JP2007278996A - 接触燃焼式ガスセンサとその製造方法 - Google Patents

接触燃焼式ガスセンサとその製造方法 Download PDF

Info

Publication number
JP2007278996A
JP2007278996A JP2006109329A JP2006109329A JP2007278996A JP 2007278996 A JP2007278996 A JP 2007278996A JP 2006109329 A JP2006109329 A JP 2006109329A JP 2006109329 A JP2006109329 A JP 2006109329A JP 2007278996 A JP2007278996 A JP 2007278996A
Authority
JP
Japan
Prior art keywords
film
heater
substrate
gas sensor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006109329A
Other languages
English (en)
Inventor
Etsuo Yamamoto
悦夫 山本
Hiroto Matsuda
寛人 松田
Ikuo Takahashi
郁生 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Miyota Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Miyota Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2006109329A priority Critical patent/JP2007278996A/ja
Publication of JP2007278996A publication Critical patent/JP2007278996A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】 耐震性及び耐衝撃性を向上させ、車載用などの高加速度状態での使用にも耐え得るようにするとともに、相対感度の向上と製造時の歩留まり向上も図り、小型化及び薄型化も容易にする。
【解決手段】 基板1上に薄膜ヒータ10,20が設けられ、その各ヒータ抵抗11,21が交差する部分を中心に、触媒を担持させた担体5が形成されている。薄膜ヒータ10,20は、両端部にヒータ電極12,22が形成され、そのヒータ電極12,22の一部が基板1の開口1aを挟んで対峙する部分上に形成され、その薄膜ヒータ10,20及びヒータ電極12,22の幅が開口1aの幅より狭く、薄膜ヒータ10,20がヒータ電極12,22の一部によって両端を基板1に保持されて、開口1a上に梁状に設置されており、各薄膜ヒータ10,20の両側に基板の表面と裏面を貫通してガスを流通させる貫通孔2を形成している。
【選択図】 図1

