JP2007297453A - オレフィン重合用触媒およびオレフィンの重合方法 - Google Patents

オレフィン重合用触媒およびオレフィンの重合方法 Download PDF

Info

Publication number
JP2007297453A
JP2007297453A JP2006125060A JP2006125060A JP2007297453A JP 2007297453 A JP2007297453 A JP 2007297453A JP 2006125060 A JP2006125060 A JP 2006125060A JP 2006125060 A JP2006125060 A JP 2006125060A JP 2007297453 A JP2007297453 A JP 2007297453A
Authority
JP
Japan
Prior art keywords
group
compound
containing group
groups
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125060A
Other languages
English (en)
Inventor
Seiichi Ishii
聖一 石井
Hiroshi Terao
浩志 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006125060A priority Critical patent/JP2007297453A/ja
Publication of JP2007297453A publication Critical patent/JP2007297453A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

【課題】優れたオレフィンの重合活性と共重合性を有し、コモノマー含量の高いポリマーを製造するオレフィン重合用触媒、および該オレフィン重合用触媒を用いたオレフィンの重合方法を提供すること。
【解決手段】(A)下記一般式(I)で表される遷移金属化合物を含んでなることを特徴とするオレフィン重合用触媒。
Figure 2007297453

式中、Mは周期律表4〜5族の遷移金属原子を示し、
mは、1〜4の整数を示し、
〜Rは、水素原子、ハロゲン原子、炭化水素基等を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、Rは、ハロゲン原子を示し、nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子等を示す。
【選択図】なし

