JP2007273908A - 光電変換装置及び光電変換装置の製造方法 - Google Patents

光電変換装置及び光電変換装置の製造方法 Download PDF

Info

Publication number
JP2007273908A
JP2007273908A JP2006100893A JP2006100893A JP2007273908A JP 2007273908 A JP2007273908 A JP 2007273908A JP 2006100893 A JP2006100893 A JP 2006100893A JP 2006100893 A JP2006100893 A JP 2006100893A JP 2007273908 A JP2007273908 A JP 2007273908A
Authority
JP
Japan
Prior art keywords
solder
lead
photoelectric conversion
lead wire
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006100893A
Other languages
English (en)
Other versions
JP5016835B2 (ja
Inventor
Toshinobu Nakada
年信 中田
Masataka Kondo
正隆 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006100893A priority Critical patent/JP5016835B2/ja
Publication of JP2007273908A publication Critical patent/JP2007273908A/ja
Application granted granted Critical
Publication of JP5016835B2 publication Critical patent/JP5016835B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】リードの取付け強度が高い光電変換装置及び当該光電変換装置の製造方法を開発する。
【解決手段】太陽電池1は、複数の光電変換セル3に分割されている。太陽電池1の対向する辺部にリード取付け部50,51が設けられ、当該リード取付け部50,51に帯状の半田ディップリード線5が取り付けられている。
半田ディップリード線5の取付けは、従来技術と同様に非鉛半田を使用した半田付けによるが、積層体53の表面52から半田ディップリード線5までの高さHが従来に比べて高い。高さHは、140μmを越えるものであり、推奨すべき高さHは170μm〜350μmである。半田20の高さが140μmを越えるものであれば半田ディップリード線5の取付け強度が向上する。
【選択図】図3

