリン系樹脂、ポリキノキサリン系樹脂、ポリベンゾオキサゾール系樹脂、ポリベンゾチアゾール系樹脂、ポリベンゾイミダゾール系樹脂等の種々の材料が知られている。
光導波路とは、低屈折率の透明層と高屈折率の透明層との屈折率の差による全反射を利用し、光を導波させるものである。なお、低屈折率の透明層は設けられておらず、空気層としてもかまわない。本実施形態の光導波路2では、高屈折率の透明な薄膜層のみから構成されている。
なお、光導波路2は上記構成に限られず、低屈折率の基板上に高屈折率の薄膜層が形成された構成であってもよいし、低屈折率の基板の内部に高屈折率の配線が埋め込まれた構成であってもよい。なお、低屈折率の基板等を用いる場合には、可能な限り低屈折率の誘電体を用いることが好ましい。このように、光導波路2の周囲に、光導波路2の屈折率よりも低い低屈折率を有する基板等を設けることにより、光導波路2の機械的強度を高くすることができるだけでなく、光導波路2とその周囲との屈折率差を、同じ屈折率を有する基板等を用いる場合と比較して、高くすることができるため、屈折率導波により光を光導波路2において効率よく伝播することができる。
金属膜3は、約10〜1000nmの膜厚を有する矩形形状の金属薄膜であり、金属膜3を流れる電流5が狭窄部4において狭窄されることにより狭窄部4周辺には磁界が発生し、かつ、狭窄部4の光入射面7側に面した入射側狭窄部4a(近接場発生源)に入射光6を入射することにより狭窄部4の光入射面7に対して反対側の面である近接場発生面8に面した出力側狭窄部4b(近接場出力部)周辺において近接場を出力するものである。具体的には、入射光6が光入射面7側の入射側狭窄部4aに入射すると、入射側狭窄部4aにおいて近接場が発生する。発生した近接場は、表面プラズモンポラリトンとカップリングし、入射側狭窄部4aと出力側狭窄部4bとを繋ぐ伝播用搾取部4c(近接場伝播路)を通って、近接場発生面8側の出力側狭窄部4bへ伝播する。そして、出力側狭窄部4bに到達した表面プラズモンポラリトンは、再び近接場に変換され、出力側狭窄部4bにおいて出力される。なお、以下の説明においては、入射側狭窄部4a、出力側狭窄部4bおよび伝播用搾取部4cの全てを含めた構成について述べる場合は、狭窄部4とする。
狭窄部4は、金属膜3において電流5が流れる方向(紙面上部側から紙面下部側へ向かう方向)に対して直交する方向に延びるように、電流方向の両側端部のそれぞれから一つずつ窪ませた凹部が互いに向かい合うことによって形成されている。
また、金属膜3は、光入射面7側の一部が光導波路2に嵌入している。これにより、光入射面7側の入射側狭窄部4aに発生する近接場の強度を高めている。なお、本実施形態では、金属膜3は、入射側狭窄部4aを含む光入射面7から金属膜3の厚み方向に一部が光導波路2に嵌入しているが、金属膜3全体が光導波路2に嵌入していてもかまわない。
このように、光導波路2を用いて金属膜3の入射側狭窄部4aに光を入射することにより、入射光6と出力側狭窄部4bにおいて発生した近接場とを分離できることができる。そのため、強度の強い入射光6と近接場とが混在せず、近接場のみを出力することが可能となる。
金属膜3を構成する金属材質の表面プラズモンポラリトンの発生効率によって、近接場発生面8の出力側狭窄部4bにおいて出力される近接場の強度が異なってくる。そのため、金属膜3を構成する金属材料としては、表面プラズモンポラリトンの発生効率の高い、銀(Ag)、アルミニウム(Al)、金(Au)、白金(Pt)もしくは銅(Cu)、または該金属を含む合金により構成されている。これにより、出力側狭窄部4bにおいて出力される近接場を効率良く増強することができる。
また、近接場および表面プラズモンポラリトンの発生状態は、金属膜表面の粗さまたは金属膜表面における付着物の有無のような金属膜3の表面状態によって大きく異なる。例えば、金属膜3を表面プラズモンポラリトンが発生しやすいAgにより構成した場合には、非常に金属膜3表面が酸化・白濁しやすく、表面状態が変化しやすい。そこで、本実施形態の近接場発生素子1においては、金属膜3の酸化を防止するために、金属膜3を低屈折率媒体内に嵌入させた構成であってもよいし、近接場発生面8を酸化防止膜で覆う構成であってもよい。
なお、酸化防止膜としては、低屈折率媒体と同一の材料、SiNやAlN等のような窒化物誘電体、SiO等のような酸化物誘電体等から構成された膜厚50nm以下の薄膜を用いればよい。酸化防止膜として上記酸化物誘電体を用いた場合は、硬度が高いために金属膜3表面を物理的にも保護し、近接場発生素子1の耐久性をより増すことができる。
次に、金属膜3に設けられている狭窄部4の構成および狭窄部4で発生する磁界について、図2を用いて説明する。図2は、金属膜3に設けられた狭窄部4を拡大した平面図である。
狭窄部4は、図2に示すように、略半円状の凹部によって形成された金属膜3の最も狭い箇所の周縁間距離である線幅mを有し、上記略半円の直径2aは半円の中心である磁場発生部9または磁場発生部10から金属膜3の凹部の周縁までの距離の2倍の長さを有している。ここで、直径2aは、光源から照射された光の波長以下の長さを有している。
