JP2007308573A - 軽油組成物 - Google Patents

軽油組成物 Download PDF

Info

Publication number
JP2007308573A
JP2007308573A JP2006138356A JP2006138356A JP2007308573A JP 2007308573 A JP2007308573 A JP 2007308573A JP 2006138356 A JP2006138356 A JP 2006138356A JP 2006138356 A JP2006138356 A JP 2006138356A JP 2007308573 A JP2007308573 A JP 2007308573A
Authority
JP
Japan
Prior art keywords
less
content
mass
oil
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006138356A
Other languages
English (en)
Other versions
JP5072008B2 (ja
Inventor
Hideaki Sugano
秀昭 菅野
Yasutoshi Iguchi
靖敏 井口
Shigeru Koyama
成 小山
Suguru Iki
英 壱岐
Yuko Aoki
優子 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006138356A priority Critical patent/JP5072008B2/ja
Priority to EP07743741A priority patent/EP2019132A1/en
Priority to PCT/JP2007/060307 priority patent/WO2007132938A1/ja
Publication of JP2007308573A publication Critical patent/JP2007308573A/ja
Application granted granted Critical
Publication of JP5072008B2 publication Critical patent/JP5072008B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

【課題】動植物油脂および動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材を含有する軽油組成物を提供する。
【解決手段】動植物油脂および/または動物油脂由来成分を含有する原料油類を、周期律表第6A族および/または第8族金属と酸性質を有する無機酸化物を含有する水素化精製触媒と水素加圧下で接触させ、同時に/その後に結晶性モレキュラシーブを含有する担体に担持された周期律表第6A族および/または第8族金属を含有する異性化触媒と水素加圧下で接触させることにより得られる、炭素数15〜18の鎖状飽和炭化水素を50質量%以上含有し、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上、かつ特定の式を満たす軽油組成物。
【選択図】なし

