JP2007292460A - 冷蔵庫、加熱用ヒータの設置方法。 - Google Patents

冷蔵庫、加熱用ヒータの設置方法。 Download PDF

Info

Publication number
JP2007292460A
JP2007292460A JP2007212929A JP2007212929A JP2007292460A JP 2007292460 A JP2007292460 A JP 2007292460A JP 2007212929 A JP2007212929 A JP 2007212929A JP 2007212929 A JP2007212929 A JP 2007212929A JP 2007292460 A JP2007292460 A JP 2007292460A
Authority
JP
Japan
Prior art keywords
heater
refrigerant
container body
refrigerator
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007212929A
Other languages
English (en)
Other versions
JP2007292460A5 (ja
JP4111247B2 (ja
Inventor
Akira Nishizawa
章 西澤
Hitoshi Maruyama
等 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007212929A priority Critical patent/JP4111247B2/ja
Publication of JP2007292460A publication Critical patent/JP2007292460A/ja
Publication of JP2007292460A5 publication Critical patent/JP2007292460A5/ja
Application granted granted Critical
Publication of JP4111247B2 publication Critical patent/JP4111247B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

【課題】 冷媒に可燃性冷媒を使用した冷蔵庫の場合、冷凍サイクルから冷媒漏れが生じた場合、除霜用ヒータが着火源となって冷蔵庫の故障の原因となる可能性がある。
【解決手段】 可燃性冷媒を冷媒に用いた冷蔵庫において、冷蔵庫本体内に循環する冷気を冷却する冷却器と、前記冷却器の近傍に設置され、内部に発熱体を有する少なくとも一部が開口した開口部を有する容器本体により構成され前記冷却器の除霜を行う除霜用ヒータと、を備え、前記発熱体を発熱させることにより前記容器本体内において発生する自然対流の上昇流の上昇方向に対して前記開口部の開口方向を前記容器本体周囲の気体が前記容器本体内に流入しにくくなる所定の角度範囲になるように前記除霜用ヒータを設置した。
【選択図】図4

