JP2007293325A - 反射防止フィルム、偏光板、及び画像表示装置 - Google Patents

反射防止フィルム、偏光板、及び画像表示装置 Download PDF

Info

Publication number
JP2007293325A
JP2007293325A JP2007094816A JP2007094816A JP2007293325A JP 2007293325 A JP2007293325 A JP 2007293325A JP 2007094816 A JP2007094816 A JP 2007094816A JP 2007094816 A JP2007094816 A JP 2007094816A JP 2007293325 A JP2007293325 A JP 2007293325A
Authority
JP
Japan
Prior art keywords
group
refractive index
layer
film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007094816A
Other languages
English (en)
Other versions
JP4990005B2 (ja
JP2007293325A5 (ja
Inventor
Hiroyuki Yoneyama
博之 米山
Daiki Wakizaka
大樹 脇阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007094816A priority Critical patent/JP4990005B2/ja
Publication of JP2007293325A publication Critical patent/JP2007293325A/ja
Publication of JP2007293325A5 publication Critical patent/JP2007293325A5/ja
Application granted granted Critical
Publication of JP4990005B2 publication Critical patent/JP4990005B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】フッ素含率の高い低屈折率な化合物を用い低屈折率層を形成し、反射率が低く、防塵性・耐擦傷性に優れた反射防止フィルムを作製すること。長期使用時の保存安定性に優れた反射防止フィルムを作製すること。そのような反射防止フィルムを用いた偏光板や画像表示装置を提供すること。
【解決手段】支持体上に、塗布組成物を塗設してなる低屈折率層を有する反射防止フィルムであって、該塗布組成物が以下の成分を含有し、かつ該反射防止フィルム表面の表面抵抗(LogSR)が13.0以下であることを特徴とする反射防止フィルム。
(A)フッ素含率が40%以上である含フッ素化合物
【選択図】なし