Description

この発明は、各種のガス漏れを検知する接触燃焼式ガスセンサとその製造方法に関する。
従来から、水素ガスやメタンガス等の可燃性ガスを検知するセンサとして、接触燃焼式ガスセンサが用いられている。
この接触燃焼式ガスセンサとしては、例えば、検知対象ガスを接触により燃焼させる酸化(燃焼)触媒を表面に被覆するか担持するアルミナ等の熱伝導層(担体)中に、白金線等からなるヒータコイルを埋設した検知素子を使用し、その検知素子のヒータコイルに通電して所定の温度に加熱しておき、可燃性ガスが酸化触媒に接触して燃焼すると、その燃焼による温度上昇によりヒータコイルの抵抗値が変化するので、それを電圧として検出することにより燃焼ガスの存在を検知するものがある(例えば、特許文献1参照)。
また、周囲温度の変化による影響を補償するために、上記検知素子と直列に補償素子を接続し、2個の抵抗を直列に接続した直列回路と並列に接続してホイートストンブリッジ回路を構成し、その並列回路の両端間に直流電圧を印加し、検知素子と補償素子の接続点と2個の抵抗の接続点との間の電圧を検出するようにしたガス検出装置も、同じ特許文献1に記載されている。この場合の補償素子としては、検知素子と同じ電気的特性をもつヒータコイルを、酸化触媒を被覆も担持もしない熱伝導層中に埋設したものを使用する。
また、シリコン基板上にダイヤフラムを形成し、そのダイヤフラム上にヒータと熱伝導層と触媒層とを有する検知素子、及びヒータと熱伝導層を有する補償素子とを隣接して形成し、これらの構造全体をフォトリソグラフィー法などを用いた薄膜技術で製造できるようにすることも提案されている(例えば、特許文献2参照)。
特許第3167549号公報(図5〜図8等) 特許第3496863号公報(図1,図2等)
しかしながら、上述した特許文献1に見られるような一般的な接触燃焼式ガスセンサは、検知素子と補償素子のヒータが白金線などの細線によるコイルであるため、衝撃に非常に弱い。また、コイル抵抗を高くすれば相対感度が上がるが、一層衝撃に弱くなるため困難であった。さらに、機械巻きコイルを端子に直接実装するため、形状の再現性が難しく、検知素子と補償素子とのマッチングの歩留まりが悪く、小型化も困難であった。
また、上述した特許文献2に提案されているような接触燃焼式ガスセンサでは、触媒を担持する薄膜層は非常に不安定で耐久性に乏しく、耐衝撃性について十分に考慮されていない。しかも、ガスが感知素子の一方の面側しか流れないため検知感度が低く、ガス濃度のダイナミックレンジも狭い。また、製造も難しいため実用化はされていない。
この発明は、従来の接触燃焼式ガスセンサにおけるこのような問題を解決するためになされたものであり、耐震性及び耐衝撃性を向上させ、車載用などの高加速度状態での使用にも耐え得るようにするとともに、相対感度の向上と製造時の歩留まり向上も図り、小型化及び薄型化も容易にすることを目的とする。
この発明による接触燃焼式ガスセンサは、触媒を担持する担体がヒータの一部又は全部を内包し、上記触媒に接触した可燃性ガスの燃焼により発生する燃焼熱によって上記ヒータの電気的な特性値が変化し、その特性値の変化に基づいて可燃性ガスの存在を検知する接触燃焼式ガスセンサであって、上記の目的を達成するため、上記ヒータを金属膜による薄膜ヒータとして上記担体と共に基板上に形成し、その基板の表面と裏面を貫通して可燃性ガスを流通させる貫通孔を設けたことを特徴とする。
さらに、上記貫通孔の縁部を取り囲んで、耐酸性のある貴金属層を設け、その貴金属層を上記薄膜ヒータを形成する金属膜の少なくとも一層と同じ貴金属層で形成するとよい。
そして、上記貫通孔を複数設けるのが望ましい。
この発明による接触燃焼式ガスセンサはまた、上記基板が開口を有し、上記薄膜ヒータは、両端部にヒータ電極が形成され、そのヒータ電極の一部が上記基板の開口を挟んで対峙する部分上に形成され、その薄膜ヒータ及びヒータ電極の幅が上記開口の幅より狭く、上記薄膜ヒータが上記ヒータ電極の一部によって両端を上記基板に保持されて、上記開口上に梁状に設置され、その開口の一部が上記貫通孔となっているように構成するとなおよい。
上記薄膜ヒータ及びヒータ電極は、絶縁膜上に積層された複数層の金属膜で形成されているとよい。
上記薄膜ヒータが2個以上設置され、その各薄膜ヒータが上記開口のほぼ中心で交差するように配置され、電気的に直列に接続されているようにするとよい。
その2個以上の各薄膜ヒータが、それぞれ積層された複数層の金属膜で形成され、その各薄膜ヒータ用の積層された金属膜が、少なくとも一層以上の層間絶縁膜を介してさらに積層されているようにするとさらによい。
上記薄膜ヒータのヒータ抵抗パターンを、ミアンダ・パターン又はそれに近似したパターンにするとよい。
そのヒータ抵抗パターンのミアンダ・パターンが、ヒータ抵抗の中央部と両端部とでパターン密度が異なるようにしてもよい。
その場合、ミアンダ・パターンのパターン密度が、上記ヒータ抵抗の中央部では低く、両端部では高いのが望ましい。
あるいは、上記ヒータ抵抗パターンのミアンダ・パターンが、上記ヒータ抵抗の中央部と両端部とでパターン線幅が異なるようにしてもよい。
その場合、上記ミアンダ・パターンのパターン線幅が、上記ヒータ抵抗の中央部では広く、両端部では狭いのが望ましい。
上記ヒータ電極が、上記開口の端部付近に金属膜と絶縁膜との積層膜からなる補強部を有するようにするとよい。
上記2個以上の薄膜ヒータが、上記開口のほぼ中心で交差する位置の近傍に、金属膜と絶縁膜との積層膜からなる補強部を有するようにしてもよい。
上記基板が、シリコンウエハ、ガラス基板、金属酸化物セラミック基板のいずれかであるとよい。
上記開口の内周面が、上記基板の裏面から法線方向に対して、±(50°〜90°)の角度範囲で形成されていてもよい。
上記基板が、シリコンウエハ又はガラス基板であり、上記開口がウエット・エッチング又はドライ・エッチングで加工形成されていてもよい。
上記薄膜ヒータが、クローム又はチタン、あるいはクロームとチタンの合金からなる第1の金属膜と、耐酸性のある貴金属である金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の金属膜とを含む積層膜からなるようにするとよい。
上記層間絶縁膜又は絶縁膜が、金属又はシリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のいずれか、あるいは該シリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のうちの複数の材料の複合物又は積層膜であるのが望ましい。
上記基板の開口の形状が、多角形又はコーナ部にラウンドを有する多角形、あるいは円形又は楕円形であってもよい。
上記基板の形状が、正方形又は長方形であり、且つ上記ヒータ電極の一部に接続する出力パッドが、上記基板上の正方形又は長方形の一辺の中央部又は角部に形成されていてもよい。
上記触媒を担持させた担体が、アルミナ又はアルミナセラミックス又は酸化スズ又は酸化インジウムを塗布した焼結体であるとよい。
この発明による接触燃焼式ガスセンサの製造方法は、上記の目的を達成するため、
基板上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜を形成する工程と、
上記絶縁膜上の全面に、複数層の金属膜を積層した第1の積層金属膜を形成する工程と、
該第1の積層金属膜をエッチングして第1の薄膜ヒータを形成する工程と、
上記基板の全面に、層間絶縁膜を形成する工程と、
前記絶縁膜をエッチングしてコンタクトホールを形成する行程と、
その層間絶縁膜上の全面に、複数層の金属膜を積層した第2の積層金属膜を形成する工程と、
該第2の積層金属膜をエッチングして第2の薄膜ヒータを形成する工程と、
上記層間絶縁膜と絶縁膜のエッチングとを連続して行い、該層間絶縁膜と絶縁膜とを貫通する開口部を形成する工程と、
上記基板の裏面にレジスト膜を形成する工程と、
該レジスト膜上にレジストパターンを形成し、該レジストパターンをマスクとして前記レジスト膜をエッチングしてレジスト膜パターンを形成する工程と、
該レジスト膜パターンをマスクとして、上記基板の裏面よりエッチングを行って、上記基板を貫通し、少なくとも一部が上記層間絶縁膜と絶縁膜とを貫通する開口部に連通する貫通孔を形成する工程と、
上記第1の薄膜ヒータと第2の薄膜ヒータとが積層された部分に、触媒を担持させた担体を形成する工程と
を連続して行うことを特徴とする。
この発明による接触燃焼式ガスセンサの製造方法はさらに、
基板上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜を形成する工程と、
その絶縁膜上の全面に、クロム又はチタン、あるいはクロムとチタンとの合金からなる第1の金属膜を形成し、連続して該第1の金属膜上の全面に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の金属膜を積層する工程と、
上記基板上に第1のレジストパターンを形成し、該第1のレジストパターンをマスクとして、上記第2の金属膜のエッチングと前記第1の金属膜のエッチングとを連続して行い、第1の薄膜ヒータとその補強部およびガスセンサ出力パッドを含む第1のヒータ電極部とを形成した後、上記第1のレジストパターンを剥離除去する工程と、
上記基板の全面に、1層以上の絶縁層からなる層間絶縁膜を形成する工程と、
