JP2007273201A - Superconductive device - Google Patents

Superconductive device Download PDF

Info

Publication number
JP2007273201A
JP2007273201A JP2006096227A JP2006096227A JP2007273201A JP 2007273201 A JP2007273201 A JP 2007273201A JP 2006096227 A JP2006096227 A JP 2006096227A JP 2006096227 A JP2006096227 A JP 2006096227A JP 2007273201 A JP2007273201 A JP 2007273201A
Authority
JP
Japan
Prior art keywords
superconducting
metal
layer
superconducting wire
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006096227A
Other languages
Japanese (ja)
Other versions
JP4634954B2 (en
Inventor
Kenji Tazaki
賢司 田崎
Takashi Yazawa
孝 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006096227A priority Critical patent/JP4634954B2/en
Publication of JP2007273201A publication Critical patent/JP2007273201A/en
Application granted granted Critical
Publication of JP4634954B2 publication Critical patent/JP4634954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive device in which stability is improved by electrically connecting a superconductive layer of a superconductive wire rod with a metal base material and fixing a voltage potential of the base material. <P>SOLUTION: The superconductive device is composed of a superconductive wire rod formed in a lamination of a superconductive layer and a conductive metal layer with an intermediate layer on one side of the metal base material, and a connecting part to connect the metal base material of the superconductive wire rod with the conductive metal layer at least at one point of the superconductive wire rod. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は超電導装置に関する。   The present invention relates to a superconducting device.

超電導装置は、例えば磁気共鳴画像診断装置(MRI)や、超電導磁気エネルギー貯蔵装置(SMES)、超電導限流器などの種々の用途に用られ、超電導装置の作製に用いられる超電導線材は種々の方法により作製される。近年、磁場中の臨界電流密度特性などに優れた、イットリウム系超電導体に代表される、基材上に高度に2軸配向した超電導薄膜を成長させた超電導線材、いわゆるコーテッドコンダクターの開発が進められており、実用化の段階にまで到達している。   The superconducting device is used in various applications such as a magnetic resonance imaging diagnostic device (MRI), a superconducting magnetic energy storage device (SMES), a superconducting current limiter, and the like. It is produced by. In recent years, the development of so-called coated conductors, which are superconducting wires made by growing highly biaxially oriented superconducting thin films such as yttrium-based superconductors, which are excellent in critical current density characteristics in a magnetic field, has been promoted. It has reached the stage of practical use.

しかしながら、このような超電導線材(コーテッドコンダクター)は、これまでの超電導線材とは構造が異なっており、基材が高抵抗母材であり、かつ基材と超電導層との間に中間層と呼ばれるYSZ(イットリウム安定化ジルコニア)やCeOに代表される酸化物層が形成されている(例えば、特許文献1参照)。この構造の場合、基材と超電導層とは、基本的に絶縁性の中間層により電気的に絶縁された状態になっている。ここで、超電導層のみを電流導入のための接続端子に接続し、基板(基材)を当該接続端子に接続しなかった場合には、基板の電位が固定されず、超電導層と基板との間に大きな電位差が生じる可能性がある。このためにこれまでの技術では、超電導層と基板との間で絶縁破壊が起きる危険性があった。
特開2000−133067号公報(段落0012)
However, such a superconducting wire (coated conductor) has a structure different from that of the conventional superconducting wire, the base material is a high resistance base material, and is called an intermediate layer between the base material and the superconducting layer. An oxide layer typified by YSZ (yttrium stabilized zirconia) or CeO 2 is formed (see, for example, Patent Document 1). In the case of this structure, the base material and the superconducting layer are basically electrically insulated by an insulating intermediate layer. Here, when only the superconducting layer is connected to the connection terminal for current introduction, and the substrate (base material) is not connected to the connection terminal, the potential of the substrate is not fixed, and the superconducting layer and the substrate are not fixed. A large potential difference may occur between them. For this reason, the conventional technology has a risk of causing dielectric breakdown between the superconducting layer and the substrate.
JP 2000-133067 (paragraph 0012)

本発明は、上述した課題を解決すべくなされたものであって、このような超電導線材(コーテッドコンダクター)の中間層を境にして、超電導層と基材とを接続し、基板(基材)の電位を固定することを目的とするものである。   The present invention has been made to solve the above-described problems, and connects a superconducting layer and a base material with an intermediate layer of such a superconducting wire (coated conductor) as a boundary, and a substrate (base material). The purpose of this is to fix the potential.

上記目的を達成するため、本発明の一実施形態である超電導装置は、金属基材の片面に中間層を介して超電導層及び導電性金属層を順に積層形成してなる超電導線材と、前記超電導線材の少なくとも一箇所において前記超電導線材の前記金属基材と前記導電性金属層を接続する接続部とを有することを特徴とする。   In order to achieve the above object, a superconducting device according to an embodiment of the present invention includes a superconducting wire formed by sequentially laminating a superconducting layer and a conductive metal layer on one side of a metal substrate via an intermediate layer, and the superconducting device. It has the connection part which connects the said metal base material of the said superconducting wire, and the said electroconductive metal layer in at least one place of a wire.

本発明によれば、超電導線材(コーテッドコンダクター)の中間層を境にして、超電導層と金属基材とを接続したので、基板(基材)の電位を固定でき、基材と超電導層との間に想定外の電位差が生じることなく、絶縁破壊の発生の可能性を大きく低減しうる超電導装置を提供することができる。   According to the present invention, since the superconducting layer and the metal base material are connected with the intermediate layer of the superconducting wire (coated conductor) as a boundary, the potential of the substrate (base material) can be fixed, and the base material and the superconducting layer can be fixed. It is possible to provide a superconducting device that can greatly reduce the possibility of dielectric breakdown without causing an unexpected potential difference therebetween.

