JP2007294001A - ディスク・ドライブ装置及びその制御方法 - Google Patents

ディスク・ドライブ装置及びその制御方法 Download PDF

Info

Publication number
JP2007294001A
JP2007294001A JP2006120521A JP2006120521A JP2007294001A JP 2007294001 A JP2007294001 A JP 2007294001A JP 2006120521 A JP2006120521 A JP 2006120521A JP 2006120521 A JP2006120521 A JP 2006120521A JP 2007294001 A JP2007294001 A JP 2007294001A
Authority
JP
Japan
Prior art keywords
slew rate
heater
read
write
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120521A
Other languages
English (en)
Inventor
Noriaki Sato
典明 佐藤
Toyozo Osawa
豊三 大澤
Ariyoshi Nagano
有美 永野
Nobumasa Nishiyama
延昌 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2006120521A priority Critical patent/JP2007294001A/ja
Priority to US11/789,626 priority patent/US7969681B2/en
Publication of JP2007294001A publication Critical patent/JP2007294001A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6011Control of flying height
    • G11B5/6064Control of flying height using air pressure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion

Landscapes

  • Digital Magnetic Recording (AREA)
  • Magnetic Heads (AREA)

Abstract

【課題】ヒータを使用したヘッド−ディスク・クリアランス調整において、ヘッドにおける構造的なストレスを低減する共に効果的な制御を実現する。
【解決手段】本発明の一実施形態において、HDC/MPU23は、TFC(Thermal Fly height Control)における、ヒータのスルーレートを制御する。HDC/MPU23は、ヒータへの電流/電圧出力のスルーレートを処理条件に応じて変化させる。これによって、ヘッド・ストレスを低減する共に効果的なTFCを実現する。具体的には、HDC/MPU23は温度−スルーレート・テーブル242を参照し、リード/ライト処理において、温度に応じてスルーレートを変化させる。
【選択図】図4