Description

本発明は、反射防止フィルム、該反射防止フィルムを用いた偏光板及び、該反射防止フィルム又は該偏光板をディスプレイの最表面に用いた画像表示装置に関する。
反射防止フィルムは、一般に、陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のような画像表示装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減する様ディスプレイの最表面に配置される。
反射防止フィルムは、一般的には、支持体上に、該支持体より低屈折率の、適切な膜厚の低屈折率層を形成することにより作製できる。低い反射率を実現するために、低屈折率層にはできるだけ屈折率の低い材料の使用が望まれる。
また反射防止フィルムは、ディスプレイの最表面に用いられるため高い耐擦傷性が要求される。厚さ100nm前後の薄膜において、高い耐擦傷性を実現するためには、皮膜自体の強度、及び下層への密着性が必要である。
材料の屈折率を下げるには、フッ素原子を導入する方法が知られており、フッ素含有の架橋性材料を用いることが記載されている(特許文献1〜3参照)。しかしながら、屈折率を低下させるために化合物中のフッ素原子の割合を増やすことにより、反射防止フィルムの最表面に用いた場合には、フィルムがマイナスに帯電しやすくなり、埃が付着しやすいことがある。
埃付着低減の観点からは、反射防止フィルムに導電層を設けることにより反射防止フィルムの表面の電荷を漏洩させる方法が知られている(特許文献4参照)。
また、低屈折率層の屈折率を下げるには、粒子内部に空孔を有する粒子を使用することが知られている(特許文献5)。
特開平8−92323号公報 特開2003−222702号公報 特開2003−26732号公報 特開2003−294904号公報 特開2002−79616号公報
フッ素含率の高い材料と内部に空孔を有する粒子を用いた低屈折率層を含む反射防止フィルムにおいて、フッ素による帯電の対策のために導電性層を設けた場合には長期間使用した場合、特にオゾン存在下での保存でフィルムの耐擦傷性が悪化するということが明らかとなった。
また、イオン伝導性の帯電防止剤を用いた場合では、フィルム表面の耐擦傷性が不足したり、長期使用時にブリードアウトするなどして帯電防止効果が薄れていくことがある。
本発明の目的は、フッ素含率が高く低屈折率である化合物を用いて低屈折率層を形成し、反射率が低く、防塵性・耐擦傷性に優れた反射防止フィルムを提供することにある。
本発明の別の目的は、フッ素含率が高く低屈折率である化合物と、内部に空孔を有する粒子とを用いて低屈折率層を形成し、反射率が低く、防塵性・耐擦傷性に優れる反射防止フィルムを提供することにある。
本発明の別の目的は、長期使用時の保存安定性に優れる反射防止フィルムを提供することにある。
本発明のさらに別の目的は、上記のような反射防止フィルムを用いた偏光板や画像表示装置を提供することにある。
本発明者らは、上述の課題を解消すべく鋭意検討した結果、下記構成とすることにより、前記課題を解決し目的を達成しうることを知見し、本発明を完成するに至った。
すなわち本発明は、下記の構成により前記目的を達成したものである。
〔1〕 支持体上に、塗布組成物を塗設してなる低屈折率層を有する反射防止フィルムであって、該塗布組成物が以下の成分を含有し、かつ該反射防止フィルム表面の表面抵抗(LogSR)が13.0以下であることを特徴とする反射防止フィルム。
(A)フッ素含率が40%以上である含フッ素化合物
〔2〕 支持体上に、塗布組成物を塗設してなる低屈折率層を有する反射防止フィルムであって、該塗布組成物が以下の成分を含有することを特徴とする反射防止フィルム。
(A)フッ素含率が40%以上である含フッ素化合物
(E)帯電防止剤
〔3〕 上記塗布組成物が更に、以下の(B)を含有し、更に(C)又は(D)の少なくとも1種を含有することを特徴とする〔1〕又は〔2〕に反射防止フィルム。
(B)粒子サイズ5nm以上120nm以下の微粒子
(C)(メタ)アクリロイル基を有する化合物
(D)オルガノシラン化合物
〔4〕 導電性微粒子を10質量%以上含有する帯電防止層を有し、かつ該帯電防止層が低屈折率層と支持体の間に位置し、かつ低屈折率層に隣接していない〔3〕に記載の反射防止フィルム。
〔5〕 上記(B)の微粒子が、粒子内部に空孔を有することを特徴とする〔1〕〜〔4〕に記載の反射防止フィルム。
〔6〕 上記組成物中に、電離放射線重合開始剤を含有することを特徴とする〔1〕〜〔5〕に記載の反射防止フィルム。
〔7〕 上記(A)の含フッ素化合物が、分子量1000以上の重合体であることを特徴とする〔1〕〜〔6〕に記載の反射防止フィルム。
〔8〕 上記(A)の含フッ素化合物が、水酸基を含有することを特徴とする〔1〕〜〔7〕に記載の反射防止フィルム。
〔9〕 上記(A)の含フッ素化合物が、(メタ)アクリレート基を含有することを特徴とする〔1〕〜〔8〕に記載の反射防止フィルム。
〔10〕 上記(A)の含フッ素化合物が、フッ素含率45%以上であることを特徴とする〔1〕〜〔9〕に記載の反射防止フィルム。
〔11〕 上記(B)の粒子の屈折率が1.10以上1.40以下であることを特徴とする〔1〕〜〔10〕に記載の反射防止フィルム。
〔12〕 上記(C)の(メタ)アクリロイル基を有する化合物が、1分子中に(メタ)アクリロイル基を複数個含有することを特徴とする〔1〕〜〔11〕に記載の反射防止フィルム。
〔13〕 上記(C)の(メタ)アクリロイル基を有する化合物が、オルガノシロキサン化合物であることを特徴とする〔1〕〜〔12〕に記載の反射防止フィルム。
〔14〕 上記塗布組成物がさらにアミノプラスト類を含有することを特徴とする〔1〕〜〔13〕に記載の反射防止フィルム。
〔15〕 上記低屈折率層の屈折率が1.25以上1.40以下であることを特徴とする〔1〕〜〔14〕に記載の反射防止フィルム。
〔16〕 上記反射防止フィルムが、低屈折率層中に導電性微粒子を含有することを特徴とする〔1〕〜〔15〕に記載の反射防止フィルム。
〔17〕 偏光膜と偏光膜の両面を保護する2枚の保護フィルムとを有する偏光板であって、〔1〕〜〔16〕のいずれかに記載の反射防止フィルムが、偏光板における偏光膜の2枚の保護フィルムのうちの少なくとも一方に用いられていることを特徴とする偏光板。
〔18〕 〔1〕〜〔16〕のいずれかに記載の反射防止フィルム、又は〔17〕に記載の偏光板がディスプレイの最表面に用いられていることを特徴とする画像表示装置。
本発明によれば、反射率が低い反射防止フィルムを得ることができる。また、ある態様において反射率が低く、かつ防塵性及び耐擦傷性の少なくとも一つに優れる反射防止フィルムを得ることができる。また、ある態様では、長期の保存性にも優れている。更に、本発明の反射防止フィルム、又は偏光板を備えた画像表示装置は、外光や背景の映りこみが少なく、極めて視認性が高い。
以下、本発明について更に詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。
本発明の反射防止フィルムは、支持体上に、塗布組成物を塗設してなる低屈折率層を有する反射防止フィルムであって、該塗布組成物が以下の成分を含有し、かつ該反射防止フィルム表面の表面抵抗(LogSR)が13.0以下である。
(A)フッ素含率が40%以上である含フッ素化合物
本発明の別の反射防止フィルムは、支持体上に、塗布組成物を塗設してなる低屈折率層を有する反射防止フィルムであって、該塗布組成物が以下の成分を含有する。
(A)フッ素含率が40%以上である含フッ素化合物
(E)帯電防止剤
本発明の反射防止フィルムでは、上記塗布組成物が更に、以下の(B)を含有し、更に(C)又は(D)の少なくとも1種を含有することが好ましい。
(B)粒子サイズ(粒径)5nm以上120nm以下の微粒子
(C)(メタ)アクリロイル基を有する化合物
(D)オルガノシラン化合物
低屈折率化のために(A)、(B)の成分を低屈折率層に組み合わせて用い、帯電防止性付与のために導電性微粒子を含む帯電防止層を設ける場合、耐擦傷性が必ずしも十分でなく、長期間使用後に耐擦傷性が低下する場合があった。(B)成分を用いた際の耐擦傷性改良には、(C)又は(D)の成分を添加することが好ましく、特に分子量5000以下の多官能の(メタ)アクリレート系化合物を添加することが好ましい。また、導電性微粒子を含有する帯電防止層の設置位置は、低屈折率層に隣接して支持体側にした場合に比べ、導電性微粒子を含まない層を介して支持体側にした場合の方が耐擦傷性改良が大きいことが分かった。
本発明の低屈折率層に用いる構成成分について述べる。
1−1.フッ素含率が40%以上である化合物
[本発明の低屈折率層の構成成分(A)]
本発明においては、フッ素含率(質量%)が40%以上の化合物であり反応性の官能基を有しており、塗布組成物として調製され低屈折率層を形成することができれば構造に特に制限はない。塗布・硬化時に揮発せずに層を形成する観点からは、分子量300以上が好ましい。特に分子量が1000以上の多官能のポリマーが好ましい。以下含フッ素ポリマーについて詳細に述べる。
[含フッ素ポリマー]
本発明に用いることのできる含フッ素ポリマーとして以下の構造のものを挙げることができる。
一般式[1]
(MF1)a−(MF2)b−(MF3)c−(MA)d−(MB)e
一般式[1]中、a〜eは、それぞれ各構成成分のモル分率を表し、30≦a+b≦70、0≦c≦50、5≦d≦50、0≦e≦20の関係を満たす値を表す。
一般式[1]中、(MF1)は下記一般式[1−1]で表される単量体から重合される構成
成分を表す。
一般式[1−1]
(CF2=CF−Rf1)
式中、Rf1は炭素数1〜5のパーフルオロアルキル基を表す。
(MF2)は下記一般式[1−2]で表される単量体から重合される構成成分を表す。
一般式[1−2]
(CF2=CF−ORf12)
式中、Rf12は炭素数1〜30の含フッ素アルキル基を表わす。
(MF3)は下記一般式[1−3]で表される単量体から重合される構成成分を表す。
一般式[1−3]
(CH2=CH−ORf13)
式中、Rf13は炭素数1〜30の含フッ素アルキル基を表す。
(MA)は架橋反応に関与しうる反応性基を少なくとも1つ以上含有する構成成分を表す。
(MB)は任意の構成成分を表わす。
以下、一般式[1]の各構成成分について、詳細に説明する。
一般式[1−1]
(CF2=CF−Rf1)
式中、Rf1は炭素数1〜5のパーフルオロアルキル基を表す。一般式[1−1]の化合物としては重合反応性の観点からは、ペルフルオロプロピレン又はペルフルオロブチレンが好ましく、入手性の観点からペルフルオロプロピレンであることが特に好ましい。
一般式[1−2]
(CF2=CF−ORf12)
式中、Rf12は炭素数1〜30の含フッ素アルキル基を表わし、好ましくは炭素数1〜20、特に好ましくは炭素数1〜10の含フッ素アルキル基であり、炭素数1〜10のペルフルオロアルキル基であることがさらに好ましい。また、該フッ素アルキル基は置換基を有していてもよい。Rf12の具体例としては、
−CF3 [M2−(1)]、
−CF2CF3 {M2−(2)}、
−CF2CF2CF3 {M2−(3)}、
−CF2CF(OCF2CF2CF3)CF3 {M2−(4)}などが挙げられる。
一般式[1−3]
(CH2=CH−ORf13)
式中、Rf13は炭素数1〜30の含フッ素アルキル基を表し、好ましくは炭素数1〜20、特に好ましくは炭素数1〜15の含フッ素アルキル基であり、直鎖{例えば−CF2CF3、−CH2(CF2aH、−CH2CH2(CF2aF(a:2〜12の整数)など}であっても、分岐構造{例えばCH(CF32、CH2CF(CF32、−CH(CH3)CF2CF3、−CH(CH3)(CF25CF2Hなど}を有していてもよく、また脂環式構造(好ましくは5員環又は6員環、例えばペルフルオロシクロへキシル基、ペルフルオロシクロペンチル基又はこれらで置換されたアルキル基等)を有していてもよく、エーテル結合(例えば-CH2OCH2CF2CF3、-CH2CH2OCH2(CF2bH、-CH2CH2OCH2(CF2bF(b:2〜12の整数)、CH2CH2OCF2CF2OCF2CF2Hなど)を有していてもよい。なおRf13で表される置換基はここで述べた置換基に限られるものではない。
一般式[1−3]で表わされる上記単量体は、例えば、“Macromolecules”,32巻(21)、p.7122(1999年)、特開平2−721号公報等に記載のごとくビニロキシアルキルスルホネート、ビニロキシアルキルクロリド等の離脱基置換アルキルビニルエーテル類に対して、塩基触媒存在下含フッ素アルコールを作用させる方法;国際出願特許第92/05135号パンフレット記載のごとく、含フッ素アルコールとブチルビニルエーテル等のビニルエーテル類をパラジウム触媒存在下混合してビニル基の交換を行う方法;米国特許第3420793号明細書記載のごとく、含フッ素ケトンとジブロモエタンをフッ化カリウム触媒存在化で反応させた後アルカリ触媒により脱HBr反応を行う方法;等により合成することができる。
以下に、一般式[1−3]で表わされる構成成分の好ましい例を示すが、これらに限定されるものではない。
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
一般式[1]において、(MA)は架橋反応に関与しうる反応性基を少なくとも1つ以上含有する構成成分を表す。架橋反応に関与し得る反応性基としては例えば、水酸基または加水分解可能な基を有するシリル基(例えばアルコキシシリル基、アシルオキシシリル基等)、反応性不飽和2重結合を有する基((メタ)アクリロイル基、アリル基、ビニルオキシ基等)、開環重合反応性基(エポキシ基、オキセタニル基、オキサゾリル基等)、活性水素原子を有する基(たとえば水酸基、カルボキシル基、アミノ基、カルバモイル基、メルカプト基、β―ケトエステル基、ヒドロシリル基、シラノール基等)、酸無水物、求核剤によって置換され得る基(活性ハロゲン原子、スルホン酸エステル等)等が挙げられる。
これらの反応性基の中でも、単独で重合活性を有する基が好ましく、加水分解可能なシリル基、反応性不飽和2重結合を有する基、開環重合反応性基がより好ましく、特に好ましくは、加水分解性シリル基、(メタ)アクリロイル基、アリル基、またはエポキシ基である。(MA)の特に好ましい形態として一般式4〜8が挙げられる。
Figure 2007293325
一般式4中、L1は炭素数1〜20のアルキレン基を表わし、置換基を有していても良く(例えばアルキル基、アルコキシ基、ハロゲン原子等が挙げられる)、脂肪族環構造(例えばシクロヘキサン環等)を有していても良い。好ましくは炭素数1〜5のアルキレン基であり、特に好ましくはエチレン基、またはプロピレン基である。sは0または1を表し、重合反応性の観点から好ましくはsが0の場合である。Xは水酸基または加水分解可能な基(例えば、メトキシ基、エトキシ基等のアルコキシ基、クロロ、ブロモ等のハロゲン原子、アセトキシ基、フェノキシ基等のアシルオキシ基)を表わし、好ましくは、メトキシ基またはエトキシ基である。一般式4で表わされる構成成分は、特開昭48−62726号に記載のごとくヒドロシリル化反応を利用する手法等によって合成することができる。
Figure 2007293325
一般式5中、L2は炭素数1〜20のアルキレン基を表わし、置換基を有していても良く(例えばアルキル基、アルコキシ基、ハロゲン原子等が挙げられる)、脂肪族環構造(例えばシクロヘキサン環等)を有していても良い。好ましくは炭素数1〜10のアルキレン基であり、特に好ましくは炭素数2〜5のアルキレン基である。tは0または1を表し、好ましくはtが1の場合である。R1は水素原子またはメチル基を表し、好ましくは水素原子の場合である。一般式5中の不飽和2重結合は水酸基を有するポリマーを合成した後、(メタ)アクリル酸クロライド等の酸ハライド、(メタ)アクリル酸無水物等の酸無水物を作用させる等の方法で導入しても良く、3―クロロプロピオン酸エステル部位を有するビニルモノマーを重合させた後で脱塩化水素を行う等の定法によって形成しても良い。
Figure 2007293325
一般式6中、L3およびuはそれぞれ一般式5におけるL2およびtと同じ意味を表す。
一般式5で表される構成成分中のアリル基も、一般式5の構成成分同様水酸基を有するポリマーを合成した後、アリルハライドを作用させる等の方法で導入することができる。
Figure 2007293325
一般式7中、L4はそれぞれ一般式5におけるL2と同じ意味を表す。vは0または1を表す。R2およびR3はそれぞれ水素原子またはメチル基を表し、好ましくは水素原子の場合である。一般式7で表される構成成分は、水酸基を有するビニルエーテルにエピクロロヒドリン等のエポキシ化合物を作用させる方法、触媒存在下ブチルビニルエーテルにグリシドールを作用させてエーテル交換を行う方法等によって合成したエポキシ基含有ビニルエーテルを重合させることによって得られる。
Figure 2007293325
一般式8におけるL5、w、R4およびR5はそれぞれ一般式7におけるL4、v、R2およびR3と同じ意味を表す。一般式8で表される構成成分も一般式7で表される構成成分と同様にして合成される。
上記で構成成分(MA)の特に好ましい例として説明した以外の他の官能基もモノマー段階から導入されていても良いし、水酸基等の反応性基を有するポリマーを合成後に導入しても良い。
以下に一般式[1]で表わされるポリマー中の(MA)で表わされる構成成分の好ましい例を示すが本発明はこれらに限定されるものではない。
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
一般式[1]において(MB)は任意の構成成分を表わし、(MF1),(MF2)で表わされる単量体及び(MA)で表わされる構成成分を形成する単量体と共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができる。
例えば、メチルビニルエーテル、エチルビニルエーテル、n−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、シクロヘキサンカルボン酸ビニル等のビニルエステル類、を例として挙げることができる。
また、特に、滑り性、防汚性の観点からは、(MB)で示す成分は以下に示すポリシロキサン構造を有する構成単位を用いることが好ましい。
(ポリシロキサン構造を有する構成単位)
主鎖又は側鎖に下記一般式2で表されるポリシロキサン繰り返し単位を含むことができる。
一般式2
Figure 2007293325
式中、R1、R2は同一であっても異なっていてもよく、アルキル基又はアリール基を表す。アルキル基としては炭素数1〜4が好ましく、例としてメチル基、トリフルオロメチル基、エチル基等が挙げられる。アリール基としては炭素数6〜20が好ましく、例としてフェニル基、ナフチル基が挙げられる。これらの中でもメチル基およびフェニル基が好ましく、特に好ましくはメチル基である。pは2〜500の整数を表わし、好ましくは5〜350であり、特に好ましくは8〜250の場合である。
側鎖に一般式2であらわされるポリシロキサン構造を有するポリマーは、例えばJ.Appl.Polym.Sci.2000,78,1955、特開昭56−28219号公報等に記載のごとく、エポキシ基、水酸基、カルボキシル、酸無水物基等の反応性基を有するポリマーに対して、相対する反応性基(例えばエポキシ基、酸無水物基に対してアミノ基、メルカプト基、カルボキシル基、水酸基等)を片末端に有するポリシロキサン(例えばサイラプレーンシリーズ(チッソ株式会社製)など)を高分子反応によって導入する方法、ポリシロキサン含有シリコンマクロマーを重合させる方法によって合成することができ、どちらの方法も好ましく用いることができる。
主鎖へのポリシロキサン部分構造導入方法には特に制限はなく、例えば特開平6−93100号公報に記載のアゾ基含有ポリシロキサンアミド(市販のものではVPS-0501、1001(商品名;ワコー純薬工業(株)社製))等のポリマー型開始剤を用いる方法、重合開始剤、連鎖移動剤由来の反応性基(例えばメルカプト基、カルボキシル基、水酸基等)をポリマー末端に導入した後、片末端あるいは両末端反応性基(例えばエポキシ基、イソシアネート基等)含有ポリシロキサンと反応させる方法、ヘキサメチルシクロトリシロキサン等の環状シロキサンオリゴマーをアニオン開環重合にて共重合させる方法等が挙げられるが、中でもポリシロキサン部分構造を有する開始剤を利用する手法が容易であり好ましい。
また、低屈折率化の観点からは、(MB)で示す成分は、特開2005−76006号公報に記載のフルオロ化シクロアルキル基含有ブロック共重合体ユニットであることも好ましい。
本発明においては、用いるフッ素化合物のフッ素含率は40質量%以上であり、好ましくは45%以上であり、更に好ましくは50%以上65%以下である。フッ素含率が上記範囲の場合は、低屈折率化に有効で、汎用溶媒にも溶解性の高いフッ素化合物が得られる。また、含フッ素化合物の屈折率は1.34〜1.40が好ましく、更に好ましくは1.35〜1.38、最も好ましくは、1.35〜1.37である。
一般式[1]中、a〜eは、それぞれ各構成成分のモル分率を表し、30≦a+b≦70、0≦c≦50、5≦d≦50、0≦e≦20の関係を満たす値を表す。
素材の低屈折率化のためには(MF1)成分及び(MF2)成分のモル分率(%)a+bを高めることが望まれるが、重合反応性の点で一般的な溶液系ラジカル重合反応では50〜70%程度の導入が限界でありこれ以上は困難である。本発明においては、a+bは40%以上であることが好ましく、45%以上であることが特に好ましい。
本発明では低屈折率化の手段として(MF1)成分及び(MF2)成分に加えて(MF3)成分が導入される。(MF3)成分のモル分率cは10≦c≦50の範囲であることが好ましく、特に好ましくは20≦c≦40の場合である。またこれら含フッ素モノマー成分のモル分率の和は、60≦a+b+c≦90の範囲であることが好ましく、60≦a+b+c≦75であることが特に好ましい。
(MA)で表わされる重合体単位の割合が少なすぎると硬化膜の強度が弱くなる。本発明では特に、(MA)成分のモル分率は5≦d≦40の範囲であることが好ましく、15≦d≦30の範囲であることが特に好ましい。
(MB)で表わされる任意の構成成分のモル分率(%)eは0≦e≦20の範囲であることが好ましく0≦e≦10%の範囲であることが特に好ましい。
本発明における低屈折率層の形成に用いられる含フッ素ポリマーの数平均分子量は、1,000〜1,000,000が好ましく、より好ましくは5,000〜500,000であり、特に好ましくは10,000〜100,000である。
ここで、数平均分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した分子量である。
得られたポリマーは反応液をそのまま本発明の用途に用いることもできるし、再沈殿や分液操作によって精製して用いることもできる。
以下に本発明の一般式[1]で表わされるポリマーの例を示すが本発明はこれらに限定されるものではない。なお表1には、重合することにより一般式[1]のフッ素含有構成成分を形成する単量体(MF1)、(MF2)、(MF−3)、(MA)及び(MB)の組み合わせとして表記する。表中a〜eは、各成分の単量体の100分率でのモル比を表す。表中(MB)成分でwt%の記載があるものは、全重合体中の該成分の質量%を示す。また表中の略号は以下を表わす。
Figure 2007293325
(MF1)成分
HFP:ヘキサフルオロプロピレン
(MF2)成分
FPVE:パーフルオロ(プロピルビニルエーテル)
(MB)成分
EVE:エチルビニルエーテル
VPS―1001(アゾ基含有ポリジメチルシロキサン、ポリシロキサン部の分子量約1万、(株)和光純薬工業製)
FM−0721(メタクリロイル変性ジメチルシロキサン、平均分子量5000、(株)チッソ製)
NE−30(反応性ノニオン乳化剤、エチレンオキサイド部位含有、(株)旭電化工業製)
本発明の一般式[1]で表わされるポリマーの合成は種々の重合方法、例えば溶液重合、沈澱重合、懸濁重合、沈殿重合、塊状重合、乳化重合によって行なうことができる。またこの際回分式、半連続式、連続式等の公知の操作で合成することができる。
重合の開始方法はラジカル開始剤を用いる方法、光または放射線を照射する方法等がある。これらの重合方法、重合の開始方法は、例えば鶴田禎二「高分子合成方法」改定版(日刊工業新聞社刊、1971)や大津隆行、木下雅悦共著「高分子合成の実験法」化学同人、昭和47年刊、124〜154頁に記載されている。
上記重合方法のうち、特にラジカル開始剤を用いた溶液重合法が好ましい。溶液重合法で用いられる溶剤は、例えば酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、アセトニトリル、塩化メチレン、クロロホルム、ジクロロエタン、、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールのような種々の有機溶剤の単独あるいは2種以上の混合物でも良いし、水との混合溶媒としても良い。
重合温度は生成する共重合体の分子量、開始剤の種類などと関連して設定する必要があり0℃以下から100℃以上まで可能であるが、50〜100℃の範囲で重合を行なうことが好ましい。
反応圧力は、適宜選定可能であるが、通常は、1〜100kg/cm2、特に、1〜30kg/cm2程度が望ましい。反応時間は、5〜30時間程度である。
本発明の皮膜形成用組成物には適宜硬化触媒、あるいは硬化剤等が配合されても良く公知のものを使用することができる。本発明の皮膜形成用組成物は含フッ素ポリマー、硬化触媒及び溶媒を含有してなる。その他に、硬化促進や重合体の用途に対してする性能を向上させるための添加剤、添加物などを含んでいても良い。
例えば一般式[1]のポリマーが加水分解性シリル基を硬化反応性部位として含有する場合には、ゾルゲル反応の触媒として公知の酸あるいは塩基触媒を配合することができ、例えば塩酸、硫酸、硝酸などの無機ブレンステッド酸類、シュウ酸、酢酸、ギ酸、メタンスルホン酸、パラトルエンスルホン酸などの有機ブレンステッド酸類、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等のルイス酸類、水酸化ナトリウム、水酸化カリウム、アンモニアなどの無機塩基類、トリエチルアミン、ピリジン、テトラメチルエチレンジアミンなどの有機塩基類などを挙げることができるが、特に酸触媒が好ましく、中でも
パラトルエンスルホン酸等の有機ブレンステッド酸類またはジブチル錫ジラウレート等のルイス酸類が好ましい。
これらの硬化触媒の添加量は触媒の種類、硬化反応性部位の違いによってまちまちであるが、一般的には皮膜形成用組成物全固形分に対して0.1〜15質量%程度が好ましく、より好ましくは0.5〜5質量%程度である。
続いて、本発明の低屈折率層に用いることのできる、微粒子について述べる。
1−2.微粒子[ 本発明の低屈折率層の構成成分(B)]
続いて、本発明の低屈折率層に用いることのできる、微粒子について述べる。本発明においては、低屈折率層に微粒子を用いることが、低屈折率化、耐擦傷性改良の観点から好ましい。該粒子は、平均粒子サイズが5nm〜120nmであれば特に制限はないが、低屈折率化の観点からは、有機又は無機の低屈折率粒子が好ましい。
有機の低屈折率粒子としては、シリコーン系の粒子や内部に空孔を有する粒子が挙げられる。有機のそれ自身が空隙を有する微粒子は、例えば、特開2002−256004号公報に示されるような、ポリマー層と孔充填層を有する多孔質粒子であって、該孔充填層がフュージティブ物質、置換気体、或いはそれらの組合せであり、一方、該ポリマー層のガラス転移温度が10℃〜50℃である多孔質粒子が挙げられる。
また、特開2005−213366号公報や同2005−215315号公報に記載の中空の有機粒子を用いることも好ましい。
無機粒子を使用する場合には、低屈折率であることから、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点でシリカ微粒子が好ましい。
これら無機粒子のサイズは、5nm〜120nmが好ましく、より好ましくは10〜100nm、最も好ましくは40〜90nmである。
無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。無機微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。
低屈折率粒子の塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。
〔多孔質又は中空の微粒子〕
低屈折率化を図るには、多孔質又は中空構造の微粒子を使用することが特に好ましい。これら粒子の空隙率は、好ましくは10〜80%、さらに好ましくは20〜60%、最も好ましくは30〜60%である。中空微粒子の空隙率を上述の範囲にすることが、低屈折率化と粒子の耐久性維持の観点で好ましい。
多孔質又は中空粒子がシリカの場合には、微粒子の屈折率は、1.10〜1.40が好ましく、更に好ましくは1.15〜1.35、最もに好ましくは1.15〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。
多孔質又は中空シリカの製造方法は、例えば特開2001−233611や特開2002−79616に記載されている。特にシェルの内部に空洞を有している粒子で、そのシェルの細孔が閉塞されている粒子が特に好ましい。なお、これら中空シリカ粒子の屈折率は特開2002−79616に記載の方法で算出することができる。
多孔質又は中空シリカの塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、低屈折率化の効果や耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。
多孔質又は中空シリカの平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上100nm以下、更に好ましくは、40nm以上65nm以下である。
本発明においては、空孔含有微粒子はサイズ分布を有していてもよく、その変動係数は好ましくは60%〜5%、更に好ましくは50%〜10%である。また、平均粒子サイズの異なる2種又は3種以上の粒子を混合して用いることもできる。
シリカ微粒子の粒径が小さすぎると、空腔部の割合が減り屈折率の低下が見込めず、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子が好ましい。形状は、球径が最も好ましいが、不定形であっても問題無い。
また、中空シリカは粒子平均粒子サイズの異なるものを2種以上併用して用いることができる。ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
本発明において中空シリカの比表面積は、20〜300m2/gが好ましく、更に好ましくは30〜120m2/g、最も好ましくは40〜90m2/gである。表面積は窒素を用いBET法で求めることが出来る。
本発明においては、中空シリカと併用して空孔のないシリカ粒子を用いることができる。空孔のないシリカの好ましい粒子サイズは、30nm以上150nm以下、更に好ましくは35nm以上100nm以下、最も好ましくは40nm以上80nm以下である。
[多孔質又は中空微粒子の調製方法]
中空微粒子の好ましい製造方法を以下に記載する。
第1段階として、後処理で除去可能なコア粒子形成、第2段階としてシェル層形成、第3段階としてコア粒子の溶解、必要に応じて第4段階として追加シェル層の形成である。具体的には中空粒子の製造は、例えば特開2001−233611号公報に記載されている中空シリカ微粒子の製造方法に準じて行うことができる。
多孔質粒子の好ましい製造方法は、第1段階としてアルコキシドの加水分解や縮合の程度、共存物質の種類や量を制御し多孔質のコア粒子を製造し、第2段階としてその表面にシェル層を形成する方法である。具体的には多孔質粒子の製造は、例えば、特開2003−327424号、同2003−335515号、同2003−226516号、同2003−238140号等の各公報に記載された方法で行うことができる。
本発明においては、後述する無機微粒子の吸着水量を減らすことが好ましく、粒子サイズの変更、シェル厚の変更、水熱処理の条件等により制御することができる。また、粒子を焼成することで吸着水量を低減することもできる。
(被覆粒子)
シェル厚を厚くすることで粒子表面の吸着サイトを減少させ、吸着水量を低減することが可能であり、好ましい。さらに導電性の成分でシェルを形成すると導電性も付与することができて好ましい。特に好ましくは、コア粒子としてシリカ系の多孔質または中空の粒子を用い、シェルとして、ZnO2、Y23、Sb25、ATO、ITO、SnO2を用いる組み合わせである。以下特に好ましい酸化アンチモン被覆シリカ系微粒子について述べる。
本発明で使用される酸化アンチモン被覆シリカ系微粒子は、多孔質シリカ系微粒子または内部に空洞を有するシリカ系微粒子が酸化アンチモン被覆層によって被覆されていることが好ましい。
前記多孔質シリカ系微粒子には、多孔質のシリカ微粒子とシリカを主成分とする複合酸化物微粒子が含まれ、特開平7−133105号公報に開示した、多孔性の無機酸化物微粒子の表面をシリカ等で被覆した低屈折率のナノメーターサイズの複合酸化物微粒子は好適に用いることができる。
また、内部に空洞を有するシリカ系微粒子としては、特開2001−233611号公報に開示した、シリカとシリカ以外の無機酸化物からなり、内部に空洞を有する低屈折率のナノメーターサイズのシリカ系微粒子も好適に用いることができる。
このような多孔質シリカ系微粒子または内部に空洞を有するシリカ系微粒子は、平均粒子径が4〜100nm、さらには10〜90nmの範囲にあることが好ましい。平均粒子径が4nm以上であれば、シリカ系微粒子を製造時の問題がなく得ることができ、得られた粒子も安定性が充分であり、また小サイズの粒子を用いた場合に起こり得る単分散の酸化アンチモン被覆シリカ系微粒子が得られないといった問題が生じない。平均粒子径が100nm以下であれば、得られる酸化アンチモン被覆シリカ系微粒子の平均粒子径を120nm以下に抑えることができ、大サイズの酸化アンチモン被覆シリカ系微粒子を用いて透明被膜を形成した場合に起こり得る透明性の低下や、ヘイズが高くなるといった問題を抑制できるため、好ましい。
前記多孔質シリカ系微粒子または内部に空洞を有するシリカ系微粒子の屈折率は、シリカの屈折率である1.45以下、さらには1.40以下であることが好ましい。なお、屈折率が1.45〜1.46である非孔質のシリカ微粒子を単独で用いることもできるが、反射防止性能の点から多孔質または内部に空洞を有するシリカ系微粒子を用いることが好ましい。
前記シリカ系微粒子は、被覆層の平均厚さが0.5〜30nm、好ましくは1〜10nmの範囲にある酸化アンチモンで被覆されていることが好ましい。被覆層の平均厚さが0.5nm以上であれば、シリカ系微粒子を完全に被覆でき、得られる酸化アンチモン被覆シリカ系微粒子の導電性も充分となるため、好ましい。被覆層の厚さが30nm以下であれば、導電性の向上効果が充分得られ、酸化アンチモン被覆シリカ系微粒子の平均粒子径が小さい場合の屈折率の不足といった問題を抑制できるため、好ましい。
本発明に係る酸化アンチモン被覆シリカ系微粒子は、平均粒子径が5〜120nm、さらには10〜100nmの範囲にあることが好ましい。酸化アンチモン被覆シリカ系微粒子の平均粒子径が5nm以上であれば、該微粒子を製造時の問題がなく得ることができ、得られた粒子における凝集粒子を抑制でき、好ましい。また、小粒子で起こり得る、分散性が不充分であるために透明被膜形成に用いた場合に、透明性、ヘイズ、被膜強度、基材との密着性等が不充分となるといった問題が生じず、好ましい。酸化アンチモン被覆シリカ系微粒子の平均粒子径が120nm以下であれば、形成された透明被膜は透明性が充分であり、ヘイズも低く抑えられ、好ましい。また、基材との密着性が不充分となることもない。
酸化アンチモン被覆シリカ系微粒子の屈折率は1.25〜1.60、さらには1.30〜1.50の範囲にあることが好ましい。屈折率が1.25以上であれば、該粒子を製造時の問題がなく得ることができ、好ましい。また、得られた粒子の強度にも不足がない。他方、屈折率が1.60以下であれば、透明被膜の反射防止性能も充分であり、好ましい。
酸化アンチモン被覆シリカ系微粒子の体積抵抗値は10〜5000Ω/cm、さらには10〜2000Ω/cmの範囲にあることが好ましい。体積抵抗値が10Ω/cm以上であれば該粒子を製造時の問題がなく得ることができ、好ましい。また、得られた粒子の屈折率も1.6以下となり、透明被膜の反射防止性能も充分であり、好ましい。他方、体積抵抗値が5000Ω/cm以下であれば、得られる透明被膜の帯電防止性能も充分であり、好ましい。
本発明の酸化アンチモン被覆シリカ系微粒子は、必要に応じて常法によりシランカップリング剤により表面処理して用いることができる。
(微粒子の吸着水量)
本発明において、低屈折率層に用いることのできる粒子は、吸着水量が6.1質量%以下であることが、塗布液中での分散性、塗膜の硬度、防汚性、の点で好ましい。
(空孔含有微粒子の吸着水量の測定)
本発明において、空孔含有微粒子の吸着水量は以下の測定法により求めることができる。
粒子の粉末を、ロータリーポンプを用いて、20℃、約1hPaの条件で1時間乾燥させた。その後20℃、55%RHで1時間保存した。島津(株)製“DTG−50”を用い、乾燥後の試料約10mgを白金セルに秤量し、加熱速度20℃/分で温度20℃から950℃まで上昇させた。吸着水量は200℃まで昇温した際の質量減少百分率として以下数式(a)により算出した。
数式(a):吸着水量(%)=100×(W20−W200)/W200
ここで、
20:昇温開始時の初期質量、
200:200℃まで昇温した時点での質量。
なお粒子が分散液の場合には、溶媒をエバポレーター(25℃、10hPaに減圧)で留去し、残渣をメノウ乳鉢ですりつぶして粉末とした後に、上記工程で測定することができる。
本発明においては、吸着水量は6.1質量%以下が好ましく、更に好ましくは5.5質量%以下、最も好ましくは5.0質量%以下である。特に粒子表面や内部に空孔を有する粒子においては、粒子表面のシェルの厚みや密度を上げたり、上述の酸化アンチモン被覆粒子のように異なる成分で表面を被覆することで、上記吸着水量を低下させることができる。また、吸着水量を低下させることで、オゾン暴露後の耐擦傷性改良に効果がある。
本発明においては、空孔含有微粒子はサイズ分布を有していてもよく、その変動係数は好ましくは60%〜5%、更に好ましくは50%〜10%である。また、平均粒子サイズの異なる2種又は3種以上の粒子を混合して用いることもできる。
[無機微粒子の表面処理方法]
無機微粒子の表面の処理方法について、多孔質又は中空の無機微粒子を例として述べる。
低屈折率層形成用バインダーへの分散性を改良するために、無機微粒子の表面は下記一般式(1)で表されるオルガノシランの加水分解物及び/又はその部分縮合物により処理がされているのが好ましく、処理の際に、酸触媒及び金属キレート化合物のいずれか、あるいは両者が使用されることが更に好ましい。
(オルガノシラン化合物)
本発明に用いるオルガノシラン化合物について詳細に説明する。
一般式(1):
(R10a1−Si(X114-a1
一般式(1)において、R10は、置換もしくは無置換のアルキル基、又は置換もしくは無置換のアリール基を表す。アルキル基としては、メチル基、エチル基、プロピル基、i−プロピル基、ヘキシル基、t−ブチル基、s−ブチル基、ヘキシル基、デシル基、ヘキサデシル基等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アリール基としてはフェニル基、ナフチル基等が挙げられ、好ましくはフェニル基である。
11は、水酸基又は加水分解可能な基を表す。加水分解可能な基としては、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましく、例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR12COO(R12は水素原子又は炭素数1〜5のアルキル基が好ましく、例えばCH3COO、C25COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基又はエトキシ基である。
a1は1〜3の整数を表す。好ましくは1又は2であり、特に好ましくは1である。R10又はX11が複数存在するとき、複数のR10又はX11はそれぞれ異なっていてもよい。
10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル基、エチ基、i−プロピル基、プロピル基、t−ブチル基等)、アリール基(フェニル基、ナフチル基等)、芳香族ヘテロ環基(フリル基、ピラゾリル基、ピリジル基等)、アルコキシ基(メトキシ基、エトキシ基、i−プロポキシ基、ヘキシルオキシ基等)、アリールオキシ基(フェノキシ基等)、アルキルチオ基(メチルチオ基、エチルチオ基等)、アリールチオ基(フェニルチオ基等)、アルケニル基(ビニル基、1−プロペニル基等)、アシルオキシ基(アセトキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基等)、アリールオキシカルボニル基(フェノキシカルボニル基等)、カルバモイル基(カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N−メチル−N−オクチルカルバモイル基等)、アシルアミノ基(アセチルアミノ基、ベンゾイルアミノ基、アクリルアミノ基、メタクリルアミノ基等)等が挙げられ、これら置換基は更に置換されていてもよい。なお、本明細書においては、水素原子を置換するものが単一の原子であっても、便宜上置換基として取り扱う。
10が複数ある場合は、少なくとも1つが置換アルキル基又は置換アリール基であることが好ましい。中でも該置換アルキル基又は置換アリール基がさらにビニル重合性基を有することが好ましく、この場合、一般式(1)で表される化合物は、下記一般式(1−2)で表されるビニル重合性の置換基を有するオルガノシラン化合物として表すことができる。
一般式(1−2):
Figure 2007293325