Description

本発明は新規なオレフィン重合用触媒および該オレフィン重合用触媒を用いたオレフィンの重合方法に関するものである。
従来からエチレン重合体、エチレン・α−オレフィン共重合体などのオレフィン重合体を製造するための触媒として、チタン化合物と有機アルミニウム化合物とからなるチタン系触媒、およびバナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒が知られている。
また、高い重合活性でオレフィン重合体を製造することのできる触媒としてジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)とからなるチーグラー型触媒が知られている。
さらに最近新しいオレフィン重合触媒として、本願出願人は特開平11−315109号において、サリチルアルドイミン配位子を有する遷移金属化合物を提案している。この錯体は高いオレフィン重合活性を示すことが明らかとなっているが、その重合活性に関してはさらなる改善が求められていた。さらに2種類以上のオレフィンを重合する際にも、重合活性および共重合性は十分に満足できるものではなかった。
特開平11−315109号公報
本発明は優れたオレフィンの重合活性と共重合性を有し、コモノマー含量の高いポリマーを製造するオレフィン重合用触媒を提供することを目的としている。さらには、このオレフィン重合用触媒を用いたオレフィンの重合方法を提供することを目的としている。
本発明に係るオレフィン重合触媒は、
(A)下記一般式(I)で表される遷移金属化合物を含んで成ることを特徴とする。
Figure 2007297453
式中、Mは周期律表4〜5族の遷移金属原子を示し、
mは、1〜4の整数を示し、
〜Rは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、Rは、ハロゲン原子を示し、
また、mが2以上の場合にはR1〜Rで示される基のうち2個の基が連結されていてもよく(但しR1同士が結合されることはない)、
nは、Mの価数を満たす数であり、
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。
また、本発明のオレフィン重合用触媒は、(A)前記一般式(I)で表わされる遷移金属化合物と、(B)(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物からなることが好ましい。
本発明のオレフィン重合方法は前記のようなオレフィン重合用触媒の存在下に、少なくとも1種以上のオレフィンを重合することを特徴としている。
本発明によれば、2種類以上のオレフィンを重合する際にも、高い重合活性と良好な共重合性を示す。
以下、本発明におけるオレフィンの重合方法について具体的に説明する。
なお、本明細書において「重合」という語は、単独重合だけでなく、共重合をも包含した意味で用いられることがあり、「重合体」という語は、単独重合体だけでなく、共重合体をも包含した意味で用いられることがある。
本発明に係るオレフィン重合触媒の好ましい態様は、
(A)前記一般式(I)で表される遷移金属化合物、あるいは、(A)前記一般式(I)で表される遷移金属化合物と、(B)(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とから形成されている。
(A)遷移金属化合物
本発明で用いられるオレフィン重合触媒を構成する(A)遷移金属化合物は、下記一般式(I)で表される化合物である。
Figure 2007297453
(なお、ここでN……Mは、一般的には配位していることを示すが、本発明においては配位していてもしていなくてもよい。)
一般式(I)中、Mは周期律表第4〜5族の遷移金属を示し、具体的にはチタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタルであり、好ましくは4族の金属原子であり、具体的にはチタン、ジルコニウム、ハフニウムであり、より好ましくはチタンである。
mは1〜4の整数を示し、好ましくは1〜2であり、特に好ましくは2である。
〜Rは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、
ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭化水素基として具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、 t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数が1〜30、好ましくは1〜20の直鎖状または分岐状のアルキル基;
ビニル基、アリル基、イソプロペニル基などの炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルケニル基;
エチニル基、プロパルギル基など炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルキニル基;
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基などの炭素原子数が3〜30、好ましくは3〜20の環状飽和炭化水素基; シクロペンタジエニル基、インデニル基、フルオレニル基などの炭素数5〜30の環状不飽和炭化水素基;
フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数が6〜30、好ましくは6〜20のアリール基;
トリル基、iso-プロピルフェニル基、t-ブチルフェニル基、ジメチルフェニル基、ジ-t-ブチルフェニル基などのアルキル置換アリール基などが挙げられる。
上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル基、ペンタフルオロフェニル基、クロロフェニル基などの炭素原子数1〜30、好ましくは1〜20のハロゲン化炭化水素基が挙げられる。
また、上記炭化水素基は、他の炭化水素基で置換されていてもよく、たとえば、ベンジル基、クミル基などのアリール基置換アルキル基などが挙げられる。
さらにまた、上記炭化水素基は、ヘテロ環式化合物残基;アルコシキ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無水物基などの酸素含有基;アミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどの窒素含有基;ボランジイル基、ボラントリイル基、ジボラニル基などのホウ素含有基;メルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基などのイオウ含有基;ホスフィド基、ホスホリル基、チオホスホリル基、ホスファト基などのリン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を有していてもよい。
これらのうち、特に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1〜30、好ましくは1〜20の直鎖状または分岐状のアルキル基;フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数6〜30、好ましくは6〜20のアリール基;これらのアリール基にハロゲン原子、炭素原子数1〜30、好ましくは1〜20のアルキル基またはアルコキシ基、炭素原子数6〜30、好ましくは6〜20のアリール基またはアリーロキシ基などの置換基が1〜5個置換した置換アリール基などが好ましい。
酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基としては、上記例示したものと同様のものが挙げられる。
ヘテロ環式化合物残基としては、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1〜30、好ましくは1〜20のアルキル基、アルコキシ基などの置換基がさらに置換した基などが挙げられる。
ケイ素含有基としては、シリル基、シロキシ基、炭化水素置換シリル基、炭化水素置換シロキシ基など、具体的には、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジフェニルメチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、ジメチル-t-ブチルシリル基、ジメチル(ペンタフルオロフェニル)シリル基などが挙げられる。これらの中では、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、トリフェニルシリル基などが好ましい。特にトリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基が好ましい。炭化水素置換シロキシ基として具体的には、トリメチルシロキシ基などが挙げられる。
ゲルマニウム含有基およびスズ含有基としては、前記ケイ素含有基のケイ素をゲルマニウムおよびスズに置換したものが挙げられる。
次に上記で説明したR〜Rの例について、より具体的に説明する。
アルコキシ基として具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、 t-ブトキシ基などが挙げられる。
アルキルチオ基として具体的には、メチルチオ基、エチルチオ基等が挙げられる。
アリーロキシ基として具体的には、フェノキシ基、2,6-ジメチルフェノキシ基、2,4,6-トリメチルフェノキシ基などが挙げられる。
アリールチオ基として具体的には、フェニルチオ基、メチルフェニルチオ基、ナフチルチオ基等が挙げられる。
アシル基として具体的には、ホルミル基、アセチル基、ベンゾイル基、p−クロロベンゾイル基、p-メトキシベンゾイル基などが挙げられる。
エステル基として具体的には、アセチルオキシ基、ベンゾイルオキシ基、メトキシカルボニル基、フェノキシカルボニル基、p-クロロフェノキシカルボニル基などが挙げられる。
チオエステル基として具体的には、アセチルチオ基、ベンゾイルチオ基、メチルチオカルボニル基、フェニルチオカルボニル基などが挙げられる。
アミド基として具体的には、アセトアミド基、N-メチルアセトアミド基、N-メチルベンズアミド基などが挙げられる。
イミド基として具体的には、アセトイミド基、ベンズイミド基などが挙げられる。 アミノ基として具体的には、ジメチルアミノ基、エチルメチルアミノ基、ジフェニルアミノ基などが挙げられる。