Description

本発明はディスク・ドライブ装置及びその制御方法に関し、特に、ヘッド素子部とディスクとの間のクリアランスを調整するヒータを備えるディスク・ドライブ装置のヒータ制御に関する。
ディスク・ドライブ装置として、光ディスク、光磁気ディスクあるいはフレキシブル磁気ディスクなどの様々な態様のディスクを使用する装置が知られているが、その中で、ハードディスク・ドライブ(HDD)は、コンピュータの記憶装置として広く普及し、現在のコンピュータ・システムにおいて欠かすことができない記憶装置の一つとなっている。さらに、コンピュータにとどまらず、動画像記録再生装置、カーナビゲーション・システム、携帯電話、あるいはデジタル・カメラなどで使用されるリムーバブルメモリなど、HDDの用途は、その優れた特性により益々拡大している。
HDDで使用される磁気ディスクは、同心円状に形成された複数のデータ・トラックを有しており、各データ・トラックはアドレス情報を有する複数のサーボ・データとユーザ・データを含む複数のデータ・セクタが記録されている。各サーボ・データの間には、複数のデータ・セクタが記録されている。揺動するアクチュエータに支持されたヘッド・スライダのヘッド素子部が、サーボ・データのアドレス情報に従って所望のデータ・セクタにアクセスすることによって、データ・セクタへのデータ書き込み及びデータ・セクタからのデータ読み出しを行うことができる。
磁気ディスクの記録密度を向上には、磁気ディスク上を浮上するヘッド素子部と磁気ディスクとの間のクリアランスを小さくすることが重要である。このため、このクリアランスを調整するいくつかの機構が提案されている。そのうちの一つは、ヘッド・スライダにヒータを備え、そのヒータでヘッド素子部を加熱することよってクリアランスを調整する。本明細書において、これをTFC(Thermal Flyheight Control)と呼ぶ。TFCは、ヒータに電流を供給して発熱させ、熱膨張によってヘッド素子部を突出させる。これによって、磁気ディスクとヘッド素子部との間のクリアランスを小さくする。TFCについては、例えば、特許文献1に開示されている。特許文献1は、クロストークによる再生信号への雑音を防ぐため、ヒータへ供給する電流の立ち上り/立ち下がりの傾きを小さくすることを開示する。
特開2004−342151号公報
TFCは、HDDの使用中に数兆回におよぶヒータのON/OFFを繰り返す。このため、TFCの長期信頼性が懸念される。発明者らの検討から、TFCによってヒータのON/OFFを繰り返すことで、ヒータ及びヘッド素子部に構造的ストレスが発生し、素子破壊を起こしうることがわかった。ヒータ材料が熱膨張・熱収縮によって金属疲労を起こし、ヒータの断線や、エレクトロマイグレーションによるショートが起こりうる。また、ヒータとその周囲の部材との境界において、材料の違いによるクラックが発生することがある。あるいは、リード素子とライト素子とが膨張と収縮を繰り返すことで、その部分にクラックが発生し、あるいは、エレクトロマイグレーションを加速する。
ヒータ及びヘッド素子部への構造的ストレスを軽減する一つの方法として、プリアンプからヒータ素子への出力のスルーレート(信号波形の立ち上がり/立ち下りの速さ)を低くすることが考えられる。しかし、徒にスルーレートを低くすることは、クリアランス調整の応答速度を下げることになり、処理条件によってはTFC本来の目的を達成できないことが考えられる。
本発明の一態様に係るディスク・ドライブ装置は、回転するディスク上を浮上するスライダと、前記スライダに配置されたヘッド素子部と、前記スライダに配置され、前記ヘッド素子部を熱膨張によって突出させて前記ディスクとの間のクリアランスを調整するヒータと、前記ヒータへの出力のスルーレートを処理条件に応じて決定するコントローラと、前記決定されたスルーレートで前記ヒータを駆動するヒータ駆動回路を備えるものである。ヒータへの出力のスルーレートを処理条件に応じて決定することで、素子のストレスを軽減するとともに、効果的なTFCを実現する。
前記コントローラは、温度検出器の検出温度に基づいてヒータへの出力のスルーレートを変更することが好ましい。温度条件によってスルーレートを調整することで、より好適なTFCを実現することができる。さらに、前記コントローラは、リード及び/もしくはライト処理において、低温側のスルーレートが高温側のスルーレート以上となるように、前記ヒータへの出力のスルーレートを決定することが好ましい。これによって、低温側におけるリード及び/もしくはライト特性に低下を補償することができる。
前記駆動回路は、リード及び/もしくはライト処理において、前記ヘッド素子部が前記ディスクにアクセスしている間に、前記ヒータへの出力のスルーレートをそのアクセス開始時よりも下げることができる。これによって、アクセス開始時におけるリード及び/もしくはライト特性の低下を抑えることができる。さらに、前記駆動回路は、前記コントローラからのリード及び/もしくはライトの制御信号が変化した回数に従って、前記ヒータへの出力のスルーレートを下げる。これによって、簡便な構成でスルーレート制御することができる。
前記ディスク・ドライブ装置は、エラーが発生した場合にそのエラー回復処理の実行ステップを特定し前記スルーレートを変化させるステップを含むテーブルをさらに備え、前記コントローラは、前記テーブルが特定する実行ステップの実行制御を行うことができる。さらに、前記テーブルは、リード処理におけるエラー回復ステップとして、前記スルーレートを上げる及び/もしくは下げるステップを有することができる。あるいは、前記コントローラは、ライト処理において前記ヘッド素子部が書き込んだデータの確認処理を実行し、前記テーブルは、前記ライト処理におけるエラー回復ステップとして、前記スルーレートを上げるステップを有することができる。エラー回復処理においてスルーレートを変化させることで、エラー回復を図ることができる。
本発明の他の態様は、回転するディスク上を浮上するスライダと、そのスライダに配置されたヘッド素子部と、前記スライダに配置され前記ヘッド素子部を熱膨張によって突出させて前記ディスクとの間のクリアランスを調整するヒータと、を備えるディスク・ドライブ装置における制御方法である。この方法は、処理条件に応じて前記ヒータへの出力のスルーレートを決定し、前記決定したスルーレートで前記ヒータを駆動する。ヒータへの出力のスルーレートを処理条件に応じて決定することで、素子のストレスを軽減するとともに、効果的なTFCを実現する。さらに、リード及び/もしくはライト処理におけるヘッド切り替えに従って前記ヒータへの出力のスルーレートを変更することができる。これによって、ヘッド切り替え時におけるリード及び/もしくはライト特性の低下を補償することができる。
本発明によれば、TFCによる素子のストレスを軽減するとともに、効果的なTFCを実現することができる。
以下に、本発明を適用可能な実施の形態を説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略及び簡略化がなされている。又、各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略されている。以下においては、ディスク・ドライブ装置の一例であるハードディスク・ドライブ(HDD)を例として、本発明の実施形態を説明する。