以下に、本発明を実施するための形態について図面に基づいて説明する。図1は、本発明の第1の実施形態に係る超電導装置の要部構成を模式的に示す図、図2は、図1の破線で囲まれた、超電導線材の端部における、超電導線材と板状金属端子が接続された部分の拡大した断面図である。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated based on drawing. FIG. 1 is a diagram schematically showing the main configuration of the superconducting device according to the first embodiment of the present invention, and FIG. 2 is a diagram of the superconducting wire at the end of the superconducting wire surrounded by a broken line in FIG. It is expanded sectional drawing of the part to which the plate-shaped metal terminal was connected.

図1に示すように、この実施形態に係る超電導装置1、例えば超電導コイルは、超電導線材2が巻枠3に巻回されて作製される。超電導線材2は、その端部において板状金属端子4の一部と一体に接続されている。図2に示すように、超電導線材2は、金属基材5の片面に中間層6を介して超電導層7及び導電性金属層8を順に積層されて形成される。このような超電導線材(コーテッドコンダクター)2は、金属基材5又は導電性金属層8のいずれかの一面で、板状金属端子4の一部に一体に接続されている。超電導線材2は、その反対の面が良導電性金属からなる接続板9のそれぞれの端部により板状金属端子4に接続されている。   As shown in FIG. 1, a superconducting device 1 according to this embodiment, for example, a superconducting coil, is manufactured by winding a superconducting wire 2 around a winding frame 3. Superconducting wire 2 is integrally connected to a part of plate-like metal terminal 4 at its end. As shown in FIG. 2, the superconducting wire 2 is formed by laminating a superconducting layer 7 and a conductive metal layer 8 in this order on one side of a metal substrate 5 with an intermediate layer 6 interposed therebetween. Such a superconducting wire (coated conductor) 2 is integrally connected to a part of the plate-like metal terminal 4 on one surface of either the metal base 5 or the conductive metal layer 8. The opposite surface of the superconducting wire 2 is connected to the plate-like metal terminal 4 by the respective end portions of the connection plate 9 made of a highly conductive metal.

板状金属端子4は、超電導線材2に電流を供給できる材質の金属であればいずれの金属も使用できるが、電気抵抗率の低い金属が好ましい。このような金属としては、具体的には銀、銅などが挙げられる。また、板状金属端子4の形状は、超電導線材2に電流を供給できる形状であればいずれの形状であってもよいが、例えば板状の金属端子は、超電導線材2との接続に適する。   Any metal can be used for the plate-like metal terminal 4 as long as it is a metal that can supply current to the superconducting wire 2, but a metal having a low electrical resistivity is preferable. Specific examples of such metals include silver and copper. The shape of the plate-like metal terminal 4 may be any shape as long as current can be supplied to the superconducting wire 2. For example, the plate-like metal terminal is suitable for connection to the superconducting wire 2.

金属基材5は、使用する超電導線材2の種類、材質、厚さなどによって適宜決めることができる。具体的には、銀、白金、ステンレス鋼、銅、Ni−W合金、Ni−Fe合金、例えばハステロイなどのニッケル基合金などの各種金属材料を用いることができるが、ニッケル基合金が好ましい。金属基材5の厚さは用途に応じて決めることができるが、通常50〜100μm程度である。また、金属基材5は通常高抵抗層である。
金属基材5は、超電導層7の異常時、例えば何らかの擾乱による温度上昇によるクエンチ現象や熱暴走などの超電導層7の異常発生時において超電導層7に流れている電流が、例えば良導電性金属からなる接続板9を介して転流(分流)されて、超電導層7のジュール熱による焼けなどによる損傷などを防止できる。
The metal substrate 5 can be appropriately determined depending on the type, material, thickness, etc. of the superconducting wire 2 to be used. Specifically, various metal materials such as silver, platinum, stainless steel, copper, Ni—W alloy, Ni—Fe alloy, and nickel-based alloys such as Hastelloy can be used, and nickel-based alloys are preferable. Although the thickness of the metal base material 5 can be determined according to a use, it is about 50-100 micrometers normally. The metal substrate 5 is usually a high resistance layer.
When the superconducting layer 7 is abnormal, for example, a current flowing in the superconducting layer 7 when the superconducting layer 7 has an abnormality such as a quenching phenomenon due to a temperature rise due to some disturbance or thermal runaway occurs, for example, a highly conductive metal It is commutated (divided) through the connecting plate 9 made of the above, and damage due to burning of the superconducting layer 7 due to Joule heat can be prevented.

中間層6を構成する材料は、例えば熱膨張係数が金属基材5よりも超電導層7の熱膨張係数に近い、YSZ(イットリウム安定化ジルコニア)、SrTiO、MgO、Al、LaAlO、LaGaO、YAlO、ZrOなどのセラミックス結晶体からなる中間層を用いることができる。これらの中でもできる限り結晶配向性の整ったものを用いることが好ましい。中間層6は、通常金属基材5と超電導層7とを絶縁するものである。中間層6の厚さは用途に応じて適宜決めることができるが、通常10〜800nm程度である。 The material constituting the intermediate layer 6 is, for example close to the thermal expansion coefficient of the thermal expansion coefficient of the superconducting layer 7 than the metal substrate 5, YSZ (yttrium stabilized zirconia), SrTiO 3, MgO, Al 2 O 3, LaAlO 3 An intermediate layer made of a ceramic crystal such as LaGaO 3 , YAlO 3 , or ZrO 2 can be used. Among these, it is preferable to use a material with as much crystal orientation as possible. The intermediate layer 6 normally insulates the metal substrate 5 and the superconducting layer 7. Although the thickness of the intermediate | middle layer 6 can be suitably determined according to a use, it is about 10-800 nm normally.

