JP2007273834A - 波長可変レーザ装置および光断層画像化装置 - Google Patents

波長可変レーザ装置および光断層画像化装置 Download PDF

Info

Publication number
JP2007273834A
JP2007273834A JP2006099108A JP2006099108A JP2007273834A JP 2007273834 A JP2007273834 A JP 2007273834A JP 2006099108 A JP2006099108 A JP 2006099108A JP 2006099108 A JP2006099108 A JP 2006099108A JP 2007273834 A JP2007273834 A JP 2007273834A
Authority
JP
Japan
Prior art keywords
light
wavelength
lens
laser device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099108A
Other languages
English (en)
Other versions
JP4755934B2 (ja
Inventor
Koki Nakabayashi
耕基 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Fujifilm Corp
Original Assignee
Fujinon Corp
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp, Fujifilm Corp filed Critical Fujinon Corp
Priority to JP2006099108A priority Critical patent/JP4755934B2/ja
Priority to US11/723,820 priority patent/US8204088B2/en
Publication of JP2007273834A publication Critical patent/JP2007273834A/ja
Application granted granted Critical
Publication of JP4755934B2 publication Critical patent/JP4755934B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】外部共振器型の波長可変レーザ装置において、時間に対する周波数変化を線形的にする。
【解決手段】外部共振器型の波長可変レーザ装置10は、半導体レーザ媒質11と、半導体レーザ媒質11からの射出光を空間的に波長分散する回折光学素子13と、回折光学素子13により波長分散された光を反射して、回折格子素子13へ戻り光として戻すポリゴンミラー15と、レンズ14aおよびレンズ14bとを有している。レンズ14aの歪曲収差曲線をF(θ)=f・sinθとし、またレンズ14bの歪曲収差曲線をG(θ)=f・tanθとしているため、戻り光の波長の逆数が時間に対してほぼ線形変化するように構成されている。従って、波長可変レーザ装置10から射出される光は、時間に対して周波数がほぼ線形的に変化する。
【選択図】図1

