JP2007309184A - クライオポンプ及びその再生方法 - Google Patents

クライオポンプ及びその再生方法 Download PDF

Info

Publication number
JP2007309184A
JP2007309184A JP2006138318A JP2006138318A JP2007309184A JP 2007309184 A JP2007309184 A JP 2007309184A JP 2006138318 A JP2006138318 A JP 2006138318A JP 2006138318 A JP2006138318 A JP 2006138318A JP 2007309184 A JP2007309184 A JP 2007309184A
Authority
JP
Japan
Prior art keywords
shield
cryopanel
vacuum vessel
gas
cryopump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006138318A
Other languages
English (en)
Inventor
誠 ▲高▼橋
Makoto Takahashi
Ryosuke Tsuyuki
良輔 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006138318A priority Critical patent/JP2007309184A/ja
Publication of JP2007309184A publication Critical patent/JP2007309184A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】本発明はクライオポンプに関し、再生効率の向上を図ることを課題とする。
【解決手段】 冷凍機5と、ライオパネル10と、有底状のシールド9と、真空容器4と、前記シールド9及びクライオパネル10を昇温する機構と、真空容器4内のガスを真空容器4内から排出するベントバルブ21とを有するクライオポンプであって、シールド9の底部とベントバルブ21とを連通する液体排出管30と、真空容器4の内部圧力を検出する圧力センサ20と、前記内部圧力が大気圧以上の時にベントバルブ21を開弁することによりシールド9の底部に溜まった液状ガス26を液体排出管30を介してベントバルブ21に排出するコントローラ17とを設ける。
【選択図】 図1