本形態の特徴的な点の一つは、ディスク・ドライブ装置のTFC(Thermal Fly height Control)における、ヒータのスルーレート制御である。TFCは、スライダ上のヒータからの熱による熱膨張によってヘッド素子部と記録ディスクとのクリアランスを調整する。本形態HDDは、このヒータへの電流/電圧出力のスルーレートを処理条件に応じて変化させる。これによって、ヘッド・ストレスを低減する共に、効果的なTFCを実現する。
本実施形態の特徴点の理解を容易とするため、最初に、HDDの全体構成の概略を説明する。図1は、本実施の形態に係るHDD1の全体構成を模式的に示すブロック図である。図1に示すように、HDD1は、密閉されたエンクロージャ10内に、記録ディスク(記録媒体)の一例である磁気ディスク11、ヘッド・スライダ12、アーム電子回路(AE:Arm Electronics)13、スピンドル・モータ(SPM)14、ボイス・コイル・モータ(VCM)15、アクチュエータ16そして温度検出器19を備えている。
HDD1は、さらに、エンクロージャ10の外側に固定された回路基板20を備えている。回路基板20上には、リード・ライト・チャネル(RWチャネル)21、モータ・ドライバ・ユニット22、ハードディスク・コントローラ(HDC)とMPUの集積回路(以下、HDC/MPU)23及びRAM24などの各ICを備えている。尚、各回路構成は一つのICに集積すること、あるいは、複数のICに分けて実装することができる。
外部ホスト51からのユーザ・データは、HDC/MPU23によって受信され、RWチャネル21、AE13を介して、ヘッド・スライダ12によって磁気ディスク11に書き込まれる。また、磁気ディスク11に記憶されているユーザ・データはヘッド・スライダ12によって読み出され、そのユーザ・データは、AE13、RWチャネル21を介して、HDC/MPU23から外部ホスト51に出力される。
磁気ディスク11は、SPM14に固定されている。SPM14は所定の角速度で磁気ディスク11を回転する。HDC/MPU23からの制御データに従って、モータ・ドライバ・ユニット22がSPM14を駆動する。本例の磁気ディスク11は、データを記録する記録面を両面に備え、各記録面に対応するヘッド・スライダ12が設けられている。各ヘッド・スライダ12は、磁気ディスク上を浮上するスライダと、スライダに固定され磁気信号と電気信号との間の変換を行うヘッド素子部とを備えている。本形態のヘッド・スライダ12は、加熱によってヘッド素子部を突出させ、その磁気ディスク11との間のクリアランス(浮上高)を調整するTFCのためのヒータを備えている。ヘッド・スライダ12の構造については、後に図2を参照して詳述する。
各ヘッド・スライダ12はアクチュエータ16の先端部に固定されている。アクチュエータ16はVCM15に連結され、回動軸を中心に回動することによって、ヘッド・スライダ12を回転する磁気ディスク11上においてその半径方向に移動する。モータ・ドライバ・ユニット22は、HDC/MPU23からの制御データ(DACOUTと呼ぶ)に従ってVCM15を駆動する。なお、磁気ディスク11は、1枚以上あればよく、記録面は磁気ディスク11の片面あるいは両面に形成することができる。
AE13は、複数のヘッド素子部12の中から磁気ディスク11へのアクセスを行う1つのヘッド素子部12を選択し、選択されたヘッド素子部12により再生される再生信号を一定のゲインで増幅し、RWチャネル21に送る。また、RWチャネル21からの記録信号を選択されたヘッド素子部12に送る。AE13は、さらに、ヒータへ電流(電力)を供給し、その電流量を調節する調節回路として機能する。
RWチャネル21は、リード処理において、AE13から供給されたリード信号を一定の振幅となるように増幅し、取得したリード信号からデータを抽出し、デコード処理を行う。読み出されるデータは、ユーザ・データとサーボ・データを含む。デコード処理されたリード・ユーザ・データ及びサーボ・データは、HDC/MPU23に供給される。また、RWチャネル21は、ライト処理において、HDC/MPU23から供給されたライト・データをコード変調し、更にコード変調されたライト・データをライト信号に変換してAE13に供給する。
HDC/MPU23において、MPUはRAM24にロードされたマイクロ・コードに従って動作する。HDD1の起動に伴い、RAM24には、MPU上で動作するマイクロ・コードの他、制御及びデータ処理に必要とされるデータが磁気ディスク11あるいはROM(不図示)からロードされる。HDC/MPU23は、リード/ライト処理制御、コマンド実行順序の管理、サーボ信号を使用したヘッド素子部12のポジショニング制御(サーボ制御)、インターフェース制御、ディフェクト管理、エラーが発生した場合のERPなど、データ処理に関する必要な処理及びHDD1の全体制御を実行する。特に、本形態のHDC/MPU23はTFCのスルーレート制御を行うが、この点については後述する。
次に、本形態におけるTFCヘッド・スライダ12構成について説明を行う。図2は、ヘッド・スライダ12の空気流出端面(トレーリング側端面)121近傍におけるその一部構成を示す断面図である。磁気ディスク11は、図2の左から右に向かって回転する。ヘッド・スライダ12は、ヘッド素子部122とヘッド素子部122を支持するスライダ123とを備えている。なお、本形態のTFCは垂直磁気記録、水平磁気記録の双方のHDDに適用することができる。
ヘッド素子部122は、磁気ディスク11との間で磁気データを読み書きする。ヘッド素子部122は、リード素子32とそのトレーリング側のライト素子31とを備えている。ライト素子31は、ライト・コイル311を流れる電流で磁極312間に磁界を発生し、磁気データを磁気ディスク11に記録するインダクティブ素子である。リード素子32は磁気抵抗型の素子であって、磁気異方性を有する磁気抵抗素子32aを備え、磁気ディスク11からの磁界によって変化するその抵抗値によって磁気ディスク11に記録されている磁気データを読み出す。
ヘッド素子部122は、スライダ123を構成するアルチック(AlTiC)基板に、メッキ、スパッタ、研磨などの薄膜形成プロセスを用いて形成される。磁気抵抗素子32aは、磁気シールド33a、bによって挟まれており、ライト・コイル311は絶縁膜313で囲まれている。また、ヘッド素子部122はライト素子31とリード素子32の周囲にアルミナなどの保護膜34を備え、ヘッド素子部122全体はその保護膜34で保護されている。ライト素子31およびリード素子32の近傍には、薄膜で形成された抵抗体によるヒータ124が薄膜プロセスを用いて形成されている。本例において、ヒータ124は、ヘッド素子部122の反磁気ディスク11側に位置している。パーマロイを使用した薄膜抵抗体を蛇行させ、間隙はアルミナで埋めてヒータ124を形成することができる。