上記層間絶縁膜上の全面に第2のレジストパターンを形成し、該第2のレジストパターンをマスクとして、前記層間絶縁膜のエッチングを行ってコンタクトホールを形成した後、上記第2のレジストパターンを剥離除去する工程と、
上記基板上の全面に、クロム又はチタン、あるいはクロムとチタンとの合金からなる第1の金属膜を形成し、連続して該第1の金属膜上の全面に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の金属膜を積層する工程と、
上記基板上に第3のレジストパターンを形成し、該第3のレジストパターンをマスクとして、上記第2の金属膜のエッチングと上記第1の金属膜のエッチングとを連続して行い、第2の薄膜ヒータとその出力パッドを含む第2のヒータ電極部とを形成した後、上記第3のレジストパターンを剥離除去する工程と、
上記基板上の全面に第4のレジストパターンを形成し、該第4のレジストパターンをマスクとして、上記層間絶縁膜のエッチングと絶縁膜のエッチングとを連続して行い、該層間絶縁膜と絶縁膜とを貫通する開口部を形成した後、上記第4のレジストパターンを剥離除去する工程と、
上記基板の裏面に、クロム又はチタンを下層とし、金又は白金を上層として積層した積層膜、あるいはシリコン酸化膜又はシリコン窒化膜又はシリコン窒化酸化膜からなるレジスト膜を形成する工程と、
該レジスト膜上に第5のレジストパターンを形成し、該第5のレジストパターンをマスクとして前記レジスト膜をエッチングしてレジスト膜パターンを形成する工程と、
上記レジスト膜パターンをマスクとして、上記基板の裏面側よりエッチングを行って、上記基板を貫通し、少なくとも一部が上記層間絶縁膜と絶縁膜とを貫通する開口部に連通する貫通孔を形成した後、上記レジスト膜パターンを剥離除去する工程と、
上記第1の薄膜ヒータと上記第2の薄膜ヒータとが積層された部分に、触媒を担持させた担体を形成する工程とを連続して行うようにするとなおよい。
この発明による接触燃焼式ガスセンサの他の製造方法は、
基板上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜を形成する工程と、
上記絶縁膜上の全面に、耐酸性を持つ貴金属による第1の貴金属膜を形成する工程と、
その第1の層金属膜をエッチングして第1の薄膜ヒータを形成するとともに、縁部貴金属層を形成するための部分を貫通孔を形成する領域より一回り大きく残す工程と、
上記基板の全面に層間絶縁膜を形成した後、エッチングによってその層間絶縁膜の不要な部分を除去する工程と、
上記基板上の全面に、耐酸性を持つ貴金属による第2の貴金属膜を形成する工程と、
その第2の貴金属膜をエッチングして第2の薄膜ヒータを形成するとともに、上記縁部貴金属層を形成するための部分を残す工程と、
上記基板の裏面にレジスト膜パターンを形成し、そのレジスト膜パターンをマスクとして、上記基板の裏面よりエッチングを行って、上記基板を貫通する開口を形成するとともに、上記縁部貴金属層を形成するための部分の裏面側の上記貫通孔を形成する領域の上記絶縁膜を除去する工程と、
上記基板上の上記貫通孔を形成する領域以外の全面を覆うレジストパターンを形成し、そのレジストパターンをマスクにして、上記縁部貴金属層を形成するための部分の上記第2の貴金属膜と第1の貴金属膜のエッチング除去を続けて行って、上記貫通孔を完全に貫通させる工程と、
上記第1の薄膜ヒータと第2の薄膜ヒータとが積層された部分に、触媒を担持させた担体を形成する工程と
を連続して行うことによって前述の目的を達成する。
この発明による接触燃焼式ガスセンサは、耐震性及び耐衝撃性に優れ、車載用などの高加速度状態での使用にも耐えることができる。また、相対感度も向上し、製造時の歩留まりも向上する。さらに、小型化及び薄型化も容易になる。
以下、この発明を実施するための最良の形態を図面に基づいて具体的に説明する。
なお、以下の説明に使用する図の内、接触燃焼式ガスセンサの平面図には、各部の形状を分かり易くするために各部にそれぞれ異なる向き又は間隔の斜線を施している。薄膜ヒータのヒータ抵抗パターンを示す拡大平面図にも、そのパターンを分かり易くするために斜線を施している。また、各実施例の図において、全く同じではなくとも、同じ名称で対応する部分には同一の符号を付してあり、それらの重複する説明は省略する。
〔第1実施例〕
この発明の第1実施例を図1から図7を用いて説明する。図1はその接触燃焼式ガスセンサの第1実施例の平面図、図2は図1のA−A線に沿う断面図であり、薄膜ヒータは簡略化して示している。図3はこの接触燃焼式ガスセンサの電気的な等価回路を示す図である。図4は図2の厚さ方向の拡大比率を大きくして、薄膜ヒータの膜構成を示す拡大断面図、図5はその薄膜ヒータのヒータ抵抗のパターンを示す拡大平面図であり、図6と図7はヒータ抵抗のパターンの変形例を示す同様な図である。
まず、図1および図2を参照して、この接触燃焼式ガスセンサの概略構成を説明する。
この接触燃焼式ガスセンサは、検知対象ガスを流通させるための通気用の開口1aが形成された基板1の開口1a上に、センサ素子を構成する2本の薄膜ヒータ10,20が互いに開口1aのほぼ中心で直交して交差するように設置されている。
この例では、平面形状が正方形の基板1に、それより小さい相似形の開口1aが同心に形成され、その表面全体に絶縁膜30(図4参照)が形成されている。その基板1の対向する各辺の中央部の開口1aを挟んで対峙する部分間を橋絡するように、各薄膜ヒータ10,20が梁状に設置され、ブリッジ構造を形成している。
基板1には、シリコンウエハ、ガラス基板、あるいは金属酸化物セラミック基板等を使用するとよい。
各薄膜ヒータ10,20は、それぞれ中央部にヒータ抵抗11,21が形成され、両端部にヒータ電極12,22が形成されており、そのヒータ電極12,22の端部12a,22aは基板1の開口1aを挟んで対峙する部分上に形成されている。その薄膜ヒータ10,20及びヒータ電極12,22の幅は開口1aの幅より狭く、各薄膜ヒータ10,20が、そのヒータ電極12,22の端部12a,22aによって両端を基板1に保持されて、開口1a上に梁状に設置されている。したがって、開口1aの一部が、基板1の表面と裏面を貫通して可燃性ガスを流通させる貫通孔2となっている。図1に示す例では4つの貫通孔2が形成されている。
薄膜ヒータ10,20のヒータ抵抗11,21及びヒータ電極12,22は、少なくとも一層以上の層間絶縁膜を介して積層され、それぞれ複数層の金属膜で形成されているが、その詳細は後述する。
各ヒータ電極12,22は、それぞれ開口1aの端部付近に基板1に接続する補強部12b,22bを有する。図1に示す例では、それぞれ逆向きの直角三角形の対パターンをなす補強部12b,22bが、各薄膜ヒータ10,20のヒータ電極12,22を両側から補強している。この補強部12b,22bも薄膜ヒータ10,20及びヒータ電極12,22と同じ積層された金属膜で形成されている。
2本の薄膜ヒータ10,20は、それぞれ一方のヒータ電極12,22の端部12aと端部22aとの間が、基板1上に形成された金属膜によるL字状の接続配線3によって電気的に接続されることによって、互いに直列に接続されている。図3はその接続状態を示す等価回路図である。
各ヒータ電極12,22の基板1上に形成された正方形の端部12a,22aに、ヒータ抵抗11,21の抵抗値変化検出用の出力端子とセンサの支持部を兼ねた出力パッド4(図1に破線で示す)が設けられている。この例では、各出力パッド4は基板1の各辺の中央部に形成されている。
さらに、2本の薄膜ヒータ10,20のヒータ抵抗11,21が交差する部分を中心に所定範囲に亘って、燃焼触媒を担持させた担体5を付着形成している。図示の例ではヒータ抵抗11,21が形成された部分を内包する小円盤状に担体5を形成している。この担体5はアルミナ又はアルミナセラミックス又は酸化スズ又は酸化インジウムによる多孔質状の焼結体である。図示していない触媒層は、酸化スズ(SnO2)を主成分とし、触媒として微粉状の白金(Pt)とパラジウム(Pd)等を分散させた粉体を焼成した材料を、担体5の表面に被覆して形成する。
この薄膜ヒータ10,20が、従来の検知素子に相当するが、担体5に代えて触媒のない補償材料層を担持させた担体を形成すれば、従来の補償素子に相当する素子とすることができる。
なお、基板1の開口1aの内周面は、図2に示すように基板1の裏面1bに対する法線方向の角度αが±(50°〜90°)の角度範囲(例えば54.7°)に形成される。これは、基板1の裏面1b側からのみのウエット・エッチング等の異方性エッチングによって開口1aを形成することによる。
基板1の形状は、正方形に限らず長方形でもよく、さらには多角形や円形等にしてもよい。また、開口1aの形状も、長方形や多角形、円形又は楕円形、あるいはコーナ部にラウンドを有する多角形等にしてもよい。
ここで、図4によって薄膜ヒータ10,20のヒータ抵抗11,21及びヒータ電極12,22の膜構成について説明する。
基板1の表面に絶縁膜30が形成され、その上にクローム(Cr)又はチタン(Ti)、あるいはクロームとチタンの合金からなる第1の金属膜13と、耐酸性のある貴金属である金(Au)又は白金(Pt)又はパラジウム(Pd)又はロジウム(Rh)、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金なる第2の金属膜14とを積層した金属膜が形成され、それがパターン形成されて薄膜ヒータ10のヒータ抵抗11及びヒータ電極12となっている。