Description

本発明はクライオポンプ及びその再生方法に係り、特に再生効率の向上を図ったクライオポンプ及びその再生方法に関する。
例えば、半導体製造設備においては高真空を実現する必要があり、この高真空を実現できる真空ポンプとしてクライオポンプが多用されている。このクライオポンプは、真空生成の原理上冷凍機が必要となる。このクライオポンプに用いられる冷凍機としては、ギフォード・マクマホンサイクル型冷凍機(以下GM型冷凍機という)が知られている。そして、GM型冷凍機と真空容器内に配設されたクライオパネル及びシールドを熱的に接続しておき、冷却過程において真空容器内の被凝縮ガス(例えば、アルゴンガス等)をクライオパネル等に凝縮及び吸着させることにより高真空を実現する。
上記構成とされたクライオポンプは、その構造上再生が必要となる。この再生とは、クライオパネルに熱を加え、昇温させることにより、クライオパネル等に冷却過程で凝縮及び吸着されたガスを液化及び気化させてポンプ容器の外に放出する処理をいう。
クライオポンプの再生時においては、クライオパネル及びシールドがヒータ等の昇温装置により昇温され、また窒素ガス等のパージガスが真空容器内に導入される。これにより、クライオパネル及びシールドに凝縮及び吸着されていた被凝縮ガスは液化して自然落下し、シールドの内部に溜まった状態となる。この状態で全ての液化したガス(以下、液化ガスという)を気化して排出しようとした場合、シールドは液化ガスにより冷却されるため液化ガスが気化するのに長い時間を要し、よって再生効率が低下してしまうという問題点がある。
そこで、特許文献1に開示されているように、シールドに孔を形成し、液状ガスがこの孔を介して真空容器内に流入する構成としたクライオポンプが提案されている。この構成のクライオポンプでは、常温である真空容器の熱を液化ガスの気化に利用することが可能となり、シールドに孔を形成しないクライオポンプに比べて再生効率の向上を図ることができる。
特開平05−033766号公報
上記した従来のクライオポンプは、常温である真空容器の熱を液化ガスの気化に利用するため、再生効率のある程度の向上は望める。しかしながら、このクライオポンプでは、やはり液化ガスの気化は真空容器内で行われるため、全ての液化ガスが気化して真空容器から排出されるまでには長い時間を必要とするという問題点があった。
本発明は上記の点に鑑みてなされたものであり、更に再生効率の向上を図ったクライオポンプを提供することを目的とする。
上記の課題を解決するために本発明では、次に述べる各手段を講じたことを特徴とするものである。
請求項1記載の発明は、
寒冷を発生させる冷凍機と、
該冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させるクライオパネルと、
前記冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させると共に、輻射熱が前記クライオパネルに熱伝達するのを防止する有底状のシールドと、
前記クライオパネル及びシールドを収納する真空容器と、
前記クライオパネル及びシールドを昇温する昇温装置と、
前記クライオパネルの前記被凝縮ガスを前記真空容器内から排出するベントバルブとを有するクライオポンプであって、
前記シールドの底部と前記ベントバルブとを連通する液体排出管と、
前記真空容器の内部圧力を検出する圧力検出手段と、
前記内部圧力が大気圧以上となった時に前記ベントバルブを開弁させ、前記シードの底部に溜まった液体状の被凝縮ガスを前記液体排出管を介して前記ベントバルブに排出する制御手段とを有することを特徴とするものである。
また、請求項2記載の発明は、
請求項1記載のクライオポンプにおいて、
前記液体排出管が前記シールドを貫通する部位に断熱支持材を設けたことを特徴とするものである。
また、請求項3記載の発明は、
請求項1又は2記載のクライオポンプにおいて、
前記液体排出管は、銅、アルミニウム、ステンレス、及びテフロン(登録商標)からからなる群より選ばれた一の材質より形成されていることを特徴とする。
また、請求項4記載の発明は、
寒冷を発生させる冷凍機と、該冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させるクライオパネルと、前記冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させると共に、輻射熱が前記クライオパネルに熱伝達するのを防止する有底状のシールドと、前記クライオパネル及びシールドを収納する真空容器と、前記クライオパネル及びシールドを昇温する昇温装置と、再生時に開弁され、前記被凝縮ガスを前記真空容器内から排出するベントバルブとを有するクライオポンプの再生処理を行うクライオポンプの再生方法であって、
再生加熱を行うことにより前記クライオパネル及びシールドに凝縮した被凝縮ガスを液化する工程と、