Description

本発明は、動植物油脂および/または動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材を含有し、ライフサイクルCO排出特性および燃費、酸化安定性、低温始動性に優れた軽油組成物に関するものである。
従来、軽油の基材としては、原油の常圧蒸留装置から得られる直留軽油に水素化精製処理や水素化脱硫処理を施したもの、原油の常圧蒸留装置から得られる直留灯油に水素化精製処理や水素化脱硫処理を施したもの等が知られている。従来の軽油組成物は上記軽油基材及び灯油基材を1種または2種以上配合することにより製造されている。また、これらの軽油組成物には、必要に応じてセタン価向上剤や清浄剤等の添加剤が配合される(例えば、非特許文献1参照。)。
小西誠一著,「燃料工学概論」,裳華房,1991年3月,p.136−144
ところで、近年、早急な大気環境改善及び環境負荷低減を目指して、内燃機関用燃料である軽油中の硫黄分含有量及び芳香族分含有量の低減が求められている。また同時に地球温暖化問題に対応するため、一層の燃費向上に貢献しかつ二酸化炭素(CO)削減に効果的な燃料性状が求められており、その解決手段の1つとして合成燃料や再生可能エネルギーであるバイオディーゼル燃料(以降BDFとも表記する。)を代替燃料として用いることが検討されている。
現在BDFと証される燃料は、主として天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物であり、排出ガス中のすす生成寄与度が大きいとされている芳香族化合物分や排出ガス後処理触媒への被毒等の影響が大きいとされている硫黄分をほとんど含まず、またそれ自身が分子中に酸素を持った含酸素化合物であるため、代替燃料の有力な候補として着目されている。また、植物由来であることから再生可能エネルギーと位置づけられているため、1997年に締結された国際間での二酸化炭素削減プロトコル、いわゆる京都議定書においてはBDF起因の二酸化炭素は排出量として計上されないルールである点も、BDFは政策的なメリットとして有している。(例えば,特許文献1参照。)
特許公報 特開2004−189885
しかしながら、天然の動植物油脂を原料とした脂肪酸アルキルエステルは本来重質な成分が多く、エンジン燃焼等における燃え切り性が悪くなり、燃焼時の未燃炭化水素排出を増加させる懸念がある。また、脂肪酸アルキルエステルは分子中に酸素を含有する構造であり、さらにはその構造中に不飽和脂肪酸基を多く含有する脂肪酸アルキルエステルの場合は、その化学組成上酸化安定性に劣り、色相の劣化やスラッジの生成およびエンジン部材への悪影響が懸念されている。更には、脂肪酸アルキルエステルを精製する際の原料である脂肪酸グリセライド、アルキルアルコール及び副生成物であるグリセリン混合物はエステル交換反応後の工程で十分に除去することが困難であり、エンジン部材や燃料噴射系、への悪影響だけでなく、潤滑部等でエンジンオイルと接触した際にオイル側の性能を著しく低下せしめる可能性が極めて懸念されているものである。また、特に飽和脂肪酸基を多く有する脂肪酸アルキルエステルの場合は、常温でも固体であるために燃料としての取り扱いに劣り、また単一化合物の含有量が多くなるため、従来の軽油における低温性能確保処方が適用しにくく、低温時の流動性能も確保することが困難である。
従って、有害排気成分の低減と共にライフサイクルにおけるCOを低減し、燃費を向上させ、酸化安定性、低温性能に優れた軽油組成物の提供に関して、天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物の使用では、これらの性能改善を同時に達成することはできない。さらに、これらのエンジン性能は他の燃料性状とも密接に関連するため、これらの要求性能を高水準で同時に達成できる高品質の燃料を設計することは非常に困難であり、なおかつ市販燃料油として求められている諸性能を十分満たし、また現実的な製造方法の検討を踏まえた例、知見は存在していない。
本発明は、かかる実状に鑑みてなされたものであり、その目的は、動植物油脂および動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材を含有し、ライフサイクルCO排出特性ならびに燃費、酸化安定性、低温始動性に優れ、かつエンジンオイルの性能低下を抑制しうる優れた軽油組成物を提供することにある。
本発明者らは、上記課題を解決するために鋭意研究した結果、本発明を完成するに至った。
すなわち、本発明は、動植物油脂および/または動物油脂由来成分を含有する原料油類を、周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化精製触媒と水素加圧下で接触させ、同時に/その後に結晶性モレキュラシーブを含有する担体に担持された周期律表第6A族および第8族の元素から選ばれる少なくとも一種類以上の金属を含有する異性化触媒と水素加圧下で接触させることにより得られる、炭素数15から18までの鎖状飽和炭化水素を50質量%以上含有し、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上、脂肪酸アルキルエステル含有量1質量%以下、遊離脂肪酸含有量1質量%以下、ナトリウム、カリウム、カルシウム、マグネシウムの金属分の合計が10ppm以下、硫黄含有量3質量ppm以下、酸素含有量1質量%以下、水分が500ppm以下、である含炭化水素混合留分の環境低負荷型軽油基材を含有してなる、硫黄含有量5質量ppm以下、酸素含有量0.5質量%以下、セタン価55以上、加速酸化試験後の過酸化物価が50質量ppm以下、くもり点0℃以下、動粘度が2mm/s以上5mm/s以下、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上であり、下記式1および式2を満たす軽油組成物に関する。
(式1)炭素数15から18の鎖状飽和炭化水素含有量>2×炭素数14以下の錯状飽和炭化水素化合物
(式2)炭素数15から18の鎖状飽和炭化水素含有量>3×炭素数19以上の錯状飽和炭化水素含有量
また本発明は、上記を満たした上でさらに芳香族含有量が15質量%以下、蒸留性状の90%留出温度が280℃以上350℃以下であることを特徴とする前記記載の軽油組成物に関する。
また本発明は、動植物油脂および/または動物油脂由来成分が主としてオレイン酸およびリノール酸の脂肪酸基を有するグリセライドを含有するものであり、それらのグリセライドの合計が40質量%以上である原料油類を処理して得られる軽油組成物、および動植物油脂および/または動物油脂由来成分が主としてオレイン酸、リノール酸およびパルミチン酸の脂肪酸基を有するグリセライドを含有するものであり、それらのグリセライドの合計が80質量%以上である原料油類を処理して得られることを特徴とする前記記載の軽油組成物に関する。
本発明によれば、上記の動植物油脂および動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材を含有することにより、従来の軽油組成物では実現が困難であったライフサイクルCO排出特性ならびに燃費、酸化安定性、低温始動性に優れ、かつエンジンオイルの性能低下を抑制しうる優れた軽油組成物を提供することができる。
以下、本発明について詳細に説明する。
本発明の軽油組成物の構成成分として、動植物油脂および/または動物油脂由来成分を含有する原料油類を、周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化精製触媒と水素加圧下で接触させることにより得られる、炭素数15から18までの鎖状飽和炭化水素を50質量%以上含有し、脂肪酸アルキルエステル含有量1質量%以下、遊離脂肪酸含有量1質量%以下、ナトリウム、カリウム、カルシウム、マグネシウムの金属分の合計が10質量ppm以下、硫黄含有量3質量ppm以下、酸素含有量1質量%以下、水分が500質量ppm以下である含炭化水素混合留分の環境低負荷型軽油基材が用いられる。
本発明にかかる環境低負荷型軽油基材とは、所定の原料油を水素化処理して得られる低硫黄の軽油留分、灯油留分、若しくはそれらの混合物である。
該原料油としては、動植物油脂および動物油脂由来成分を含有した原料油類であることが必要である。本発明における動植物油脂および動植物油脂由来成分とは、天然もしくは人工的に生産、製造される動植物油脂およびこれらの油脂を由来して生産、製造される成分をいう。動物油脂および動物油の原料としては、牛脂、牛乳脂質(バター)、豚脂、羊脂、鯨油、魚油、肝油等が挙げられ、植物油脂および植物油原料としては、ココヤシ、パームヤシ、オリーブ、べにばな、菜種(菜の花)、米ぬか、ひまわり、綿実、とうもろこし、大豆、ごま、アマニ、ヤトルファ等の種子部及びその他の部分が挙げられるが、これ以外の油脂、油であっても使用に問題はない。これらの原料油に関してはその状態が固体、液体であることは問わないが、取り扱いの容易さおよび二酸化炭素吸収能や生産性の高さから植物油脂、植物油を原料とする方が好ましい。また、本発明においては、これらの動物油、植物油を民生用、産業用、食用等で使用した廃油も雑物等の除去工程を加えた後に原料とすることができる。また、プラスチックや溶剤等の化学品由来の成分も雑物等の除去工程を加えた後に原料とすることができる。
これらの原料油類中に含有されるグリセライド化合物の脂肪酸基部分の代表的な組成としては、飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である酪酸(CCOOH)、カプロン酸(C11COOH)、カプリル酸(C15COOH)、カプリン酸(C19COOH)、ラウリン酸(C1123COOH)、ミリスチン酸(C1327COOH)、パルミチン酸(C1531COOH)、ステアリン酸(C1735COOH)、及び不飽和結合を1つもしくは複数有する不飽和脂肪酸であるオレイン酸(C1733COOH)、リノール酸(C1731COOH)、リノレン酸(C1729COOH)、リシノレン酸(C1732(OH)COOH)等が挙げられる。自然界の物質におけるこれら脂肪酸基の炭化水素部は一般に直鎖であることが多いが、本発明において本発明で規定する性状を満たす限りで、側鎖を有する構造、すなわち異性体であっても使用することができる。また、不飽和脂肪酸基における分子中の不飽和結合の位置も、本発明において本発明で規定する性状を満たす限りで、自然界で一般に存在確認されているものだけでなく、化学合成によって任意の位置に設定されたものも使用することができる。
上述の原料油類(動植物油脂および動植物油脂由来成分)はこれらの脂肪酸基を1種または複数種有しており、原料によってその有する脂肪酸基は異なっている。例えば、ココヤシ油はラウリン酸、ミリスチン酸等の飽和脂肪酸基を比較的多く有しているが、大豆油はオレイン酸、リノール酸等の不飽和脂肪酸基を多く有している。
これらの原料油類には、動植物油脂および/または動物油脂由来成分が主としてオレイン酸およびリノール酸の脂肪酸基を有するグリセライドを含有し、これらのグリセライドの合計が40質量%以上であることが好ましく、また動植物油脂および/または動物油脂由来成分が主としてオレイン酸、リノール酸およびパルミチン酸の脂肪酸基を有するグリセライドを含有するものであり、それらのグリセライドの合計が80質量%以上である原料油類であることが好ましい。原料油類がこの範囲にあると、ライフサイクル二酸化炭素の低減能が向上すると共に、環境低負荷型軽油基材をより容易に製造することができる。なお、このような性状を有する代表的な植物油として、パーム油、菜種油、大豆油などが挙げられる。
また、原料油としては250℃以上の留分を含有していることが好ましく、300℃以上の留分を含有していることがより好ましく、360℃以上の留分を含有していることが更に好ましい。沸点が250℃以上の留分を含有していない場合には、製造時にガス分の生成が増加するため液生成物の収率が減少し、ライフサイクル二酸化炭素が増加する恐れがある。
また、原料油としては、動植物油脂および動植物油脂由来成分に石油系炭化水素留分を混合しているものを用いてもよい。石油系炭化水素を混合する場合、石油系炭化水素留分の比率は原料油全体の容量に対して10〜99容量%が望ましく、30〜99容量%がより望ましく、60〜98容量%がさらにより望ましい。石油系炭化水素留分の比率が前記下限値に満たない場合には、副生する水の処理に要する設備が必要となる可能性があり、石油系炭化水素留分の比率が前記上限値を超える場合にはライフサイクル二酸化炭素削減の観点からは好ましくない。
該石油系炭化水素留分としては、原油の常圧蒸留装置から得られる直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解または水素化分解して得られる接触分解軽油または水素化分解軽油、これらの石油系炭化水素を水素化精製して得られる水素化精製軽油若しくは水素化脱硫軽油等が挙げられるが、ライフサイクル二酸化炭素低減の観点で重質な直留軽油や減圧軽油が好ましい。
原料油類の水素化精製条件としては、水素圧力2〜13MPa、液空間速度(LHSV)0.1〜3.0h−1、水素/油比150〜2000NL/Lといった条件で行われることが望ましく、水素圧力3〜12MPa、液空間速度0.2〜2.8h−1、水素/油比200〜1800NL/Lといった条件がより望ましく、水素圧力4〜11MPa、液空間速度0.3〜2.7h−1、水素/油比300〜1600NL/Lといった条件がさらにより望ましい。これらの条件はいずれも反応活性を左右する因子であり、例えば水素圧力および水素/油比が前記下限値に満たない場合には反応性の低下や急速な活性低下を招く恐れがあり、水素圧力および水素/油比が前記上限値を超える場合には圧縮機等の過大な設備投資を要する恐れがある。液空間速度は低いほど反応に有利な傾向にあるが、前記下限未満の場合は極めて大きな反応塔容積が必要となり過大な設備投資となる傾向にあり、他方、前記上限を超えている場合は反応が十分進行しなくなる傾向にある。
反応器形式は、固定床方式であってもよい。すなわち、水素は原料油に対して向流または並流のいずれの形式をとることもでき、また、複数の反応塔を有し向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独または複数を組み合わせてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用しても良い。本発明において、反応器内で水素化精製された留出油は気液分離工程、精留工程等を経て所定の留分に分画される。このとき、反応に伴い生成する水分あるいは原料油に硫黄分が含まれている場合には硫化水素が発生する可能性があるが、複数の反応器の間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置しても良い。
一般的に水素ガスは加熱炉を通過前あるいは通過後の原料油に随伴して最初の反応器の入口から導入するが、これとは別に、反応器内の温度を制御するとともに、できるだけ反応器内全体に渡って水素圧力を維持する目的で触媒床の間や複数の反応器の間に導入してもよい。このようにして導入される水素をクエンチ水素と呼称する。このとき、原料油に随伴して導入する水素に対するクエンチ水素との割合は望ましくは10〜60容量%以上、より望ましくは15〜50容量%以上である。クエンチ水素の割合が前記下限値より低い場合には後段反応部位での反応が十分進行しない恐れがあり、前記上限値を超える場合には反応器入口付近での反応が十分進行しない恐れがある。
本発明においては、単一の水素化精製触媒もしくは二段層に構成した水素化精製触媒で原料油を処理することができる。二段層に構成する場合は、前段触媒によって留出油に含まれる酸素分、硫黄分を減少せしめ、後段触媒で分解反応による任意の留分を得ることを目的とするものであり、前段触媒容量と後段触媒容量はそれぞれ任意に設定することができる。二段層の場合は、全水素化精製触媒容量に対する前段触媒容量の比率としては10〜90容量%が望ましく、25〜75容量%がより望ましい。前段触媒容量の比率が前記下限値に満たない場合には、前段触媒によって処理された留出油中の酸素分含有量を十分低下することが出来ず、前記上限値を超える場合には、反応が十分に進行しなくなる恐れがある。
前段触媒によって処理された留出油に含まれる酸素分は原料油類に含まれる酸素分の40重量%以下の減少させることが望ましく、30重量%以下であることがより望ましい。水素化精製触媒と接触する留出油中の酸素分は触媒活性点を被毒するため、前段触媒と接触後の留出油中の酸素分が40重量%を超える場合には十分な活性が得られない傾向がある。
前段触媒と後段触媒以外に、必要に応じて原料油に随伴して流入するスケール分をトラップし、触媒床の区切り部分で前段触媒と後段触媒を支持する目的でガード触媒、脱金属触媒、不活性充填物を単独または組み合わせて用いることができる。また、分解生成物を水素化安定化する目的で、後段触媒のさらに後段に水素化活性を有する触媒を用いても良い。
水素化精製触媒および水素化精製前段触媒の活性金属としては、周期律表第6A族および第8族金属から選ばれる少なくとも一種類の金属を含有し、望ましくは第6A族および第8族から選択される二種類以上の金属を含有している。例えばCo−Mo,Ni−Mo,Ni−Co−Mo,Ni−Wが挙げられ、水素化前処理に際しては、これらの金属を硫化物の状態に転換して使用する。