イミノ基として具体的には、メチルイミノ基、エチルイミノ基、プロピルイミノ基、ブチルイミノ基、フェニルイミノ基などが挙げられる。
スルホンエステル基として具体的には、スルホン酸メチル基、スルホン酸エチル基、スルホン酸フェニル基などが挙げられる。
スルホンアミド基として具体的には、フェニルスルホンアミド基、N-メチルスルホンアミド基、N-メチル-p-トルエンスルホンアミド基などが挙げられる。
〜R は、これらのうち2個以上の基、好ましくは隣接する基が互いに連結して脂肪環、芳香環または、窒素原子などの異原子を含む炭化水素環を形成していてもよく、これらの環はさらに置換基を有していてもよい。
は、ハロゲン原子を示す。ハロゲン原子として具体的には、フッ素、塩素、臭素、ヨウ素が挙げられ、好ましくはフッ素、塩素である。
また、mが2以上の場合には、R1〜R6で示される基のうち2個の基が連結されていてもよい(但しR1同士が結合されることはない)。さらに、mが2以上の場合にはR同士、R同士、R同士、R同士、R同士、R6同士は互いに同一でも異なっていてもよい。
nは、Mの価数を満たす数であり、具体的には0〜5、好ましくは1〜4、より好ましくは1〜3の整数である。
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。なお、nが2以上の場合には、互いに同一であっても、異なっていてもよい。
ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭化水素基としては、前記R〜Rで例示したものと同様のものが挙げられる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ノニル基、ドデシル基、アイコシル基などのアルキル基;シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの炭素原子数が3〜30のシクロアルキル基;ビニル基、プロペニル基、シクロヘキセニル基などのアルケニル基;ベンジル基、フェニルエチル基、フェニルプロピル基などのアリールアルキル基;フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基などのアリール基などが挙げられるが、これらに限定されるものではない。また、これらの炭化水素基には、ハロゲン化炭化水素、具体的には炭素原子数1〜20の炭化水素基の少なくとも一つの水素がハロゲンに置換した基も含まれる。
これらのうち、炭素原子数が1〜20のものが好ましい。
ヘテロ環式化合物残基としては、前記R〜Rで例示したものと同様のものが挙げられる。
酸素含有基としては、前記R〜Rで例示したものと同様のものが挙げられ、具体的には、ヒドロキシ基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコシキ基;フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基などのアリーロキシ基;フェニルメトキシ基、フェニルエトキシ基などのアリールアルコキシ基;アセトキシ基;カルボニル基などが挙げられるが、これらに限定されるものではない。
イオウ含有基としては、前記R〜Rで例示したものと同様のものが挙げられ、具体的には、メチルスルフォネート基、トリフルオロメタンスルフォネート基、フェニルスルフォネート基、ベンジルスルフォネート基、p-トルエンスルフォネート基、トリメチルベンゼンスルフォネート基、トリイソブチルベンゼンスルフォネート基、p-クロルベンゼンスルフォネート基、ペンタフルオロベンゼンスルフォネート基などのスルフォネート基;メチルスルフィネート基、フェニルスルフィネート基、ベンジルスルフィネート基、p-トルエンスルフィネート基、トリメチルベンゼンスルフィネート基、ペンタフルオロベンゼンスルフィネート基などのスルフィネート基;アルキルチオ基;アリールチオ基などが挙げられるが、これらに限定されるものではない。
窒素含有基として具体的には、前記R〜Rで例示したものと同様のものが挙げられ、具体的には、アミノ基;メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジシクロヘキシルアミノ基などのアルキルアミノ基;フェニルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジナフチルアミノ基、メチルフェニルアミノ基などのアリールアミノ基またはアルキルアリールアミノ基などが挙げられるが、これらに限定されるものではない。
ホウ素含有基として具体的には、BR(Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられる。
リン含有基として具体的には、トリメチルホスフィン基、トリブチルホスフィン基、トリシクロヘキシルホスフィン基などのトリアルキルホスフィン基;トリフェニルホスフィン基、トリトリルホスフィン基などのトリアリールホスフィン基;メチルホスファイト基、エチルホスファイト基、フェニルホスファイト基などのホスファイト基(ホスフィド基);ホスホン酸基;ホスフィン酸基などが挙げられるが、これらに限定されるものではない。
ケイ素含有基として具体的には、前記R〜Rで例示したものと同様のものが挙げられ、具体的には、フェニルシリル基、ジフェニルシリル基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基などの炭化水素置換シリル基;トリメチルシリルエーテル基などの炭化水素置換シリルエーテル基;トリメチルシリルメチル基などのケイ素置換アルキル基;トリメチルシリルフェニル基などのケイ素置換アリール基などが挙げられる。
ゲルマニウム含有基として具体的には、前記R〜Rで例示したものと同様のものが挙げられ、具体的には、前記ケイ素含有基のケイ素をゲルマニウムに置換した基が挙げられる。
スズ含有基として具体的には、前記R〜Rで例示したものと同様のものが挙げられ、より具体的には、前記ケイ素含有基のケイ素をスズに置換した基が挙げられる。
ハロゲン含有基として具体的には、PF、BFなどのフッ素含有基、ClO、SbClなどの塩素含有基、IOなどのヨウ素含有基が挙げられるが、これらに限定されるものではない。
アルミニウム含有基として具体的には、AlR(Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられるが、これらに限定されるものではない。
なお、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。
以下に、(A)上記一般式(I)で表される遷移金属化合物の具体的な例を示すが、これらに限定されるものではない。
Figure 2007297453
Figure 2007297453
Figure 2007297453
本発明では、上記のような化合物において、チタン金属をジルコニウム、ハフニウムに置き換えた遷移金属化合物を用いることもできる。
このような遷移金属化合物(A)の製造方法は、特に限定されることなく、たとえば以下のようにして製造することができる。
まず、遷移金属(A)を構成する配位子は、サリチルアルデヒド類化合物を、式R−NH第1級アミン類化合物(Rは前記と同義である。)と反応させることにより得られる。具体的には、両方の出発化合物を溶媒に溶解する。溶媒としては、このような反応に一般的なものを使用できるが、なかでもメタノール、エタノール等のアルコール溶媒、またはトルエン等の炭化水素溶媒が好ましい。次いで、室温から還流条件で、約1〜48時間攪拌すると、対応する配位子が良好な収率で得られる。配位子化合物を合成する際、触媒として、蟻酸、酢酸、パラトルエンスルホン酸等の酸触媒を用いてもよい。また、脱水剤として、モレキュラーシーブス、無水硫酸マグネシウムまたは無水硫酸ナトリウムを用いたり、ディーンスタークにより脱水しながら行うと、反応進行に効果的である。
次に、こうして得られた配位子を遷移金属M含有化合物と反応させることで、対応する遷移金属化合物を合成することができる。具体的には、合成した配位子を溶媒に溶解し、必要に応じて塩基と接触させてフェノキサイド塩を調製した後、金属ハロゲン化物、金属アルキル化物等の金属化合物と低温で混合し、−78℃から室温、もしくは還流条件下で、約1〜48時間攪拌する。溶媒としては、このような反応に一般的なものを使用できるが、なかでもエーテル、テトラヒドロフラン(THF)等の極性溶媒、トルエン等の炭化水素溶媒などが好ましく使用される。また、フェノキサイド塩を調製する際に使用する塩基としては、n−ブチルリチウム等のリチウム塩、水素化ナトリウム等のナトリウム塩等の金属塩や、トリエチルアミン、ピリジン等を例示することができるが、この限りではない。
また、化合物の性質によっては、フェノキサイド塩調製を経由せず、配位子と金属化合物とを直接反応させることで、対応する遷移金属化合物を合成することもできる。さらに、合成した遷移金属化合物中の金属Mを、常法により別の遷移金属と交換することも可能である。また、例えばR2〜Rの一つ以上が水素である場合には、合成の任意の段階において、水素以外の置換基を導入することができる。
また、遷移金属化合物を単離せず、配位子と金属化合物との反応溶液をそのまま重合に用いることもできる。
(B-1)有機金属化合物
本発明で用いられる(B-1) 有機金属化合物として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(B-1a) 一般式 Ra mAl(ORb)npq
(式中、Ra およびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
(B-1b) 一般式 M2 AlRa 4
(式中、M2 はLi、NaまたはKを示し、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示す。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
(B-1c) 一般式 Rab3
(式中、Ra およびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、M3 はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属のジアルキル化合物。
前記(B-1a)に属する有機アルミニウム化合物としては、次のような化合物などを例示できる。
一般式 Ra m Al(ORb)3-m