前記真空容器の内部圧力を検出する工程と、
該内部圧力が前記真空容器の外部圧力よりも大きい時、前記ベントバルブを開弁して
液化し前記シールドの底部に溜まっている液体状の前記被凝縮ガスを前記液体排出管を介して前記ベントバルブに排出する工程とを有することを特徴とするものである。
本発明によれば、液体状態の被凝縮ガスを液体排出管を介してベントバルブに排出するため、被凝縮ガスが気化する時間を待つ必要がなくなり、また被凝縮ガスが気化する際に蒸発潜熱による周囲の冷却を防止できるため、再生時間の短縮と再生性能の向上を図ることができる。
次に、本発明を実施するための最良の形態について図面と共に説明する。
図1は本発明の一実施例であるクライオポンプ1の構成図であり、また図2は図1に矢印Aで示す部分を拡大して示す図である。クライオポンプ1は、図示しない処理チャンバ(例えば、半導体製造装置)に取り付けられ、この処理チャンバ内を真空とするものである。このクライオポンプ1は、大略すると真空容器4、冷凍機5、シールド9、クライオパネル10、コントローラ17、及び液体排出管30を有した構成されている。
冷凍機5は、図示しない圧縮機に接続されている。この圧縮機は、ヘリウムガス等の冷媒ガスを昇圧して冷凍機5に送り、また冷凍機5で断熱膨張した冷媒ガスを回収して再び昇圧する機能を奏する。
真空容器4は、前記した処理チャンバに取り付けられるものであり、この内部に冷凍機5、シールド9、クライオパネル10、及びチャコールパネル11等が配設される。また、真空容器4と処理チャンバとの間にはゲートバルブ6が配設されており、ゲートバルブ6が閉じることにより真空容器4は処理チャンバに対して気密に隔離された状態となる。
また、真空容器4は、図中下部にベントバルブ21及びラフバルブ22が設けられると共に、上部に圧力センサ20及び安全弁25が設けられている。更に、真空容器4の側部には、パージ配管18が接続されている。
ベントバルブ21は、図2に拡大して示すように駆動部21aと弁体部21bとにより構成されている。このベントバルブ21はコントローラ17に接続されており、コントローラ17の制御により駆動部21aが弁体部21bを上動させた時(図2に示す状態)では閉弁し、逆に駆動部21aが弁体部21bを可動させた時には開弁し、真空容器4を開放する。
ラフバルブ22は、図示しない粗引きポンプ(真空ポンプ)に接続される。このラフバルブ22もコントローラ17に接続されており、コントローラ17により開閉が制御される構成とされている。粗引きポンプが吸引処理を実施している状態でラフバルブ22を開くことにより、処理チャンバ及び真空容器4に対する粗引き(ある程度までの真空処理)が行われる。
また、パージ配管18は、パージガス供給装置に接続されている。パージガスとしては、例えば窒素ガスを用いることができる。また、パージ配管18にはパージバルブ19が接続されており、パージガスの真空容器4への供給を制御できる構成となっている。このパージバルブ19はコントローラ17に接続されており、よってコントローラ17はパージバルブ19を制御することにより、パージガス(窒素ガス)の真空容器4への供給量を制御する。
圧力センサ20は、真空容器4内の圧力(真空度)を測定する圧力検出装置である。この圧力センサ20はコントローラ17に接続されており、よって圧力センサ20で検出された真空容器4内の圧力はコントローラ17に送信される。尚、安全弁25は、真空容器4内の圧力が危険圧力を超えた場合に開弁する構成とされており、これによりクライオポンプ1の安全性を担保している。
冷凍機5はGM型冷凍機であり、第1段シリンダー14、第2段シリンダー15、及び可逆モーター16等により構成されている。第1段シリンダー14の内部には第1段ディスプレーサー14Aが図中左右方向に往復動可能に配設されており、また第2段シリンダー15には第2段ディスプレーサー15Aが図中左右方向に往復動可能に配設されている。この第1段ディスプレーサー14Aと第2段ディスプレーサー15Aは連結されており、可逆モーター16を駆動源として上記のように各シリンダー14,15内で往復動を行う。
また、第1段シリンダー14と第1段ディスプレーサー14Aとの間には第1段膨張室が形成されると共に、第2段シリンダー15と第2段ディスプレーサー15Aとの間には第2段膨張室が形成される。この第1及び第2段膨張室は、各ディスプレーサー14A,15Aの往復動によりその体積が変化する構成となっている。
可逆モーター16は、正方向回転及び逆方向回転が可能なモーターである。この可逆モーター16は、コントローラ17に接続されている。そして、コントローラ17の指示に従い、正方向回転又は逆方向回転を選択的に行う。
第1段シリンダー14には第1段冷凍ステージ7が配設されており、また第1段冷凍ステージ7にはシールド9が配設されている。このシールド9は有底筒状の形状を有し、外部の輻射熱がクライオパネル10に熱伝導するのを防止する機能を奏する。更に、シールド9にはルーバ12が設けられており、このルーバ12は真空容器4の上部開口近傍に位置するよう配設されている。