Description

本発明は、発振波長が可変な波長可変レーザ装置、および該波長可変レーザ装置を用いて測定対象の光断層画像を取得する光断層画像化装置に関する。
従来、発振波長が可変な波長可変レーザ装置としては、例えば特許文献1に記載の図5に示す外部共振器型の装置が知られている。図5に示す装置では、半導体レーザ媒質111の低反射面からの射出光をコリメートレンズ112で平行光に変換した後、回折光学素子113の回折面へ入射させ、回折光学素子113により波長分散された回折光をリレー用の2つのレンズ124a、124bを経て、ポリゴンミラー125に入射させる。波長分散された光のうち、ポリゴンミラー125の反射面に直交する特定波長とその近傍の波長成分の光のみが戻り光となり、半導体レーザ媒質111に帰還する。半導体レーザ媒質111は、この特定波長の光に誘導されて定在波をつくり、その特定波長(以下、発振波長という)の光を射出する。ポリゴンミラー125を回転させることにより、戻り光の波長を連続的に変化させることができ、発振波長を掃引することができる。図5に示す装置では、時間に対する波長変化はsinθ(θは光軸からの傾き角)に比例している。
また、特許文献1には、図5に示す装置のレンズ124a、124bおよびポリゴンミラー125を、レンズ134および回転円盤135に置換した構成の図6に示す波長可変レーザ装置が記載されている。この装置では、回転円盤135の盤面に配設された径方向に直線的に伸びるスリット状のミラー145aにより、特定波長の光のみが半導体レーザ媒質111に帰還する。回転円盤135を回転させることにより、帰還する光の波長を連続的に変化させることができ、発振波長を掃引することができる。図6に示す装置では、時間に対する波長変化はtanθ(θは回転角)に比例し、略線形になる。
波長可変レーザ装置の別の例としては、図7に示すような半導体光増幅器141の両端に接続された光ファイバ142によるファイバーリング共振器において、チューナブル・ファブリーペローフィルター143を用いて発振波長を選択する装置が非特許文献1に記載されている。この装置では、アイソレータ144,145により光の透過方向を規制し、ファイバーリングの一部に設けられた光カプラ146から外部へ出力する。図7に示す装置では、チューナブル・ファブリーペローフィルターの特性により、時間に対する波長変化は正弦波状になる。
ところで、上記のような波長掃引が可変なレーザ装置の重要な用途として、SS−OCT(Swept source OCT)計測を利用した光断層画像化装置が知られている。光断層画像化装置は、光源から射出されたコヒーレンス光を測定光と参照光とに分割した後、測定光が測定対象に照射されたときの反射光と参照光とを合波し、反射光と参照光との干渉光の強度に基づいて光断層画像を取得するものである。SS−OCT計測の光断層画像化装置では、光源から射出される光の周波数を時間的に変化させながら干渉光の検出を行うものであり、マイケルソン型干渉計を用いて、光源から射出されるレーザ光の周波数を時間的に変化させながら反射光と参照光との干渉が行われる。そして、光周波数領域のインターフェログラムから所定の測定対象の深さ位置における反射強度を検出し、これを用いて断層画像を生成する。
一方、このような光断層画像化装置は、内視鏡へ応用され、生体内確定診断および粘膜癌(m癌)と粘膜下層癌(sm癌)の識別等の癌の深達度診断等の利用されている。以下簡単に癌の内視鏡下診断の手順について説明する。まず通常観察像で病変部を発見し、癌かその他疾患かを識別する。この第1次診断は医師の経験に基づく診断で、癌と推測した部位の組織を採取し病理検査により確定診断を行う。このため、現状では内視鏡検査中の確定診断は困難である。癌と確定診断された場合には、再度その後の治療方針を決定するため、内視鏡検査による癌の深達度診断が行われる。一般に癌は粘膜表皮から発生し、進行に伴って横方向へ拡がりながら深さ方向へも浸潤する。図8に示すように、胃壁の構造は表面から粘膜層(m層)、粘膜筋板(MM)、粘膜下層(sm層)、筋層、奨膜の5層から構成されている。粘膜層のみに留まっている癌をm癌、粘膜下層まで浸潤している癌をsm癌という。m癌とsm癌では治療法が異なる。粘膜下層にはリンパ系や血管系が存在するため、sm癌では転移の可能性が否定できないため、外科手術の適応となる。一方m癌であれば、転移はないため内視鏡下で癌の摘出が行われる。このためm癌かsm癌かの識別が重要となる。具体的には粘膜筋板(MM層)が層構造を保持しているか、破壊されているかを画像として評価できることが重要である。現在はこの深達度診断を目指して、超音波の適応が検討されている。しかし超音波では軸方向分解能が100μm程度であるためMM層の描出が不充分である。このため、深さ1mmにおいて軸方向分解能30μm以下の断層画像化法の実用化が望まれている。
米国特許第2005/0035295号明細書 "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles", OPTICS EXPRESS, 2 May 2005, Vol.13,No.9, p3513-3528
SS−OCT(Swept source OCT)計測を利用した光断層画像化装置においては、深さ0mmおける軸方向分解能は、測定光の波長掃引幅および掃引中心波長により決められる。測定光の波長掃引幅の広帯域化が進められ、現在では深さ0mmにおける軸方向分解能としては10μm前後の分解能が得られるようになった。
しかしながら、図5〜図7に示す波長可変レーザ装置では、時間に対する波長変化がsinθ(θは光軸からの傾き角)、あるいは正弦波状である。上記のような波長可変レーザ装置を光源として用いる。SS−OCT(Swept source OCT)計測を利用した光断層画像化装置では、取得データに対してフーリエ変換等を用いて周波数解析をすることが多く、その際に変数として用いられるのは、波長ではなく周波数である。解析においては、変数に対してデータが離散的に分布している場合には、測定深度が深くなると軸方向分解能が低下することが知られている。