その上にさらに、層間絶縁膜31を介して第3の金属膜23と第4の金属膜24とを積層した金属膜が形成され、それがパターン形成されて薄膜ヒータ20のヒータ抵抗21及びヒータ電極22(図1参照)となっている。第3の金属膜23は第1の金属膜13と、第4の金属膜24は第2の金属膜14と、それぞれ上述した同じ材料で形成される。
また、絶縁膜30及び層間絶縁膜31は、金属又はシリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のいずれか、あるいはそのシリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のうちの複数の材料の複合物又は積層膜である。
薄膜ヒータ10のヒータ電極12上には、薄膜ヒータ20のヒータ電極22を形成した第3の金属膜23と第4の金属膜24及び層間絶縁膜31が残っており、薄膜ヒータ10を強化している。図4では見えないが、薄膜ヒータ20のヒータ電極22の下側にも薄膜ヒータ10のヒータ電極12を形成した第1の金属膜13と第2の金属膜14及び層間絶縁膜31及び絶縁膜30が残っており、薄膜ヒータ20を強化している。
このように、薄膜ヒータ10,20のヒータ抵抗11,21及びヒータ電極12,22を、少なくとも層間絶縁膜を介して積層されたそれぞれ複数層の金属膜で形成することによって、耐震性及び耐衝撃性能が大幅に向上する。さらに、この実施例のように、薄膜ヒータ10と薄膜ヒータ20を形成する各積層金属膜及び層間絶縁膜を最大限残して積層しておくことにより、耐震性及び耐衝撃性能を一層向上させることができる。
しかも、この発明の各実施例に共通するが、基板1の表面と裏面を貫通して可燃性ガスを流通させる貫通孔2を1つ以上設けているため、検知対象ガスが担体5の周囲を流通するので、触媒との接触面積が増えて燃焼量が増加し、薄膜ヒータの温度上昇に伴う電気的特性値の変化が大きくなり、相対感度が高くなる。
図5は薄膜ヒータ10,20のヒータ抵抗11,21のパターンを示す図である。このヒータ抵抗のパターンは、ミアンダ・パターン又はそれに近似したパターンである。ミアンダ・パターンは、長手方向に進行しながら幅方向の向きを交互にクランク状あるいはU字状に反転させるジグザグパターンである。
ヒータ抵抗11,21の両端に一体に形成したヒータ電極12,22の幅方向の両側部をヒータ抵抗11,21を僅かな間隔をあけて挟むように中心方向へ延ばし、その延設部12c,22cによってヒータ抵抗11,21を補強している。ヒータ抵抗11と21のパターンは同じである。
このように、ヒータ抵抗11,21をミアンダ・パターン又はそれに近似したパターンにすることによって、ヒータ抵抗11,21の領域の長さをあまり長くしなくても、実質的なヒータ抵抗長を充分長くすることができ、抵抗値を大きくして感度を高めることができる。
このヒータ抵抗11,21の抵抗値は、それを形成する金属膜の抵抗率と、膜厚、線幅及び長さよって決まる。例えば、金属膜の材料を白金とすると、その抵抗率ρ=10.8μΩ−cmであり、膜厚が0.5μm(5000Å)の場合、ミアンダ・パターンの間隔を線幅と同じで等間隔にすると、線幅に応じたヒータ抵抗の抵抗値Rtは、次のようになった。
線幅=10μm では、抵抗長=4.22mm Rt=91.2Ω
線幅=6μm では、 抵抗長=6.8mm Rt=244.8Ω
線幅=4μm では、 抵抗長=10.11mm Rt=545.9Ω
この抵抗値は、従来のヒータコイルの抵抗値が室温で約15Ωであるのに対して、そのの約6倍、16倍、36倍にもなる。したがって、検出感度が大幅に向上する。線幅に大きな変化が無ければ、抵抗値Rtは膜厚に反比例する。
薄膜ヒータ10,20のヒータ抵抗11,21のパターン形状であるミアンダ・パターンが、ヒータ抵抗11,21の中央部と両端部とでパターン密度が異なるようにしてもよい。その場合、図6に示すように、そのパターン密度がヒータ抵抗11,21の中央部では低く、両端部では高くなるようにするとよい。
あるいは、ヒータ抵抗11,21の中央部と両端部とでパターン線幅が異なるようにしてもよい。その場合、図7に示すように、そのパターン線幅がヒータ抵抗11,21の中央部では広く、両端部では狭くなるようにするとよい。
このようにして、ヒータ抵抗11,21の長さ方向の位置によって抵抗値を変化させて、全長に亘って放熱量と発熱量のバランスを取り、温度分布を均一にすることができる。
〔第2実施例〕
図8はこの発明による接触燃焼式ガスセンサの第2実施例の平面図である。この第2実施例は、前述した第1実施例における図1で縦方向の薄膜ヒータ20と、その出力パッド4及び接続配線3を省略し、基板1の開口1a上に1本の薄膜ヒータ10を梁状に設置したものであり、基板1の表面と裏面を貫通してガスを流通させる2つの貫通孔2を形成している。その他の構成は第1実施例と同じである。
この場合は、第1実施例に比べて耐震強度と感度が低減するが、用途によっては充分使用できる。そして、構造が簡単になるので安価に製造できる。
また、この実施例の薄膜ヒータ10は、少なくともヒータ抵抗11の部分に燃焼触媒を被覆又は担持したアルミナ等による熱伝導体の担体5を形成しており、検知素子の機能を持っている。そこで、この薄膜ヒータ10の設置位置を図8において上方又は下方へずらして、それに平行にもう1本の薄膜ヒータを設置し、その少なくともヒータ抵抗11の部分には、燃焼触媒の代わりに補償材料を被覆又は担持した熱伝導体の担体を形成して、補償素子の機能を持たせることができる。
このように構成すれば、1個の小さな基板上に検知素子と補償素子の機能を持った薄膜ヒータを備えることができるので、極めて小型の接触燃焼式ガスセンサを製造することが可能である。
〔第3実施例〕
図9はこの発明による接触燃焼式ガスセンサの第3実施例の平面図であり、図10は図9のC−C線に沿う断面図である。
この第3実施例は、前述した第1実施例と殆ど同じであるが、基板1の開口1aの形成方法が相違する。すなわち、基板1の両面側からドライ・エッチングを行って開口1aを形成している。これにより図10に示すように、開口1aの内周面の基板1の裏面1bに対する法線方向の角度αが90°±10°程度になる。
このようにすると、第1実施例と基板1の外寸と開口1aの内寸が同じであれば、基板1の枠部の内周部付近の実質的な厚さを減少させることがないので、強度上有利になる。さらに、前記異方性エッチングで形成した接触燃焼式ガスセンサと同強度の場合であれば、センサをより小型化することが可能である。
また、本実施例では前記開口1aが正方形の形状の例であるが、ドライ・エッチングでは前記異方性エッチングの場合と異なり、前記開口1aを任意の形状にすることが可能であり、前記可燃性ガスの流通が最も効率よく行える形状が適宜得られるために、前記検出感度の向上や形状の最適化により小型化が可能である。
〔第4実施例〕
図11はこの発明による接触燃焼式ガスセンサの第4実施例の平面図である。
この第4実施例も、前述した第1実施例と殆ど同じであるが、2個の薄膜ヒータ10と20が、基板1の開口1aのほぼ中心で交差する位置の近傍に、図4によって前述した金属膜と絶縁膜との積層膜からなる補強部6を有する。そして、少なくとも各薄膜ヒータ10,20のヒータ抵抗11,21とこの補強部6を含む領域に熱伝導体である担体5を形成している。このようにすれば、耐震性及び耐衝撃性を一層向上させることができる。
〔第5実施例〕
図12はこの発明による接触燃焼式ガスセンサの第5実施例の平面図である。
この第5実施例は、前述した第3実施例(図9)と殆ど同じであるが、基板1の開口を、その平面形状が正方形の各コーナ部分にアールを付けたラウンド開口1rにした点だけが異なる。このようにすれば、検知対象ガスの流通がスムーズになると共に、耐震性及び耐衝撃性も高まる。従って、第3実施例で記載した効果と同じく、前記検出感度の向上やセンサの小型化が可能である。
〔第6実施例〕
図13はこの発明による接触燃焼式ガスセンサの第6実施例の平面図である。
この第6実施例も、前述した第1実施例と殆ど同じであるが、出力パッド4の配置を、正方形の基板1の3箇所の角部にして、各薄膜ヒータ10,20のヒータ電極12,22と各出力パッド4とをそれぞれ接続配線3で接続している。図13において、左上の角部の出力パッド4で、薄膜ヒータ10と20を直列に接続している。
このように、基板1の角部に出力パッド4を配置した方が、補償素子及び固定抵抗と共にホイートストンブリッジ回路を構成するための配線を行い易い場合がある。また、図4によって前述した金属膜と絶縁膜との積層膜を、基板1上に接続配線3として多く残すので、耐震性及び耐衝撃性も高まる。従って、同一強度である場合には、センサをより小型することが可能である。
〔第7実施例〕
図14はこの発明による接触燃焼式ガスセンサの第7実施例の平面図である。
この第7実施例も、前述した第1実施例と殆ど同じであり、薄膜ヒータ10と20に対する補強部12b,22bを省略した点だけが異なる。本発明による接触燃焼式ガスセンサを非常に小型化した場合、前記開口1aは非常に小さな面積になり、可燃性ガスの流通を十分に確保するには本構成が有効であ。且つ、小型化されている点と使用する用途により本構成で充分な耐震性及び耐衝撃性を有する。換言すれば、センサを非常に小型化するには本構成が非常に有効である。