(式中、Ra およびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、mは好ましくは1.5≦m≦3の数である。)で表される有機アルミニウム化合物、
一般式 Ra m AlX3-m
(式中、Ra は炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは好ましくは0<m<3である。)で表される有機アルミニウム化合物、
一般式 Ra m AlH3-m
(式中、Ra は炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、mは好ましくは2≦m<3である。)で表される有機アルミニウム化合物、
一般式 Ra m Al(ORb )nq
(式中、Ra およびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、qは0≦q<3の数であり、かつm+n+q=3である。)で表される有機アルミニウム化合物。
(B-1a)に属する有機アルミニウム化合物としてより具体的には
トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリプロピルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリn-アルキルアルミニウム;トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルブチルアルミニウム、トリ2-メチルペンチルアルミニウム、トリ3-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキシルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキルアルミニウム;トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム; トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアル
ミニウム; ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド;
(i-C49x Aly(C510)z(式中、x、y、zは正の数であり、z≧2xである。)などで表されるトリイソプレニルアルミニウムなどのトリアルケニルアルミニウム;イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド、イソブチルアルミニウムイソプロポキシドなどのアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;
a 2.5Al(ORb0.5などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム;ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、エチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)、ジイソブチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、イソブチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのジアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを挙げることができる。
また(B-1a)に類似する化合物も使用することができ、たとえば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C25)2AlN(C25)Al(C25)2 などを挙げることができる。
前記(B-1b)に属する化合物としては、
LiAl(C25)4、LiAl(C715)4 などを挙げることができる。またその他にも、(B-1) 有機金属化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、メチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、プロピルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリド、ジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウムなどを使用することもできる。
また重合系内で上記有機アルミニウム化合物が形成されるような化合物、たとえばハロゲン化アルミニウムとアルキルリチウムとの組合せ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組合せなどを使用することもできる。
(B-1) 有機金属化合物のなかでは、有機アルミニウム化合物が好ましい。
上記のような(B-1) 有機金属化合物は、1種単独でまたは2種以上組み合わせて用いられる。
(B-2) 有機アルミニウムオキシ化合物
本発明で用いられる(B-2) 有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
従来公知のアルミノキサンは、たとえば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。(1)吸着水を含有する化合物または結晶水を含有する塩類、たとえば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(B-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
アルミノキサンの調製に用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタンなどの脂環族炭化水素、ガソリン、灯油、軽油などの石油留分または上記芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化物などの炭化水素溶媒が挙げられる。さらにエチルエーテル、テトラヒドロフランなどのエーテル類を用いることもできる。これらの溶媒のうち特に芳香族炭化水素または脂肪族炭化水素が好ましい。
また本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。
本発明で用いられる有機アルミニウムオキシ化合物としては、下記一般式(IV)で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Figure 2007297453
式中、R11は炭素原子数が1〜10の炭化水素基を示す。
12は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1〜10の炭化水素基を示す。
前記一般式(IV)で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式(V)で表されるアルキルボロン酸と
11−B(OH)2 …(V)
(式中、R11は前記と同じ基を示す。)
有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、−80℃
〜室温の温度で1分〜24時間反応させることにより製造できる。
前記一般式(V)で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(B-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
上記のような (B-2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられる。
(B-3) 遷移金属化合物と反応してイオン対を形成する化合物
本発明で用いられる遷移金属化合物(A)と反応してイオン対を形成する化合物(B-3) (以下、「イオン化イオン性化合物」という。)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、USP−5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
具体的には、ルイス酸としては、BR3 (Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である。)で示される化合物が挙げられ、たとえばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。
イオン性化合物としては、たとえば下記一般式(VI)で表される化合物が挙げられる。
Figure 2007297453
式中、R13としては、H+ 、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。
14〜R17は、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基または置換アリール基である。
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
13としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩などを挙げることもできる。
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(m,m-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3,5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。
N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N,2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
ジアルキルアンモニウム塩として具体的には、たとえばジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式(VII)または(VIII)で表されるホウ素化合物などを挙げることもできる。
Figure 2007297453
(式中、Etはエチル基を示す。)
Figure 2007297453
ボラン化合物として具体的には、たとえば
デカボラン; ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
カルボラン化合物として具体的には、たとえば