硫化物への転換に必要となる硫黄化合物の供給方法としては、原料油類中に含まれる含硫黄炭化水素化合物を比較的高濃度で含有する軽油基材から供給する方法、および含硫黄炭化水素化合物を原料油類に混合して使用する方法、硫化水素ガスを原料油類にリサイクル使用する方法などが考えられるが、本発明はこの方法によらず使用することが可能である。ここで示した含硫黄炭化水素化合物とは、具体的にはスルフィド、ジスルフィド、ポリスルフィド、チオール、チオフェン、ベンゾチオフェン、ジベンゾチオフェンおよびこれらの誘導体などが例として挙げられる。これらの含硫黄炭化水素化合物は単一の化合物であってもよく、あるいは2種以上の混合物であっても構わない。
また、原料油類の硫黄分含有量を10質量ppm以下に制御しうる場合には、周期律表第8族金属から選ばれる少なくとも1種類の金属を使用することができる。好ましくはRu,Rd,Ir,PdおよびPtから選ばれる少なくとも1種類であり、さらに好ましくはPdまたは/およびPtである。活性金属としてはこれらの金属を組み合わせたものでよく、例えばPt−Pd,Pt−Rh,Pt−Ru,Ir−Pd,Ir−Rh,Ir−Ru,Pt−Pd−Rh,Pt−Rh−Ru,Ir−Pd−Rh,Ir−Rh−Ruなどの組み合わせを採用することができる。
水素化精製触媒および水素化精製前段触媒の担体としては多孔性の無機酸化物が用いられる。一般的にはアルミナを含む多孔性無機酸化物であり、その他の担体構成成分としてはシリカ、チタニア、ジルコニア、ボリア、ケイ素、マグネシウムなどが挙げられる。望ましくはアルミナとその他構成成分から選ばれる少なくとも1種類以上を含む複合酸化物である。また、このほかの成分として、リンを含んでいてもよい。アルミナ以外の成分の合計含有量は1〜20重量%であることが好ましく、2〜15重量%含有していることがより望ましい。含有量が1重量%に満たない場合、十分な触媒表面積を得ることが出来ず、活性が低くなる恐れがあり、含有量が20重量%を超える場合、担体の酸性質が上昇し、コーク生成による活性低下を招く恐れがある。リンを担体構成成分として含む場合には、その含有量は、酸化物換算で1〜5重量%であることが望ましく、2〜3.5重量%がさらに望ましい。
アルミナ以外の担体構成成分である、シリカ、チタニア、ジルコニア、ボリア、ケイ素、マグネシウムの前駆体となる原料は特に限定されず、一般的なケイ素、チタン、ジルコニウム、ボロンを含む溶液を用いることができる。例えば、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、チタンについては硫酸チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウム、各種アルコキサイド塩など、ボロンについてはホウ酸などを用いることができる。リンとしては、リン酸あるいはリン酸のアルカリ金属塩などを用いることができる。
これらのアルミナ以外の担体構成成分の原料は、担体の焼成より前のいずれかの工程において添加する方法が望ましい。例えば予めアルミニウム水溶液に添加した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、あるいは市販のアルミナ中間体やベーマイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させる方法がより望ましい。これらのアルミナ以外の担体構成成分の効果発現機構は解明できていないが、アルミニウムと複合的な酸化物状態を形成していると思われ、このことが担体表面積の増加や、活性金属となんらかの相互作用を生じることにより、活性に影響を及ぼしていることが考えられる。
活性金属の含有量は、例えば、WとMoの合計担持量は、望ましくは酸化物換算で触媒重量に対して12〜35重量%、より望ましくは15〜30重量%である。WとMoの合計担持量が前記下限値に満たない場合、活性点数の減少により活性が低下する可能性があり、前記上限値を超える場合には、金属が効果的に分散せず、同様に活性の低下を招く可能性がある。また、CoとNiの合計担持量は、望ましくは酸化物換算で触媒重量に対して1.5〜10重量%、より望ましくは2〜8重量%である。コバルトとニッケルの合計担持量が1.5重量%未満の場合には充分な助触媒効果が得られず活性が低下してしまう恐れがあり、10重量%より多い場合には、金属が効果的に分散せず、同様に活性を招く可能性がある。
水素化精製後段触媒としては、周期律表第6A族および第8族金属から選ばれる少なくとも一種類の金属を含有し、望ましくは第6A族および第8族から二種類以上の金属を含有している。例えばCo−Mo,Ni−Mo,Ni−Co−Mo,Ni−Wが挙げられ、望ましくはNi−Mo、Ni−Co−Mo,Ni−Wが選ばれる。水素化分解に際しては水素化前処理触媒と同様にこれらの金属を硫化物の状態に転換して使用する。
水素化精製後段触媒の担体としては、酸性質を有する無機酸化物が採用されるが、シリカ、アルミナ、ボリア、ジルコニア、マグネシア、ゼオライトのうち少なくとも二種類を含有していることが望ましい。例えば、シリカ−アルミナ、チタニア−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナ、シリカ−チタニア−アルミナ、シリカ−チタニア−ジルコニア−アルミナが望ましく、シリカ−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナ、シリカ−チタニア−アルミナがより望ましく、シリカ−アルミナ、シリカ−ジルコニア−アルミナがさらにより望ましい。これらの複合酸化物にゼオライトを含有されていることがもっとも望ましい。アルミナが含まれる場合、アルミナと他の成分との比率は担体に対して任意の割合を取りうるが、アルミナの含有量が担体重量の96重量%以下であることが望ましく、90重量%以下であることがより望ましい。アルミナ含有量が96重量%を越える場合には、十分な酸性質が得られず所定の水素化分解活性を発揮することが難しい傾向にある。
水素化精製後段触媒に用いられるゼオライトの結晶骨格を構成する成分としては、シリカのほかアルミナ、チタニア、ボリア、ガリウムなどがあるが、シリカとアルミナを含むゼオライト、すなわちアルミノシリケートが望ましい。ゼオライトの結晶構造には多くの種類が報告されているが、たとえばフォージャサイト型、ベータ型、モルデナイト型、ペンタシル型などがある。本発明においては、十分な水素化分解活性を発揮するという点でフォージャサイト型、ベータ型、ペンタシル型がより望ましく、特にフォージャサイト型、ベータ型がさらにより望ましい。これらのゼオライトは、合成開始時の原材料の量論比に応じてアルミナ含有量を調整したもの、あるいは所定の水熱処理および/または酸処理を施したものを用いることができる。このうち、水熱処理および/または酸処理により超安定化した超安定化Y型がもっとも望ましい。この超安定化Y型はゼオライト本来の20Å以下のミクロ細孔と呼ばれる微細細孔構造に加え、20〜100Åの範囲に新たな細孔が形成されており油脂成分の酸素分を転換するために良好な反応場を提供しているものと推察され、該細孔直径を有する細孔の容積は0.03ml/g以上が望ましく、0.04ml/gがより望ましい。なお、ここでいう細孔容積は、一般的には水銀圧入法によって求めることができる。水熱処理条件としては公知の条件を用いることができる。超安定化Y型の物性としては、シリカ/アルミナのモル比率として10〜120が好ましく、15〜70がより好ましく、20〜50がさらにより好ましい。シリカ/アルミナのモル比率が120よりも高い場合酸性質が低く、十分な水素化分解活性を発揮できない恐れがある。また、シリカ/アルミナのモル比率が10より低い場合には酸性質が強すぎ、コーク生成反応を促進することにより急激な活性低下を招く恐れがある。ゼオライトの含有量は担体重量に対して2〜80重量%が望ましく、4〜75重量%がより望ましい。ゼオライト含有量が前記下限値に満たない場合には水素化分解活性を発揮できない恐れがあり、ゼオライト含有量が前記上限値を超える場合には酸性質が強すぎ、コーク生成反応を促進する恐れがある。
水素化精製触媒および水素化精製前段触媒、後段触媒のいずれの触媒においても、活性金属を触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
本発明においては前述の水素化精製工程と同時、もしくはその後に結晶性モレキュラシーブを含有する担体に担持された周期律表第6A族および第8族の元素から選ばれる少なくとも一種類以上の金属を含有する異性化触媒と水素加圧下で接触させ、炭素数15から18までの鎖状飽和炭化水素を50質量%以上含有し、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上となる含炭化水素混合留分の環境低負荷型軽油基材を用いなければならない。
本発明で用いられる異性化触媒に含まれる結晶性モレキュラシーブは、十分な水素化脱酸素活性と水素化異性化活性を付与するために、少なくともケイ素を含有していることが好ましい。ケイ素以外の構成元素として、アルミニウム、ジルコニウム、ホウ素、チタン、ガリウム、亜鉛、リンを含有していることがより好ましく、ケイ素のほかアルミニウム、ジルコニウム、ホウ素、チタン、リンを含有していることがさらにより好ましい。これらの元素を含有していることにより、水素化脱酸素反応と炭化水素の骨格異性化反応を同時に促進し、精製油の低温性能向上を達成することができる。
前記結晶性モレキュラシーブを構成する元素のうち酸素を除く元素について、{ケイ素原子数}/{ケイ素以外の元素の原子数}の比が3以上であることが好ましい。より好ましくは10以上であり、さらにより好ましくは30以上である。前記の比率が3に満たない場合、パラフィンの分解反応が促進され、コーキングによる活性低下を招く恐れがある。
前記結晶性モレキュラシーブの細孔直径は0.8nm以下であることが好ましく、0.65nm以下であることがより好ましい。ゼオライト細孔直径が0.8nmよりも大きい場合、パラフィンの分解反応が起こる懸念がある。結晶性モレキュラシーブの結晶構造としては、特に限定されるものではないが、国際ゼオライト学会が定める構造でいうFAU、AEL、MFI、MMW、TON、MTW、*BEA、MORなどが挙げられる。
本発明で用いられる触媒に含まれる結晶性モレキュラシーブの合成方法は、特に限定されるものではなく、一般的に知られているように、構成成分原料とアミン化合物を構造指示剤とした水熱合成法などを用いることができる。構成成分原料とは、例えばケイ素含有化合物の場合にはケイ酸ナトリウム、コロイダルシリカ、ケイ酸アルコキサイドなどが、アルミニウムの場合、水酸化アルミニウム、アルミン酸ナトリウムなどが挙げられる。構造指示剤としては、テトラプロピルアンモニウム塩などが挙げられる。
また、結晶性モレキュラシーブは、必要に応じてスチーム等による水熱処理、アルカリ性または酸性の水溶液による浸漬処理、イオン交換、塩素ガスやアンモニア等の塩基性または酸性ガスによる表面処理などを、単独または複数の工程を組み合わせて施すことによって物性を調整することができる。
本発明で用いられる触媒において、結晶性モレキュラシーブ以外の構成物としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる無機酸化物が挙げられる。これらの無機酸化物は、結晶性モレキュラシーブを成型する際の接合剤として用いるとともに、水素化脱酸素と水素化異性化を促進する活性成分としても機能することができる点から、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上であることが好ましい。触媒全体に占める結晶性モレキュラシーブの含有量は2〜90質量%が好ましく、5〜85質量%がより好ましく、10〜80質量%がさらにより好ましい。前記含有量が2質量%に満たない場合、触媒としての水素化脱酸素活性および水素化異性化活性が十分でなく、前期含有量が90質量%を超える場合、触媒成形性が容易でなくなり、工業的な製造に支障が生じる恐れがある。
本発明で用いられる触媒における結晶性モレキュラシーブ以外の構成物について、アルミニウム以外の構成元素である、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムを担体に導入する方法は特に制限されず、これらの元素を含有する溶液などを原料として用いればよい。例えば、ケイ素については、ケイ酸、水ガラス、シリカゾルなど、ホウ素についてはホウ酸など、リンについては、リン酸やリン酸のアルカリ金属塩など、チタンについては硫化チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウムや各種アルコキサイド塩などを用いることができる。
上記の酸化アルミニウム以外の担体構成成分の原料は、担体の焼成より前の工程において添加することが好ましい。例えば、アルミニウム水溶液に予め上記原料を添加した後、これらの構成成分を含む水酸化アルミニウムゲルを調製してもよく、調合した水酸化アルミニウムゲルに対して上記原料を添加してもよい。あるいは、市販の酸化アルミニウム中間体やベーマイトパウダーに水もしくは酸性水溶液を添加して混練する工程において上記原料を添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させることがより好ましい。酸化アルミニウム以外の担体構成成分の効果発現機構は必ずしも解明されたわけではないが、アルミニウムと複合的な酸化物状態を形成していると推察され、このことが担体表面積の増加や活性金属との相互作用を生じることにより、活性に影響を及ぼしていると考えられる。
結晶性モレキュラシーブを含有する担体には、周期律表第8族の元素から選ばれる1種以上の金属が担持される。これらの金属の中でも、Pd、Pt、Rh、Ir、Au、Niから選ばれる1種以上の金属を用いることが好ましく、組み合わせて用いることがより好ましい。好適な組み合せとしては、例えば、Pd−Pt、Pd−Ir、Pd−Rh、Pd−Au、Pd−Ni、Pt−Rh、Pt−Ir、Pt−Au、Pt−Ni、Rh−Ir、Rh−Au、Rh−Ni、Ir−Au、Ir−Ni、Au−Ni、Pd−Pt−Rh、Pd−Pt−Ir、Pt−Pd−Niなどが挙げられる。このうち、Pd−Pt、Pd−Ni、Pt−Ni、Pd−Ir、Pt−Rh、Pt−Ir、Rh−Ir、Pd−Pt−Rh、Pd−Pt−Ni、Pd−Pt−Irの組み合わせがより好ましく、Pd−Pt、Pd−Ni、Pt−Ni、Pd−Ir、Pt−Ir、Pd−Pt−Ni、Pd−Pt−Irの組み合わせがさらにより好ましい。
本発明で用いられる上記触媒は、反応に供する前に触媒に含まれる活性金属を還元処理しておくことが好ましい。還元条件は特に限定されないが、水素気流下、200〜400℃の温度で処理することによって還元される。好ましくは、240〜380℃の範囲で処理することが好ましい。還元温度が200℃に満たない場合、活性金属の還元が十分進行せず、水素化脱酸素および水素化異性化活性が発揮できない恐れがある。また、還元温度が400℃を超える場合、活性金属の凝集が進行し、同様に活性が発揮できなくなる恐れがある。
触媒質量を基準とする活性金属の合計含有量としては、金属として0.1〜2質量%が好ましく、0.2〜1.5質量%がより好ましく、0.5〜1.3質量%がさらにより好ましい。金属の合計担持量が0.1質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、2質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。
これらの活性金属を触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また、平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法である。なお、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
本発明において被処理油を水素化精製する工程と同時、またはその後に異性化する工程を行う必要がある。
水素化精製工程と異性化工程を同時に行う場合は、前述の触媒類を1つの反応器中に複数層状に組み合わせて使用する方法、もしくは1つの触媒に複数の性能を保持させた、いわゆるハイブリッド型触媒を使用する方法などが好ましい。
また、水素化精製工程の後に異性化工程を行う場合は、水素化精製工程にて被処理油に含まれる酸素分を70質量%以上除去し、異性化工程にて残存する酸素分をさらに被処理油に対して95質量%以上に除去し、かつ精製油に含まれるパラフィン分のうち、イソパラフィン/ノルマルパラフィンの比率を0.2以上にする工程の組み合わせが好ましい。水素化精製工程における酸素分除去率が70質量%に満たない場合、異性化工程における水素化脱酸素および水素化異性化反応が十分進行しない恐れがある。
水素化精製工程において、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物に担持された周期律表第6A族および第8族の元素から選ばれる1種以上の金属を含有する触媒を用いることが好ましく、活性金属として、Pd、Pt、Rh、Ir、Au、Ni、Moから選ばれる1種類以上の元素であることがさらに好ましい。
異性化工程では、結晶性モレキュラシーブを含有する担体に担持された周期律表第8族の元素から選ばれる1種類以上の金属を含有する触媒を用いることができる。
なお、異性化工程において用いる触媒は1種類でも複数種用いてもよく、精製油の安定性を向上させる目的で、異性化工程後段に水素化活性を有する触媒を充填してもよい。
さらに本発明においては、前記で製造された環境低負荷型軽油基材と原油等から精製された水素化精製油を混合して所定の性能を満たした軽油組成物を製造することができる。