一般式(1−2)において、R11は、水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子又は塩素原子を表す。上記アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。R11としては、水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子及び塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子及び塩素原子が更に好ましく、水素原子及びメチル基が特に好ましい。
11は、単結合、エステル基、アミド基、エーテル基又はウレア基を表す。単結合、エステル基及びアミド基が好ましく、単結合及びエステル基が更に好ましく、エステル基が特に好ましい。
11は、2価の連結鎖であり、具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル基、エステル基、アミド基)を有する置換もしくは無置換のアルキレン基、又は内部に連結基(例えば、エーテル基、エステル基、アミド基)を有する置換もしくは無置換のアリーレン基であり、中でも、置換もしくは無置換の炭素数2〜10のアルキレン基、置換もしくは無置換の炭素数6〜20のアリーレン基、内部に連結基を有する炭素数3〜10のアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテル連結基又はエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテル連結基又はエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていてもよい。
a2は0又は1を表す。X11が複数存在するとき、複数のX11はそれぞれ同じであっても異なっていてもよい。a2として好ましくは0である。
10は、前記一般式(1)のR10と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。X11も一般式(1)のX11と同義であり、ハロゲン、水酸基、無置換のアルコキシ基が好ましく、塩素、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
本発明に用いるオルガノシラン化合物として、下記一般式(2)で表されるものも好ましい。
一般式(2):(Rf−L21b1−Si(X21b1-4
上記一般式(2)中、Rfは炭素数1〜20の直鎖、分岐、環状の含フッ素アルキル基、又は炭素数6〜14の含フッ素芳香族基を表す。Rfは、炭素数3〜10の直鎖、分岐、環状のフルオロアルキル基が好ましく、炭素数4〜8の直鎖のフルオロアルキル基が更に好ましい。L21は炭素数10以下の2価の連結基を表し、好ましくは炭素数1〜10のアルキレン基、更に好ましくは炭素数1〜5のアルキレン基を表す。アルキレン基は、直鎖もしくは分岐の、置換もしくは無置換の、内部に連結基(例えば、エーテル、エステル、アミド)を有していてもよいアルキレン基である。アルキレン基は置換基を有していてもよく、その場合の好ましい置換基は、ハロゲン原子、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられる。X21は、一般式(1)のX11と同義であり、ハロゲン、水酸基、無置換のアルコキシ基が好ましく、塩素、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
b1は前記一般式(1)のa1と同義であり、1〜3の整数を表す。好ましくは1又は2であり、特に好ましくは1である。
次に一般式(2)で表される含フッ素シランカップリング剤の中でも、下記一般式(2−1)で表される含フッ素シランカップリング剤が好ましい。
一般式(2−1):Cn2n+1−(CH2m−Si(X223
上記一般式(2−1)中、nは1〜10の整数、mは1〜5の整数を表す。nは4〜10が好ましく、mは1〜3が好ましく、X22はメトキシ基、エトキシ基、及び塩素原子を表す。
一般式(1)、一般式(1−2)、一般式(2)及び一般式(2−1)で表される化合物は2種類以上を併用してもよい。
以下に一般式(1)、一般式(1−2)、一般式(2)及び一般式(2−1)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
また、ジシロキサン系の化合物も表面処理剤として用いることができ、例えば、ヘキサメチルジシロキサン、1,3−ジブチルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、ヘキサエチルジシロキサン、3−グリシドキシプロピルペンタメチルジシロキサンなどが挙げられる。
これらの具体例の中で、(M−1)、(M−2)、(M−30)、(M−35)、(M−49)、(M−51)、(M−56)、(M−57)等が特に好ましい。また、特許第3474330号公報の参考例に記載のA,B,Cの化合物も分散安定性に優れ好ましい。
本発明において、前記一般式(1)、一般式(1−2)、一般式(2)及び一般式(2−1)で表されるオルガノシラン化合物の使用量は、特に制限はないが、無機微粒子当たり1〜300質量%が好ましく、更に好ましくは3〜100質量%、最も好ましくは5〜50質量%である。無機微粒子の表面の水酸基当たりでは1〜300モル%が好ましく、更に好ましくは5〜300モル%、最も好ましくは10〜200モル%である。オルガノシラン化合物の使用量が上記範囲であると、分散液の安定化効果が充分得られ、塗膜形成時に膜強度も上昇する。本発明においては、複数種のオルガノシラン化合物を併用することも好ましく、複数種の化合物を同時に添加することも、添加時間をずらして反応させることもできる。また、複数種の化合物を予め部分縮合物にしてから添加すると反応制御が容易であり好ましい。
〔無機微粒子の分散性の改善〕
本発明においては、以上述べたオルガノシラン化合物の加水分解物及び/又はその部分縮合物を無機微粒子表面と作用させることにより、無機微粒子の分散性を改善することができる。オルガノシラン化合物の加水分解/縮合反応は、加水分解性基(X11、X21及びX22)1モルに対して、0.3〜2.0モル、好ましくは0.5〜1.0モルの水を添加し、本発明に用いられる酸触媒又は、金属キレート化合物の存在下、15〜100℃で、撹拌することにより行われることが好ましい。
[分散性改良処理の触媒]
オルガノシランの加水分解物及び/又は縮合反応物による分散性の改良処理は、触媒の存在下で行われることが好ましい。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類等が挙げられるが、無機酸化物微粒子液の製造安定性や保存安定性の点から、本発明においては、酸触媒(無機酸類、有機酸類)及び/又は金属キレート化合物が用いられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
オルガノシランの加水分解性基がアルコキシ基で酸触媒が有機酸の場合には、有機酸のカルボキシル基やスルホ基がプロトンを供給するために、水の添加量を減らすことができる。オルガノシランのアルコキシド基1モルに対する水の添加量は、0〜2モル、好ましくは0〜1.5モル、より好ましくは、0〜1モル、特に好ましくは、0〜0.5モルである。また、アルコールを溶媒に用いた場合には、実質的に水を添加しない態様も好適である。
(金属キレート化合物)
本発明において、オルガノシランの加水分解物及び/又は縮合反応物による分散性の改良処理に用いる金属キレート化合物は、下記一般式(3−1)で表されるアルコールと下記一般式(3−2)で表される化合物とを配位子とした、Zr、Ti又はAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物が好ましい。金属キレート化合物は、Zr、Ti又はAlから選ばれる金属を中心金属とするものであれば、特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用してもよい。
一般式(3−1):R31OH
一般式(3−2):R32COCH2COR33
(式中、R31及びR32は、同一又は異なってもよく、炭素数1〜10のアルキル基を示し、R33は炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を示す。)
本発明に好適に用いられる金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシ・ビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。これらの金属キレート化合物の量は、オルガノシラン化合物に対して0.1〜10.0質量%が好ましく、更に好ましくは0.5〜5.0質量%、最も好ましくは1.0〜3.0質量%である。
[分散剤]
本発明において、無機微粒子を粉体から溶媒中に分散して調製するには、分散剤を用いることもできる。本発明においては、アニオン性基を有する分散剤を用いることが好ましい。
アニオン性基としては、カルボキシル基、スルホン酸基(スルホ)、リン酸基(ホスホノ)、スルホンアミド基等の酸性プロトンを有する基、又はその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基又はその塩が好ましく、カルボキシル基、リン酸基が特に好ましい。分散性をさらに改良する目的でアニオン性基は複数個が含有されていてもよい。平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。
分散剤は、さらに架橋又は重合性官能基を含有することもできる。架橋性又は重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基{例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等}、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。
これら分散剤の使用量は、無機微粒子に対して好ましくは、0.5〜30質量%、更に好ましくは1〜20質量%、最も好ましくは2〜15質量%である。該範囲では、分散性の改良が認められ、かつ塗膜強度の低下等の弊害もなく好ましい。
1−3.1分子に化学結合を形成可能な官能基を複数個含む化合物[ 本発明の低屈折率層の構成成分(C)]
続いて(C)で表される、1分子内に化学結合形成可能な官能基を複数個含む化合物について説明する。本発明においては、低屈折率層の塗膜強度向上、併用する微粒子と含フッ素化合物との相溶性改良、隣接層との界面密着性改良等を目的として、1分子内に化学結合形成可能な官能基を複数個含む化合物を含有することが好ましい。好ましくは、エチレン性不飽和基を有する化合物、カチオン重合性基を有する化合物、水酸基と化学結合を形成する化合物を挙げることができる。
まず、エチレン性不飽和基を含有する化合物について述べる。
(エチレン性不飽和基を有する化合物)
本発明のポリマーに対して、2個以上のエチレン性不飽和基を有するモノマーを併用することが好ましい。該2個以上のエチレン性不飽和基を有するモノマーとしては、(メタ)アクリロイル基を有する化合物であることが好ましく、多価アルコールと(メタ)アクリル酸とのエステル{例えば、エチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート}、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート等}、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン等)、ビニルスルホン(例えばジビニルスルホン等)、アクリルアミド誘導体(例えばメチレンビスアクリルアミド等)及びメタクリルアミド誘導体などが挙げられる。上記モノマーは2種以上併用してもよい。
また、例えば特開2005−76005号、同2005−36105号に記載されたデンドリマーや、例えば特開2005−60425号記載のようなノルボルネン環含有モノマーを用いることもできる。また、特開平2002−105141号公報に記載の化学式(2)で表される含フッ素多官能(メタ)アクリレートを用いることもできる。
本発明においては、後述の1−4、オルガノシラン化合物 [本発明の低屈折率層の構成成分(D)]の成分がエチレン性不飽和基を有する形態も好ましい。エチレン性不飽和基としては、(メタ)アクリロイル基を有する化合物であることが特に好ましい。本発明においては、低屈折率層自身の硬度、隣接層との密着性改良の点で、分子量は290〜5000が好ましく、300〜3000が更に好ましく、400〜1000が更に好ましい。
上記エチレン性不飽和基を有する化合物(硬化剤)の添加量は、低屈折率層の固形分に対して1〜35質量%が好ましく、より好ましくは3〜25質量%、さらに好ましくは3〜20質量%である。
(カチオン重合性基を有する化合物)
カチオン重合性基としては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等が挙げられるが、好ましくは開環重合性の基であり、より好ましくはエポキシ基またはオキセタニル基であり、特に好ましくはエポキシ基である。これらの基は可能な位置に置換基を有していても良い。
これらのカチオン重合性基は、硬化剤一分子当たり、複数個導入されていることが好ましく、より好ましくは、1分子当たり、2〜20個導入されたものであり、特に好ましくは3〜10個導入されたものである。
本発明において好適に使用される化合物としては、例えば市販のものでは、デナコールEX314,同411,同421,同521,同611,同612等(以上ナガセ化成工業株式会社製、)、セロキサイド、GT301,同401等(以上ダイセル工業株式会社製)等を挙げることができる。
その他、本発明に有用な硬化剤を以下に例示する。
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
(2個以上の重合性又は縮合性官能基を有する化合物の使用量)
上記化合物の分子量には特に制限はないが、好ましくは200〜10000であり、より好ましくは200〜3000、特に好ましくは400〜1500の範囲である。分子量が小さすぎると、皮膜形成過程での揮発が問題になり、大きすぎると含フッ素ポリマーとの相溶性が悪くなる。
上記カチオン重合性基を有する硬化剤の添加量は、皮膜を形成する固形分に対して0.1〜50質量%の範囲で添加されることが好ましく、1〜30質量%の場合がより好ましく、3〜20質量%の場合が特に好ましい。
(水酸基と反応する置換基を複数含有する硬化剤)
本発明における低屈折率層は、水酸基を含む含フッ素ポリマー、及び該含フッ素ポリマー中の水酸基と反応し得る化合物(硬化剤)を含む硬化可能な組成物、いわゆる硬化性樹脂組成物を用いて形成されることが好ましい。硬化剤は水酸基と反応する部位を2個以上有することが好ましく、4個以上有することが更に好ましい。
硬化剤の構造は、水酸基と反応しうる官能基を前記個数有するものであれば特に限定はなく、例えばポリイソシアネート類、イソシアネート化合物の部分縮合物、多量体や、多価アルコール、低分子量ポリエステル皮膜などとの付加物、イソシアネート基をフェノールなどのブロック化剤でブロックしたブロックポリイソシアネート化合物、アミノプラスト類、多塩基酸又はその無水物などを挙げることができる。
中でも、本発明では、保存時の安定性と架橋反応の活性の両立の観点、および形成される膜の強度の観点から、酸性条件下で水酸基含有化合物と架橋反応するアミノプラスト類が好ましい。アミノプラスト類は、含フッ素ポリマー中に存在する水酸基と反応可能なアミノ基、すなわちヒドロキシアルキルアミノ基もしくはアルコキシアルキルアミノ基、又は窒素原子に隣接し、且つアルコキシ基で置換された炭素原子を含有する化合物である。具体的には、例えばメラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物等を挙げることができる。
上記メラミン系化合物は、一般にトリアジン環に窒素原子が結合した骨格を有する化合物として知られているもので、具体的にはメラミン、アルキル化メラミン、メチロールメラミン、アルコキシ化メチルメラミン等を挙げることができる。特に、メラミンとホルムアルデヒドを塩基性条件下で反応して得られるメチロール化メラミン及びアルコキシ化メチルメラミン、並びにその誘導体が好ましく、特に保存安定性からアルコキシ化メチルメラミンが特に好ましい。またメチロール化メラミン及びアルコシ化メチルメラミンについて特に制約はなく、例えば「プラスチック材料講座[8]ユリア・メラミン樹脂」(日刊工業新聞社)に記載されているような方法で得られる、各種樹脂の使用も可能である。
また上記尿素化合物としては、尿素の他、ポリメチロール化尿素その誘導体であるアルコキシ化メチル尿素、さらには環状尿素構造であるグリコールウリル骨格や2−イミダゾリジノン骨格を有する化合物も好ましい。前記尿素誘導体等のアミノ化合物についても前記「ユリア・メラミン樹脂」等に記載の各種樹脂の使用が可能である。
本発明において架橋剤として好適に用いられる化合物としては、含フッ素共重合体との相溶性の点から、特にメラミン化合物又はグリコールウリル化合物が好ましく、その中でも反応性の観点から、架橋剤が分子中に窒素原子を含有し、且つ該窒素原子に隣接するアルコキシ基で置換された炭素原子を2個以上含有する化合物であることが好ましい。特に好ましい化合物は下記H−1、H−2で表される構造を有する化合物、及びそれらの部分縮合体である。式中Rは炭素数1〜6のアルキル基又は水酸基を表す。
Figure 2007293325
含フッ素ポリマーに対するアミノプラストの添加量としては、水酸基を有する共重合体100質量部当たり、1〜50質量部であり、好ましくは3〜40質量部であり、さらに好ましくは5〜30質量部である。1質量部以上であれば、本発明の特徴である薄膜としての耐久性を十分に発揮することができ、50質量部以下であれば、光学用途に利用する際に本発明における低屈折率層の特徴である低屈折率を維持できるので好ましい。硬化剤を添加しても屈折率を低く保つという観点からは、添加しても屈折率の上昇が少ない硬化剤が好ましく、その観点では上記化合物のうち、H−2で表される骨格を有する化合物がより好ましい。
本発明においては、上記水酸基含有ポリマーと上記多官能の反応性化合物を塗布組成物形成前にあらかじめ部分的に結合させて用いることもできる。特に本発明のようにフッ素含率が高い場合には有効であり、塗膜の硬度の上昇や併用する微粒子の分散安定性が向上する。
1−4.オルガノシラン化合物 [本発明の低屈折率層の構成成分(D)]
本発明のフィルムには、オルガノシラン化合物又は、該オルガノシラン化合物の加水分解物および/またはその部分縮合物等(以下、得られた反応溶液を「ゾル成分」とも称する)を含有させることが、耐擦傷性の点で好ましい。
これら化合物は、前記硬化性組成物を塗布後、乾燥、加熱工程で縮合して硬化物を形成することによりバインダーとして機能する。また、多官能アクリレートポリマーを有する場合、活性光線の照射により3次元構造を有するバインダーが形成される。
具体的化合物例としては、前述の無機微粒子で述べたオルガノシラン化合物を用いることができる。これらのうち、(M−1)、(M−2)、(M−30)および(M−35)が特に好ましい。
該オルガノシラン化合物または、その加水分解物及び/またはその部分縮合物の配合量は、低屈折率層の全固形分の0.1〜50質量%が好ましく、0.5〜30質量%がより好ましく、1〜20質量%が最も好ましい。
該オルガノシラン化合物は硬化性組成物(防眩層用、低屈折率層用等の塗布液)に直接添加してもよいが、前記オルガノシラン化合物をあらかじめ触媒の存在下に処理して前記オルガノシラン化合物の加水分解物および/または部分縮合物を調製し、得られた反応溶液(ゾル液)を用いて前記硬化性組成物を調整するのが好ましく、本発明においてはまず前記オルガノシラン化合物の加水分解物および/または部分縮合物および金属キレート化合物を含有する組成物を調製し、これにβ−ジケトン化合物および/またはβ−ケトエステル化合物を添加した液を防眩層もしくは低屈折率層の少なくとも1層の塗布液に含有せしめて塗設することが好ましい。
1−5.重合開始剤
本発明の低屈折率層の硬化に有効な重合開始剤について述べる。
低屈折率層の構成成分がラジカル重合性化合物の場合には、これら化合物の重合は、光ラジカル開始剤又は熱ラジカル開始剤の存在下、電離放射線の照射又は加熱により行うことができる。
(光ラジカル開始剤)
光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。
アセトフェノン類の例には、2,2−ジメトキシアセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシ−ジメチルフェニルケトン、1−ヒドロキシ−ジメチル−p−イソプロピルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルホリノプロピオフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノンなどが含まれる。
ベンゾイン類の例には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルなどが含まれる。
ベンゾフェノン類の例には、ベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4'−メチルジフェニルスルフィド、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノン、4,4'−ジメチルアミノベンゾフェノン(ミヒラーケトン)、3,3',4,4'−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノンなどが含まれる。
ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドなどが含まれる。活性エステル類の例には1,2−オクタンジオン、1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、スルホン酸エステル類、環状活性エステル化合物などが含まれる。具体的には特開2000−80068号公報の実施例記載化合物1〜21が特に好ましい。
オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。ボレート塩の例にはカチオン性色素とのイオンコンプレックス類が挙げられる。
活性ハロゲン類としては、具体的には、若林 等の“Bull Chem.Soc Japan”42巻、2924頁(1969年)、米国特許第3,905,815号明細書、特開平5−27830号、M.P.Hutt“Jurnal of Heterocyclic Chemistry”1巻(3号),(1970年)等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s−トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジまたはトリハロゲン置換メチル基がs−トリアジン環に結合したs−トリアジン誘導体が挙げられる。具体的な例にはS−トリアジンやオキサチアゾール化合物が知られており、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−スチリルフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(3−Br−4−ジ(エチル酢酸エステル)アミノ)フェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−トリハロメチル−5−(p−メトキシフェニル)−1,3,4−オキサジアゾールが含まれる。具体的には特開昭58−15503のp14〜p30、特開昭55−77742のp6〜p10、特公昭60−27673のp287記載のNo.1〜No.8、特開昭60−239736のp443〜p444のNo.1〜No.17、US−4701399のNo.1〜19などの化合物が特に好ましい。
上記活性ハロゲン類の具体例は以下の通りである。
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
Figure 2007293325
無機錯体の例には、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス[2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル]チタニウムが挙げられる。クマリン類の例には3−ケトクマリンが挙げられる。
これらの開始剤は単独でも混合して用いてもよい。
本発明において、分子量が高く塗膜から揮散しにくい化合物としては、オリゴマー型の重合開始剤が好ましい。オリゴマー型放射線重合開始剤としては、放射線照射により光ラジカルを発生する部位を有するものであれば、特に制限はない。熱処理による揮散防止のために、重合開始剤の分子量は250以上10,000以下が好ましく、更に好ましくは300以上10,000以下である。より好ましくは、その質量平均分子量が400〜10,000である。質量平均分子量が400以上であれば、揮散性が小さいので好ましく、10,000以下であれば、得られる硬化塗膜の硬度が十分なものとなるので好ましい。オリゴマー型放射線重合開始剤の具体例としては、下記一般式(5)に示すオリゴ[2−ヒドロキシ−2−メチル−1−{4−(1−メチルビニル)フェニル}プロパノン]を挙げることができる。
一般式(5):
Figure 2007293325
上記一般式(5)中、R51は、一価の基、好ましくは一価の有機基、qは2〜45の整数をそれぞれ示す。
上記一般式(5)に示すオリゴ[2−ヒドロキシ−2−メチル−1−{4−(1−メチルビニル)フェニル}プロパノン]の市販品としては、フラテツリ・ランベルティ社製商品名「エザキュアKIP150」(CAS−No.163702−01−0、q=4〜6)、「エザキュアKIP65LT」(「エザキュアKIP150」とトリプロピレングリコールジアクリレートの混合物)、「エザキュアKIP100F」(「エザキュアKIP150」と2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンの混合物)、「エザキュアKT37」、「エザキュアKT55」(以上、「エザキュアKIP150」とメチルベンゾフェノン誘導体の混合物)、「エザキュアKTO46」(「エザキュアKIP150」、メチルベンゾフェノン誘導体、及び2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドの混合物)、「エザキュアKIP75/B」(「エザキュアKIP150」と2,2−ジメトキシ−1,2−ジフェニルエタン−1オンの混合物)等を挙げることができる。
「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65〜148にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製の「イルガキュア651」、「イルガキュア184」、「イルガキュア819」、「イルガキュア907」、「イルガキュア1870」(CGI−403/Irg184=7/3混合開始剤)、「イルガキュア500」、「イルガキュア369」、「イルガキュア1173」、「イルガキュア2959」、「イルガキュア4265」、「イルガキュア4263」、“OXE01”等;日本化薬(株)製の「カヤキュアーDETX−S」、「カヤキュアーBP−100」、「カヤキュアーBDMK」、「カヤキュアーCTX」、「カヤキュアーBMS」、「カヤキュアー2−EAQ」、「カヤキュアーABQ」、「カヤキュアーCPTX」、「カヤキュアーEPD」、「カヤキュアーITX」、「カヤキュアーQTX」、「カヤキュアーBTC」、「カヤキュアーMCA」など;サートマー社製の“Esacure(KIP100F,KB1,EB3,BP,X33,KTO46,KT37,KIP150,TZT)”等、及びそれらの組み合わせが好ましい例として挙げられる。
光重合開始剤は、バインダー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーケトン及びチオキサントンなどを挙げることができる。更にアジド化合物、チオ尿素化合物、メルカプト化合物などの助剤を1種以上組み合わせて用いてもよい。
市販の光増感剤としては、日本化薬(株)製の「カヤキュアー(DMBI,EPA)」などが挙げられる。
(熱ラジカル開始剤)
熱ラジカル開始剤としては、有機又は無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2'−アゾビス(イソブチロニトリル)、2,2'−アゾビス(プロピオニトリル)、1,1'−アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等が挙げられる。
熱ラジカル開始剤は、バインダー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
(カチオン重合開始剤)
カチオン重合開始剤としては、トルエンスルホン酸、メタンスルホン酸等のプロトン酸、トリエチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド等の4級アンモニウム塩、ベンジルジメチルアミン、トリブチルアミン、トリス(ジメチルアミノ)メチルフェノール等の3級アミン、2−メチル−4−エチルイミダゾール、2−メチルイミダゾール等のイミダゾール化合物、トルエンスルホン酸シクロへキシルエステル、トルエンスルホン酸イソプロピルエステル等の加熱により分解してプロトン酸を発生する化合物、あるいは以下に記載する光の作用により酸触媒を発生する各種化合物を挙げることができる。
本発明では、特に皮膜形成用組成物のポットライフの観点から、光の作用により酸を発生する化合物が好ましい。
光の作用により酸を発生する化合物としては、例えば有機エレクトロニクス材料研究会(ぶんしん出版)編「イメージング用有機材料」p187〜198、特開平10−282644号等に種々の例が記載されておりこれら公知の化合物を使用することができる。具体的には、RSO3 -(Rはアルキル基、アリール基を表す)、AsF6 -、SbF6 -、PF6 -、BF4 -等をカウンターイオンとするジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等の各種オニウム塩、トリハロメチル基が置換したオキサジアゾール誘導体やS−トリアジン誘導体等の有機ハロゲン化物、有機酸のo−ニトロベンジルエステル、ベンゾインエステル、イミノエステル、ジスルホン化合物等が挙げられ、好ましくは、オニウム塩類、特に好ましくはスルホニウム塩、ヨードニウム塩類である。
これらの光の作用により、酸を発生する化合物と併用して増感色素も好ましく用いることができる。
熱または光の作用によってカチオン重合を開始する化合物の添加量もラジカル開始剤と同様に、一般的には低屈折率層形成組成物中の全固形分に対して0.1〜15質量%が好ましく、より好ましくは0.5〜10質量%であり、特に好ましくは2〜5質量%である。
(硬化触媒)
水酸基含有含フッ素化合物と前記硬化剤の反応には、以下の硬化触媒を含有することが好ましい。この系では酸により硬化が促進される為、硬化性樹脂組成物に、酸性物質を添加することが望ましいが、通常の酸を添加すると塗布液中でも架橋反応が進行してしまい、故障(ムラ、ハジキなど)の原因となる。従って、熱硬化系で保存安定性と硬化活性を両立するために、加熱により酸を発生する化合物を硬化触媒として添加することがより好ましい。
硬化触媒は、酸と有機塩基からなる塩であることが好ましい。酸としては、スルホン酸、ホスホン酸、カルボン酸など有機酸や硫酸、リン酸のような無機酸が挙げられ、ポリマーに対する相溶性の観点から有機酸がより好ましく、スルホン酸、ホスホン酸が更に好ましく、スルホン酸が最も好ましい。好ましいスルホン酸としては、p−トルエンスルホン酸(PTS)、ベンゼンスルホン酸(BS)、p−ドデシルベンゼンスルホン酸(DBS)、p−クロロベンゼンスルホン酸(CBS)、1,4−ナフタレンジスルホン酸(NDS)、メタンスルホン酸(MsOH)、ノナフルオロブタン−1−スルホン酸(NFBS)などが挙げられ、何れも好ましく用いることができる(( )内は略称)。
硬化触媒は、酸と組み合わせる有機塩基の塩基性および沸点によって大きく変化する。以下にそれぞれの観点から本発明で好ましく用いられる硬化触媒について説明する。
有機塩基の塩基性が低い方が加熱時の酸発生効率が高く、硬化活性の観点からは好ましいが、塩基性が低すぎると保存安定性が不十分になる。従って、適度な塩基性を有する有機塩基を用いることが好ましい。塩基性の指標として共役酸のpKaを用いて表すと、本発明で用いる有機塩基のpKaは5.0〜10.5である必要があり、6.0〜10.0であることがより好ましく、6.5〜10.0であることがさらに好ましい。有機塩基のpKaの値は水溶液中での値が化学便覧 基礎編(改訂5版、日本化学会編、丸善、2004年)第2巻のII−334〜340頁に記載があるので、その中から適当なpKaを有する有機塩基を選ぶことができる。また、該文献に記載がなくても構造上適当なpKaを有する化合物も好ましく用いることができる。表2に該文献に記載の適当なpKaを有する化合物を示すが、本発明に好ましく用いることができる化合物はこれらに限定されるものではない。
Figure 2007293325
有機塩基の沸点が低い方が加熱時の酸発生効率が高く、硬化活性の観点からは好ましい。従って、適度な沸点を有する有機塩基を用いることが好ましい。塩基の沸点としては、120℃以下であることが好ましく、80℃以下であることがより好ましく、70℃以下であることがさらに好ましい。
本発明で好ましく用いることができる有機塩基としては例えば以下の化合物が挙げられるが、これらに限定されるものではない。( )内は沸点を示す。
b−3:ピリジン(115℃)、b−14:N−メチルモルホリン(115℃)、b−20:ジアリルメチルアミン(111℃)、b−19:トリエチルアミン(88.8℃)、b−21:t−ブチルメチルアミン(67〜69℃)、b−22:ジメチルイソプロピルアミン(66℃)、b−23:ジエチルメチルアミン(63〜65℃)、b−24:ジメチルエチルアミン(36〜38℃)、b−18:トリメチルアミン(3〜5℃)。
本発明の有機塩基の沸点は、フィルムの耐擦傷性や塗布液の安定性の観点からは、35℃以上85℃以下である。これ以上の温度では耐擦傷性の悪化が生じ、また35℃未満では塗布液が不安定となる。沸点は45℃以上80℃以下であることがさらに好ましく、55℃以上75℃以下であることが最も好ましい。
本発明の酸触媒として用いる時には、前記酸と有機塩基からなる塩を単離して用いても良いし、酸と有機塩基を混合して溶液中で塩を形成させ、その溶液を用いても良い。また、酸、有機塩基とも1種類だけで用いても良いし、複数種類のものを混合して用いても良い。酸と有機塩基を混合して用いる時には、酸と有機塩基の当量比が1:0.9〜1.5となるように混合することが好ましく、1:0.95〜1.3であることがより好ましく、1:1.0〜1.1であることが好ましい。
この酸触媒の使用割合は、上記硬化性樹脂組成物中の含フッ素ポリマー100質量部に対して、好ましくは0.01〜10質量部、より好ましくは0.1〜5質量部、更に好ましくは0.2〜3質量部である。
<感光性酸発生剤、光酸発生剤>
本発明では上述した熱酸発生剤の他に光照射により酸を発生する化合物、すなわち感光性酸発生剤をさらに添加しても良い。以下に本発明に用いることができる光酸発生剤について詳述する。
酸発生剤としては、光カチオン重合の光開始剤、色素類の光消色剤、光変色剤、またはマイクロレジスト等に使用されている公知の酸発生剤等、公知の化合物およびそれらの混合物等が挙げられる。感光性酸発生剤は当該硬化性樹脂組成物の塗膜に感光性を付与し、例えば、光等の放射線を照射することによって当該塗膜を光硬化させることを可能にする物質である。この感光性酸発生剤としては、例えば、(1)ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、アンモニウム塩、イミニウム塩、アルソニウム塩、セレノニウム塩、ピリジニウム塩等の各種オニウム塩;(2)β−ケトエステル、β−スルホニルスルホンとこれらのα−ジアゾ化合物等のスルホン化合物;(3)アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等のスルホン酸エステル類;(4)スルホンイミド化合物類;(5)ジアゾメタン化合物類;その他を挙げることができ、適宜使用することができる。中でも、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が、光重合開始の光感度、化合物の素材安定性等の点から好ましい。例えば特開2002−29162号明細書の段落番号[0058]〜[0059]に記載の化合物等が挙げられる。
感光性酸発生剤は、単独で、又は2種以上を併用することができ、さらに前記熱酸発生剤と併用することもできる。感光性酸発生剤の使用割合は、硬化性樹脂組成物中の含フッ素ポリマー100質量部に対して、好ましくは0〜20質量部、さらに好ましくは0.1〜10質量部である。感光性酸発生剤の割合が該上限値以下であれば、得られる硬化膜の強度が優れたものとなり、透明性も良好なので好ましい。
感光性酸発生剤は、前述の低屈折率層以外の層、例えばハードコート層にも使用でき、その使用割合は、硬化性樹脂組成物100質量部に対して、好ましくは0.01〜10質量部、さらに好ましくは0.1〜5質量部である。
その他、具体的な化合物や使用法として、例えば特開2005―43876号記載の内容などを用いることができる。
1−6.帯電防止剤 [ 本発明の低屈折率層の構成成分(E)]
本発明における帯電防止剤としては特に制限はなく、脂肪酸塩類、アルキル硫酸エステル塩類、アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸類、アルキルスルホコハク酸塩類、アルキルジフェニルエーテルジスルホン酸塩類、アルキルリン酸塩類、ポリオキシエチレンアルキル硫酸エステル塩類、ポリオキシエチレンアルキルアリル硫酸エステル塩類、ナフタレンスルホン酸ホルマリン縮合物、特殊カルボン酸型高分子界面活性剤類等の陰イオン性帯電防止剤、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン誘導体類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレンソルビトール脂肪酸エステル類、グリセリン脂肪酸エステル類、ポリオキシエチレン脂肪酸エステル類、ポリオキシエチレンアルキルアミン類、アルキルアルカノールアミド類等の非イオン性帯電防止剤、アルキルアミン類、第4級アンモニウム塩類等の陽イオン帯電防止剤、アルキルベタイン類、アミンオキサイド類等の両性帯電防止剤等が挙げられる。
さらには上記のような帯電防止剤を高分子量化した高分子型帯電防止剤等が挙げられ、低分子の界面活性剤タイプと比較して持続効果に優れる。代表的なものとしてポリエーテル類ではポリエチレンオキシド、ポリエーテルエステルアミド、エチレンオキシドーエピハロヒドリン共重合体、メトキシポリエチレングリコール(メタ)アクリレート共重合体、4級アンモニウム塩類としては、4級アンモニウム塩基含有(メタ)アクリレート共重合体、4級アンモニウム塩基含有マレイミド共重合体、4級アンモニウム塩基含有メタクリル共重合体、スルホン酸類としてはポリスチレンスルイン酸ソーダ、ベタイン類としてはカルボベタイングラフト共重合体等が挙げられる。
また、電解質としては、Li+、Na+、K+、Rb+、Cs+等のアルカリ金属イオン類、もしくはR4+の一般式で表現され、Rが、水素、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ヘキシル基等である第4級アルキルアンモニウム塩類等のカチオンと組み合わされた塩、または、Cl-、Br-、I-等のハロゲンイオン、SO4 2-、NO3 -、ClO4 -、BF4 -、PF6 -、各種スルホン酸イオン等の酸基イオン、もしくは過塩素酸イオン等のアニオンと組み合わされた塩が挙げられる。
また、導電性重合体として、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン、ポリビニルカルバゾール等を挙げることができる。
帯電防止剤の濃度は、低屈折率層内で厚み方向に変化していてもよい。例えば、帯電防止成分が低屈折率層の表面付近で高濃度となるようにし、導電性のパスを形成させることもできる。
帯電防止剤は低屈折率層の固形分に対して、0.3〜5質量%が好ましく、更に好ましくは0.5〜4質量%、最も好ましくは0.7〜3質量%添加されることが好ましい。
このように低屈折率層に帯電防止性能を付与することにより、埃などが直接接する面に導電性を付与することで、従来の中間層に帯電性を持たせ、帯電し易いフッ素系樹脂等からなる低屈折率層を積層する場合に比べ、少量の帯電防止成分(添加剤、フィラー、導電性官能基)の導入で面内の帯電防止性能が得られる。
1−7.低屈折率層の物性
本発明の低屈折率層の屈折率は、1.25〜1.40が好ましく、更に好ましくは1.25〜1.35であり、最も好ましくは1.26〜1.30である。この屈折率範囲では、低反射と耐擦傷性の両立が図れる。
低屈折率層の厚さは、50〜200nmであることが好ましく、70〜110nmであることがさらに好ましい。低屈折率層のヘイズは、3%以下であることが好ましく、2%以下であることがさらに好ましく、1%以下であることが最も好ましい。具体的な低屈折率層の強度は、500g荷重の鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
また、反射防止フィルムの防汚性能を改良するために、表面の水に対する接触角が90度以上であることが好ましい。更に好ましくは95度以上であり、特に好ましくは100度以上である。
1−8.低屈折率層の硬化条件
本発明においては、低屈折率層に使用する各成分の硬化性官能基に適した硬化条件を選択することができる。