このような光断層画像化装置において、測定光の時間に対する周波数変化のリニアリティと深さ1mmにおける信号の劣化状態を計算したシミュレーション結果を図9に示す。なお、時間に対する周波数変化のリニアリティ(以下周波数リニアリティと記載)としては図5に示した装置において、ポリゴンミラー125を30度回転させた際に、0度と30度の実測値の差分を分母として、時間に対する周波数変化が理想直線からずれた部分の最大値を分子として、%で表した値を用いている。また、時間に対する波長変化が線形である場合には、周波数リニアリティは4.7%となる。
図9からわかるように、測定光の時間に対する波長変化が線形である場合、すなわち測定光の周波数リニアリティが4.7%である場合には、測定深さ1mmにおける信号の劣化が激しく、このような測定光を用いて、光断層画像を取得することは困難であるという問題がある。
そこで、本発明は、上記問題点を鑑み、時間に対する周波数変化が線形的である波長可変レーザ装置、および該波長可変レーザ装置を備えた光断層画像化装置を提供することを目的とする。
本発明の波長可変レーザ装置は、外部共振器型の波長可変レーザ装置において、
レーザ媒質と、
前記レーザ媒質からの射出光を空間的に波長分散する分散手段と、
前記分散手段により波長分散された光の一部を、戻り光として選択的に反射する回転多面鏡と、
前記波長分散手段と前記回転多面鏡との間に配置された歪曲収差発生手段とを備え、
前記歪曲収差発生手段が、前記戻り光の波長の逆数が時間に対して略線形変化するように歪曲収差を発生するものであることを特徴とするものである。
なお、「分散手段」としては、例えば回折光学素子、プリズムまたはグリズム等を使用できる。また、「戻り光の波長の逆数が時間に対して略線形変化する」とは、「戻り光の周波数が時間に対して略線形変化する」および「戻り光の波数が時間に対して略線形変化する」と同義である。これは、波長λ、周波数ν、波数k、光速cが、ν=c/λ、k=2π/λの関係にあることから導かれる。また、本発明の波長可変レーザ装置において、所定周期で波長掃引が繰り返されるときには、その周期内における変化について、波長の逆数が時間に対して線形変化するものとする。なお、「略線形変化」は厳密なものに限定されず、実質的に線形変化するものであればよい。
また、前記分散手段と前記回転多面鏡との間に、少なくとも2枚のレンズからなるレンズ群が配置されている場合には、該レンズ群が、前記歪曲収差発生手段を兼ねるものであってもよい。
前記レンズ群は2枚のレンズからなり、一枚のレンズの歪曲収差曲線がF(θ)=f・sinθであり、他のレンズの歪曲収差曲線がG(θ)=f・tanθであってよい。また、これらのレンズ群は、F(θ)=f・sinθとG(θ)=f・tanθのレンズ対に対して、戻り光の波長の逆数が時間に対して完全に線形変化する理想的な歪曲収差特性に近づくように補正を加えたものであってもよい。なお、fは焦点距離であり、θは画角である。
さらに、前記歪曲収差発生手段は、前記回転多面鏡の所定回転角度内において、前記戻り光の波長の逆数が時間に対して、0.7%以下の線形性を与える歪曲収差を発生するものであってもよい。
なお、「0.7%以下の線形性」とは、回転多面鏡の所定回転角度内において、最小角度と最大角度における実測値の差分を分母とし、理想直線と実測値との差分のもっとも大きな値を分子として求めた%が、0.7%以下であることを意味している。また、前記所定角度は、30度であってもよい。
本発明の光断層画像化装置は、請求項1から4のいずれか1項記載の波長可変レーザ装置と、
前記波長可変レーザ装置から射出された光を測定光と参照光とに分割する光分割手段と、
前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
前記合波手段により合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
前記干渉光検出手段により検出された前記干渉光から前記測定対象の断層画像を取得する画像取得手段と、を備えたことを特徴とするものである。
本発明の波長可変レーザ装置によれば、外部共振器型の波長可変レーザ装置において レーザ媒質と、前記レーザ媒質からの射出光を空間的に波長分散する分散手段と、前記分散手段により波長分散された光の一部を、戻り光として選択的に反射する回転多面鏡と、前記波長分散手段と前記回転多面鏡との間に配置された歪曲収差発生手段とを備え、前記歪曲収差発生手段が、前記戻り光の波長の逆数が時間に対して略線形変化するように歪曲収差を発生するものであるので、射出される光の周波数が時間に対して線形変化する波長可変レーザ装置を得ることができる。
また、前記分散手段と前記回転多面鏡との間に、少なくとも2枚のレンズからなるレンズ群が配置され、該レンズ群が、前記歪曲収差発生手段を兼ねるものであれば、波長可変レーザ装置を大形化することなく、射出される光の周波数を時間に対して線形的に変化させることができる。
前記レンズ群が2枚のレンズからなり、一枚のレンズの歪曲収差曲線がF(θ)=f・sinθであり、他のレンズの歪曲収差曲線がG(θ)=f・tanθであれば、これらのレンズは歪曲収差以外の他の収差を容易に取り除くことができる。また、これらのレンズに補正を加えることにより、より理想的な歪曲収差曲線を得ることができる。
本発明の光断層画像化装置は、上記波長可変レーザ装置から射出された光を用いて断層画像を取得するものであるため、測定光は、時間に対して周波数が略線形変化するものとなる。このため、周波数に対するデータ分布がほぼ等間隔となるようにデータを取得することが容易に可能であり、画像取得時の周波数解析において、良好な結果を得ることができる。