Description

本発明は、集積型太陽電池等の光電変換装置及びその製造方法に関するものである。本発明の光電変換装置はリードの取付けに非鉛半田を使用する場合に特に好ましい効果を発揮するものである。
また本発明の光電変換装置の製造方法は、非鉛半田を使用する光電変換装置の製造方法として好適である。
無尽蔵に降り注ぐ太陽エネルギーを利用して発電することができ、且つ排気ガスを排出することなくクリーンであり、さらに放射能を放出するといった危険もなく安全であることから、太陽電池が注目を集めている。
太陽電池は、ガラス基板に透明電極膜(第一電極層)と半導体膜(太陽電池膜。実際にはp膜、i膜、n膜の三層構造からなる)及び裏面電極膜(第二電極層)が順次積層されたものであり、光を当てると第一電極層と第二電極層との間に電位差が生じる。
しかしながら、一個の太陽電池が発生させる電圧は極めて低いものであり、一つの太陽電池だけでは実用的な電圧に達しない。そこで太陽電池の薄膜に複数の溝を設けて多数の単体電池(セル)に分割し、この多数の太陽電池のセルを電気的に直列接続し、実用的な電圧にまで高める工夫がなされている。この様な太陽電池は集積型太陽電池あるいは集積型薄膜太陽電池と称されている。
集積型太陽電池では、基板の対向する辺部にそれぞれリード取付け領域が設けられ、一方のリード取付け領域においては半田ディップリードが第一電極層及び/または第二電極層に半田付けされ、他方のリード取付け領域においても半田ディップリードが第一電極層及び/または第二電極層に半田付けされている。
集積型太陽電池の製造工程における半田ディップリードの取付け工程は、概ね次の通りである。
図13は、従来技術の集積型太陽電池の製造工程における半田ディップリードの取付け工程を示す集積型太陽電池の断面図である。
即ち前記した様にガラス基板100に所定の膜101を成膜し、薄膜に複数の溝を設けてセルに分割し、セルを電気的に直列に接続した後、基板の対向する辺にリード取付け領域102を設ける(図13a)。
そして図13(b)の様にリード取付け領域102に、所定間隔を開けて列状に半田バンプ103を形成する。続いて図13(c)の様に半田バンプ103に半田被覆を施した半田ディップリード線105を乗せる。半田ディップリード線105は、基板と平行に載置される。
続いて図13(d)の様に高温のコテ106を半田バンプ103に近づけ、図13(e)の様にコテ106で半田バンプ103を一つずつ押圧する。
その結果、コテ106の熱によって半田バンプ103の半田110が溶融し半田ディップリード線105が接合される。この時、半田バンプ103の山形は崩れる(図13f)。
ところで 半田付けは、半田ディップリード線105の電気的接続手段として古くから活用されている接合技術であり、半田としては、従来、錫・鉛の組成からなる共晶半田が広く用いられてきた。しかしながら鉛は有毒であり、人体への影響を含め、環境に対する悪影響が大きいことが認識されており、その使用が規制されつつある。
そこで鉛成分を含まない、或いは鉛成分の組成が小さい半田( 以下、非鉛半田という)
の開発が急がれている。例えば、特許文献1には、Ag3〜5重量%、Cu0.5〜3重量%、Sb0〜5重量%であり、残部がSnの組成からなる非鉛半田が開示されている。
また集積型太陽電池の分野においても同様に非鉛半田の使用が検討されている(特許文献2)。
特開平5−50289号公報 特開2002−314104号公報
しかしながら、集積型太陽電池のリード取付けに非鉛半田を使用すると、従来の鉛半田を使用した場合に比べて取付け強度が劣るという問題がある場合がある。
そこで本発明は、従来技術の上記した問題点に注目し、リードの取付け強度が高い光電変換装置及び当該光電変換装置の製造方法を開発することを課題とするものである。
そして上記した課題を解決するために、本発明者らは鋭意研究し、電極層に半田ディップリードを半田付けする際におけるコテの温度や半田の量、半田を押さえつける際の力等を各種変更して半田ディップリードを半田付けする実験をおこない、それぞれの半田ディップリードの取付け強度を測定して半田付けの最適条件を検討した。
その結果、電極層に対する半田ディップリードの取付け強度は、半田の高さと相関性があり、半田の高さがある程度高いと半田ディップリードの取付け強度が高まることが判った。
即ち半田ディップリードと電極層との接合強度は、半田と半田ディップリード及び電極層との接触面積に依存すると推測されたが、半田ディップリードと電極層との接合強度は、接触面積よりもむしろ半田の高さと相関関係が強いことが判った。
以下、簡単に説明する。
図14(a)は、従来技術における太陽電池のリード取付け領域を概念的に図示した拡大断面図であり、同(b)は、半田ディップリードを基板に対して垂直方向に引っ張ろうとした場合の挙動を示す集積型太陽電池のリード取付け領域の断面図である。
また図15(a)は、半田の高さを従来に比べて高くした集積型太陽電池を概念的に図示した拡大断面図であり、(b)(c)は、半田ディップリードを基板に対して垂直方向に引っ張ろうとした場合の挙動を示す集積型太陽電池のリード取付け領域の断面図である。
なお図14、図15は、半田等の挙動を概念的に示すものであり、説明を簡単にするために成膜(透明電極膜、半導体膜、裏面電極膜等)を含めた基板を基板100と表示しており、以下の説明についても、成膜を含む基板を基板100と称する場合がある。
前記した様に本発明者らは、半田の接合条件を変えて半田ディップリードの取付け強度を測定した。実験は、半田ディップリード線を基板に対して垂直方向に引っ張ることによって行った。
従来技術の集積型太陽電池では、半田ディップリード線105を引っ張ると、図14(b)の様に半田ディップリード線105の引き上げに追従する形で半田110が基板100側より剥離して半田ディップリード線105が離脱した。厳密には基板100に積層された膜101から半田ディップリード線105が離脱した。
これに対して半田110の高さHを高くして半田ディップリード線105を半田付けし、半田ディップリード線105を基板100に対して垂直方向に引っ張ると、図15(b)(c)の様に半田110と基板(電極膜)100との界面が一気に剥がれて半田ディップリード線105が離脱した。即ち図15(c)の様に、半田110が付着した状態で共に半田ディップリード線105が離脱した。
そして半田110の高さHを高くして半田ディップリード線105を半田付けした場合の半田ディップリード線105の取付け強度は、従来のそれに比べて数段に高いものであった。
この理由は定かではないが、従来技術のリード取付け部分を観察したところ、半田110の端部と半田ディップリード線105との関係が図14(a)の様な形状をしており、フィレットの形状が不十分であるからではないかと推測される。そのため半田ディップリード線105を基板100に対して垂直方向に引っ張ると、その引張り力が基板100側の半田接続端部Aに集中的に作用するのではないかと推測される。
あるいは半田110の高さが低いと、半田110が急冷されて半田110が収縮し、半田ディップリード線105と半田110との接続端部や半田ディップリード線105と半田110との界面に残留応力が残り、両者の接合強度が低下するのではないかと推測される。
これに対して半田110の高さHを高くして顕微鏡で接続部分を観察すると、図15(a)に示す様に、半田110の端部と半田ディップリード線105に良好なフィレットが形成されていた。即ち半田110は、鼓状であって、中間部分が細く、両端部が中間部よりも大径となっていた。そのため半田ディップリード線105を基板100に対して垂直方向に引っ張ったとき、その引張り力が半田ディップリード線105と半田110との接続界面の全体に分散されるのではないかと推測される。