該原油等から精製された水素化精製油としては、原油の常圧蒸留装置から得られる直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解または水素化分解して得られる接触分解軽油または水素化分解軽油、これらの石油系炭化水素を水素化精製して得られる水素化精製軽油若しくは水素化脱硫軽油等が挙げられる。
これらの水素化精製油は、所定の条件を満たす範疇で、複数の軽油留分基材及び灯油留分基材を配合して構成することができる。また、天然ガス、アスファルト、石炭、バイオマスなどを原料にして合成される合成軽油等も使用することができる。
該水素化精製油の水素化精製は、石油精製において一般的な水素化脱硫装置を用いて処理を行うことができる。一般的には軽油留分の場合、反応温度300〜380℃、水素圧力3〜8MPa、LHSV0.3〜2h−1、水素/油比100〜500NL/Lといった条件で行われる。
水素化精製に用いられる触媒は一般的な水素化脱硫用触媒を適用できる。活性金属としては、通常、周期律表第6A族および第8族金属が好ましく用いられ、例えばCo−Mo,Ni−Mo,Co−W,Ni−Wが挙げられる。担体としてはアルミナを主成分とした多孔質無機酸化物が用いられる。これらの条件、触媒は原料油の性状を満たす限りにおいて特に限定されるものではない。
また、水素化精製油は上述の原料油を水素化触媒の存在下で水素化処理したものも用いることができる。水素化処理条件は、通常、反応温度170〜320℃、水素圧力2〜10MPa、LHSV0.1〜2h−1、水素/油比100〜800NL/Lである。好ましくは反応温度175℃〜300℃、水素圧力2.5〜8MPa、LHSV0.2〜1.5h−1、水素/油比150〜600NL/Lであり、さらに好ましくは反応温度180℃〜280℃、水素圧力3〜7MPa、LHSV0.3〜1.2h−1、水素/油比150〜500NL/Lである。反応温度は低温ほど水素化反応には有利であるが、脱硫反応には好ましくない。水素圧力、水素/油比は高いほど脱硫、水素化反応とも促進されるが、経済的に最適点が存在する。LHSVは低いほど反応に有利であるが、低すぎる場合には極めて大きな反応塔容積が必要となり過大な設備投資となるので不利である。
原料油を水素化処理する装置はいかなる構成でもよく、反応塔は単独でもまたは複数を組み合わせてもよく、複数の反応塔の間に水素を追加注入してもよく、気液分離操作や硫化水素除去設備を有していてもよい。
水素化処理装置の反応形式は、固定床方式が好ましく採用される。水素は原料油に対して、向流または並流のいずれの形式をとることができ、また、複数の反応塔を有し、向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式が好ましい。反応塔の中段には反応熱の除去、あるいは水素分圧を上げる目的で水素ガスをクエンチとして注入してもよい。
水素化処理に用いる触媒は水素化活性金属を多孔質担体に担持したものである。多孔質担体としては無機酸化物が挙げられる。具体的な無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトがあり、本発明ではこのうちチタニア、ジルコニア、ボリア、シリカ、ゼオライトのうち少なくとも1種類とアルミナによって構成されているものがよい。その製造法は特に限定されないが、各元素に対応した各種ゾル、塩化合物などの状態の原料を用いて任意の調製法を採用することができる。さらには一旦シリカアルミナ、シリカジルコニア、アルミナチタニア、シリカチタニア、アルミナボリアなどの複合水酸化物あるいは複合酸化物を調製した後に、アルミナゲルやその他水酸化物の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製してもよい。アルミナと他の酸化物との比率は多孔質担体に対して任意の割合を取り得るが、好ましくはアルミナが90質量%以下、さらに好ましくは60質量%以下、より好ましくは40質量%以下である。
ゼオライトは結晶性アルミノシリケートであり、フォージャサイト、ペンタシル、モルデナイトなどが挙げられ、所定の水熱処理および/または酸処理によって超安定化したもの、あるいはゼオライト中のアルミナ含有量を調整したものを用いることができる。好ましくはフォージャサイト、モルデナイト、特に好ましくはY型、ベータ型が用いられる。Y型は超安定化したものが好ましく、水熱処理により超安定化したゼオライトは本来の20Å以下のミクロ細孔と呼ばれる細孔構造に加え、20〜100Åの範囲に新たな細孔が形成される。水熱処理条件は公知の条件を用いることができる。
水素化処理に用いる触媒の活性金属としては周期律表第8族金属から選ばれる少なくとも1種類の金属である。好ましくはRu,Rd,Ir,PdおよびPtから選ばれる少なくとも1種類であり、さらに好ましくはPdまたは/およびPtである。活性金属としてはこれらの金属を組み合わせたものでよく、例えばPt−Pd,Pt−Rh,Pt−Ru,Ir−Pd,Ir−Rh,Ir−Ru,Pt−Pd−Rh,Pt−Rh−Ru,Ir−Pd−Rh,Ir−Rh−Ruなどの組み合わせを採用することができる。金属源としては一般的な無機塩、錯塩化合物を用いることができ、担持方法としては含浸法、イオン交換法など通常の水素化触媒で用いられる担持方法のいずれの方法も用いることができる。また、複数の金属を担持する場合には混合溶液を用いて同時に担持してもよく、または単独溶液を用いて逐次担持してもよい。金属溶液は水溶液でもよく有機溶剤を用いてもよい。
金属担持は、構成されている多孔質担体の調製全工程終了後に行ってもよく、多孔質担体調製中間工程における適当な酸化物、複合酸化物、ゼオライトに予め担持した後に更なるゲル調合工程あるいは加熱濃縮、混練を行ってもよい。
活性金属の担持量は特に限定されないが、触媒質量に対し金属量合計で0.1〜10質量%、好ましくは0.15〜5質量%、さらに好ましくは0.2〜3質量%である。
触媒は、水素気流下において予備還元処理を施した後に用いるのが好ましい。一般的には水素を含むガスを流通し、200℃以上の熱を所定の手順に従って与えることにより触媒上の活性金属が還元され、水素化活性を発現することになる。
本発明には、軽油留分の水素化精製油以外にも、灯油留分の水素化精製油などを用いることができる。かかる灯油留分は、所定の原料油を水素化処理して得られる灯油留分とすることができる。該原料油としては、原油の常圧蒸留により得られる直留灯油が主であるが、水素化分解軽油と共に製造される水素化分解灯油、上記の灯油留分を水素化精製して得られる水素化精製灯油を用いることができる。また、天然ガス、アスファルト分、石炭、バイオマスなどを原料とする合成灯油を使用することも可能である。
本発明の水素化精製油灯油留分は、上述の原料油を水素化触媒の存在下で水素化処理(脱硫及び精製)したものを用いることができる。
水素化処理条件は、通常、反応温度220〜350℃、水素圧力1〜6MPa、LHSV0.1〜10h−1、水素/油比10〜300NL/Lである。好ましくは反応温度250℃〜340℃、水素圧力2〜5MPa、LHSV1〜10h−1、水素/油比30〜200NL/Lであり、さらに好ましくは反応度270℃〜330℃、水素圧力2〜4MPa、LHSV2〜10h−1、水素/油比50〜200NL/Lである。反応温度は低温ほど水素化反応には有利であるが、脱硫反応には好ましくない。水素圧力、水素/油比は高いほど脱硫、水素化反応とも促進されるが、経済的に最適点が存在する。LHSVは低いほど反応に有利であるが、低すぎる場合には極めて大きな反応塔容積が必要となり過大な設備投資となるので不利である。
原料油を水素化処理する装置はいかなる構成でもよく、反応塔は単独でもまたは複数を組み合わせてもよく、複数の反応塔の間に水素を追加注入してもよく、気液分離操作や硫化水素除去設備を有していてもよい。
水素化処理装置の反応形式は、固定床方式が好ましく採用される。水素は原料油に対して、向流または並流のいずれの形式をとることができ、また、複数の反応塔を有し、向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式が好ましい。反応塔の中段には反応熱の除去、あるいは水素分圧を上げる目的で水素ガスをクエンチとして注入してもよい。
水素化処理に用いる触媒は水素化活性金属を多孔質担体に担持したものである。多孔質担体としてはアルミナを主成分とした多孔質無機酸化物が用いられる。具体的な無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトがあり、本発明ではこのうちチタニア、ジルコニア、ボリア、シリカ、ゼオライトのうち少なくとも1種類とアルミナによって構成されているものがよい。その製造法は特に限定されないが、各元素に対応した各種ゾル、塩化合物などの状態の原料を用いて任意の調製法を採用することができる。さらには一旦シリカアルミナ、シリカジルコニア、アルミナチタニア、シリカチタニア、アルミナボリアなどの複合水酸化物あるいは複合酸化物を調製した後に、アルミナゲルやその他水酸化物の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製してもよい。アルミナと他の酸化物との比率は多孔質担体に対して任意の割合を取りうるが、好ましくはアルミナが90質量%以下、さらに好ましくは60質量%以下、より好ましくは40質量%以下である。これらの条件、触媒は原料油の性状を満たす限りにおいて特に限定されるものではない。
ゼオライトは結晶性アルミノシリケートであり、フォージャサイト、ペンタシル、モルデナイトなどが挙げられ、所定の水熱処理および/または酸処理によって超安定化したもの、あるいはゼオライト中のアルミナ含有量を調整したものを用いることができる。好ましくはフォージャサイト、モルデナイト、特に好ましくはY型、ベータ型が用いられる。Y型は超安定化したものが好ましく、水熱処理により超安定化したゼオライトは本来の20Å以下のミクロ細孔と呼ばれる細孔構造に加え、20〜100Åの範囲に新たな細孔が形成される。水熱処理条件は公知の条件を用いることができる。
水素化処理に用いる触媒の活性金属としては周期律表第6A族金属から選ばれる少なくとも1種類の金属である。好ましくはMoおよびWから選ばれる少なくとも1種類である。活性金属としては第6A族金属と第8族金属を組み合わせたものでよく、具体的にはMoまたはWと、CoまたはNiの組み合わせであり、例えばCo−Mo、Co−W、Ni−Mo、Ni−W、Co−Ni−Mo、Co−Ni−Wなどの組み合わせを採用することができる。金属源としては一般的な無機塩、錯塩化合物を用いることができ、担持方法としては含浸法、イオン交換法など通常の水素化触媒で用いられる担持方法のいずれの方法も用いることができる。また、複数の金属を担持する場合には混合溶液を用いて同時に担持してもよく、または単独溶液を用いて逐次担持してもよい。金属溶液は水溶液でもよく有機溶剤を用いてもよい。
金属担持は、構成されている多孔質担体の調製全工程終了後に行ってもよく、多孔質担体調製中間工程における適当な酸化物、複合酸化物、ゼオライトに予め担持した後に更なるゲル調合工程あるいは加熱濃縮、混練を行ってもよい。
活性金属の担持量は特に限定されないが、触媒質量に対し金属量合計で0.1〜10質量%、好ましくは0.15〜5質量%、さらに好ましくは0.2〜3質量%である。
触媒は、水素気流下において予備還元処理を施した後に用いるのが好ましい。一般的には水素を含むガスを流通し、200℃以上の熱を所定の手順に従って与えることにより触媒上の活性金属が還元され、水素化活性を発現することになる。
本発明は前述の原料油類および製造方法により製造される環境低負荷型軽油基材を使用する必要があり、環境低負荷型軽油基材は炭素数15から18までの鎖状飽和炭化水素を50質量%以上含有し、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上、脂肪酸アルキルエステル含有量2質量%以下、遊離脂肪酸含有量1質量%以下、ナトリウム、カリウム、カルシウム、マグネシウムの金属分の合計が10質量ppm以下、硫黄含有量3質量ppm以下、酸素含有量1質量%以下、水分が500質量ppm以下である含炭化水素混合留分でなければならない。
環境低負荷型軽油基材は、炭素数15から18までの鎖状飽和炭化水素を50質量%以上含有する必要がある。鎖状飽和炭化水素とは直鎖飽和炭化水素(ノルマルパラフィン類)および側鎖を有する飽和炭化水素(イソパラフィン類)の双方を示す。該基材は炭素数15から18までの鎖状飽和炭化水素を85質量%以上含有することが好ましく、90質量%以上含有することがさらに好ましい。炭素数15から18までの鎖状飽和炭化水素は着火性、発熱量、酸化安定性に優れた成分であるため、該基材の含有量がこれに満たない場合は、エンジン性能や軽油組成物の酸化安定性が悪化する可能性がある。
また、同時に炭素数15以上の側鎖を有する鎖状飽和炭化水素(イソパラフィン類)含有量を炭素数15以上の直鎖飽和炭化水素(ノルマルパラフィン類)含有量で除した値が0.7以上であることが必要である。該値が0.7を下回る場合は直鎖飽和炭化水素主体の基材となり、低温流動性に支障が生じるため、本発明の目的を達することができない。そのため、該値0.7以上であることが必要であり、0.8以上であることが好ましく、0.9以上であることがより好ましく、1.0以上であることがさらにより好ましい。
なお、ここでいう鎖状飽和炭化水素とは、GC−TOFMSを用いて得ることができる。GC−TOFMSにおいては、先ず、試料の構成成分をガスクロマトグラフィーにより分離し、分離された各成分をイオン化する。次いで、イオンに一定の加速電圧を与えたときの飛行速度がイオンの質量によって異なることに基づき、イオンを質量分離し、イオン検出器への到達時間の違いに基づいて質量スペクトルを得るものである。なお、GC−TOFMSにおけるイオン化法としては、フラグメントイオンの生成を抑制し、イソパラフィン類の測定精度をより向上させることができることから、FIイオン化法が好ましい。本発明における測定装置及び測定条件を以下に示す。
(GC部)
装置:HEWLETT PACKARD社製、HP6890 Series GC System & Injector
カラム:A glient HP−5(30m×0.32mmφ、0.25μm−film)
キャリアガス:He、1.4mL/分(一定流量)
注入口温度:320℃
注入モード:スプリット(スプリット比=1:100)
オーブン温度:50℃にて5分間保持し、5℃/分で昇温し、320℃にて6分間保持する
注入量:1μL
(TOFMS部)
装置:日本電子社製、JMS−T100GC
対抗電極電圧:10.0kV
イオン化法:FI+(電界イオン化)
GCインターフェース温度:250℃
測定質量範囲:35〜500。
該基材は、酸化安定性確保のために、脂肪酸アルキルエステル含有量が1質量%以下であることが必要であり、好ましくは0.5質量%以下、より好ましくは0.1質量%以下である。なお、ここでいう脂肪酸アルキルエステル含有量とは、表1に示す条件にて極性カラムを用いたガスクロマトグラフィーにより測定される基材全量に対する脂肪酸アルキルエステル含有量を示す。
Figure 2007308573
該基材は、酸化安定性確保のために、遊離脂肪酸含有量が1質量%以下あることが必要であり、好ましくは0.5質量%以下、より好ましくは0.1質量%以下である。なお、ここでいう遊離脂肪酸含有量とは、表1に示す条件にて極性カラムを用いたガスクロマトグラフィーにより測定される基材全量に対する遊離脂肪酸含有量を示す。
該基材は、酸化安定性ならびにエンジン内のデポジット生成抑制、エンジンオイルの劣化防止の観点から、ナトリウム、カリウム、カルシウム、マグネシウムの金属分の合計が10ppm以下であることが必要であり、8ppm以下であることが好ましく、6ppm以下であることがより好ましい。なお、ここでいうナトリウム、カリウム、カルシウム、マグネシウムの測定方法には一般的な元素分析装置を適用することができ、例えばICP発光分析装置により測定される各金属分の濃度を合計して求めることができる。
該基材は、環境負荷性能を向上し、使用するエンジンに装着された排出ガス後処理装置の性能維持のため、硫黄含有量3質量ppm以下であることが必要であり、2質量ppm以下であることが好ましく、1質量ppm以下であることがより好ましい。なお、ここでいう硫黄分含有量とは、JIS K 2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を意味する。
該基材は、酸化安定性ならびに燃費向上、エンジンオイルの劣化防止の観点から、酸素含有量1質量%以下であることが必要であり、0.5質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。なお、酸素分含有量は一般的な元素分析装置で測定することができ、例えば、試料を白金炭素上でCOに転換し、あるいはさらにCOに転換した後に熱伝導度検出器を用いて測定することもできる。
該基材は、酸化安定性ならびに燃費向上、エンジンオイルの劣化防止の観点から、水分が500ppm以下であることが必要であり、300ppm以下であることが好ましく、100ppm以下であることがより好ましい。なお、ここでいう水分とは、JIS K 2275「水分試験方法(原油及び石油製品)」で規定される水分である。
本発明によって製造される軽油組成物は前述の含炭化水素混合留分の環境低負荷型軽油基材を用い、硫黄含有量5質量ppm以下、酸素含有量0.5質量%以下、セタン価55以上、加速酸化試験後の過酸化物価が50質量ppm以下、くもり点0℃以下、動粘度が2mm/s以上5mm/s以下、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上であり、下記式を満たす軽油組成物であることが必要である。