Description

本発明は、オゾン層破壊や地球温暖化などの地球環境に悪影響を与えることの少ない可燃性冷媒を用いた冷蔵庫および除霜用ヒータなどの加熱用ヒータの設置方法に関するものである。
一般に冷蔵庫は、蒸発器を備え、この蒸発器において熱交換された冷気がファンによって庫内へ送り出されるようになっているため、蒸発器には霜が着霜する。したがって、蒸発器の近傍に除霜用ヒータを配置し、輻射熱やヒータ熱の自然対流によって蒸発器に着霜した霜を除霜する。このヒータとしてはガラス管ヒータなどが使用される。
冷凍冷蔵庫や空調機などの冷凍空調装置に使用される冷媒には、物性が安定し、扱い易いフロン系の冷媒が用いられている。フロン系の冷媒の中でもCFC系およびHCFC系冷媒は、オゾン層を破壊するため、HFC系フロン冷媒への移行が進んでおり、家庭用冷凍冷蔵庫ではHFC系冷媒として、HFC−134aが広く用いられている。
しかし、オゾン層を破壊しないHFC冷媒でも地球温暖化係数GWPが1300と炭化水素系冷媒の3程度と比べてかなり高いことから、地球温暖化に悪影響を与えると考えられており、ドイツ・北欧ではHFC冷媒に替えて地球温暖化防止の観点より可燃性冷媒である炭化水素系冷媒が使用されている。しかしながら、炭化水素系冷媒は可燃性のため、安全性の面より炭化水素系冷媒を使用する冷蔵庫は封入冷媒量の少ないファンを使用しない小形の冷蔵庫に制限されている。
可燃性冷媒を使用した冷蔵庫の場合、冷凍サイクルから冷媒漏れが生じると着火して冷蔵庫の故障の原因となる可能性があるため、冷蔵庫自身に着火源が無い製品仕様にするか、もしくは着火源がある場合は可燃性冷媒が着火源に接触しないようにするなどの対応が必要であり、除霜用ヒータに関するものの対応としては、特開平9−61041号公報、特開平11−257831号公報や特開2000−283635号公報などがある。
特開平9−61041号公報には両端が密封された円筒状のガラス管内にヒータが組込まれた構造のガラス管ヒータが説明されており、その構造を図20に示す。図20は特開平9−61041号公報に示された従来の除霜用ガラス管ヒータの構造を説明する図である。図において、180はガラス管、181はヒータ線、182はシリコンゴム製の一対のキャップ、183は押さえ板、184はボルト、185はナット、186はリード線である。ここで、ガラス管180内にヒータ線181を配設し、ガラス管180の両端において、キャップ182を押さえ板183を介して数カ所でボルト184、ナット185によって締め付けガラス管180内を完全に密封している。また、キャップ182とリード線186は溶着されすきまがないように密封されている。このようにガラス管180の内部に可燃性ガスが侵入するのを防止している。
また、特開平11−257831号公報には、ガラス管ヒータの両端を密封して、ガラス管内を真空にする構造のものが記載されている。図21は特開平11−257831号公報に示された従来の除霜用ガラス管ヒータの構造を説明する図である。図において、177は除霜用ガラス管ヒータであり、円筒状のガラス管180と、ガラス管180の両端を密封するキャップ182と、ガラス管180内に配置されたヒータ181とからなり、ヒータ181は制御部188によって制御される。
ガラス管180は強化ガラスが用いられ、内部は真空状態となっている。また、ガラス管180の表面には温度センサ189が設けられており、この温度センサ189から検知される温度が、炭化水素系冷媒の発火温度となる設定値を超えた場合には、制御部188によってヒータ181の通電をオフする。さらにガラス管180内には、内部の真空度を検知する検知センサ190が設けられており、この検知センサ190から検知される真空度が、ガラス管180の破損又は漏れによる真空度の減少によって設定値を超えると、制御部188によってヒータ181の通電をオフする。
また、ガラス管ヒータでは上記のようにガラス管の内部に可燃性ガスの侵入を防止するために両端部を密封する必要が生じ、密封するために製造コストのUPや製造時間の増大を招くため、例えば特開2000−283635号公報のようにガラス管ヒータでないヒータを用いる例が示されている。この特開2000−283635号公報では、シース管中に絶縁材に充填されたヒータ線が収められ、両端部をキャップにより絶縁密封された構造のシースヒータが表されている。
特開平9−61041号公報 特開平11−257831号公報 特開2000−283635号公報
従来の冷蔵庫の除霜用ヒータは以上のように構成されているので、以下に示すような課題があった。特開平9−61041号公報に示される除霜用ガラス管ヒータは、両端が密封されているため、可燃性の冷媒がガラス管内に侵入して直接ヒータに接触することがなく可燃性冷媒がヒータと接触することによる着火・爆発の危険性はないと考えられるが、運転中は、ヒータによってガラス管内の空気が加熱されることにより、管内圧力が上昇するので、ガラス管が破裂する恐れがあり、信頼性が低下するだけでなく、ガラス管が破裂した場合に冷媒が漏洩すると冷媒とヒータが直接接触するようになるので、ヒータが着火源となって着火して冷蔵庫が故障する恐れがあった。また密封構造にするためコストアップにもなっていた。
また、特開平11−257831号公報に示される除霜用ガラス管ヒータは、ガラス管に強化ガラスを使用してガラス管の両端を密封することによってガラス管内を真空にしてガラス管内の圧力が上昇しないようにしている。したがって、管内圧力が上昇することによりガラス管が破裂すること、および、ガラス管が破裂した場合に漏洩冷媒がヒータと接触することによって着火することは防止できると考えられる。しかしながら、ガラス管内を密封してさらに管内を真空にする必要があるため、強化ガラスを使用しなければならずコストUPになるばかりか両端を密封しなければならず構造が複雑で更なるコストアップになっていた。さらにガラス管内を真空にする必要性があるため、真空にするための特別の装置が必要であり、さらに真空にするのに時間が必要なためガラス管ヒータを製作するのにも時間もかかっていた。
また、特開2000−283635号公報に示される除霜用シースヒータは、ヒータ線が絶縁材で充填密封されていて、剥き出しにならないため、ヒータ線に漏れた冷媒が接触して発火するという危険性はないと考えられる。しかしながら、シースヒータはシース管内に絶縁材を充填したりする必要があるなどその構造が特殊なためガラス管ヒータに比べてコストが高く、コストアップになっていた。
本発明は以上のような問題点を解消するためになされたもので、構造が簡単で低コストな冷蔵庫および加熱用ヒータの設置方法を提供するものである。また、可燃性冷媒が漏洩した場合でも、破損などの起こらない信頼性の高い除霜用ヒータの設置方法を備えた冷蔵庫を提供するものである。また、可燃性冷媒が漏洩した場合でも、着火などの起こらない安全性の高い除霜用ヒータおよび冷蔵庫を提供するものである。また、可燃性ガスが漏洩した場合でも、破損や着火などの起こらない信頼性および安全性の高い加熱用ヒータの設置方法を提供するものである。
本発明の第1の発明に係る冷蔵庫は、可燃性冷媒を冷媒に用いた冷蔵庫において、冷蔵庫本体内に循環する冷気を冷却する冷却器と、冷却器の近傍に設置され、内部に発熱体を有する少なくとも一部が開口した開口部を有する容器本体により構成され冷却器の除霜を行う除霜用ヒータと、を備え、発熱体を発熱させることにより容器本体内において発生する自然対流の上昇流の上昇方向に対して開口部の開口方向を容器本体周囲の気体が容器本体内に流入しにくくなる所定の角度範囲になるように除霜用ヒータを設置したものである。
本発明の第2の発明に係る冷蔵庫は、開口部の開口方向が容器本体内の自然対流による上昇流の上昇方向に対して90度±30度の角度範囲内になるように除霜用ヒータが設置されているものである。
本発明の第3の発明に係る冷蔵庫は、容器本体に少なくとも一端が開口したガラス管を使用したガラス管ヒータを使用したものである。
本発明の第4の発明に係る冷蔵庫は、除霜用ヒータの容器本体の表面温度が可燃性冷媒の着火温度未満となるように容器本体内に設けられた発熱体への通電を停止するかあるいは発熱体への入力を制御するようにしたものである。
本発明の第5の発明に係る冷蔵庫は、送風機、冷却器が配置されてなる冷却器室と、冷却器室内に配置され冷却器の除霜を行う除霜用ヒータと、冷却器室内に設けられた可燃性冷媒の漏洩を検出する冷媒検出手段、を備え、冷媒検出手段により冷媒漏れを検出したときには、送風機を運転するようにしたものである。
本発明の第6の発明に係る冷蔵庫は、送風機、冷却器が配置されてなる冷却器室と、冷却器室内に配置され冷却器の除霜を行う除霜用ヒータと、冷却器室内に設けられた可燃性冷媒を吸着する冷媒吸着手段、を備え、冷媒が漏れた場合に冷媒吸着手段により漏れた冷媒を吸着するようにしたものである。
本発明の第7の発明に係る加熱用ヒータの設置方法は、可燃性ガスが使用される可能性のある部屋内に設置され、少なくとも一部が開口した開口部を有する容器本体と、容器本体内に配設され、通電されることによって発熱して容器本体を介して周囲を加熱する発熱体と、を備えた加熱用ヒータにおいて、容器本体内において発生する自然対流の上昇流の上昇方向に対して開口部の開口方向を容器本体外の気体が容器本体内に流入しにくくなる所定の角度範囲内になるように加熱用ヒータを設置したものである。
本発明の第8の発明に係る加熱用ヒータの設置方法は、所定の角度範囲を±90度±30度としたものである。