第2段シリンダー15の外周には、第2段冷凍ステージ8が配設されている。また、この第2段冷凍ステージ8にはクライオパネル10及びチャコールパネル11が配設されている。このチャコールパネル11には、活性炭11が配設されている。更に、第2段冷凍ステージ8には温度センサ27が設けられている。この第2段冷凍ステージ8の温度は温度センサ27により検出され、その検出結果はコントローラ17に送信される。
図3は、コントローラ17のハード構成を示す図である。コントローラ17はマイクロコンピュータにより構成されており、同図に示すようにCPU41,ROM42,RAM43、及びインターフェース装置44がバスライン45により接続された構成とされている。前記の可逆モーター16、パージバルブ19、ベントバルブ21、ラフバルブ22、圧力センサ20等は、インターフェース装置24を介してCPU21に接続されている。また、後述する図4に示される再生処理のプログラムは予めROM22又はRAM23に格納されている。
ここで、シールド9の底部に注目すると、シールド9の底部には液体排出管30が配設されている。この液体排出管30は、例えば内径がφ2〜3mm、肉厚が0.5mmのチューブ状(管状)部材である。また、液体排出管30の材質は、銅、アルミニウム、ステンレス、或いはテフロン(登録商標)を用いることができる。
液体排出管30の一端である導入口30aは、シールド9内の底部に開口している。この導入口30aからは、後述するようにシールド9内に溜まった液状ガス26が吸引される。また、液体排出管30の他端である排出口30bは、シールド9の外部に配設されたベントバルブ21に開口した構成とされている。
従って、液体排出管30はシールド9を貫通してシールド9の外部に延出した構成されている。シールド9の液体排出管30が貫通する部位には、断熱支持材32が形成されている。断熱支持材32としては、例えばセラミックシートや発泡スチロールを用いることができる。このように、シールド9の液体排出管30が貫通する部位に、断熱性を有すると共に液体排出管30を支持しうる材料を配設することにより、シールド9の外部の熱が液体排出管30を介してシールド9内に熱伝導することを防止できると共に、液体排出管30を真空容器4内で確実に保持することができる。
上記構成とされたクライオポンプ1において真空処理を行う場合、コントローラ17は可逆モーター16を正方向回転させる。これにより冷凍機5は冷却モードとなり、図示しない圧縮機から冷凍機5内に供給された冷媒ガスは、各ディスプレーサー14A,15Aの移動に伴い断熱膨張し寒冷を発生させる。これにより、第1段冷凍ステージ7は例えば30〜100K(シールド9は100K以下)に冷却され、第2段冷凍ステージ8は例えば4〜20K(クライオパネル10は20K以下)に冷却される。
処理チャンバ内に存在するガス(被凝縮ガス)は上部開口より真空容器4内に進入し、水分子や二酸化炭素は主にルーバ12及びシールド9で凝縮され、アルゴンや窒素は主にクライオパネル10で凝縮され、更に水素,ネオン,ヘリウム等は主にチャコールパネル11の活性炭に吸着される。これにより、処理チャンバは排気されて高真空となる。
ところで、上記のように処理チャンバ内から排気されたアルゴン等の気体は、シールド9,クライオパネル10,チャコールパネル11等に凝縮或いは吸着されるため、その量が増えてくるとクライオポンプ1の排気性能が低下する。このため、クライオポンプ1に凝縮或いは吸着された気体を排出する再生処理が必要となることは前述した通りである。
次に、従来におけるクライオポンプ1の再生処理について説明する。
図4は、コントローラ17が実施する再生処理を示すフローチャートである。この再生処理のプログラムは、前記のようにROM42又はRAM43に格納されており、例えばクライオポンプ1が設けられた半導体製造装置のメインコンピュータからの再生開始指示により起動する。
図4に示す再生処理が起動すると、先ずステップ10(図ではステップをSと略称している)において、コントローラ17は冷却運転を停止させる。具体的には、可逆モーター16の正方向回転を停止させる。
続くステップ12では、コントローラ17はパージバルブ19を開き、パージ配管18を介してパージガス(窒素ガス)を真空容器4内に導入する。この際、パージガスは例えば70℃程度に昇温させた上で真空容器4に導入することとしてもよい(いわゆる、ホットパージ)。
また、コントローラ17は、可逆モーター16を逆方向回転とする。これにより、冷凍機5は冷却モードから再生モードに切り替わり、第1及び第2段膨張室で冷媒ガスは断熱圧縮されて断熱圧縮熱を発生する。この断熱圧縮熱は各シリンダー14,15及び冷凍ステージ7,8を介してシールド9、クライオパネル10、及びチャコールパネル11に熱伝達される。これにより、シールド9、クライオパネル10、及びチャコールパネル11は昇温され、これにより再生が行われる。