あるいは半田110の高さが高いと冷却速度が低下し、半田ディップリード線105と半田110との界面の残留応力が小さくなるのではないかと推測される。
いずれにしても本発明者らの研究により、半田110の高さHを高くして半田ディップリード線105を半田付けると、半田ディップリード線105の取付け強度が格段に向上するという事実が判明した。
上記した知見に基づく請求項1に記載の発明は、基板上に少なくとも第一電極層と、光電変換層及び第二電極層を積層し、光を当てることによって前記第一電極層と第二電極層の間に電位差を生じさせる光電変換装置において、前記第一電極層と第二電極層の少なくともいずれかには半田ディップリードが半田付けされており、当該半田付け部分の半田は前記層の積層表面から半田ディップリードまでの高さが140μmを越えるものであることを特徴とする光電変換装置である。
ここで半田ディップリードは、半田によって表面が被覆されたリードである。従って半田ディップリードは、芯線と半田とが合体したものであり、半田層を持つ。そして前記した「半田ディップリードまでの高さ」は、半田層を含んだ半田ディップリードまでの高さであり、芯線までの高さよりも低い。即ち前記した半田の高さは、半田付けに使用される半田層の高さであり、半田ディップリードに元から付着していた半田層は含まない。
また請求項2に記載の発明は、半田付け部分の半田は積層表面から半田ディップリードまでの高さが350μm以下であることを特徴とする請求項1に記載の光電変換装置である。
請求項3に記載の発明は、リード取付け領域を有し、半田ディップリードは、リード取付け領域にあって基板と略平行に配置され、半田ディップリードは前記第一電極層又は第二電極層に対して部分的に半田付けされていることを特徴とする請求項1又は2に記載の光電変換装置である。
請求項4に記載の発明は、半田の材質は非鉛半田であることを特徴とする請求項1乃至3のいずれかに記載の光電変換装置である。
請求項5に記載の発明は、半田付け部分の半田の形状は、積層表面部との接合部と半田ディップリードとの接合部の面積が大きく、中間部が細いことを特徴とする請求項1乃至4のいずれかに記載の光電変換装置である。
本発明の光電変換装置では、半田付け部分の半田の形状は、積層表面部との接合部と半田ディップリードとの接合部の径が大径であって面積が大きく、中間部が細いので、半田ディップリードに係る力が分散されて基板側に伝わる。そのため半田ディップリードの取付け強度が高い。
また製造方法に関する発明は、半田バンプを設ける工程と、半田バンプに半田ディップリードを載置する工程と、半田バンプに加熱部材を押圧する加熱押圧工程とを備え、加熱押圧工程に際しては加熱部材を電極層から100μm以上離れた位置で停止させることを特徴とする。
本発明の光電変換装置は、半田ディップリードの取付け強度が高く、半田ディップリードと基板等との接合部分の機械強度が満足することができるものとなり、信頼性が高いという効果がある。また本発明の光電変換装置の製造方法で作られた光電変換装置についても、半田ディップリードの取付け強度が高く、信頼性が高いという効果がある。
以下さらに本発明の実施形態について説明する。
図1は、本発明の実施形態の集積型太陽電池の斜視図である。図2は、図1のA−A部の拡大断面図である。図3は、図1のB−B部の拡大断面図である。
本実施形態の集積型太陽電池(以下、単に太陽電池と称する場合もある)1は、ガラス基板等の絶縁性透光性基板2に透明導電膜(第一電極層)6と光電変換膜7と、裏面導電膜(第二電極層)8を積層したものである。
また太陽電池1は、図1の様に複数の光電変換セル3に分割されている。そして太陽電池1を図1の様に平面的に観察した時、対向する辺部にリード取付け部50,51が設けられ、当該リード取付け部50,51に帯状の半田ディップリード線5が取り付けられている。
図2,3は、リード取付け部の拡大断面図である。図2に示すリード取付け部50では、裏面導電膜(第二電極層)8に対して半田ディップリード線5が取り付けられている。
また図3に示すリード取付け部51では、透明導電膜(第一電極層)6に対して半田ディップリード線5が取り付けられている。
ここで半田ディップリード線5は、図2,3の円内に図示した様に銅等の芯線16に半田15が被覆されたものである。
半田ディップリード線5の取付けは、非鉛半田を使用した半田付けによる。
即ち図2に示すリード取付け部50では、裏面導電膜(第二電極層)8に接する半田バンプ9が直列状かつ一定の間隔を開けて設けられており、当該半田バンプ9に半田ディップリード線5が取り付けられている。
ここで本実施形態で特記すべき事項は、積層体53の表面52から半田20内の半田ディップリード線5の表面までの高さHである。なお図2では、作図の関係状「H」及び矢印を半田20の外の位置(中空状に張られた半田ディップリード線5)に図示しているが、高さHは、半田20の高さであって、張られた半田ディップリード線5の位置ではない。
本実施形態では、絶縁性透光性基板2に透明導電膜6と光電変換膜7と、裏面導電膜8が積層されているが、この3層の積層体53の表面52から半田20内における半田ディップリード線5の裏面に至る高さHが従来に比べて高い。
前記した様に半田ディップリード線5は、銅等の芯線16に半田層15が設けられたものであるが、半田ディップリード線5に被覆された半田層15の高さは、前記した高さHには含まない。
前記した高さHの上端側の基準は、図2の様に、半田ディップリード線5の被覆された半田層15の表面である。
また前記した高さHの上端側の基準は、積層体53の裏面導電膜8の表面である。
言い換えると半田付けに使用された半田の高さがHである。
そしてこの高さHが従来に比べて高い。
前記した高さHは、半田ディップリード線5の半田ディップ面(被覆された表面)を基準としている。従って半田ディップリード線5の芯線16の位置は、高さHに被覆された半田15の厚さを加えたものとなる。半田ディップリード線5に設けられた半田層15の厚さは、後記する様に10μm〜80μm程度であり通常は、40〜60μmである。
高さHは、具体的には140μmを越える高さである。推奨すべき高さHは140μmを越え、350μm以下の高さである。
また最も推奨される範囲は、200μm〜300μmである。
一方、図3に示すリード取付け部51では、透明導電膜(第一電極層)6に接する半田バンプ9が直列状かつ一定の間隔を開けて設けられており、当該半田バンプ9に半田ディップリード線5が取り付けられている。
図3に示すリード取付け部51においても、半田20内における積層体53の表面52からの高さHが従来に比べて高い。即ち図3に示すリード取付け部51においても裏面導電膜(第二電極層)8の表面から半田ディップリード線5の裏面に至る高さが従来に比べて高い。
高さHは、具体的には140μm以上であり、推奨すべき半田20の高さHは140μmを越えて350μm以下の高さである。また最も推奨される範囲は、200μm〜300μmである。
以上説明した実施形態では、マイナス側の半田ディップリード線5を裏面導電膜(第二電極層)8に直接取り付けたが、裏面導電膜(第二電極層)8及び光電変換膜7をスクライブして透明導電膜(第一電極層)6側に至る溝を設け、透明導電膜(第一電極層)6側からマイナス電極を取り出してもよい。透明導電膜(第一電極層)6側からマイナス電極を取り出す場合の構成は、図2で説明したものと同一である。