以上説明したように、本発明の第1の発明に係る冷蔵庫は、可燃性冷媒を冷媒に用いた冷蔵庫において、冷蔵庫本体内に循環する冷気を冷却する冷却器と、冷却器の近傍に設置され、内部に発熱体を有する少なくとも一部が開口した開口部を有する容器本体により構成され冷却器の除霜を行う除霜用ヒータと、を備え、発熱体を発熱させることにより容器本体内において発生する自然対流の上昇流の上昇方向に対して開口部の開口方向を容器本体周囲の気体が容器本体内に流入しにくくなる所定の角度範囲になるように除霜用ヒータを設置したので、除霜用ヒータが設置されている冷却器室が着火濃度以上の可燃性冷媒雰囲気にさらされた場合でも容易に着火しないようにすることが可能になり、安全性にすぐれ、信頼性の高い冷蔵庫を得ることができる。
本発明の第2の発明に係る冷蔵庫は、開口部の開口方向が容器本体内の自然対流による上昇流の上昇方向に対して±90度±30度の角度範囲内になるように除霜用ヒータが設置されているので、容器本体の内部の自然対流により除霜用ヒータの外部より漏れた可燃性冷媒が容器本体内に侵入することによる着火を抑制することができ信頼性の高い冷蔵庫を得ることができる。
本発明の第3の発明に係る冷蔵庫は、容器本体に少なくとも一端が開口したガラス管を使用したガラス管ヒータを使用したので、構造が簡単で製造時間のかからない低コストな冷蔵庫を得ることができる。
本発明の第4の発明に係る冷蔵庫は、除霜用ヒータの容器本体の表面温度が可燃性冷媒の着火温度未満となるように容器本体内に設けられた発熱体への通電を停止するかあるいは発熱体への入力を制御するようにしたので、冷却室に可燃性冷媒が充満しても除霜用ヒータが着火源となって着火することがなくなり、着火により除霜用ヒータおよび冷蔵庫本体が損傷するのを防止でき、安全で信頼性の高い冷蔵庫を提供することができる。
本発明の第5の発明に係る冷蔵庫は、送風機、冷却器が配置されてなる冷却器室と、冷却器室内に配置され冷却器の除霜を行う除霜用ヒータと、冷却器室内に設けられた可燃性冷媒の漏洩を検出する冷媒検出手段、を備え、冷媒検出手段により冷媒漏れを検出したときには、送風機を運転するようにしたので、冷却室40に可燃性冷媒が充満することがなくなり除霜用ヒータ6が着火源となって着火することが抑制でき、安全で信頼性の高い冷蔵庫を提供することができる。
本発明の第6の発明に係る冷蔵庫は、送風機、冷却器が配置されてなる冷却器室と、冷却器室内に配置され冷却器の除霜を行う除霜用ヒータと、冷却器室内に設けられた可燃性冷媒を吸着する冷媒吸着手段、を備え、冷媒が漏れた場合に冷媒吸着手段により漏れた冷媒を吸着するようにしたので、冷却室に可燃性冷媒が充満することがなくなり除霜用ヒータが着火源となって着火することが抑制でき、安全で信頼性の高い冷蔵庫を提供することができる。
本発明の第7の発明に係る加熱用ヒータの設置方法は、可燃性ガスが使用される可能性のある部屋内に設置され、少なくとも一部が開口した開口部を有する容器本体と、容器本体内に配設され、通電されることによって発熱して容器本体を介して周囲を加熱する発熱体と、を備えた加熱用ヒータにおいて、容器本体内において発生する自然対流の上昇流の上昇方向に対して開口部の開口方向を容器本体外の気体が容器本体内に流入しにくくなる所定の角度範囲内になるように加熱用ヒータを設置したので、台所など可燃性ガス(たとえばプロパンなど)を使用する部屋内に設置される調理用や暖房用の加熱ヒータのある部屋内に可燃性ガスが漏洩して充満した場合でも容易に着火しないようにすることが可能な加熱用ヒータの設置方法を得ることができる。
本発明の第8の発明に係る加熱用ヒータの設置方法は、所定の角度範囲を±90度±30度としたので、容器本体内に可燃性冷媒が容易に侵入できなくなり、安全性にすぐれ、信頼性の高い低コストな加熱用ヒータの設置方法を得ることができる。
実施の形態1.
以下、本発明の実施の形態1について図を用いて説明する。図1は本発明のファン式冷蔵庫の正面図を表し、図2は図1で表された冷蔵庫の側断面図をあらわしている。1は断熱材1aにより周囲を覆われ、冷蔵物などを収納する複数の貯蔵室(たとえば冷蔵室、製氷室、切替室、野菜室、冷凍室など)を有する冷蔵庫本体であり、全面には断熱扉3が複数枚設けられている。図1、図2においては、5ドア冷蔵庫を示しており、断熱扉3は5つ存在し、貯蔵室としては、たとえば冷蔵室15、製氷室16、切替室17、野菜室18、冷凍室19なを有している。図において、上部に冷蔵室15を備え、冷蔵室15の下方には製氷室16と切替室17が配置され、その下方には野菜室18、そして最下部が冷凍室19といった構成になっている。
そして、製氷室16、切替室17、野菜室18、冷凍室19の背面側には冷却器室40が設けられており、比較的下部側に冷却装置を構成する蒸発器4と送風用ファン5が配設され、圧縮機7は冷却器室40の下方に設けられた機械室2内に配置されている。また、蒸発器4の下方にはたとえばガラス管ヒータなどの除霜用ヒータ6が配置されている。
図において、蒸発器4の上部には、庫内冷気送風用の送風ファン5が設けられ、運転中はファンの回転によって蒸発器4で冷やされた冷気を庫内の各貯蔵室に循環させて冷やす構造となっている。
この様なファン式冷蔵庫では、蒸発器4に多量の着霜が生じるため、一定の運転時間経過後に、蒸発器4の下部に配設された除霜用ヒータ(例えばガラス管ヒータ)6に通電して、その発熱により蒸発器に着霜した霜を溶かして取り除く構造になっている。
ここで、本発明で使用する除霜用ヒータ6の構造を図3にて説明する。図3は、本発明の実施の形態1を表す除霜用ヒータの構造を表す図であり、たとえばガラス管ヒータを使用した例について説明する。図において、6は除霜用ヒータであり、8は除霜用ヒータ6の容器本体であり、ガラス管ヒータの場合はガラス管を表す。9はキャップ、10はガラス管8内に配置されたヒータ(発熱体)、30はヒータ10へ通電するためのリード線である。ガラス管8は円筒状をしており、ガラス管8の両端を閉じるキャップ9は、完全に密封されていなくてもよく、ガラス管8の内部と外部とは連通していてもよい。
ガラス管8は図4にて示すように蒸発器近傍に設置される。図4は冷却器室40内に設置されている蒸発器4近傍のガラス管ヒータの配置状況を説明するための図であり、図4(a)は蒸発器4を正面から見た正面図、図4(b)は図4(a)で表される蒸発器やヒータなどの縦断面図である。図において、4は蒸発器、11は蒸発器4のフィン、12は蒸発器4の冷媒配管、13は蒸発器4の出口配管に設けられたアキュムレータ機能を有するヘッダ、5は送風ファン、6は除霜用ヒータでたとえばニクロム線を使用したガラス管ヒータ、14はヒータルーフであり、蒸発器4に着霜した霜が溶けた水滴が直接除霜用ヒータ6に当たらないようにガラス管ヒータ6と蒸発器4との間に設けられた覆いである。45はドレン受けである。
このように構成された冷蔵庫においては、送風ファン5により冷却器室40内の冷気が冷蔵室15などの各貯蔵室にダクト50などを介して送られることによって各貯蔵室内を所定の温度に維持している。この時、蒸発器4の温度は約―25℃と低いため冷気内の水分が蒸発器4の表面(フィン11)で凝縮し霜層を形成する。この霜層による熱抵抗および風路抵抗の増加により蒸発器4の熱交換性能が低下する。
上記蒸発器4に着霜した霜層は一定時間ごとに通電される除霜用ヒータ6により除霜される。この霜取り運転時は、ガラス管ヒータ6に通電することによって、ガラス管8内のヒータ10が発熱し、輻射と自然対流とによって蒸発器4に着いた霜を溶かすことによって除霜が行われる。この時の溶けた水滴は、ヒータルーフ14に当たった後、下方に落下してドレン受け45を介して外部に排出される。
ここで、本発明では冷蔵庫に使用される冷媒として、可燃性ではあるが、オゾン層を破壊せず、地球温暖化係数が小さく地球環境にやさしいR600a(イソブタン)やR290(プロパン)などの炭化水素系冷媒を用いている。
ここで炭化水素系冷媒を使用していない従来の冷蔵庫においては、冷媒が可燃性でないことから、ガラス管8の内部の自然対流による外部よりの空気や冷媒の侵入については何も対応する必要がなく、ガラス管8とキャップ9の間あるいはキャップ9とリード線30の間にはすきまが生じても支障がないし、設置角度に対しても制限を設ける必要がなかった。
従って、その対応として特開平9−61041号公報、特開平11−257831号公報にて説明したようにガラス管の両端部を密封することにより可燃性冷媒がガラス管内に侵入するのを防止している。しかしながら、密封することしか考慮してなくて設置角度に対しては何の考慮も行われていなかった。
しかしながら、本発明のように炭化水素系冷媒を使用した冷蔵庫においては、ガラス管8内に自然対流が生じると、万一、可燃性冷媒が漏れた場合には漏れた冷媒がガラス管8内の自然対流によりガラス管8の内部に侵入し易くなり、可燃性冷媒がヒータ10(発熱体)に接触して着火し故障の原因となる危険性が生じるため、除霜用ヒータの設置角度によって影響度が異なってくる。
この状況を説明したのが図5である。図5はガラス管ヒータを垂直に設置した場合のガラス管内部の自然対流の上昇流の流れの様子を説明した図である。図において、図3と同等部品は同一の符号を付して説明を省略する。図において、30aはガラス管8の下部のキャップ9とリード線30との間に設けられた下部すきま、30bはガラス管8の上部のキャップ9とリード線30との間に設けられた上部すきまであり、いずれも微小すきまであるがすきまが存在しておりガラス管8の両端面は密封されていない。また、100はガラス管8内の気体(たとえば空気など)の自然対流による上昇流である。101はすきま30aからガラス管8内に侵入する外部の気体(例えば空気あるいは漏洩冷媒など)、102は隙間30bからガラス管8外に流出するガラス管8内の気体(空気あるいは漏洩冷媒など)である。
リード線30によって円筒状のガラス管8内のヒータ(発熱体)が発熱するとガラス管8内に内部の気体の自然対流による上昇気流100が発生する。そうすると上昇気流100によりガラス管8内部の空気は、キャップ9とリード線30の間の上部すきま30bが上昇流の方向に存在するため、すきま30bから流出しやすい。上昇気流100によりガラス管8内部の空気が上部すきま30bから流出すると、キャップ9とリード線30の間の下部すきま30aからガラス管8外部の気体(空気や冷媒など)がガラス管8内に引き込まれ流入する。