AE13がヒータ124に電流を流すと(電力を供給すると)、ヒータ124の熱によってヘッド素子部122の近傍が突出変形する。非加熱時において、ヘッド・スライダ12のABS面は、S1で示される形状であり、ヘッド素子部122と磁気ディスクとの間の距離であるクリアランスは、C1で示されている。ヒータ124加熱時における突出形状S2を、図2に破線で模式的に示す。ヘッド素子部122が磁気ディスク11に近づき、このときのクリアランスC2は、クリアランスC1よりも小さい。なお、図2は概念図であり、寸法関係は正確ではない。例えば、突出面形状S2はナノメートル・オーダ(数ナノメートル)の突出量である。
TFCによるヘッド素子部122の膨張と拡張を繰り返すことによって、ヒータ124材料が熱膨張・熱収縮によって金属疲労を起こし、ヒータ124の断線や、エレクトロマイグレーションによるショートが起こりうる。また、ヒータ124とその周囲の部材との境界において、材料の違いによるクラックが発生することがある。あるいは、リード素子32とライト素子31とが膨張と収縮を繰り返すことで、その部分にクラックが発生し、あるいは、エレクトロマイグレーションを加速する。リード素子32に対するストレスは、その信号読み取りを不安定なものとする。これは、一般にリード素子32のインスタビリティと呼ばれる。
ヒータ124及びヘッド素子部122への構造的ストレスを軽減するためには、ヒータ124への出力のスルーレートを低くすることが好ましい。しかし、スルーレートを低くすることは、クリアランス調整の応答速度を下げることになり、処理条件によってはTFC本来の目的を達成できないことが考えられる。本形態のHDD1は、処理条件に応じてヒータ124への出力のスルーレートを変化させる。これによって、効果的なTFCを実現すると共に、ヘッド・スライダ12における機械的なストレスを低減する。
AE13は、ヒータ124に電力を供給する駆動回路を有している。典型的には、AE13は、定電圧駆動もしくは定電流駆動によりヒータ124を駆動する。スルーレートは、AE13からヒータ124への出力の立ち上がりもしくは立下りの速さに相当する。高いスルーレートにおいて、ヒータ124への電流及び電圧の立ち上がりもしくは立下りが早い。一方、低いスルーレートにおいて、ヒータ124への電流及び電圧の立ち上がりもしくは立下りが遅い。
図3(a)と図3(b)、(c)とは、異なるスルーレートの波形を模式的に示している。図3(a)、(b)、(c)において、X軸は時間を表し、Y軸は出力電圧もしくは出力電流を示している。図3(a)のスルーレートは、図3(b)及び(c)のスルーレートよりも高い、つまり、波形の立ち上がり及び立下りが速い。図3(c)は、図3(b)と同様に低いスルーレートの例を示している。
具体的には、AE13からヒータ124への出力が変化を開始してから、その飽和値に達するまでの時間で、スルーレートを表すことができる。例えば、定電流駆動の立ち上がりにおいて、AE13が電流を流し始めてからその飽和値に達するまでの時間によって、立ち上がりにおけるスルーレートを定義することができる。同様に、定電流駆動の立ち下がりにおいて、AE13の出力電流が減少を始めてからその飽和値、つまり0レベルに達するまでの時間によって、立ち下がりにおけるスルーレートを定義することができる。定電圧駆動の場合は、その電圧値で定義することができる。なお、以下においては、AE113がヒータ124を定電流駆動する例を説明する。
好ましい態様の一つは、温度条件によってヒータ124のスルーレートを変更する。また、リード及びライト処理に応じてスルーレートを決定する。なお、以下においては、ヒータ124の立ち上がりにおけるスルーレート制御について、具体的に説明する。ヒータ124のスルーレート制御は、HDC/MPU23が行う。図4は、ヒータ124のスルーレート制御に関連する各機能構成要素を模式的に示すブロック図である。AE13はレジスタを備え、そのレジスタにセットされた制御データに従って、ヒータ124への出力のスルーレートを変化させることができる。
HDC/MPU23は処理条件に応じてヒータ124のスルーレートを決定し、その値を特定するデータ(HEATER SLEW RATE)をAE13のレジスタに設定する。典型的には、HDC/MPU23は、予め設定された複数のスルーレートの内から、処理条件に最適なスルーレートを決定し、その値をAE13にセットする。AE13は、設定されたデータが示すスルーレートによって、ヘッド・スライダ12のヒータ124に電流(HEATER CURRENT)を供給する。
リード処理において、ヘッド・スライダ12が読み出したデータ信号(DATA)は、AE13、RWチャネル21を介してHDC/MPU23に転送される。HDC/MPU23は、読み出したデータをRAM24におけるバッファ241に一旦格納した後、ホスト51に転送する。ライト処理においては、HDC/MPU23がバッファ241に格納されているデータを、RWチャネル21に転送する。データは、AE13及びヘッド・スライダ12介して、磁気ディスク11に記録される。
HDC/MPU23は、リード及びライトの各処理において、温度に応じてスルーレートを決定する。HDC/MPU23は、サーミスタなどの温度検出器19から、その検出温度を取得する。また、HDC/MPU23は、ホスト51からのコマンドに従って、リード及びライト処理を制御し、各処理において温度に応じたスルーレート制御を行う。
RAM24には、温度−スルーレート・テーブル242がロードされる。温度−スルーレート・テーブル242は、リード及びライトの各処理において、温度とスルーレートとの関係を特定する。温度−スルーレート・テーブル242は、例えば、磁気ディスク11の管理領域に記録され、HDD1がONされると、RAM24にロードされる。
HDC/MPU23は、リード及びライトの各処理において、温度検出器19の検出温度及び温度−スルーレート・テーブル242を参照することによって、ヒータ124のスルーレートを決定する。温度に応じたスルーレート制御の好ましい例について、具体的に説明する。図5(a)及び図5(b)は、温度−スルーレート・テーブル242の好ましい例を示している。図5(a)はライトの前にプリヒートする場合の例であり、図5(b)はライトの前にプリヒートしない場合の例である。
図5(a)及び図5(b)の例において、温度検出器19の検出温度領域を、低温領域(LOW)、常温領域(NOMINAL)そして高温領域(HIGH)の3温度領域に分割する。例えば、0℃未満を低温、0℃から50℃を常温とする。また、ライト処理(WRITE)とリード処理(READ)について、それぞれスルーレートを設定する。HDC/MPU23は、温度領域の変化に従って、リード及びライトの各処理において適切なスルーレートを決定する。本例において、HDC/MPU23は、3つのスルーレート値を有している。HDC/MPU23は、1μs、10μs及び20μsの中から適切なスルーレート値を選択する。なお、これらの値は一例であって、具体的な値はHDDの設計によって適切な値が採用される。