電流5が金属膜3に流されると、電流5が流れる電流経路は、狭窄部4の周縁に沿った5aおよび5bのようにU字状となる。そのため、狭窄部4の周囲に発生する磁界は、右ねじの法則により、磁場発生部9では紙面表面側から紙面裏面側に向かう磁界が発生し、磁場発生部10では紙面裏面側から紙面表面側に向かう磁界が発生する。また、近接場発生面8の上では近接場発生面8に対して平行な磁界となる。また、磁界の強さは、磁場発生部9および磁場発生部10においてほぼ同じである。
狭窄部4の線幅mを小さくすれば、狭窄部4近傍で強い磁界を発生する事ができる。このため、狭窄部4の線幅mは、1μm以下にすることが望ましい。しかしながら、金属膜3に流れる電流5が大きい場合、狭窄部4が電気抵抗により破壊される場合がある。この破壊を防止するために、例えば電流5が100mA程度であれば、狭窄部4の断面積は、6400nm程度より大きく、狭窄部4の長さ2aは、20μm以下にすることが望ましい。
また、狭窄部4は上述した構成に限られず、図3に示す狭窄部24のようにU字型の形状であってもよい。狭窄部24を備えた電磁場発生素子21について図3を参照して説明する。図3は、狭窄部の変形例を備えた電磁場発生素子21の構成を示す平面図である。
電磁場発生素子21は、図3に示すように、光導波路22と、光導波路22に積層された金属膜23とを備えている。金属膜23は、並置された2つの矩形板状の端子23aおよび端子23bと、上記各端子を接続する狭窄部24とを備えている。狭窄部24は、上記各端子の両方から離れる方向に向かって凸となる弧状の導体層である。言い換えれば、上記狭窄部24は、金属膜23において電流25が流れる方向(紙面上部側から紙面下部側へ向かう方向)に対して、光導波路22の上面で直交する方向に延びるように電流方向の一方の片側端部を窪ませ他方の片側端部を膨らませたことによって形成されている。狭窄部24は半円状であり、狭窄部24の窪ませた側、すなわち、半円の中心を磁場発生部30とし、狭窄部24に対して電流の流れる方向とは直交する方向に点対称な位置を磁場発生部29とする。
電流25が端子23aから端子23bに向かって流されたとき、電流25は狭窄部24において狭窄される。狭窄部24の周囲に発生する磁界は、右ねじの法則により、磁場発生部29では紙面表面側から紙面裏面側に向かう磁界が発生し、磁場発生部30では紙面裏面側から紙面表面側に向かう磁界が発生する。また、狭窄部24における電流25の電流密度は、狭窄部24において磁場発生部30側に向かうほど大きくなる。そのため、狭窄部24における磁界の強さは、狭窄部24の磁場発生部30側が強く、磁場発生部29に向かうに従って弱くなる。したがって、電磁場発生素子21は狭窄部24の磁場発生部30近傍の垂直磁界発生に適している。
なお、本実施形態では、近接場と磁場とを同一箇所で同時に発生させるために、近接場発生源として電流を狭窄するための狭窄部4を有した金属膜3を用いているが、磁場の発生が不要な場合には、近接場発生源として狭窄部4の構成に限られない。つまり、近接場発生源4としては、光源から照射された光の波長以下のサイズを有しており、かつ、光導波路2からの光により生じた近接場が、近接場出力面8側へ伝播する構造となっていればよい。例えば、金属膜3上に光の波長以下の径を持つ微小開口部が設けられている構成であってもよいし、光導波路2上にbow−tie型(2つの三角形が向かい合っており、光の波長以下の距離、例えば、約100nm離れている形状)の金属膜が形成されている構成であってもよい。また、金属膜3の形状は本実施形態に限られず、既知の形状を好適に使用すればよく、金属膜を光導波路に嵌入させて積層することにより、狭窄部から出力される近接場の強度が増強される。
光源としては、該光源から照射された光を光導波路2内において全反射しながら伝播するために、単一の波長を有するレーザ光を照射するレーザ光源が用いられる。これにより、上記光源から照射されたレーザ光は、長い距離を少ない減衰で伝えることが可能である。
全反射の際の位相変化は、光の電場の方向(偏光方向)によって異なっている。そのため、光導波路2に入射される光として、円偏光や楕円偏光を有する光を用いた場合には、電場の方向が常に変化するため、全反射条件が一定ではなくなり、効率良く光導波路2内において光を伝播することが困難となる。そこで、光導波路2に導入する光には、全反射条件を一定にするために、直線偏光が用いられる。直線偏光には、電場の方向が反射面に対して平行なTE(transverse electric)波と、TE波に対して垂直方向の電場方向を持つ(つまり、電場の方向が入射面内にある)TM(transverse magnetic)波とがある。
また、金属膜3表面の表面プラズモンポラリトンと入射側狭窄部4aに発生する近接場とを効率よくカップリングするためには、金属膜3と光導波路2との接触面である光入射面7に対して垂直成分を持つ電場を生じさせる必要がある。そのため、本実施形態においては、光源からの光としてTM波を用いている。これにより、金属膜3表面において表面プラズモンポラリトンが発生しやすくなり、入射側狭窄部4aにおいて発生した増強された近接場が、表面プラズモンポラリトンと効率よくカップリングし、伝播用狭窄部4cを通って出力側狭窄部4bに伝播される。そのため、入射側狭窄部4aで発生した近接場が、出力側狭窄部4bに伝播されず入射側狭窄部4aに留まることを抑制でき、出力側狭窄部4bにおいて出力される近接場を増強することができる。