超電導層7を構成する超電導体は、金属基材5上に中間層6を介して積層される超電導層7を形成できる超電導体である。これらの超電導体としては、高温超電導体が挙げられる。高温超電導体としては、イットリウム系高温超電導体、例えばYBCO系の酸化物超電導体、ホルミウム系高温超電導体、例えばHoBCO系の酸化物超電導体、RE123(Y、Nd、Sm等の希土類元素)系超電導体、A−B−Cu−O系(ただし、AはLa、Ce、Y、Sc、Ybなどの周期律表IIIa族元素の1種以上を示し、BはSr、Baなどの周期律表IIa族元素の1種以上を示す)の酸化物超電導体などが挙げられる。
超電導層7は、金属基材5上に中間層6を介して、例えばパルスレーザー蒸着法(PLD法)、金属有機化合物堆積法(MOD法)、化学気相蒸着法(CVD法)等によって、YBCOなどの超電導体の薄膜を形成して製造することができる。このような超電導層7の厚さは用途に応じて適宜決めることができるが、通常1μ程度の厚さである。
The superconductor constituting the superconducting layer 7 is a superconductor capable of forming the superconducting layer 7 laminated on the metal substrate 5 via the intermediate layer 6. These superconductors include high temperature superconductors. Examples of the high-temperature superconductor include yttrium-based high-temperature superconductors, such as YBCO-based oxide superconductors, holmium-based high-temperature superconductors, such as HoBCO-based oxide superconductors, RE123 (rare earth elements such as Y, Nd, and Sm) -based superconductors. Body, AB-Cu-O system (where A is one or more elements of Group IIIa elements of the periodic table such as La, Ce, Y, Sc, Yb, and B is periodic table IIa of Sr, Ba, etc.) An oxide superconductor of one or more group elements).
The superconducting layer 7 is formed on the metal substrate 5 via the intermediate layer 6 by, for example, a pulse laser deposition method (PLD method), a metal organic compound deposition method (MOD method), a chemical vapor deposition method (CVD method), or the like. It can be manufactured by forming a thin film of a superconductor such as YBCO. The thickness of such a superconducting layer 7 can be appropriately determined according to the application, but is usually about 1 μm.

導電性金属層8の材質は、銀、ステンレス、銅、SUS(例えば、SUS304)などの金属材料などが挙げられる。導電性金属層5の厚さは、用途に応じて適宜決めることができるが、通常10〜100μm程度であり、例えば50μmである。
導電性金属層8と超電導層7との間には、例えば、銀の蒸着層が形成されていてもよい。この場合、銀の蒸着層の厚さは適宜決めることができ、例えば10μm程度とすることができる。
Examples of the material of the conductive metal layer 8 include metal materials such as silver, stainless steel, copper, and SUS (for example, SUS304). The thickness of the conductive metal layer 5 can be appropriately determined according to the application, but is usually about 10 to 100 μm, for example, 50 μm.
For example, a silver vapor deposition layer may be formed between the conductive metal layer 8 and the superconducting layer 7. In this case, the thickness of the silver vapor deposition layer can be determined as appropriate, for example, about 10 μm.

金属基材5の片面に中間層6を介して超電導層7及び導電性金属層8を順に積層形成してなる超電導線材2は、一本の線材であっても、又は途中で接続されたものであってもよい。また、その接続は、超電導線材2の導電性金属層8が互いに対向して積重されて電気的に接続されていても、又は超電導線材2の接続端部の端面同士が突き合わされて配置され、この接続端部を覆うように、例えば別の超電導線材で、それぞれの導電性金属層が対向して積重されて配置されて電気的に接続されていてもよい。
これらの超電導線材2の接続は、1箇所であっても、また2箇所以上であってもい。さらに、超電導線材2の接続は、超電導線材2同士を対向して配置された接続と超電導線材2同士を同じ方向で(端面同士を突き合わせて)配置された接続とを組み合わせたものであってもよい。
The superconducting wire 2 formed by sequentially laminating the superconducting layer 7 and the conductive metal layer 8 on one side of the metal substrate 5 with the intermediate layer 6 interposed therebetween may be a single wire or connected in the middle. It may be. Further, the connection is made even if the conductive metal layers 8 of the superconducting wire 2 are stacked and electrically connected to each other, or the end surfaces of the connecting end portions of the superconducting wire 2 are abutted against each other. In order to cover the connection end portion, for example, another superconducting wire may be disposed and electrically connected to each other with the respective conductive metal layers stacked in opposition to each other.
These superconducting wires 2 may be connected at one place or at two or more places. Furthermore, the connection of the superconducting wire 2 may be a combination of a connection in which the superconducting wires 2 are opposed to each other and a connection in which the superconducting wires 2 are arranged in the same direction (with the end faces butted together). Good.

次に、良導電性金属からなる接続板9について説明する。良導電性金属からなる接続板9は、銀、銅などの良導電性の材質の金属からなる。良導電性金属からなる接続板9は、超電導線材2の金属基材5及び導電性金属層8のうち、板状金属端子4と一体に接続していない面と、その一端で接続し、他端で板状金属端子4と一体に接続される。したがって、この接続により金属基材の電位を固定できる。また、超電導線材2の両端部におけるこの接続により、例えばクエンチや熱暴走が発生したときに、良導電性金属からなる接続板9を介して、導電性金属層8を経て超電導層7から金属基材5側にも電流を分流することができる。さらに、良導電性金属からなる接続板9は、超電導線材2と板状金属端子4との接合の強度を高めることもできる。   Next, the connection plate 9 made of a highly conductive metal will be described. The connection plate 9 made of a highly conductive metal is made of a metal of a highly conductive material such as silver or copper. The connection plate 9 made of a highly conductive metal is connected at one end of the metal base 5 and the conductive metal layer 8 of the superconducting wire 2 that are not integrally connected to the plate-like metal terminal 4, and the like. It is integrally connected to the plate-like metal terminal 4 at the end. Therefore, the potential of the metal substrate can be fixed by this connection. Further, due to this connection at both ends of the superconducting wire 2, for example, when quenching or thermal runaway occurs, the metal substrate is connected from the superconducting layer 7 through the conductive metal layer 8 via the connection plate 9 made of a highly conductive metal. The current can also be shunted to the material 5 side. Further, the connection plate 9 made of a highly conductive metal can increase the bonding strength between the superconducting wire 2 and the plate-like metal terminal 4.