図5(a)に示すプリヒートは、データの書き込み初期におけるプアオーバーライトを防止する。プリヒートは、例えば、ターゲット・セクタの数サーボ・セクタ前にヒータ124をONとして、予めヘッド素子部122を突出させる。ライトにおいては、ライト電流を供給されたライト素子31の発熱によって、ヘッド素子部122が突出する(ライト・プロトリュージョン)。ライト・プロトリュージョンによるヘッド素子部122の突出はデータ書き込みを開始した時点で始まり、書き込み開始からある程度の時間書き込んだ時点で飽和する。
このため、データ書き込み開始時に、記録面が十分に磁化されないことがある。ライト素子31が書き込みを開始する前にプリヒートによってヘッド素子部122を突出させておくことで、書き込み開始時のプアオーバーライトを防止することができる。典型的には、プリヒートは、リードにおける電力と同様の電力をヒータ124に供給する。
ここで、HDC/MPU23は、ヒータ124への電力(電流)を、温度に従って変化させると共に、リードとライトの間においてもヒータ・パワーを変化させる。典型的には、データ読み出しの間におけるヒータ・パワーは、データを書き込んでいるヒータ・パワーよりも大きい。また、HDC/MPU23は、温度上昇に従ってヒータ・パワーを低下させる。HDC/MPU23は、AE13のレジスタにヒータ電力値をセットすることによって、ヒータ124への供給電力(電流)を変更することができる。
ライトにおいては、上記のプアオーバーライトを防止する観点において、スルーレートが重要な要素となる。プリヒートを行う場合、既にヘッド素子部122が所定量突出しているため、データ書き込みのためにスルーレートを早くすることは要求されない。そのため、図5(a)に示すように、HDC/MPU23は、低温領域(LOW)及び常温領域(NOMINAL)において、最も低いスルーレート(最も長い立ち上がり時間)である20μsを選択する。なお、図4(a)の例においては、HDC/MPU23は、高温領域(HIGH)においてヒータ124をOFFにセットする。また、AE13は、ライト素子31へライト電流の供給と同時に、あるいは、その開始する前にヒータ124に出力を開始することができる。また、設計によって、20μsではなく、10μsをライトにおけるスルーレート値としてもよい。
プリヒートを行わない場合、図5(b)に示すように、HDC/MPU23は、ライトにおけるスルーレートを温度に応じて変化させる。具体的には、温度検出器19の検出温度が低温領域(LOW)にある場合、1μsのスルーレートを選択する。低温領域においてはライト素子31の書き込み特性が低下するため、高いスルーレートによってヘッド素子部122の突出を速め、書き込み初期におけるプアオーバーライトをより確実に防止する。
これに対し、より高温側の常温領域(NOMINAL)において、低温領域(LOW)よりも低いスルーレート(長い立ち上がり時間)を選択する。具体的には、図5(b)に示すように、常温領域(NOMINAL)において、HDC/MPU23は、10μsのスルーレートを選択する。さらに、常温領域より高温側の高温領域(HIGH)において、HDC/MPU23は、20μsのスルーレートを選択する。温度の低下に従ってスルーレートを高くすることで、データ書き込み特性を維持すると共に、ヘッド素子部122へのストレスを低減することができる。なお、常温領域及び高温領域において、同一のスルーレートを設定してもよい。
リード処理においては、SER(Soft Error Rate)の観点において、スルーレートが重要な要素となる。温度が低い場合、SERが悪化する、つまり、磁気ディスク11から読み出したデータのエラー訂正において検出される誤りビット数が増加する。SERを改善するためには、ヒータ124への出力のスルーレートが高いことが好ましい。本例においては、図5(a)及び図5(b)に示すように、HDC/MPU23は、低温側においてより高いスルーレートを選択する。
具体的には、HDC/MPU23は低温領域(LOW)において1μs、常温領域(NOMINAL)において10μs、高温領域(HIGH)において20μsを選択する。このように、HDC/MPU23は、温度に従って異なるスルーレートを使用し、低温側のスルーレートが高温側のスルーレート以下となるように、スルーレートを決定する。これによって、リードTFCにおけるSERを効果的に改善するとともに、ヘッド素子部122へのストレスの低減を図ることができる。
なお、AE13の回路構成を単純なものとするため、上述のように異なる複数のスルーレートを段階的に使用する(同一温度領域において同一スルーレート)ことが好ましい。しかし、回路構成は複雑になるが、温度に従ってスルーレートを連続的に変化させてもよい。
この場合においても、HDC/MPU23は、温度に従って異なるスルーレートを使用し、低温側のスルーレートが高温側のスルーレート以上となるように、スルーレートを決定する。また、各温度領域を画定する基準温度は、リードとライトとの間において同一もしくは異なる値を使用することができる。リード処理において、特にSER特性が低下するのは、低温領域であるので、この領域におけるスルーレートを他の温度領域よりも高くし、常温領域及び高温領域では同一のスルーレートを使用してもよい。
処理条件に応じてヒータ124への出力のスルーレートを変化させる他の好ましい態様は、ERP(Error Recovery Procedure)において、通常処理とは異なるスルーレートを使用する。図6は、ERPにおけるスルーレート制御に関連する機能構成要素を模式的に示すブロック図である。図6に示すように、HDC/MPU23は、リードもしくはライト処理においてエラー発生すると、ERPテーブル243を参照してERPを実行する。
ERPテーブル243は、リード及びライトのそれぞれに対応したテーブルを有する。ERPテーブル243は、リード・エラー及びライト・エラーのそれぞれに対して複数のERPステップを登録している。HDC/MPU23は各ERPステップを順次実行する。典型的なERPステップは、同一条件でのリトライ、RWチャネル21のパラメータ変更、リードにおけるターゲット位置のオフセットなどである。
本形態のERPテーブル243は、リード及び/もしくはライトのERPステップとして、ヒータ124のスルーレートを変更するステップを有している。つまり、リードもしくはライトにおいてエラーが起きた場合、エラー時のスルーレートと異なるスルーレートを使用するERPステップが存在する。スルーレートは、処理条件及びエラー条件に応じて、高いスルーレートを使用する、あるいは、低いスルーレートを使用することができる。
スルーレートを変更するERPステップの好ましい一例は、リードERPにおいて、スルーレートを高くする。上述のように、ヒータ124への出力のスルーレートを上げることによって、SERの改善が期待される。このため、HDC/MPU23は、リードERPにおいてスルーレートを上げ、エラー回復を図ることができる。