したがって、万一、可燃性冷媒が漏洩して除霜用ヒータの周囲に充満している場合は、ヒータ10と可燃性冷媒が直接接触するようになるので、ヒータ10の温度やヒータ10の周囲の可燃性冷媒の濃度にもよっては、着火する可能性がでてくる。すなわち、ヒータ10周囲の可燃性冷媒の濃度が発火濃度以上で、しかもヒータ10の温度が発火温度以上であれば、着火して除霜用ヒータおよび冷蔵庫の故障の原因となる。
但し、図6、図7に示すように容器本体8のガラス管内の自然対流による気体(たとえば空気や漏洩冷媒など)の上昇方向に対するガラス管8の設置角度によってはガラス管の外部の気体(たとえば空気や漏洩冷媒など)が侵入しにくくなる。図6はガラス管ヒータの設置角度が略水平の場合のガラス管内部の気体の自然対流の流れの様子について説明するための図、図7は図6におけるガラス管の断面図である。図において、図3、図5と同等部品は同一の符号を付して説明を省略する。
図において、110は容器本体8であるガラス管内の気体(たとえば空気など)の自然対流の上昇流100の流れ方向を通る軸線であり、垂直方向を表す基準軸である。30c、30dはガラス管8に設けられたキャップ9とリード線30との間に設けられた微小すきまであり、ガラス管8の両端面の開口部81、82は密封されていない。また、θはガラス管8内の気体の自然対流の上昇流100の流れ方向を通る軸線(本図の場合は垂直方向の基準軸線)110に対する除霜用ヒータ6の開口部(図6ではキャップ9とリード線30とのすきま30c、30d、図7では容器本体8であるガラス管の端部の開口部81、82)の開口方向の角度を表している。
図に示すように除霜用ヒータ6の開口部の開口方向が自然対流の上昇流100の流れ方向を通る軸線(垂直方向の基準軸線)に対する角度θが略90度(水平)の場合は、容器本体(ガラス管)8内の自然対流の上昇流100の上昇方向に対して、除霜用ヒータ6の開口部の開口方向が直交する方向となるので、図5で説明したように上昇流100の方向と開口部81、82の開口方向が略一致する角度(θ=0度)の場合に比べて、容器本体(ガラス管)8内で発生した自然対流の上昇流100が容器本体8から流出しにくく、また、容器本体8外部の空気などの気体が容器本体8に流入しくくなっている。
したがって、本発明では、除霜用ヒータ6の開口部の開口方向の角度を容器本体8内部の気体(たとえば容器本体8の内部に存在する空気など)が流出しにくく、容器本体8外部の気体(たとえば容器本体8の周囲に存在する空気など)が容器本体8の内部に流入しにくい所定の角度範囲になるように除霜用ヒータを設置することによって、容器本体(ガラス管)8の内部の自然対流により除霜用ヒータ6の外部より漏れた可燃性冷媒が容器本体8内に侵入することによる着火を抑制することができる。
すなわち、本発明では除霜用ヒータ6の開口部の開口方向を容器本体8外部の気体(たとえば容器本体8の周囲に存在する空気など)が容器本体8の内部に流入しにくくなる所定角度範囲に設置するようにすれば、容器本体8内部の温度変化に伴う自然対流が発生しても外部より漏れた冷媒が容器本体(ガラス管)8内に侵入するのを抑制することができる。このことは、除霜用ヒータ6(たとえばガラス管ヒータ)を略水平に設置した場合には、垂直に設置した場合よりも可燃性冷媒が着火するときの容器本体8の表面温度が異なることにより証明される。
図8は除霜用ヒータ6(ここではガラス管ヒータ)を可燃性冷媒であるR600a(イソブタン)の着火濃度(1.8〜8.4vol%)雰囲気下に設置したときの、ガラス管ヒータの設置角度(垂直方向からの傾きθ)と着火との関係を数値で表したした図であり、図9は図8のガラス管ヒータの設置角度と着火との関係ををグラフ化した図である。ここで、図8、図9は除霜用ヒータの設置角度θを90度(水平)、60度、0度(垂直)に設定して、それぞれの角度での可燃性冷媒が着火したときの容器本体(ガラス管)の表面温度を表した試験結果である。また、図8、図9においての試験は、密閉した部屋の内部にガラス管ヒータを所定の角度で設置して、部屋内のR600aの濃度を着火濃度以上になるように設定した後、ガラス管ヒータに通電しながら容器本体8であるガラス管の表面温度を温度センサーにより測定したものである。
設置角度θが90度(水平設置)、60度(略水平設置)ではガラス管表面温度がそれぞれ715℃、705℃であり700℃以上にならないと着火しなかったが、垂直設置(設置角度θ=0度)では470℃で着火している。これは、上述したように垂直設置(設置角度θ=0度)では容器本体8(ここではガラス管)内の自然対流の方向(垂直方向)とガラス管ヒータの開口部の開口方向が同じ方向であるため、容器本体8の外部より可燃性冷媒が侵入しやすくなり、侵入した可燃性冷媒が容器本体8内のヒータ(発熱体)10に接触して着火したためと考えられる。すなわち、可燃性冷媒が容器本体8内に侵入して発熱体10と直接接触すると、容器本体8の表面温度が低い温度(470℃)で着火することになる。
これに対し、設置角度θ=60度以上では容器本体(ここではガラス管)8内の自然対流の上昇方向(垂直方向)が容器本体8の開口部の開口方向(略水平方向)と略直交する方向となるため、容器本体8内部の自然対流による上昇流が容器本体8より外部に流出しにくくなり、その結果容器本体8の両端開口部から漏洩冷媒が流入することも容易でないためと考えられる。すなわち、容器本体8内に可燃性冷媒が侵入しにくくなっているため、可燃性冷媒が発熱体10と接触しにくくなり、容器本体8の表面温度が高い温度(700℃以上)になるまで着火しないようになる。この設置角度は90度を越えて120度以下であっても同等の効果が得られる。すなわちθ=60度〜120度の範囲であれば良い。
また、図9の場合では設置角度θが時計回り方向に略90度の場合について説明しているが、反時計回り方向であっても同様の効果が得られることは言うまでも無い。したがって、設置角度θは時計回りであっても反時計回りであってもよく、時計回り方向をプラス方向として60度〜120度の範囲を+90度を中心にして±30度の範囲内で表し、反時計回り方向をマイナス方向として−60度〜―120度の範囲を−90度を中心にして±30度の範囲内で表すことにすれば、除霜用ヒータ6の設置角度θはθ=±90度±30度であればよいことになる。
したがって、除霜用ヒータ6の設置角度を容器本体8外部の空気などの気体が容器本体8の内部に流入しにくい所定の範囲内(θ=±90度±30度)にすることによって、可燃性冷媒が容器本体8の内部のヒータ10と接触しにくくなるので、可燃性冷媒が着火するするときの容器本体8の表面温度を大きくすることができ、可燃性冷媒が除霜用ヒータ(たとえばガラス管ヒータ)6を着火源として着火するのを抑制できる。すなわち、除霜用ヒータ6が設置されている冷却器室40が着火濃度以上の可燃性冷媒雰囲気にさらされた場合でも除霜用ヒータ6を所定角度(θ=±90度±30度)に設置しておくことによって容易に着火しないようにすることが可能になり、安全性にすぐれ、信頼性の高い冷蔵庫を得ることができる。
更に、除霜用ヒータ6(たとえばガラス管ヒータ)の周囲の冷媒濃度が着火濃度にならないように工夫すれば更に着火の危険性を回避できる。例えば、冷媒漏れが除霜用ヒータ6の周囲(たとえば冷却器室40内)で発生した場合で、冷媒漏れを検出する手段(たとえばガス漏れセンサーなど)を別途設けていれば、冷媒漏れを検出することが可能となり、もしも冷媒漏れを検出した場合は送風用ファン5を強制的に運転させるように制御するようにすれば、漏洩した冷媒を攪拌できるので、漏洩した可燃性冷媒が滞留するのを防止でき、冷却器室40内を着火濃度以下に抑えることができる。このようにすれば、除霜用ヒータ6の周囲の可燃性冷媒の濃度が着火濃度にならないため、可燃性冷媒が万一漏れたとしても着火することがなくなり、高信頼性および更なる安全性を図ることができるようになる。
ここで、除霜用ヒータ6の例として容器本体8に両端が密封されていない(開口部あるいは微小すきまを有する)筒状のガラス管を使用し、このガラス管の内部にヒータを有するガラス管ヒータを例にして説明したが、別にガラス管ヒータでなくともよく、ガラス管の代わりに少なくとも一端が開口した筒状の容器を使用した筒状ヒータであっても同様の効果を奏する。ただし、容器本体8にガラス管を使用した場合は、必要な強度および温度耐力を有するものが簡単な構造であるため低コストで製造できるので、信頼性が高く、製造時間のかからない低コストな除霜用ヒータを得ることができ低コストで信頼性が高く安全な冷蔵庫を得ることができる。
また、容器本体は筒状でなくてもよく、どのような形状の容器でもよく、図10、図11、図12に示したような構造でもよい。図10は、本発明の実施の形態1を表す別の実施例を表す除霜用ヒータの断面図である。図において、筒状の容器本体8の内部に発熱体10を有している。また、容器本体100の片側端面には開口部95、96が存在し、発熱体10に通電するためのリード線30が開口部95、96を貫通している。この場合、開口部95、96の開口方向は図に示すように自然対流の上昇流100の上昇方向(垂直方向)に対してθの角度を有している。ここで開口部は1箇所のみ(開口部95のみ)でよく、開口部96はなくてもよい。また、開口部は3箇所以上であってもよく全ての開口部を所定角度範囲(θ=±90度±30度)内に設置するようにすれば同様の効果を有するのはいうまでもない。