なお、上記光源から照射された光を光導波路2に導入するためには、回折格子またはプリズムを使用する方法、45度ミラーを用いる方法等のように既存の技術を好適に用いればよい。
上述した近接場発生素子1に係る光導波路2および金属膜3の加工は、半導体で用いられるリソグラフィー技術が好適に用いられる。リソグラフィーは、薄膜形成・レジストによるパターンニング・エッチングといった一方向に加工する技術である。金属膜3および光導波路2がリソグラフィーで作製可能であるために、光導波路2と微細な狭窄部4を有する金属膜3とを順次形成することが可能となる。そのため、近接場発生素子1の加工が容易となる。
例えば、まず、基板上にSiOなどの高屈折率膜(コア層)をスパッタ等により光導波路2を作製する。そして、コア層上にフォトレジストをスピンコーター等により塗布した後、所望のパターンを有したマスクの上から露光する。マスクパターンが転写されたフォトレジストを現像後、反応性イオンエッチング等によりコア層をエッチングする。上記工程により、コア層を所望のパターンに加工することができる。さらにリソグラフィー工程を繰り返すことで、コア層上に凹部を作製する。
次に、コア層上に設けられた凹部に対して、Auなどの金属薄膜をスパッタや蒸着などを用い成膜する。光導波路2の作製で用いたリソグラフィー工程と同様の手順で狭窄部4を有した金属膜3の形状を作製する。狭窄部4の位置と光導波路2上の凹部の位置との調整は、マスクの位置を調整することで精度良く行うことが可能である。
このように、近接場発生素子1の光導波路2および金属膜3は、成膜・エッチングを順次行うことができ、リソグラフィー技術を用いて大量生産することが可能となる。また、リソグラフィー技術は、加工精度がサブミクロンオーダーと高いために、光導波路2と狭窄部4との位置調整も容易である。また、本実施形態の近接場発生素子1では、光導波路2と狭窄部4とが一体となっているため、入射光6の焦点に狭窄部4を合わせるアライメントを行う必要がなく、使用時の調整の手間が省ける。
なお、狭窄部4以外の加工においては、リソグラフィー技術以外にも、集束イオンビーム装置(FIB:Focused Ion Beam)やその他の微細加工技術を用いることもできる。
次に、本実施形態の近接場発生素子1において発生する近接場の強度について図4〜図7を参照して説明する。なお、ここでは近接場発生素子1において発生する近接場の強度を計算するために、光導波路内に光源を設けた近接場計算モデル51を用いている。また、近接場の発生強度の計算は、FDTD(Finit-Different Time-Domain)シミュレーションを用いて行っている。
まず、近接場計算モデル51の構成について図4を参照して説明する。図4(a)は近接場発生強度の計算に用いられる近接場計算モデル51の概略構成を示す平面図であり、図4(b)は図4(a)のA−A’断面図である。図4(b)に示すZ軸は、近接場発生部60を通る膜厚方向の軸である。
近接場計算モデル51は、薄膜で構成された光導波路52の一方の面上に、コの字型の狭窄部54を有した金属膜53が積層されている。そして、金属膜53は、光導波路52の厚みの1/8の深さまで嵌入している。近接場計算モデル51は、金属膜53の光導波路52と接触している面とは反対側の面上における狭窄部54近傍の近接場発生部60において近接場を出力する構成である。
光源56は光導波路52内部に設けられており、光源56から照射される光58の波長は980nm、偏光方向59を光導波路2の膜厚方向としている。そして、金属膜3は金(Au)から構成されている。また、光導波路2は、屈折率2.0の透明誘電体であり、その両面は屈折率1.5の低屈折率膜57により挟まれている。
次に、図4(b)に示すZ軸上の各位置における近接場の発生強度について図5を参照して説明する。図5は、図4(b)のZ軸上の位置と近接場発生強度との関係を示すグラフである。なお、縦軸は電場強度(V/m)を、横軸はZ軸上の位置であるZ位置を表しており、横軸は右方向が光導波路側である。また、電場強度は光源56における強度を1.0(V/m)と設定している。
図5に示すように、Z位置が光導波路52内にある場合は、電場強度の平均は約0.5(V/m)である。しかしながら、Z位置が金属膜53の近接場発生部60にある場合は、電場強度は約1.5(V/m)であり、光源強度の約1.5倍の電場強度を示す。これは、表面プラズモンポラリトンによる近接場の増強効果が得られたためである。
金属膜3の材料として用いられた金(Au)は、光源からの光の波長が約800nm〜約1000nm範囲内である場合に、表面プラズモンポラリトンの増強が生じやすい。光源56から照射される光の波長を680nmにした場合は、図示していないが、近接場発生部60での近接場の発生強度は0.1(V/m)となってしまい、表面プラズモンポラリトンによる近接場の伝搬がほとんど生じていない。このように、金属膜53の材質と光源56の波長の設定とが表面プラズモンポラリトンの伝搬に大きな影響を与えるために、金属膜53の材質に適した光源からの光の波長を選択することが望ましい。