他の好ましい例として、ERPテーブル243は、リードERPステップの一つとして、スルーレートを下げるステップを有する。スルーレートを低くすることによって、リード素子32への機械的なストレスを減らし、そのインスタビリティを抑制することが期待される。このため、HDC/MPU23は、リードERPにおいてスルーレートを下げ、エラー回復を図ることができる。なお、好ましくは、ERPテーブル243は、リードERPにおいて、スルーレートを上げるステップとスルーレートを下げるステップの双方を有する。
他の好ましい例において、HDC/MPU23はライト・ベリファイ処理を行い、そのベリファイ処理においてエラー発生した場合、ライトERPにおいてスルーレートを上げる。例えば、低温領域において、HDC/MPU23はターゲット・セクタにユーザ・データを書き込んだ後にそのデータを読み返し、正確にユーザ・データが記録されていることを確認する(ライト・ベリファイ処理)。
正確にデータが書き込まれていない場合、HDC/MPU23はERPテーブル243を参照し、ライトERPの各ステップを実行する。そのステップの一は、ヒータ124への出力のスルーレートを上げることを指示する。これよって、データの書き込み初期におけるプアオーバーライトによるエラーを回復することができる。
処理条件に応じてヒータ124への出力のスルーレートを変化させる他の好ましい態様は、リード及び/もしくはライトにおいて、ヘッド切り替えに応じてヒータ124への出力のスルーレートを変更する。HDC/MPU23は、リード/ライトにおいて、ホスト51から指定されたアドレスに応じてアクセス・ヘッドを選択し、そのヘッド素子部122を使用して、ユーザ・データのリード/ライトを行う。一つのコマンドに対するアクセスの間に、HDC/MPU23は、一つもしくは複数のヘッド素子部122を使用する。
HDC/MPU23は、各ヘッド素子部122を選択した後の初期において高いスルーレート(図3(a))を使用する。その後、予め設定されたタイミングにおいて、HDC/MPU23は、ヒータ124への出力のスルーレートを低下させる(図3(b)または(c))。ヘッド選択後の初期においては、ヒータ124の熱によってヘッド素子部122が十分の突出していない場合がある。このため、HDC/MPU23は高いスルーレートを使用してヘッド素子部122の突出を早める。これによって、データ書き込み初期におけるプアオーバーライト、あるいは、データ読み出し初期における読み出しエラーを防ぐことができる。
具体的には、図7のブロック図に示すように、HDC/MPU23は、ホスト51から、リード/ライトのコマンドを取得する。このコマンドは、アクセス先の先頭セクタ及びその先頭セクタからアクセスすべきセクタ数を指定する。ホスト51からのコマンドは、典型的には、LBA(Logical Block Addressing)アドレスによって、アクセス先を指定する。HDC/MPU23は、このLBAアドレスを、CHS(Cylinder Head Sector)アドレスに変換する。
HDC/MPU23は、変換したCHSアドレスを使用してヘッド素子部122の選択と、アクチュエータ16の制御を行う。HDC/MPU23は選択したヘッド素子部122を表すデータ(HEAD SELECTION)をAE13にセットする。AE13は選択されたヘッド素子部122からのリード信号を増幅し、あるいは、そのヘッド素子部122にライト電流を供給する。また、HDC/MPU23は、ヘッド選択時に、AE13にスルーレートを特定するデータをセットする。
その後、HDC/MPU23はリード/ライトを制御する信号(READ/WRITE GATE)をアサート/ネゲートすることによって、RWチャネル21のリード処理及びライト処理を制御する。これらの制御信号は、リード/ライト処理の開始及び終了を指示する。ターゲットの領域にアクセスしている間はこれらの信号はON状態にあり、サーボ・データを処理している間はOFFになる。HDC/MPU23は、この制御信号の変化をカウントし、そのカウント数が予め設定あれた値に達すると、AE13に低いスルーレートを表す新たなデータをセットする。AE13は、セットされたスルーレートでヒータ124を駆動する。
あるいは、AE13は、スルーレートを設定する複数のレジスタを有していてもよい。一つのレジスタは、初期スルーレートの設定データを格納し、他のレジスタはその後のスルーレートの設定データを格納する。HDC/MPU23は、予めAE13の各レジスタにスルーレートを表すデータを格納しておく。
HDC/MPU23からの制御信号(READ/WRITE GATE)は、AE13にも入力される。AE13は、HDC/MPU23のヘッド選択から初期においては、レジスタに登録されている初期スルーレートでヒータ124に出力する。AE13は、HDC/MPU23からの制御信号(READ/WRITE GATE)の変化の回数をカウントし、それが予め設定されている回数に達すると、スルーレートを低い値に切り替える。制御信号の変化をカウントしてスルーレート切り替えは、簡便な回路構成で実現することができる。なお、この他、HDC/MPU23が所定周波数のクロックをカウントして時間を計測し、その計測時間によってスルーレートを変更するようにしてもよい。
以上、本発明を好ましい実施形態を例として説明したが、本発明が上記の実施形態に限定されるものではない。当業者であれば、上記の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。例えば、リード素子あるいはライト素子のみを備えるヘッド・スライダを実装するHDDに、あるいは、HDD以外のディスク・ドライブ装置に上述のTFCの各例を適用することも可能である。
本実施形態において、HDDの全体構成を模式的に示すブロック図である。 本実施形態において、TFCのためのヒータを備えたヘッド・スライダの構成を模式的に示す断面図である。 本実施形態において、スルーレートが高いヒータへの出力とスルーレートが低いいヒータへの出力の各波形変化を模式的に示す図である。 本実施形態において、温度に応じスルーレートを変化させるために参照する温度−スルーレート・テーブルの例を示している。 本実施形態において、温度−スルーレートテーブルの一例を模式的に示す図である。 本実施形態において、ERPにおけるヒータ・スルーレートの変更に関連する論理構成を模式的に示すブロック図である。 本実施形態において、ヘッド切り替えに応じたヒータ・スルーレートの変更に関連する論理構成を模式的に示すブロック図である。
符号の説明
1 ハードディスク・ドライブ、10 エンクロージャ、11 磁気ディスク
12 ヘッド・スライダ、14 スピンドル・モータ、15 ボイス・コイル・モータ
16 アクチュエータ、19 温度検出器、20 回路基板
21 リード・ライト・チャネル、22 モータ・ドライバ・ユニット
23 ハードディスク・コントローラ/MPU、24 RAM、31 ライト素子
32 リード素子、32a 磁気抵抗素子、33a、b シールド、34 保護膜
51 ホスト、121 トレーリング側端面、122 ヘッド素子部、123 スライダ
124 ヒータ、241 バッファ、242 温度−スルーレート・テーブル
243 ERPテーブル、311 ライト・コイル、312 磁極、313 絶縁膜