また、図11は本発明の実施の形態1を表す別の構造の除霜用ヒータの構造を表す斜視図、図12は図11で示された除霜用ヒータの断面図である。図において、8は除霜用ヒータの容器本体であり、2箇所に開口部97、98を有しており、この開口部97、98から容器本体8内に設けられた発熱体(ヒータなど)10に接続されたリード線30が容器本体8の外部に取りださている。
また、図に示した除霜用ヒータの開口部97の開口方向は図12の矢印で示す方向であり、容器本体8内の気体の自然対流の上昇流100の上昇方向(垂直方向)に対して開口部97の設けられている端面81と直角方向であるθ1の方向である。同様に、開口部98の開口方向は図12の矢印で示す方向であり、容器本体8内の気体の自然対流の上昇流100の上昇方向(垂直方向)に対して開口部98の設けられている端面82と直角方向であるθ2の方向である。ここで、開口部97はθ1=90度±30度の範囲内になるように設置し、開口部98はθ2=−90度±30度の範囲内になるように設置すればよい。
このように、容器本体8は筒状でなくてもよく、多角柱のような形状でもよく、開口部の開口方向が所定の角度範囲内(θ=±90度±30度)となるように容器本体8を設置すれば、容器本体8内の気体(たとえば空気など)の自然対流の上昇方向(垂直方向)が容器本体8の開口部の開口方向(略水平方向)と略直交する方向となるため、容器本体8内部の自然対流による上昇流が容器本体8より外部に流出しにくくなり、その結果容器本体8の開口部から漏洩冷媒が流入することも容易でないためと考えられる。
したがって、除霜用ヒータ6の開口部の開口方向を所定の角度範囲内(θ=±90度±30度)にすることによって、可燃性冷媒がヒータ10と接触しにくくなり、可燃性冷媒が着火するするときの容器本体8の表面温度を大きくすることができるので、可燃性冷媒が除霜用ヒータ6を着火源として着火するのを抑制できる。すなわち、除霜用ヒータ6が設置されている冷却器室40が着火濃度以上の可燃性冷媒雰囲気にさらされた場合でも除霜用ヒータ6の開口部の開口方向を所定の角度範囲内(θ=±90度±30度)に設置しておくことによって容易に着火しないようにすることが可能になり、安全性にすぐれ、信頼性の高い冷蔵庫を得ることができる。
また、冷却室40に可燃性冷媒を吸着する吸着材などの吸着手段(図示せず)を設けるようにしておけば、万一可燃性冷媒が着火源となる除霜用ヒータ6が設置されている冷却室40に漏れた場合でも、吸着材などの吸着手段(たとえばモレキュラシーブスや油など可燃性冷媒を吸着する物質)が可燃性冷媒を吸着するため、冷却室40に可燃性冷媒が充満することがなくなり除霜用ヒータ6が着火源となって着火することが抑制でき、安全で信頼性の高い冷蔵庫を提供することができる。吸着材の設置場所は、着火源となる部品(たとえば電気品など)が存在する全ての場所に設置すれば更なる安全性・信頼性が得られる。
また、可燃性冷媒が漏れた場合に、可燃性冷媒を検知するガス漏れセンサーなどの冷媒検出手段(図示せず)をたとえば冷却室40などに設置しておき、この冷媒検出手段が可燃性冷媒の漏れを検知した場合に、送風ファン5を運転するようにしておけば、万一可燃性冷媒が漏洩したとしても、冷却室40に可燃性冷媒が充満することがなくなり除霜用ヒータ6が着火源となって着火することが抑制でき、安全で信頼性の高い冷蔵庫を提供することができる。
ここで、除霜運転時に除霜用ヒータ6の温度を除霜用ヒータ6の容器本体8の表面に設けられた(たとえばガラス管ヒータの場合はガラス管8の表面に設けられた)熱電対などの温度検出手段(図示せず)によって検出し、検出した除霜用ヒータ6の温度が可燃性冷媒の着火点(イソブタンの場合は約460℃)に近づく(着火点の温度より20〜50℃低い温度)と除霜用ヒータ6の通電を停止するようにすれば、万一可燃性冷媒が漏れた場合でも除霜用ヒータ6の温度が可燃性冷媒の着火点の温度よりも高くならないので、除霜用ヒータ6が着火源となって着火することがなくなる。
この場合、通電停止となった除霜用ヒータ6への通電開始は、除霜用ヒータの温度が可燃性冷媒の着火点の温度よりも充分低くなったときに行われるように設定すればよい。ここで、除霜用ヒータ6の温度検出手段は温度が最も高くなる部分に設けるのが望ましい。また、以上は除霜用ヒータ6への通電を停止する制御の場合について説明したが、別に停止しなくても良く、除霜用ヒータ6の容器本体8の表面温度が可燃性冷媒の着火温度よりも高くならないように除霜用ヒータ6への入力を制御するようにすれば、万一可燃性冷媒が漏れた場合でも、除霜用ヒータ6の表面温度が可燃性冷媒の着火温度よりも高くならないので、除霜用ヒータ6が着火源となって着火することがなくなる。
したがって、万一可燃性冷媒が着火源となる除霜用ヒータ6(たとえばガラス管ヒータ)が設置されている冷却室40に漏れた場合でも、除霜用ヒータの温度が可燃性冷媒の着火点の温度よりも高くならないため、冷却室40に可燃性冷媒が充満しても除霜用ヒータ6が着火源となって着火することがなくなり、着火により除霜用ヒータおよび冷蔵庫本体が損傷するのを防止でき、安全で信頼性の高い冷蔵庫を提供することができる。
ここで、除霜用ヒータ6の容器本体8の開口部の開口方向とキャップ9の開口部の開口方向の関係について説明する。図13は除霜用ヒータの容器本体の開口部の開口方向とキャップの開口部の開口方向との関係を説明するための除霜用ヒータの構造を表す図であり、たとえばガラス管ヒータを使用した例について説明する。図において、6は除霜用ヒータ、8は除霜用ヒータ6の容器本体であり、ガラス管ヒータの場合はガラス管を表す。9はキャップ、10は容器本体8内に配置されたヒータ(発熱体)、30はヒータ10へ通電するためのリード線である。ガラス管で構成される容器本体8は円筒状をしており、容器本体8の両端を閉じるキャップ9は、完全に密封されておらず、容器本体8の内部と外部とは連通している。
図に示したようにキャップ9にはリード線30を取り出すための取りだし穴35や容器本体8内外の圧力を均衡させるための呼吸穴36が設けられている。この取りだし穴35や呼吸穴36は垂直方向に開口しているが、容器本体8の開口部82は所定の角度方向(容器本体内に発生する気体の自然対流の上昇流の上昇方向に対してθ=±90度±30度)に開口している。このように本発明では、容器本体8の開口部82の開口方向が所定の角度方向になるように設置されていればよく、キャップ9の取りだし穴35や呼吸穴36の開口方向は所定の角度方向でなくてもよい。
すなわち、本発明では冷媒漏洩時に漏れた可燃性冷媒が取りだし穴35や呼吸穴36からキャップ9内に侵入したとしても、容器本体8の開口部82の開口方向が容器本体8外の気体が容器本体8内に流入しにくくなる所定角度(容器本体内に発生する気体の自然対流の上昇流の上昇方向に対してθ=±90度±30度)になるように設置されているので、容器本体8内の気体の自然対流の上昇流の上昇方向と容器本体8の開口部82の開口方向が略直交する方向となり、容器本体8内の気体の上昇流が容器本体8外に流出しにくいため、キャップ9内に侵入した可燃性冷媒が容器本体8内に引き込まれにくくなり、可燃性冷媒が容器本体8内に侵入するのを抑制できる。
したがって、本発明では、除霜用ヒータ6の容器本体8の開口部の開口方向の角度を容器本体8外の気体が前記容器本体8内に流入しにくくなる所定の角度範囲になるように除霜用ヒータを設置することによって、容器本体(ガラス管)8の内部の自然対流により除霜用ヒータ6の外部より漏れた可燃性冷媒が容器本体8内に侵入しにくくなり着火を抑制することができ、着火による冷蔵庫の故障を抑制できる。
実施の形態2.
冷蔵庫の貯蔵室などの配置に関しては、図1、図2に示す形態でなくてもよく、図14乃至図19に示すような形態でもよい。図14は本発明の別の実施例を表すファン式冷蔵庫の正面図を表し、図15は図14で表された冷蔵庫の側断面図を表している。また、図16は本発明の別の実施例を表すファン式冷蔵庫の正面図であり、図1、図14で表されたものとは別の形態の冷蔵庫の正面図を表し、図17は図16で表された冷蔵庫の側断面図を表している。また、図18は本発明の別の実施例を表すファン式冷蔵庫の正面図を表し、図19は図18で表された冷蔵庫の側断面図を表した図である。
図14〜図19において、図1〜図13と同等部分は同一の符号を付して説明は省略する。図14、図15で表される冷蔵庫は、上部に冷蔵室15を備え、冷蔵室15の下方には野菜室18が配置され、その下方には製氷室16と切替室17が配置され、そして最下部が冷凍室19といった構成になっている。そして、製氷室16、切替室17、冷凍室19の背面側には冷却器室41が設けられており、冷却装置を構成する蒸発器4と送風用ファン5が配設され、圧縮機7は冷却器室41の下方に設けられた機械室2内に配置されている。また、蒸発器4の下方には除霜用の除霜用ヒータ6が配置されている。
また、図16、図17で表される冷蔵庫は、上部に冷蔵室15を備え、冷蔵室15の下方には野菜室18が配置され、そして最下部が冷凍室19といった構成になっている。そして、野菜室18、冷凍室19の背面側には冷却器室42が設けられており、冷却装置を構成する蒸発器4と送風用ファン5が配設され、圧縮機7は冷却器室42の下方に設けられた機械室2内に配置されている。また、蒸発器4の下方には除霜用の除霜用ヒータ6が配置されている。
また、図18、図19で表される冷蔵庫は、上部に冷蔵室15を備え、冷蔵室15の下方には野菜室18が配置され、その下方には製氷室16と切替室17が配置され、そして最下部が冷凍室19といった構成になっている。そして、製氷室16、切替室17、冷凍室19の背面側には冷却器室41が設けられており、冷却装置を構成する蒸発器4と送風用ファン5が配設され、圧縮機7は冷却器室41の下方に設けられた機械室2内に配置されている。また、蒸発器4の下方には除霜用の除霜用ヒータ6が配置されている。