次に、光導波路2と金属膜3との重なりPを変化させた場合における、近接場の強度の変化を図6(a)〜(d)および図7を参照して説明する。図6(a)〜(d)は、光導波路2の厚みをdとして、光導波路2と金属膜3との重なりPを0、d/4、d/2、dの順番に変化させた近接場計算モデル51の断面図である。Pの値以外は図5にて行ったシミュレーションと同条件である。また、図7は光導波路2と金属膜3との重なりPと近接場発生強度との関係を示すグラフである。縦軸は近接場発生部60における電場強度(V/m)を、横軸はPの値を示している。
図7に示すように、P=0の場合における電場強度と比較して、P=d/8およびP=d/4の場合には電場強度がより大きくなっている。そして、さらにPの値を大きくしていくと、電場強度は減少し、P=d/2の場合には近接場発生部60における電場強度は光源における強度と略同一となる。そして、P=dの場合、すなわち光導波路2内に完全に金属膜3が埋めこまれている場合には、近接場発生部60における電場強度は光源における電場強度の半分以下となる。上記結果より、光導波路2と金属膜3との重なりPが光導波路2の厚みの半分以下である場合に、近接場発生部60において、光源強度とほぼ同程度の近接場を発生することができる。さらに、光導波路2と金属膜3との重なりPが光導波路2の厚みの1/4〜1/8である場合には、近接場発生部60において、光源強度よりも高い近接場を発生することができる。
なお、本実施形態の近接場発生素子1では、上述したように光導波路2と金属膜3との重なりPが光導波路2の厚みの1/4〜1/8である場合に最も近接場が増強されるが、本発明は上述した結果に限られない。すなわち、電磁場発生素子を構成する光源の波長、光導波路のサイズ、金属膜の厚みや材質等に応じて近接場の増強に適した条件を調節する必要がある。
以上のシミュレーションでは、計算を簡略化するためにコの字型の搾取部をもつモデルを用いているが、搾取部に丸みを持つU字型のモデルを用いても、同様の傾向を示した。ただし、近接場発生部60における電場強度は若干低くなり、光導波路2と金属膜3との重なりPが光導波路2の厚みの1/4の場合で約1.2(V/m)であった。
以上のように、本実施形態の近接場発生素子1は、光源と、上記光源からの入射光6が内部を屈折率導波により伝播する光導波路2と、光入射面7と、光入射面7とは反対側の近接場出力面8との間に所定の厚みを有する金属膜3とを備えている。金属膜3は、光入射面7に、光導波路2より伝播された入射光6が照射されることにより近接場を発生する入射側搾取部4aが設けられており、近接場出力面8に、入射側搾取部4aにおいて発生した近接場を出力する出力側搾取部4bが設けられており、入射側搾取部4aと出力側搾取部4bとの間には、入射側搾取部4aにおいて発生した近接場を出力側搾取部4bへと伝播する伝播用搾取部4cが設けられている。そして、金属膜3は、入射側搾取部4aを含む、光入射面7から金属膜3の厚み方向に少なくとも一部が光導波路2に嵌入するように、光導波路2に積層されている。
上記構成により、上記光源から照射された光は、光導波路2内を屈折率導波により伝播し、金属膜3の光入射面7に設けられた入射側搾取部4aに入射光6として入射される。これにより、入射側搾取部4aにおいて、近接場が発生する。この近接場は、金属膜3上において、表面プラズモンポラリトンに変換される。そして、上記表面プラズモンポラリトンは、金属膜3の光入射面7側から光入射面7とは反対側の近接場出力面8側まで設けられた伝播用搾取部4cを通り、金属膜3の厚み方向に伝播する。そして、近接場出力面8側に伝播された表面プラズモンポラリトンは、近接場出力面8に設けられた出力側狭窄部4bにおいて、再度近接場となり、出力される。
金属膜3は、入射側搾取部4aを含む、光入射面7から金属膜3の厚み方向に少なくとも一部が光導波路2に嵌入するように、光導波路2に積層されているために、金属膜3の入射側搾取部4aにおいて近接場が発生しやすい。このため、出力側狭窄部4bから最終的に出力される近接場を増強することができる。このように、本実施形態の近接場発生素子1は、簡易な構成により、高出力の近接場を発生させることが可能となる。また、金属膜3に電流を流し、入射側搾取部4aに光を照射することにより、出力側狭窄部4b近傍において磁界および近接場が発生する。そのため、近接場発生素子1は、磁界および近接場をほぼ同位置で発生させることができ、光アシスト磁気記録方式に好適に用いることができる。
ここで、本実施形態の近接場発生素子1を用いて、光アシスト磁気記録方式で磁気記録媒体に記録する適用例について図8を参照して説明する。図8(a)は近接場発生素子1を用いて磁気記録媒体13に記録を行う場合の構成を示す断面図であり、図8(b)は光アシスト磁気記録方法に用いられる情報記録装置19の全体の構成を示す斜視図である。情報記録装置19は、近接場発生素子1と、近接場発生素子1を磁気記録媒体13の所定の位置まで移動させるアクチュエータ(移動手段)18とから構成されている。また、磁気記録媒体13は、温度が高くなった箇所でのみ記録が可能となる媒体であって、次世代の高密度記録媒体として注目されている。磁気記録媒体13に記録を行うためには、熱と磁場とを同時に磁気記録媒体13の記録面に印加する必要がある。