上記のようにシールド9、クライオパネル10、及びチャコールパネル11が昇温することにより、これに凝縮されていた被凝縮ガスは液化する。そして、この液化した液状ガス26は重力により有底状とされたシールド9の底部に落下し、ここに溜まった状態となる。
ステップ14では、温度センサ27が検出する第2段冷凍ステージ8の温度に基づき、コントローラ17は検出温度が液化した液状ガス26がシールド9の底部に溜まった状態となる温度(この温度を液化温度という)になったかどうかを判断する。温度センサ27が検出する温度が液化温度未満の場合は、液状ガス26がシールド9の底部に十分に溜まっていない状態であるため、処理はステップ12に戻る。
一方、ステップ14において温度センサ27が検出する温度が液化温度以上であると判断されると、処理はステップ16に進み、コントローラ17は圧力センサ20から送信される真空容器4内の圧力P1が大気圧P2以上のであるかどうかを判断する(具体的には、大気圧と真空容器4内圧力P1との差圧を求め、この差圧が所定値以上であるかを判断する)。
前記したように、真空容器4にはパージ配管18を介してパージガスが導入されているため真空容器4の内圧は漸次上昇し、やがて真空容器4の外部の圧力よりも高い圧力となる。本実施例では、真空容器4の外部圧力を大気圧を基準として判断しているが、真空容器4の外部に圧力センサーを配設し、この外部に配設された圧力センサの検出値と圧力センサ20の検出値とに基づき、前記の差圧を求める構成としてもよい。
ステップ16で、真空容器4内圧力P1に基づき差圧が所定値未満であると判断された場合は、処理はステップ12に戻る。一方、前記圧力が所定値以上であると判断した場合には、コントローラ17はステップ18でベントバルブ21を開弁する。
前記したように、真空容器4の内圧P1は真空容器4の外部圧力P2よりも大きくなっている(P1>P2)。また、液体排出管30の導入口30aは液状ガス26の内部に浸漬された状態となっており、かつ排出口30bはベントバルブ21に開口した構成とされている。よって、ベントバルブ21が開弁することにより、液体排出管30には押出力が発生し、真空容器4の底部に溜まった液状ガス26は液体排出管30に吸引されてベントバルブ21に排出される。
この液状ガス26の液体のままの排出処理は、ステップ20の処理により、シールド9の底部に液状ガス26がなくなるまで実施される。尚、シールド9の底部における液状ガス26の有無は、例えば圧力センサ20の圧力変化及び時間管理等により検知することができる。
続くステップ22では、コントローラ17は真空容器4内の被凝縮ガス(アルゴンガス等)の排出が完了したかどうかを判断する。この判断は圧力センサ20が検出する真空容器4内の圧力変化により検知することができる。このステップ22で被凝縮ガスの排出が未完了であると判断されると、処理はステップ12に戻る。
一方、ステップ22で被凝縮ガスの排出が完了したと判断されると、処理はステップ24に進み、コントローラ17はパージバルブ19を閉じてパージガスの供給を停止し、可逆モーター16の逆方向回転を停止し、されにベントバルブ21を閉弁して、次の真空処理に備える。
上記のように本実施例によれば、液状ガス26(液体状態の被凝縮ガス)を液体排出管30を介して液体のままベントバルブ21に排出するため、液状ガス26が気化する時間を待つ必要がなくなり、また液状ガス26が気化する際に蒸発潜熱による周囲の冷却を防止できるため、再生時間の短縮と再生性能の向上を図ることができる。
また本実施例では、液状ガス26のベントバルブ21への排出は、真空容器4内の圧力P1と、真空容器4の外部の圧力P2の差圧を利用して行っている(真空容器4内の圧力上昇はパージガスを用いている)。このため、液状ガス26をベントバルブ21に排出するために、排出ポンプ等の新たな構成を必要とすることはなく、クライオポンプ1の構成が複雑になるようなこともない。
また、液体排出管30も前記のように銅、アルミニウム、ステンレス、或いは(登録商標)等よりなる配管であり安価であるため、液体排出管30を設けてもクライオポンプ1のコストが徒に上昇するようなこともない。
図1は、本発明の一実施例であるクライオポンプの構成図である。 図2は、図1に矢印Aで示す部分を拡大して示す図である。 図3は、コントローラのハード構成を示す図である。 図4は、コントローラが実施する再生処理のフローチャートである。
符号の説明
1 クライオポンプ
4 真空容器
5 冷凍機
9 シールド
10 クライオパネル
11 チャコールパネル
12 ルーバ
16 可逆モーター
17 コントローラ
18 パージ配管
19 パージバルブ
20 圧力センサ
21 ベントバルブ
22 ラフバルブ
26 液状ガス
30 液体排出管
32 断熱支持材