4-カルバノナボラン、1,3-ジカルバノナボラン、6,9-ジカルバデカボラン、ドデカハイドライド-1-フェニル-1,3-ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン、2,7-ジカルバウンデカボラン、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1-カルバデカボレート、トリ(n-ブチル)アンモニウム1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム1-カルバドデカボレート、トリ(n-ブチル)アンモニウム1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム6-カルバデカボレート、トリ(n-ブチル)アンモニウム6-カルバデカボレート、トリ(n-ブチル)アンモニウム7-カルバウンデカボレート、トリ(n-ブチル)アンモニウム7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウム2,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩; トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素および錫から選ばれる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジンン酸、ゲルマノタングストバナジンン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、およびこれらの酸の塩、例えば周期律表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等との有機塩が使用できるが、この限りではない。
上記のような (B-3)イオン化イオン性化合物は、1種単独でまたは2種以上組み合せて用いられる。
本発明に係る遷移金属化合物を触媒とする場合、助触媒成分としてのメチルアルミノキサンなどの有機アルミニウムオキシ化合物(B-2)とを併用すると、オレフィン化合物に対して非常に高い重合活性を示す。
また、本発明に係るオレフィン重合用触媒は、上記遷移金属化合物(A)、(B-1) 有機金属化合物、(B-2) 有機アルミニウムオキシ化合物、および(B-3) イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)とともに、必要に応じて後述するような担体(C)を用いることもできる。
(C)担体
本発明で用いられる(C)担体は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物を使用、例えば天然または合成ゼオライト、SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25 、SiO2-Cr23、SiO2-TiO2-MgOなどを使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。
なお、上記無機酸化物は、少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO4)3、BaSO4、KNO3、Mg(NO3)2、Al(NO3)3 、Na2O、K2O、Li2Oなどの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても差し支えない。
このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10〜300μm、好ましくは20〜200μmであって、比表面積が50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成して使用される。
無機塩化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
本発明で用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。
このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α-Zr(HAsO4)2・H2O、α-Zr(HPO4)2、α-Zr(KPO4)2・3H2O、α-Ti(HPO4)2、α-Ti(HAsO4)2・H2O、α-Sn(HPO4)2・H2O、γ-Zr(HPO4)2、γ-Ti(HPO4)2、γ-Ti(NH4PO4)2・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。
このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3〜5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20〜30000Åの範囲について測定される。
半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
本発明で用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)24]7+、[Zr4(OH)14]2+、[Fe3O(OCOCH3)6]+などの金属水酸化物イオンなどが挙げられる。これらの化合物は単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
本発明で用いられる粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
本発明に係るオレフィン重合用触媒は、上記遷移金属化合物(A)、(B-1) 有機金属化合物、(B-2) 有機アルミニウムオキシ化合物、および(B-3) イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)、必要に応じて担体(C)と共に、必要に応じて後述するような特定の有機化合物成分(D)を含むこともできる。
(D)有機化合物成分
本発明において、(D)有機化合物成分は、必要に応じて、重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、この限りではない。
アルコール類およびフェノール性化合物としては、通常、R18−OHで表されるものが使用され、ここで、R18は炭素原子数1〜50の炭化水素基または炭素原子数1〜50のハロゲン化炭化水素基を示す。
アルコール類としては、R18がハロゲン化炭化水素のものが好ましい。また、フェノール性化合物としては、水酸基のα,α'-位が炭素数1〜20の炭化水素で置換されたものが好ましい。
カルボン酸としては、通常、R19−COOHで表されるものが使用される。R19は炭素原子数1〜50の炭化水素基または炭素原子数1〜50のハロゲン化炭化水素基を示し、特に、炭素原子数1〜50のハロゲン化炭化水素基が好ましい。
燐化合物としては、P−O−H結合を有する燐酸類、P−OR、P=O結合を有するホスフェート、ホスフィンオキシド化合物が好ましく使用される。スルホン酸塩としては、下記一般式(IX)で表されるものが使用される。
Figure 2007297453
式中、Mは周期律表1〜14族の元素である。
20は水素、炭素原子数1〜20の炭化水素基または炭素原子数1〜20のハロゲン化炭化水素基である。
Xは水素原子、ハロゲン原子、炭素原子数が1〜20の炭化水素基、炭素原子数が1〜20のハロゲン化炭化水素基である。mは1〜7の整数であり、nは1≦n≦7である。
重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
(1) 成分(A)を単独で重合器に添加する方法。
(2) 成分(A)をおよび成分(B)を任意の順序で重合器に添加する方法。
(3) 成分(A)を担体(C)に担持した触媒成分、成分(B)を任意の順序で重合器に添加する方法。
(4) 成分(B)を担体(C)に担持した触媒成分、成分(A)を任意の順序で重合器に添加する方法。
(5) 成分(A)と成分(B)とを担体(C)に担持した触媒成分を重合器に添加する方法。
上記(2) 〜(5) の各方法においては、各触媒成分の少なくとも2つ以上は予め接触されていてもよい。
成分(B)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない成分(B)を、任意の順序で添加してもよい。この場合成分(B)は、同一でも異なっていてもよい。
また、上記の成分(C)に成分(A)が担持された固体触媒成分、成分(C)に成分(A)および成分(B)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
本発明に係るオレフィンの重合方法では、上記のようなオレフィン重合用触媒の存在下に、オレフィンを重合または共重合することによりオレフィン重合体を得る。
本発明では、重合は溶解重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施できる。液相重合法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などを挙げることができ、オレフィン自身を溶媒として用いることもできる。
上記のようなオレフィン重合用触媒を用いて、オレフィンの重合を行うに際して、成分(A)は、反応容積1リットル当り、通常10−12〜10−2モル、好ましくは10−10〜10−3モルになるような量で用いられる。
成分(B-1)は、成分(B-1)と、成分(A)中の全遷移金属原子(M)とのモル比〔(B-1)/M〕が通常0.01〜100000、好ましくは0.05〜50000となるような量で用いられる。成分(B-2)は、成分(B-2)中のアルミニウム原子と、成分(A)中の全遷移金属(M)とのモル比〔(B-2)/M〕が、通常10〜500000、好ましくは20〜100000となるような量で用いられる。成分(B-3)は、成分(B-3)と、成分(A)中の遷移金属原子(M)とのモル比〔(B-3)/M〕が、通常1〜10、好ましくは1〜5となるような量で用いられる。
成分(D)は、成分(B)が成分(B-1)の場合には、モル比〔(D)/(B-1)〕が通常0.01〜10、好ましくは0.1〜5となるような量で、成分(B)が成分(B-2)の場合には、モル比〔(D)/(B-2)〕
が通常0.01〜2、好ましくは0.005〜1となるような量で、成分(B)が成分(B-3)の場合は、モル比(D)/(B-3)〕が通常0.01〜10、好ましくは0.1〜5となるような量で用いられる。