まず、磁気記録媒体13に記録を行うために、図8(a)に示すように、金属膜3の近接場発生面8を、磁気記録媒体13の記録面に近接させる。この際、近接場発生面8と磁気記録媒体13の記録面との距離が、出力側狭窄部4bにおいて発生した発生近接場11の到達距離以下(例えば100nm以下)になるように対向させる。また、出力側狭窄部4b近傍において発生した発生磁場12は、発生近接場11よりも遠くまで到達するために、上述した配置において、発生近接場11および発生磁場12の両方を磁気記録媒体13の記録面に印加することが可能である。
次に、磁気記録媒体13の記録面に情報が記録される工程を説明する。まず、発生近接場11が磁気記録媒体13の記録面に印加されることにより、磁気記録媒体13の照射部分は加熱昇温する。そして、情報記録装置19は、図8(b)に示すアクチュエータ18により、入射光6の進行方向に一定速度で移動している。すなわち、磁気記録媒体13の発生近接場11により昇温された領域は、徐々に温度を下げながら、入射光6の進行方向とは逆方向の媒体進行方向15へ移動する。そして、記録可能な最低温度となった領域に発生磁場12が印加されることにより、磁気記録媒体13の記録面に記録マーク14が形成される。発生磁場12方向を切りかえることにより、加熱領域に作用する磁場のN/S方向を変化させ、記録マーク14に記録する磁場方向を決めることができる。こうして、磁気記録媒体13に順次記録マーク14を形成することができる。
本発明の近接場発生素子1は簡易な構成で、磁界および近接場をほぼ同じ位置で発生させることができるために、磁場および近接場の発生装置をハイブリッド化することができる。また、近接場発生素子1自体も非常に小型化可能であるために、光アシスト記録装置全体を小型化可能であり、また低コストで作製可能となる。
〔第2実施形態〕
次に、本発明の第2実施形態の電磁場発生素子31について図9および図10に基づいて説明する。図9(a)は、本発明の第2実施形態に係る電磁場発生素子31の概略構成を示す平面図であり、図9(b)は図9(a)の電流方向とは垂直な方向であって、狭窄部を通る断面図である。また、第1実施形態の近接場発生素子1における構成要素と、同等の機能を有する構成要素については同一の符号を付記している。
本実施形態の電磁場発生素子31は、図9(a)および図9(b)に示すように、光導波路2と、金属膜3と、反射膜16とを備えている。電磁場発生素子31が、第1実施形態の近接場発生素子1と異なる構成について説明する。
電磁場発生素子31は、第1実施形態の光導波路2の光が入射する端部とは反対側の端部に反射膜16が設けられた構成となっている。光源から照射された光は、光導波路2に入射し、光導波路2内を全反射しながら伝播する。光導波路2に入射した入射光6は、金属膜3の表面を通過したのち光源からの光が入射する端部とは反対側の端部に到達する。反射膜16が光導波路2に設けられていない場合、到達した上記光はそのまま外部に放射される。しかし、反射膜16が光導波路2に設けられている場合は、入射光6は反射膜16で反射され反射光17となる。反射光17は、再び光源方向に向かって光導波路2内を全反射しながら伝播する。そのため、入射光6および反射光17が、近接場発生に寄与するため、入射側搾取部4aから発生する近接場の強度が増強される。その結果、出力側狭窄部4bにおいて出力される近接場が増強される。
本実施形態の電磁場発生素子31における近接場発生強度の計算方法について、図10を参照して説明する。近接場発生強度の計算には、図4に示した近接場計算モデル51において、光導波路52の光源からの光が入射する端部とは反対側の端部に反射膜(金属膜100nm)が設けられたものを用いている。図10は、光導波路52に反射膜16が設けられている場合と反射膜16が設けられていない場合(図5の計算結果)とにおける、図4(b)のZ軸上の位置と近接場発生強度との関係を示すグラフである。縦軸は電場強度(V/m)を、横軸はZ位置を表しており、横軸は右方向が光導波路側である。また、電場強度は光源56における強度を1.0(V/m)と設定している。
図10に示すように、反射膜16が設けられている場合では、近接場発生部60における電場の強度は1.75(V/m)となる。これは、図5に示すような反射膜16が設けられていない場合の電場の強度1.5(V/m)と比較して大きくなっている。また、金属膜53と光導波路52との接触面側における狭窄部54では、反射膜16を設けた場合の電場の強度は2.5(V/m)であり、反射膜16が設けられていない場合と比較して数倍の値となっている。このように、光導波路の光源からの光が入射する端部とは反対側の端部に反射膜を設けることにより、反射膜が設けられていない場合よりも、狭窄部近傍における近接場の電場強度が強くなる。