超電導線材2(の金属基材5又は導電性金属層8)と板状金属端子4、超電導線材2と良導電性金属からなる接続板9、並びに板状金属端子4と良導電性金属からなる接続板9とを接続する方法としては、これらを電気的に接続(一体に接続)できる方法であればいずれの方法を使用することができる。例えば、半田付け、拡散接合などを用いて接続することができる。   Superconducting wire 2 (metal base 5 or conductive metal layer 8) and plate-like metal terminal 4, connection plate 9 made of superconducting wire 2 and well-conductive metal, and plate-like metal terminal 4 and well-conductive metal As a method of connecting the connection plate 9, any method can be used as long as they can be electrically connected (connected integrally). For example, the connection can be made using soldering, diffusion bonding, or the like.

例えば、半田付けを用いて超電導線材2(金属基材5又は導電性金属層8)と板状金属端子4とを接続する場合には、接続される超電導線材2と板状金属端子4のいずれか一方の接続部に半田を配置し、他方の接続部をこの半田上に対向して重ね合わせて配置し、加熱又は場合により加圧下で加熱することにより半田を溶融させて接続する。超電導線材2と良導電性金属からなる接続板9、並びに板状金属端子4と良導電性金属からなる接続板9との半田付けによる接続も同様である。
使用する半田は、超電導線材2の種類、金属基材5の種類、導電性金属層8の種類、金属基材の種類などに応じて適宜決めることができる。半田としては、例えば、銀、銅、インジウム、すず−銀系半田、すず−銅系半田、すず−鉛半田、インジウム−銀系半田、すず−インジウム系半田、すず−ビスマス系、すず−ビスマス−インジウム系半田などの半田を使用することができる。また、半田付けの条件は、使用する半田の種類などに応じて適宜決めることができる。
For example, when connecting the superconducting wire 2 (the metal substrate 5 or the conductive metal layer 8) and the plate-like metal terminal 4 using soldering, any of the superconducting wire 2 and the plate-like metal terminal 4 to be connected is used. Solder is disposed on one of the connecting portions, the other connecting portion is disposed on the solder so as to overlap each other, and the solder is melted and connected by heating or, optionally, heating under pressure. The same applies to the connection of the superconducting wire 2 and the connection plate 9 made of a highly conductive metal, and the connection between the plate-like metal terminal 4 and the connection plate 9 made of a highly conductive metal by soldering.
The solder to be used can be appropriately determined according to the type of superconducting wire 2, the type of metal substrate 5, the type of conductive metal layer 8, the type of metal substrate, and the like. For example, silver, copper, indium, tin-silver solder, tin-copper solder, tin-lead solder, indium-silver solder, tin-indium solder, tin-bismuth, tin-bismuth-- Solder such as indium solder can be used. The soldering conditions can be determined as appropriate according to the type of solder used.

また、例えば拡散接合を用いて超電導線材2と板状金属端子4とを接続する場合には、接続される超電導線材2と板状金属端子4の接続部を対向して重ね合わせて配置し、加熱又は場合により加圧下で加熱することにより接続する。超電導線材2と良導電性金属からなる接続板9、並びに板状金属端子4と良導電性金属からなる接続板9との拡散接合による接続も同様である。
拡散接合の条件は、使用する超電導線材2の種類、金属基材5の種類、導電性金属層8の種類、良導電性金属からなる接続板9の種類などに応じて適宜決めることができる。
Further, for example, when connecting the superconducting wire 2 and the plate-like metal terminal 4 using diffusion bonding, the connecting portions of the superconducting wire 2 and the plate-like metal terminal 4 to be connected are arranged so as to face each other. The connection is made by heating or optionally heating under pressure. The same applies to the connection by diffusion bonding between the superconducting wire 2 and the connection plate 9 made of a highly conductive metal, and the plate metal terminal 4 and the connection plate 9 made of a highly conductive metal.
The conditions for diffusion bonding can be appropriately determined according to the type of superconducting wire 2 to be used, the type of metal substrate 5, the type of conductive metal layer 8, the type of connection plate 9 made of a highly conductive metal, and the like.

次に、この実施形態における、超電導線材の端部における接続構造について説明する。
超電導線材の端部における接続構造は、図2(a)に示すように、超電導線材2の導電性金属層8側で板状金属端子4の一部に一体に接続されていてもよく、図2(b)に示すように、超電導線材2の金属基材5側で板状金属端子4の一部に一体に接続されていてもよい。良導電性金属からなる接続板9が、超電導線材2の板状金属端子4と接続されていない面(導電性金属層8又は金属基材5の面)と、板状金属端子4の面とを、それぞれの端部を重ねて一体に接続する。
Next, the connection structure at the end of the superconducting wire in this embodiment will be described.
The connection structure at the end of the superconducting wire may be integrally connected to a part of the plate-like metal terminal 4 on the conductive metal layer 8 side of the superconducting wire 2 as shown in FIG. As shown in 2 (b), the superconducting wire 2 may be integrally connected to a part of the plate-like metal terminal 4 on the metal base 5 side. The connection plate 9 made of a highly conductive metal is not connected to the plate-like metal terminal 4 of the superconducting wire 2 (the surface of the conductive metal layer 8 or the metal substrate 5), and the surface of the plate-like metal terminal 4 Are connected together by overlapping each end.