〔第8実施例〕
次に、この発明による接触燃焼式ガスセンサの第8実施例を図15及び図16を参照して説明する。図15はその接触燃焼式ガスセンサの平面図であり、図16はそのD−D線に沿って切断した断面の端面図である。
この接触燃焼式ガスセンサは、図9によって説明した第3実施例と似ているが、基板1の表面と裏面を貫通してガスを流通させる4つの貫通孔2には、その各内周の縁部を取り囲んで耐酸性のある貴金属による縁部貴金属層8を設けている点が異なっている。また、この実施例では、薄膜ヒータ10,20は、それぞれ1層の貴金属膜によって形成されているが、その製造方法については後述する。しかし、前述した各実施例と同様に、薄膜ヒータ10,20を、それぞれ2層の金属膜を積層して形成してもよい。
縁部貴金属層8は、その薄膜ヒータ10,20を形成する貴金属膜と同じ層の貴金属層、すなわち金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる金属膜(前述した各実施例では、第2,第4の金属膜)によって形成することができる。
このように、基板1の表面と裏面を貫通してガスを流通させる各貫通孔2の縁部を取り囲んで耐酸性のある貴金属による縁部貴金属層8を設けたことにより、基板1の裏面側からのウエットエッチング時に、この縁部貴金属層8がエッチングストッパーの役目を果たすため、シリコン基板等の基板1上に存在する薄膜ヒータ10,20を形成する2層の金属層間にある層間絶縁膜31の腐食を抑えることができる。また、貫通孔周囲へのオーバエッチングを防ぐことができ、所望の貫通孔の形状を容易に得ることができるので、製造時の歩留まり向上に貢献する。
〔製造方法の一実施例〕
次に、この発明による接触燃焼式ガスセンサの製造方法の一実施例を、図17と図18の工程図にしたがって説明する。図17の1)〜7)と図18の8)〜12)は一連の製造工程を示しているが、図17は図1のA−A線に沿う切断端面に相当する図であり、図18は図1のB−B線に沿う切断端面に相当する図である。
したがって、以下の説明は、図1等によって説明した第1実施例の接触燃焼式ガスセンサを製造する方法であるが、第7実施例までの各実施例のものも殆ど同様にして製造することができる。
図17において、まずシリコンウエハ、ガラス基板、金属酸化物セラミック基板のいずれかの基板1を用意し、工程1で、その基板1上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜30を形成する。その絶縁膜30は、金属又はシリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のいずれか、あるいは該シリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のうちの複数の材料の複合物又は積層膜で形成するとよい。
次の工程2では、絶縁膜30の全面に、クロム又はチタン、あるいはクロムとチタンとの合金からなる第1の金属膜13を形成し、連続してその第1の金属膜13上の全面に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の金属膜14を積層して形成する。
続く工程3では、基板1上(実際には第2の金属膜14上)に、フォトレジストなどを用いたフォトリソグラフィー法などにより、第1のレジストパターン41を形成し、その第1のレジストパターンをマスクとして、第2の金属膜14のエッチングと第1の金属膜13のエッチングとを連続して行う。それによって、薄膜ヒータ10(以下「第1の薄膜ヒータ10」という)のヒータ抵抗11とヒータ電極12(図1における端部12aと補強部12bを含む)とを形成した後、第1のレジストパターン41を剥離除去する。
次の工程4では、基板1の全面に、少なくとも1層以上の絶縁層からなる層間絶縁膜31を形成する。その層間絶縁膜31も、金属又はシリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のいずれか、あるいは該シリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のうちの複数の材料の複合物又は積層膜で形成するとよい。
続く工程5では、層間絶縁膜31上の全面にフォトレジストなどを用いたフォトリソグラフィー法などにより、第2のレジストパターン42を形成し、その第2のレジストパターン42をマスクとして、層間絶縁膜31のエッチングを行ってコンタクトホール31aを形成した後、その第2のレジストパターン42を剥離除去する。
次の工程6では、基板1上の全面に、クロム又はチタン、あるいはクロムとチタンとの合金からなる第3の金属膜23を形成し、連続してその第3の金属膜23上の全面に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第4の金属膜24を積層形成する。このとき、第3の金属膜23と第4の金属膜24がコンタクトホール31a内にも形成され、第1の金属膜13及び第2の金属膜14と接続され、出力パッド4が形成される。
続く工程7では、基板1上にフォトレジストなどを用いたフォトリソグラフィー法などにより、第3のレジストパターン43を形成し、その第3のレジストパターン43をマスクとして、第4の金属膜24のエッチングと第3の金属膜23のエッチングとを連続して行う。それによって、薄膜ヒータ20(以下「第2の薄膜ヒータ20」という)のヒータ抵抗21と図示されていないヒータ電極22(図1における端部22aと補強部22bを含む)と、図1に示した接続配線3を形成した後、第3のレジストパターン43を剥離除去する。
次に、図18に進んで、工程8において基板1上の全面に、フォトレジストなどを用いたフォトリソグラフィー法などにより、第4のレジストパターン44を形成し、その第4のレジストパターン44をマスクとして、層間絶縁膜31のエッチングと絶縁膜30のエッチングとを連続して行い、層間絶縁膜31と絶縁膜30とを貫通する開口部7を形成した後、第4のレジストパターン44を剥離除去する。
続く工程9では、基板1の裏面全面に、クロム又はチタンを下層とし、金又は白金を上層として積層した積層膜、あるいはシリコン酸化膜又はシリコン窒化膜又はシリコン窒化酸化膜からなるレジスト膜46を形成する。
次いで、工程10では、基板1の裏面の全面に、フォトレジストなどを用いたフォトリソグラフィー法などにより、第5のレジストパターン45を形成し、その第5のレジストパターン45をマスクとして、レジスト膜46のエッチングを行ってレジスト膜パターン47を形成した後、第5のレジストパターン45を剥離除去する。
そして、次の工程11では、そのレジスト膜パターン47をマスクとして、基板1の裏面側から異方性エッチングを行って、基板1を貫通し、少なくとも一部が層間絶縁膜31と絶縁膜30とを貫通する開口部7に連通する貫通孔2を形成した後、レジスト膜パターン47を剥離除去する。
最後の工程12では、第1の薄膜ヒータ10と第2の薄膜ヒータ20とが交差して積層された部分に、触媒を担持させた担体5を形成する。
これらの各工程1〜12を連続して行うことによって、接触燃焼式ガスセンサを歩留まりよく製造することができる。
なお、担体5の熱伝導層は、例えばアルミナ(酸化アルミニウムAl23)により構成される。図示していない補償素子用の熱伝導層も同じ材料で同じ熱容量になるように構成される。その担体5に担持される触媒層は、検知対象ガスを接触により酸化燃焼させる触媒であり、例えば酸化スズ(SnO2)に白金(Pt)とパラジウム(Pd)を分散させたものを使用する。
検知対象ガスとしては、例えば、メタンガス、水素ガス、LPガス(液化石油ガス)、プロパンガス、ブタンガス、エチレンガス、一酸化炭素ガス、又はエタノールやアセトン等の有機成分ガスが挙げられる。
〔製造方法の他の実施例〕
次に、この発明による接触燃焼式ガスセンサの製造方法の他の実施例を、図19と図20の工程図にしたがって説明する。図19の1)〜6)と図20の7)〜11)は一連の製造工程を示しており、これらの図は、図15のD−D線に沿って切断した断面の端面図に相当する図である。
したがって、以下の説明は、図15と図16によって説明した第8実施例の接触燃焼式ガスセンサを製造する方法である。なお、この図19と図20においても、図15と図16と対応する部材には同一の符号を付している。
図19において、まずシリコンウエハ、ガラス基板、金属酸化物セラミック基板のいずれかの基板1を用意し、工程1で、その基板1上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜30を形成する。その絶縁膜30は、金属又はシリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のいずれか、あるいは該シリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のうちの複数の材料の複合物又は積層膜で形成するとよい。
次の工程2では、絶縁膜30の全面に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第1の貴金属膜15を形成する。さらに、フォトレジストなどを用いたフォトリソグラフィー法などによりレジストパターンを形成し、それをマスクとして、第1の貴金属膜15をエッチングして、薄膜ヒータ10(以下「第1の薄膜ヒータ10」という)の図15に示したヒータ抵抗11とヒータ電極12、および縁部貴金属層8を形成するための部分を図示のように、貫通孔を形成する領域より一回り大きく残し、その後レジストパターンを剥離除去する。