なお、反射膜16は入射光6を反射する構成であればよく、材質や形状は問わない。例えば、光源からの光の波長に対して反射率の高い金属膜を用いてもよいし、屈折率の異なる複数の誘電体膜で形成された反射膜を用いてもよい。上記金属膜としては、反射率の高い、金、銀、アルミもしくは白金、または該金属を含む合金から構成された膜厚が数nm以上のものを用いることが好ましい。また、上記誘電体膜としては、SiO、TiO、HfO、Ta2o5、Al,Cr、MgF、MgO、ZrO、ZnS、氷晶石等の誘電性材料から構成されることが好ましい。そして、上記反射膜は、一定の条件下において、上述した屈折率が異なる複数の誘電体材料を用いることによって形成される。例えば、ZnS(n=2.3)および氷晶石(n=1.3)から構成された数十nm程度の膜厚を有する誘電体膜を交互に積層することにより反射膜が形成される。なお、nは各誘電体材料の屈折率を示している。
以上のように、光導波路2の光源からの光が入射する端部とは反対側の端部に反射膜16を設けることにより、入射側搾取部4a近傍において発生する近接場の電場強度を強め、また、該端部からの漏れ光を低減することができる。漏れ光は近接場以外の光であるために、ノイズ源となる。そのため、反射膜16は、出力側狭窄部4bにおける近接場の出力を向上させ、かつ、電磁場発生素子全体からでるノイズを低減する効果がある。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明の近接場発生素子を用いれば、高出力の近接場を発生することが可能であるため、光記録・光加工・光測定の分野で使用することが可能である。特に光アシスト磁気記録方式で用いると、低パワーの光源で記録が可能となり、消費電力の低減に有用である。
(a)は本発明に係る一実施形態の近接場発生素子の概略構成を示す平面図であり、(b)は図1(a)の電流方向とは垂直な方向であって、狭窄部を通る断面図である。 上記近接場発生素子の狭窄部を拡大した平面図である。 狭窄部の変形例を備えた近接場発生素子の構成を示す平面図である。 (a)は近接場発生強度の計算に用いられるモデルの概略構成を示す平面図であり、(b)は図4(a)のA−A’断面図である。 図4(b)のZ軸上の位置と近接場発生強度との関係を示すグラフである。 (a)〜(d)は、光導波路の厚みをdとして、光導波路と金属膜との重なりPを0、d/4、d/2、dの順番に変化させた近接場発生素子の断面図である。 光導波路と金属膜との重なりPと近接場発生強度との関係を示すグラフである。 (a)は近接場発生素子を用いて磁気記録媒体に記録を行う場合の構成を示す断面図であり、図8(b)は光アシスト磁気記録方法に用いられる情報記録装置の全体の構成を示す斜視図である。 (a)は、本発明の第2実施実施形態に係る近接場発生素子の概略構成を示す平面図であり、(b)は図9(a)の電流方向とは垂直な方向であって、狭窄部を通る断面図である。 図4(b)のZ軸上の位置と近接場発生強度との関係を示すグラフである。 (a)は近接場と磁場を同時に発生することが可能な従来の近接場発生素子の概略構成を示す平面図であり、(b)は図11(a)の電流方向とは垂直な方向であって、狭窄部を通る断面図である。
符号の説明
1 近接場発生素子
2 光導波路
3 金属膜(導体)
4 狭窄部
4a 入射側狭窄部(近接場発生源)
4b 出力側狭窄部(近接場出力部)
4c 伝播用狭窄部(近接場伝播路)
5 電流
6 入射光
7 光入射面(第1面)
8 近接場出力面(第2面)
9、29 磁場発生方向(表→裏)
10、30 磁場発生方向(裏→表)
11 発生近接場
12 発生磁場
13 磁気記録媒体
14 記録マーク
15 媒体進行方向
16 反射膜
17 反射光
18 アクチュエータ(移動手段)
19 情報記録装置

Claims (10)

  1. 光源と、
    前記光源からの光が内部を屈折率導波により伝播する光導波路と、
    第1面と、該第1面とは反対側の第2面との間に所定の厚みを有する導体とを備え、
    前記導体は、
    前記第1面に、前記光導波路より伝播された光が照射されることにより近接場を発生する近接場発生源が設けられており、
    前記第2面に、前記近接場発生源において発生した近接場を出力する近接場出力部が設けられており、
    前記近接場発生源と前記近接場出力部との間には、該近接場発生源において発生した近接場を該近接場出力部へと伝播する近接場伝播路が設けられており、
    前記近接場発生源を含む、前記第1面から前記導体の厚み方向に少なくとも一部が前記光導波路に嵌入するように、該光導波路に積層されていることを特徴とする近接場発生素子。
  2. 前記光導波路よりも低い屈折率を有し、該光導波路に積層された透明層を備え、
    前記導体は、前記透明層側から前記近接場発生源を含む前記第1面から該導体の厚み方向に少なくとも一部が前記光導波路に嵌入するように該透明層および該光導波路に嵌入しており、かつ、前記第2面が該透明層から露出していることを特徴とする請求項1に記載の近接場発生素子。
  3. 前記光導波路内を伝播する光は、略直線偏光を有しており、該光の電場が前記導体の第1面に対する垂直成分を含んでいることを特徴とする請求項1または2に記載の近接場発生素子。