図14〜図19で示す冷蔵庫においても、蒸発器4の上部には、庫内冷気送風用の送風ファン5が設けられ、運転中はファンの回転によって蒸発器4で冷やされた冷気を庫内の各貯蔵室に循環させて冷やす構造となっている。また、蒸発器4に多量の着霜が生じるため、一定の運転時間経過後に、蒸発器4の下部に配設された除霜用ヒータ(例えばガラス管ヒータ)6に通電して、その発熱により蒸発器に着霜した霜を溶かして取り除く構造になっているのも図1、図2で説明した冷蔵庫と同じである。
以上のような形態の冷蔵庫においても、冷媒に可燃性冷媒を使用した場合には、実施の形態1で説明したように除霜用ヒータ6を可燃性冷媒の着火濃度雰囲気下に設置した場合でも除霜用ヒータ6の開口部の開口方向を所定角度範囲内(θ=±90度±30度)に設置することによって容易に着火しないようにすることが可能となり、安全性にすぐれ、信頼性の高い冷蔵庫を得ることができる。
ここで、図18、図19にて表された冷蔵庫は、上段部に冷蔵室15を備え、その下には野菜室18、更に下には製氷室16、切替室17、最下部が冷凍室19といった構造になっており、冷却器を2つ有している。冷蔵庫本体1の背面側の比較的上部側には主に冷蔵室15や野菜室18の冷却を行う冷蔵室側蒸発器20と冷蔵室側送風ファン21が配設された上部冷却器室と、冷蔵庫本体1の背面側の比較的下部側には主に冷凍室19や製氷室16や切替室17の冷却を行う冷凍室側蒸発器22と冷凍室側送風ファン23が配設された下部冷却器室44が設けられている。
冷蔵室側蒸発器20や冷凍室側蒸発器22の上部には、庫内冷気送風用のファン21、23がそれぞれ設けられ、運転中はファンの回転によって冷蔵室側蒸発器20で冷やされた冷気を冷蔵室15や野菜室18に循環させて冷やし、冷凍室側蒸発器22で冷やされた冷気を冷凍室19や製氷室16や切替室17に循環させて冷やす構造となっている。
このように冷却器が2つある場合は、それぞれの冷却器に除霜用ヒータを設ける必要があり、上部冷却器室43内の冷蔵室用蒸発器20の下方には除霜用ヒータ61が設けられ、下部冷却器室44内の冷凍室用蒸発器22の下方には除霜用ヒータ62が設けられている。この2つの除霜用ヒータ(たとえばガラス管ヒータ)61、62に対しても、本実施の形態では、それぞれの除霜用ヒータの開口部の開口方向を容器本体8外の空気などの気体が容器本体8内に流入しにくい所定角度範囲内(θ=±90度±30度)になるように設置している。
ここで、2つの除霜用ヒータ61、62とも所定角度にて設置した方が良いが、両方とも所定角度にて設置しなくても良い。すなわち、可燃性冷媒が空気よりも重い場合は下方に充満しやすくなるため、可燃性冷媒が充満しやすい下部冷却室44内の除霜用ヒータ62に対してのみ所定角度になるように設置するようにすれば、同様に安全性は向上する。逆に可燃性冷媒が空気よりも軽い場合は上方に充満しやすくなるため、可燃性冷媒が充満しやすい上部冷却室43内の除霜用ヒータ61に対してのみ所定角度になるように設置するようにすればよい。
したがって、貯蔵室の数や貯蔵室の配置がどのような形態の冷蔵庫であっても除霜用ヒータ6、61、62が設置されている冷却器室が着火濃度以上の可燃性冷媒雰囲気にさらされた場合でも、除霜用ヒータ6、61、62の開口部の開口方向を所定角度範囲内(θ=±90度±30度)すなわち水平±30度に設置しておくことによって容易に着火しないようにすることが可能になり、構造が簡単で低コストな既存の除霜用ヒータ(たとえばガラス管ヒータ)を使用することができ、安全性にすぐれ、信頼性の高い低コストな冷蔵庫を得ることができる。
また、実施の形態1で説明した吸着材の設置や除霜用ヒータの温度制御を行うようにすれば、着火により冷蔵庫本体が損傷するのを防止でき、安全で信頼性の高い冷蔵庫を提供することができる。
ここで、実施の形態1で説明したように、キャップ9の取りだし穴や呼吸穴の開口方向はどの方向であってもよく、容器本体8の開口部の開口方向が容器本体外の気体が容器本体内に流入しにくい所定の角度範囲(容器本体内に発生する自然対流の上昇流の上昇方向に対してθ=±90度±30度)になるように設置されていればよい。そうすれば、容器本体(ガラス管)8の内部の自然対流により除霜用ヒータ6の外部より漏れた可燃性冷媒が容器本体8内に侵入しにくくなり着火を抑制することができ、着火による冷蔵庫の故障を抑制できる。
ここで、実施の形態1および実施の形態2において使用される可燃性冷媒としては、地球温暖化に対する係数が小さいアンモニアR717、メタンR50、エタンR170、ノルマルブタンR600、エチレンR1150、プロピレンR1270などを用いてもよい。また、可燃性冷媒の2種以上の混合、もしくはフロン系冷媒などと可燃性冷媒の2種以上を混合した冷媒であってもよい。
実施の形態1および実施の形態2では、冷蔵庫および冷蔵庫用除霜ヒータの設置方法について説明したが、別に冷蔵庫に限るものではない。実施の形態1および実施の形態2で説明した除霜用ヒータ6は、容器本体8内に発熱体10を有しこの発熱体10をリード線30に通電して発熱させることにより物体を加熱する加熱用ヒータであるから、その用途は冷蔵庫で無くとも良い。
たとえば、可燃性ガス(たとえばプロパンなど)が漏洩した場合に可燃性ガスが周囲に充満する可能性のある場所に設置されたり、あるいは台所などの可燃性ガス(たとえばプロパンなど)が使用される部屋内に設置されたりして、調理用や暖房用など周囲(たとえば加熱用ヒータ周囲の空気やナベなどの容器類など)を加熱する加熱用ヒータであっても、容器本体外の気体が容器本体内に流入しにくい所定の角度範囲内になるように加熱用ヒータを設置すれば、プロパンなどの可燃性冷媒が容器本体内に侵入しにくくなり容易に着火することがなくなり、安全性にすぐれ、信頼性の高い加熱用ヒータの設置方法を得ることができる。また、加熱用ヒータの設置場所は、別に部屋内でなくてもよく、可燃性冷媒が加熱用ヒータの周囲に充満する可能性のある場所であれば同様の効果が得られるのでどこに設置されていてもよい。
すなわち、加熱用ヒータの容器本体の開口部の開口方向を容器本体の外部の気体(たとえば容器本体の周囲に存在する空気など)が容器本体の内部に流入しにくい所定角度範囲内(θ=±90度±30度)すなわち水平±30度に設置しておくことによって、実施の形態1や実施の形態2でも説明したように可燃性ガスの漏洩が発生し加熱用ヒータのある部屋内に可燃性ガスが充満した場合でも容易に着火しないようにすることが可能になる。したがって、構造が簡単で低コストな既存の加熱用ヒータ(たとえばガラス管ヒータなど)を使用しても、安全性にすぐれ、信頼性の高い低コストな加熱用ヒータの設置方法を得ることができる。
ここで、本発明では、容器本体8の開口部の開口方向が容器本体8外の気体が容器本体8内に流入しにくい所定の角度範囲になるように設置されていればよく、実施の形態1で説明したような開口部に取りだし穴35や呼吸穴36などの貫通穴が設けられているキャップ9が取り付けられている場合であっても、キャップ9の貫通穴の開口方向は所定の角度方向でなくてもよくどの方向であっても良い。
本発明の実施の形態1を表すファン式冷蔵庫の正面図である。 図1で表された冷蔵庫の側断面図である。 本発明の実施の形態1を表す除霜用ヒータの構造を表す図である。 本発明の実施の形態1を表す蒸発器4近傍のガラス管ヒータの配置状況を説明するための図である。 本発明の実施の形態1を表すガラス管ヒータを垂直に設置した場合のガラス管内部の自然対流の上昇流の流れの様子を説明した図である。 本発明の実施の形態1を表すガラス管ヒータの設置角度が略水平の場合のガラス管内部の自然対流の流れの様子について説明するための図である。 図6におけるガラス管の断面図である。 本発明の実施の形態1を表すガラス管ヒータをR600a(イソブタン)の着火濃度雰囲気下に設置したときの、ガラス管ヒータの設置角度と着火との関係を数値で表したした図である。 図8のガラス管ヒータの設置角度と着火との関係ををグラフ化した図である。 本発明の実施の形態1を表す別の実施例を表す除霜用ヒータの断面図である。 本発明の実施の形態1を表す別の構造の除霜用ヒータの構造を表す斜視図である。 図11で示された除霜用ヒータの断面図である。 除霜用ヒータの容器本体の開口部の開口方向とキャップの開口部の開口方向との関係を説明するための除霜用ヒータの構造を表す図である。 本発明の実施の形態2を表すファン式冷蔵庫の正面図である。 図14で表された冷蔵庫の側断面図である。 本発明の実施の形態2を表す別の形態の冷蔵庫の正面図である。 図16で表された冷蔵庫の側断面図である。 本発明の実施の形態2を表す別の形態の冷蔵庫の正面図である。 図18で表された冷蔵庫の側断面図である。 従来の除霜用ガラス管ヒータの構造を説明する図である。 従来の除霜用ガラス管ヒータの構造を説明する図である。
符号の説明
1 冷蔵庫本体、1a 断熱材、2 機械室、3 断熱扉、4 蒸発器、5 送風ファン、6 除霜用ヒータ、7 圧縮機、8 容器本体、9 キャップ、10 発熱体、 11 フィン、12 冷媒配管、13 ヘッダ、14 ヒータルーフ、15 冷蔵室、16 製氷室、17 切替室、18 野菜室、19 冷凍室、20 冷蔵室側蒸発器、21 冷蔵室側送風ファン、22 冷凍室側蒸発器、23 冷凍側送風ファン、30 リード線、30a 下部すきま、30b 上部すきま、30c、30d すきま、35 取りだし穴、36 呼吸穴、40、41、42 冷却器室、43 上部冷却器室、44 下部冷却器室、45 ドレン受け、50 ダクト、61、62 除霜用ヒータ、81、82 端面、95、96、97、98 開口部、100 上昇流、110 軸線、177 ガラス管ヒータ、180 ガラス管、181 ヒータ線、182 キャップ、183 押さえ板、184 ボルト、185 ナット、186 リード線、188 制御部、189 温度センサ、190 検知センサ。