続く工程3では、基板1上(実際には第1の貴金属膜15及び絶縁膜30上)の全面に、少なくとも1層以上の絶縁層からなる層間絶縁膜31を形成する。その層間絶縁膜31も、金属又はシリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のいずれか、あるいは該シリコンの酸化物、シリコンの窒化物、およびシリコンの窒化酸化物のうちの複数の材料の複合物又は積層膜で形成するとよい。
続く工程4では、層間絶縁膜31上に、フォトレジストなどを用いたフォトリソグラフィー法などにより、レジストパターン48を形成する。
そして、それをマスクとして、層間絶縁膜31のエッチングを行って、次の工程5に示すように、コンタクトホール31aを形成するとともに、薄膜ヒータ10上以外の部分を除去した後、レジストパターン48を剥離除去する。
次の工程6では、基板1上の全面(実際には、層間絶縁膜31、第1の貴金属膜15、および絶縁膜30上)に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の貴金属膜25を積層形成する。このとき、第2の貴金属膜25はコンタクトホール31a内にも形成され、第1の貴金属膜15と接続されて出力パッド4が形成される。
次に、図20に進んで、工程7では、基板1上にフォトレジストなどを用いたフォトリソグラフィー法などにより、レジストパターン49を形成し、そのレジストパターン49をマスクとして、第2の貴金属膜25のエッチングを行う。それによって、薄膜ヒータ20(以下「第2の薄膜ヒータ20」という)の図15に示したヒータ抵抗21とヒータ電極22及び接続配線3を形成するとともに、縁部貴金属層8を形成するための部分を工程8に示すように貫通孔2(工程9)を形成する領域より一回り大きく残して、レジストパターン49を剥離除去する。
第1の薄膜ヒータ10上の第2の薄膜ヒータ20と重ならない部分の層間絶縁膜31は工程8に示すように残しておいてもよいが、次の工程9に示すように、エッチングによって除去してもよい。
工程9ではさらに、基板1の裏面全面に、クロム又はチタンを下層とし、金又は白金を上層として積層した積層膜、あるいはシリコン酸化膜又はシリコン窒化膜又はシリコン窒化酸化膜からなるレジスト膜を形成し、それをパターニングしてレジスト膜パターン50を形成した後、そのレジスト膜パターン50をマスクにして、基板1の裏面側から2回に分けてエッチングを行う。すなわち、酸によるウエット・エッチングとSF,CHF等の気体を用いたドライ・エッチングである。それによって、基板1と絶縁膜30の一部をエッチング除去して、貫通孔2を形成する。このとき、その上部にある縁部貴金属層8を形成するための第1及び第2の貴金属膜15,25が耐酸性を持っているためエッチングストッパの役目をなし、層間絶縁膜31が酸でエッチングされるのを防ぐ。
そして、次の工程10では、レジスト膜パターン50を剥離除去した後、再度前述と同様にして基板1の裏面にレジスト膜パターン51を形成し、それをマスクにして基板1の裏面側からドライ・エッチングを行って、基板1の第1の薄膜ヒータ10と第2の薄膜ヒータ20の下側の部分を除去して、開口1aを形成する。その後、レジスト膜パターン51を剥離除去する。
次いで、工程11では、基板1上の全面にフォトレジストなどを用いたフォトリソグラフィー法などにより、レジストパターン52を形成し、そのレジストパターン52をマスクとして、貫通孔2上の第2の貴金属膜25のエッチングと第1の貴金属膜15のエッチングとを連続して行う。それによって、各貫通孔2が完全に貫通し、その各貫通孔2の内周縁部を囲むように縁部貴金属層8が形成され、基板の表面と裏面を貫通してガスが流通できるようになる。縁部貴金属層8は基板1上の絶縁膜30における貫通孔2の縁部の補強にもなる。その後、レジストパターン52を剥離除去する。
そして、図20には示していないが、最後の工程で、第1の薄膜ヒータ10と第2の薄膜ヒータ20とが交差して積層された部分に、図15及び図16に示したように、触媒を担持させた担体5を形成する。
これらの各工程を連続して行うことによって、図15及び図16に示した接触燃焼式ガスセンサを歩留まりよく製造することができる。
なお、上述した実施例では、縁部貴金属層8を、2層の貴金属膜によって形成したが、第1の薄膜ヒータ10又は第2の薄膜ヒータ20のいずれか一方を形成するための1層の貴金属膜によって縁部貴金属層8を形成してもよい。
あるいは、前述した各実施例のように、第1の薄膜ヒータ10と第2の薄膜ヒータ20を、それぞれ複数層の金属膜を積層した膜によって形成する場合には、その積層した金属膜の全部又はその内の貴金属層のみを1層又は複数層重ねて縁部貴金属層8を形成してもよい。
ところで、前述した各実施例による燃焼式ガスセンサによって実際に可燃性ガスを検知するには、上述した第1の薄膜ヒータ10と第2の薄膜ヒータ20が直列接続された検知素子の他に、担体に補償材料層を担持させた担体を付着させた薄膜ヒータを同様に設置した補償素子を製造する。
そして、その検知素子と補償素子とを直列に接続した第1の直列回路と、同じ抵抗値の2個の固定抵抗を直列に接続した第2の直列回路とを並列に接続してホイートストンブリッジ回路を構成し、その第1の直列回路と第2の直列回路の接続点間に直流電圧を印加し、検知素子と補償素子との接続点と2個の固定抵抗の接続点との間の電圧を検出信号として出力させる。
しかし、このような接触燃焼式ガスセンサの回路構成やその動作は、従来から良く知られているので、詳細な説明は省略する。
なお、この発明による接触燃焼式ガスセンサの構造や形状、材料など、あるいはその製造方法は、上述した実施例に限るものではなく、特許請求の範囲に記載した事項以外は適宜変更し得ることは勿論である。また、各実施例で異なる点を組み合わせることもできる。
基板上に設置する薄膜ヒータの数も1本又は2本に限らず、3本以上にしてもよい。好ましくは、偶数本設置して、直列に接続されるようにするとよい。さらに、前述したように、検知素子となる薄膜ヒータと補償素子となる薄膜ヒータとを1個の基板上に並べて設置することもできる。
基板の表面と裏面を貫通してガスを流通させる貫通孔の数も、1個以上設ければ有効ではあるが、好ましくは各薄膜ヒータの両側に設けるとよいので、薄膜ヒータの設置数nの2倍の2n個設けるとよい。
この発明による接触燃焼式ガスセンサは、各種の可燃性ガスを使用する機器やシステムあるいはそれらを設置した室内などのガス漏れ検知装置として広範に適用することができる。特に、今後急速な実用化が望まれる燃料電池は、燃料として可燃性の水素ガスを使用するため、水素漏れを検出するセンサを装備することが必須であり、燃料電池自動車においては、内部の1区画ごとに水素ガスセンサを設置することが義務付けられた。また、産業用あるいは家庭用の補助電源として使用する燃料電池システムなどにも水素ガスセンサを設けることは必須であり、これらの水素ガスセンサにもこの発明を適用することが極めて有効である。
この発明による接触燃焼式ガスセンサの第1実施例の平面図である。 図1のA−A線に沿う断面図である。 この接触燃焼式ガスセンサの電気的な等価回路図を示す図である。 図2の厚さ方向の拡大比率を大きくして薄膜ヒ―タの膜構成を示す拡大断面図である。 薄膜ヒータのヒータ抵抗パターンを示す拡大平面図である。 薄膜ヒータのヒータ抵抗パターンの変形例を示す拡大平面図である。 薄膜ヒータのヒータ抵抗パターンの他の変形例を示す拡大平面図である。
この発明による接触燃焼式ガスセンサの第2実施例の平面図である。 この発明による接触燃焼式ガスセンサの第3実施例の平面図である。 図9のC−C線に沿う断面図である。 この発明による接触燃焼式ガスセンサの第4実施例の平面図である。 この発明による接触燃焼式ガスセンサの第5実施例の平面図である。 この発明による接触燃焼式ガスセンサの第6実施例の平面図である。 この発明による接触燃焼式ガスセンサの第7実施例の平面図である。
この発明による接触燃焼式ガスセンサの第8実施例の平面図である。 図9のD−D線に沿って切断した端面図である。 この発明による接触燃焼式ガスセンサの製造方法の一実施例を説明するための工程図である。 同じくその続きの工程図である。 この発明による接触燃焼式ガスセンサの製造方法の他の実施例を説明するための工程図である。 同じくその続きの工程図である。
符号の説明
1:基板 1a:開口 1b:裏面 1r:ラウンド開口
2:貫通孔 3:接続配線 4:出力パッド 5:担体
6:補強部 7:開口部 8:縁部貴金属層 10,20:薄膜ヒータ
11,21:ヒータ抵抗 12,22:ヒータ電極
12a,22a:ヒータ電極の端部 12b,22b:ヒータ電極の補強部
13:第1の金属膜 14:第2の金属膜 15:第1の貴金属膜
23:第3の金属膜 24:第4の金属膜 25:第2の貴金属膜
30:絶縁膜 31:相間絶縁膜 31a:コンタクトホール
41:第1のレジストパターン 42:第2のレジストパターン
43:第3のレジストパターン 44:第4のレジストパターン
45:第5のレジストパターン 46:レジスト膜
47,50,51:レジスト膜パターン
48,49,52:レジストパターン