次に本実施形態の太陽電池の製造方法について説明する。
図4は、本発明の実施形態の集積型太陽電池の製造工程における半田ディップリード線の取付け工程を示す集積型太陽電池の断面図である。図5は、図4に示す集積型太陽電池の製造工程の中で加熱押圧工程をより詳細に説明した集積型太陽電池の断面図である。
本実施形態の太陽電池についても従来技術と同様に、ガラス基板等の絶縁性透光性基板2に透明導電膜6と光電変換膜7と、裏面導電膜8を積層した積層体53を成膜し、この薄膜に複数の溝を設けてセルに分割し、セルを電気的に直列に接続した後、基板2の対向する辺にリード取付け領域50,51を設ける(図4a)。
そして図4(b)の様にリード取付け領域に、所定間隔を開けて列状に半田バンプ9を構成する。続いて図4(c)の様に半田バンプ9に半田被覆を施した半田ディップリード線5を乗せる。半田ディップリード線5は、基板2と平行に載置される。
続いて図4(d)の様に高温のコテ55を半田バンプ9に近づけ、図4(e)の様にコテ55で半田バンプ9を一つずつ押圧する。より大型のこてを使用して複数の半田バンプ9を一度に押圧してもよい。
ここで本実施形態では、図5に示すようにコテ55と基板2の間にスペーサ56が介在され、コテ55が停止する位置が規制されている。即ちコテ55はスペーサ56と当接する位置まで半田バンプ9を押圧する。
スペーサ56の厚さは、半田バンプ9の最終的な高さを決定するものであり、半田ディップリード線5の厚さを勘案した上で、積層体53の表面52から半田ディップリード線5までの半田20の高さHが200μmから300μmの範囲となる様に設定されている
即ちスペーサ56の厚さは、半田ディップリード線5の厚さにおよそ200μmから300μmを加えたものである。
本実施形態では、高温のコテ55を絶縁性透光性基板2側に移動させて半田20を溶融するが、コテ55の停止位置が決められているので、半田20の高さが一定値に保たれる。そのため本実施形態の製造方法によって製造された太陽電池1は、リード取付け部50,51における半田20の高さが高く、半田ディップリード線5の取付け強度が高い。
また上記した実施形態では、スペーサ56を利用してコテ55の停止位置を規制したが、コテ55を動作させる機構側にストッパを設けたり、コテ55をロボットで動作させてコテ55の位置を停止させてもよい。
また何らかのセンサー等を使用し、半田20の高さHを測定しつつ、コテ55を動作させたり、センサーで基板2との近接距離を監視しつつコテ55を動作させる方法も考えられる。
なおコテ55の停止位置は、必ずしも半田ディップリード線5の高さの位置と一致するとは限らず、本発明者らの実験によると、加熱部材たるコテ55を積層体53の表面52から100μm以上離れた位置で停止させることが望ましく、より推奨される停止位置は、200μmから300μmの範囲である。
以上、簡単に本発明の概要を説明したが、次に、本発明の実施形態の太陽電池1の構造及びその製造方法をより具体的に説明する。
図6は、本発明の実施形態の集積型太陽電池1を説明するための説明図である。図6に示すように、太陽電池1は絶縁性透光性基板2の上に、電力に変換する光電変換セル3を設け、絶縁透光性基板2側から入射する光を、光電変換セル3によって光電変換するものである。なお光電変換セル3は複数設けられているが、光電変換セル3間の溝等は図示を省略している。
光電変換セル3の集合は、その周囲に形成された絶縁線4により周囲からの絶縁が図られている。また光電変換セル3の集合は、半田ディップした半田ディップリード線5を通じて発生した電力を取り出す構造を有している。
さらに、図6の線Aの断面方向の構造の一部を説明図7に示した。図7に示すように、太陽電池1は、透光性基板2上に、透明導電膜(第一電極層)6、光電変換膜7、及び裏面電極膜(第二電極層)8を順次積層した構造を備えている。
また太陽電池1は、発生した電力を取り出すため半田ディップリード線5と、透明導電膜6、光電変換膜7、及び/又は裏面電極膜8を接続するための半田バンプ9を有している。
次に、この太陽電池1の各構成要素について説明する。
絶縁透光性基板2としては、例えば、ガラス板や透明樹脂フィルムなどを用いることができる。ガラス板としては、大面積な板が安価に入手可能で透明性、絶縁性が高い、二酸化珪素(SiO2 )、酸化ナトリウム(Na2 O)及び酸化カルシウム(CaO)を主成分とする両面が平滑なフロート板ガラスを用いることができる。
透明導電膜6は、ITO膜、二酸化錫(SnO2 )膜、或いは酸化亜鉛(ZnO)膜のような透明導電性酸化物層等で構成することができる。透明導電膜6は、蒸着法、CVD法、或いはスパッタリング法等それ自体既知の気相堆積法を用いて形成することができる。
光電変換膜7は非晶質及び/又は多結晶シリコン系半導体光電変換層を備えており、例えば、透明導電膜6側からp型シリコン系半導体層、i型シリコン系半導体層、及びn型シリコン系半導体層を順次積層した構造を有する。これらp型半導体層、i型半導体層、及びn型半導体層はいずれもプラズマCVD法により形成することができる。また、これらpin構造を2段積層したタンデム構造、3段積層したトリプル構造等の構造であってもよい。
光電変換膜7を構成するp型半導体層は、例えば、シリコンまたはシリコンカーバイドやシリコンゲルマニウム等のシリコン合金に、ボロンやアルミニウム等のp導電型決定不純物原子をドープすることにより形成することができる。また、i型半導体層は、非晶質シリコン系半導体材料及び結晶質シリコン系半導体材料でそれぞれ形成することができ、そのような材料としては、真性半導体のシリコン(水素化シリコン等)やシリコンカーバイド及びシリコンゲルマニウム等のシリコン合金等を拳げることができる。また、光電変換機能を十分に備えていれば、微量の導電型決定不純物を含む弱p型もしくは弱n型のシリコン系半導体材料も用いられ得る。さらに、n型半導体層は、シリコンまたはシリコンカーバイドやシリコンゲルマニウム等のシリコン合金に、燐や窒素等のn導電型決定不純物原子をドープすることにより形成することができる。
裏面電極膜8は電極としての機能を有するだけでなく、絶縁透光性基板2から光電変換膜7に入射し裏面電極膜8に到達した光を反射して光電変換膜7に再入射させる反射層としての機能も有している。裏面電極膜8は、銀やアルミニウム等を用いて、蒸着法やスパッタ法等により、例えば200nm〜400nm程度の厚さに形成することができる。
なお、裏面電極膜8と光電変換膜7との間には、例えば両者の間の接着性を向上させるために、ZnOのような非金属材料からなる透明電導性薄膜(図示せず)を設けることができる。
半田ディップリード線5は、前記した様に芯線16に半田15を被覆したものである。芯線16に被覆する半田は、非鉛半田であることが望ましい。また非鉛半田であって、さらにセラミック半田と称される無機非金属に対して金属を接合することができるものが推奨される。例えば特許第3664308号等に開示された無鉛半田の様な、SnとZnとSb及びAlからなる半田が使用可能である。
あるいは、芯線16に被覆する半田15として、Ag、Al、Cu、Zn、Sb、In、Ge、P、Ni、Biから選ばれる少なくとも1種類以上の元素を含み、Snの含有量が89重量%以上の組成からなる半田を使用することもできる。
また上記半田として、例えば、Ag2.5〜7.7重量%、Cu0.0〜4.0重量%、Sn89重量%以上の組成からなる半田、Zn1.0〜11重量%、Sn89重量%以上の組成からなる半田を使用することが出来る。さらに好ましくは、Ag2.5〜4.0重量%、Cu0.0〜1.5重量%、Sn89重量%以上の組成からなる半田である。