図2(a)の超電導線材の端部における接続構造は、良導電性金属からなる接続板9を使用しなくても板状金属端子4から導電性金属層8を介して超電導層7に電流が流れる。したがって、超電導線材2の少なくとも一方の端部において、良導電性金属からなる接続板9により超電導線材の金属基材5と板状金属端子が接続されることにより、金属基材5の電位を固定することができる。なお、超電導線材2の両方の端部において、良導電性金属からなる接続板9により超電導線材の金属基材5と接続される場合には、クエンチや熱暴走などの異常の発生時に、金属基材5に電流を転流することができるため好ましい。
これに対し、図2(b)の超電導線材の端部における接続構造は、良導電性金属からなる接続板9を介して、板状金属端子4から導電性金属層8を介して超電導層7に電流が流れる構造である。したがって、図2(b)の構造では、超電導線材の両方の端部において、良導電性金属からなる接続板9を使用して導電性金属層8と金属基材5とを接続する必要がある。この場合、クエンチや熱暴走などの異常の発生時に、超電導線材の両方の端部において、良導電性金属からなる接続板9を介して金属基材5に電流が分流されることになる。
The connection structure at the end of the superconducting wire shown in FIG. 2 (a) is such that a current flows from the plate metal terminal 4 to the superconducting layer 7 via the conductive metal layer 8 without using the connection plate 9 made of a highly conductive metal. Flows. Therefore, the potential of the metal substrate 5 is fixed by connecting the metal substrate 5 of the superconducting wire and the plate-like metal terminal by the connecting plate 9 made of a highly conductive metal at at least one end of the superconducting wire 2. can do. When both ends of the superconducting wire 2 are connected to the metal substrate 5 of the superconducting wire by the connection plate 9 made of a highly conductive metal, the metal substrate is used when an abnormality such as quenching or thermal runaway occurs. It is preferable because current can be commutated to the material 5.
On the other hand, the connection structure at the end portion of the superconducting wire shown in FIG. 2B has a superconducting layer 7 via a conductive metal layer 8 from a plate-like metal terminal 4 via a connection plate 9 made of a highly conductive metal. The current flows through Therefore, in the structure of FIG. 2B, it is necessary to connect the conductive metal layer 8 and the metal base 5 using the connection plate 9 made of a highly conductive metal at both ends of the superconducting wire. . In this case, when an abnormality such as quenching or thermal runaway occurs, current is diverted to the metal base 5 via the connection plate 9 made of a highly conductive metal at both ends of the superconducting wire.

図2(a)及び図2(b)の接続構造のうち、図2(a)の方が、超電導線材の一方の端部において、良導電性金属からなる接続板9により超電導線材の金属基材5と板状金属端子4が接続されるだけで、金属基材5の電位を固定できるため、また、超電導線材2と板状金属端子4の接合が容易なため好ましい。   2 (a) and 2 (b), in FIG. 2 (a), the metal substrate of the superconducting wire is formed by a connecting plate 9 made of a highly conductive metal at one end of the superconducting wire. It is preferable because the potential of the metal base 5 can be fixed only by connecting the material 5 and the plate-like metal terminal 4 and the superconducting wire 2 and the plate-like metal terminal 4 can be easily joined.

このように、この実施形態によれば、超電導線材の少なくとも一方の端部において、超電導線材の超電導層と金属基材とを電気的に接続することにより、金属基材の電位を固定することができ、絶縁破壊の危険性がない安定性の向上した超電導装置を提供することが出来る。また、超電導線材の両端部で超電導層と金属基材とを電気的に接続することにより、クエンチや熱暴走などが発生したときに、良導電性金属からなる接続板を介して、超電導層から金属基材に電流を分流することができ、安定性の向上した超電導装置を提供することができる。   Thus, according to this embodiment, the potential of the metal substrate can be fixed by electrically connecting the superconducting layer of the superconducting wire and the metal substrate at at least one end of the superconducting wire. In addition, it is possible to provide a superconducting device with improved stability without risk of dielectric breakdown. In addition, by electrically connecting the superconducting layer and the metal substrate at both ends of the superconducting wire, when a quench or thermal runaway occurs, the superconducting layer is connected via a connection plate made of a highly conductive metal. A current can be shunted to the metal substrate, and a superconducting device with improved stability can be provided.

次に、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態に係る超電導装置の要部構成を模式的に示す図、図4は、図3の破線で囲まれた、超電導線材の両方の端部における、超電導線材と板状金属端子が接続された部分の拡大した断面図である。図4(a)及び図4(b)はそれぞれ、超電導線材の両端部のうちのいずれか一方の端部における接続された部分(接続構造)を示す。   Next, a second embodiment of the present invention will be described. FIG. 3 is a diagram schematically showing a main configuration of a superconducting device according to the second embodiment of the present invention. FIG. 4 is a diagram showing superconductivity at both ends of the superconducting wire surrounded by a broken line in FIG. It is expanded sectional drawing of the part to which the wire and the plate-shaped metal terminal were connected. FIG. 4A and FIG. 4B each show a connected portion (connection structure) at one of the ends of the superconducting wire.

この実施形態においては、図4(a)は、超電導線材2の導電性金属層8が板状金属端子4の一部と一体に接続され、かつ、板状金属基材5が良導電性金属からなる接続板9により板状金属端子4と接続されている。図4(b)は、超電導線材2の導電性金属層8が板状金属端子4の一部と一体に接続されるが、良導電性金属からなる接続板9が存在せず、金属基材5が良導電性金属からなる接続板9により板状金属端子4と接続されていない。   In this embodiment, FIG. 4A shows that the conductive metal layer 8 of the superconducting wire 2 is integrally connected to a part of the plate-like metal terminal 4 and the plate-like metal substrate 5 is a highly conductive metal. The connection plate 9 is connected to the plate-like metal terminal 4. FIG. 4B shows that the conductive metal layer 8 of the superconducting wire 2 is integrally connected to a part of the plate-like metal terminal 4, but there is no connection plate 9 made of a highly conductive metal, and a metal substrate. 5 is not connected to the plate-like metal terminal 4 by the connection plate 9 made of a highly conductive metal.

図4(a)及び図4(b)の超電導線材2の接続構造は、超電導線材2の超電導層7に、例えばクエンチによる常電導抵抗が発生したときに、この常電導抵抗を検出することができる構造である。以下に、常電導抵抗の発生を検出する原理を説明する。   The connection structure of the superconducting wire 2 shown in FIGS. 4A and 4B can detect the normal conducting resistance when a normal conducting resistance is generated in the superconducting layer 7 of the superconducting wire 2 due to quenching, for example. It is a possible structure. Hereinafter, the principle of detecting the occurrence of normal conducting resistance will be described.