また、このようなオレフィン重合触媒を用いたオレフィンの重合温度は、通常−50〜+200℃、好ましくは0〜170℃の範囲である。重合圧力は、通常常圧〜100kg/cm、好ましくは常圧〜50kg/cmの条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
得られるオレフィン重合体の分子量は、重合系に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、使用する成分(B)の量により調節することもできる。
このようなオレフィン重合触媒により重合することができるオレフィンとしては、炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のα−オレフィン、たとえばエチレン、プロピレン、1-ブテン、2-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン;
炭素原子数が3〜30、好ましくは3〜20の環状オレフィン、たとえばシクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン;
極性モノマー、たとえば、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ(2,2,1)-5-ヘプテン-2,3-ジカルボン酸無水物などのα,β−不飽和カルボン酸、およびこれらのナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩などの金属塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸 tert-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチルなどのα,β−不飽和カルボン酸エステル;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニルなどのビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステルなどの不飽和グリシジルなどを挙げることができる。また、ビニルシクロヘキサン、ジエンまたはポリエンなどを用いることもできる。
ジエンまたはポリエンとしては、炭素原子数が4〜30、好ましくは4〜20であり二個以上の二重結合を有する環状又は鎖状の化合物が用いられる。具体的には、ブタジエン、イソプレン、4-メチル-1,3-ペンタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、1,4-ヘキサジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン;7-メチル-1,6- オクタジエン、4-エチリデン-8- メチル-1,7-ノナジエン、5,9-ジメチル-1,4,8- デカトリエン;
さらに芳香族ビニル化合物、例えばスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレンなどのモノもしくはポリアルキルスチレン;メトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、o-クロロスチレン、p-クロロスチレン、ジビニルベンゼンなどの官能基含有スチレン誘導体;
および3- フェニルプロピレン、4-フェニルプロピレン、α- メチルスチレンなどが挙げられる。
本発明に係るオレフィンの重合方法により、良好な重合活性を示し、また2種類以上のオレフィンを共重合したときに、良好な重合活性でコモノマー含量の高いオレフィン共重合体を得ることができる
本発明のオレフィン重合触媒を用いた重合方法により、良好な重合活性でコモノマー含量の高いポリマーを生成させることができる。
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
なお、合成例で得られた化合物の構造は、270MHz 1H NMR(日本電子 GSH-270)、FD-質量分析(日本電子 SX-102A)等を用いて決定した。
なお、本実施例において、極限粘度([η])は、135℃、デカリン中で測定した。
(1)配位子の合成
〔配位子合成例−1〕
充分に乾燥、窒素置換した750mlの反応器に、エチルマグネシウムブロミド38.5ml(ジエチルエーテル溶液、3M、116mmol)、テトラヒドロフラン300mlを仕込み、氷冷下、2−クロロフェノール14.2g(110mmol)を含むテトラヒドロフラン溶液100mlを30分かけて滴下した。室温で1時間攪拌した後、パラホルムアルデヒド10.3g(343mmol)、トリエチルアミン16.7g(165mmol)を加え、65℃で3.5時間攪拌した。室温まで冷却した後、18%塩酸100mlを添加した。有機層を分液して、飽和炭酸水素ナトリウム水溶液100ml、飽和食塩水100mlで洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を留去して得られた残渣を、シリカゲルカラムクロマトグラフィーで精製すると、下式(a)で示した目的物が6.9g(収率40%)得られた。
Figure 2007297453
〔配位子合成例−2〕
充分に乾燥、窒素置換した500mlの反応器に、エチルマグネシウムブロミド22.0ml(ジエチルエーテル溶液、3M、66mmol)を仕込み、氷冷下、2−クロロ−4−フルオロフェノール9.0g(61mmol)を含むテトラヒドロフラン溶液200mlを30分かけて滴下した。室温で1時間攪拌した後、パラホルムアルデヒド6.0g(200mmol)、トリエチルアミン9.3g(92mmol)を加え、60℃で2時間攪拌した。室温まで冷却した後、18%塩酸60mlを添加した。有機層を分液して、飽和炭酸水素ナトリウム水溶液50ml、飽和食塩水50mlで洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、ろ液を留去して得られた残渣を、シリカゲルカラムクロマトグラフィーで精製すると、下式(b)で示した目的物が3.7g(収率35%)得られた。
Figure 2007297453
〔配位子合成例−3〕
充分に乾燥、窒素置換した100mlの反応器に、化合物(a) 2.0g(13mmol)、トルエン20mlを仕込んだ。そこにアニリン1.9g(20mmol)を含むトルエン溶液10ml、p−トルエンスルホン酸0.1gを加え加熱還流下、4時間攪拌した。溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィーで精製すると、下式(c)で示した目的物が2.5g(収率83%)得られた。
Figure 2007297453
〔配位子合成例−4〕
充分に乾燥、窒素置換した100mlの反応器に、化合物(a) 1.4g(8.9mmol)、トルエン20mlを仕込んだ。そこに4−t−ブチルアニリン1.6g(11mmol)を含むトルエン溶液5mlを加え加熱還流下、5時間攪拌した。溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィーで精製すると、下式(d)で示した目的物が1.8g(収率70%)得られた。
Figure 2007297453
〔配位子合成例−5〕
充分に乾燥、窒素置換した100mlの反応器に、化合物(a) 1.7g(11mmol)、トルエン20mlを仕込んだ。そこに3,5−ビス(トリフルオロ)アニリン3.7g(16mmol)を含むトルエン溶液10ml、p−トルエンスルホン酸0.1gを加え加熱還流下、15時間攪拌した。溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィーで精製すると、下式(e)で示した目的物が2.8g(収率69%)得られた。
Figure 2007297453
〔配位子合成例−6〕
充分に乾燥、窒素置換した100mlの反応器に、化合物(b)1.0g(5.7mmol)、トルエン20mlを仕込んだ。そこに3,5−ビス(トリフルオロ)アニリン2.1g(9.2mmol)を含むトルエン溶液5ml、p−トルエンスルホン酸0.1gを加え加熱還流下、15時間攪拌した。溶媒を留去して得られた残渣を、シリカゲルカラムクロマトグラフィーで精製すると、下式(f)で示した目的物が1.9g(収率86%)得られた。
Figure 2007297453
(2)遷移金属化合物の合成
〔錯体合成例−1〕
充分に乾燥、アルゴン置換した100mlの反応器に、化合物(c)1.2g(5.2mmol)とジエチルエーテル25mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム3.5ml(n-ヘキサン溶液、1.58M、5.5mmol)を5分かけて滴下し、そのままの温度で2時間攪拌した後、ゆっくりと室温まで昇温し、さらに3時間攪拌してリチウム塩を調整した。この溶液を、-78℃に冷却した四塩化チタン2.6ml(トルエン溶液、1.00M、2.6mmol)を含むジエチルエーテル溶液25mlに滴下した。滴下終了後、ゆっくりと室温まで戻しながら14時間攪拌を続けた。反応液の溶媒留去した後、得られた固体を塩化メチレン50mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体をジエチルエーテルで再沈し、減圧乾燥することにより下記式(A)で示される赤茶色粉体の化合物を0.7g得た(収率46%)。
FD-質量分析(M):580
Figure 2007297453
〔錯体合成例−2〕
充分に乾燥、アルゴン置換した100mlの反応器に、化合物(d)1.3g(4.5mmol)とジエチルエーテル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム3.1ml(n-ヘキサン溶液、1.58M、4.9mmol)を5分かけて滴下し、そのままの温度で2時間攪拌した後、ゆっくりと室温まで昇温し、さらに3時間攪拌してリチウム塩を調整した。この溶液を、-78℃に冷却した四塩化チタン2.3ml(トルエン溶液、1.00M、2.3mmol)を含むジエチルエーテル溶液20mlに滴下した。滴下終了後、ゆっくりと室温まで戻しながら14時間攪拌を続けた。反応液の溶媒留去した後、得られた固体を塩化メチレン30mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体をジエチルエーテルで再沈し、減圧乾燥することにより下記式(B)で示される赤茶色粉体の化合物を1.1g得た(収率69%)。