Claims (4)

  1. 寒冷を発生させる冷凍機と、
    該冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させるクライオパネルと、
    前記冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させると共に、輻射熱が前記クライオパネルに熱伝達するのを防止する有底状のシールドと、
    前記クライオパネル及びシールドを収納する真空容器と、
    前記クライオパネル及びシールドを昇温する昇温装置と、
    前記クライオパネルの前記被凝縮ガスを前記真空容器内から排出するベントバルブとを有するクライオポンプであって、
    前記シールドの底部と前記ベントバルブとを連通する液体排出管と、
    前記真空容器の内部圧力を検出する圧力検出手段と、
    前記内部圧力が大気圧以上となった時に前記ベントバルブを開弁させ、前記シードの底部に溜まった液体状の被凝縮ガスを前記液体排出管を介して前記ベントバルブに排出する制御手段とを有することを特徴とするクライオポンプ。
  2. 前記液体排出管が前記シールドを貫通する部位に断熱支持材を設けたことを特徴とする請求項1記載のクライオポンプ。
  3. 前記液体排出管は、銅、アルミニウム、ステンレス、及びテフロン(登録商標)からからなる群より選ばれた一の材質より形成されていることを特徴とする請求項1又は2記載のクライオポンプ。
  4. 寒冷を発生させる冷凍機と、該冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させるクライオパネルと、前記冷凍機で発生した寒冷により冷却され被凝縮ガスを凝縮させると共に、輻射熱が前記クライオパネルに熱伝達するのを防止する有底状のシールドと、前記クライオパネル及びシールドを収納する真空容器と、前記クライオパネル及びシールドを昇温する昇温装置と、再生時に開弁され、前記被凝縮ガスを前記真空容器内から排出するベントバルブとを有するクライオポンプの再生処理を行うクライオポンプの再生方法であって、
    再生加熱を行うことにより前記クライオパネル及びシールドに凝縮した被凝縮ガスを液化する工程と、
    前記真空容器の内部圧力を検出する工程と、
    該内部圧力が前記真空容器の外部圧力よりも大きい時、前記ベントバルブを開弁して
    液化し前記シールドの底部に溜まっている液体状の前記被凝縮ガスを前記液体排出管を介して前記ベントバルブに排出する工程とを有することを特徴とするクライオポンプの再生方法。
JP2006138318A 2006-05-17 2006-05-17 クライオポンプ及びその再生方法 Pending JP2007309184A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138318A JP2007309184A (ja) 2006-05-17 2006-05-17 クライオポンプ及びその再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138318A JP2007309184A (ja) 2006-05-17 2006-05-17 クライオポンプ及びその再生方法