まず、超電導線材2の一方の端部(図4(b))において、板状金属端子4と超電導線材2の金属基材5とを接続する良導電性金属からなる接続板9が存在していない。金属基材5の両端電圧、すなわち図4(a)の超電導線材2の端部の金属基材5と図4(b)の超電導線材2の端部の金属基材5との間の電圧をVとし、超電導線材2の超電導層7の両端電圧をVとすると、金属基材5の両端電圧(V)は、超電導コイルのインダクタンス成分のみが現れる。一方、超電導線材7の両端電圧(V)は、正常時は超電導コイルの抵抗成分は現れず、インダクタンス成分のみが現れるが、クエンチなどにより超電導線材7に抵抗が生じると、金属基材5の両端電圧(V)と同値のインダクタンス成分と抵抗成分のベクトル和が現れる。したがって、これらの電圧の差分値(V2−V1)を測定すると、インダクタンス成分が相殺されて、抵抗成分のみの値(超電導線材7の抵抗成分のみの値)を抽出できる。この値は、正常時はほぼゼロである。しかし、ひとたび超電導層7に、常電導抵抗が発生すると、超電導線材7の両端電圧(V)は、超電導コイルのインダクタンス成分に加えて抵抗成分のベクトルも現れる。したがって、電圧の差分値(V−V)は正の値を示すので、超電導層7に異常が発生したことがわかる。
また、図4(b)に示す導電性金属層8および金属基材5との間の電圧(V)、あるいは板状金属端子4および金属基材5との間の電圧(V)を測定することによっても、同様に超電導層7に抵抗が発生したことがわかる。
First, at one end of the superconducting wire 2 (FIG. 4B), there is a connection plate 9 made of a highly conductive metal that connects the plate-like metal terminal 4 and the metal substrate 5 of the superconducting wire 2. Absent. The voltage between both ends of the metal substrate 5, that is, the voltage between the metal substrate 5 at the end of the superconducting wire 2 in FIG. 4A and the metal substrate 5 at the end of the superconducting wire 2 in FIG. Assuming that V 1 is the voltage across the superconducting layer 7 of the superconducting wire 2 and V 2 is the voltage across the metal substrate 5 (V 1 ), only the inductance component of the superconducting coil appears. On the other hand, the normal voltage (V 2 ) of the superconducting wire 7 does not show the resistance component of the superconducting coil and shows only the inductance component when it is normal, but if resistance occurs in the superconducting wire 7 due to quenching or the like, A vector sum of an inductance component and a resistance component having the same value as the both-end voltage (V 1 ) appears. Therefore, it can be extracted as measured difference value of these voltages (V 2 -V 1), and an inductance component are canceled, the value of only the resistance component (value of only the resistance component of the superconducting wire 7). This value is almost zero when normal. However, once a normal conducting resistance is generated in the superconducting layer 7, the voltage across the superconducting wire 7 (V 2 ) also shows a resistance component vector in addition to the inductance component of the superconducting coil. Therefore, since the voltage difference value (V 2 −V 1 ) shows a positive value, it can be seen that an abnormality has occurred in the superconducting layer 7.
Further, the voltage (V 3 ) between the conductive metal layer 8 and the metal base 5 shown in FIG. 4B or the voltage (V 4 ) between the plate-like metal terminal 4 and the metal base 5 is shown. It can be seen that resistance was similarly generated in the superconducting layer 7 by measurement.

なお、この実施形態における超電導線材2は、本発明の第1の実施形態と同様に一本の線材であっても、又は途中で接続されたものであってもよい。   In addition, the superconducting wire 2 in this embodiment may be a single wire as in the first embodiment of the present invention, or may be connected in the middle.

このように、この実施形態によれば、金属基材の電位を固定することができ、絶縁破壊の危険性が少ない安定性の向上に加えて、感度良く常電導抵抗の発生を検出できる。   Thus, according to this embodiment, the potential of the metal substrate can be fixed, and in addition to the improvement in stability with a low risk of dielectric breakdown, the occurrence of normal conductive resistance can be detected with high sensitivity.

次に、本発明の第3の実施形態について説明する。図5は、本発明の第3の実施形態に係る超電導装置の要部構成を模式的に示す図、図6は、図5の破線で囲まれた、良導電性金属からなる接続板により、超電導線材の超電導層と金属基材とが接続された部分の拡大した断面図である。   Next, a third embodiment of the present invention will be described. FIG. 5 is a diagram schematically showing a main configuration of a superconducting device according to the third embodiment of the present invention, and FIG. 6 is a connection plate made of a highly conductive metal surrounded by a broken line in FIG. It is sectional drawing to which the superconducting layer of the superconducting wire and the part to which the metal base material was connected was expanded.

金属基材5、中間層6、超電導層7及び導電性金属層8が順次積層して形成される超電導線材2のうち、絶縁性の中間層6を介して存在する金属基材5と超電導層7とを、超電導線材2の長手方向の所定の箇所において、良電導性金属からなる接続板10によって電気的に接続する。この電気的な接続は、導電性金属層8を介して行うことができる。金属基材5と良導電性金属からなる接続板10との接続および導電性金属層8と良導電性金属からなる接続板10との接続は、平らな面同士を接続させる。   Of the superconducting wire 2 formed by sequentially laminating the metal base material 5, the intermediate layer 6, the superconducting layer 7 and the conductive metal layer 8, the metal base material 5 and the superconducting layer existing via the insulating intermediate layer 6. 7 are electrically connected to each other at a predetermined position in the longitudinal direction of the superconducting wire 2 by a connection plate 10 made of a highly conductive metal. This electrical connection can be made through the conductive metal layer 8. The connection between the metal base 5 and the connection plate 10 made of a highly conductive metal and the connection between the conductive metal layer 8 and the connection plate 10 made of a highly conductive metal connect flat surfaces to each other.