FD-質量分析(M):692
Figure 2007297453
〔錯体合成例−3〕
充分に乾燥、アルゴン置換した100mlの反応器に、化合物(e)1.4g(3.8mmol)とジエチルエーテル20mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム2.4ml(n-ヘキサン溶液、1.60M、3.8mmol)を5分かけて滴下し、そのままの温度で2時間攪拌した後、ゆっくりと室温まで昇温し、さらに3時間攪拌してリチウム塩を調整した。この溶液を、-78℃に冷却した四塩化チタン1.8ml(トルエン溶液、1.00M、1.8mmol)を含むジエチルエーテル溶液20mlに滴下した。滴下終了後、ゆっくりと室温まで戻しながら14時間攪拌を続けた。反応液の溶媒留去した後、得られた固体を塩化メチレン100mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体をジエチルエーテル、n−ヘキサンで再沈し、減圧乾燥することにより下記式(C)で示される赤茶色粉体の化合物を0.6g得た(収率39%)。
FD-質量分析(M):852
Figure 2007297453
〔錯体合成例−4〕
充分に乾燥、アルゴン置換した100mlの反応器に、化合物(f)0.9g(2.3mmol)とジエチルエーテル15mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム1.5ml(n-ヘキサン溶液、1.60M、2.4mmol)を5分かけて滴下し、そのままの温度で2時間攪拌した後、ゆっくりと室温まで昇温し、さらに3時間攪拌してリチウム塩を調整した。この溶液を、-78℃に冷却した四塩化チタン1.2ml(トルエン溶液、1.00M、1.2mmol)を含むジエチルエーテル溶液15mlに滴下した。滴下終了後、ゆっくりと室温まで戻しながら14時間攪拌を続けた。反応液の溶媒留去した後、得られた固体を塩化メチレン40mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体をジエチルエーテルで再沈し、減圧乾燥することにより下記式(D)で示される赤茶色粉体の化合物を0.3g得た(収率28%)。
FD-質量分析(M):887
Figure 2007297453
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記チタン化合物(A)を0.005mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で5分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥し、ポリエチレンが0.96g得られた。重合活性は2、300g/mmol-Ti・hrであり、得られたポリエチレンの極限粘度[η]は5.79dl/gであった。
Figure 2007297453
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン50リットル/hr、プロピレン150リットル/hrの混合ガスで液相および気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、チタン化合物(A)を0.005mmol加え、共重合を開始した。50℃で10分間共重合を行った後、少量のイソブタノールを添加することにより重合を停止した。得られたポリマー懸濁液に、少量の塩酸を含む100mlの水を加えて激しく振とうし、静置した後水層を取り除いた。この操作を合計3回繰り返した後、溶媒を減圧下で留去し、さらに130℃にて10時間減圧乾燥した。得られたエチレン・プロピレン共重合体(EPR)は、0.31gであった。重合活性は370g/mmol-Ti・hrであった。IRにより測定したプロピレン含量は41.8mol%であった。
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記チタン化合物(B)を0.003mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で5分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥し、ポリエチレンが1.49g得られた。重合活性は5、950g/mmol-Ti・hrであり、得られたポリエチレンの極限粘度[η]は8.61dl/gであった。
Figure 2007297453
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン50リットル/hr、プロピレン150リットル/hrの混合ガスで液相および気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、チタン化合物(B)を0.005mmol加え、共重合を開始した。50℃で10分間共重合を行った後、少量のイソブタノールを添加することにより重合を停止した。得られたポリマー懸濁液に、少量の塩酸を含む100mlの水を加えて激しく振とうし、静置した後水層を取り除いた。この操作を合計3回繰り返した後、溶媒を減圧下で留去し、さらに130℃にて10時間減圧乾燥した。得られたエチレン・プロピレン共重合体(EPR)は、0.95gであった。重合活性は1,140g/mmol-Ti・hrであった。IRにより測定したプロピレン含量は45.3mol%であった。
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記チタン化合物(C)を0.003mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で5分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥し、ポリエチレンが1.32g得られた。重合活性は5、280g/mmol-Ti・hrであり、得られたポリエチレンの極限粘度[η]は3.65dl/gであった。
Figure 2007297453
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン50リットル/hr、プロピレン150リットル/hrの混合ガスで液相および気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、チタン化合物(C)を0.005mmol加え、共重合を開始した。50℃で10分間共重合を行った後、少量のイソブタノールを添加することにより重合を停止した。得られたポリマー懸濁液に、少量の塩酸を含む100mlの水を加えて激しく振とうし、静置した後水層を取り除いた。この操作を合計3回繰り返した後、溶媒を減圧下で留去し、さらに130℃にて10時間減圧乾燥した。得られたエチレン・プロピレン共重合体(EPR)は、1.20gであった。重合活性は1,440g/mmol-Ti・hrであった。IRにより測定したプロピレン含量は63.1mol%であった。
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記チタン化合物(D)を0.001mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で5分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥し、ポリエチレンが1.31g得られた。重合活性は15、700g/mmol-Ti・hrであり、得られたポリエチレンの極限粘度[η]は2.24dl/gであった。
Figure 2007297453
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン50リットル/hr、プロピレン150リットル/hrの混合ガスで液相および気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、チタン化合物(D)を0.005mmol加え、共重合を開始した。50℃で10分間共重合を行った後、少量のイソブタノールを添加することにより重合を停止した。得られたポリマー懸濁液に、少量の塩酸を含む100mlの水を加えて激しく振とうし、静置した後水層を取り除いた。この操作を合計3回繰り返した後、溶媒を減圧下で留去し、さらに130℃にて10時間減圧乾燥した。得られたエチレン・プロピレン共重合体(EPR)は、0.32gであった。重合活性は390g/mmol-Ti・hrであった。IRにより測定したプロピレン含量は59.0mol%であった。
〔比較例1〕
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン100リットル/hrで液相及び気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、下記チタン化合物(E)を0.005mmol加え重合を開始した。エチレンを100リットル/hrで連続的に供給し、常圧下、25℃で5分間重合を行った後、少量のイソブタノールを添加することにより重合を停止した。重合終了後、反応物を少量の塩酸を含む1リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥し、ポリエチレンが0.71g得られた。重合活性は280g/mmol-Ti・hrであり、得られたポリエチレンの極限粘度[η]は3.47dl/gであった。
Figure 2007297453
〔比較例2〕
充分に窒素置換した内容積500mlのガラス製反応器に、トルエン250mlを装入し、エチレン50リットル/hr、プロピレン150リットル/hrの混合ガスで液相および気相を飽和させた。その後、メチルアルミノキサンをアルミニウム原子換算で1.25mmol、引き続き、チタン化合物(E)を0.005mmol加え、共重合を開始した。50℃で10分間共重合を行った後、少量のイソブタノールを添加することにより重合を停止した。得られたポリマー懸濁液に、少量の塩酸を含む100mlの水を加えて激しく振とうし、静置した後水層を取り除いた。この操作を合計3回繰り返した後、溶媒を減圧下で留去し、さらに130℃にて10時間減圧乾燥した。得られたエチレン・プロピレン共重合体(EPR)は、0.14gであった。重合活性は170g/mmol-Ti・hrであった。IRにより測定したプロピレン含量は15.3mol%であった。
優れたオレフィンの重合活性と共重合性を有し、コモノマー含量の高いポリマーを製造するオレフィン重合用触媒、並びに該オレフィン重合用触媒を用いたオレフィンの重合方法が提供される。