Claims (13)

  1. 回転するディスク上を浮上するスライダと、
    前記スライダに配置されたヘッド素子部と、
    前記スライダに配置され、前記ヘッド素子部を熱膨張によって突出させて前記ディスクとの間のクリアランスを調整するヒータと、
    前記ヒータへの出力のスルーレートを処理条件に応じて決定するコントローラと、
    前記決定されたスルーレートで前記ヒータを駆動するヒータ駆動回路と、
    を備えるディスク・ドライブ装置。
  2. 温度検出器をさらに備え、
    前記コントローラは、前記温度検出器の検出温度に基づいて、前記ヒータへの出力のスルーレートを変更する、
    請求項1に記載のディスク・ドライブ装置。
  3. 前記コントローラは、リード及び/もしくはライト処理において、低温側のスルーレートが高温側のスルーレート以上となるように、前記ヒータへの出力のスルーレートを決定する、
    請求項2に記載のディスク・ドライブ装置。
  4. 前記駆動回路は、リード及び/もしくはライト処理において、前記ヘッド素子部が前記ディスクにアクセスしている間に、前記ヒータへの出力のスルーレートをそのアクセス開始時よりも下げる、
    請求項1に記載のディスク・ドライブ装置。
  5. 前記駆動回路は、前記コントローラからのリード及び/もしくはライトの制御信号が変化した回数に従って、前記ヒータへの出力のスルーレートを下げる、
    請求項4に記載のディスク・ドライブ装置。
  6. エラーが発生した場合にそのエラー回復処理の実行ステップを特定し、前記スルーレートを変化させるステップを含むテーブルをさらに備え、
    前記コントローラは、前記テーブルが特定する実行ステップの実行制御を行う、
    請求項1に記載のディスク・ドライブ装置。
  7. 前記テーブルは、リード処理におけるエラー回復ステップとして、前記スルーレートを上げる及び/もしくは下げるステップを有する、
    請求項6に記載のディスク・ドライブ装置。
  8. 前記コントローラは、ライト処理において前記ヘッド素子部が書き込んだデータの確認処理を実行し、
    前記テーブルは、前記ライト処理におけるエラー回復ステップとして、前記スルーレートを上げるステップを有する、
    請求項6に記載のディスク・ドライブ装置。
  9. 回転するディスク上を浮上するスライダと、そのスライダに配置されたヘッド素子部と、前記スライダに配置され前記ヘッド素子部を熱膨張によって突出させて前記ディスクとの間のクリアランスを調整するヒータと、を備えるディスク・ドライブ装置における制御方法であって、
    処理条件に応じて前記ヒータへの出力のスルーレートを決定し、
    前記決定したスルーレートで前記ヒータを駆動する、方法。
  10. 検出温度に基づいて、前記ヒータへの出力のスルーレートを変更する、
    請求項9に記載の方法。
  11. リード及び/もしくはライト処理において、低温側のスルーレートが高温側のスルーレート以上となるように、前記ヒータへの出力のスルーレートを決定する、
    請求項9に記載の方法。
  12. リード及び/もしくはライト処理におけるエラー回復処理において、前記ヒータへの出力のスルーレートを変更する、
    請求項9に記載の方法。
  13. リード及び/もしくはライト処理におけるヘッド切り替えに従って前記ヒータへの出力のスルーレートを変更する、
    請求項9に記載の方法。
JP2006120521A 2006-04-25 2006-04-25 ディスク・ドライブ装置及びその制御方法 Pending JP2007294001A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006120521A JP2007294001A (ja) 2006-04-25 2006-04-25 ディスク・ドライブ装置及びその制御方法
US11/789,626 US7969681B2 (en) 2006-04-25 2007-04-24 Disk drive and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120521A JP2007294001A (ja) 2006-04-25 2006-04-25 ディスク・ドライブ装置及びその制御方法