良電導性金属からなる接続板10の材質としては、超電導線材2の金属基材5と超電導層7とを電気的に接続できる材質の金属材料を使用することができる。具体的には、銀、銅などが挙げられる。また、良電導性金属からなる接続板(接続部)10は、超電導線材2の金属基材5と超電導層7とを電気的に接続し、クエンチの発生時に超電導層7に接続されている電流を迅速に金属基材5に転流できる形状であればいずれの形状も使用することができる。例えば、図6に示されるような断面形状がコの字型の形状のものや、内部が空洞である長方形形状のものなどを使用できる。
この良電導性金属からなる接続板10による電気的な接続は、金属基材5と超電導層7とを電気的に接続できる方法を使用することができる。例えば、金属基材5と導電性金属層8とを良電導性金属からなる接続板10により接触させることで、電気的に接続させることができる。また、例えば、半田付け、拡散接合などを用いて電気的に接続することができる。
As a material of the connection plate 10 made of a highly conductive metal, a metal material that can electrically connect the metal substrate 5 of the superconducting wire 2 and the superconducting layer 7 can be used. Specifically, silver, copper, etc. are mentioned. Further, the connection plate (connection part) 10 made of a highly conductive metal electrically connects the metal substrate 5 of the superconducting wire 2 and the superconducting layer 7, and the current connected to the superconducting layer 7 when a quench occurs. Any shape can be used as long as the shape can be quickly commutated to the metal substrate 5. For example, a cross-sectional shape as shown in FIG. 6 having a U shape or a rectangular shape having a hollow inside can be used.
For the electrical connection by the connection plate 10 made of this highly conductive metal, a method that can electrically connect the metal substrate 5 and the superconducting layer 7 can be used. For example, the metal base 5 and the conductive metal layer 8 can be electrically connected by bringing them into contact with the connection plate 10 made of a highly conductive metal. Further, for example, electrical connection can be made using soldering, diffusion bonding, or the like.

この良電導性金属からなる接続板10による電気的な接続の箇所は、超電導線材2の長手方向において1箇所以上であれば金属基材5の電位を固定することができ、2箇所以上において接続することにより、例えばクエンチの発生時に、電流を超電導層7から金属基材5に転流させることができる。接続の箇所が多いほど、より迅速に電流を超電導層7から金属基材5に転流させることができる。また、この実施形態における良電導性金属からなる接続板10による超電導層7と金属基材5との電気的な接続は、超電導線材2の端部における、良電導性金属からなる接続板9による超電導線材2の金属基材5と導電性金属層8との電気的な接続と組み合わされることにより、例えばクエンチの発生時に、よりさらに迅速に電流を超電導層7から金属基材5に転流させることができる。   The electrical connection by the connecting plate 10 made of a highly conductive metal can fix the potential of the metal substrate 5 as long as it is at least one place in the longitudinal direction of the superconducting wire 2. By doing so, for example, when a quench occurs, current can be commutated from the superconducting layer 7 to the metal substrate 5. The more the number of connection points, the faster the current can be commutated from the superconducting layer 7 to the metal substrate 5. In addition, the electrical connection between the superconducting layer 7 and the metal substrate 5 by the connection plate 10 made of a highly conductive metal in this embodiment is made by the connection plate 9 made of a highly conductive metal at the end of the superconducting wire 2. When combined with the electrical connection between the metal substrate 5 and the conductive metal layer 8 of the superconducting wire 2, the current is commutated more rapidly from the superconducting layer 7 to the metal substrate 5 when, for example, a quench occurs. be able to.

なお、この実施形態における超電導線材2は、本発明の第1の実施形態と同様に一本の線材であっても、又は途中で接続されたものであってもよい。   In addition, the superconducting wire 2 in this embodiment may be a single wire as in the first embodiment of the present invention, or may be connected in the middle.

このように、この実施形態によれば、超電導線材2の長手方向における1箇所以上の接続により金属基材5の電位を固定することができ、また、2箇所以上の接続により、電流を超電導層7から金属基材5に転流させることができる。また、接続の箇所が多いほど、より迅速に電流を超電導層7から金属基材5に転流させることができる。   As described above, according to this embodiment, the potential of the metal substrate 5 can be fixed by connection at one or more locations in the longitudinal direction of the superconducting wire 2, and the current can be supplied to the superconducting layer by connection at two or more locations. 7 to the metal substrate 5. In addition, the current can be transferred from the superconducting layer 7 to the metal substrate 5 more rapidly as the number of connection points increases.

また、本発明の実施形態に係る超電導装置の用途としては、超電導発電機、超電導電力貯蔵(SMES)、超電導限流器、超電導変圧器、超電導ケーブルなどが挙げられる。特に、本発明の実施形態に係る超電導装置は、金属基材の電位を固定でき、また電流クエンチなどの異常時に、超電導層から導電性金属層に加えて、金属基材側に電流を転流することができるので、超電導限流器に好適に使用することができる。   In addition, examples of the use of the superconducting device according to the embodiment of the present invention include a superconducting generator, a superconducting power storage (SMES), a superconducting current limiter, a superconducting transformer, and a superconducting cable. In particular, the superconducting device according to the embodiment of the present invention can fix the potential of the metal substrate, and in addition to the conductive metal layer from the superconducting layer in the event of an abnormality such as a current quench, the current is commutated to the metal substrate side. Therefore, it can be suitably used for a superconducting fault current limiter.