Claims (3)

  1. (A)下記一般式(I)で表される遷移金属化合物を含んで成ることを特徴とするオレフィン重合用触媒。
    Figure 2007297453
    式中、Mは周期律表4〜5族の遷移金属原子を示し、
    mは、1〜4の整数を示し、
    〜Rは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、Rは、ハロゲン原子を示し、
    また、mが2以上の場合にはR1〜Rで示される基のうち2個の基が連結されていてもよく(ただしR1同士が結合されることはない)、
    nは、Mの価数を満たす数であり、
    Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。
  2. 前記の遷移金属化合物(A)と、(B)(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とからなることを特徴とする請求項1記載のオレフィン重合触媒。
  3. 請求項1または2に記載のオレフィン重合用触媒の存在下において、オレフィンを重合または共重合させることを特徴とするオレフィンの重合方法。
JP2006125060A 2006-04-28 2006-04-28 オレフィン重合用触媒およびオレフィンの重合方法 Pending JP2007297453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125060A JP2007297453A (ja) 2006-04-28 2006-04-28 オレフィン重合用触媒およびオレフィンの重合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125060A JP2007297453A (ja) 2006-04-28 2006-04-28 オレフィン重合用触媒およびオレフィンの重合方法

Publications (1)

Publication Number Publication Date
JP2007297453A true JP2007297453A (ja) 2007-11-15

Family

ID=38767225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125060A Pending JP2007297453A (ja) 2006-04-28 2006-04-28 オレフィン重合用触媒およびオレフィンの重合方法

Country Status (1)

Country Link
JP (1) JP2007297453A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122146A (ja) * 2009-11-13 2011-06-23 Mitsui Chemicals Inc オレフィン重合用触媒およびオレフィン重合体の製造方法
KR101049261B1 (ko) 2009-09-29 2011-07-13 주식회사 엘지화학 3종 혼성 메탈로센 담지 촉매 및 그의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315109A (ja) * 1997-04-25 1999-11-16 Mitsui Chem Inc オレフィン重合用触媒、遷移金属化合物、オレフィンの重合方法およびα−オレフィン・共役ジエン共重合体
JP2000119313A (ja) * 1998-10-09 2000-04-25 Mitsui Chemicals Inc オレフィンの重合方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315109A (ja) * 1997-04-25 1999-11-16 Mitsui Chem Inc オレフィン重合用触媒、遷移金属化合物、オレフィンの重合方法およびα−オレフィン・共役ジエン共重合体
JP2000119313A (ja) * 1998-10-09 2000-04-25 Mitsui Chemicals Inc オレフィンの重合方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049261B1 (ko) 2009-09-29 2011-07-13 주식회사 엘지화학 3종 혼성 메탈로센 담지 촉매 및 그의 제조방법
WO2011040753A3 (ko) * 2009-09-29 2011-09-09 주식회사 엘지화학 3종 혼성 메탈로센 담지 촉매 및 그의 제조방법
JP2011122146A (ja) * 2009-11-13 2011-06-23 Mitsui Chemicals Inc オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2011122145A (ja) * 2009-11-13 2011-06-23 Mitsui Chemicals Inc オレフィン重合用触媒およびオレフィン重合体の製造方法

Similar Documents

Publication Publication Date Title
JP4108141B2 (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP4237200B2 (ja) α−オレフィン・共役ジエン共重合体
JP5597103B2 (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法
JP3964053B2 (ja) 遷移金属化合物からなるオレフィン重合用触媒ならびに重合方法
JPH11199592A (ja) 遷移金属化合物およびオレフィン重合用触媒ならびに重合方法
JP6103528B2 (ja) 遷移金属化合物、オレフィン重合用触媒およびオレフィン系重合体の製造方法
JP4676219B2 (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP2016050175A (ja) 遷移金属化合物、オレフィン多量化用触媒、オレフィン多量化体の製造方法および1−ブテンの製造方法
JP3945559B2 (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP2003268030A (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP3937200B2 (ja) 新規な遷移金属錯体、オレフィン重合用触媒およびオレフィンの重合方法
JP3864013B2 (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP2007297453A (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP2002256013A (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP4472409B2 (ja) α−オレフィン・環状オレフィン共重合体の製造方法
JP3930197B2 (ja) オレフィン重合用触媒および重合方法
JP2003040953A (ja) ブロック共重合体およびその製造方法
JP4646486B2 (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP3747354B2 (ja) 遷移金属化合物およびオレフィン重合用触媒ならびに重合方法
JP2005002086A (ja) 遷移金属化合物およびこれを含むオレフィン重合用触媒
JP5800727B2 (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法
JP5773797B2 (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2000119313A (ja) オレフィンの重合方法
JP3983184B2 (ja) オレフィン重合用触媒および該オレフィン重合用触媒を用いたオレフィンの重合方法
JP2004231846A (ja) オレフィン重合用触媒およびオレフィンの重合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913