炭素数15から18の鎖状飽和炭化水素含有量>2×炭素数14以下の錯状飽和炭化水素化合物 (式1)
炭素数15から18の鎖状飽和炭化水素含有量>3×炭素数19以上の錯状飽和炭化水素含有量 (式2)
また、さらに芳香族含有量が15質量%以下、蒸留性状の90%留出温度が280℃以上350℃以下である軽油組成物であることが好ましい。
本発明の軽油組成物の硫黄分含有量は、エンジンから排出される有害排気成分低減と排ガス後処理装置の性能向上の点から5質量ppm以下であることが必要であり、好ましくは4質量ppm以下、より好ましくは3質量ppm以下、さらに好ましくは2質量ppm以下、さらにより好ましくは1質量ppm以下である。なお、ここでいう硫黄分含有量とは、JIS K 2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を意味する。
本発明の軽油組成物の酸素分含有量は、酸化安定性向上の観点から0.5質量%以下であることが必要であり、好ましくは0.4質量%以下、より好ましくは0.3質量%以下、さらに好ましくは0.2質量%以下、さらにより好ましくは0.1質量%以下である。なお、酸素分含有量は一般的な元素分析装置で測定することができ、例えば、試料を白金炭素上でCOに転換し、あるいはさらにCOに転換した後に熱伝導度検出器を用いて測定することもできる。
本発明の軽油組成物におけるセタン価は、55以上であることが必要であり、より好ましくは56以上である。セタン価が55に満たない場合には、排出ガス中のNOx、PM及びアルデヒド類の濃度が高くなりやすい。また、セタン価の上限に関しては特に制限はないものの、排ガス中の黒煙低減の観点から、90以下であることが好ましく、88以下であることがより好ましく、85以下であることがさらに好ましい。また本発明の軽油組成物においては、必要に応じてセタン価向上剤を適量配合し、得られる軽油組成物のセタン価を向上させることができる。なお、ここでいうセタン価とは、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「7.セタン価試験方法」に準拠して測定されるセタン価を意味する。
本発明の軽油組成物のセタン指数には特に制限はないものの、50以上を満たすことが好ましい。セタン指数が50に満たない場合には、排出ガス中のPM、アルデヒド類、あるいはさらにNOxの濃度が高くなる傾向にある。また、同様の理由により、セタン指数は52以上であることがより好ましく、54以上であることがさらに好ましい。なお、本発明でいうセタン指数とは、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「8.4変数方程式を用いたセタン指数の算出方法」によって算出される価を意味する。ここで、上記JIS規格におけるセタン指数は、一般的にはセタン価向上剤を添加していない軽油に対して適用されるが、本発明ではセタン価向上剤を添加した軽油組成物についても上記「8.4変数方程式を用いたセタン指数の算出方法」を適用し、当該算出方法により算出される値をセタン指数として表す。
本発明の軽油組成物は、貯蔵安定性、部材への適合性の点から、酸化安定性試験後の過酸化物価は、50質量ppm以下であることが必要であり、より好ましくは30質量ppm以下、さらに好ましくは10質量ppm以下である。なお、ここでいう酸化安定性試験とは、ASTM D2274−94に準拠して、95℃、酸素バブリング下、16時間の条件で実施するものであり、過酸化物価とは石油学会規格JPI−5S−46−96に準拠して測定される値を意味する。本発明の軽油組成物には、全不溶解分や過酸化物価を低減するために、酸化防止剤や金属不活性剤等の添加剤を適宜添加することができる。
本発明の軽油組成物においては、貯蔵安定性の点から、酸化安定性試験後の全不溶解分が2.0mg/100mL以下であることが好ましく、1.5mg/100mL以下であることがより好ましく、1.0mg/100mL以下であることがさらに好ましく、0.5mg/100mL以下であることがさらにより好ましい。なお、ここでいう酸化安定性試験とは、ASTM D2274−94に準拠して、95℃、酸素バブリング下、16時間の条件で実施するものである。また、ここでいう酸化安定性試験後の全不溶解分とは、前記酸化安定性試験に準拠して測定される値を意味する。
本発明の軽油組成物においては、炭素数15以上の側鎖を有する鎖状飽和炭化水素(イソパラフィン類)含有量を炭素数15以上の直鎖飽和炭化水素(ノルマルパラフィン類)含有量で除した値が0.7以上であることが必要である。該値が0.7を下回る場合は直鎖飽和炭化水素主体の基材となるため、低温流動性に支障が生じるため、本発明の目的を達することができない。そのため、該値0.7以上であることが必要であり、0.8以上であることが好ましく、0.9以上であることがより好ましく、1.0以上であることがさらにより好ましい。
また、本発明の軽油組成物においては、下記式を満たすことが必要である。
炭素数15から18の鎖状飽和炭化水素含有量>2×炭素数14以下の錯状飽和炭化水素化合物 (式1)
炭素数15から18の鎖状飽和炭化水素含有量>3×炭素数19以上の錯状飽和炭化水素含有量 (式2)
両式は軽油組成物中の鎖状飽和炭化水素の炭素数分布について制約をつけている。すなわち、炭素数15から18の鎖状飽和炭化水素含有量を基準にして、これよりも炭素数が小さい領域とこれより炭素数が大きい領域に分割し、その含有比率を規定したものである。炭素数14以下の領域は主として燃料の揮発性を支配する炭化水素化合物を含有する。ただし、この比率が高すぎる場合は燃料が軽質化してしまい、燃費の悪化を誘導すると共に、これより重質な燃料の蒸発、燃焼を阻害する可能性がある。炭素数19以上の領域は主として燃料の発熱量、密度、粘度などを支配する炭化水素化合物を含有する。ただし、この比率が高すぎる場合は燃料が重質化してしまい、燃焼や排出ガス性能、特に未燃の炭化水素排出の悪化を引き起こす可能性がある。炭素数15から18の鎖状炭化水素は燃費、排ガス性能、酸化安定性、エンジンオイルへの悪影響、低温始動性の観点から最も含有するに好ましい成分であるが、従来はこの成分のみで軽油組成物を構成することが困難であり、本発明によって初めてこの成分のみで軽油組成物を構成できるものである。また、他の燃料基材との混合においては、前述の3領域の比率を燃費、排ガス性能、酸化安定性、エンジンオイルへの悪影響、低温始動性の観点から最適化すれば、本発明が求める性能を満足できる領域が存在し、発明者らの研究の結果、これらを最適化する比率を発明したことで、前述した効果を有する軽油組成物の提供が可能になることを見いだしたものである。なお、式1、式2の係数は、実験結果を統計に解析した結果得られた数値である。ここでいう鎖状飽和炭化水素とは、前述のGC−TOFMSにより測定されるものを示す。
本発明の軽油組成物の30℃における動粘度は、2mm/s以上であることが必要であり、2.5mm/s以上であることが好ましく、3mm/s以上であることがより好ましい。当該動粘度が2mm/sに満たない場合は、燃料噴射ポンプ側の燃料噴射時期制御が困難となる傾向にあり、またエンジンに搭載された燃料噴射ポンプの各部における潤滑性が損なわれるおそれがある。また、本発明の軽油組成物の30℃における動粘度は5mm/s以下であることが必要であり、4.7mm/s以下であることがより好ましく、4.5mm/s以下であることがさらに好ましい。当該動粘度が5mm/sを超えると、燃料噴射システム内部の抵抗が増加して噴射系が不安定化し、排出ガス中のNOx、PMの濃度が高くなってしまう。なお、ここでいう動粘度とは、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を意味する。
本発明の軽油組成物のくもり点は、低温始動性確保ないしは低温運転性確保の観点、並びに電子制御式燃料噴射ポンプにおける噴射性能維持の観点から0℃以下を満たすことが必要であり、−2℃以下であることが好ましく、−5℃以下であることがより好ましい。ここでくもり点とは、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」に準じて測定される流動点を意味する。
本発明の軽油組成物の目詰まり点(CFPP)には特に制限はないが、ディーゼル車のプレフィルタ閉塞を防止し、低温時における燃料流動性を確保するための点から、0℃以下であることが好ましく、−2℃以下であることがより好ましく、−5℃以下であることがさらに好ましい。ここで目詰まり点とはJIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。
また、本発明の軽油組成物における流動点には特に制限はないが、低温始動性ないしは低温運転性の観点、並びに電子制御式燃料噴射ポンプにおける噴射性能維持の観点から、0℃以下であることが好ましく、−2.5以下であることがより好ましく、−5℃以下であることがさらに好ましく、−7.5℃以下であることがさらにより好ましい。ここで流動点とは、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」により測定される流動点を意味する。
本発明の軽油組成物における芳香族分含有量は、環境負荷低減効果を高め、NOx及びPM低減の観点から、15容量%以下であることが好ましく、より好ましくは13容量%以下、さらに好ましくは12容量%以下である。なお、本発明でいう芳香族分含有量とは、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族分含有量の容量百分率(容量%)を意味する。
本発明の軽油組成物における蒸留性状としては、90%留出温度が280℃以上350℃以下であることが好ましい。90%留出温度が前記上限値を超えると、PMや微小粒子の排出量が増加し環境負荷低減性能が低下する傾向にあり、90%留出温度が前記下限値に満たないと、燃費向上効果が不十分となり、エンジン出力が低下する傾向にある。そのため、90%留出温度は、より好ましくは285℃以上345℃以下、さらに好ましくは290℃以上340℃以下である。
10%留出温度には特に制限はないが、好ましくは265℃以下、より好ましくは260℃以下である。10%留出温度が前記上限値を超えると、排ガス性能が悪化する傾向にある。また、10%留出温度は、好ましくは160℃以上、より好ましくは170℃以上、さらに好ましくは180℃以上である。10%留出温度が前記下限値に満たないと、エンジン出力や高温時の始動性が悪化する傾向にある。
なお、ここでいう10%留出温度、90%留出温度とは、全てJIS K 2254「石油製品−蒸留試験方法」により測定される値を意味する。
本発明の軽油組成物の引火点には特に制限はないものの、安全上の理由により50℃以上であることが好ましく、引火点は54℃以上であることが好ましく、58℃以上であることがより好ましい。なお、本発明でいう引火点はJIS K 2265「原油及び石油製品引火点試験方法」で測定される値を示す。
本発明の軽油組成物の15℃における密度には特に制限はないものの、発熱量確保の点から、750kg/m以上であることが好ましく、755kg/m以上がより好ましく、760kg/m以上がさらに好ましい。また、当該密度は、NOx、PMの排出量を低減する点から、850kg/m以下であることが好ましく、845kg/m以下がより好ましく、840kg/m以下がさらに好ましい。なお、ここでいう密度とは、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を意味する。
本発明の軽油組成物は、HFRR摩耗痕径(WS1.4)が好ましくは410μm以下、より好ましくは400μm以下となる潤滑性能を有することが望ましい。HFRR摩耗痕径(WS1.4)が410μmを超える場合は、特に分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増、ポンプ各部の摩耗増を引き起こし、排ガス性能、微小粒子性能の悪化のみならずエンジン自体が破壊される恐れがある。また、高圧噴射が可能な電子制御式燃料噴射ポンプにおいても、摺動面等の摩耗が懸念される。
なお、本発明でいうHFRR摩耗痕径(WS1.4)とは、社団法人石油学会から発行されている石油学会規格JPI−5S−50−98「軽油−潤滑性試験方法」により測定される値を意味する。
本発明の軽油組成物の水分含有量には特に制限はないものの、酸化安定性ならびに燃費向上、エンジンオイルの劣化防止の観点から、水分が500ppm以下であることが必要であり、300ppm以下であることが好ましく、100ppm以下であることがより好ましい。なお、ここでいう水分とは、JIS K 2275「水分試験方法(原油及び石油製品)」で規定される水分である。
本発明の軽油組成物における10%残油の残留炭素分には特に制限はないものの、微小粒子やPM低減の観点、並びにエンジンに搭載される排ガス後処理装置の性能維持の観点から、0.1質量%以下であることが好ましく、0.08質量%以下であることがより好ましく、0.06質量%以下であることがさらに好ましい。なお、ここでいう10%残油の残留炭素分とは、JIS K 2270「原油及び石油製品−残留炭素分試験方法」により測定される10%残油の残留炭素分を意味する。
本発明の軽油組成物においては、灰分の含有量が0.01質量%未満であることが好ましい。灰分の含有量が前記上限値を超えると、エンジンでの燃焼過程中に灰分がPMの核となり、PM全体の量及びナノ粒子の量が増加してしまう。また、灰分のまま排出された場合であっても、灰分が排ガス後処理装置に堆積してしまい、後処理装置の性能低下を招いてしまうことがある。さらには、燃料噴射系に対する悪影響も考えられる。なお、本発明でいう灰分とは、JIS K 2272「原油及び石油製品の灰分並びに硫酸灰分試験方法」によって測定される値を意味する。
また、本発明における軽油組成物における導電率は特に限定されないが、安全性の点から50pS/m以上であることが好ましい。本発明の軽油組成物には、導電率を改善するために、適宜帯電防止剤等を添加することができる。なお、ここでいう導電率とは、JIS K 2276「石油製品−航空燃料油試験方法」に準拠して測定される値を意味する。
また、本発明の軽油組成物の全酸価は1.0mgKOH/g以下であることが好ましい。全酸価は混合物内の遊離脂肪酸量を示しているため、この値が大きいと酸性化合物による部材への悪影響が懸念される。そのため、全酸価は1.0mgKOH/g以下であることが好ましく、0.9mgKOH/g以下であることがより好ましく、0.8mgKOH/g以下であることがさらに好ましい。なお、ここでいう全酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される全酸価を意味する。
本発明の軽油組成物においては、必要に応じてセタン価向上剤を適量配合し、得られる軽油組成物のセタン価を向上させることができる。
セタン価向上剤としては、軽油のセタン価向上剤として知られる各種の化合物を任意に使用することができ、例えば、硝酸エステルや有機過酸化物等が挙げられる。これらのセタン価向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いても良い。
本発明においては、上述のセタン価向上剤の中でも硝酸エステルを用いることが好ましい。かかる硝酸エステルには、2−クロロエチルナイトレート、2−エトキシエチルナイトレート、イソプロピルナイトレート、ブチルナイトレート、第一アミルナイトレート、第二アミルナイトレート、イソアミルナイトレート、第一ヘキシルナイトレート、第二ヘキシルナイトレート、n−ヘプチルナイトレート、n−オクチルナイトレート、2−エチルヘキシルナイトレート、シクロヘキシルナイトレート、エチレングリコールジナイトレートなどの種々のナイトレート等が包含されるが、特に、炭素数6〜8のアルキルナイトレートが好ましい。
セタン価向上剤の含有量は、組成物全量基準で500質量ppm以上であることが好ましく、600質量ppm以上であることがより好ましく、700質量ppm以上であることがさらに好ましく、800質量ppm以上であることがさらにより好ましく、900質量ppm以上であることが最も好ましい。セタン価向上剤の含有量が500質量ppmに満たない場合は、十分なセタン価向上効果が得られず、ディーゼルエンジン排出ガスのPM、アルデヒド類、さらにはNOxが十分に低減されない傾向にある。また、セタン価向上剤の含有量の上限値は特に限定されないが、軽油組成物全量基準で、1400質量ppm以下であることが好ましく、1250質量ppm以下であることがより好ましく、1100質量ppm以下であることがさらに好ましく、1000質量ppm以下であることが最も好ましい。
セタン価向上剤は、常法に従い合成したものを用いてもよく、また、市販品を用いてもよい。なお、セタン価向上剤と称して市販されているものは、セタン価向上に寄与する有効成分(すなわちセタン価向上剤自体)を適当な溶剤で希釈した状態で入手されるのが通例である。このような市販品を使用して本発明の軽油組成物を調製する場合には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。
本発明の軽油組成物においては、上記セタン価向上剤以外の添加剤を必要に応じて配合することができ、特に、潤滑性向上剤および/または清浄剤が好ましく配合される。