Publications (1)

Publication Number Publication Date
JP2007309184A true JP2007309184A (ja) 2007-11-29

Family

ID=38842280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138318A Pending JP2007309184A (ja) 2006-05-17 2006-05-17 クライオポンプ及びその再生方法

Country Status (1)

Country Link
JP (1) JP2007309184A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588247A (zh) * 2011-01-17 2012-07-18 住友重机械工业株式会社 低温泵及真空阀装置
JP2013155715A (ja) * 2012-01-31 2013-08-15 Sumitomo Heavy Ind Ltd クライオポンプおよびクライオポンプの修理方法
CN103807140A (zh) * 2012-11-13 2014-05-21 住友重机械工业株式会社 低温泵、低温板结构以及真空排气方法
KR101436483B1 (ko) * 2013-03-12 2014-09-01 주식회사 조인솔루션 퍼지가스를 이용한 크라이오 패널 가열시스템
KR20150108756A (ko) * 2014-03-18 2015-09-30 스미도모쥬기가이고교 가부시키가이샤 크라이오펌프, 및 크라이오펌프의 재생방법
KR20220044105A (ko) 2020-09-30 2022-04-06 스미도모쥬기가이고교 가부시키가이샤 크라이오펌프 및 크라이오펌프의 재생방법
JP7369071B2 (ja) 2020-03-18 2023-10-25 住友重機械工業株式会社 クライオポンプおよびクライオポンプの制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183280A (ja) * 1987-01-23 1988-07-28 Toshiba Corp クライオポンプ
JPH0565874A (ja) * 1991-03-28 1993-03-19 Daikin Ind Ltd 真空クライオポンプ
JPH06154505A (ja) * 1992-11-18 1994-06-03 Ulvac Kuraio Kk クライオポンプの再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183280A (ja) * 1987-01-23 1988-07-28 Toshiba Corp クライオポンプ
JPH0565874A (ja) * 1991-03-28 1993-03-19 Daikin Ind Ltd 真空クライオポンプ
JPH06154505A (ja) * 1992-11-18 1994-06-03 Ulvac Kuraio Kk クライオポンプの再生方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509155B (zh) * 2011-01-17 2015-11-21 Sumitomo Heavy Industries Cryogenic pump and vacuum valve device
JP2012149530A (ja) * 2011-01-17 2012-08-09 Sumitomo Heavy Ind Ltd クライオポンプ及び真空バルブ装置
CN102588247A (zh) * 2011-01-17 2012-07-18 住友重机械工业株式会社 低温泵及真空阀装置
US20120180503A1 (en) * 2011-01-17 2012-07-19 Sumitomo Heavy Industries, Ltd. Cryopump and vacuum valve device
KR101302999B1 (ko) * 2011-01-17 2013-09-03 스미도모쥬기가이고교 가부시키가이샤 크라이오펌프 및 진공밸브장치
JP2013155715A (ja) * 2012-01-31 2013-08-15 Sumitomo Heavy Ind Ltd クライオポンプおよびクライオポンプの修理方法
US10029189B2 (en) 2012-01-31 2018-07-24 Sumitomo Heavy Industries, Ltd. Cryopump and method for repairing cryopumps
CN103807140A (zh) * 2012-11-13 2014-05-21 住友重机械工业株式会社 低温泵、低温板结构以及真空排气方法
CN103807140B (zh) * 2012-11-13 2016-10-05 住友重机械工业株式会社 低温泵、低温板结构以及真空排气方法
KR101436483B1 (ko) * 2013-03-12 2014-09-01 주식회사 조인솔루션 퍼지가스를 이용한 크라이오 패널 가열시스템
KR101674088B1 (ko) 2014-03-18 2016-11-08 스미도모쥬기가이고교 가부시키가이샤 크라이오펌프, 및 크라이오펌프의 재생방법
KR20150108756A (ko) * 2014-03-18 2015-09-30 스미도모쥬기가이고교 가부시키가이샤 크라이오펌프, 및 크라이오펌프의 재생방법
JP7369071B2 (ja) 2020-03-18 2023-10-25 住友重機械工業株式会社 クライオポンプおよびクライオポンプの制御方法
KR20220044105A (ko) 2020-09-30 2022-04-06 스미도모쥬기가이고교 가부시키가이샤 크라이오펌프 및 크라이오펌프의 재생방법
CN114320826A (zh) * 2020-09-30 2022-04-12 住友重机械工业株式会社 低温泵及低温泵的再生方法
US11732703B2 (en) 2020-09-30 2023-08-22 Sumitomo Heavy Industries, Ltd. Cryopump and regeneration method of cryopump
TWI824302B (zh) * 2020-09-30 2023-12-01 日商住友重機械工業股份有限公司 低溫泵及低溫泵的再生方法

Similar Documents

Publication Publication Date Title
JP4150745B2 (ja) クライオポンプ及びその再生方法
JP6253464B2 (ja) クライオポンプ、及びクライオポンプの再生方法
JP4932911B2 (ja) クライオポンプ
JP2007309184A (ja) クライオポンプ及びその再生方法
TWI599721B (zh) 低溫泵系統,低溫泵控制裝置,及低溫泵再生方法
US9810208B2 (en) Cryopump and method for regenerating the cryopump using two-stage discharge process
KR101045488B1 (ko) 크라이오 트랩 및 크라이오 트랩을 갖는 진공 처리 장치
US20210054834A1 (en) Cryopump, cryopump system, and cryopump regeneration method
CN103291585A (zh) 低温泵及其再生方法
TWI599722B (zh) Cryogenic pump system, cryogenic pump control device and cryogenic pump regeneration method
US4485631A (en) Method and apparatus for rapidly regenerating a self-contained cryopump
WO2005052369A1 (ja) 水の再生方法及び装置
US11885321B2 (en) Cryopump, cryopump system, and method for starting operation of cryopump
JP2019203508A (ja) クライオポンプシステム、クライオポンプ制御装置、クライオポンプ再生方法、及びクライオポンプ
JP7455037B2 (ja) クライオポンプおよびクライオポンプの再生方法
JP4554628B2 (ja) クライオポンプおよびクライオポンプの再生処理方法
JP3029243B2 (ja) クライオポンプの再生方法及びクライオポンプ
JPH1047245A (ja) 真空排気装置
JP4597909B2 (ja) クライオポンプ及びその再生方法
JP2011137423A (ja) クライオポンプ、基板処理装置、電子デバイスの製造方法
JP2000018158A (ja) クライオポンプおよびクライオポンプによるキセノンガスの凝縮方法
JP3114092B2 (ja) クライオポンプの再生装置および再生方法
TWI655365B (zh) Cryopump
JPH06213154A (ja) 真空クライオポンプの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308