  4. 前記導体は、銀、金、アルミニウム、白金もしくは銅、または該金属を含む合金からなることを特徴とする請求項1〜3のいずれか1項に記載の近接場発生素子。
  5. 前記導体の前記光導波路への嵌入深さは、該光導波路の厚みの1/2以下であることを特徴とする請求項1〜4のいずれか1項に記載の近接場発生素子。
  6. 前記導体の前記光導波路への嵌入深さは、該光導波路の厚みの1/4〜1/8の範囲内であることを特徴とする請求項1〜4のいずれか1項に記載の近接場発生素子。
  7. 前記光導波路は、前記光源からの光が入射する端部とは反対側の端部において、該光の伝播方向に対して垂直に設けられた反射面を備えることを特徴とする請求項1〜6のいずれか1項に記載の近接場発生素子。
  8. 前記導体表面には、酸化を防止するための酸化防止膜が設けられていることを特徴とする請求項1〜7のいずれか1項に記載の近接場発生素子。
  9. 前記導体は、前記近接場出力部近傍で磁場を発生させる電流経路を有することを特徴とする請求項1〜8のいずれか1項に記載の近接場発生素子。
  10. 請求項9に記載の近接場発生素子と、前記近接場出力部からの近接場により情報記録媒体を昇温するとともに、前記電流経路で発生する磁界により該情報記録媒体の所定の位置に情報を記録するために、該近接場発生素子を該情報記録媒体の所定の位置へ移動させる移動手段とを備えることを特徴とする情報記録装置。
JP2006157846A 2006-06-06 2006-06-06 近接場発生素子および情報記録装置 Pending JP2007328841A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157846A JP2007328841A (ja) 2006-06-06 2006-06-06 近接場発生素子および情報記録装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157846A JP2007328841A (ja) 2006-06-06 2006-06-06 近接場発生素子および情報記録装置

Publications (1)

Publication Number Publication Date
JP2007328841A true JP2007328841A (ja) 2007-12-20

Family

ID=38929197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157846A Pending JP2007328841A (ja) 2006-06-06 2006-06-06 近接場発生素子および情報記録装置

Country Status (1)

Country Link
JP (1) JP2007328841A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040139A (ja) * 2008-08-07 2010-02-18 Sharp Corp 磁界および近接場発生素子、その使用方法、光アシスト磁気記録方法、並びに、光アシスト磁気記録装置
JP2010160872A (ja) * 2009-01-07 2010-07-22 Tdk Corp 表面プラズモン・アンテナと溝を有する導波路とを備えた近接場光発生素子
JP2010267364A (ja) * 2009-05-13 2010-11-25 Tdk Corp 近接場光発生装置およびその製造方法
US8553505B2 (en) 2010-11-24 2013-10-08 HGST Netherlands B.V. Thermally assisted magnetic write head employing a plasmonic antenna comprising an alloyed film to improve the hardness and manufacturability of the antenna
WO2020166610A1 (ja) * 2019-02-13 2020-08-20 国立大学法人東京大学 記録装置及び記録方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040139A (ja) * 2008-08-07 2010-02-18 Sharp Corp 磁界および近接場発生素子、その使用方法、光アシスト磁気記録方法、並びに、光アシスト磁気記録装置
JP2010160872A (ja) * 2009-01-07 2010-07-22 Tdk Corp 表面プラズモン・アンテナと溝を有する導波路とを備えた近接場光発生素子
US8045422B2 (en) 2009-01-07 2011-10-25 Tdk Corporation Near-field light generating element comprising surface plasmon antenna and waveguide with groove
JP2010267364A (ja) * 2009-05-13 2010-11-25 Tdk Corp 近接場光発生装置およびその製造方法