潤滑性向上剤としては、例えば、カルボン酸系、エステル系、アルコール系およびフェノール系の各潤滑性向上剤の1種又は2種以上が任意に使用可能である。これらの中でも、カルボン酸系及びエステル系の潤滑性向上剤が好ましい。
カルボン酸系の潤滑性向上剤としては、例えば、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸及び上記カルボン酸の2種以上の混合物が例示できる。
エステル系の潤滑性向上剤としては、グリセリンのカルボン酸エステルが挙げられる。カルボン酸エステルを構成するカルボン酸は、1種であっても2種以上であってもよく、その具体例としては、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸等がある。
潤滑性向上剤の配合量は、HFRR摩耗痕径(WS1.4)が前述の好ましい範囲内であれば特に制限されないが、組成物全量基準で35質量ppm以上であることが好ましく、50質量ppm以上であることがより好ましい。潤滑性向上剤の配合量が前記の範囲内であると、配合された潤滑性向上剤の効能を有効に引き出すことができ、例えば分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増を抑制し、ポンプの摩耗を低減させることができる。また、配合量の上限値は、それ以上加えても添加量に見合う効果が得られないことから、組成物全量基準で150質量ppm以下であることが好ましく、105質量ppm以下であることがより好ましい。
清浄剤としては、例えば、イミド系化合物;ポリブテニルコハク酸無水物とエチレンポリアミン類とから合成されるポリブテニルコハク酸イミドなどのアルケニルコハク酸イミド;ペンタエリスリトールなどの多価アルコールとポリブテニルコハク酸無水物から合成されるポリブテニルコハク酸エステルなどのコハク酸エステル;ジアルキルアミノエチルメタクリレート、ポリエチレングリコールメタクリレート、ビニルピロリドンなどとアルキルメタクリレートとのコポリマーなどの共重合系ポリマー、カルボン酸とアミンの反応生成物等の無灰清浄剤等が挙げられ、中でもアルケニルコハク酸イミド及びカルボン酸とアミンとの反応生成物が好ましい。これらの清浄剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
アルケニルコハク酸イミドを使用する例としては、分子量1000〜3000程度のアルケニルコハク酸イミドを単独使用する場合と、分子量700〜2000程度のアルケニルコハク酸イミドと分子量10000〜20000程度のアルケニルコハク酸イミドとを混合して使用する場合とがある。
カルボン酸とアミンとの反応生成物を構成するカルボン酸は1種であっても2種以上であってもよく、その具体例としては、炭素数12〜24の脂肪酸および炭素数7〜24の芳香族カルボン酸等が挙げられる。炭素数12〜24の脂肪酸としては、リノール酸、オレイン酸、パルミチン酸、ミリスチン酸等が挙げられるが、これらに限定されるものではない。また、炭素数7〜24の芳香族カルボン酸としては、安息香酸、サリチル酸等が挙げられるが、これらに限定されるものではない。また、カルボン酸とアミンとの反応生成物を構成するアミンは、1種であっても2種以上であってもよい。ここで用いられるアミンとしては、オレイルアミンが代表的であるが、これに限定されるものではなく、各種アミンが使用可能である。
清浄剤の配合量は特に制限されないが、清浄剤を配合した効果、具体的には、燃料噴射ノズルの閉塞抑制効果を引き出すためには、清浄剤の配合量を組成物全量基準で30質量ppm以上とすることが好ましく、60質量ppm以上とすることがより好ましく、80質量ppm以上とすることがさらに好ましい。30質量ppmに満たない量を添加しても効果が現れない可能性がある。一方、配合量が多すぎても、それに見合う効果が期待できず、逆にディーゼルエンジン排出ガス中のNOx、PM、アルデヒド類等を増加させる恐れがあることから、清浄剤の配合量は300質量ppm以下であることが好ましく、180質量ppm以下であることがより好ましい。
なお、先のセタン価向上剤の場合と同様、潤滑性向上剤又は清浄剤と称して市販されているものは、それぞれ潤滑性向上または清浄に寄与する有効成分が適当な溶剤で希釈された状態で入手されるのが通例である。このような市販品を本発明の軽油組成物に配合する際には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。
また、本発明における軽油組成物の性能をさらに高める目的で、後述するその他の公知の燃料油添加剤(以下、便宜上「その他の添加剤」という。)を単独で、または数種類組み合わせて添加することもできる。その他の添加剤としては、例えば、エチレン−酢酸ビニル共重合体、アルケニルコハク酸アミドなどの低温流動性向上剤;フェノール系、アミン系などの酸化防止剤;サリチリデン誘導体などの金属不活性化剤;ポリグリコールエーテルなどの氷結防止剤;脂肪族アミン、アルケニルコハク酸エステルなどの腐食防止剤;アニオン系、カチオン系、両性系界面活性剤などの帯電防止剤;アゾ染料などの着色剤;シリコン系などの消泡剤等が挙げられる。
その他の添加剤の添加量は任意に決めることができるが、添加剤個々の添加量は、軽油組成物全量基準でそれぞれ好ましくは0.5質量%以下、より好ましくは0.2質量%以下である。
本発明の動植物油脂および動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材を含有し、特定の燃料性状を有する軽油組成物は、ライフサイクルCO排出特性ならびに燃費、酸化安定性、低温始動性に優れ、かつエンジンオイルの性能低下を抑制しうる優れたものである。
以下、実施例及び比較例に基づいて本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(実施例1〜4および比較例1〜4)
表2に示す性状を有する減圧軽油および植物油脂を表3に示す反応条件で反応させ、表4に示す環境低負荷型軽油基材を調製した(実施例1〜4)。なお、環境低負荷型軽油基材1は植物油脂1を、環境低負荷型軽油基材2は植物油脂2を、環境低負荷型軽油基材3は減圧軽油と植物油脂1とを80:20の割合で混合したものを原料油として反応させたものである。
また、表2に示す植物油脂をアルキルエステル化して得た脂肪酸アルキルエステルの性状を示す(比較例2〜3)。これらの脂肪酸アルキルエステルはメタノールとの反応により得られたメチルエステル化合物であり、ここではアルカリ触媒(ナトリウムメチラート)の存在下で70℃、1時間程度の撹拌を行い、アルキルアルコールと直接反応させてエステル化合物を得るエステル交換反応を用いた。
表4に示した環境低負荷型軽油基材、植物油脂のメチルエステル価物および石油系基材である水素化精製油を調合して軽油組成物を製造した(実施例1〜4および比較例1〜4)。
なお、使用した添加剤は以下のとおりである。
・潤滑性向上剤:リノ−ル酸を主成分とするカルボン酸混合物
・清浄剤:オレイン酸を主成分とするカルボン酸混合物とオレイルアミンとの
反応生成物
・低温流動性向上剤:エチレン−酢酸ビニル共重合体
調合した軽油組成物の調合比率、及びこの調合した軽油組成物に対して、15℃における密度、30℃における動粘度、引火点、硫黄分含有量、酸素分含有量、蒸留性状、鎖状飽和炭化水素含有量、くもり点、目詰まり点、流動点、芳香族分含有量、セタン価及びセタン指数、10%残油の残留炭素分、灰分、水分、酸化安定性試験後の全不溶解分、過酸化物価、導電率、摩耗痕径を測定した結果を表5に示す。
なお、燃料油の性状は以下の方法により測定した。
密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を指す。
動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を指す。
硫黄分含有量は、JIS K 2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を指す。
酸素分含有量は元素分析法により測定した。
蒸留性状は、全てJIS K 2254「石油製品−蒸留試験方法」によって測定される値である。
鎖状飽和炭化水素含有量は、前述のGC−TOFMSにより測定されるものを示す。
くもり点は、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」により測定される流動点を指す。
目詰まり点は、JIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。
流動点は、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」により測定される流動点を指す。
芳香族分含有量は、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族分含有量の容量百分率(容量%)を意味する。
水分は、JIS K 2275「水分試験方法(原油及び石油製品)」で規定される水分を意味する。
引火点はJIS K 2265「原油及び石油製品引火点試験方法」で測定される値を示す。
全酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される全酸価を意味する。
セタン指数は、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「8.4変数方程式を用いたセタン指数の算出方法」によって算出した価を指す。なお、上記JIS規格におけるセタン指数は、セタン価向上剤を添加したものに対しては適用されないが、本発明ではセタン価向上剤を添加したもののセタン指数も、上記「8.4変数方程式を用いたセタン指数の算出方法」によって算出した値を表すものとする。
セタン価は、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「7.セタン価試験方法」に準拠して測定されるセタン価を意味する。
潤滑性能およびHFRR摩耗痕径(WS1.4)とは、社団法人石油学会から発行されている石油学会規格JPI−5S−50−98「軽油−潤滑性試験方法」により測定される潤滑性能を指す。
10%残油の残留炭素分とは、JIS K 2270「原油及び石油製品−残留炭素分試験方法」により測定される10%残油の残留炭素分を意味する。
灰分は、JIS K 2272「原油及び石油製品の灰分並びに硫酸灰分試験方法」によって測定される値を意味する。
酸化安定性試験後の全不溶解分とは、ASTM D2274−94に準拠して、95℃、酸素バブリング下、16時間の条件で測定される値を意味する。
過酸化物価とは、石油学会規格JPI−5S−46−96に準拠して測定される値を意味する。
導電率とは、JIS K 2276「石油製品−航空燃料油試験方法」に準拠して測定される値を意味する。
遊離脂肪酸含有量及び脂肪酸アルキルエステル含有量は、前述の極性カラムを用いたガスクロマトグラフィーにより測定される基材全量に対する割合を示す。
Na、K、Ca、Mgからなる金属分は、ICP発光分析装置により測定される各金属分の濃度を合計したものを示す。
実施例および比較例で使用した軽油組成物は、表5に示すとおり、環境低負荷型軽油基材、植物油脂アルキルエステル化物および石油系基材である水素化精製油を特定の割合で調合して製造したものである。
表5から明らかなように、環境低負荷型軽油基材、および環境低負荷型軽油基材と水素化精製油とを混合して使用し、本発明で規定される範囲内で配合した実施例1〜4においては、硫黄含有量5質量ppm以下、酸素含有量0.5質量%以下、セタン価55以上、加速酸化試験後の過酸化物価が50質量ppm以下、くもり点0℃以下、動粘度が2mm/s以上5mm/s以下、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上であり、
炭素数15から18の鎖状飽和炭化水素含有量>2×炭素数14以下の錯状飽和炭化水素化合物 (式1)
炭素数15から18の鎖状飽和炭化水素含有量>3×炭素数19以上の錯状飽和炭化水素含有量 (式2)
の両式を満足する軽油組成物を容易にかつ確実に得ることができた。一方、上記特定の環境低負荷型軽油基材を用いずに軽油組成物を調製した比較例1〜4においては、本発明の目的とする軽油組成物は必ずしも得られない。
次に実施例1〜4及び比較例1〜4の各軽油組成物を用いて、以下に示す各種試験を行った。全ての試験結果を表6に示す。表6の結果から分かるように、実施例1〜4の軽油組成物は、比較例1〜4の軽油組成物に比べ、ライフサイクルでの二酸化炭素排出量が少ないこと、燃費が良好であること、酸化安定性に優れていること、低温始動性に優れていること、エンジンオイルへの悪影響がないことが明らかである。
なお、車両試験に係わる試験方法は、「国土交通省監修新型自動車審査関係基準集」同別添27「ディーゼル自動車10・15モード排出ガス測定の技術基準」に準拠している。
(車両排ガス試験、燃費試験)
下記に示すディーゼルエンジン搭載車両(車両1)を用いて、燃費の測定を行った。試験モードは、図1に示す実走行を模擬した過渡運転モードで行い、燃費は試験モード中に消費した燃料容積流量を燃料温度補正し、重量値に置き換えた値について、比較例1の燃料を供試した場合の結果を100として、各結果を相対的に比較、定量化した。
(車両諸元):車両1
エンジン種類:インタークーラー付過給直列4気筒ディ−ゼル
排気量 :3L
圧縮比 :18.5
最高出力 :125kW/3400rpm
最高トルク:350Nm/2400rpm
規制適合 :平成9年度排ガス規制適合
車両重量 :1900kg
ミッション:4AT
排ガス後処理装置:酸化触媒
(ライフサイクルCO算出)
ライフサイクルCOは、ディーゼルエンジン搭載車両における軽油組成物の燃焼に伴い発生したCOと、採掘から車両タンクへの燃料給油までに発生したCOと分けて算出した。
燃焼に伴い発生したCO(以下、「Tank to Wheel CO」という。
)は、上記車両試験を行ったときのCO排出量、走行燃費及び燃料密度に基づいて、各軽油組成物単位発熱量当たりの排出量として算出した。
また、採掘から車両タンクへの燃料給油までに発生したCO(以下、「Well to Tank CO」という。)は、原料及び原油ソースの採掘、輸送、加工、配送、車両への給油までの一連の流れにおけるCO排出量の総和として算出した。なお、「Well to Tank CO」の算出にあたっては、下記(1B)〜(5B)に示す二酸化炭素の排出量を加味して演算を行った。かかる演算に必要となるデータとしては、本発明者らが有する製油所運転実績データを用いた。
(1B)各種処理装置、ボイラー等設備の燃料使用に伴う二酸化炭素の排出量。
(2B)水素を使用する処理においては、水素製造装置における改質反応に伴う二酸化炭素の排出量。
(3B)接触分解装置等の連続触媒再生を伴う装置を経由する場合は、触媒再生に伴う二酸化炭素の排出量。
(4B)軽油組成物を、横浜で製造又は陸揚げし、横浜から仙台まで配送し、仙台で車両に給油したときの二酸化炭素の排出量。
(5B)動植物油脂および動植物油脂由来の成分は原産地をマレーシアおよびその周辺地域とし、製造を横浜で行うとした際の二酸化炭素の排出量。
なお、動植物油脂および動植物油脂由来の成分を使用した場合、いわゆる京都議定書においてはこれらの燃料に起因する二酸化炭素は排出量として計上されないルールが適用される。本計算においては、燃焼時に発生する「Tank to Wheel CO」に対してこれを適用させた。
このようにして算出した「Tank to Wheel CO」と「Well to Tank CO」、並びにこれらの総和であるライフサイクルCO(LC)の各排出量をそれぞれ表6に示す。なお、比較例1を100とし、各結果を相対的に比較、定量化した数値もあわせて示す。
(酸化安定性試験)
ASTM D2274−94に準拠して、95℃、酸素バブリング下、16時間の条件で燃料を加速劣化させ、試験前後での色相変化を観察し、色相の悪化が有れば不可(×)とし、ない場合は可(〇)とした。
(エンジンオイルとの混合安定性試験)
実施例1〜4、比較例1〜4の被試験油それぞれについて、被試験油0.1Lとエンジンオイル0.1Lを混合、撹拌したサンプルを115℃、酸素バブリング下、16時間の条件で加速劣化させ、その後24時間常温環境下で静置し、加速劣化前後での状態変化を観察する。加速劣化試験後、スラッジ等の夾雑物が沈殿した場合、および/または相分離等が見られた場合は不可(×)、変化がない場合は可(○)とした。なお、使用したエンジンオイルは、新日本石油(株)製エネオスエコツーリング(CF−4、SAE 10W−30)を使用した。
(低温始動性)
車両1を用い、環境温度の制御が可能なシャーシダイナモメータ上で、室温で、(1)供試ディーゼル自動車の燃料系統を評価燃料でフラッシング(洗浄)、(2)フラッシング燃料の抜き出し、(3)メインフィルタの新品への交換、(4)燃料タンクに評価燃料の規定量(供試車両の燃料タンク容量の1/2)の張り込みを行う。その後、(5)環境温度を室温から5℃まで急冷し、(6)5℃で1時間保持した後、(7)1℃/hの冷却速度で所定の温度(−5℃)に達するまで徐冷し、(8)所定の温度で1時間保持した後、エンジンを始動させる。10秒間のクランキングを30秒間隔で2回繰り返しても始動しない場合は不可(×)、クランキングを2回繰り返す間でエンジンが始動した場合は可(○)とした。
Figure 2007308573
Figure 2007308573
Figure 2007308573
Figure 2007308573
Figure 2007308573
車両排ガス試験、燃費試験における実走行を模擬した過渡運転モードである。