Claims (25)

  1. 触媒を担持する担体がヒータの一部又は全部を内包し、前記触媒に接触したガスの燃焼により発生する燃焼熱によって前記ヒータの電気的な特性値が変化し、その特性値の変化に基づいて可燃性ガスの存在を検知する接触燃焼式ガスセンサであって、
    前記ヒータを金属膜による薄膜ヒータとして前記担体と共に基板上に形成し、該基板の表面と裏面を貫通して前記可燃性ガスを流通させる貫通孔を有することを特徴とする接触燃焼式ガスセンサ。
  2. 請求項1記載の接触燃焼式ガスセンサにおいて、
    前記貫通孔の縁部を取り囲んで耐酸性のある貴金属層を設け、該貴金属層を前記薄膜ヒータを形成する金属膜の少なくとも一層と同じ貴金属層で形成したことを特徴とする接触燃焼式ガスセンサ。
  3. 前記貫通孔を複数設けたことを特徴とする請求項1又は2記載の接触燃焼式ガスセンサ。
  4. 請求項1記載の接触燃焼式ガスセンサにおいて、
    前記基板が開口を有し、
    前記薄膜ヒータは、両端部にヒータ電極が形成され、該ヒータ電極の一部が前記基板の開口を挟んで対峙する部分上に形成され、
    該薄膜ヒータ及びヒータ電極の幅が前記開口の幅より狭く、前記薄膜ヒータが前記ヒータ電極の一部によって両端を前記基板に保持されて前記開口上に梁状に設置され、該開口の一部が前記貫通孔となっていることを特徴とする請求項1から3のいずれか一項に記載の接触燃焼式ガスセンサ。
  5. 前記薄膜ヒータ及び前記ヒータ電極は、絶縁膜上に積層された複数層の金属膜で形成されていることを特徴とする請求項1から4のいずれか一項に記載の接触燃焼式ガスセンサ。
  6. 前記薄膜ヒータが2個以上設置され、その各薄膜ヒータが前記開口のほぼ中心で交差するように配置され、電気的に直列に接続されていることを特徴とする請求項1から5のいずれか一項に記載の接触燃焼式ガスセンサ。
  7. 前記2個以上の各薄膜ヒータが、それぞれ積層された複数層の金属膜で形成され、その各薄膜ヒータ用の積層された金属膜が、少なくとも一層以上の層間絶縁膜を介してさらに積層されていることを特徴とする請求項6記載の接触燃焼式ガスセンサ。
  8. 前記薄膜ヒータのヒータ抵抗のパターンが、ミアンダ・パターン又はそれに近似したパターンであること特徴とする請求項1から7のいずれか一項に記載の接触燃焼式ガスセンサ。
  9. 前記ヒータ抵抗のミアンダ・パターンが、該ヒータ抵抗の中央部と両端部とでパターン密度が異なることを特徴とする請求項8に記載の接触燃焼式ガスセンサ。
  10. 前記ミアンダ・パターンのパターン密度が、前記ヒータ抵抗の中央部では低く、両端部では高いことを特徴とする請求項9に記載の接触燃焼式ガスセンサ。
  11. 前記ヒータ抵抗のミアンダ・パターンが、前記ヒータ抵抗の中央部と両端部とでパターン線幅が異なることを特徴とする請求項8に記載の接触燃焼式ガスセンサ。
  12. 前記ミアンダ・パターンのパターン線幅が、前記ヒータ抵抗の中央部では広く、両端部では狭いことを特徴とする請求項11に記載の接触燃焼式ガスセンサ
  13. 前記ヒータ電極が、前記開口の端部付近に金属膜と絶縁膜との積層膜からなる補強部を有することを特徴とする請求項1から12のいずれか一項に記載の接触燃焼式ガスセンサ。
  14. 前記2個以上の薄膜ヒータが、前記開口のほぼ中心で交差する位置の近傍に、金属膜と絶縁膜との積層膜からなる補強部を有することを特徴とする請求項6又は7に記載の接触燃焼式ガスセンサ。
  15. 前記基板が、シリコンウエハ、ガラス基板、金属酸化物セラミック基板のいずれかであること特徴とする請求項1から14のいずれか一項に記載の接触燃焼式ガスセンサ。
  16. 前記開口の内周面が、前記基板の裏面から法線方向に対して、±(50°〜90°)の角度範囲で形成されていることを特徴とする請求項4記載の接触燃焼式ガスセンサ。
  17. 前記基板が、シリコンウエハ又はガラス基板であり、前記開口がウエット・エッチング又はドライ・エッチングで加工形成されていることを特徴とする請求項4記載の接触燃焼式ガスセンサ。
  18. 前記薄膜ヒータが、クローム又はチタン、あるいはクロームとチタンの合金からなる第1の金属膜と、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の金属膜とを含む積層膜からなることを特徴とする請求項1から17のいずれか一項に記載の接触燃焼式ガスセンサ。
  19. 前記層間絶縁膜又は絶縁膜が、金属又はシリコンの酸化物又はシリコンの窒化物又はシリコンの窒化酸化物のいずれか、あるいは該シリコンの酸化物又はシリコンの窒化物又はシリコンの窒化酸化物の内の二つ以上を含む複数の材料の複合物又は積層膜であることを特徴とする請求項5又は7記載の接触燃焼式ガスセンサ。
  20. 前記基板の開口の形状が、多角形又はコーナ部にラウンドを有する多角形、あるいは円形又は楕円形であることを特徴とする請求項4記載の接触燃焼式ガスセンサ。
  21. 前記基板の形状が、正方形又は長方形であり、且つ前記ヒータ電極の一部に接続する出力パッドが、前記基板上の前記正方形又は長方形の一辺の中央部又は角部に形成されていることを特徴とする請求項4記載の接触燃焼式ガスセンサ。
  22. 前記触媒を担持させた担体が、アルミナ又はアルミナセラミックス又は酸化スズ又は酸化インジウムを塗布した焼結体であることを特徴とする請求項1から21のいずれか一項に記載の接触燃焼式ガスセンサ。
  23. 基板上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜を形成する工程と、
    前記絶縁膜上の全面に、複数層の金属膜を積層した第1の積層金属膜を形成する工程と、
    該第1の積層金属膜をエッチングして第1の薄膜ヒータを形成する工程と、
    前記基板の全面に層間絶縁膜を形成する工程と、
    前記絶縁膜をエッチングしてコンタクトホールを形成する工程と、
    前記層間絶縁膜上の全面に、複数層の金属膜を積層した第2の積層金属膜を形成する工程と、
    該第2の積層金属膜をエッチングして第2の薄膜ヒータを形成する工程と、
    前記層間絶縁膜と前記絶縁膜のエッチングとを連続して行い、該層間絶縁膜と絶縁膜とを貫通する開口部を形成する工程と、
    前記基板の裏面にレジスト膜を形成し、該レジスト膜をエッチングしてレジスト膜パターンを形成する工程と、
    該レジスト膜パターンをマスクとして、前記基板の裏面側からエッチングを行って、前記基板を貫通し、少なくとも一部が前記開口部に連通する貫通孔を形成する工程と、
    前記第1の薄膜ヒータと前記第2の薄膜ヒータとが積層された部分に、触媒を担持させた担体を形成する工程と
    を連続して行うことを特徴とする接触燃焼式ガスセンサの製造方法。
  24. 基板上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜を形成する工程と、
    前記絶縁膜上の全面に、クロム又はチタン、あるいはクロムとチタンとの合金からなる第1の金属膜を形成し、連続して該第1の金属膜上の全面に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の金属膜を積層する工程と、
    前記基板上に第1のレジストパターンを形成し、該第1のレジストパターンをマスクとして、前記第2の金属膜のエッチングと前記第1の金属膜のエッチングとを連続して行い、第1の薄膜ヒータとその出力パッドを含む第1のヒータ電極部とを形成した後、前記第1のレジストパターンを剥離除去する工程と、
    前記基板の全面に、1層以上の絶縁層からなる層間絶縁膜を形成する工程と、
    前記層間絶縁膜上の全面に第2のレジストパターンを形成し、該第2のレジストパターンをマスクとして、前記層間絶縁膜のエッチングを行ってコンタクトホールを形成した後、前記第2のレジストパターンを剥離除去する工程と、
    前記基板上の全面に、クロム又はチタン、あるいはクロムとチタンとの合金からなる第1の金属膜を形成し、連続して該第1の金属膜上の全面に、金又は白金又はパラジウム又はロジウム、あるいは金又は白金又はパラジウム又はロジウムの内の二つ以上を含む合金からなる第2の金属膜を積層する工程と、
    前記基板上に第3のレジストパターンを形成し、該第3のレジストパターンをマスクとして、前記第2の金属膜のエッチングと前記第1の金属膜のエッチングとを連続して行い、第2の薄膜ヒータとその出力パッドを含む第2のヒータ電極部とを形成した後、前記第3のレジストパターンを剥離除去する工程と、
    前記基板上の全面に第4のレジストパターンを形成し、該第4のレジストパターンをマスクとして、前記層間絶縁膜のエッチングと前記絶縁膜のエッチングとを連続して行い、該層間絶縁膜と絶縁膜とを貫通する開口部を形成した後、前記第4のレジストパターンを剥離除去する工程と、
    前記基板の裏面に、クロム又はチタンを下層とし、金又は白金を上層として積層した積層膜、あるいはシリコン酸化膜又はシリコン窒化膜又はシリコン窒化酸化膜からなるレジスト膜を形成する工程と、
    該レジスト膜上に第5のレジストパターンを形成し、該第5のレジストパターンをマスクとして前記レジスト膜をエッチングしてレジスト膜パターンを形成する工程と、
    前記レジスト膜パターンをマスクとして、前記基板の裏面側からエッチングを行って、前記基板を貫通し、少なくとも一部が前記層間絶縁膜と絶縁膜とを貫通する開口部に連通する貫通孔を形成した後、前記レジスト膜パターンを剥離除去する工程と、
    前記第1の薄膜ヒータと前記第2の薄膜ヒータとが積層された部分に、触媒を担持させた担体を形成する工程と
    を連続して行うことを特徴とする接触燃焼式ガスセンサの製造方法。
  25. 基板上の全面に、少なくとも1層以上の絶縁層からなる絶縁膜を形成する工程と、
    前記絶縁膜上の全面に、耐酸性を持つ貴金属による第1の貴金属膜を形成する工程と、
    該第1の層金属膜をエッチングして第1の薄膜ヒータを形成するとともに、縁部貴金属層を形成するための部分を貫通孔を形成する領域より一回り大きく残す工程と、
    前記基板の全面に層間絶縁膜を形成した後、エッチングによって該層間絶縁膜の不要な部分を除去する工程と、
    前記基板上の全面に、耐酸性を持つ貴金属による第2の貴金属膜を形成する工程と、
    該第2の貴金属膜をエッチングして第2の薄膜ヒータを形成するとともに、前記縁部貴金属層を形成するための部分を残す工程と、
    前記基板の裏面にレジスト膜パターンを形成し、該レジスト膜パターンをマスクとして、前記基板の裏面側からエッチングを行って、前記基板を貫通する開口を形成するとともに、前記縁部貴金属層を形成するための部分の裏面側の前記貫通孔を形成する領域の前記絶縁膜を除去する工程と、
    前記基板上の前記貫通孔を形成する領域以外の全面を覆うレジストパターンを形成し、そのレジストパターンをマスクにして、前記縁部貴金属層を形成するための部分の前記第2の貴金属膜と前記第1の貴金属膜のエッチング除去を続けて行って、前記貫通孔を完全に貫通させる工程と、
    前記第1の薄膜ヒータと前記第2の薄膜ヒータとが積層された部分に、触媒を担持させた担体を形成する工程と
    を連続して行うことを特徴とする接触燃焼式ガスセンサの製造方法。