US8553505B2 (en) 2010-11-24 2013-10-08 HGST Netherlands B.V. Thermally assisted magnetic write head employing a plasmonic antenna comprising an alloyed film to improve the hardness and manufacturability of the antenna
US8804469B2 (en) 2010-11-24 2014-08-12 HGST Netherlands B.V. Thermally assisted magnetic write head employing a plasmonic antenna comprising an alloyed film to improve the hardness and manufacturability of the antenna
WO2020166610A1 (ja) * 2019-02-13 2020-08-20 国立大学法人東京大学 記録装置及び記録方法
CN113439305A (zh) * 2019-02-13 2021-09-24 国立大学法人东京大学 记录装置以及记录方法
KR20210121195A (ko) * 2019-02-13 2021-10-07 고쿠리츠다이가쿠호우진 도쿄다이가쿠 기록 장치 및 기록 방법
JPWO2020166610A1 (ja) * 2019-02-13 2021-11-11 国立大学法人 東京大学 記録装置及び記録方法
JP7201973B2 (ja) 2019-02-13 2023-01-11 国立大学法人 東京大学 記録装置及び記録方法
US11574652B2 (en) 2019-02-13 2023-02-07 The University Of Tokyo Recording device and recording method
CN113439305B (zh) * 2019-02-13 2023-03-10 国立大学法人东京大学 记录装置以及记录方法
KR102538204B1 (ko) * 2019-02-13 2023-05-30 고쿠리츠다이가쿠호우진 도쿄다이가쿠 기록 장치 및 기록 방법

Similar Documents

Publication Publication Date Title
JP4745100B2 (ja) 磁気ディスク装置
US7710686B2 (en) Heat-assisted magnetic recording head and method of manufacturing the same
KR100660076B1 (ko) 근접장 발광 소자 및 정보 기록/재생 장치
KR100738096B1 (ko) 열보조 자기기록헤드 및 그 제조방법
KR100851973B1 (ko) 굽은 도파로, 이의 제조방법, 굽은 도파로를 이용한 광전송모듈 및 굽은 도파로를 채용한 열보조 자기기록 헤드
JP4899134B2 (ja) 熱アシスト磁気記録用トランスデューサ
KR100718146B1 (ko) 열보조 자기기록헤드
KR100738078B1 (ko) 근접장광발생장치와 이를 채용한 열보조 자기기록헤드
KR100682954B1 (ko) 열보조 자기기록 헤드
JP2008233910A (ja) テーパ構造のc型開口を有する90°に曲がっている金属導波路、該導波路の製造方法、該導波路を利用した光伝送モジュール及び該導波路を採用した熱補助磁気記録ヘッド
JP4885973B2 (ja) 表面プラズモンポラリトン方向変換器、情報記録再生ヘッド、光アシスト磁気記録装置および光回路
JP2007328841A (ja) 近接場発生素子および情報記録装置
US6950598B1 (en) Light emitting head, information storage device, and composite head manufacturing method
JP4685625B2 (ja) 回折格子
US7606117B2 (en) Information recording and reproducing apparatus, information recording medium and information recording apparatus
JP4509941B2 (ja) 光アシスト用磁気ヘッド、およびこれを用いた磁気記録装置
JP4837521B2 (ja) 表面プラズモンポラリトン集束器、情報記録ヘッドおよび記録装置
JP4530254B2 (ja) プラズモンモード光導波路
US8331204B2 (en) Near-field light generating device, recording head, and recording device
KR100621494B1 (ko) 광 조사 헤드 및 정보 기억 장치
WO2009119250A1 (ja) 集光素子及び熱アシスト磁気記録光ヘッド
JP2011014192A (ja) 光素子