Claims (4)

  1. 動植物油脂および/または動物油脂由来成分を含有する原料油類を、周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化精製触媒と水素加圧下で接触させ、同時に/その後に結晶性モレキュラシーブを含有する担体に担持された周期律表第6A族および第8族の元素から選ばれる少なくとも一種類以上の金属を含有する異性化触媒と水素加圧下で接触させることにより得られる、炭素数15から18までの鎖状飽和炭化水素を50質量%以上含有し、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上、脂肪酸アルキルエステル含有量1質量%以下、遊離脂肪酸含有量1質量%以下、ナトリウム、カリウム、カルシウム、マグネシウムの金属分の合計が10質量ppm以下、硫黄含有量3質量ppm以下、酸素含有量1質量%以下、水分が500質量ppm以下である含炭化水素混合留分の環境低負荷型軽油基材を含有してなる、硫黄含有量5質量ppm以下、酸素含有量0.5質量%以下、セタン価55以上、加速酸化試験後の過酸化物価が50質量ppm以下、くもり点0℃以下、動粘度が2mm/s以上5mm/s以下、炭素数15以上の側鎖を有する鎖状飽和炭化水素含有量を炭素数15以上の直鎖飽和炭化水素含有量で除した値が0.7以上であり、下記式1および式2を満たす軽油組成物。
    (式1)炭素数15から18の鎖状飽和炭化水素含有量>2×炭素数14以下の錯状飽和炭化水素化合物
    (式2)炭素数15から18の鎖状飽和炭化水素含有量>3×炭素数19以上の錯状飽和炭化水素含有量
  2. 芳香族含有量が15質量%以下、蒸留性状の90%留出温度が280℃以上350℃以下であることを特徴とする請求項1に記載の軽油組成物。
  3. 動植物油脂および/または動物油脂由来成分が主としてオレイン酸およびリノール酸の脂肪酸基を有するグリセライドを含有するものであり、それらのグリセライドの合計が40質量%以上である原料油類を処理して得られることを特徴とする請求項1または請求項2に記載の軽油組成物。
  4. 動植物油脂および/または動物油脂由来成分が主としてオレイン酸、リノール酸およびパルミチン酸の脂肪酸基を有するグリセライドを含有するものであり、それらのグリセライドの合計が80質量%以上である原料油類を処理して得られることを特徴とする請求項1または請求項2に記載の軽油組成物。