本発明の第1の実施形態に係る超電導装置の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of the superconducting apparatus which concerns on the 1st Embodiment of this invention. 図1の破線で囲まれた、超電導線材と板状金属端子が接続された部分の拡大した断面図である。FIG. 2 is an enlarged cross-sectional view of a portion surrounded by a broken line in FIG. 1 where a superconducting wire and a plate-like metal terminal are connected. 本発明の第2の実施形態に係る超電導装置の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of the superconducting apparatus which concerns on the 2nd Embodiment of this invention. 図3の破線で囲まれた、超電導線材と板状金属端子が接続された部分の拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of a portion surrounded by a broken line in FIG. 3 where a superconducting wire and a plate-like metal terminal are connected. 本発明の第3の実施形態に係る超電導装置の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of the superconducting apparatus which concerns on the 3rd Embodiment of this invention. 図5の破線の楕円で囲まれた、良導電性金属からなる接続板により超電導線材の超電導層と金属基材が接続された部分の拡大した断面図である。FIG. 6 is an enlarged cross-sectional view of a portion where a superconducting layer of a superconducting wire and a metal substrate are connected by a connection plate made of a highly conductive metal and surrounded by a dashed ellipse in FIG. 5.

符号の説明Explanation of symbols

1…超電導装置、2…超電導線材、3…巻枠、4…板状金属端子、5…金属基材、6…中間層、7…超電導層、8…導電性金属層、9,10…良導電性金属からなる接続板   DESCRIPTION OF SYMBOLS 1 ... Superconducting device, 2 ... Superconducting wire, 3 ... Winding frame, 4 ... Plate-shaped metal terminal, 5 ... Metal base material, 6 ... Intermediate layer, 7 ... Superconducting layer, 8 ... Conductive metal layer, 9, 10 ... Good Connection plate made of conductive metal

Claims (3)

金属基材の片面に中間層を介して超電導層及び導電性金属層を順に積層形成してなる超電導線材と、
前記超電導線材の少なくとも一箇所において前記超電導線材の前記金属基材と前記導電性金属層を接続する接続部と
を有することを特徴とする超電導装置。
A superconducting wire formed by sequentially laminating a superconducting layer and a conductive metal layer on one side of a metal substrate via an intermediate layer;
A superconducting device comprising: a connecting portion for connecting the metal base of the superconducting wire and the conductive metal layer at at least one location of the superconducting wire.
前記接続部が、前記超電導線材の少なくとも一方の端部において前記超電導線材の前記金属基材又は前記導電性金属層の他方の面に一端を重ね、他端を板状金属端子の面に重ねて一体に接続される
ことを特徴とする請求項1記載の超電導装置。
The connecting portion has one end overlapped with the other surface of the metal substrate or the conductive metal layer of the superconducting wire at at least one end of the superconducting wire, and the other end overlapped with the surface of the plate-like metal terminal. The superconducting device according to claim 1, wherein the superconducting device is integrally connected.
前記接続部が、前記超電導線材の長手方向の少なくとも1箇所で前記金属基材及び前記導電性金属層と平らな面同士を接続させて電気的に接続する良導電性金属である
ことを特徴とする請求項1記載の超電導装置。
The connection portion is a highly conductive metal that connects and electrically connects the metal base and the conductive metal layer to at least one place in the longitudinal direction of the superconducting wire. The superconducting device according to claim 1.
JP2006096227A 2006-03-31 2006-03-31 Superconducting device Active JP4634954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096227A JP4634954B2 (en) 2006-03-31 2006-03-31 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096227A JP4634954B2 (en) 2006-03-31 2006-03-31 Superconducting device

Publications (2)

Publication Number Publication Date
JP2007273201A true JP2007273201A (en) 2007-10-18
JP4634954B2 JP4634954B2 (en) 2011-02-16

Family

ID=38675802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096227A Active JP4634954B2 (en) 2006-03-31 2006-03-31 Superconducting device

Country Status (1)

Country Link
JP (1) JP4634954B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009098A (en) * 2009-06-26 2011-01-13 Fujikura Ltd Superconducting wire
WO2021006239A1 (en) * 2019-07-08 2021-01-14 株式会社フジクラ Oxide superconducting wire material, oxide superconducting coil, and oxide superconducting wire material manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141913A (en) * 1990-10-02 1992-05-15 Mitsubishi Kasei Corp Composite wire of oxide superconductor
JPH0652731A (en) * 1992-07-30 1994-02-25 Sumitomo Electric Ind Ltd Superconductive equipment and manufacture thereof
JP2005044636A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Superconductive wire rod

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141913A (en) * 1990-10-02 1992-05-15 Mitsubishi Kasei Corp Composite wire of oxide superconductor
JPH0652731A (en) * 1992-07-30 1994-02-25 Sumitomo Electric Ind Ltd Superconductive equipment and manufacture thereof
JP2005044636A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Superconductive wire rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009098A (en) * 2009-06-26 2011-01-13 Fujikura Ltd Superconducting wire
WO2021006239A1 (en) * 2019-07-08 2021-01-14 株式会社フジクラ Oxide superconducting wire material, oxide superconducting coil, and oxide superconducting wire material manufacturing method

Also Published As

Publication number Publication date
JP4634954B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
KR101968074B1 (en) Structure to reduce electroplated stabilizer content
JP5770947B2 (en) Superconducting recovery method by joining 2nd generation ReBCO high temperature superconductor using partial fine melt diffusion welding by direct contact of high temperature superconductor layer and annealing with oxygen supply annealing
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP2000277322A (en) High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
KR20090129979A (en) Superconducting coil and superconductor used for the same
KR20150065694A (en) Superconductive coil device and production method
CN112912973A (en) High temperature superconductor magnet
JP2007188844A (en) Superconducting cable
JP2013012645A (en) Oxide superconducting coil and superconducting apparatus
JP4719090B2 (en) High temperature superconducting coil and high temperature superconducting magnet using the same
JP5022279B2 (en) Oxide superconducting current lead
JP2012256744A (en) Superconductive coil
JP6738720B2 (en) Superconducting wire connection structure
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP5266852B2 (en) Superconducting current lead
JP4634954B2 (en) Superconducting device
JP2011124188A (en) Connection method of oxide superconductive wire
JP2016039289A (en) High-temperature superconducting coil and high-temperature superconducting magnet device
JP6818578B2 (en) Superconducting cable connection
JP2008305765A (en) Oxide superconductive current lead
JP2012195413A (en) Superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R151 Written notification of patent or utility model registration

Ref document number: 4634954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3