また、図9から、光断層画像化装置において、測定光の時間に対する周波数変化のリニアリティが、0.7%を超えた場合には信号がかなり劣化していることがわかる。図10に、中心波長1150nm、波長幅200nmのガウシアン分布の低コヒーレンス光を用いて光断層画像を取得した場合の、周波数リニアリティと軸方向分解能(深さ0.1mmおよび1mm)との関係のシミュレーション結果を示す。この図10より、周波数リニアリティが0.7%以下であれば、深さ0mmにおける軸方向分解能として10μm前後の値が得られる場合には、深さ1mmにおいて、30μmの軸方向分解能が実現可能であることがわかる。すなわち、回転多面鏡の所定回転角度内、例えば30度以内において、戻り光の波長の逆数が時間に対して、0.7%以下の線形性を与える歪曲収差を発生する歪曲収差発生手段を備えた波長可変レーザ装置を用いた光断層画像化装置であれば、内視鏡下において、粘膜筋板(MM層)の抽出等の癌の深達度診断等に好適な装置が実現できる。
以下、図面を参照して本発明の波長可変レーザ装置および該波長可変レーザ装置を備えた光断層画像化装置の実施形態を詳細に説明する。
図1は本発明の一実施形態による光断層画像化装置の構成を示す図である。光断層画像化装置1は、例えば体腔内の生体組織や細胞等の測定対象の断層画像を前述のSS−OCT計測により取得するものである。光断層画像化装置1は、発振波長を一定の周期で掃引させながら光Lを射出するレーザ装置10と、レーザ装置10から射出された光Lを測定光L1と参照光L2とに分割する光分割手段3と、光分割手段3により分割された参照光L2の光路長を調整する光路長調整手段20と、光分割手段3により分割された測定光L1を測定対象Sまで導波するプローブ30と、プローブ30から測定光L1が測定対象Sに照射されたとき測定対象Sで反射した反射光L3と参照光L2とを合波する合波手段4と、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出する干渉光検出手段40と、干渉光検出手段40により検出された干渉光L4を周波数解析することにより測定対象Sの断層画像を取得する画像取得手段50とを有している。
レーザ装置10は、発振波長を一定の周期で掃引させながら光Lを射出する外部共振器型の波長可変レーザ装置である。本例におけるレーザ媒質としては、半導体レーザに使用される半導体レーザ媒質が用いられている。具体的にレーザ装置10は、半導体レーザ媒質11と、コリメートレンズ12と、回折光学素子13と、レンズ14aおよび14bと、ポリゴンミラー15とを備えている。半導体レーザ媒質11のコリメートレンズ12側の射出端面11bには反射防止膜(ARコート)が施されている。半導体レーザ媒質11の射出端面11bとは逆側の射出端面11aと、外部導波用の光ファイバFB0との間には光結合用のレンズ16が配置されている。
回折光学素子13は、反射型の素子であり、半導体レーザ媒質11からの射出光を空間的に波長分散する分散手段として機能する。回折光学素子13において生じた回折光は、波長ごとに異なる方向に進行する。
ポリゴンミラー15は、レンズ14bに対向する反射面15aが順次光を反射するように、複数の反射面15aが配設され、不図示の駆動手段により等角速度で回転する。
半導体レーザ媒質11の射出端面11bからコリメートレンズ12へ向かって射出した光は、コリメートレンズ12により平行光に変換された後、回折光学素子13により、波長λ・・・λnごとに分散されて、波長ごとに異なる方向に進行する。この波長分散された光は、レンズ14aおよびレンズ14bによりリレーされ、ポリゴンミラー15の反射面15aへ入射する。
ポリゴンミラー15の回転に伴い、反射面15aと入射光のなす角度が変化するため、反射面15aにより垂直の入射する光が、戻り光として選択的に反射する。戻り光は、逆光路を通り、レンズ14aおよびレンズ14bを通り、回折光学素子13を経て、コリメートレンズ12を通り、半導体レーザ媒質11に帰還する。半導体レーザ媒質11の射出端面11aとポリゴンミラー15の反射面15aとを両端部とする外部共振器が構成されて、半導体レーザ媒質11の射出端面11aから、光Lが射出される。なお、この光Lの発振波長は戻り光の波長である。
戻り光の波長は、ポリゴンミラー15の回転に伴い変化し、1つの反射面15aについて波長λから波長λnまでの1周期分の波長掃引が行われる。複数の反射面15aがポリゴンミラー15に設けられているため、この波長掃引が一定の周期で繰り返される。
なお、レンズ14aおよびレンズ14bは、レーザ装置10において、戻り光の波長の逆数が時間に対して線形変化するように、その歪曲収差が設計されている。ここで、波長λ、周波数ν、光速cは、ν=c/λの関係にあるから、戻り光の周波数が時間に対して線形変化するよう構成されていることになり、光断層画像化装置1は、図2に示すように、1周期分の掃引時間Tの間に、戻り光の周波数ν(t)が時間tに線形変化するように波長掃引する。図2において、1周期分の掃引開始時t=0での戻り光の周波数をν、1周期分の掃引終了時t=Tでの戻り光の周波数をνとしている。
以下に、レンズ14aおよびレンズ14bにおける、歪曲収差の設計方法について説明する。
レンズ14aの歪曲収差曲線を
h=F(θ) ただしθは画角
レンズ14bの歪曲収差曲線を
h=G(θ’) ただしθ’は画角
とすると、
θ=F−1{G(θ’)} −(1)
と表すことができる。ここで、ポリゴンミラーは一定の角速度で回転しているため、ポリゴンミラーの回転角速度をαとすると、
θ’(t)=θ’−αt −(2)
ただしt=0からT、Tは掃引に一周期、