Publications (1)

Publication Number Publication Date
JP2007294001A true JP2007294001A (ja) 2007-11-08

Family

ID=38619237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120521A Pending JP2007294001A (ja) 2006-04-25 2006-04-25 ディスク・ドライブ装置及びその制御方法

Country Status (2)

Country Link
US (1) US7969681B2 (ja)
JP (1) JP2007294001A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253610A (ja) * 2011-06-28 2011-12-15 Toshiba Corp 記録装置およびヘッド突出量制御方法
US8400725B2 (en) 2010-05-31 2013-03-19 Kabushiki Kaisha Toshiba Storage device and method for controlling projection amount of head

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761841B1 (ko) * 2006-04-04 2007-09-28 삼성전자주식회사 리트라이 모드에서의 자기 헤드의 비행 높이 제어 장치 및방법과 이를 이용한 디스크 드라이브
US8665562B2 (en) * 2007-11-13 2014-03-04 Emc Corporation Method of reliable usage of dynamic fly-height control at environmental extremes
US7995425B2 (en) * 2009-03-11 2011-08-09 Headway Technologies, Inc. Power control of TAMR element during read/write transition
US8982502B2 (en) 2011-12-12 2015-03-17 HGST Netherlands B.V. Hard disk drive with write assist based on detected conditions
US8830618B2 (en) * 2012-12-31 2014-09-09 Lsi Corporation Fly height control for hard disk drives
US8873191B2 (en) * 2013-03-14 2014-10-28 HGST Netherlands B.V. Fly-height control and touchdown detection
US9460745B1 (en) 2015-09-29 2016-10-04 HGST Netherlands B.V. Preheating a hard disk drive head slider for head switch seek
US10242704B2 (en) 2017-08-08 2019-03-26 Western Digital Technologies, Inc. Command clustering for data storage device
US11314425B2 (en) * 2018-05-08 2022-04-26 Micron Technology, Inc. Read error recovery
US10878844B1 (en) 2020-03-12 2020-12-29 Western Digital Technologies, Inc. Data storage device controlling head fly height based on temperature

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557236A (en) * 1983-12-29 1985-12-10 Automotive Engine Associates Combustion roughness servo control to control fuel/air metering or EGR metering to an internal combustion engine
JP4832635B2 (ja) * 2000-12-05 2011-12-07 インターナショナル・ビジネス・マシーンズ・コーポレーション データ伝送システム、データ伝送方法、データ記録装置およびコンピュータシステム
US6724550B2 (en) * 2001-01-23 2004-04-20 Seagate Technology Llc Adaptive dampening of thermal asperity events in disc drives
US6886898B2 (en) * 2001-11-30 2005-05-03 Sharp Kabushiki Kaisha Driving method of piezoelectric elements, ink-jet head, and ink-jet printer
JP4076434B2 (ja) 2002-12-12 2008-04-16 株式会社日立グローバルストレージテクノロジーズ 磁気ヘッド及びヘッド・ジンバル・アセンブリ
JP2004342151A (ja) 2003-05-13 2004-12-02 Hitachi Global Storage Technologies Inc 磁気ヘッドスライダの浮上制御方法および磁気ディスク装置
US7551384B1 (en) * 2005-10-07 2009-06-23 Seagate Technology Llc Systems and methods for calibrating a read/write channel of a hard disk drive
JP2008065771A (ja) * 2006-09-11 2008-03-21 Fujitsu Ltd スルーレート制御装置、記憶装置およびスルーレート制御方法
US7929237B2 (en) * 2008-06-27 2011-04-19 Agere Systems Inc. Modulated disk lock clock and methods for using such

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400725B2 (en) 2010-05-31 2013-03-19 Kabushiki Kaisha Toshiba Storage device and method for controlling projection amount of head
JP2011253610A (ja) * 2011-06-28 2011-12-15 Toshiba Corp 記録装置およびヘッド突出量制御方法

Also Published As

Publication number Publication date
US7969681B2 (en) 2011-06-28
US20070247744A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP2007294001A (ja) ディスク・ドライブ装置及びその制御方法
JP4728929B2 (ja) 制御装置、制御方法及び記憶装置
US7426089B2 (en) Disk drive with heater for slider and control method thereof
US7616397B2 (en) Disk drive and disk drive control method
US7385777B2 (en) Data storage device with heater, and control method therefor with timing control
US7583467B2 (en) Hard disk drive apparatus, method to control flying on demand of hard disk drive apparatus using thermal asperity signal, and recording media for computer program thereof
JP2009157987A (ja) ヘッド・スライダのリセス量を調整する方法及びディスク・ドライブ装置
JP2006190454A (ja) 磁気ヘッドの制御装置,磁気ヘッドの制御方法,及び記録媒体
JP2010129157A (ja) ディスク・ドライブ、ヘッド・スライダ及びディスク・ドライブにおける記録再生素子のクリアランス制御方法
JP2007294007A (ja) ディスク・ドライブ装置及びその制御方法
JP2010123231A (ja) ディスク・ドライブ及びクリアランス制御方法
JP4401693B2 (ja) 温度によるデータ記憶システム制御方法,温度によるデータ記憶システム制御装置,およびデータ記憶システムでのウォーミングライト電流決定方法
JP2006085832A (ja) 記録電流の制御方法及び磁気ディスク装置
JP2007250162A (ja) メディア・ドライブ装置及びその制御方法
US11127418B1 (en) Write current switching using an effective size of a media thermal spot produced by a heat-assisted magnetic storage device
JP4743855B2 (ja) データ記憶装置及びその制御方法
KR100855973B1 (ko) 자기 헤드 부상 높이를 조절하는 하드디스크 드라이브 및그 방법
US7570446B2 (en) Disk drive with improved format efficiency and control method thereof
JP5064666B2 (ja) データ記憶装置及びそのユーザ・データの書き込み制御方法
US11450341B1 (en) Thermal spot-dependent write method and apparatus for a heat-assisted magnetic storage device
JP2007280566A (ja) ディスク記録面のイレーズ処理方法及びディスク・ドライブ装置
US7649705B2 (en) Data read retry with read timing adjustment for eccentrity of disc in data storage device
JP2009134834A (ja) ディスク・ドライブ装置及びそのクリアランス調整方法
JP2007287252A (ja) ディスク記録面のイレーズ方法
JP2007294034A (ja) ディスク・ドライブ装置及びその設計におけるテスト方法