JP2006109329A 2006-04-12 2006-04-12 接触燃焼式ガスセンサとその製造方法 Pending JP2007278996A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109329A JP2007278996A (ja) 2006-04-12 2006-04-12 接触燃焼式ガスセンサとその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109329A JP2007278996A (ja) 2006-04-12 2006-04-12 接触燃焼式ガスセンサとその製造方法

Publications (1)

Publication Number Publication Date
JP2007278996A true JP2007278996A (ja) 2007-10-25

Family

ID=38680575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109329A Pending JP2007278996A (ja) 2006-04-12 2006-04-12 接触燃焼式ガスセンサとその製造方法

Country Status (1)

Country Link
JP (1) JP2007278996A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281838A (ja) * 2008-05-21 2009-12-03 Ricoh Co Ltd 雰囲気測定装置
JP2010164344A (ja) * 2009-01-13 2010-07-29 Nitto Denko Corp 物質検知センサ
JP2011089943A (ja) * 2009-10-26 2011-05-06 Yazaki Corp 接触燃焼式ガスセンサ
JP2011149889A (ja) * 2010-01-25 2011-08-04 Figaro Engineerign Inc ガスセンサ
JP2013200131A (ja) * 2012-03-23 2013-10-03 Yazaki Energy System Corp マイクロガスセンサ
CN109633197A (zh) * 2019-01-28 2019-04-16 哈尔滨理工大学 一种双加热电极宽量程风速传感器及其制造方法
CN109655630A (zh) * 2019-01-31 2019-04-19 哈尔滨理工大学 一种二维热温差型风速传感器及其环境自补偿方法
CN109970022A (zh) * 2019-04-01 2019-07-05 深圳邺诚科技有限公司 一种mems催化燃烧传感器及其加工方法
EP3531119A1 (en) * 2018-02-26 2019-08-28 Sensirion AG Sensor with bridge structure
CN110785375A (zh) * 2017-06-23 2020-02-11 罗伯特·博世有限公司 键合垫层系统、气体传感器和用于制造气体传感器的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281838A (ja) * 2008-05-21 2009-12-03 Ricoh Co Ltd 雰囲気測定装置
JP2010164344A (ja) * 2009-01-13 2010-07-29 Nitto Denko Corp 物質検知センサ
US8776579B2 (en) 2009-01-13 2014-07-15 Nitto Denko Corporation Substance detection sensor
JP2011089943A (ja) * 2009-10-26 2011-05-06 Yazaki Corp 接触燃焼式ガスセンサ
JP2011149889A (ja) * 2010-01-25 2011-08-04 Figaro Engineerign Inc ガスセンサ
JP2013200131A (ja) * 2012-03-23 2013-10-03 Yazaki Energy System Corp マイクロガスセンサ
CN110785375A (zh) * 2017-06-23 2020-02-11 罗伯特·博世有限公司 键合垫层系统、气体传感器和用于制造气体传感器的方法
EP3531119A1 (en) * 2018-02-26 2019-08-28 Sensirion AG Sensor with bridge structure
CN109633197A (zh) * 2019-01-28 2019-04-16 哈尔滨理工大学 一种双加热电极宽量程风速传感器及其制造方法
CN109633197B (zh) * 2019-01-28 2024-01-26 哈尔滨理工大学 一种双加热电极宽量程风速传感器及其制造方法
CN109655630A (zh) * 2019-01-31 2019-04-19 哈尔滨理工大学 一种二维热温差型风速传感器及其环境自补偿方法
CN109655630B (zh) * 2019-01-31 2024-01-19 哈尔滨理工大学 一种二维热温差型风速传感器及其环境自补偿方法
CN109970022A (zh) * 2019-04-01 2019-07-05 深圳邺诚科技有限公司 一种mems催化燃烧传感器及其加工方法

Similar Documents

Publication Publication Date Title
JP2007278996A (ja) 接触燃焼式ガスセンサとその製造方法
US8414752B2 (en) Multilayer ceramic NOx gas sensor device
JP6917843B2 (ja) ガスセンサ
JPS60108745A (ja) 電気化学的装置
JP5105488B2 (ja) ガスセンサ
WO2022052392A1 (zh) 一种旁热式硅基薄膜催化氢气传感器及其加工方法
JP2003028691A (ja) 薄膜式センサおよびその製造方法ならびにフローセンサ
JP2002286673A (ja) ガスセンサ及びその製造方法
JP2000206080A (ja) ヒ―タ付き酸素センサ及びその製造方法
CN115266848A (zh) 一种多通道气体传感器及其制备方法
JP2009079907A (ja) 接触燃焼式ガスセンサ
US7771576B2 (en) Gas sensor and method for manufacturing gas sensor
JP2005164566A (ja) 薄膜ガスセンサ
US20190064094A1 (en) Gas sensor and gas sensor package having the same
WO2010084916A1 (ja) ガスセンサ用基体及びその製造方法
JPS61191953A (ja) ガス検出装置
JP4371772B2 (ja) 薄膜ガスセンサ
KR101992022B1 (ko) 반도체식 가스센서
JP3537077B2 (ja) ガスセンサ用マイクロヒータ
JP2011196896A (ja) 接触燃焼式ガスセンサ
JP5230833B2 (ja) 接触燃焼式ガスセンサ
JP5144046B2 (ja) 接触燃焼式ガスセンサ
JP3246167B2 (ja) 酸素濃度センサ
JP2000009672A (ja) 接触燃焼式ガスセンサ
JP5014938B2 (ja) 接触燃焼式ガスセンサ