と表すことができる。また、本実施形態の光断層画像化装置1では、戻り光の周波数ν(t)は時間tに比例するから、下式の関係を満たす。
ν(t)=ν+(ν−ν)/T・t
λ(t)=2πC/ν(t)
ただしν=ν→ν−で掃引λ=λ→λ
また、光Lは、回折光学素子13により回折されているため、θ(t)とλ(t)は下記の関係式で表される。
sinθ(t)=sinθ+(sinθ-sinθ)・(λ(t)-λ)/(λ) -(3)
なお、sinθ〜λ0、sinθ〜λにそれぞれ対応
次に、式(3)にフィッティングするように、次式のF、Gを設計する。
θ(t)=F−1{G(θ(t))} −(4)
式(4)のθ(t)に式3を入れ、θ’(t)に式(1)を入れる。
この式を実現させるため、本実施の形態においては、レンズ14aの歪曲収差曲線を
F(θ)=f・sinθ
とし、またレンズ14bの歪曲収差曲線を
G(θ)=f・tanθ
とした。またθ=0°、θ=30°、λ=950nm、λ=1150nmとした。
これらのレンズでは、歪曲収差以外の収差を取り除くことができることは一般に知られている。なお、通常の光学系としては、F(θ)=f・sinθとG(θ)=f・tanθの歪曲曲線を有するレンズを組み合わせて使用することはない。
上記の実施形態における掃引時間tと、発振周波数νと、F−1{G(θ(t))} と、該F−1{G(θ(t))}と理想直線との差分の関係を図3に示す。図3に示すように、差分の最大値は0.191349となり、
周波数リニアリティ=0.191349/30×100=0.64%
となり、周波数リニアリティが0.7%以下となる。また、図4は、図3に示した設計結果における、時間と発振周波数の関係を示すグラフである。
図3および図4に示すように、レーザ装置10においては、レンズ14aの歪曲収差曲線をF(θ)=f・sinθとし、またレンズ14bの歪曲収差曲線をG(θ)=f・tanθとしているため、周波数リニアリティが0.7%以下となる。なお、これらのレンズ14aおよびレンズ14bの歪曲収差特性に対して、上式を満たすように、補正を加えれば、周波数リニアリティが、0.4以下、あるいは0.1以下となるように、発振周波数を掃引することも可能である。
以上光断層画像化装置の構成および光断層画像の取得動作について説明する。レーザ装置10の半導体レーザ媒質11の射出端面11aから射出された光Lは、光結合用のレンズ16により集光された後、光ファイバFB0に入射して導波される。そして、光ファイバカプラ2を経由した後、光ファイバFB1により光分割手段3に導波される。
光分割手段3は、例えば2×2の光ファイバカプラから構成されており、レーザ装置10から光ファイバFB0、FB1を介して導波した光Lを測定光L1と参照光L2に分割する。光分割手段3は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2により導波され、参照光L2は光ファイバFB3により導波される。なお、本実施形態における光分割手段3は、合波手段4としても機能するものである。
光ファイバFB2にはプローブ30が光学的に接続されており、測定光L1は光ファイバFB2からプローブ30へ導波される。プローブ30は、たとえば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタ31により光ファイバFB2に対し着脱可能に取り付けられている。
光プローブ30は、先端が閉じられた円筒状のプローブ外筒32と、このプローブ外筒32の内部空間に、該外筒32の軸方向に延びる状態に配設された1本の光ファイバ33と、光ファイバ33の先端から射出した光L1をプローブ外筒32の周方向に偏向させるプリズムミラー34と、光ファイバ33の先端から射出した光L1を、プローブ外筒32の周外方に配された被走査体としての測定対象Sにおいて収束するように集光するロッドレンズ35と、プリズムミラー34を光ファイバ33の軸を回転軸として回転させるモータ36とを備えている。
一方、光ファイバFB3における参照光L2の射出側には光路長調整手段20が配置されている。光路長調整手段20は、測定対象Sに対する断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変更するものであって、光ファイバFB3から射出された参照光L2を反射させる反射ミラー22と、反射ミラー22と光ファイバFB3との間に配置された第1光学レンズ21aと、第1光学レンズ21aと反射ミラー22との間に配置された第2光学レンズ21bとを有している。
第1光学レンズ21aは、光ファイバFB3のコアから射出された参照光L2を平行光にするとともに、反射ミラー22により反射された参照光L2を光ファイバFB3のコアに集光する機能を有している。また、第2光学レンズ21bは、第1光学レンズ21aにより平行光にされた参照光L2を反射ミラー22上に集光するとともに、反射ミラー22により反射された参照光L2を平行光にする機能を有している。
したがって、光ファイバFB3から射出した参照光L2は、第1光学レンズ21aにより平行光になり、第2光学レンズ21bにより反射ミラー22上に集光される。その後、反射ミラー22により反射された参照光L2は、第2光学レンズ21bにより平行光になり、第1光学レンズ21aにより光ファイバFB3のコアに集光される。
さらに光路長調整手段20は、第2光学レンズ21bと反射ミラー22とを固定した可動ステージ23と、該可動ステージ23を第1光学レンズ21aの光軸方向に移動させるミラー移動手段24とを有している。そして可動ステージ23が矢印A方向に移動することにより、参照光L2の光路長が変更するよう構成されている。
合波手段4は、前述のとおり2×2の光ファイバカプラからなり、光路長調整手段20により光路長が変更された参照光L2と、測定対象Sからの反射光L3とを合波し光ファイバFB4を介して干渉光検出手段40側に射出するように構成されている。