JP2006138356A 2006-05-17 2006-05-17 軽油組成物の製造方法 Active JP5072008B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006138356A JP5072008B2 (ja) 2006-05-17 2006-05-17 軽油組成物の製造方法
EP07743741A EP2019132A1 (en) 2006-05-17 2007-05-15 Gas-oil composition
PCT/JP2007/060307 WO2007132938A1 (ja) 2006-05-17 2007-05-15 軽油組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138356A JP5072008B2 (ja) 2006-05-17 2006-05-17 軽油組成物の製造方法

Publications (2)

Publication Number Publication Date
JP2007308573A true JP2007308573A (ja) 2007-11-29
JP5072008B2 JP5072008B2 (ja) 2012-11-14

Family

ID=38841735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138356A Active JP5072008B2 (ja) 2006-05-17 2006-05-17 軽油組成物の製造方法

Country Status (1)

Country Link
JP (1) JP5072008B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120242A1 (en) * 2007-12-21 2009-10-01 Uop Llc Production of aviation fuel from biorenewable feedstocks
JP2009235300A (ja) * 2008-03-28 2009-10-15 Nippon Oil Corp 軽油組成物
WO2009139313A1 (ja) * 2008-05-14 2009-11-19 新日本石油株式会社 炭化水素油の製造方法
JP2010047745A (ja) * 2008-06-24 2010-03-04 Ifp 中間の気液分離を伴わずに再生可能な源からの仕込原料を良好な品質のディーゼル燃料ベースにゼオライト触媒を用いて転化する方法
JP2010047744A (ja) * 2008-06-24 2010-03-04 Ifp 再生可能な源からの仕込原料を良好な品質のディーゼル燃料ベースにゼオライトタイプの触媒を用いて転化する方法
JP2011127084A (ja) * 2009-12-21 2011-06-30 Showa Shell Sekiyu Kk 軽油燃料組成物
JP2011184558A (ja) * 2010-03-08 2011-09-22 Jx Nippon Oil & Energy Corp 軽油組成物
JP2012504686A (ja) * 2008-10-02 2012-02-23 シェブロン ユー.エス.エー. インコーポレイテッド ディーゼルを植物油と共処理して低曇り点ハイブリッドディーゼルバイオ燃料を生み出すこと
JP2012507591A (ja) * 2008-11-06 2012-03-29 エクソンモービル リサーチ アンド エンジニアリング カンパニー バイオディーゼル燃料およびブレンドの水素処理
JP2012224854A (ja) * 2011-04-21 2012-11-15 Infineum Internatl Ltd 燃料油の改良
JP2020514486A (ja) * 2017-01-27 2020-05-21 ネステ オサケ ユキチュア ユルキネン 向上された低温特性を有する燃料組成物およびその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396531A2 (en) * 2002-09-06 2004-03-10 Fortum OYJ Process for producing a hydrocarbon component of biological origin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396531A2 (en) * 2002-09-06 2004-03-10 Fortum OYJ Process for producing a hydrocarbon component of biological origin

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120242A1 (en) * 2007-12-21 2009-10-01 Uop Llc Production of aviation fuel from biorenewable feedstocks
JP2009235300A (ja) * 2008-03-28 2009-10-15 Nippon Oil Corp 軽油組成物
WO2009139313A1 (ja) * 2008-05-14 2009-11-19 新日本石油株式会社 炭化水素油の製造方法
JP5588171B2 (ja) * 2008-05-14 2014-09-10 Jx日鉱日石エネルギー株式会社 炭化水素油の製造方法
JP2010047745A (ja) * 2008-06-24 2010-03-04 Ifp 中間の気液分離を伴わずに再生可能な源からの仕込原料を良好な品質のディーゼル燃料ベースにゼオライト触媒を用いて転化する方法
JP2010047744A (ja) * 2008-06-24 2010-03-04 Ifp 再生可能な源からの仕込原料を良好な品質のディーゼル燃料ベースにゼオライトタイプの触媒を用いて転化する方法
JP2012504686A (ja) * 2008-10-02 2012-02-23 シェブロン ユー.エス.エー. インコーポレイテッド ディーゼルを植物油と共処理して低曇り点ハイブリッドディーゼルバイオ燃料を生み出すこと
JP2012507591A (ja) * 2008-11-06 2012-03-29 エクソンモービル リサーチ アンド エンジニアリング カンパニー バイオディーゼル燃料およびブレンドの水素処理
JP2011127084A (ja) * 2009-12-21 2011-06-30 Showa Shell Sekiyu Kk 軽油燃料組成物
JP2011184558A (ja) * 2010-03-08 2011-09-22 Jx Nippon Oil & Energy Corp 軽油組成物
JP2012224854A (ja) * 2011-04-21 2012-11-15 Infineum Internatl Ltd 燃料油の改良
JP2020514486A (ja) * 2017-01-27 2020-05-21 ネステ オサケ ユキチュア ユルキネン 向上された低温特性を有する燃料組成物およびその製造方法
US10954459B2 (en) 2017-01-27 2021-03-23 Neste Oyj Fuel compositions with enhanced cold properties and methods of making the same
JP6997789B2 (ja) 2017-01-27 2022-02-10 ネステ オサケ ユキチュア ユルキネン 向上された低温特性を有する燃料組成物およびその製造方法
US11306265B2 (en) 2017-01-27 2022-04-19 Neste Oyj Fuel compositions with enhanced cold properties and methods of making the same
US11795408B2 (en) 2017-01-27 2023-10-24 Neste Oyj Fuel compositions with enhanced cold properties and methods of making the same

Also Published As

Publication number Publication date
JP5072008B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5288740B2 (ja) 軽油組成物の製造方法
JP5072008B2 (ja) 軽油組成物の製造方法
WO2007064015A1 (ja) 軽油組成物
JP5121137B2 (ja) 軽油組成物
WO2008117856A1 (ja) 軽油組成物
JP5117089B2 (ja) 軽油組成物の製造方法
JP5072430B2 (ja) 軽油組成物の製造方法
KR101371788B1 (ko) 경유 조성물
JP5072444B2 (ja) 軽油組成物の製造方法
JP5072010B2 (ja) 軽油組成物
JP5072007B2 (ja) 軽油組成物の製造方法
WO2007132938A1 (ja) 軽油組成物
JP5121138B2 (ja) 軽油組成物
JP5072609B2 (ja) 軽油組成物の製造方法
JP5288742B2 (ja) 軽油組成物の製造方法
JP5072006B2 (ja) 軽油組成物の製造方法
JP5288741B2 (ja) 軽油組成物の製造方法
JP5091762B2 (ja) 軽油基材及び軽油組成物
JP2007308568A (ja) A重油組成物
JP5072009B2 (ja) 軽油組成物
JP2008231201A (ja) A重油組成物
JP5117088B2 (ja) 軽油組成物の製造方法
WO2009020056A1 (ja) 軽油組成物
WO2007111152A1 (ja) 燃料組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120817

R150 Certificate of patent or registration of utility model

Ref document number: 5072008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250