Claims (8)

  1. 可燃性冷媒を冷媒に用いた冷蔵庫において、冷蔵庫本体内に循環する冷気を冷却する冷却器と、前記冷却器の近傍に設置され、内部に発熱体を有する少なくとも一部が開口した開口部を有する容器本体により構成され前記冷却器の除霜を行う除霜用ヒータと、を備え、前記発熱体を発熱させることにより前記容器本体内において発生する自然対流の上昇流の上昇方向に対して前記開口部の開口方向を前記容器本体周囲の気体が前記容器本体内に流入しにくくなる所定の角度範囲になるように前記除霜用ヒータを設置したことを特徴とする冷蔵庫。
  2. 所定の角度範囲を±90度±30度としたことを特徴とする請求項1に記載の冷蔵庫。
  3. 容器本体に少なくとも一端が開口したガラス管を使用したガラス管ヒータを使用したことを特徴とする請求項1または請求項2に記載の冷蔵庫。
  4. 除霜用ヒータの容器本体の表面温度が可燃性冷媒の着火温度未満となるように容器本体内に設けられた発熱体への通電を停止するかあるいは前記発熱体への入力を制御するようにしたことを特徴とする請求項1乃至請求項3のうちの1項に記載の冷蔵庫。
  5. 送風機、冷却器が配置されてなる冷却器室と、前記冷却器室内に配置され前記冷却器の除霜を行う除霜用ヒータと、前記冷却器室内に設けられた可燃性冷媒の漏洩を検出する冷媒検出手段、を備え、前記冷媒検出手段により冷媒漏れを検出したときには、前記送風機を運転するようにしたことを特徴とする請求項1乃至請求項4のうちの1項に記載の冷蔵庫。
  6. 送風機、冷却器が配置されてなる冷却器室と、前記冷却器室内に配置され前記冷却器の除霜を行う除霜用ヒータと、前記冷却器室内に設けられた可燃性冷媒を吸着する冷媒吸着手段、を備え、冷媒が漏れた場合に前記冷媒吸着手段により漏れた冷媒を吸着するようにしたことを特徴とする請求項1乃至請求項5のうちの1項に記載の冷蔵庫。
  7. 可燃性ガスが使用される可能性のある部屋内に設置され、少なくとも一部が開口した開口部を有する容器本体と、前記容器本体内に配設され、通電されることによって発熱して前記容器本体を介して周囲を加熱する発熱体と、を備えた加熱用ヒータにおいて、前記容器本体内において発生する自然対流の上昇流の上昇方向に対して前記開口部の開口方向を前記容器本体外の気体が前記容器本体内に流入しにくくなる所定の角度範囲内になるように前記加熱用ヒータを設置したことを特徴とする加熱用ヒータの設置方法。
  8. 所定の角度範囲を±90度±30度としたことを特徴とする請求項7に記載の加熱用ヒータの設置方法。
JP2007212929A 2007-08-17 2007-08-17 冷蔵庫の除霜用ヒータの設置方法 Expired - Lifetime JP4111247B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212929A JP4111247B2 (ja) 2007-08-17 2007-08-17 冷蔵庫の除霜用ヒータの設置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212929A JP4111247B2 (ja) 2007-08-17 2007-08-17 冷蔵庫の除霜用ヒータの設置方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001156631A Division JP4120181B2 (ja) 2001-05-25 2001-05-25 加熱用ヒータの設置方法

Publications (3)

Publication Number Publication Date
JP2007292460A true JP2007292460A (ja) 2007-11-08
JP2007292460A5 JP2007292460A5 (ja) 2007-12-20
JP4111247B2 JP4111247B2 (ja) 2008-07-02

Family

ID=38763223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212929A Expired - Lifetime JP4111247B2 (ja) 2007-08-17 2007-08-17 冷蔵庫の除霜用ヒータの設置方法

Country Status (1)

Country Link
JP (1) JP4111247B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033323A (ja) * 2009-08-06 2011-02-17 Mitsubishi Electric Corp 冷凍冷蔵庫
JP2017067393A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033323A (ja) * 2009-08-06 2011-02-17 Mitsubishi Electric Corp 冷凍冷蔵庫
JP2017067393A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置

Also Published As

Publication number Publication date
JP4111247B2 (ja) 2008-07-02

Similar Documents

Publication Publication Date Title
JP2000329447A (ja) 冷蔵庫および除霜用ヒーター
WO2015029094A1 (ja) 可燃性冷媒の漏洩検知構造
JP2015055455A (ja) 室外機及び空気調和機
JP5109565B2 (ja) 自動販売機
JP4038830B2 (ja) 冷蔵庫
TW200402523A (en) Refrigerator
JP2010038524A (ja) 冷蔵庫
JP4111247B2 (ja) 冷蔵庫の除霜用ヒータの設置方法
JP4120181B2 (ja) 加熱用ヒータの設置方法
JPH11211293A (ja) 冷蔵庫
JP4547798B2 (ja) 冷蔵庫
JP6735774B2 (ja) 冷却倉庫及び制御装置
JPH11257831A (ja) 冷蔵庫
JP2003042655A (ja) 冷蔵庫
JP2006300440A (ja) 冷蔵庫
JP3733661B2 (ja) 冷蔵庫
JP2004271014A (ja) 冷蔵庫
JP2000146393A (ja) 冷凍装置
JP2000121237A (ja) 冷蔵庫
JP4000908B2 (ja) 冷蔵庫
JP3482405B2 (ja) 冷蔵庫
JP3482406B2 (ja) 冷凍冷蔵庫
JP2003035483A (ja) 冷蔵庫
JP2001336869A (ja) 冷凍冷蔵庫
JP2005172424A (ja) 冷蔵庫

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R151 Written notification of patent or utility model registration

Ref document number: 4111247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term