干渉光検出手段40は、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出する。なお本例の装置においては、干渉光L4を光ファイバカプラである光分割手段3で二分した光を光検出器40aと40bに導き、演算手段41においてバランス検波を行う機構を有している。
上記演算手段41は例えばパーソナルコンピュータ等のコンピュータシステムからなる画像取得手段50に接続され、画像取得手段50はCRTや液晶表示装置等からなる表示装置60に接続されている。画像取得手段50は干渉光検出手段40において検出された干渉光L4をフーリエ変換することにより、測定対象Sの各深さ位置における反射光L3の強度を検出し、測定対象Sの断層画像を取得する。そして、この取得された断層画像が表示装置60に表示される。
ここで、干渉光検出手段40および画像取得手段50における干渉光L4の検出および画像の生成について簡単に説明する。なお、この点の詳細については「武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol41、No7、p426−p432」に詳しい記載がなされている。
測定光L1が測定対象Sに照射されたとき、測定対象Sの各深さからの反射光L3と参照光L2とがいろいろな光路長差をもって干渉しあう際の各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉光検出手段40において検出される光強度I(k)は、
I(k)=∫ S(l)[1+cos(kl)]dl ・・・(1)
で表される。ここで、kは波数、lは光路長差である。式(1)は波数kを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像取得手段50において、干渉光検出手段40が検出したスペクトル干渉縞をフーリエ変換にかけて周波数解析を行い、干渉光L4の光強度S(l)を決定することにより、測定対象Sの測定開始位置からの距離情報と反射強度情報とを取得し、断層画像を生成することができる。
次に、上記構成を有する光断層画像化装置1の動作例について説明する。まず、可動ステージ23が矢印A方向に移動することにより、測定可能領域内に測定対象Sが位置するように光路長の調整が行われる。その後、レーザ装置10から光Lが射出され、光Lは光分割手段3により測定光L1と参照光L2とに分割される。測定光L1はプローブ30により体腔内に導波され測定対象Sに照射される。そして、測定対象Sからの反射光L3が反射ミラー22において反射した参照光L2と合波手段4により合波され、反射光L3と参照光L2との干渉光L4が干渉光検出手段40により検出される。この検出された干渉光L4の信号が画像取得手段50において周波数解析されることにより断層画像が取得される。
なお、プローブ30を回転させて、測定対象Sに対して測定光L1を1次元方向に走査させれば、この走査方向に沿った各部分において測定対象Sの深さ方向の情報が得られるので、この走査方向を含む断層面についての断層画像を取得することができる。また、測定対象Sに対して測定光L1を、上記走査方向に対して直交する第2の方向に走査させることにより、この第2の方向を含む断層面についての断層画像をさらに取得することも可能である。
以上説明したように、本実施形態の光断層画像化装置1では、発振する光の周波数が、時間に対して線形変化するよう構成されているため、周波数解析の際に、データ分布が離散的にならず、周波数に対して等間隔となるようなデータ取得が容易に可能であり、従来に比べて周波数解析の精度を向上させることができる。また、時間に対する周波数の線形性が0.7%以下であれば、例えば、深さ0mmにおいて光軸方向分解能が10μm得られる測定光を用いる場合には、深さ1mmにおいても30μm以下の光軸分解能が得られる。このため、例えば内視鏡において、粘膜筋板(MM層)の抽出等の癌の深達度診断等に好適な装置となる。
なお、例えば、波長可変レーザ装置10において、レンズ14aおよびレンズ14bの変わりに、これらのレンズ特性に対して、戻り光の波長の逆数が時間に対して完全に線形変化する理想的な歪曲収差特性に近づくように補正を加えられたレンズ対を用いれば、周波数リニアリティが、0.4以下、あるいは0.1以下となるように、発振周波数が掃引され、深さ1mmにおける信号劣化はより少なくなり、より深い深度まで、高分解能の光断層画像を取得することができる。
本発明の第1の実施形態による光断層画像化装置の概略構成図 図1のレーザ装置の波長掃引の様子を示す図 図1のレーザ装置における歪曲収差曲線と発振周波数の関係を説明するための図 図1のレーザ装置における時間と発振周波数の関係を示す図 従来の波長可変レーザ装置の概略構成図 従来の波長可変レーザ装置の概略構成図 従来の波長可変レーザ装置の概略構成図 胃壁における癌の浸潤状態を説明するための図 深さ1mmで光断層画像を取得する場合において、周波数リニアリティと信号の劣化の関係を説明するための図 深さ1mmで光断層画像を取得する場合において、周波数リニアリティと軸方向分解能の関係を説明するための図
符号の説明
1 光断層画像化装置
2 光ファイバカプラ
3 光分割手段
4 合波手段
10 レーザ装置
11 半導体レーザ媒質
11a、11b 射出端面
12 コリメートレンズ
13 回折光学素子
14a,14b レンズ
15 ポリゴンミラー
15a 反射面
16 レンズ
20 光路長調整手段
30 プローブ
40 干渉光検出手段
40a、40b 光検出器
41 演算手段
50 画像取得手段
60 表示装置
L 光
L1 測定光
L2 参照光
L3 反射光
L4 干渉光
S 測定対象