好ましい例を以下に述べる。
(A)水酸基含有含フッ素化合物、水酸基と反応する化合物との併用系
硬化温度は、好ましくは60〜200℃、更に好ましくは80〜130℃、最も好ましくは80〜110℃である。支持体が高温で劣化しやすい場合には低温が好ましい。熱硬化に要する時間は、30秒〜60分が好ましく、更に好ましくは1分〜20分である。
また、特に下面が電離放射線硬化性(メタ)アクリレート基含有の反射防止フィルム構成層の場合には、低屈折率層に(メタ)アクリレート基含有化合物を添加することにより界面結合を強化することができる。好ましい硬化条件については、以下(B)の系の場合とあわせ後述する。
(B)(メタ)アクリレート基含有含フッ素化合物使用系
含フッ素化合物が(メタ)アクリレート基を含有する場合には、低屈折率層に更に(メタ)アクリレート基を含有する化合物を併用することが塗膜の強度向上の点で好ましい。電離放射線による照射と、照射の前、照射と同時又は照射後の熱処理とを組み合わせることにより、硬化することが有効である。
以下にいくつかの製造工程のパターンを示すが、これらに限定されるものではない。
照射前→ 照射と同時 →照射後(−は熱処理を行っていないことを示す。)
(1)熱処理→電離放射線硬化→ −
(2)熱処理→電離放射線硬化→熱処理
(3) − →電離放射線硬化→熱処理
その他、電離放射線硬化時に同時に熱処理を行う工程も好ましい。
(熱処理)
本発明においては、上記のとおり、電離放射線による照射と組み合わせて熱処理を行うことが好ましい。熱処理は、反射防止フィルムの支持体、低屈折率層含めた構成層を損なうものでなければ特に制限はないが、好ましくは60〜200℃、更に好ましくは80〜130℃、最も好ましくは80〜110℃である。
温度を上げることにより、塗膜内で各成分の配向や分布を調節したり、光硬化の反応を制御することができる。電離放射線照射や熱による硬化前には、各成分が固定化されておらず、各成分の配向が比較的速やかに起こるが、硬化開始後には、各成分が固定され部分的にしか配向は起こらない。熱処理に要する時間は、使用成分の分子量、その他成分との相互作用、粘度などにより異なるが、30秒〜24時間、好ましくは60秒〜5時間、最も好ましくは3分〜30分である。
フィルムの膜面温度を所望の温度にする方法に特に限定はないが、ロールを加熱してフィルムに接触させる方法、加熱した窒素を吹き付ける方法、遠赤外線又は赤外線の照射などが好ましい。特許2523574号明細書に記載の、回転金属ロールに温水や蒸気を流して加熱する方法も利用できる。一方、下記で述べる電離放射線の照射時においては、フィルムの膜面温度が上がる場合には、ロールを冷却してフィルムに接触させる方法が利用できる。
(電離放射線照射条件)
電離線放射線照射時の膜面温度については、特に制限はないが、ハンドリング性及び面内の性能の均一性から、一般に20〜200℃、好ましくは30〜150℃、最も好ましくは40〜120℃である。膜面温度が該上限値以下であれば、バインダー中の低分子成分の流動性が上昇しすぎて面状が悪化したり、支持体が熱によりダメージを受けたりする問題が生じないので好ましい。また該下限値以上であれば、硬化反応の進行が十分で、膜の耐擦傷性が良好なものとなるので好ましい。
電離放射線の種類については、特に制限はなく、x線、電子線、紫外線、可視光、赤外線などが挙げられるが、紫外線が広く用いられる。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm2〜1000mJ/cm2の照射量の紫外線を照射して各層を硬化するのが好ましい。照射の際には、前記エネルギーを一度に当ててもよいし、分割して照射することもできる。特に塗膜の面内での性能ばらつきを少なくする点からは、2〜8回程度に分割して照射することも好ましい。
電離放射線照射後フィルムが前記温度に保たれる時間は、電離放射線照射終了から0.1秒以上300秒以下が好ましく、0.1秒以上10秒以下がより好ましい。フィルムの膜面温度を上記の温度範囲に保つ時間が短すぎると、皮膜を形成する低屈折率層形成用塗布組成物の反応を促進できず、逆に長すぎると設備が大きくなるなどの製造上の問題が生じてしまう。
(酸素濃度)
電離放射線照射時の酸素濃度は3体積%以下であることが好ましく、より好ましくは1体積%体積以下であり、更に好ましくは0.1体積%以下である。酸素濃度3体積%以下で電離放射線を照射する工程に対して、その直前又は直後に酸素濃度3体積%以下の雰囲気下で維持する工程を設けることにより、膜の硬化を十分に促進し、物理強度、耐薬品性に優れた皮膜を形成することができる。
熱処理工程は、大気雰囲気下で行うことができるが、電離放射線照射時と同様に酸素濃度を低下させて行うことも好ましい。特に、重合開始剤や重合性化合物などの熱安定性が不十分なときは、酸素濃度を低下させて熱処理を行うことで、全硬化工程終了後の膜の強度を強く保つことができる。
酸素濃度を低下させる手段としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の不活性気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。電離放射線を照射する工程の前に、低酸素濃度の雰囲気下で搬送を行うことによって、塗膜表面及び内部の酸素濃度を有効に低減することができ、硬化を促進することができる。電離放射線照射前の搬送工程における酸素濃度は3体積%以下であることが好ましく、より好ましくは1%体積以下であり、更に好ましくは0.1体積%以下である。
低屈折率層を0.1μm程度の薄膜とする場合、反射防止フィルムの表層に位置するため、酸素による硬化阻害の影響を受けやすい。酸素濃度を0.1体積%以下の領域でも更に0.01体積%に減らすことで硬化阻害が減少し耐擦傷性が改良される。しかしながら、塗布組成物の硬化工程において、0.01体積%にまで酸素濃度を減らすには、窒素パージに要する窒素量や設備のコストが上昇するため、0.1体積%程度に留めることがコスト上好ましい。本発明の塗布組成物の一態様は、このような酸素濃度において十分な硬化を有する反射防止フィルムが安定的に製造できる塗布組成物である。
1−8.〔反射防止フィルムの層構成〕
本発明の反射防止フィルムは、透明な基材(以下、「支持体」とも言うことがある。)上に、必要に応じて後述のハードコート層を有し、1つの特に好ましい構成層として帯電防止層を有し、その上に光学干渉によって反射率が減少するように、屈折率、膜厚、層の数、層順等を考慮して一層以上の反射防止層が積層されている。
反射防止フィルムは、一般に、最も単純な構成では、基材上に低屈折率層のみを塗設した構成である。更に反射率を低下させるには、反射防止層を、基材よりも屈折率の高い高屈折率層と、基材よりも屈折率の低い低屈折率層を組み合わせて構成することが好ましい。構成例としては、基材側から高屈折率層/低屈折率層の2層のものや、屈折率の異なる3層を、中屈折率層(基材又はハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているもの等があり、更に多くの反射防止層を積層するものも提案されている。中でも、耐久性、光学特性、コストや生産性等から、ハードコート層を有する基材上に、中屈折率層/高屈折率層/低屈折率層の順に塗布することが好ましい。
本発明の反射防止フィルムの好ましい層構成の例を下記に示す。下記構成において基材フィルムは、支持体として機能している。また、下記構成において、(帯電防止層)と表記したものは、その他の機能を有する層が帯電防止層の機能も合わせ持つ構成である。帯電防止層に帯電防止以外の機能を持たせることで、形成する層の数を減らすことができるため、該構成は生産性が向上し好ましい。
・基材フィルム/帯電防止層/低屈折率層、
・基材フィルム/低屈折率層(帯電防止層)、
・基材フィルム/防眩層(帯電防止層)/低屈折率層、・基材フィルム/防眩層/帯電防止層/低屈折率層、
・基材フィルム/ハードコート層/防眩層(帯電防止層)/低屈折率層、
・基材フィルム/ハードコート層/防眩層/帯電防止層/低屈折率層、
・基材フィルム/ハードコート層/帯電防止層/防眩層/低屈折率層、
・基材フィルム/ハードコート層(帯電防止層)/防眩層/低屈折率層、
・基材フィルム/ハードコート層/高屈折率層/帯電防止層/低屈折率層、
・基材フィルム/ハードコート層/高屈折率層(帯電防止層)/低屈折率層、
・基材フィルム/ハードコート層/帯電防止層/高屈折率層/低屈折率層、
・基材フィルム/ハードコート層/中屈折率層/高屈折率層(帯電防止層)/低屈折率層、
・基材フィルム/ハードコート層/中屈折率層(帯電防止層)/高屈折率層/低屈折率層、
・基材フィルム/ハードコート層(帯電防止層)/中屈折率層/高屈折率層/低屈折率層、
・基材フィルム/防眩層/高屈折率層(帯電防止層)/低屈折率層、
・基材フィルム/防眩層/中屈折率層(帯電防止層)/高屈折率層/低屈折率層、
・基材フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層、・帯電防止層/基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層、・基材フィルム/帯電防止層/防眩層/中屈折率層/高屈折率層/低屈折率層、
・帯電防止層/基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層、
・帯電防止層/基材フィルム/防眩層/高屈折率層/低屈折率層/高屈折率層/低屈折率層。
光学干渉により反射率を低減できるものであれば、特にこれらの層構成のみに限定されるものではない。
また、帯電防止層は導電性ポリマー粒子又は金属酸化物微粒子{例えば、アンチモンをドープした酸化錫(ATO)、スズをドープした酸化インジウム(ITO)}を含む層であることが好ましく、塗布又は大気圧プラズマ処理等によって設けることができる。
本発明の反射防止フィルムにおいては、導電性微粒子を10質量%以上含有する帯電防止層を有することが好ましく、該帯電防止層が低屈折率層と支持体の間に位置し、低屈折率層に隣接していないことが好ましい。
本発明の反射防止フィルムにおいては、フィルムの最外層を有する側の表面の表面抵抗(SR)値が、1×1013Ω/□以下であり、1×1012Ω/□以下であることが好ましく、1×1011Ω/□以下であることが更に好ましく、1×109Ω/□以下であることがより更により好ましく、1×108Ω/□以下であることが特に好ましい。帯電防止層の表面抵抗は、25℃60%下で四探針法により測定することができる。
〔帯電防止層〕
本発明における帯電防止層について説明する。
本発明の反射防止フィルムは、帯電防止層を構築することで、反射防止フィルム表面に塵埃(埃など)が付着するのを防止する、すなわち優れた防塵性を発現させることができる。防塵性は、反射防止フィルム表面の表面抵抗値を下げることで発現され、帯電防止層の導電性が高いほど高い効果が得られる。
本発明の反射防止フィルムにおいて、帯電防止層は、気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)、塗布法のどちらで作製してもよいが、低コストで帯電防止層を作製できる点で塗布法が好ましい。
気相法による帯電防止層の作製は、例えば、フィルム上に導電性物質を真空蒸着やスパッタリングすることで実施できる。導電性物質としては、具体的にはアルミニウム、銅、金、銀、ニッケル、クロム、鉄、モリブデン、チタン、タングステン、タンタル等の金属単体もしくは合金、又は、アンチモンをドープした酸化錫(ATO)、スズをドープした酸化インジウム(ITO)、アルミニウムをドープした酸化亜鉛等の金属酸化物などを用いることができる。気相法で帯電防止層を作製する場合、帯電防止層の膜厚は、通常5〜200nm程度とすればよく、好ましくは10〜150nm、より好ましくは20〜120nm、特に好ましくは30〜100nmである。気相法を用いた帯電防止層の作製には従来公知の手法を用いることができる。
帯電防止層を塗布で作製する場合、導電材(電子伝導型の導電性微粒子、イオン伝導型の有機化合物など)を結着剤(バインダーなど)に含有させて、帯電防止層を作製することが好ましい。特に、電子伝導型の導電材は、環境の変化を受け難く導電性能が安定し、特に低湿環境下でも良好な導電性能を発現する点で好ましい。以下、塗布法で帯電防止層を作製する好ましい方法について記載する。
[導電材]
帯電防止層に用いられる好ましい導電材としては、π共役系導電性有機化合物、導電性微粒子などの電子伝導型の導電材が好ましい。
π共役系導電性有機化合物としては、脂肪族共役系のポリアセチレン、芳香族共役系のポリ(パラフェニレン)、複素環式共役系のポリピロール、ポリチオフェン、含ヘテロ原子共役系のポリアニリン、混合型共役系のポリ(フェニレンビニレン)等が挙げられる。
導電性微粒子としては、カーボン系、金属系、金属酸化物系、導電被覆系微粒子等が挙げられる。
カーボン系微粒子としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等のカーボン粉末、PAN系炭素繊維、ピッチ系炭素繊維等のカーボン繊維、膨張化黒鉛粉砕品のカーボンフレーク等が挙げられる。
金属系微粒子としては、アルミニウム、銅、金、銀、ニッケル、クロム、鉄、モリブデン、チタン、タングステン、タンタル等の金属、及び、それらの金属を含有する合金の粉末や、金属フレーク、鉄、銅、ステンレス、銀メッキ銅、黄銅等の金属繊維等が挙げられる。
金属酸化物系微粒子としては、酸化錫、アンチモンをドープした酸化錫(ATO)、酸化インジウム、スズをドープした酸化インジウム(ITO)、酸化亜鉛、アルミニウムをドープした酸化亜鉛、などが挙げられる。
導電被覆系微粒子としては、例えば、酸化チタン(球状、針状)、チタン酸カリウム、ホウ酸アルミニウム、硫酸バリウム、マイカ、シリカ等の各種微粒子表面を、酸化錫、ATO、ITO等の導電材で被覆した導電性微粒子;金及び/又はニッケルなどの金属や金属酸化物で表面処理されたポリスチレン、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリウレタン樹脂、メラミン樹脂、ホルムアルデヒド樹脂等の樹脂ビーズなどが好ましい。これらは非導電材の外表面に金属又は金属酸化物の導電性部分を形成してなる粒子であり、粒子内部に対して表面の方が導電性が高いという特徴を有している。表面処理に用いるものとしては金属及び金属酸化物であり、金属であることが好ましい。またその中でも導電性が高く、安定な金属である金、銀又はニッケルが好ましく、金であることが最も好ましい。
屈折率が低く、隣接層との干渉ムラなどの低減に有効な粒子として、前述の多孔質シリカ系微粒子または内部に空洞を有するシリカ系微粒子に酸化アンチモンが被覆されてなる粒子を挙げることができる。具体的な調製方法は特開2005−119909号公報に記載されている。
上記の帯電防止層の導電材のなかでも、π共役系導電性有機化合物(特に、ポリチオフェン系導電性ポリマー)、導電性微粒子として金属系微粒子(特に、金、銀、銀/パラジウム合金、銅、ニッケル、アルミニウム)や金属酸化物系微粒子(特に、酸化錫、ATO、ITO、酸化亜鉛、アルミニウムをドープした酸化亜鉛)が好ましい。特に、金属や金属酸化物などの電子伝導型の導電材が好ましく、なかでも金属酸化物系微粒子が特に好ましい。
導電材の一次粒子の質量平均粒径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。導電材の平均粒径は、光散乱法や電子顕微鏡写真により測定できる。
導電材の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
導電材の形状は、米粒状、球形状、立方体状、紡錘形状、鱗片状、針状又は不定形状であることが好ましく、不定形状、針状、鱗片状であることが特に好ましい。
これら導電性微粒子をバインダーに分散して帯電防止層を形成するには、帯電防止層の総構成成分に対して該導電性微粒子の使用量は、10〜90質量%が好ましく、更に好ましくは、20〜90質量%、最も好ましくは30〜90%である。上記範囲だと導電性に優れ、膜強度の低下やヘイズの上昇などの弊害が少なく好ましい。
これら粒子を使用した帯電防止層の膜厚は、5nm〜10μmが好ましく、更に好ましくは10nm〜5μmであり、最も好ましくは30nm〜3μmである。帯電防止層は、前述の反射防止膜構成層を兼ねることもでき、その場合にはその構成層に必要な膜厚をとることができる。
通常、低屈折率層の屈折率低下のためにフッ素含率の高い化合物と粒子内部に空孔を有する粒子とを併用する場合、該フッ素含率の高い化合物と該粒子の濡れ性が悪化し、低屈折率層自身の強度が低下する傾向がある。また、導電性粒子を含有する帯電防止層を用いる場合、層内で導電性微粒子が互いに接触することが必要であり、バインダーと粒子との濡れ性を悪くすることにより、導電性粒子が軟凝集(粒子同士が互いに接触する程度の凝集)するように設計されている。バインダーと粒子の濡れ性が悪い低屈折率層と帯電防止層を隣接して積み重ねることは耐擦傷性上不利である。
経時的な安定性を含めて耐擦傷性を改良するためには、両層の間に、後述する通電粒子を低い濃度で含有する層を設けることが有効であることが分かった。つまり、帯電防止層と低屈折率層の間に通電粒子を含有する層を設けることが好ましい。これにより両層を直接隣り合わせることなく表面抵抗を有効に低下させることが可能となる。また、通電粒子を含有する層は、帯電防止層よりも導電性が低く、かつバインダー成分を多く含み、帯電防止層と低屈折率層との間に位置することで密着性が向上できる。
本発明において、通電粒子とは、該粒子を含有する層の膜厚の60〜120%の直径を有する導電性粒子である。該粒子の使用量は、該粒子を含有する層の固形分中で0.05〜4質量%の範囲が好ましく、0.05〜1質量%がより好ましい。この添加量範囲にすることで、耐擦傷性の悪化の弊害がなく通電性を付与することが可能となる。該粒子の使用量は、上述した帯電防止層における使用量の範囲よりも少ない。このため、膜の水平方向でこれら粒子が連結することはできないが、膜の上下方向で通電性(導電性)を与えることができる。
通電粒子は、上述の導電材を用いることができるが、膜厚に応じた粒子を容易に作成できる点から、導電被覆系微粒子であることが好ましく、金属や金属酸化物で表面処理された樹脂ビーズがより好ましい。具体的には、金及び/又はニッケルなどの金属や金属酸化物で表面処理されたポリスチレン、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリウレタン樹脂、メラミン樹脂、ホルムアルデヒド樹脂等の樹脂ビーズなどが好ましい。
通電粒子を含有する層の膜厚に特に制限はないが、帯電防止層への塗布性、密着性、ハードコート性の付与の点から、0.2〜10.0μmが好ましく、更に好ましくは0.5〜8.0μm、最も好ましくは1.0〜6.0μmである。
[帯電防止層の形成法]
帯電防止層を塗布法で作製する場合、導電材は、分散物の状態で帯電防止層の形成に使用することが好ましい。導電材の分散においては、分散剤の存在下で、分散媒体中に分散することが好ましい。
分散剤を用いて分散することにより、導電材は極めて微細に分散することができ、透明な帯電防止層の作製を可能にする。特に、帯電防止層を光学干渉層として用いて層に反射防止機能ももたせる場合には、導電材を微細に分散することで層の透明性が上がり、反射防止性能も向上させることができる点で好ましい。
(分散剤)
本発明に用いられる導電材の分散には、アニオン性基を有する分散剤を用いることが好ましい。アニオン性基としては、カルボキシル基、スルホン酸基(スルホ基)、リン酸基(ホスホノ基)、スルホンアミド基等の酸性プロトンを有する基、又はその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基又はその塩が好ましく、カルボキシル基、リン酸基が特に好ましい。
1分子当たりの分散剤に含有されるアニオン性基の数は1個以上であればよい。導電材の分散性をさらに改良する目的で、分散剤にはアニオン性基が1分子当たり複数個含有されていてもよい。1分子当たり平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。
アニオン性の極性基を有する分散剤としては、「ホスファノール」{PE−510、PE−610、LB−400、EC−6103、RE−410など;以上東邦化学工業(株)製}、“Disperbyk”(−110、−111、−116、−140、−161、−162、−163、−164、−170、−171など;以上ビックケミー・ジャパン社製)などが挙げられる。
分散剤は、さらに架橋性又は重合性の官能基を含有することが好ましい。架橋性又は重合性の官能基としては、ラジカル種による架橋反応・重合反応が可能なエチレン性不飽和基{例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等}、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。
本発明における帯電防止層での導電材の分散に用いる分散剤は、アニオン性基、及び、架橋性又は重合性の官能基を有し、且つ該架橋性又は重合性の官能基を側鎖に有する分散剤であることが特に好ましい。
上記の、本発明において特に好ましい分散剤の質量平均分子量(Mw)は、特に限定されないが1000以上であることが好ましい。該分散剤のより好ましい質量平均分子量(Mw)は2000〜1000000であり、さらに好ましくは5000〜200000、特に好ましくは10000〜100000である。
分散剤の導電材に対する使用量は、1〜50質量%の範囲であることが好ましく、5〜30質量%の範囲であることがより好ましく、5〜20質量%であることが最も好ましい。また、分散剤は2種類以上を併用してもよい。
導電材は分散剤の存在下で、分散媒体中に分散することが好ましい。
(分散媒体)
分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール類(例えば、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例えば、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例えば、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン)、アミド(例えば、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例えば、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例えば、1−メトキシ−2−プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが好ましい。
特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
(導電材の分散)
導電材は、分散機を用いて分散することが好ましい。分散機の例には、サンドグラインダーミル(例えば、ピン付きビーズミル)、ダイノミル、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルなどが含まれる。サンドグラインダーミル、ダイノミルなどのメディア分散機が特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが含まれる。
導電材は、分散媒体中でなるべく微細化されていることが好ましく、質量平均粒径は1〜200nmである。好ましくは5〜150nmであり、さらに好ましくは10〜100nm、特に好ましくは10〜80nmである。導電材を200nm以下に微細化することで透明性を損なわない帯電防止層を作製できる。
本発明に用いられる帯電防止層は、上記導電材以外に有機化合物のバインダーを含有することが好ましく、該バインダーにより層のマトリックスを形成し、導電材を分散させることが好ましい。このため帯電防止層は、分散媒体中に導電材を分散した分散液に、好ましくは、バインダー又はバインダー前駆体を添加して作製することが好ましい。バインダー又はバインダー前駆体としては、非硬化系の熱可塑性樹脂、又は熱硬化性樹脂、電離放射線硬化性樹脂のような硬化系樹脂等を用いることができる。
2.本発明の構成物
まず、本発明のフィルムに使用することのできる各種化合物について記載する。
2−(1)バインダー
本発明のフィルムは、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることができる。すなわち、バインダーとして電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。特に好ましくは下記の1分子内に2つ以上の(メタ)アクリロイル基を含有する化合物を用いることができる。
光重合性官能基を有する光重合性多官能モノマーの具体例としては、
ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;
等を挙げることができる。
さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。
中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、(ジ)ペンタエリスリトールトリアクリレート、(ジ)ペンタエリスリトールペンタアクリレート、(ジ)ペンタエリスリトールテトラ(メタ)アクリレート、(ジ)ペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサトリアクリレート等が挙げられる。本明細書において、「(メタ)アクリレート」、「(メタ)アクリル酸」、「(メタ)アクリロイル」は、それぞれ「アクリレートまたはメタクリレート」、「アクリル酸またはメタクリル酸」、「アクリロイルまたはメタクリロイル」を表す。
モノマーバインダーとしては、各層の屈折率を制御するために、屈折率の異なるモノマーを用いることが出来る。特に高屈折率モノマーの例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4’−メトキシフェニルチオエーテル等が含まれる。
また、例えば特開2005−76005号、同2005−36105号に記載されたデンドリマーや、例えば特開2005−60425号記載のようなノルボルネン環含有モノマーを用いることもできる。
多官能モノマーは、二種類以上を併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
光重合性多官能モノマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。
2−(2)透光性粒子
本発明のフィルム、特に防眩層やハードコート層には、防眩性(表面散乱性)や内部散乱性を付与するため、各種の透光性粒子を用いることが出来る。また、本発明の粒子内部が多孔質または中空である導電性微粒子を含有する層に使用することも好ましい。
透光性粒子は有機粒子であっても、無機粒子であってもよい。粒径にばらつきがないほど、散乱特性にばらつきが少なくなり、ヘイズ値の設計が容易となる。透光性粒子としては、プラスチックビーズが好適であり、特に透明度が高く、バインダーとの屈折率差が前述のような数値になるものが好ましい。
有機粒子としては、ポリメチルメタクリレート粒子(屈折率1.49)、架橋ポリ(アクリル−スチレン)共重合体粒子(屈折率1.54)、メラミン樹脂粒子(屈折率1.57)、ポリカーボネート粒子(屈折率1.57)、ポリスチレン粒子(屈折率1.60)、架橋ポリスチレン粒子(屈折率1.61)、ポリ塩化ビニル粒子(屈折率1.60)、ベンゾグアナミン−メラミンホルムアルデヒド粒子(屈折率1.68)等が用いられる。
無機粒子としては、シリカ粒子(屈折率1.44)、アルミナ粒子(屈折率1.63)、ジルコニア粒子、チタニア粒子、また中空や細孔を有する無機粒子が挙げられる。
なかでも架橋ポリスチレン粒子、架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましく用いられ、これらの粒子の中から選ばれた各透光性粒子の屈折率にあわせてバインダーの屈折率を調整することにより、本発明の内部ヘイズ、表面ヘイズ、中心線平均粗さを達成することができる。
さらに、3官能以上の(メタ)アクリレートモノマーを主成分としたバインダー(硬化後の屈折率が1.50〜1.53)とアクリル含率50〜100重量パーセントである架橋ポリ(メタ)アクリレート重合体からなる透光性粒子を組合せて用いることが好ましく、特にバインダーと架橋ポリ(スチレン−アクリル)共重合体からなる透光性粒子(屈折率が1.48〜1.54)との組合せが好ましい。
本発明におけるバインダー(透光性樹脂)と透光性粒子との屈折率は、1.45〜1.70であることが好ましく、より好ましくは1.48〜1.65である。屈折率を前記範囲とするには、バインダー及び透光性粒子の種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
また、本発明においては、バインダーと透光性粒子との屈折率の差(透光性粒子の屈折率−バインダーの屈折率)は、絶対値として好ましくは0.001〜0.030であり、より好ましくは0.001〜0.020、更に好ましくは0.001〜0.015である。この差が0.030を超えると、フィルム文字ボケ、暗室コントラストの低下、表面の白濁等の問題が生じる。
ここで、バインダーの屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。前記透光性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。
上記のような透光性粒子の場合には、バインダー中で透光性粒子が沈降し易いので、沈降防止のためにシリカ等の無機フィラーを添加してもよい。なお、無機フィラーは添加量が増す程、透光性粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与える。従って、好ましくは、粒径0.5μm以下の無機フィラーを、バインダーに対して塗膜の透明性を損なわない程度に、0.1質量%未満程度含有させるとよい。
透光性粒子の平均粒径は0.5〜20μmが好ましく、より好ましくは2.0〜15.0μmである。平均粒径が0.5μm未満であると、光の散乱角度分布が広角にまで広がるため、ディスプレイの文字ボケを引き起こしたりするため、好ましくない。一方、20μmを超えると、添加する層の膜厚を厚くする必要が生じ、カールやコスト上昇といった問題が生じる。
また、粒子径の異なる2種以上の透光性粒子を併用して用いてもよい。より大きな粒子径の透光性粒子で防眩性を付与し、より小さな粒子径の透光性粒子で表面のザラツキ感を低減することが可能である。
前記透光性粒子は、添加層全固形分中に3〜30質量%含有されるように配合される。より好ましくは5〜20質量%である。3質量%未満であると、添加効果が不足し、30質量%を超えると、画像ボケや表面の白濁やギラツキ等の問題が生じる。
また、透光性粒子の密度は、好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2である。
<透光性粒子調製、分級法>
本発明に係る透光性粒子の製造法は、懸濁重合法、乳化重合法、ソープフリー乳化重合法、分散重合法、シード重合法等を挙げることができ、いずれの方法で製造されてもよい。これらの製造法は、例えば「高分子合成の実験法」(大津隆行、木下雅悦共著、化学同人社)130頁及び146頁から147頁の記載、「合成高分子」1巻、p.246〜290、同3巻、p.1〜108等に記載の方法、及び特許第2543503号明細書、同第3508304号明細書、同第2746275号明細書、同第3521560号明細書、同第3580320号明細書、特開平10−1561号公報、特開平7−2908号公報、特開平5−297506号公報、特開2002−145919号公報等に記載の方法を参考にすることができる。
透光性粒子の粒度分布はヘイズ値と拡散性の制御、塗布面状の均質性から単分散性粒子が好ましい。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒度分布を持つ粒子は、調製または合成反応後に、分級することも有力な手段であり、分級の回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。
分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。
2−(3)無機粒子
本発明には硬度などの物理特性、反射率、散乱性などの光学特性などの向上のため、各種無機粒子を用いることができる。
無機粒子としては、珪素、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも一つ金属の酸化物、具体例としては、ZrO2、TiO2、Al23、In23、ZnO、SnO2、Sb23、ITO等が挙げられ
る。その他BaSO4、CaCO3、タルクおよびカオリンなどが含まれる。
本発明に使用する無機粒子の粒径は、分散媒体中でなるべく微細化されていることが好ましく、重量平均径は1〜200nmである。好ましくは5〜150nmであり、さらに好ましくは10〜100nm、特に好ましくは10〜80nmである。無機粒子を100nm以下に微細化することで透明性を損なわないフィルムを形成できる。無機粒子の粒子径は、光散乱法や電子顕微鏡写真により測定できる。
無機粒子の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
本発明に使用する無機粒子は分散媒体中に分散物として使用する層の塗布液に添加することが好ましい。
無機粒子の分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが特に好ましい。
特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
無機粒子は、分散機を用いて分散する。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。
<高屈折率粒子>
本発明を構成する層を高屈折率化する目的に対しては、屈折率の高い無機粒子をモノマーと開始剤、有機置換されたケイ素化合物中に分散した組成物の硬化物が好ましく用いられる。
この場合の無機粒子としては、屈折率の観点から、特にZrO2、TiO2好ましく用いられる。ハードコート層の高屈折率化に対してはZrO2が、高屈折率層、中屈折率層用の粒子としてはTiO2の微粒子が最も好ましい。
上記TiO2の粒子としては、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有するTiO2を主成分とする無機粒子が特に好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明におけるTiO2を主成分とする粒子は、屈折率が1.90〜2.80であることが好ましく、2.10〜2.80であることがさらに好ましく、2.20〜2.80であることが最も好ましい。
TiO2を主成分とする粒子の一次粒子の重量平均径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。
TiO2を主成分とする粒子の結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造が主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
TiO2を主成分とする粒子に、Co(コバルト)、Al(アルミニウム)及びZr(ジルコニウム)から選ばれる少なくとも1つの元素を含有することで、TiO2が有する光触媒活性を抑えることができ、本発明のフィルムの耐候性を改良することができる。
特に、好ましい元素はCo(コバルト)である。また、2種類以上を併用することも好ましい。
本発明のTiO2を主成分とする無機粒子は、表面処理により特開2001−166104号公報記載のごとく、コア/シェル構造を有していても良い。
層中のモノマーや無機粒子の添加量は、バインダーの全質量の10〜90質量%であることが好ましく、20〜80質量%であると更に好ましい。無機粒子は層内で二種類以上用いても良い。
2−(4)防汚剤
本発明のフィルム、特にフィルムの最上層には防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のポリシロキサン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することが好ましい。
これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。
[ポリシロキサン構造を有する化合物]
次にポリシロキサン構造を有する化合物について説明する。
本発明では滑り性付与による耐擦傷性向上、及び防汚性の付与を目的としてポリシロキサン構造を有する化合物を用いる。化合物の構造は特に制限はなく、ジメチルシリルオキシ単位を繰り返し単位として複数個含む、化合物鎖の末端及び/又は側鎖に置換基を有するものが挙げられる。また、ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。
ポリシロキサン構造を有する化合物の分子量には特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。
転写を防ぐという観点で、水酸基又は水酸基と反応して結合を形成する官能基を含有することが好ましい。この結合形成反応は、加熱条件下及び/又は触媒存在下で速やかに進行することが好ましい。そのような置換基としては、エポキシ基やカルボキシル基などが挙げられる。好ましい化合物の例としては以下のものが挙げられるが、これらに限定されるものではない。
(水酸基を含むもの)
“X−22−160AS”、“KF−6001”、“KF−6002”、“KF−6003”、“X−22−170DX”、“X−22−176DX”、“X−22−176D”、“X−22−176F”{以上、信越化学工業(株)製};“FM−4411”、“FM−4421”、“FM−4425”、“FM−0411”、“FM−0421”、“FM−0425”、“FM−DA11”、“FM−DA21”、“FM−DA25”{以上、チッソ(株)製};“CMS−626”、“CMS−222”{以上、Gelest社製}。
(水酸基と反応する官能基を含むもの)
“X−22−162C”、“KF−105”{以上、信越化学工業(株)製};“FM−5511”、“FM−5521”、“FM−5525”、“FM−6611”、“FM−6621”、“FM−6625”{以上、チッソ(株)製}。
上記ポリシロキサン系化合物に加えて、更に別のポリシロキサン系化合物を併用することもできる。好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、オキセタニル基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることがより好ましく、3000〜30000であることが特に好ましく、10000〜20000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.0質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例 としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221 (以上商品名)などが挙げられるがこれらに限定されるものではない。
防汚剤として用いられるフッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば−CF2CF,−CH2(CF2H,−CH2(CF28CF3,−CH2CH2(CF24H等)であっても、分岐構造(例えばCH(CF32,CH2CF(CF32,CH(CH3)CF2CF3,CH(CH3)(CF25CF2H等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えばCH2OCH2CF2CF3,CH2CH2OCH248H,CH2CH2OCH2CH2817,CH2CH2OCF2CF2OCF2CF2H等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。
フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R−2020、M−2020、R−3833、M−3833(以上商品名)、大日本インキ(株)製、メガファックF−171、F−172、F−179A、ディフェンサMCF−300 (以上商品名)などが挙げられるがこれらに限定されるものではない。
防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF−150(商品名)、東レダウコーニング(株)製、SH−3748(商品名)などが挙げられるが、これらに限定されるわけではない。
2−(5)界面活性剤
本発明のフィルムには、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層形成用の塗布組成物中に含有することが好ましい。特にフッ素系の界面活性剤は、より少ない添加量において、塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いることができる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることができる。
フッ素系の界面活性剤の好ましい例としては、フルオロ脂肪族基含有共重合体(「フッ素系ポリマー」と略記することもある)が挙げられ、該フッ素系ポリマーは、下記(i)のモノマーに相当する繰り返し単位を含むことを特徴とする、アクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマー(例えば下記(ii)のモノマー)との共重合体が有用である。
(i)下記一般式イで表されるフルオロ脂肪族基含有モノマー
一般式イ
Figure 2007293325