半田ディップリード線5は、上記した半田を溶融したものに、銅箔を浸漬し、銅箔表面に半田をコートすることにより作製することができる。
上記銅箔の厚みは40μm〜120μmが好ましく、さらに好ましくは、60μm〜100μmである。上記銅箔表面にコートした半田の厚みは、10μm〜80μmが好ましく、さらに好ましくは、20μm〜60μmである。またこれらの半田は、鉛の含有量が0.1重量%未満のものが採用される。好ましくは0.05重量%未満のものが採用される。
半田バンプ9は、透明導電性酸化物層である透明導電膜6に接続する構造であるため、金属酸化物に半田付け可能な半田であり且つ非鉛半田である。
半田バンプ9に使用する半田の素材については、前記した半田ディップリード線5に被覆された半田15と類似したものであることが望ましく、例えば特許第3664308号等に開示された無鉛半田の様な、SnとZnとSb及びAlからなる半田が使用可能である。半田バンプ9に使用する半田についても鉛の含有量が0.1重量%未満のものが採用される。好ましくは0.05重量%未満のものが採用される。
またAg、Al、Cu、Sb、In、Ge、P、Ni、Biから選ばれる少なくとも1種類以上の元素を含み、SnとZnの組成の合計が89重量%以上である半田を使用することもできる。上記半田として、例えば、Ag2.5〜7.7重量%、Cu0.0〜4.0重量%、Sn89重量%以上の組成からなる半田、Zn1.0〜11重量%、Sn89重量%以上の組成からなる半田を使用することが出来る。さらに好ましくは、Ag2.5〜4.0重量%、Cu1.5重量%以下、Sn89重量%以上の組成からなる半田である。
フラックスの添加は可能であるが、含まなくてもよい。
次に実施形態の太陽電池の製造手順について説明する。
最初に、絶縁透光性基板2の一方の全面に透明導電膜6を製膜した後、例えばYAG基本波レーザ光を照射して透明導電膜6を短冊状に分割する第1の分離溝10を形成する。
次に、第1の分離溝10が形成された透明導電膜6にわたって、光電変換膜7としてアモルファスシリコン及び/又は多結晶シリコンを、プラズマCVD法等でp型、i型、n型の順に1回以上積層した後、例えばYAG第2高調波レーザ光を照射して光電変換膜7を短冊状に分割する接続溝11を形成する。
引き続き、接続溝11が形成された光電変換膜7にわたって裏面電極膜8として透明電導性薄膜及び金属膜を、この順にスパッタ法等で製膜した後、例えばYAG第2高調波レーザ光を絶縁透光性基板2側から照射して裏面電極膜8を短冊状に分割する第2の分離溝12を形成する。
このようにして、絶縁透光性基板2の一面上に順に積層された透明導電膜6、非晶質及び/又は多結晶シリコン系半導体からなる光電変換膜7、裏面電極膜8を含む多層膜を含み、直列接続された複数の光電変換セルを含むセル領域を形成する。
さらに、電力取り出し用の半田ディップリード線5を太陽電池1に配する。例えば、図8の破線B、破線Cで示される光電変換セル3の両端位置に、YAG第2高調波レーザ光を絶縁透光性基板2側から照射して、光電変換膜7と裏面電極膜8を除去し、図9に示す形状のリードの接続溝13を作製する。この接続溝13に重なるように、図10に示すように光電変換セル3側から半田バンプ9を形成する。
この半田バンプ9の形状は、図11のように透明電極層6に固定され、接続溝13を充填し、光電変換セル3から突き出した形状となる。この形成した半田バンプ9に、半田ディップリード線5を加熱した半田ゴテ55を用いて取り付け、図7に示したように、太陽電池1に電力取り出し用の半田ディップリード線5を配した構造を作製できる。
前記電力取り出し用の半田ディップリード線5の作製方法は、第一段階として、例えば、超音波振動子とこの超音波振動子に直結した、内部に電気ヒーターを有した半田コテ(以下超音波半田コテという)を用いる。すなわち、超音波半田コテを使用して、半田バンプ9に使用する半田20を溶融し、超音波半田コテに付着・保持させたものを、超音波振動子により発生した振動を超音波半田コテに伝達した状態で、接続溝13の位置に押し当て、半田バンプ9を形成する。この場合、加熱した超音波半田コテの温度は、半田バンプ9に使用する半田20の融点(液相温度と固相温度が存在する場合、液相温度を示す)より20°C〜300°C高い範囲である。また超音波半田コテの温度は、半田バンプ9に使用する半田20の融点よりも40°C〜200°C高い範囲であることがより好ましい。
超音波半田コテの温度が、半田バンプ9に使用する半田20の融点に近いと半田20の溶融速度が遅く、生産性が低下する場合がある。
また、超音波半田コテの温度が高すぎると半田20の酸化が進行し、品質が損なわれる場合がある。
第二段階として、電気ヒーターで加熱した半田コテ( 以下リード線用半田コテ) を半田ディップリード線5側より押圧して、半田バンプ9と溶融・接続する。この場合、リード線用半田コテの温度は、半田ディップリード線5に使用する半田20の融点より20°C〜300°C高い範囲である。さらに推奨される温度差は、40°C〜200°Cである。
リード線用半田コテの温度が、半田ディップリード線5に使用する半田20の融点に近いと半田20の溶融速度が遅く、生産性が低下する場合がある。また、リード線用半田コテの温度が高すぎると半田20の酸化が進行し、品質が損なわれる場合がある。
半田バンプ9に用いる半田20と半田ディップリード線5に用いる半田20のそれぞれ融点の差は、0°C〜100°Cの範囲であり、好ましくは、0°C〜50°C、さらに好ましくは、0°C〜20°Cである。半田ディップリード線5を半田バンプ9に取り付ける場合、半田バンプ9が必要以上に溶融状態に保持され、半田バンプ9と透明電極層6の接合部分の機械強度が低下することを抑制することができる。さらに、半田バンプ9に用いる半田20の融点が、半田ディップリード線5に用いる半田20より高いほうが好ましい。
また、半田バンプ9にリード線用半田ゴテによって半田ディップリード線5を取り付ける工程において、半田ディップリード線5と半田バンプ9の溶融・接続の収率を向上させる目的で、半田ディップリード線5の加熱工程を2段階以上にすることができる。すなわち、太陽電池1の全体またはその一部を加熱してから、半田バンプ9にリード線用半田ゴテによって半田ディップリード線5を取り付ける。この場合、太陽電池1全体を加熱しても、半田バンプ9を含むリード取り付け部分を加熱しても、半田ディップリード線5を加熱してもよい。好ましくは、半田ディップリード線5の加熱である。加熱温度は20〜200°Cが好ましい。さらに好ましくは、40〜150°Cである。また、加熱工程の段数は、2〜3段階が好ましい。特に2段階が好ましい。 、
またここで特記すべき事項として、リード線用半田ゴテと絶縁透光性基板2との間には図示しないスペーサが介在され、リード線用半田コテの最近接位置が規制されている。
そのため半田バンプ9はリード線用半田ゴテから熱を受けて溶融するものの、従来に比べて崩れ方が小さく、半田ディップリード線5の芯線部分と積層膜の表面52の表面との間に200μm〜300μm程度の高さを維持している。
このようにして、電力取り出し用の半田ディップリード線5を具備した太陽電池1が形成される。
屋外環境で使用される太陽電池1は、それを保護する目的で、保護フィルムを光電変換セル3側より封止する。保護フィルムは、加熱により軟化・溶融を経て硬化し得る封止樹脂を介して太陽電池1に強固に接着される。
このような保護フィルムの例としては、ポリフッ化ビニルフィルム(例えば、テドラーフィルム(登録商標))等のフッ素樹脂フィルムやポリエチレンテレフタレート(PET)フィルムのような有機フィルム、アルミニウム等からなる金属箔を、単層構造または複層構造で積層した構造を有する積層フィルムである。また、加熱により軟化・溶融を経て硬化し得る封止樹脂としては、例えば、エチレン/ビニルアセテート共重合体(EVA)、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラール(PVB)、ポリイソブチレン(PIB)等の熱可塑樹脂に、パーオキサイド化合物等の架橋剤を添加したものである。また、このように太陽電池1に保護フィルムを取りつける場合、半田ディップ銅箔、金属箔、ケーブル等を使用した内部配線と、端子ボックス等の外部配線剤を介し、電力取り出し用半田ディップリード線から得られる電力を外部に取り出す。
また、内部配線剤に半田材料を用いる場合、無鉛半田を使用することが好ましい。
以下、本発明をいくつかの実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。
上述した実施の形態に従い、太陽電池1を作製した。
まず、980mm×950mmの面積と5mmの厚さを有するガラス基板2上に、透明導電膜6として、熱CVD法による厚さ約700nmの二酸化錫(SnO2 )膜を製膜した。この二酸化錫(SnO2 )膜側からYAG基本波レーザ光ビームを照射することにより、第1の分離溝10をパターニング加工形成した。
次に、加工により生じた微粉などを洗浄除去した後、ガラス基板2をプラズマCVD製膜装置に搬入し、厚さ約300nmのアモルファスシリコンからなる光電変換膜7を製膜した。CVD装置からガラス基板2を搬出した後、光電変換膜7にガラス基板2側からYAG第二高調波レーザ光を照射して接続溝11を形成した。
次に裏面電極膜8として、厚さ約80nmのZnO膜と厚さ約300nmのAg膜をこの順でスパッタ法で光電変換膜7上に製膜した。さらに、裏面電極膜8にガラス基板2側からYAG第二高調波レーザ光を照射して短冊上に分割し第2の分離溝12を形成した。
セル領域と接続領域とをガラス基板2周囲から絶縁するために、ガラス基板2の周辺に沿ってYAGレーザ光を照射して、SnO2 膜、アモルファスシリコン光電変換膜7、及び裏面電極膜8を除去し、絶縁線4を形成した。以上のようにして、面積がほぼ82.67cm2 の光電変換セル3が108個直列接続した太陽電池を得た。
次に、半田バンプ9の半田20としてSn/Zn系セラミック用半田を使用した。
半田溶融付着部(コテ先)の径1mm、超音波半田コテの温度300°C、超音波出力3W、半田付け時間1sにて、接続溝13に半田バンプ9を20mm間隔で46点形成した。形成した半田バンプ9の直径は2.0〜2.7mmで、高さが0.2〜0.5mm(200μm〜500μm)であった。
次に、リード線用半田コテを用いて、半田ディップリード線5と半田バンプ9を溶融・接続した。またリード線にはSn/Ag/Cu系の半田をコーティングした。
半田ディップリード線5を構成する銅箔の厚みは80μm、幅2mmとした。リード用半田コテの温度は300°Cに設定した。リード用半田コテを半田ディップリード線5に押圧し、半田ディップリード線5と半田バンプ9を溶融・接続した。
またリード用半田コテと基板2との間にスペーサ56を介在させてリード用半田コテが基板2に最も近接する距離を規制した。そしてスペーサ56の厚さを各種変更して半田ディップリード線5の部位における半田20の高さが異なる太陽電池1を作製した。
その結果、半田ディップリード線5の部位における半田20の高さ(膜から露出している部分であって半田ディップリード線5の芯線の裏面までの高さ)Hは、表1の通りとなった。なお表中のHの値は、ランダムに抽出した20点の平均値である。
Figure 2007273908
続いて取り付けられた半田ディップリード線5の90°引っ張り強度(引っ張り速度1mm/s)を測定した。その結果を表1に記載した。なお、表中の引っ張り強度の値は46点の平均値である。
また引張り強度と半田の高さHとの関係は、図12のグラフの通りであった。
表1及びグラフから、積層表面から半田ディップリード線までの高さが140μmを越える場合、特に170μm以上の場合に半田ディップリード線の接続強度が高いことが理解できる。
なお表やグラフには示していないが、半田の高さが0μm乃至20μmの場合は、半田ディップリード線は半田との界面で離脱し、取付け強度が低いものであった。また半田の高さが80μmの場合、120μmの場合及び140μmの場合は、半田ディップリード線に追従する形で順に剥離が起こった。
これに対して半田の高さが200μm以上の場合は、半田接合部が一気に剥離した。この実験データより、半田の高さHが、140μmを越え、好ましくは170μm程度以上の場合に半田ディップリード線の接合強度が飛躍的に向上することが判る。半田の高さが140μmから200μmの間に飛躍的に強度が上昇する厚さがあり、その臨界的な値は170μmであると考えられる。
なお半田の高さが350μmを越える場合は、半田の付き具合が悪いものであった。
表1に示すように、半田ディップリード線の90°引っ張り強度は、半田の高さが250μm以上の場合に顕著に上昇し、280μm前後でピークをむかえるものであった。
また半田の形状を観察すると、表1に記載した半田の高さHの中では、半田の高さが200μm以上の場合に、半田の形状が鼓状であり、中間部分が細く、両端部が中間部よりも大径となっていた。
本発明の実施形態の集積型太陽電池の斜視図である。 図1のA−A部の拡大断面図である。 図1のB−B部の拡大断面図である。 本発明の実施形態の集積型太陽電池の製造工程における半田ディップリード線の取付け工程を示す集積型太陽電池の断面図である。 図4に示す集積型太陽電池の製造工程の中で加熱押圧工程をより詳細に説明した集積型太陽電池の断面図である。 本発明の実施形態の集積型太陽電池を説明するための集積型太陽電池の平面図である。 図6のAラインにおける拡大断面図である。 本発明の実施形態の集積型太陽電池の加工段階の説明をするための集積型太陽電池の平面図である。 図8のAラインにおける拡大断面図である。 本発明の実施形態の集積型太陽電池の加工段階の説明をするための集積型太陽電池の平面図である。 図10のAラインにおける拡大断面図である。 半田ディップリード線の取付け部における半田の高さと取付け強度との関係を示すグラフである。 従来技術の集積型太陽電池の製造工程における半田ディップリードの取付け工程を示す集積型太陽電池の断面図である。 (a)は、従来技術における太陽電池のリード取付け領域を概念的に図示した拡大断面図及であり、同(b)は、半田ディップリードを基板に対して垂直方向に引っ張ろうとした場合の挙動を示す集積型太陽電池のリード取付け領域の断面図である。 図15(a)は、半田の高さを従来に比べて高くした集積型太陽電池を概念的に図示した拡大断面図であり、(b)(c)は、半田ディップリードを基板に対して垂直方向に引っ張ろうとした場合の挙動を示す集積型太陽電池のリード取付け領域の断面図である。
符号の説明
1 太陽電池(光電変換装置)
2 絶縁性透光性基板
3 光電変換セル
5 半田ディップリード線
6 透明導電膜(第一電極層)
7 光電変換膜
8 裏面導電膜(第二電極層)
9 半田バンプ
20 半田
50,51 リード取付け部
52 積層膜の表面
55 コテ(加熱部材)

Claims (6)

  1. 基板上に少なくとも第一電極層と、光電変換層及び第二電極層を積層し、光を当てることによって前記第一電極層と第二電極層の間に電位差を生じさせる光電変換装置において、前記第一電極層と第二電極層の少なくともいずれかには半田ディップリードが半田付けされており、当該半田付け部分の半田は前記層の積層表面から半田ディップリードまでの高さが140μmを越えるものであることを特徴とする光電変換装置。
  2. 半田付け部分の半田は積層表面から半田ディップリードまでの高さが350μm以下であることを特徴とする請求項1に記載の光電変換装置。
  3. リード取付け領域を有し、半田ディップリードは、リード取付け領域にあって基板と略平行に配置され、半田ディップリードは前記第一電極層又は第二電極層に対して部分的に半田付けされていることを特徴とする請求項1又は2に記載の光電変換装置。
  4. 半田の材質は非鉛半田であることを特徴とする請求項1乃至3のいずれかに記載の光電変換装置。
  5. 半田付け部分の半田の形状は、積層表面部との接合部と半田ディップリードとの接合部の面積が大きく、中間部が細いことを特徴とする請求項1乃至4のいずれかに記載の光電変換装置。
  6. 請求項1乃至5のいずれかに記載の光電変換装置を製造する方法において、半田バンプを設ける工程と、半田バンプに半田ディップリードを載置する工程と、半田バンプに加熱部材を押圧する加熱押圧工程とを備え、加熱押圧工程に際しては加熱部材を電極層から100μm以上離れた位置で停止させることを特徴とする光電変換装置の製造方法。
JP2006100893A 2006-03-31 2006-03-31 光電変換装置及び光電変換装置の製造方法 Active JP5016835B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100893A JP5016835B2 (ja) 2006-03-31 2006-03-31 光電変換装置及び光電変換装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100893A JP5016835B2 (ja) 2006-03-31 2006-03-31 光電変換装置及び光電変換装置の製造方法

Publications (2)

Publication Number Publication Date
JP2007273908A true JP2007273908A (ja) 2007-10-18
JP5016835B2 JP5016835B2 (ja) 2012-09-05

Family

ID=38676355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100893A Active JP5016835B2 (ja) 2006-03-31 2006-03-31 光電変換装置及び光電変換装置の製造方法

Country Status (1)

Country Link
JP (1) JP5016835B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009459A (ja) * 2009-06-25 2011-01-13 Sanyo Electric Co Ltd 薄膜太陽電池モジュール
JP2011505693A (ja) * 2007-11-30 2011-02-24 サンパワー コーポレイション セル位置ずれに対処するバスバー接続構成
DE112009001175T5 (de) 2008-05-15 2011-03-03 ULVAC, Inc., Chigasaki-shi Dünnfilmsolarbatteriemodul und Verfahren zur Herstellung desselben
JP2011054842A (ja) * 2009-09-03 2011-03-17 Hitachi High-Technologies Corp 太陽電池用タブ線の貼付装置及びその貼付方法
CN102099925A (zh) * 2008-07-18 2011-06-15 肖特太阳能股份公司 用于太阳能模块和半导体器件的焊接支承座
JP2011211249A (ja) * 2011-07-29 2011-10-20 Sanyo Electric Co Ltd 太陽電池モジュール
US9184327B2 (en) 2006-10-03 2015-11-10 Sunpower Corporation Formed photovoltaic module busbars

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135035A (ja) * 1995-11-08 1997-05-20 Kanegafuchi Chem Ind Co Ltd 半導体装置の製造方法
JPH09326497A (ja) * 1996-06-03 1997-12-16 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール及びその製造方法
JP2000340812A (ja) * 1999-05-28 2000-12-08 Kyocera Corp 太陽電池
JP2001102610A (ja) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd 半田バンプ付きリード線、太陽電池用リード線取付け装置及び太陽電池の製造方法
JP2001332748A (ja) * 2000-05-19 2001-11-30 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135035A (ja) * 1995-11-08 1997-05-20 Kanegafuchi Chem Ind Co Ltd 半導体装置の製造方法
JPH09326497A (ja) * 1996-06-03 1997-12-16 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール及びその製造方法
JP2000340812A (ja) * 1999-05-28 2000-12-08 Kyocera Corp 太陽電池
JP2001102610A (ja) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd 半田バンプ付きリード線、太陽電池用リード線取付け装置及び太陽電池の製造方法
JP2001332748A (ja) * 2000-05-19 2001-11-30 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュールの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184327B2 (en) 2006-10-03 2015-11-10 Sunpower Corporation Formed photovoltaic module busbars
JP2011505693A (ja) * 2007-11-30 2011-02-24 サンパワー コーポレイション セル位置ずれに対処するバスバー接続構成
DE112009001175T5 (de) 2008-05-15 2011-03-03 ULVAC, Inc., Chigasaki-shi Dünnfilmsolarbatteriemodul und Verfahren zur Herstellung desselben
CN102099925A (zh) * 2008-07-18 2011-06-15 肖特太阳能股份公司 用于太阳能模块和半导体器件的焊接支承座
JP2011528493A (ja) * 2008-07-18 2011-11-17 ショット・ゾラール・アーゲー ソーラモジュールのためのはんだ付け用支持部位および半導体デバイス
JP2011009459A (ja) * 2009-06-25 2011-01-13 Sanyo Electric Co Ltd 薄膜太陽電池モジュール
JP2011054842A (ja) * 2009-09-03 2011-03-17 Hitachi High-Technologies Corp 太陽電池用タブ線の貼付装置及びその貼付方法
JP2011211249A (ja) * 2011-07-29 2011-10-20 Sanyo Electric Co Ltd 太陽電池モジュール

Also Published As

Publication number Publication date
JP5016835B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
CA2666363C (en) Materials for use with interconnects of electrical devices and related methods
JP5016835B2 (ja) 光電変換装置及び光電変換装置の製造方法
WO2014002329A1 (ja) 太陽電池モジュールおよびその製造方法
WO2011105510A1 (ja) 太陽電池モジュールおよびその製造方法
KR20140015247A (ko) 태양전지용 백플레인 보강 및 상호연결부
JP5589221B2 (ja) 薄膜太陽電池及び薄膜太陽電池モジュールを接触させる方法
JP2010177670A (ja) 光起電モジュール
JP4984431B2 (ja) 集積型薄膜太陽電池、及びその製造方法
JP2008010857A (ja) 太陽電池モジュール
JP5641728B2 (ja) 薄膜型太陽電池モジュール及び薄膜型太陽電池モジュールの製造方法
WO2013061757A1 (ja) 合わせガラス構造太陽電池モジュール
JPH07142756A (ja) 太陽電池モジュール及びその製造方法
JP3243232B2 (ja) 薄膜太陽電池モジュール
WO2013179530A1 (ja) 光電変換装置
KR20140135095A (ko) 태양전지
WO2011148930A1 (ja) 太陽電池モジュール及びその製造方法
JP2007201291A (ja) 太陽電池モジュールの再生方法及び太陽電池モジュール
JP2007273858A (ja) 集積型光電変換装置及び集積型光電変換装置の製造方法
JP6025123B2 (ja) 太陽電池モジュール
JP2011023701A (ja) 太陽電池モジュールの製造方法、及び太陽電池モジュール
JP5558940B2 (ja) 太陽電池モジュール及びその製造方法
JP2015138892A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP4463135B2 (ja) 太陽電池モジュール製造方法
JP2001111079A (ja) 光電変換装置の製造方法
WO2014155413A1 (ja) タブ線の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250