Claims (5)

  1. 外部共振器型の波長可変レーザ装置において、
    レーザ媒質と、
    前記レーザ媒質からの射出光を空間的に波長分散する分散手段と、
    前記分散手段により波長分散された光の一部を、戻り光として選択的に反射する回転多面鏡と、
    前記波長分散手段と前記回転多面鏡との間に配置された歪曲収差発生手段とを備え、
    前記歪曲収差発生手段が、前記戻り光の波長の逆数が時間に対して略線形変化するように歪曲収差を発生するものであることを特徴とする波長可変レーザ装置。
  2. 前記分散手段と前記回転多面鏡との間に、少なくとも2枚のレンズからなるレンズ群が配置され、該レンズ群が、前記歪曲収差発生手段を兼ねるものであることを特徴とする請求項1記載の波長可変レーザ装置。
  3. 前記レンズ群が2枚のレンズからなり、一枚のレンズの歪曲収差曲線がF(θ)=f・sinθであり、他のレンズの歪曲収差曲線がG(θ)=f・tanθであることを特徴とする請求項2記載の波長可変レーザ装置。
  4. 前記歪曲収差発生手段が、前記回転多面鏡の所定回転角度内において、前記戻り光の波長の逆数が時間に対して、0.7%以下の線形性を与える歪曲収差を発生するものであることを特徴とする請求項1から3いずれか1項記載の波長可変レーザ装置。
  5. 請求項1から4のいずれか1項記載の波長可変レーザ装置と、
    前記波長可変レーザ装置から射出された光を測定光と参照光とに分割する光分割手段と、
    前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
    前記合波手段により合波された前記反射光と前記参照光との干渉光を検出する干渉光検出手段と、
    前記干渉光検出手段により検出された前記干渉光から前記測定対象の断層画像を取得する画像取得手段と、を備えたことを特徴とする光断層画像化装置。
JP2006099108A 2006-03-22 2006-03-31 波長可変レーザ装置および光断層画像化装置 Expired - Fee Related JP4755934B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006099108A JP4755934B2 (ja) 2006-03-31 2006-03-31 波長可変レーザ装置および光断層画像化装置
US11/723,820 US8204088B2 (en) 2006-03-22 2007-03-22 Wavelength tunable laser and optical tomography system using the wavelength tunable laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099108A JP4755934B2 (ja) 2006-03-31 2006-03-31 波長可変レーザ装置および光断層画像化装置