一般式イにおいてR11は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または−N(R12)−を表し、mは1以上6以下の整数、nは2〜4の整数を表す。R12は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Xは酸素原子が好ましい。
(ii)前記(i)と共重合可能な下記一般式ロで示されるモノマー
一般式ロ
Figure 2007293325
一般式ロにおいて、R13は水素原子またはメチル基を表し、Yは酸素原子、イオウ原子または−N(R15)−を表し、R15は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、−N(H)−、および−N(CH3)−が好ましい。
14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。
本発明で用いられるフッ素系ポリマー中に用いられるこれらの一般式イで示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの各単量体に基づいて10モル%以上であり、好ましくは15〜70モル%であり、より好ましくは20〜60モル%の範囲である。
本発明で用いられるフッ素系ポリマーの好ましい質量平均分子量は、3000〜100,000が好ましく、5,000〜80,000がより好ましい。
更に、本発明で用いられるフッ素系ポリマーの好ましい添加量は、塗布液に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。フッ素系ポリマーの添加量が0.001質量%未満では効果が不十分であり、また5質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、塗膜としての性能(例えば反射率、耐擦傷性)に悪影響を及ぼす。
2−(6)増粘剤
本発明のフィルムは、塗布液の粘度を調整するために増粘剤を用いてもよい。
ここでいう増粘剤とは、それを添加することにより液の粘度が増大するものを意味し、添加することにより塗布液の粘度が上昇する大きさとして好ましくは0.05〜50cPであり、さらに好ましくは0.10〜20cPであり、最も好ましくは0.10〜10cPである。
このような増粘剤としては以下のものが挙げられるが、これに限定されない。
ポリ−ε−カプロラクトン
ポリ−ε−カプロラクトン ジオール
ポリ−ε−カプロラクトン トリオール
ポリビニルアセテート
ポリ(エチレン アジペート)
ポリ(1,4−ブチレン アジペート)
ポリ(1,4−ブチレン グルタレート)
ポリ(1,4−ブチレン スクシネート)
ポリ(1,4−ブチレン テレフタレート)
ポリ(エチレンテレフタレート)
ポリ(2−メチル−1,3−プロピレンアジペート)
ポリ(2−メチル−1,3−プロピレン グルタレート)
ポリ(ネオペンチルグリコールアジペート)
ポリ(ネオペンチルグリコール セバケート)
ポリ(1,3−プロピレンアジペート)
ポリ(1,3−プロピレン グルタレート)
ポリビニルブチラール
ポリビニルホルマール
ポリビニルアセタール
ポリビニルプロパナール
ポリビニルヘキサナール
ポリビニルピロリドン
ポリアクリル酸エステル
ポリメタクリル酸エステル
セルロースアセテート
セルロースプロピオネート
セルロースアセテートブチレート
この他にも特開平8−325491号記載のスメクタイト、フッ素四珪素雲母、ベントナイト、シリカ、モンモリロナイト及びポリアクリル酸ソーダ、特開平10−219136エチルセルロース、ポリアクリル酸、有機粘土など、公知の粘度調整剤やチキソトロピー性付与剤を使用することが出来る。
2−(7)塗布溶剤
本発明の各層を形成するための塗布組成物に用いられる溶剤としては、各成分を溶解または分散可能であること、塗布工程、乾燥工程において均一な面状となり易いこと、液保存性が確保できること、適度な飽和蒸気圧を有すること、等の観点で選ばれる各種の溶剤が使用できる。
溶媒は2種類以上のものを混合して用いることができる。特に、乾燥負荷の観点から、常圧室温における沸点が100℃以下の溶剤を主成分とし、乾燥速度の調整のために沸点が100℃以上の溶剤を少量含有することが好ましい。
沸点が100℃以下の溶剤としては、例えば、ヘキサン(沸点68.7℃)、ヘプタン(98.4℃)、シクロヘキサン(80.7℃)、ベンゼン(80.1℃)などの炭化水素類、ジクロロメタン(39.8℃)、クロロホルム(61.2℃)、四塩化炭素(76.8℃)、1,2−ジクロロエタン(83.5℃)、トリクロロエチレン(87.2℃)などのハロゲン化炭化水素類、ジエチルエーテル(34.6℃)、ジイソプロピルエーテル(68.5℃)、ジプロピルエーテル (90.5℃)、テトラヒドロフラン(66℃)などのエーテル類、ギ酸エチル(54.2℃)、酢酸メチル(57.8℃)、酢酸エチル(77.1℃)、酢酸イソプロピル(89℃)などのエステル類、アセトン(56.1℃)、2−ブタノン(メチルエチルケトンと同じ、79.6℃)などのケトン類、メタノール(64.5℃)、エタノール(78.3℃)、2−プロパノール(82.4℃)、1−プロパノール(97.2℃)などのアルコール類、アセトニトリル(81.6℃)、プロピオニトリル(97.4℃)などのシアノ化合物類、二硫化炭素(46.2℃)などがある。このうちケトン類、エステル類が好ましく、特に好ましくはケトン類である。ケトン類の中では2−ブタノンが特に好ましい。
沸点が100℃を以上の溶剤としては、例えば、オクタン(125.7℃)、トルエン(110.6℃)、キシレン(138℃)、テトラクロロエチレン(121.2℃)、クロロベンゼン(131.7℃)、ジオキサン(101.3℃)、ジブチルエーテル(142.4℃)、酢酸イソブチル(118℃)、シクロヘキサノン(155.7℃)、2−メチル−4−ペンタノン(MIBKと同じ、115.9℃)、1−ブタノール(117.7℃)、N,N−ジメチルホルムアミド(153℃)、N,N−ジメチルアセトアミド(166℃)、ジメチルスルホキシド(189℃)などがある。好ましくは、シクロヘキサノン、2−メチル−4−ペンタノンである。
2−(8)その他
本発明のフィルムには、前記の成分以外に、樹脂、カップリング剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤などを添加することもできる。
2−(9)支持体
本発明のフィルムの支持体としては、透明樹脂フィルム、透明樹脂板、透明樹脂シートや透明ガラスなど、特に限定は無い。透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム等が使用できる。
<セルロースアシレートフィルム>
その中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましく、セルローストリアセテートフィルムが特に好ましい。又、透明支持体の厚さは通常25μm〜1000μm程度とする。
本発明ではセルロースアシレートフィルムに、酢化度が59.0〜61.5%であるセルロースアセテートを使用することが好ましい。
酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算に従う。
セルロースアシレートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。
また、本発明に使用するセルロースアシレートは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の値が1.0に近いこと、換言すれば分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜1.7であることが好ましく、1.3〜1.65であることがさらに好ましく、1.4〜1.6であることが最も好ましい。
一般に、セルロースアシレートの2,3,6の水酸基は全体の置換度の1/3づつに均等に分配されるわけではなく、6位水酸基の置換度が小さくなる傾向がある。本発明ではセルロースアシレートの6位水酸基の置換度が、2,3位に比べて多いほうが好ましい。
全体の置換度に対して6位の水酸基が32%以上アシル基で置換されていることが好ましく、更には33%以上、特に34%以上であることが好ましい。さらにセルロースアシレートの6位アシル基の置換度が0.88以上であることが好ましい。6位水酸基は、アセチル基以外に炭素数3以上のアシル基であるプロピオニル基、ブチロイル基、バレロイル基、ベンゾイル基、アクリロイル基などで置換されていてもよい。各位置の置換度の測定は、NMRによって求めることができる。
本発明ではセルロースアシレートとして、特開平11−5851号公報の段落「0043」〜「0044」[実施例][合成例1]、段落「0048」〜「0049」[合成例2]、段落「0051」〜「0052」[合成例3]に記載の方法で得られたセルロースアセテートを用いることができる。
<ポリエチレンテレフタレートフィルム>
本発明では、ポリエチレンテレフタレートフィルムも、透明性、機械的強度、平面性、耐薬品性および耐湿性共に優れており、その上安価であり好ましく用いられる。
透明プラスチックフィルムとその上に設けられるハードコート層との密着強度をより向上させるため、透明プラスチックフィルムは易接着処理が施されたされたものであることが更に好ましい。
市販されている光学用易接着層付きPETフィルムとしては東洋紡績社製コスモシャインA4100、A4300等が挙げられる。
3.フィルムを構成する層
本発明のフィルムは、上記の各種化合物を混合、塗設することによって得られるものであるが、次に、本発明のフィルムを構成する層について記載する。
3−(1)防眩層
防眩層は、本発明で規定される表面散乱による防眩性と、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。
防眩性を形成する方法としては、特開平6−16851号記載のような表面に微細な凹凸を有するマット状の賦型フィルムをラミネートして形成する方法、特開2000−206317号記載のように電離放射線照射量の差による電離放射線硬化型樹脂の硬化収縮により形成する方法、特開2000−338310号記載のように乾燥にて透光性樹脂に対する良溶媒の重量比が減少することにより透光性微粒子および透光性樹脂とをゲル化させつつ固化させて塗膜表面に凹凸を形成する方法、特開2000−275404号記載のように外部からの圧力により表面凹凸を付与する方法などが知られており、これら公知の方法を利用することができる。
本発明で用いることができる防眩層は好ましくはハードコート性を付与することのできるバインダー、防眩性を付与するための透光性粒子、および溶媒を必須成分として含有し、透光性粒子自体の突起あるいは複数の粒子の集合体で形成される突起によって表面の凹凸を形成されるものであることが好ましい。
マット粒子の分散によって形成される防眩層は、バインダーとバインダー中に分散された透光性粒子とからなる。防眩性を有する防眩層は、防眩性とハードコート性を兼ね備えていることが好ましい。
上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、シリカ粒子が好ましい。
マット粒子の形状は、球形あるいは不定形のいずれも使用できる。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
これらの粒子の中から選ばれた各透光性粒子の屈折率にあわせて透光性樹脂の屈折率を調整することにより、本発明の内部ヘイズ、表面ヘイズを達成することができる。具体的には、後述する本発明の防眩層に好ましく用いられる3官能以上の(メタ)アクリレートモノマーを主成分としてなる透光性樹脂(硬化後の屈折率が1.55〜1.70)と、スチレン含率50〜100質量%である架橋ポリ(メタ)アクリレート重合体からなる透光性粒子および/またはベンゾグアナミン粒子との組合せが好ましく、特に前記透光性樹脂とスチレン含率50〜100質量%である架橋ポリ(スチレン−アクリレート)共重合体からなる透光性粒子(屈折率が1.54〜1.59)との組合せが特に好ましい。
透光性粒子は、形成された防眩層中に、防眩層全固形分中に3〜30質量%含有されるように配合されることが好ましい。より好ましくは5〜20質量%である。3質量%未満であると、防眩性が不足し、30質量%を超えると、画像ボケや表面の白濁やギラツキ等の問題が生じる。
また、透光性粒子の密度は、好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2である。
また、透光性樹脂の屈折率と透光性粒子の屈折率の差の絶対値が0.04以下が好ましい。透光性樹脂の屈折率と透光性粒子の屈折率の差の絶対値は好ましくは0.001〜0.030であり、より好ましくは0.001〜0.020、更に好ましくは0.001〜0.015である。この差が0.040を超えると、フィルム文字ボケ、暗室コントラストの低下、表面の白濁等の問題が生じる。
ここで、前記透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。前記透光性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。
また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに防眩性反射防止フィルムを貼り付けた場合に、「ギラツキ」と呼ばれる表示画像品位上の不具合が発生する場合がある。「ギラツキ」は、防眩性反射防止防止フィルム表面に存在する凹凸により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与するマット粒子よりも小さな粒子径で、バインダーの屈折率と異なるマット粒子を併用することにより大きく改善することができる。
防眩層の膜厚は、1〜10μmが好ましく、1.2〜8μmがより好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する場合があるので、前記範囲内とするのが好ましい。
一方、防眩層の中心線平均粗さ(Ra)を0.10〜0.40μmの範囲が好ましい。0.40μmを超えると、ギラツキや外光が反射した際の表面の白化等の問題が発生する。また、透過画像鮮明度の値は、5〜60%とするのが好ましい。
防眩層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
3−(2)ハードコート層
本発明のフィルムには、フィルムの物理的強度を付与するために、防眩層に加えてハードコート層を設けることができる。
好ましくは、その上に低屈折率層が設けられ、更に好ましくはハードコート層と低屈折率層の間に中屈折率層、高屈折率層が設けられ、反射防止フィルムを構成する。
ハードコート層は、二層以上の積層から構成されてもよい。
本発明におけるハードコート層の屈折率は、反射防止性のフィルムを得るための光学設計から、屈折率が1.48〜2.00の範囲にあることが好ましく、より好ましくは1.52〜1.90であり、更に好ましくは1.55〜1.80である。本発明では、ハードコート層の上に低屈折率層が少なくとも1層あるので、屈折率がこの範囲より小さ過ぎると反射防止性が低下し、大き過ぎると反射光の色味が強くなる傾向がある。
ハードコート層の膜厚は、フィルムに充分な耐久性、耐衝撃性を付与する観点から、ハードコート層の厚さは通常0.5μm〜50μm程度とし、好ましくは1μm〜20μm、さらに好ましくは2μm〜10μm、最も好ましくは3μm〜7μmである。
また、ハードコート層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
さらに、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
ハードコート層は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
ハードコート層には、内部散乱性付与の目的で、平均粒径が1.0〜10.0μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子または樹脂粒子を含有してもよい。
ハードコート層のバインダーには、ハードコート層の屈折率を制御する目的で、高屈折率モノマーまたは無機粒子、或いは両者を加えることができる。無機粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。本発明では、ハードコート層形成後において、前記多官能モノマーおよび/又は高屈折率モノマー等が重合して生成した重合体、その中に分散された無機粒子を含んでバインダーと称する。
画像の鮮明性を維持する目的では、表面の凹凸形状を調整することに加えて、透過画像鮮明度を調整することが好ましい。クリアな反射防止フィルムの透過画像鮮明度は60%以上が好ましい。透過画像鮮明度は、一般にフィルムを透過して映す画像の呆け具合を示す指標であり、この値が大きい程、フィルムを通して見る画像が鮮明で良好であることを示す。透過画像鮮明度は好ましくは70%以上であり、更に好ましくは80%以上である。
3−(3)高屈折率層、中屈折率層
本発明のフィルムには、高屈折率層、中屈折率層を設け、反射防止性を高めることができる。
以下の本明細書では、この高屈折率層と中屈折率層を高屈折率層と総称して呼ぶことがある。なお、本発明において、高屈折率層、中屈折率層、低屈折率層の「高」、「中」、「低」とは層相互の相対的な屈折率の大小関係を表す。また、透明支持体との関係で言えば屈性率は、透明支持体>低屈折率層、高屈折率層>透明支持体の関係を満たすことが好ましい。
また、本明細書では高屈折率層、中屈折率層、低屈折率層を総称して反射防止層と総称して呼ぶことがある。
高屈折率層の上に低屈折率層を構築して、反射防止フィルムを作製するためには、高屈折率層の屈折率は1.55〜2.40であることが好ましく、より好ましくは1.60〜2.20、更に好ましくは、1.65〜2.10、最も好ましくは1.80〜2.00である。
支持体から近い順に中屈折率層、高屈折率層、低屈折率層を塗設し、反射防止フィルムを作成する場合、高屈折率層の屈折率は、1.65乃至2.40であることが好ましく、1.70乃至2.20であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.55乃至1.80であることが好ましい。
高屈折率層および中屈折率層に用いるTiO2を主成分とする無機粒子は、分散物の状態で高屈折率層および中屈折率層の形成に使用する。
無機粒子の分散において、分散剤の存在下で分散媒体中に分散する。
本発明に用いる高屈折率層および中屈折率層は、分散媒体中に無機粒子を分散した分散液に、好ましくは、さらにマトリックス形成に必要なバインダー前駆体(例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーなど)、光重合開始剤等を加えて高屈折率層および中屈折率層形成用の塗布組成物とし、透明支持体上に高屈折率層および中屈折率層形成用の塗布組成物を塗布して、電離放射線硬化性化合物(例えば、多官能モノマーや多官能オリゴマーなど)の架橋反応又は重合反応により硬化させて形成することが好ましい。
さらに、高屈折率層および中屈折率層のバインダー前駆体を層の塗布と同時または塗布後に、分散剤と架橋反応又は重合反応させることが好ましい。
このようにして作製した高屈折率層および中屈折率層のバインダーは、例えば、上記の好ましい分散剤と電離放射線硬化性の多官能モノマーや多官能オリゴマーとが、架橋又は重合反応し、バインダーに分散剤のアニオン性基が取りこまれた形となる。さらに高屈折率層および中屈折率層のバインダーは、アニオン性基が無機粒子の分散状態を維持する機能を有し、架橋又は重合構造がバインダーに皮膜形成能を付与して、無機粒子を含有する高屈折率層および中屈折率層の物理強度、耐薬品性、耐候性を改良する。
高屈折率層のバインダーは、該層の塗布組成物の固形分量に対して、5〜80質量%添加する。
高屈折率層における無機粒子の含有量は、高屈折率層の質量に対し10〜90質量%であることが好ましく、より好ましくは15〜80質量%、特に好ましくは15〜75質量%である。無機粒子は高屈折率層内で二種類以上を併用してもよい。
高屈折率層の上に低屈折率層を有する場合、高屈折率層の屈折率は透明支持体の屈折率より高いことが好ましい。
高屈折率層に、芳香環を含む電離放射線硬化性化合物、フッ素以外のハロゲン化元素(例えば、Br,I,Cl等)を含む電離放射線硬化性化合物、S,N,P等の原子を含む電離放射線硬化性化合物などの架橋又は重合反応で得られるバインダーも好ましく用いることができる。
高屈折率層の膜厚は用途により適切に設計することができる。高屈折率層を後述する光学干渉層として用いる場合、30〜200nmが好ましく、より好ましくは50〜170nm、特に好ましくは60〜150nmである。
高屈折率層のヘイズは、防眩機能を付与する粒子を含有しない場合、低いほど好ましい。5%以下であることが好ましく、さらに好ましくは3%以下、特に好ましくは1%以下である。
高屈折率層は、前記透明支持体上に直接、又は、他の層を介して構築することが好ましい。
3−(4)干渉ムラ(虹ムラ)防止層
透明支持体とハードコート層、または透明支持体と防眩層に実質的な屈折率差(屈折率差が0.03以上)がある場合、透明支持体/ハードコート層、または透明支持体/防眩界面で反射光が生じる。この反射光は反射防止層表面での反射光と干渉し、ハードコート層(または防眩層)の微妙な膜厚ムラに起因した干渉ムラを生じることがある。この様な干渉ムラを防止するために、例えば透明支持体とハードコート層(または防眩層)の間に中間の屈折率nPを有し、膜厚dPが下記式を満たす様な干渉ムラ防止層を設けることもできる。
数式(I)
P=(2N−1)×λ/(4nP
但し、λは可視光の波長で450〜650nmの範囲の何れかの値、Nは自然数。
また、反射防止フィルムを画像表示等に貼合する場合、透明支持体の反射防止層を積層していない側に粘着剤層(または接着剤層)を積層する場合がある。この様な態様で、透明支持体と粘着剤層(または接着剤層)の間に実質的な屈折率差(0.03以上)がある場合、透明支持体/粘着剤層(または接着剤層)の反射光が生じ、この反射光が、反射防止層表面の反射光などと干渉し、上記と同様に支持体やハードコート層の膜厚ムラに起因した干渉ムラを生じることがある。この様な干渉ムラを防止する目的で透明支持体の反射防止層を積層していない側に上記と同様の干渉ムラ防止層を設けることもできる。
尚、この様な干渉ムラ防止層に関しては特開2004−345333号公報に詳しく記載されており、本発明ではここで紹介されている干渉ムラ防止層を用いることもできる。
3−(5)易接着層
本発明のフィルムには易接着層を塗設することもできる。易接着層とは、例えば、偏光板用保護フィルムとその隣接層、あるいはハードコート層と支持体とを接着し易くする機能を付与する層のことをいう。
易接着処理としては、ポリエステル、アクリル酸エステル、ポリウレタン、ポリエチレンイミン、シランカップリング剤等からなる易接着剤により透明プラスチックフィルム上に易接着層を設ける処理が挙げられる。
本技術にて好ましく用いられる易接着層の例としては、−COOM(Mは水素原子またはカチオンを表す)基を有する高分子化合物を含有する層を含むものであり、さらに好ましい態様はフィルム基材側に−COOM基を有する高分子化合物を含有する層を設け、それに隣接させて偏光膜側に親水性高分子化合物を主たる成分として含む層を設けたものである。ここでいう−COOM基を有する高分子化合物としては例えば−COOM基を有するスチレン−マレイン酸共重合体や−COOM基を有する酢酸ビニル−マレイン酸共重合体、酢酸ビニル−マレイン酸−無水マレイン酸共重合体などであり、特に−COOM基を有する酢酸ビニル−マレイン酸共重合体を用いると好ましい。このような高分子化合物を単独でまたは2種以上併用して用い、好ましい重量平均分子量としては500〜500,000程度のものであるとよい。−COOM基を有する高分子化合物の特に好ましい例は特開平6−094915号、特開平7−333436号各公報記載のものが好ましく用いられる。
また親水性高分子化合物として好ましくは、親水性セルロース誘導体(例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシセルロース等)、ポリビニルアルコール誘導体(例えば、ポリビニルアルコール、酢酸ビニルービニルアルコール共重合体、ポリビニルアセタール、ポリビニルホルマール、ポリビニルベンザール等)、天然高分子化合物(例えば、ゼラチン、カゼイン、アラビアゴム等)、親水性ポリエステル誘導体(例えば、部分的にスルホン化されたポリエチレンテレフタレート等)、親水性ポリビニル誘導体(例えば、ポリ−N−ビニルピロリドン、ポリアクリルアミド、ポリビニルインダゾール、ポリビニルピラゾール等)が挙げられ、単独或いは2種以上併用して用いられる。
易接着層の厚みとしては0.05〜1.0μmの範囲が好ましい。0.05μmより薄いと十分な接着性が得られ難く、また、1.0μmより厚いと接着性の効果は飽和する。
3−(6)カール防止層
本技術のフィルムには、カール防止加工を施すこともできる。カール防止加工とは、これを施した面を内側にして丸まろうとする機能を付与するものであるが、この加工を施すことによって、透明樹脂フィルムの片面に何らかの表面加工をして、両面に異なる程度・種類の表面加工を施した際に、その面を内側にしてカールしようとするのを防止する働きをするものである。
カール防止層は基材の防眩層または反射防止層を有する側と反対側に設ける態様或いは、例えば透明樹脂フィルムの片面に易接着層を塗設する場合もあり、また逆面にカール防止加工を塗設するような態様が挙げられる。
カール防止加工の具体的方法としては、溶剤塗布によるもの、溶剤とセルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネート等の透明樹脂層を塗設するもの等が挙げられる。溶剤による方法とは、具体的には偏光板用保護フィルムとして用いるセルロースアシレートフィルムを溶解させる溶剤または膨潤させる溶剤を含む組成物を塗布することによって行われる。これらのカールを防止する機能を有する層の塗布液は従ってケトン系、エステル系の有機溶剤を含有するものが好ましい。好ましいケトン系の有機溶媒の例としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、乳酸エチル、アセチルアセトン、ジアセトンアルコール、イソホロン、エチル−n−ブチルケトン、ジイソプロピルケトン、ジエチルケトン、ジ−n−プロピルケトン、メチルシクロヘキサノン、メチル−n−ブチルケトン、メチル−n−プロピルケトン、メチル−n−ヘキシルケトン、メチル−n−へプチルケトン等であり、好ましいエステル系の有機溶剤の例としては酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等が挙げられる。しかしながら、用いる溶剤としては溶解させる溶剤および/または膨潤させる溶剤の混合物の他、さらに溶解させない溶剤を含む場合もあり、これらを透明樹脂フィルムのカール度合や樹脂の種類によって適宜の割合で混合した組成物および塗布量を用いて行う。この他にも、透明ハード加工や帯電防止加工を施してもカール防止機能を発揮する。
3−(7)水吸収層
本発明のフィルムには水吸収剤を使用することができる。水吸収剤は、アルカリ土類金属を中心に、水吸収機能を有する化合物から選択することができる。例えば、BaO、SrO、CaO、およびMgOなどが挙げられる。さらに、Ti、Mg、Ba、Caの様な金属元素から選択することもできる。これらの吸収剤粒子の粒子サイズは、好ましくは100nm以下であり、50nm以下で使用されるのがさらに好ましい。
これらの水吸収剤を含む層は前述のバリア層と同様に真空下蒸着法等を使って作成してもよいし、ナノ粒子を各種方法で作成して用いてもよい。層の厚みは1〜100nmが好ましく、1〜10nmがより好ましい。水吸収剤を含む層は、支持体と積層体(バリア層と有機層の積層体)の間、積層体の最上層、積層体の間、或いは、積層体中の有機層或いはバリア層中に添加されていてもよい。バリア層に添加する場合には共蒸着法を用いることが好ましい。
3−(8)プライマー層・無機薄膜層
本発明のフィルムでは、支持体と積層体との間に、公知のプライマー層または無機薄膜層を設置することでガスバリアー性を高めたりすることができる。
プライマー層としては、例えばアクリル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂等を用いることが可能であるが、本発明においてはこのプライマー層として有機無機ハイブリッド層を、無機薄膜層として無機蒸着層またはゾルーゲル法による緻密な無機コーティング薄膜が好ましい。無機蒸着層としては、シリカ、ジルコニア、アルミナ等の蒸着層が好ましい。無機蒸着層は真空蒸着法、スパッタリング法等により形成することができる。
4.製造方法
4−(1)塗布前の処理
本発明で使用する支持体は、塗布前に表面処理を施すことが好ましい。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理または紫外線照射処理が挙げられる。また、特開平7−333433号公報に記載のように、下塗り層を設けることも好ましく利用される。
さらに、塗布が行われる前工程としての除塵工程に用いられる除塵方法として、特開昭59−150571号公報に記載のフィルム表面に不織布や、ブレード等を押しつける方法、特開平10−309553号公報に記載の清浄度の高い空気を高速で吹き付けて付着物をフィルム表面から剥離させ、近接した吸い込み口で吸引する方法、特開平7−333613号公報に記載される超音波振動する圧縮空気を吹き付けて付着物を剥離させ、吸引する方法(伸興社製、ニューウルトラクリーナー等)等の乾式除塵法が挙げられる。
また、洗浄槽中にフィルムを導入し、超音波振動子により付着物を剥離させる方法、特公昭49−13020号公報に記載されているフィルムに洗浄液を供給したあと、高速空気の吹き付け、吸い込みを行なう方法、特開2001−38306号に記載のように、ウェブを液体でぬらしたロールで連続的に擦った後、擦った面に液体を噴射して洗浄する方法等の湿式除塵法を用いることができる。このような除塵方法の内、超音波除塵による方法もしくは湿式除塵による方法が、除塵効果の点で特に好ましい。
また、このような除塵工程を行う前に、フィルム支持体上の静電気を除電しておくことは、除塵効率を上げ、ゴミの付着を抑える点で特に好ましい。このような除電方法としては、コロナ放電式のイオナイザ、UV、軟X線等の光照射式のイオナイザ等を用いることができる。除塵、塗布前後のフィルム支持体の帯電圧は、1000V以下が望ましく、好ましくは300V以下、特に好ましくは、100V以下である。
フィルムの平面性を保持する観点から、これら処理においてセルロースアシレートフィルムの温度をTg以下、具体的には150℃以下とすることが好ましい。
本発明のフィルムを偏光板の保護フィルムとして使用する場合のようにセルロースアシレートフィルムを偏光膜と接着させる場合には、偏光膜との接着性の観点から、酸処理またはアルカリ処理、すなわちセルロースアシレートに対するケン化処理を実施することが特に好ましい。
接着性などの観点から、セルロースアシレートフィルムの表面エネルギーは、55mN/m以上であることが好ましく、60mN/m以上75mN/m以下であることが更に好ましく、上記表面処理により調整することができる。
4−(2)塗布
本発明のフィルムの各層は以下の塗布方法により形成することができるが、この方法に制限されない。
ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(ダイコート法)(米国特許2681294号明細書参照)、マイクログラビアコート法等の公知の方法が用いられ、その中でもマイクログラビアコート法、ダイコート法が好ましい。
本発明で用いられるマイクログラビアコート法とは、直径が約10〜100mm、好ましくは約20〜50mmで全周にグラビアパターンが刻印されたグラビアロールを支持体の下方に、かつ支持体の搬送方向に対してグラビアロールを逆回転させると共に、該グラビアロールの表面からドクターブレードによって余剰の塗布液を掻き落として、定量の塗布液を前記支持体の上面が自由状態にある位置におけるその支持体の下面に塗布液を転写させて塗工することを特徴とするコート法である。ロール形態の透明支持体を連続的に巻き出し、該巻き出された支持体の一方の側に、少なくともハードコート層乃至フッ素含有オレフィン系重合体を含む低屈折率層の内の少なくとも一層をマイクログラビアコート法によって塗工することができる。
マイクログラビアコート法による塗工条件としては、グラビアロールに刻印されたグラビアパターンの線数は50〜800本/インチが好ましく、100〜300本/インチがより好ましく、グラビアパターンの深度は1〜600μmが好ましく、5〜200μmがより好ましく、グラビアロールの回転数は3〜800rpmであることが好ましく、5〜200rpmであることがより好ましく、支持体の搬送速度は0.5〜100m/分であることが好ましく、1〜50m/分がより好ましい。
本発明のフィルムを高い生産性で供給するために、エクストルージョン法(ダイコート法)が好ましく用いられる。
4−(3)鹸化処理
本発明のフィルムを2枚の偏光膜の表面保護フィルムの内の一方として用いて偏光板を作成する際には、偏光膜と貼り合わせる側の表面を親水化することで、接着面における接着性を改良することが好ましい。
a.アルカリ液に浸漬する法
アルカリ液の中にフィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理することにより、塗布層を有する表面と反対の表面が親水化される。偏光板用保護フィルムは、透明支持体の親水化された表面を偏光膜と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。
鹸化処理は、塗布層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、浸漬法では同時に塗布層を有する表面から内部までアルカリによるダメージを受ける為、必要最小限の反応条件とすることが重要となる。アルカリによる各層の受けるダメージの指標として、反対側の表面の透明支持体の水に対する接触角を用いた場合、特に透明支持体がトリアセチルセルロースであれば、好ましくは10度〜50度、より好ましくは30度〜50度、さらに好ましくは40度〜50度となる。50度以上では、偏光膜との接着性に問題が生じる為、好ましくない。一方、10度未満では、フィルムが受けるダメージが大きすぎる為、物理強度を損ない、好ましくない。
b.アルカリ液を塗布する方法
上述の浸漬法における各膜へのダメージを回避する手段として、適切な条件でアルカリ液を塗布層を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
前記(1)、(2)のどちらの鹸化方法においても、ロール状の支持体から巻き出して各層を形成後に行うことができるため、フィルム製造工程の後に加えて一連の操作で行っても良い。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率良く偏光板を作成することができる。
c.ラミネートフィルムで保護して鹸化する方法
前記(2)と同様に、塗布層がアルカリ液に対する耐性が不足している場合に、最終層まで形成した後に該最終層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで最終層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、然る後にラミネートフィルムを剥離することができる。この方法でも、塗布層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理をトリアセチルセルロースフィルムの最終層を形成した面とは反対の面だけに施すことができる。前記(2)の方法と比較して、ラミネートフィルムが廃棄物として発生する半面、特別なアルカリ液を塗布する装置が不要である利点がある。
d.中途層まで形成後にアルカリ液に浸漬する方法
下層層まではアルカリ液に対する耐性があるが、上層のアルカリ液に対する耐性不足である場合には、下層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に上層を形成することもできる。製造工程が煩雑になるが、たとえば防眩層とフッ素含有ゾルーゲル膜の低屈折率層とからなるフィルムにおいて、親水基を有する場合には防眩層と低屈折率層との層間密着性が向上する利点がある。
e.予め鹸化済のトリアセチルセルロースフィルムに塗布層層を形成する方法
トリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接または他の層を介して塗布層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、塗布層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから塗布層を形成することで対処できる。また、塗布層が親水性基を有する場合には層間密着が良好なこともある。
4−(4)偏光膜の作製
本発明のフィルムは、偏光膜およびその片側ないし両側に配置された保護フィルムとして使用し、偏光膜として使用することができる。
一方の保護フィルムとして、本発明のフィルムを用いる、他方の保護フィルムは、通常のセルロースアセテートフィルムを用いてもよいが、上述の溶液製膜法で製造され、且つ10〜100%の延伸倍率でロールフィルム形態における巾方向に延伸したセルロースアセテートフィルムを用いることが好ましい。
更には、本発明の偏光板において、片面が反射防止フィルムであるのに対して他方の保護フィルムが液晶性化合物からなる光学異方性層を有する光学補償フィルムであることが好ましい。
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜および染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。
反射防止フィルムの透明支持体やセルロースアセテートフィルムの遅相軸と偏光膜の透過軸とは、実質的に平行になるように配置する。
偏光板の生産性には保護フィルムの透湿性が重要である。偏光膜と保護フィルムは水系接着剤で貼り合わせられており、この接着剤溶剤は保護フィルム中を拡散することで、乾燥される。保護フィルムの透湿性が高ければ、高いほど乾燥は早くなり、生産性は向上するが、高くなりすぎると、液晶表示装置の使用環境(高湿下)により、水分が偏光膜中に入ることで偏光能が低下する。
保護フィルムの透湿性は、透明支持体やポリマーフィルム(および重合性液晶化合物)の厚み、自由体積、親疎水性、等により決定される。
本発明のフィルムを偏光板の保護フィルムとして用いる場合、透湿性は100〜1000g/m2・24hrsであることが好ましく、300〜700g/m2・24hrsであることが更に好ましい。
透明支持体の厚みは、製膜の場合、リップ流量とラインスピード、あるいは、延伸、圧縮により調整することができる。使用する主素材により透湿性が異なるので、厚み調整により好ましい範囲にすることが可能である。
透明支持体の自由体積は、製膜の場合、乾燥温度と時間により調整することができる。
この場合もまた、使用する主素材により透湿性が異なるので、自由体積調整により好ましい範囲にすることが可能である。
透明支持体の親疎水性は、添加剤により調整することが出来る。上記自由体積中に親水的添加剤を添加することで透湿性は高くなり、逆に疎水性添加剤を添加することで透湿性を低くすることができる。
上記透湿性を独立に制御することにより、光学補償能を有する偏光板を安価に高い生産性で製造することが可能となる。
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落0020〜0030に詳しい記載がある。
偏光子の2枚の保護フィルムのうち、反射防止フィルム以外のフィルムが、光学異方層を含んでなる光学補償層を有する光学補償フィルムであることも好ましい。光学補償フィルム(位相差フィルム)は、液晶表示画面の視野角特性を改良することができる。
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、特開2001−100042号公報に記載されている光学補償フィルムが好ましい。
5.本発明の使用形態
本発明のフィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に用いられる。本発明に従う光学フィルターは、プラズマディスプレイパネル(PDP)または陰極管表示装置(CRT)など公知のディスプレー上に用いることが出来る。
5−(1)液晶表示装置
本発明のフィルム、偏光板は、液晶表示装置等の画像表示装置に有利に用いることができ、ディスプレイの最表層に用いることが好ましい。
液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板を有し、液晶セルは、二枚の電極基板の間に液晶を担持している。さらに、光学異方性層が、液晶セルと一方の偏光板との間に一枚配置されるか、あるいは液晶セルと双方の偏光板との間に二枚配置されることもある。
液晶セルは、TNモード、VAモード、OCBモード、IPSモードまたはECBモードであることが好ましい。
<TNモード>
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60〜120゜にねじれ配向している。
TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
<VAモード>
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of Tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
<OCBモード>
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルであり、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードと呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
<IPSモード>
IPSモードの液晶セルは、ネマチック液晶に横電界をかけてスイッチングする方式であり、詳しくはProc.IDRC(Asia Display ’95),p.577−580及び同p.707−710に記載されている。
<ECBモード>
ECBモードの液晶セルは、電圧無印加時に棒状液晶性分子が実質的に水平配向している。ECBモードは、最も単純な構造を有する液晶表示モードの一つであって、例えば特開平5−203946号公報に詳細が記載されている。
5―(2)液晶表示装置以外のディスプレイ
<PDP>
プラズマディスプレイパネル(PDP)は、一般に、ガス、ガラス基板、電極、電極リード材料、厚膜印刷材料、蛍光体により構成される。ガラス基板は、前面ガラス基板と後面ガラス基板の二枚である。二枚のガラス基板には電極と絶縁層を形成する。後面ガラス基板には、さらに蛍光体層を形成する。二枚のガラス基板を組み立てて、その間にガスを封入する。
プラズマディスプレイパネル(PDP)は、既に市販されている。プラズマディスプレイパネルについては、特開平5−205643号、同9−306366号の各公報に記載がある。
前面板をプラズマディスプレイパネルの前面に配置することがある。前面板はプラズマディスプレイパネルを保護するために充分な強度を備えていることが好ましい。前面板は、プラズマディスプレイパネルと隙間を置いて使用することもできるし、プラズマディスプレイ本体に直貼りして使用することもできる。
プラズマディスプレイパネルのような画像表示装置では、光学フィルターをディスプレイ表面に直接貼り付けることができる。また、ディスプレイの前に前面板が設けられている場合は、前面板の表側(外側)または裏側(ディスプレイ側)に光学フィルターを貼り付けることもできる。
<タッチパネル>
本発明のフィルムは、特開平5−127822号公報、特開2002−48913号公報等に記載されるタッチパネルなどに応用することができる。
<有機EL素子>
本発明のフィルムは、有機EL素子等の基板(基材フィルム)や保護フィルムとして用いることができる。
本発明のフィルムを有機EL素子等に用いる場合には、特開平11−335661号、特開平11−335368号、特開2001−192651号、特開2001−192652号、特開2001−192653号、特開2001−335776号、特開2001−247859号、特開2001−181616号、特開2001−181617号、特開2002−181816号、特開2002−181617号、特開2002−056976号等の各公報記載の内容を応用することができる。また、特開2001−148291号、特開2001−221916号、特開2001−231443号の各公報記載の内容と併せて用いることが好ましい。
6.各種特性値
以下に本発明に関する各種測定法と、好ましい特性値を示す。
6−(1)反射率
鏡面反射率及び色味の測定は、分光光度計“V−550”[日本分光(株)製]にアダプター“ARV−474”を装着して、380〜780nmの波長領域において、入射角5°における出射角−5゜の鏡面反射率を測定し、450〜650nmの平均反射率を算出し、反射防止性を評価することができる。
本発明の防眩性反射防止フィルムは、鏡面反射率2.0%以下、透過率90%以上とするのが、外光の反射を抑制でき、視認性が向上するため、好ましい。鏡面反射率は1.5%以下が特に好ましい。
6−(2)色味
本発明の反射防止能付き偏光板は、CIE標準光源D65の、波長380nmから780nmの領域における入射角5゜の入射光に対して、正反射光の色味、すなわちCIE1976L***色空間のL*、a*、b*値を求めることで色味を評価することができる。
*、a*、b*値は、それぞれ3≦L*≦20、−7≦a*≦7、且つ、−10≦b*≦10の範囲内であることが好ましい。この範囲とすることで、従来の偏光板で問題となっていた赤紫色から青紫色の反射光の色味が低減され、さらに3≦L*≦10、0≦a*≦5、且つ、−7≦b*≦0の範囲内とすることで大幅に低減され、液晶表示装置に適用した場合、室内の蛍光灯のような、輝度の高い外光が僅かに映り込んだ場合の色味がニュートラルで、気にならない。詳しくはa*≦7であれば赤味が強くなりすぎることがなく、a*≧−7であればシアン味が強くなりすぎることがなく好ましい。またb*≧−7であれば青味が強くなりすぎることがなく、b*≦0であれば黄味が強くなりすぎることがなく好ましい。
更には、反射光の色味均一性は、反射光の380nm〜680nmの反射スペクトルにより求めたL***色度図上でのa**より、下記の数式に従って色味の変化率として得ることができる。
Figure 2007293325
ここで、a* max及びa* minは、それぞれa*値の最大値及び最小値;b* max及びb* minは、それぞれb*値の最大値及び最小値;a* av及びb* avは、それぞれa*値及びa*値の平均値である。色の変化率は、それぞれ30%以下であることが好ましく、20%以下であることがより好ましく、8%以下であることが最も好ましい。
6−(3)透過画像鮮明度
透過画像鮮明度は、JIS−K7105に従い、スガ試験機(株)製の写像性測定器(ICM−2D型)にて、スリット幅が0.5mmの光学櫛を用いて測定できる。
本発明のフィルムの透過画像鮮明度は60%以上が好ましい。透過画像鮮明度は、一般にフィルムを透過して映す画像の呆け具合を示す指標であり、この値が大きい程、フィルムを通して見る画像が鮮明で良好であることを示す。本発明のフィルムの透過画像鮮明製は5%〜30%であるのが、充分な防眩性と画像ボケ、暗室コントラスト低下の改善が両立されるので、好ましい。
6−(4)表面粗さ
中心線平均粗さ(Ra)の測定は、JIS−B0601に準じて行なうことができる。
本発明の反射防止フィルムは、その表面凹凸形状として、中心線平均粗さRaが0.08〜0.30μm、10点平均粗さRzがRaの10倍以下、平均山谷距離Smが1〜100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0〜5度の面が10%以上となるように設計するのが、十分な防眩性と目視での均一なマット感が達成されるので、好ましい。Raが0.08未満では充分な防眩性が得られず、0.30を超えるとギラツキ、外光が反射した際の表面の白化等の問題が発生する。
6−(5)ヘイズ
本発明のフィルムのヘイズはJIS−K7105に規定されたヘイズ値のことであり、JIS−K7361−1で規定された測定法に基づき、日本電色工業(株)製の濁度計「NDH−1001DP」を用いて測定したヘイズ=(拡散光/全透過光)×100(%)として自動計測される。
なお、表面ヘイズと内部ヘイズは以下の手順で測定することができる。
(1)JIS−K7136に準じてフィルムの全ヘイズ値(H)を測定する。
(2)フィルムの低屈折率層側の表面および裏面にシリコーンオイルを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)を2枚用いて裏表より挟んで、完全に2枚のガラス板とフィルムを光学的に密着させ、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間にシリコーンオイルのみを挟みこんで測定したヘイズを引いた値をフィルムの内部ヘイズ(Hi)として算出する。
(3)上記(1)で測定した全ヘイズ(H)から上記(2)で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出する。
散乱強度削除
6−(6)耐擦傷性
<スチールウール耐傷性評価>
ラビングテスターを用いて、以下の条件でこすりテストをおこなうことで、耐擦傷性の指標とすることが出来る。
評価環境条件:25℃、60%RH
こすり材:スチールウール(日本スチールウール(株)製、ゲレードNo.0000)
試料と接触するテスターのこすり先端部(1cm×1cm)に巻いて、バンド固定。
移動距離(片道):13cm、
こすり速度:13cm/秒、
荷重:500g/cm2、および200g/cm2
先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、こすり部分の傷を反射光で目視観察したり、擦った部分以外との反射光量との差によって評価する。
<消しゴム擦り耐傷性評価>
ラビングテスターを用いて、以下の条件でこすりテストをおこなうことで、耐擦傷性の指標とすることが出来る。
評価環境条件:25℃、60%RH
こすり材:プラスチック消しゴム((株)トンボ鉛筆性 MONO)
試料と接触するテスターのこすり先端部(1cm×1cm)に固定
移動距離(片道):4cm、
こすり速度:2cm/秒、
荷重:500g/cm2
先端部接触面積:1cm×1cm、
こすり回数:100往復。
こすり終えた試料の裏側に油性黒インキを塗り、こすり部分の傷を反射光で目視観察したり、擦った部分以外との反射光量との差によって評価する。
6−(7)硬度
<鉛筆硬度>
本発明のフィルムの強度は、JIS―K5400に従う鉛筆硬度試験で評価することが出来る。
鉛筆硬度はH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
6−(8)表面弾性率
<表面弾性率>
本発明における表面弾性率は微小表面硬度計((株)フィッシャー・インスツルメンツ製:フィッシャースコープH100VP−HCU)を用いて求めた値である。具体的には、ダイヤモンド製の四角錐圧子(先端対面角度;136°)を使用し、押し込み深さが1μmを超えない範囲で、適当な試験荷重下での押し込み深さを測定し、除荷重時の荷重と変位の変化から求められる弾性率である。
また、前述の微小表面硬度計を用いて表面硬度をユニバーサル硬度として求めることもできる。ユニバーサル硬度は四角錐圧子の試験荷重下での押し込み深さを測定し、試験荷重をその試験荷重で生じた圧痕の幾何学的形状から計算される圧痕の表面積で割った値である。上記の表面弾性率とユニバーサル硬度の間には、正の相関を有することが知られている。
本発明で定義する架橋性ポリマーのユニバーサル硬度とはガラス板上に硬化形成した約20〜30μm厚の該架橋性ポリマー膜についてフィッシャーインストルメンツ(株)製の微小硬度計H100によって以下測定手順で求めたユニバーサル硬度(N/mm2)によって表わされる。
架橋性ポリマーの他に必要な触媒や架橋剤、重合開始剤等を含んだ固形分濃度約25%の塗布液を硬化後の膜厚が約20〜30μmになるように適切なバーコーターを選択してTOSHINRIKO.CO.LTD製、(26mm×76mm×1.2mm)みがきスライドガラス板上に塗布する。架橋性ポリマーが熱硬化性の場合には膜が十分硬化される熱硬化条件をあらかじめ求めておき(一例として125℃10分)、架橋性ポリマーが電離放射線硬化性の場合にも同様に膜が十分硬化される硬化条件をあらかじめ求めておく(一例として酸素濃度12ppm、UV照射量750mJ/cm2)。それぞれの膜に対して荷重を0から4mNまで連続的に増加させ、基材のガラス板硬度の影響がでない1/10膜厚を最大として円錐ダイヤモンド圧子を押し込んだ際の各荷重Fに対する窪み面積A(mm2)から求めたF/AのN=6測定平均値からユニバーサル硬度を算出する。
また、特開2004−354828記載のナノインデンテーションによって表面硬度をもとめることができ、この場合の硬度としては2GPa〜4GPa、ナノインデンテーション弾性率は10GPa〜30GPaであることが好ましい。
6−(9)防汚性試験
<マジック拭き取り性>
フィルムをガラス面上に粘着剤で固定し、25℃60RH%の条件下で黒マジック「マッキー極細(商品名:ZEBRA製)」のペン先(細)にて直径5mmの円形を3周書き込み、5秒後に10枚重ねに折り束ねたベンコット(商品名、旭化成(株))でベンコットの束がへこむ程度の荷重で20往復拭き取る。マジック後が拭き取りで消えなくなるまで前記の書き込みと拭き取りを前記条件で繰り返し、拭き取りできた回数により防汚性を評価することが出来る。
消えなくなるまでの回数は5回以上であることが好ましく、10回以上であることが更に好ましい。
黒マジックについてはマジックインキ No.700(M700―T1 黒)極細を用い試料の上に直径1cmの円を描いて塗りつぶし、24時間放置後にベンコット(旭化成(株)製)で擦り、マジックがふき取れるかによっても評価することができる。
6−(10)接触角
接触角計[“CA−X”型接触角計、協和界面科学(株)製]を用い、乾燥状態(20℃/65%RH)で、液体として純水を使用して直径1.0mmの液滴を針先に作り、これをフィルムの表面に接触させてフィルム上に液滴を作った。フィルムと液体とが接する点における、液体表面に対する接線とフィルム表面がなす角で、液体を含む側の角度を接触角とする。
本発明のフィルムの接触角は純水に対して94度以上であることが好ましく。97度以上であることがさらに好ましく、101度以上であることが最も好ましい。
6−(11)表面自由エネルギー
表面エネルギーは、「ぬれの基礎と応用」,リアライズ社,1989.12.10発行に記載のように接触角法、湿潤熱法、および吸着法により求めることができる。本発明のフィルムの場合、接触角法を用いることが好ましい。
具体的には、表面エネルギーが既知である2種の溶液をセルロースアシレートフィルムに滴下し、液滴の表面とフィルム表面との交点において、液滴に引いた接線とフィルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によりフィルムの表面エネルギーを算出できる。
本発明のフィルムの表面自由エネルギーは25mN/m以下であることが好ましく、20mN/m以下であることが特に好ましい。
6−(12)カール
カールの測定は、JIS―K7619−1988の「写真フィルムのカールの測定法」中の方法Aのカール測定用型板を用いて行われる。
測定条件は25℃、相対湿度60%、調湿時間10時間である。
本発明におけるフィルムは、カールを以下の数式で表したときの値が、マイナス15〜プラス15の範囲に入っていることが好ましく、マイナス12〜プラス12の範囲がより好ましく、さらに好ましくはマイナス10〜プラス10である。このときのカールの試料内測定方向は、ウェッブ形態での塗布の場合、基材の搬送方向について測ったものである。
(数式) カール=1/R Rは曲率半径(m)
これは、フィルムの製造、加工、市場での取り扱いで、ひび割れ、膜はがれを起こさないための重要な特性である。カール値が前記範囲にあり、カールが小さいことが好ましい。
ここで、カールがプラスとはフィルムの塗設側が湾曲の内側になるカールを言い、マイナスとは塗設側が湾曲の外側になるカールをいう。
また、本発明におけるフィルムは、上記したカール測定法に基づいて、相対湿度のみを80%と10%に変更したときの各カール値の差の絶対値が、24〜0が好ましく、15〜0がさらに好ましく、8〜0が最も好ましい。これはさまざまな湿度下でフィルムを貼り付けたときのハンドリング性や剥がれ、ひび割れに関係する特性である。
6−(13)密着性評価
フィルムの層間、あるいは支持体と塗布層との密着性は以下の方法により評価することが出来る。
塗布層を有する側の表面にカッターナイフで碁盤目状に縦11本、横11本の切り込みを1mm間隔で入れて合計100個の正方形の升目を刻み、日東電工(株)製のポリエステル粘着テープ(NO.31B)を圧着し、24時間放置後引き剥がす試験を同じ場所で繰り返し3回行い、剥がれの有無を目視で観察する。
100個の升目中、剥がれが10升以内であることが好ましく、2升以内であることが更に好ましい。
6−(14)脆性試験(耐ひび割れ性)
耐ひび割れ性は、フィルムの塗布、加工、裁断、粘着剤の塗布、種々の物体への貼りつけ等のハンドリングで割れ欠陥を出さないための重要な特性である。
フィルム試料を35mm×140mmに切断し、温度25℃、相対湿度60%の条件で2時間放置した後、筒状に丸めたときにひび割れが発生し始める曲率直径を測定し、表面のひび割れを評価することができる。
本発明のフィルムの耐ひび割れ性は、塗布層側を外側にして丸めたときに、ひび割れが発生する曲率直径が、50mm以下であることが好ましく、40mm以下がより好ましく、30mm以下が最も好ましい。エッジ部のひび割れについては、ひび割れがないか、ひび割れの長さが平均で1mm未満であることが好ましい。
6−(15)塵埃除去性 本発明のフィルムをモニターに張り付け、モニター表面に塵埃(布団、衣服の繊維屑)を振りかけ、クリーニングクロスで塵埃を拭き取り、塵埃除去性を評価することができる。
6回の拭取りで完全に取除けることが好ましく、3回以内の拭き取りで塵埃が完全に取り除けることが更に好ましい。
6−(16)液晶表示装置の性能
以下に、本発明のフィルムを表示装置上に用いたときの特性の評価方法と好ましい状況について記載する。
TN型液晶セルを使用した液晶表示装置(TH−15TA2、松下電器産業(株)製)に設けられている視認側の偏光板を剥がし、代わりに本発明のフィルムあるいは偏光板を、塗布面が視認側に、且つ偏光板の透過軸が製品に貼られていた偏光板と一致するように粘着剤を介して貼り付ける。500luxの明室にて、液晶表示装置を黒表示にして、種々の視角から目視により以下の各種特性を評価することができる。
<画像のムラ、色味評価>
作成した液晶表示装置をを用いて、黒表示(L1)時のムラや色味変化を複数の観察者により目視評価する。
10人が評価し、ムラ、左右色味変化、温湿度による色味変化、白ボケを認識できるものが3人以下であることが好ましく、1人も認識できないことがより好ましい。
また、外光の映り込みは蛍光灯を用いて行い、目視にて映り込みの変化を相対的に評価することができる。
<黒表示の光漏れ>
液晶表示装置正面からの方位方向45゜、極角方向70゜における黒表示の光漏れ率を測定する。光漏れ率が0.4%以下であることが好ましく、0.1%以下であることがより好ましい。
<コントラスト、及び視野角>
コントラストおよび視野角は、測定機(“EZ−Contrast 160D”ELDIM社製)を用いて、コントラスト比及び左右方向(セルのラビング方向と直交方向)の視野角(コントラスト比が10以上となる角度範囲の広さ)を調べることができる。
以下、実施例により本発明を説明するが、本発明はこれらに限定されない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。
<本発明の低屈折率層に使用可能な素材の調製>
[ゾル液aの調製]
攪拌機、還流冷却器を備えた反応器に、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン“KBM5103”{信越化学工業(株)製}100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量1000〜20000の成分が100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。固形分の濃度が29%になるようにメチルエチルケトンで調節してゾル液aとした。
[内部に空孔を有する粒子の調製]
(分散液B−1の調製) 特開2002−79616の調製例4から調製時の条件を変更して、内部に空洞を有するシリカ微粒子を作製した。最終ステップで水分散液状態からメタノールに溶媒置換し、20%シリカ分散液とし、平均粒子径45nm、シェル厚み約7nm、シリカ粒子の屈折率1.30の粒子が得られた。これを分散液(A−1)とする。
分散液(A−1)の500部に対して分散液pHが3.5になるまで0.1N塩酸を添加した。ここで分散液のpHとは、分散液と等重量の蒸留水を混合してpH電極を用いて25℃で測定した値を言う。この分散液に対して、トリメチルメトキシシラン5部を加え混合した後に、イオン交換水を9部を加え25℃で7日間反応させた。その後総液量がほぼ一定になるようにMEKを添加しながら減圧蒸留により溶媒を置換した。最終的に固形分が20%になるように調節して分散液B−1を調製した。
(分散液B−2の調製)
上記分散液(A−1)の500部に対してアクリロイルオキシプロピルトリメトキシシラン15部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加した。総液量がほぼ一定になるようにMEKを添加しながら減圧蒸留により溶媒を置換した。最終的に固形分が20%になるように調節して分散液B−2を調製した。
(分散液B−3の調製)
上記分散液(A−1)の500部に対してアクリロイルオキシプロピルトリメトキシシラン10部、トリデカフルオロオクチルトリメトキシシラン5部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加した。総液量がほぼ一定になるようにMEKを添加しながら減圧蒸留により溶媒を置換した。最終的に固形分が20%になるように調節して分散液B−3を調製した。
(分散液B−4の調製)
上記分散液(A−1)の調製時の条件を変更して、内部に空洞を有するシリカ微粒子を作製した。最終ステップで水分散液状態からメタノールに溶媒置換し、20%シリカ分散液とし、平均粒子径80nm、シェル厚み約7nm、シリカ粒子の屈折率1.19の粒子が得られた。これを分散液(A−2)とする。
分散液(A−2)の500部に対して分散液pHが3.5になるまで0.1N塩酸を添加した。この分散液に対して、トリメチルメトキシシラン5部を加え混合した後に、イオン交換水を9部を加え25℃で7日間反応させた。その後総液量がほぼ一定になるようにMEKを添加しながら減圧蒸留により溶媒を置換した。最終的に固形分が20%になるように調節して分散液B−4を調製した。
(分散液B−5の調製)
上記分散液(A−2)の500部に対してアクリロイルオキシプロピルトリメトキシシラン15部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加した。総液量がほぼ一定になるようにMEKを添加しながら減圧蒸留により溶媒を置換した。最終的に固形分が20%になるように調節して分散液B−5を調製した。
(分散液B−6の調製)
上記分散液(A−1)の調製時の条件を変更して、内部に空洞を有するシリカ微粒子を作製した。最終ステップで水分散液状態からメタノールに溶媒置換し、20%シリカ分散液とし、平均粒子径70nm、シェル厚み約10nm、シリカ粒子の屈折率1.29の粒子が得られた。これを分散液(A−3)とする。
上記分散液(A−3)の500部に対してアクリロイルオキシプロピルトリメトキシシラン15部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加した。総液量がほぼ一定になるようにMEKを添加しながら減圧蒸留により溶媒を置換した。最終的に固形分が20%になるように調節して分散液B−6を調製した。
(分散液B−7の調製)
上記分散液(A−2)の粒子に対して、約3nmの酸化アンチモン被覆層を形成させ、平均粒子径83nmの酸化アンチモン被覆シリカ系微粒子を形成し、更に表面を正珪酸エチルで処理し、シリカ被覆層を形成した酸化アンチモン被覆シリカ系微粒子分散液を調製した。この分散液を限外濾過膜を用い、メタノールにて溶媒置換するとともに固形分濃度20重量%になるまで濃縮した。この分散液を(A−3)とする。
上記分散液(A−3)の500部に対してアクリロイルオキシプロピルトリメトキシシラン15部、およびジイソプロポキシアルミニウムエチルアセテート1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加した。総液量がほぼ一定になるようにMEKを添加しながら減圧蒸留により溶媒を置換した。最終的に固形分が20%になるように調節して分散液B−7を調製した。
導電性微粒子の粉体比抵抗は、1000Ω・cm、屈折率1.34であった。
<ハードコート層用塗布液(HCL−1)の調製>
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物“PETA”{日本化薬(株)製}50.0部に、重合開始剤「イルガキュア184」{日本チバガイギー(株)製}2.0部、下記のフッ素系面状改良剤(FP−1)0.055部、オルガノシラン化合物“KBM−5103”{信越化学工業(株)製}10.0部、トルエン38.5部、シクロヘキサノン2.0を添加して撹拌した。このようにしてハードコート層用塗布液(HCL−1)を調製した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。
Figure 2007293325
<帯電防止層用塗布液(ASL−1)の調製>
市販の導電性微粒子ATO「アンチモンドープ酸化錫T−1」{比表面積80m2/g、三菱マテリアル(株)製}20.0部に、アニオン性基とメタアクリロイル基を有する下記の分散剤(B−1)6.0部、メチルイソブチルケトン74部を添加して撹拌した。
Figure 2007293325
メディア分散機(直径0.1mmのジルコニアビーズ使用)を用いて、上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、55nmであった。このようにして、ATO分散液を作製した。
上記ATO分散液100部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物“DPHA”{日本化薬(株)製}6部、重合開始剤「イルガキュア184」{日本チバガイギー(株)製}0.8部を添加して撹拌した。このようにして帯電防止層用塗布液(ASL−1)を調製した。この塗料による塗膜の屈折率は1.63であった。
<帯電防止層用塗布液(ASL−2)の調製>
市販の透明帯電防止層用塗料「ペルトロンC−4456S−7」{固形分濃度45%、日本ペルノックス(株)製}を帯電防止層用塗布液(ASL−2)として用いた。「ペルトロンC−4456S−7」は、分散剤を用いて分散された導電性微粒子ATOを含有する透明帯電防止層用塗料である。この塗料による塗膜の屈折率は1.55であった。
<ハードコート層用塗布液(HCL−2)の調製>
ハードコート層用塗布液(HCL−1)に対して更に、「ブライト20GNR4.6−EH」{ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物球状粉体にニッケル及び金をめっきしたもの、日本化学工業(株)製}を0.12%分散し、ハードコート層用塗布液(HCL−2)を調製した。
<低屈折率層用塗布液(LLL−1)の調製>
メチルエチルケトン200部に対して、含フッ素共重合体{本文例示化合部(P−24)(質量平均分子量30000)}87.0部、ゾル液aを17.2部(固形分として5部)、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物“DPHA”{日本化薬(株)製}}5.0部、光ラジカル発生剤「イルガキュア369」{チバ・スペシャルティ・ケミカルズ(株)製}3部を溶解した。塗布液全体の固形分濃度が6%となり、シクロヘキサンとメチルエチルケトンの比率が5対95になるようにシクロヘキサノンとメチルエチルケトンで希釈して低屈折率層用塗布液(LLL−1)を調製した。
実施例1
〔反射防止フィルムの作製〕
[ハードコート層(HC−1)の作製]
膜厚80μm、幅1340mmのトリアセチルセルロースフィルム“TAC−TD80U”{富士写真フイルム(株)製}上に、ハードコート層用塗布液(HCL−1)を、マイクログラビア塗工方式で、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、窒素パージ(酸素濃度0.5%以下)しながら、160W/cmの「空冷メタルハライドランプ」{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量50mJ/cm2の紫外線を照射して塗布層を硬化させ、膜厚5.0μmのハードコート層を作製した。このようにしてハードコート層(HC−1)を得た。
[低屈折率層(LL1−1)の作製]
このようにして得られたハードコート層(HC−1)の上に、上記低屈折率層用塗布液(LLL−1)を用い、低屈折率層膜厚が95nmになるように調節して、マイクログラビア塗工方式で低屈折率層(LL1−1)を形成し、反射防止フィルム試料(101)を作製した。
低屈折率層形成の硬化条件を以下に示す。
(1)乾燥:80℃−120秒
(2)UV硬化:90℃−1分、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度120mW/cm2、照射量480mJ/cm2の照射量とした。
[帯電防止層付きハードコート(AS−1)の作製]
上記ハードコート層(HC−1)の上に、上記帯電防止層用塗布液(ASL−1)を、マイクログラビア塗工方式で、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、窒素パージ(酸素濃度0.5%以下)しながら、160W/cmの「空冷メタルハライドランプ」{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量50mJ/cm2の紫外線を照射して塗布層を硬化させて、膜厚1.2μmの帯電防止層を有するハード−コート(AS−1)を作製した。
[帯電防止層付きハードコート(AS−2)の作製]
膜厚80μm、幅1340mmのトリアセチルセルロースフィルム“TAC−TD80U”{富士写真フイルム(株)製}上に、帯電防止層用塗布液(ASL−2)をマイクログラビア塗工方式で、搬送速度15m/分の条件で塗布し、60℃で150秒乾燥の後、窒素パージ(酸素濃度0.5%以下)しながら、160W/cmの空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量50mJ/cm2の紫外線を照射して塗布層を硬化させ、膜厚1.2μmの帯電防止層を作製した。
このようにして得られた帯電防止層の上に、ハードコート層用塗布液(HCL−2)を、マイクログラビア塗工方式で、搬送速度15m/分の条件で塗布し100℃で150秒乾燥した後、窒素パージ(酸素濃度0.5%以下)しながら、160W/cmの空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、照度400mW/cm2、照射量50mJ/cm2の紫外線を照射して塗布層を硬化させ、膜厚5.0μmの帯電防止層付きハードコート(AS−2)を作製した。
上記のようにして得られたハードコートと下記表3に示す低屈折率層用塗布液を、下記表4のように組み合わせて反射防止フィルム(102)〜(128)を作製した。
Figure 2007293325
上記表中の構成成分におけるかっこ書きは固形分の質量部を示し、表中の屈折率は、低屈折率層の屈折率を表す。使用した化合物の詳細を以下に示す。
比較用化合物―1:(含フッ素化合物、HFP/(MA−56)/EVEの50/20/30モル比共重合体、VPS−1001を2質量%含有。質量平均分子量30000)
DPHA:(ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物、日本化薬(株)製)
スタティサイド:(帯電防止、4級アンモニウム化合物、三井物産プラスチックス社製
IRG369:(光ラジカル発生剤、チバ・スペシャルティ・ケミカルズ(株)製)
PM980M:(光ラジカル発生剤、重合開始剤PM980M、和光純薬製)
MEK−ST−L:(コロイダルシリカ分散液、平均粒子サイズ〜50nm、日産化学工業(株)製、固形分濃度30質量%)
サイメル303:(メチロール化メラミン、日本サイテックインダストリーズ(株)製)キャタリスト4050:(パラトルエンスルホン酸トリエチルアミン塩、日本サイテックインダストリーズ(株)製)
これら反射防止フィルムの作製において、低屈折率層用塗布液の組成が(LLL−2)〜(LLL−12)は、前記低屈折率層塗布液(LLL―1)を用いて作製した反射防止フィルム試料(101)と同様の硬化条件で硬化した。低屈折率層用塗布液の組成が(LLL−13)〜(LLL−25)は、以下に示す硬化条件で硬化した。
低屈折率層形成の硬化条件を以下に示す。
(1)乾燥:80℃−120秒
(2)硬化:110℃―10分
(3)UV硬化:90℃−1分、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度120mW/cm2、照射量480mJ/cm2の照射量とした。
Figure 2007293325
上記表中において、帯電防止層、ハードコート層、帯電防止層、及び低屈折率層の表記は、支持体上に積層される順番を示す。例えば、試料101は、支持体上にハードコート層及び低屈折率層をこの順に有し、試料103は、支持体上に帯電防止層、ハードコート層及び低屈折率層をこの順に有し、試料128は、支持体上にハードコート層、帯電防止層及び低屈折率層をこの順に有する。
[反射防止フィルムの鹸化処理]
上記の様にして得られた反射防止フィルム試料(101)〜(128)を、低屈折率層側をラミネートして保護し、支持体の裏面側に以下の鹸化処理を行った。
1.5モル/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.005モル/Lの希硫酸水溶液を調製し、35℃に保温した。作製した反射防止フィルムを、上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬して水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬して希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。このようにして、鹸化処理済み反射防止フィルムを作製した。
[反射防止フィルムの評価]
得られたフィルムについて、25℃60%条件下に試料を24時間置いた後に以下の項目の評価を行った。
(評価1)平均反射率
反射防止フィルムの裏面を粗面化処理した後、黒色のインクで光吸収処理(380〜780nmにおける透過率が10%未満)を行った。分光光度計{日本分光(株)製}を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を測定した。結果には450〜650nmの平均反射率を用いた。
低反射程好ましく、1.8以下が低反射であることを大きく認識できる一つの基準である。
(評価2)耐擦傷性評価
<消しゴム擦り耐傷性評価>
ラビングテスターを用いて、以下の条件でこすりテストを行った。
評価環境条件:25℃、60%RH
こすり材:プラスチック消しゴム((株)トンボ鉛筆製 MONO)
試料と接触するテスターのこすり先端部(1cm×1cm)に固定
移動距離(片道):4cm、
こすり速度:2cm/秒、
荷重:500g/cm2
先端部接触面積:1cm×1cm、
こすり回数:50往復、100往復。
こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を、以下の基準で評価した。
◎ :擦り回数100回の条件で、非常に注意深く見ても、全く傷が見えない。
○ :擦り回数50回の条件で、非常に注意深く見ても、全く傷が見えない。
○△:擦り回数50回の条件で、非常に注意深く見ると僅かに弱い傷が見える。
△ :擦り回数50回の条件で、弱い傷が見える。
△×:擦り回数50回の条件で、弱い傷が見え、頻度が多い。
× :擦り回数50回の条件で、一目見ただけで分かる強い傷がある。
○以上が実用的なレベルを満たすものである。
(評価3)オゾン暴露後の耐擦傷性評価
各試料をオゾン10ppm、30℃、60%RHの環境下に192時間(8日)保管した後に、大気中に取り出した。その後、上記(評価2)と同様にして耐擦傷性を評価した。
○△以上が実用的なレベルを満たすものである。
(評価4)表面抵抗値(LogSR)
表面抵抗値(SR)を四探針法で測定した。表面抵抗値の常用対数をとりlog(SR)を算出した。表面の電荷が漏洩し、埃付着が低減するのはlog(SR)で13以下であり、11以下が特に好ましい。
(評価6)防塵性
各反射防止フィルム試料の透明支持体側をCRT表面に張り付け、0.5μm以上のホコリ及びティッシュペーパー屑を、1ft3(立方フィート)当たり100〜200万個有する部屋で24時間使用した。反射防止膜100cm2当たり、付着したホコリとティッシュペーパー屑の数を測定し、それぞれの結果の平均値が20個未満の場合をA、20〜49個の場合をB、50〜199個の場合をC、200個以上の場合をDとして評価した。
評価結果を表5に示す。
Figure 2007293325
表5に示される結果より、以下のことが明らかである。
フッ素含率が40%以上のフッ素化合物を含有する低屈折率を有する反射防止膜は、屈折率の低下に伴い反射率も低くなるが、防塵性が悪化する(試料101と102の比較)。帯電防止層を付与することにより、防塵性は良化するもののオゾン暴露後の耐擦傷性の悪化が許容下限である(試料103)。本発明に従い、フッ素化合物と微粒子を併用した反射防止膜は、フッ素化合物のフッ素含率を高めること及び粒子内部に空孔を有する微粒子を含有することで大きく反射率が低下し、帯電防止層を有していても、オゾン暴露後耐擦傷性も満足することが分かる。また、導電性成分を粒子表面に含有する内部に空孔を有する粒子を含有することにより低屈折率層が帯電防止層を兼ねる構成も、低反射、耐擦傷性、防塵性を満たすことがわかる(試料125,127)。
実施例2
以下の表に示す組成のハードコート用塗布液を調整した。
Figure 2007293325
表中の構成成分は固形分の質量百分率で示す。使用した化合物の詳細を以下に示す。
PETA:(ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物 日本化薬(株)製)
DPHA:(ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物 日本化薬(株)製)
オルガノシラン化合物:(KBM−5103 信越化学工業(株)製)
重合開始剤:(イルガキュア184 日本チバガイギー(株)製)
架橋スチレン粒子:(3.5μm架橋ポリスチレン粒子、 SX−350、綜研化学(株)製)
架橋アクリルースチレン粒子:(3.5μm架橋アクリルースチレン粒子、綜研化学(株)製)
架橋アクリル粒子:(3μm架橋PMMA粒子、MXS−300、綜研化学(株)製)
シリカ粒子:(1.5μmシリカ粒子、KE−P150、日本触媒(株)製)
通電粒子:(「ブライト20GNR4.6−EH」{ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物球状粉体にニッケル及び金をめっきしたもの、日本化学工業(株)製}
MIBK:(メチルイソブチルケトン)
MEK:(メチルエチルケトン
実施例1の帯電防止層付きハードコート(AS−2)の作製において、ハードコート用塗布液(HCL−2)を上記(HCL−3)〜(HCL−6)に変更した以外は同様にして、帯電防止層付きハードコート(AS−3)〜(AS−6)を作製した。それぞれの試料の表面粗さ、表面ヘイズ、内部ヘイズを測定した結果、以下の値を示した。尚、表面粗さ、表面ヘイズ、内部ヘイズは、本文記載の方法により行った。
Figure 2007293325
これら帯電防止層付きハードコート(AS−3)〜(AS−6)の上に、実施例1の低屈折率層用塗布液(LLL−1)〜(LLL−25)を塗布して実施例1と同様に硬化し、反射防止フィルムを作製した。実施例1に準じた評価を行った結果、本発明に従えば、低反射、耐擦傷性、防塵性を満たす試料が得られることが確認された。
実施例3
実施例1の試料において、用いる支持体の膜厚を40μmに変更した反射防止フィルムと、光学用易接着層付きPETフィルム東洋紡績社製コスモシャインA4300も用いた反射防止フィルムを作製した。実施例1に準じて評価した結果、実施例1とほぼ同様の結果が得られた。
実施例4
実施例1の反射防止膜(109)において、低屈折率層の固形分に対して1質量%のラジカル重合性シリコーンRMS−033(商品名;Gelest社製)を加えた反射防止フィルムを作成した。また実施例1の反射防止フィルム(122)において、低屈折率層の固形分に対して1質量%の水酸基含有シリコーンサイラプレーンFM−4425(商品名;チッソ社製)を加えた反射防止フィルムを作成した。これら反射防止フィルムを評価した結果、低反射で耐擦傷性と防塵性に優れることが確認され、指紋付着が低減されるとともに指紋跡のふき取り性が改良されていることが分かった。
実施例5
[反射防止フィルムの実装評価]
TN、IPS、VA、OCBのモードの透過型液晶表示装置の視認側表面の保護フィルムをはがし、実施例1及び2の鹸化処理済みの反射防止フィルムを貼り付けた。このようにして作製した液晶用画像表示装置を評価した結果、低反射で視認性、防塵性、耐擦傷性に優れた表示装置が作製できることが確認された。
実施例6
実施例1〜3の反射防止フィルム試料を、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。
実施例7
下記表8に示す低屈折率層用塗布液を調製し、下記表9のように、帯電防止層、ハードコート層、低屈折率層を組み合わせて、反射防止フィルム(701)〜(712)を作製した。帯電防止層の膜厚は1.2μm、ハードコート層の膜厚は5.0μm、低屈折率層は95nmになるように調節した。低屈折率層の紫外線照射条件は、実施例1の試料101と同様にした。また、硬化条件変動時の耐擦傷性の性能安定性評価のため、UV硬化時の酸素濃度が0.01体積%の条件に加えて0.1体積%の条件での試料を作製し、耐擦傷性の評価を行った。
Figure 2007293325
Figure 2007293325
得られた反射防止膜は、実施例1に準じて評価を行った。評価結果を表10に示す。
Figure 2007293325
表10に示される結果より、以下のことが明らかである。本発明の反射防止フィルム(705)〜(712)は耐擦傷性において実用的なレベルを満たし、防塵性も優れている。また、構成成分(A)、(B)、(C)を全て含むものは、低反射で耐擦傷性に優れ、低屈折率層の硬化時の酸素濃度が変化した場合でもオゾン暴露後の耐擦傷性も改良できることがわかる。更に、帯電防止層と低屈折率層の間に通電粒子を含有するハードコート層を設けることで、より優れた耐擦傷性及び防塵性を得ることができる。
本発明では、低屈折率層の硬化時の酸素濃度が変化した場合でもオゾン暴露後の耐擦傷性も改良できるために、硬化工程における酸素濃度に対する許容度(ロバスト性)が向上し、製造安定性が向上できる。

Claims (18)

  1. 支持体上に、塗布組成物を塗設してなる低屈折率層を有する反射防止フィルムであって、該塗布組成物が以下の成分を含有し、かつ該反射防止フィルム表面の表面抵抗(LogSR)が13.0以下であることを特徴とする反射防止フィルム。
    (A)フッ素含率が40%以上である含フッ素化合物
  2. 支持体上に、塗布組成物を塗設してなる低屈折率層を有する反射防止フィルムであって、該塗布組成物が以下の成分を含有することを特徴とする反射防止フィルム。
    (A)フッ素含率が40%以上である含フッ素化合物
    (E)帯電防止剤
  3. 上記塗布組成物が更に、以下の(B)を含有し、更に(C)又は(D)の少なくとも1種を含有することを特徴とする請求項1又は2に反射防止フィルム。
    (B)粒子サイズ5nm以上120nm以下の微粒子
    (C)(メタ)アクリロイル基を有する化合物
    (D)オルガノシラン化合物
  4. 導電性微粒子を10質量%以上含有する帯電防止層を有し、該帯電防止層が低屈折率層と支持体の間に位置し、低屈折率層に隣接していない請求項3に記載の反射防止フィルム。
  5. 上記(B)の微粒子が、粒子内部に空孔を有することを特徴とする請求項1〜4に記載の反射防止フィルム。
  6. 上記組成物中に、電離放射線重合開始剤を含有することを特徴とする請求項1〜5に記載の反射防止フィルム。
  7. 上記(A)の含フッ素化合物が、分子量1000以上の重合体であることを特徴とする請求項1〜6に記載の反射防止フィルム。
  8. 上記(A)の含フッ素化合物が、水酸基を含有することを特徴とする請求項1〜7に記載の反射防止フィルム。
  9. 上記(A)の含フッ素化合物が、(メタ)アクリレート基を含有することを特徴とする請求項1〜8に記載の反射防止フィルム。
  10. 上記(A)の含フッ素化合物が、フッ素含率45%以上であることを特徴とする請求項1〜9に記載の反射防止フィルム。
  11. 上記(B)の粒子の屈折率が1.10以上1.40以下であることを特徴とする請求項1〜10に記載の反射防止フィルム。
  12. 上記(C)の(メタ)アクリロイル基を有する化合物が、1分子中に(メタ)アクリロイル基を複数個含有することを特徴とする請求項1〜11に記載の反射防止フィルム。
  13. 上記(C)の(メタ)アクリロイル基を有する化合物が、オルガノシロキサン化合物であることを特徴とする請求項1〜12に記載の反射防止フィルム。
  14. 上記塗布組成物がさらにアミノプラスト類を含有することを特徴とする請求項1〜13に記載の反射防止フィルム。
  15. 上記低屈折率層の屈折率が1.25以上1.40以下であることを特徴とする請求項1〜14に記載の反射防止フィルム。
  16. 上記反射防止フィルムが、低屈折率層中に導電性微粒子を含有することを特徴とする請求項1〜15に記載の反射防止フィルム。
  17. 偏光膜と偏光膜の両面を保護する2枚の保護フィルムとを有する偏光板であって、請求項1〜16のいずれかに記載の反射防止フィルムが、偏光板における偏光膜の2枚の保護フィルムのうちの少なくとも一方に用いられていることを特徴とする偏光板。
  18. 請求項1〜16のいずれかに記載の反射防止フィルム、又は請求項17に記載の偏光板がディスプレイの最表面に用いられていることを特徴とする画像表示装置。
JP2007094816A 2006-03-31 2007-03-30 反射防止フィルム、偏光板、及び画像表示装置 Active JP4990005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094816A JP4990005B2 (ja) 2006-03-31 2007-03-30 反射防止フィルム、偏光板、及び画像表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006100172 2006-03-31
JP2006100172 2006-03-31
JP2007094816A JP4990005B2 (ja) 2006-03-31 2007-03-30 反射防止フィルム、偏光板、及び画像表示装置

Publications (3)

Publication Number Publication Date
JP2007293325A true JP2007293325A (ja) 2007-11-08
JP2007293325A5 JP2007293325A5 (ja) 2010-01-28
JP4990005B2 JP4990005B2 (ja) 2012-08-01

Family

ID=38763952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094816A Active JP4990005B2 (ja) 2006-03-31 2007-03-30 反射防止フィルム、偏光板、及び画像表示装置

Country Status (1)

Country Link
JP (1) JP4990005B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145735A (ja) * 2007-12-17 2009-07-02 Tosoh Corp 光学フィルム用樹脂組成物およびこれからなる光学フィルム
JP2011031501A (ja) * 2009-07-31 2011-02-17 Fujifilm Corp 光学積層体
JP2011033658A (ja) * 2009-07-29 2011-02-17 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2011046193A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 積層体、反射防止フィルム、偏光板、及び画像表示装置
JP2011076081A (ja) * 2009-09-03 2011-04-14 Tomoegawa Paper Co Ltd 光学積層体、偏光板およびそれを用いた表示装置
JP2011180523A (ja) * 2010-03-03 2011-09-15 Fujifilm Corp 帯電防止性の光学フィルム、偏光板、及び画像表示装置
JP2013164569A (ja) * 2012-02-10 2013-08-22 Vision Development Co Ltd ナノダイヤモンド複合体を含有する透明光拡散体
US9050774B2 (en) 2010-04-30 2015-06-09 Fujifilm Corporation Antistatic laminate, optical film, polarizing plate, and image display device
KR101827362B1 (ko) 2016-08-30 2018-02-09 주식회사 케이씨텍 무기입자 함유-유기 나노분산체 조성물, 필름 및 이를 포함하는 디스플레이용 광학부재
JP2018530007A (ja) * 2015-12-03 2018-10-11 エルジー・ケム・リミテッド 反射防止フィルム
WO2020012753A1 (ja) * 2018-07-11 2020-01-16 Jsr株式会社 硬化性組成物、並びに構造体及びその形成方法
JP2022172161A (ja) * 2019-08-02 2022-11-15 三菱ケミカル株式会社 積層体
US11971567B2 (en) 2020-10-21 2024-04-30 Dai Nippon Printing Co., Ltd. Optical film, polarizing plate, image display device, and optical film selection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017870A (ja) * 2004-06-30 2006-01-19 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、および画像表示装置
JP2006049296A (ja) * 2004-07-09 2006-02-16 Fuji Photo Film Co Ltd 中空導電性微粒子、光学機能フィルム、反射防止フィルム、その製造方法、偏光板、及び画像表示装置
JP2006048025A (ja) * 2004-07-07 2006-02-16 Fuji Photo Film Co Ltd 反射防止フィルムおよびその製造方法
JP2006053538A (ja) * 2004-07-12 2006-02-23 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及びそれを用いた画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017870A (ja) * 2004-06-30 2006-01-19 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、および画像表示装置
JP2006048025A (ja) * 2004-07-07 2006-02-16 Fuji Photo Film Co Ltd 反射防止フィルムおよびその製造方法
JP2006049296A (ja) * 2004-07-09 2006-02-16 Fuji Photo Film Co Ltd 中空導電性微粒子、光学機能フィルム、反射防止フィルム、その製造方法、偏光板、及び画像表示装置
JP2006053538A (ja) * 2004-07-12 2006-02-23 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、及びそれを用いた画像表示装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145735A (ja) * 2007-12-17 2009-07-02 Tosoh Corp 光学フィルム用樹脂組成物およびこれからなる光学フィルム
JP2011033658A (ja) * 2009-07-29 2011-02-17 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
US9176258B2 (en) 2009-07-31 2015-11-03 Fujifilm Corporation Optical laminate
JP2011031501A (ja) * 2009-07-31 2011-02-17 Fujifilm Corp 光学積層体
JP2011046193A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 積層体、反射防止フィルム、偏光板、及び画像表示装置
JP2011076081A (ja) * 2009-09-03 2011-04-14 Tomoegawa Paper Co Ltd 光学積層体、偏光板およびそれを用いた表示装置
JP2011180523A (ja) * 2010-03-03 2011-09-15 Fujifilm Corp 帯電防止性の光学フィルム、偏光板、及び画像表示装置
US9050774B2 (en) 2010-04-30 2015-06-09 Fujifilm Corporation Antistatic laminate, optical film, polarizing plate, and image display device
JP2013164569A (ja) * 2012-02-10 2013-08-22 Vision Development Co Ltd ナノダイヤモンド複合体を含有する透明光拡散体
JP2018530007A (ja) * 2015-12-03 2018-10-11 エルジー・ケム・リミテッド 反射防止フィルム
US10809419B2 (en) 2015-12-03 2020-10-20 Lg Chem., Ltd. Antireflection film for a display device
KR101827362B1 (ko) 2016-08-30 2018-02-09 주식회사 케이씨텍 무기입자 함유-유기 나노분산체 조성물, 필름 및 이를 포함하는 디스플레이용 광학부재
WO2020012753A1 (ja) * 2018-07-11 2020-01-16 Jsr株式会社 硬化性組成物、並びに構造体及びその形成方法
JP2022172161A (ja) * 2019-08-02 2022-11-15 三菱ケミカル株式会社 積層体
US11971567B2 (en) 2020-10-21 2024-04-30 Dai Nippon Printing Co., Ltd. Optical film, polarizing plate, image display device, and optical film selection method

Also Published As

Publication number Publication date
JP4990005B2 (ja) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4990005B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP4990665B2 (ja) 光学フィルム、偏光板、及び画像表示装置
JP5450708B2 (ja) 光学フィルム、偏光板、及び画像表示装置
JP5114438B2 (ja) 光学フィルム、その製造方法、偏光板および画像表示装置
EP2042903B1 (en) Optical film, polarizing plate and image display device
JP5102958B2 (ja) 反射防止フィルムの製造方法
JP4905775B2 (ja) 反射防止フィルム、偏光板、画像表示装置及び反射防止フイルムの製造方法
JP2005186568A (ja) 反射防止フィルム、偏光板及び液晶表示装置
JP4991332B2 (ja) 光学フィルム、偏光板、及び画像表示装置
JP2007264113A (ja) 光学フィルム、偏光板および画像表示装置
JP2007249191A (ja) 光学フィルム、反射防止フィルム、偏光板、及び画像表示装置
JP2007119310A (ja) 無機微粒子、これを用いた分散液、コーティング組成物、光学フィルム、偏光板および画像表示装置
JP2007102208A (ja) 光学フィルム、反射防止フィルム、並びに該光学フィルムまたは該反射防止フィルムを用いた偏光板および画像表示装置
JP2007133384A (ja) 防眩フィルム、偏光板、および画像表示装置
JP2011039332A (ja) 光学フィルム、その製造方法、偏光板及び画像表示装置
JP5358080B2 (ja) 無機微粒子、組成物、硬化物、光学フィルム、偏光板、及び画像表示装置
JP4792305B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP2007133162A (ja) 防眩性フィルム、その製造方法、これを用いた偏光板および画像表示装置
JP2007034213A (ja) 反射防止フィルム、それを用いた偏光板及びディスプレイ装置
JP2006293329A (ja) 反射防止フィルム及びその製造方法、並びにそのような反射防止フィルムを用いた偏光板、及びそのような反射防止フィルム又は偏光板を用いた画像表示装置。
JP2007238675A (ja) 硬化性組成物、硬化性組成物の製造方法、光学フィルム、反射防止フィルム、偏光板、および画像表示装置
JP4856880B2 (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2007256651A (ja) 光学フィルムの製造方法、光学フィルム、反射防止フィルム、偏光板、及び画像表示装置
JP2006268031A (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP2007086751A (ja) 反射防止フィルム、その製造方法、並びにそれを用いた偏光板、及び画像表示装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4990005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250