Publications (2)

Publication Number Publication Date
JP2007273834A true JP2007273834A (ja) 2007-10-18
JP4755934B2 JP4755934B2 (ja) 2011-08-24

Family

ID=38676302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099108A Expired - Fee Related JP4755934B2 (ja) 2006-03-22 2006-03-31 波長可変レーザ装置および光断層画像化装置

Country Status (1)

Country Link
JP (1) JP4755934B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218511A (ja) * 2008-03-12 2009-09-24 Optical Comb Inc 波長可変光学系及びこれを用いた光源
WO2010111795A1 (en) * 2009-04-03 2010-10-07 Exalos Ag Light source, and optical coherence tomography module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332329A (ja) * 1997-05-30 1998-12-18 Takeaki Yoshimura 光周波数掃引式断層画像測定方法および装置
JP2004209268A (ja) * 1999-02-04 2004-07-29 Univ Hospital Of Cleveland 光イメージング装置
JP2006024876A (ja) * 2004-06-07 2006-01-26 Sun Tec Kk 波長走査型ファイバレーザ光源
JP2007042971A (ja) * 2005-08-05 2007-02-15 Sun Tec Kk 波長走査型レーザ光源
JP2007510143A (ja) * 2003-10-27 2007-04-19 ザ・ジェネラル・ホスピタル・コーポレイション 周波数ドメイン干渉測定を利用して光学撮像を実行する方法および装置
JP2007242747A (ja) * 2006-03-07 2007-09-20 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置
JP2007258368A (ja) * 2006-03-22 2007-10-04 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332329A (ja) * 1997-05-30 1998-12-18 Takeaki Yoshimura 光周波数掃引式断層画像測定方法および装置
JP2004209268A (ja) * 1999-02-04 2004-07-29 Univ Hospital Of Cleveland 光イメージング装置
JP2007510143A (ja) * 2003-10-27 2007-04-19 ザ・ジェネラル・ホスピタル・コーポレイション 周波数ドメイン干渉測定を利用して光学撮像を実行する方法および装置
JP2006024876A (ja) * 2004-06-07 2006-01-26 Sun Tec Kk 波長走査型ファイバレーザ光源
JP2007042971A (ja) * 2005-08-05 2007-02-15 Sun Tec Kk 波長走査型レーザ光源
JP2007242747A (ja) * 2006-03-07 2007-09-20 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置
JP2007258368A (ja) * 2006-03-22 2007-10-04 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218511A (ja) * 2008-03-12 2009-09-24 Optical Comb Inc 波長可変光学系及びこれを用いた光源
WO2010111795A1 (en) * 2009-04-03 2010-10-07 Exalos Ag Light source, and optical coherence tomography module
JP2012523104A (ja) * 2009-04-03 2012-09-27 エグザロス・アクチェンゲゼルシャフト 光源および光干渉断層モジュール
US8625650B2 (en) 2009-04-03 2014-01-07 Exalos Ag Light source, and optical coherence tomography module
US8971360B2 (en) 2009-04-03 2015-03-03 Exalos Ag Light source, and optical coherence tomography module

Also Published As

Publication number Publication date
JP4755934B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4895277B2 (ja) 光断層画像化装置
JP3796550B2 (ja) 光干渉トモグラフィ装置
JP4642681B2 (ja) 光断層画像化装置
JP5069585B2 (ja) 光プローブを用いた光断層画像化装置
JP4640813B2 (ja) 光プローブおよび光断層画像化装置
US20070087445A1 (en) Arrangements and methods for facilitating photoluminescence imaging
JP5064159B2 (ja) 光断層画像化装置
US8204088B2 (en) Wavelength tunable laser and optical tomography system using the wavelength tunable laser
JP2007135947A (ja) 光プローブおよび光断層画像化装置
JP2007101262A (ja) 光断層画像化装置
JP4907279B2 (ja) 光断層画像化装置
JP2009162639A (ja) 光断層画像化システム
JP2008253492A (ja) 断層画像処理方法および装置ならびにプログラム
JP2007101268A (ja) 光断層画像化装置
JP2007240228A (ja) 光断層画像化装置
JP2007275193A (ja) 光プローブおよび光断層画像化装置
JP2009041946A (ja) 光画像計測装置
JP2007101263A (ja) 光断層画像化装置
JP2007085931A (ja) 光断層画像化装置
JP2006162485A (ja) 光断層映像装置
JP2007267927A (ja) 光断層画像化方法および装置
JP2006215006A (ja) 光断層画像化装置
JPWO2010128605A1 (ja) 光特性測定プローブ
JP4874906B2 (ja) 光断層画像取得方法及び光断層画像化装置
JP2008089349A (ja) 光断層画像化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees