JP2011009098A - Superconducting wire - Google Patents

Superconducting wire Download PDF

Info

Publication number
JP2011009098A
JP2011009098A JP2009152128A JP2009152128A JP2011009098A JP 2011009098 A JP2011009098 A JP 2011009098A JP 2009152128 A JP2009152128 A JP 2009152128A JP 2009152128 A JP2009152128 A JP 2009152128A JP 2011009098 A JP2011009098 A JP 2011009098A
Authority
JP
Japan
Prior art keywords
layer
metal
superconducting
stabilizing
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009152128A
Other languages
Japanese (ja)
Other versions
JP5364467B2 (en
Inventor
Yasunori Sudo
泰範 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
International Superconductivity Technology Center
Original Assignee
Fujikura Ltd
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, International Superconductivity Technology Center filed Critical Fujikura Ltd
Priority to JP2009152128A priority Critical patent/JP5364467B2/en
Publication of JP2011009098A publication Critical patent/JP2011009098A/en
Application granted granted Critical
Publication of JP5364467B2 publication Critical patent/JP5364467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting wire for stabilizing a superconducting layer and reducing alternating-current loss, and for manufacturing it easily.SOLUTION: In the superconducting wire 1, an intermediate layer 12 made from metal oxide, a superconducting layer 13 and a first metal stabilizing layer 14 are laminated in this order on a surface 11c side of a metal base material 11, a first groove 18 and a second groove 19 reaching to the intermediate layer 12 and dividing the first metal stabilizing layer 14 and the superconducting layer 13 in a width direction are integrally formed on the first metal stabilizing layer 14 and the superconducting layer 13 along a length direction, a second metal stabilizing layer 16 are laminated on a rear surface 11d side of the metal base material 11, and the second metal stabilizing layer 16 is electrically connected with the superconducting layer 13.

Description

本発明は、超電導体を安定化させるための金属安定化層の剥離が抑制された超電導線材に関する。   The present invention relates to a superconducting wire in which peeling of a metal stabilizing layer for stabilizing a superconductor is suppressed.

イットリウム(Y)系酸化物等の超電導体は、臨界温度、臨界電流、臨界磁界で規定される条件範囲内において、超電導状態が維持される。一方、超電導体は、その状態によっては、通電中に一部の領域が常伝導状態となって発熱し、さらに超電導体全体が常伝導体状態に転移する、所謂クエンチ現象を引き起こすことが知られている。クエンチ現象が発生すると、超電導体が焼損してしまう。そこで、これを防止するために、導電性が良好な金属からなる安定化層(金属安定化層)を超電導層に接触配置して複合化する。安定化層を設けることで、通電中に超電導層の一部領域が常伝導状態になっても、安定化層に電流を通す(通電する)ことで、超電導層が安定化される。
安定化層を設ける手法としては、スパッタリングや蒸着等の物理的法により、銀(Ag)からなる安定化層(銀安定化層)を形成する方法(特許文献1参照)や、はんだを介して銀安定化層上に安価な銅(Cu)からなる安定化層(銅安定化層)を形成する方法(特許文献2参照)が開示されている。
A superconductor such as an yttrium (Y) oxide is maintained in a superconducting state within a range of conditions defined by a critical temperature, a critical current, and a critical magnetic field. On the other hand, depending on the state of the superconductor, it is known that a part of the region becomes a normal conduction state during energization and generates heat, and further, a so-called quench phenomenon occurs in which the whole superconductor is changed to a normal state. ing. When the quench phenomenon occurs, the superconductor burns out. Therefore, in order to prevent this, a stabilizing layer (metal stabilizing layer) made of a metal having good conductivity is placed in contact with the superconducting layer to be compounded. By providing the stabilization layer, even if a partial region of the superconducting layer becomes a normal conduction state during energization, the superconducting layer is stabilized by passing a current through the stabilization layer (energization).
As a method of providing a stabilization layer, a method of forming a stabilization layer (silver stabilization layer) made of silver (Ag) by a physical method such as sputtering or vapor deposition (see Patent Document 1), or via solder A method of forming a stabilization layer (copper stabilization layer) made of inexpensive copper (Cu) on a silver stabilization layer (see Patent Document 2) is disclosed.

一方、超電導体をケーブルや変圧器等の実用に供するには、交流損失を低減することが必要である。これに対して、超電導線材を利用したコイルにおいては、金属基材にまで達する溝を超電導層に形成し、超電導層を複数に分割して細線化することにより、分割数に反比例するように交流損失を低減できることが知られている(特許文献3、非特許文献1参照)。細線化の手法としては、レーザ照射、フォトリソグラフィー、エッチング等が通常適用される。
このように、超電導層を安定化させて焼損を防止するために金属安定化層を設けた超電導線材においては、交流損失を低減するために、超電導層を細線化することが重要となる。
On the other hand, in order to use a superconductor for practical use such as a cable and a transformer, it is necessary to reduce AC loss. On the other hand, in a coil using a superconducting wire, a groove reaching the metal substrate is formed in the superconducting layer, and the superconducting layer is divided into a plurality of thin lines, so that AC is inversely proportional to the number of divisions. It is known that loss can be reduced (see Patent Document 3 and Non-Patent Document 1). Laser irradiation, photolithography, etching, etc. are usually applied as the thinning technique.
Thus, in a superconducting wire provided with a metal stabilizing layer in order to stabilize the superconducting layer and prevent burnout, it is important to make the superconducting layer thin in order to reduce AC loss.

特開2006−236652号公報JP 2006-236652 A 特開2008−60074号公報JP 2008-60074 A 特開2007−141688号公報JP 2007-141688 A

Supercond.Soc.Technol.,20,822−826(2007)Supercond. Soc. Technol. , 20, 822-826 (2007)

しかし、上記のように、スパッタリングや蒸着等の物理的蒸着により銀安定化層を設けた超電導線材では、超電導層を安定化させるために、銀安定化層の厚さを概ね100μm以上とする必要性があり、コストが上昇してしまうという問題点があった。
また、銀安定化層上にはんだを介して銅安定化層を設けた超電導線材では、細線化が難しいという問題点があった。具体的には、レーザ照射で細線化する場合には、レーザ照射部位が高温になるので、はんだが溶けて銅安定化層が剥離してしまうことがある。また、フォトリソグラフィーで細線化する場合には、安定化層全体が厚いために細線化自体が難しく、そのための装置も構成が複雑になってしまう。また、エッチングで細線化する場合には、はんだがエッチングされて、銅安定化層が剥離してしまうことがある。
このように、従来は、簡便に製造でき、且つ実用に供し得る超電導線材が無いのが実情であった。
However, as described above, in a superconducting wire provided with a silver stabilizing layer by physical vapor deposition such as sputtering or vapor deposition, the thickness of the silver stabilizing layer needs to be approximately 100 μm or more in order to stabilize the superconducting layer. There was a problem that the cost would increase.
In addition, the superconducting wire having a copper stabilizing layer on the silver stabilizing layer via solder has a problem that it is difficult to make the wire thin. Specifically, when thinning is performed by laser irradiation, the laser irradiation portion becomes high temperature, so that the solder may melt and the copper stabilization layer may be peeled off. Further, when thinning by photolithography, since the entire stabilizing layer is thick, thinning itself is difficult, and the configuration of the apparatus for that is complicated. In addition, when thinning is performed by etching, the solder may be etched and the copper stabilization layer may be peeled off.
Thus, conventionally, there has been no actual superconducting wire that can be easily manufactured and can be put to practical use.

本発明は、上記事情に鑑みてなされたものであり、超電導層の安定化と交流損失の低減が可能で、且つ簡便に製造できる超電導線材を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the superconducting wire which can stabilize a superconducting layer and can reduce alternating current loss, and can be manufactured simply.

上記課題を解決するため、
本発明は、金属基材の表面側に金属酸化物からなる中間層、超電導層及び第一の金属安定化層がこの順に積層され、前記中間層に達して前記第一の金属安定化層及び超電導層を幅方向に分割する溝が、前記第一の金属安定化層及び超電導層に、長手方向に沿って一体に形成され、金属基材の裏面側に第二の金属安定化層が積層され、該第二の金属安定化層が、前記超電導層と電気的に接続されていることを特徴とする超電導線材を提供する。
本発明の超電導線材は、前記第二の金属安定化層が、導電性の接合層を介して前記金属基材の裏面に積層されていることが好ましい。
本発明の超電導線材は、前記第二の金属安定化層が、長手方向両端に余長部を有し、該余長部が前記金属基材の表面側に折り返され、前記第一の金属安定化層と電気的に接続されていることが好ましい。
To solve the above problem,
In the present invention, an intermediate layer made of a metal oxide, a superconducting layer, and a first metal stabilizing layer are laminated in this order on the surface side of a metal substrate, and reach the intermediate layer to reach the first metal stabilizing layer and A groove for dividing the superconducting layer in the width direction is formed integrally with the first metal stabilizing layer and the superconducting layer along the longitudinal direction, and the second metal stabilizing layer is laminated on the back side of the metal substrate. The second metal stabilizing layer is electrically connected to the superconducting layer. A superconducting wire is provided.
In the superconducting wire of the present invention, it is preferable that the second metal stabilizing layer is laminated on the back surface of the metal substrate via a conductive bonding layer.
In the superconducting wire of the present invention, the second metal stabilization layer has extra length portions at both ends in the longitudinal direction, and the extra length portions are folded back to the surface side of the metal base, It is preferable to be electrically connected to the formation layer.

本発明によれば、超電導層の安定化と交流損失の低減が可能で、且つ簡便に製造できる超電導線材が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the superconducting wire which can stabilize a superconducting layer and reduce alternating current loss, and can be manufactured simply is obtained.

本発明の超電導線材を例示する概略図であり、(a)は長手方向に対して略垂直な方向の断面図、(b)は長手方向の縦断面図、(c)は平面図である。It is the schematic which illustrates the superconducting wire of this invention, (a) is sectional drawing of a direction substantially perpendicular | vertical with respect to a longitudinal direction, (b) is a longitudinal cross-sectional view of a longitudinal direction, (c) is a top view. 本発明の超電導線材の製造方法を説明するための概略図であり、超電導線材の長手方向の縦断面図である。It is the schematic for demonstrating the manufacturing method of the superconducting wire of this invention, and is a longitudinal cross-sectional view of the longitudinal direction of a superconducting wire.

本発明の超電導線材は、金属基材の表面側に金属酸化物からなる中間層(以下、中間層と略記する)、超電導層及び第一の金属安定化層がこの順に積層され、前記中間層に達して前記第一の金属安定化層及び超電導層を幅方向に分割する溝が、前記第一の金属安定化層及び超電導層に、長手方向に沿って一体に形成され、金属基材の裏面側に第二の金属安定化層が積層され、該第二の金属安定化層が、前記超電導層と電気的に接続されていることを特徴とする。
以下、図面を参照しながら、本発明について詳細に説明する。
In the superconducting wire of the present invention, an intermediate layer made of a metal oxide (hereinafter abbreviated as an intermediate layer), a superconducting layer, and a first metal stabilizing layer are laminated in this order on the surface side of the metal substrate, And a groove for dividing the first metal stabilizing layer and the superconducting layer in the width direction is integrally formed along the longitudinal direction in the first metal stabilizing layer and the superconducting layer. A second metal stabilizing layer is laminated on the back side, and the second metal stabilizing layer is electrically connected to the superconducting layer.
Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の超電導線材を例示する概略図であり、(a)は長手方向に対して略垂直な方向の断面図、(b)は長手方向の縦断面図、(c)は平面図である。
超電導線材1においては、金属基材11の表面11c上に、中間層12、超電導層13及び第一の金属安定化層14がこの順に積層されている。また、金属基材11の裏面11d上には、接合層15及び第二の金属安定化層16がこの順に積層されている。
FIG. 1 is a schematic view illustrating a superconducting wire according to the present invention, in which (a) is a sectional view in a direction substantially perpendicular to the longitudinal direction, (b) is a longitudinal sectional view in the longitudinal direction, and (c) is a plan view. FIG.
In the superconducting wire 1, the intermediate layer 12, the superconducting layer 13, and the first metal stabilizing layer 14 are laminated on the surface 11 c of the metal substrate 11 in this order. Further, the bonding layer 15 and the second metal stabilization layer 16 are laminated in this order on the back surface 11 d of the metal base 11.

金属基材11は、通常の超電導線材の基材として使用し得るものであれば良く、プレート状又はシート状であることが好ましく、耐熱性の金属からなるものが好ましい。耐熱性の金属の中でも、合金が好ましく、ニッケル(Ni)合金又は銅(Cu)合金がより好ましい。なかでも、市販品であればハステロイ(商品名、ヘインズ社製)が好適であり、モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。   The metal substrate 11 may be any material that can be used as a substrate for ordinary superconducting wires, and is preferably plate-shaped or sheet-shaped, and is preferably made of a heat-resistant metal. Among heat resistant metals, an alloy is preferable, and a nickel (Ni) alloy or a copper (Cu) alloy is more preferable. Among them, Hastelloy (trade name, manufactured by Haynes Co., Ltd.) is suitable for commercial products, and has different amounts of components such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co), etc. Any type of C, G, N, W, etc. can be used.

金属基材11の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmであることが好ましく、20〜200μmであることがより好ましい。下限値以上とすることで強度が一層向上し、上限値以下とすることで臨界電流密度を一層向上させることができる。   What is necessary is just to adjust the thickness of the metal base material 11 suitably according to the objective, Usually, it is preferable that it is 10-500 micrometers, and it is more preferable that it is 20-200 micrometers. By setting it to the lower limit value or more, the strength can be further improved, and by setting the upper limit value or less, the critical current density can be further improved.

金属基材11の表面11c(中間層12の積層面)は、表面粗さ(Ra)が0〜30nmであることが好ましく、0〜5nmであることがより好ましい。上限値以下とすることで、超電導層13の結晶配向性を一層良好に制御できる。表面粗さは、金属基材11の表面を公知の方法で研磨して調節すれば良い。   The surface 11c of the metal substrate 11 (lamination surface of the intermediate layer 12) preferably has a surface roughness (Ra) of 0 to 30 nm, and more preferably 0 to 5 nm. By setting it to the upper limit value or less, the crystal orientation of the superconducting layer 13 can be controlled better. The surface roughness may be adjusted by polishing the surface of the metal substrate 11 by a known method.

中間層12は、超電導層13の結晶配向性を制御し、金属基材11中の金属元素の超電導層13への拡散を防止するものである。そして、金属基材11と超電導層13との物理的特性(熱膨張率や格子定数等)の差を緩和するバッファー層として機能し、その材質は、物理的特性が金属基材11と超電導導体膜13との中間的な値を示す金属酸化物が好ましい。中間層12の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物が例示できる。 The intermediate layer 12 controls the crystal orientation of the superconducting layer 13 and prevents diffusion of metal elements in the metal substrate 11 into the superconducting layer 13. Then, it functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) between the metal substrate 11 and the superconducting layer 13, and the material has physical properties such as the metal substrate 11 and the superconducting conductor. A metal oxide showing an intermediate value with respect to the film 13 is preferable. Specifically, preferred materials for the intermediate layer 12 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .

中間層12は、単層でも良いし、複数層でも良い。例えば、前記金属酸化物からなる層(金属酸化物層)は、結晶配向性を有していることが好ましく、複数層である場合には、最外層(最も超電導層13に近い層)が少なくとも結晶配向性を有していることが好ましい。   The intermediate layer 12 may be a single layer or a plurality of layers. For example, the layer made of the metal oxide (metal oxide layer) preferably has crystal orientation, and when it is a plurality of layers, the outermost layer (layer closest to the superconducting layer 13) is at least It preferably has crystal orientation.

また中間層12は、前記金属酸化物層の上に、さらにキャップ層が積層された複数層構造でも良い。キャップ層は、超電導層13の配向性を制御する機能を有するとともに、超電導層13を構成する元素の中間層12への拡散や、超電導層13積層時に使用するガスと中間層12との反応を抑制する機能等を有するものである。そして、前記金属酸化物層により配向性が制御される。   The intermediate layer 12 may have a multi-layer structure in which a cap layer is further laminated on the metal oxide layer. The cap layer has a function of controlling the orientation of the superconducting layer 13, diffuses the elements constituting the superconducting layer 13 into the intermediate layer 12, and reacts the gas used when the superconducting layer 13 is laminated with the intermediate layer 12. It has a function to suppress. The orientation is controlled by the metal oxide layer.

キャップ層は、前記金属酸化物層の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層は、前記金属酸化物層よりも高い面内配向度が得られる。
キャップ層の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
The cap layer is formed through a process of epitaxially growing on the surface of the metal oxide layer, and then growing the grains in the lateral direction (plane direction) (overgrowth) and selectively growing the crystal grains in the in-plane direction. The ones made are preferred. Such a cap layer has a higher degree of in-plane orientation than the metal oxide layer.
The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specifically, preferred examples include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2 O. 3 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

中間層12の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.1〜5μmであることが好ましく、0.3〜3μmであることがより好ましい。下限値以上とすることで、超電導層13の配向を制御する一層高い効果が得られ、上限値以下とすることで、短時間で形成でき、さらに表面粗さを低減することで、超電導層13の臨界電流密度を一層大きくできる。
中間層12が、前記金属酸化物層の上にキャップ層が積層された複数層構造である場合には、キャップ層の厚さは、通常は、0.1〜1.5μmであることが好ましく、0.3〜1μmであることがより好ましい。このような範囲とすることで、一層高い効果が得られる。
The thickness of the intermediate layer 12 may be appropriately adjusted according to the purpose, but is usually preferably 0.1 to 5 μm, and more preferably 0.3 to 3 μm. By setting it to the lower limit value or more, a higher effect of controlling the orientation of the superconducting layer 13 can be obtained. By setting the upper limit value or less, it can be formed in a short time, and the surface roughness is further reduced, so that the superconducting layer 13 is reduced. The critical current density of can be further increased.
When the intermediate layer 12 has a multi-layer structure in which a cap layer is laminated on the metal oxide layer, the thickness of the cap layer is usually preferably 0.1 to 1.5 μm. More preferably, it is 0.3-1 micrometer. By setting it in such a range, a higher effect can be obtained.

中間層12は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシスト蒸着法(以下、IBAD法と略記する)、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で積層できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、超電導層13やキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO−Y(YSZ)からなる中間層12は、IBAD法における配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。 The intermediate layer 12 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, ion beam assisted vapor deposition (hereinafter abbreviated as IBAD), chemical vapor deposition (CVD). Method: Thermal coating decomposition method (MOD method); It can be laminated by a known method for forming an oxide thin film such as thermal spraying. In particular, the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the superconducting layer 13 and the cap layer is high. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface during deposition. Usually, an argon (Ar) ion beam is used as the ion beam. For example, the intermediate layer 12 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) can reduce the value of ΔΦ (FWHM: full width at half maximum) that is an index representing the degree of orientation in the IBAD method. Therefore, it is particularly suitable.

超電導層13には、長手方向に沿って第一の溝18及び第二の溝19が形成されており、超電導層13は、幅方向(金属基材の表面11cに対して略平行な方向)に、三つの分割層131、132及び133に分割されている。すなわち、第一の溝18及び第二の溝19は、中間層12に達している。
超電導層13のこれら分割層における、金属基材の表面11c(中間層12の積層面)に対して略平行な方向の幅W131、W132及びW133は、それぞれ互いに同一でも異なっていても良いが、通常はほぼ同一とされる。
また、金属基材の表面11c(中間層12の積層面)に対して略平行な方向における第一の溝18の幅S131及び第二の溝19の幅S132は、それぞれ互いに同一でも異なっていても良いが、通常はほぼ同一とされる。
超電導層13の厚さは、0.5〜9μmであることが好ましく、1〜5μmであることがより好ましい。
The superconducting layer 13 is formed with a first groove 18 and a second groove 19 along the longitudinal direction, and the superconducting layer 13 has a width direction (a direction substantially parallel to the surface 11c of the metal substrate). Further, it is divided into three divided layers 131, 132 and 133. That is, the first groove 18 and the second groove 19 reach the intermediate layer 12.
In these divided layers of the superconducting layer 13, the widths W 131 , W 132 and W 133 in the direction substantially parallel to the surface 11c of the metal substrate (lamination surface of the intermediate layer 12) may be the same or different from each other. Good but usually the same.
Further, the width S 131 of the first groove 18 and the width S 132 of the second groove 19 in the direction substantially parallel to the surface 11c of the metal substrate (lamination surface of the intermediate layer 12) are the same or different from each other. Usually, it is almost the same.
The thickness of the superconducting layer 13 is preferably 0.5 to 9 μm, and more preferably 1 to 5 μm.

超電導層13は公知のもので良く、酸化物超電導体からなるものが好ましく、具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものが例示できる。
超電導層13は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で積層でき、なかでもレーザ蒸着法が好ましい。
The superconducting layer 13 may be a known one, and is preferably made of an oxide superconductor. Specifically, REBa 2 Cu 3 O y (RE is a rare earth element such as Y, La, Nd, Sm, Er, Gd, etc.). Can be exemplified.
The superconducting layer 13 can be laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). Of these, laser vapor deposition is preferred.

第一の金属安定化層14は、超電導層13の一部領域が常伝導状態になった場合に通電することで、超電導層13を安定化させて焼損を防止する、主たる構成要素である。そして、長手方向に沿って第一の溝18及び第二の溝19が形成されており、第一の金属安定化層14は、三つの分割層141、142及び143に分割されている。すなわち、第一の金属安定化層14及び超電導層13には、長手方向に沿って第一の溝18及び第二の溝19がそれぞれ一体に形成されている。   The first metal stabilizing layer 14 is a main component that stabilizes the superconducting layer 13 and prevents burning by energizing when a partial region of the superconducting layer 13 is in a normal conducting state. A first groove 18 and a second groove 19 are formed along the longitudinal direction, and the first metal stabilizing layer 14 is divided into three divided layers 141, 142, and 143. That is, the first metal stabilizing layer 14 and the superconducting layer 13 are integrally formed with the first groove 18 and the second groove 19 along the longitudinal direction.

第一の金属安定化層14のこれら分割層において、金属基材の表面11c(中間層12の積層面)に対して略平行な方向の幅W141、W142及びW143は、それぞれ互いに同一でも異なっていても良いが、通常はほぼ同一とされる。
また、金属基材の表面11c(中間層12の積層面)に対して略平行な方向における、第一の溝18の幅S141及び第二の溝19の幅S142は、それぞれ互いに同一でも異なっていても良いが、通常はほぼ同一とされる。
このように、第一の溝18及び第二の溝19の前記幅は、超電導層13と第一の金属安定化層14との間で、通常は略同等とされる。
第一の金属安定化層14の厚さは、3〜10μmであることが好ましい。下限値以上とすることで、超電導層13を安定化する一層高い効果が得られ、上限値以下とすることで、超電導線材1を薄型化できる。
In these divided layers of the first metal stabilizing layer 14, the widths W 141 , W 142, and W 143 in the direction substantially parallel to the surface 11 c of the metal substrate (lamination surface of the intermediate layer 12) are the same as each other. However, they may be different, but are usually almost the same.
In addition, the width S 141 of the first groove 18 and the width S 142 of the second groove 19 in the direction substantially parallel to the surface 11c of the metal substrate (lamination surface of the intermediate layer 12) may be the same as each other. Although they may be different, they are usually almost the same.
As described above, the widths of the first groove 18 and the second groove 19 are generally substantially equal between the superconducting layer 13 and the first metal stabilizing layer 14.
The thickness of the first metal stabilization layer 14 is preferably 3 to 10 μm. By setting it to the lower limit value or more, a higher effect of stabilizing the superconducting layer 13 can be obtained, and by setting the upper limit value or less, the superconducting wire 1 can be thinned.

第一の金属安定化層14は、導電性が良好な金属からなるものが好ましく、具体的には、銀又は銀合金からなるものが例示できる。
第一の金属安定化層14は、公知の方法で積層できるが、なかでもスパッタ法が好ましい。また、第一の金属安定化層14を形成する最終工程で、酸素熱処理を行うことが好ましい。
The first metal stabilization layer 14 is preferably made of a metal having good conductivity, and specifically, can be made of silver or a silver alloy.
The first metal stabilizing layer 14 can be laminated by a known method, and among these, the sputtering method is preferable. In addition, it is preferable to perform oxygen heat treatment in the final step of forming the first metal stabilization layer 14.

このように、第一の金属安定化層14及び超電導層13に、長手方向に沿って溝が一体に形成され、超電導層13が分割されて細線化されることで、超電導線材1の交流損失が低減される。   As described above, the first metal stabilizing layer 14 and the superconducting layer 13 are integrally formed with grooves along the longitudinal direction, and the superconducting layer 13 is divided and thinned to thereby reduce the AC loss of the superconducting wire 1. Is reduced.

接合層15は、第二の金属安定化層16を金属基材11に接着固定するものである。
接合層15は、導電性であることが好ましく、銀のペーストやはんだであることがより好ましい。
接合層15の厚さは、1〜5μmであることが好ましい。下限値以上とすることで、一層高い接着固定効果が得られ、上限値以下とすることで、超電導線材1を薄型化できる。
The bonding layer 15 is for bonding and fixing the second metal stabilizing layer 16 to the metal substrate 11.
The bonding layer 15 is preferably conductive, and more preferably silver paste or solder.
The thickness of the bonding layer 15 is preferably 1 to 5 μm. By setting the lower limit value or more, a higher adhesion fixing effect can be obtained, and by setting the upper limit value or less, the superconducting wire 1 can be thinned.

第二の金属安定化層16は、第一の金属安定化層14と同様に、超電導層13を安定化するものであるが、必ずしも第一の金属安定化層14と同様の導電性でなくても良い。第二の金属安定化層16の好ましいものとしては、銅(Cu);銅−ニッケル(Cu−Ni)合金;ニッケル−クロム(Ni−Cr)合金等のニッケル(Ni)合金;ステンレス;銀合金等のいずれかからなるものが例示できる。第二の金属安定化層16を、第一の金属安定化層14よりも安価な材質で形成することで、低コストで高い安定化効果が得られる。   The second metal stabilization layer 16 stabilizes the superconducting layer 13 in the same manner as the first metal stabilization layer 14, but is not necessarily conductive as in the first metal stabilization layer 14. May be. Preferred examples of the second metal stabilizing layer 16 include copper (Cu); copper-nickel (Cu-Ni) alloy; nickel (Ni) alloy such as nickel-chromium (Ni-Cr) alloy; stainless steel; silver alloy What consists of either etc. can be illustrated. By forming the second metal stabilization layer 16 with a material cheaper than the first metal stabilization layer 14, a high stabilization effect can be obtained at a low cost.

第二の金属安定化層16は、長手方向の長さが、これよりも上方に積層されている接合層15、金属基材11、中間層12、超電導層13及び第一の金属安定化層14よりも長く、端部16a,16aの近傍にそれぞれ余長部160,160を有する。そして、余長部160にはそれぞれ、長手方向に略垂直な方向において、前記第一の溝18及び第二の溝19と一致する位置に、第一の切欠部161及び第二の切欠部162が形成されている。
また、余長部160はそれぞれ、折り返し開始部160aを基点として、これよりも長手方向において端部16a側の部位が、基材表面11c側へ折り返されている。このように、第二の金属安定化層16の余長部160は、基材表面11c側へ合計で約180°の角度だけ折り返されており、端部16a側に位置し、第一の金属安定化層14と対向する面160cが、端部接合層17に接触するようにして、端部接合層17を介して第一の金属安定化層14上に積層されている。この状態で、第一の切欠部161及び第二の切欠部162は、前記第一の溝18及び第二の溝19と配置位置が一致している。
The second metal stabilization layer 16 includes a bonding layer 15, a metal base 11, an intermediate layer 12, a superconducting layer 13, and a first metal stabilization layer that have a length in the longitudinal direction laminated above the second metal stabilization layer 16. Longer than 14, and has extra length portions 160 and 160 in the vicinity of the end portions 16a and 16a, respectively. The surplus length portion 160 has a first notch portion 161 and a second notch portion 162 at positions corresponding to the first groove 18 and the second groove 19 in a direction substantially perpendicular to the longitudinal direction. Is formed.
Further, each of the surplus length portions 160 is folded back to the base material surface 11c side with the folding start portion 160a as a base point and the portion on the end portion 16a side in the longitudinal direction. As described above, the extra length portion 160 of the second metal stabilizing layer 16 is folded back to the base material surface 11c side by a total angle of about 180 °, and is located on the end portion 16a side. A surface 160 c facing the stabilization layer 14 is laminated on the first metal stabilization layer 14 via the end bonding layer 17 so as to be in contact with the end bonding layer 17. In this state, the first notch part 161 and the second notch part 162 are arranged at the same positions as the first groove 18 and the second groove 19.

なお、ここでは、余長部160において、その長手方向における折り返し開始部160aの位置が、接合層15の端部15aとほぼ一致している例を示しているが、本発明においてはこれに限定されず、さらに端部16a側に位置していても良い(図示略)。
また、ここでは、余長部160が、これよりも上方に位置する接合層15の端部15a、金属基材11の端部11a、中間層12の端部12a、超電導層13の端部13a、及び第一の金属安定化層14の端部14aのいずれにも接触することなく、二つ折りで又は湾曲して折り返された例を示しているが、本発明においてはこれに限定されず、前記端部11a〜15aのいずれか一つ以上と接触するように折り返されても良い(図示略)。
Here, in the surplus length portion 160, an example is shown in which the position of the folding start portion 160a in the longitudinal direction substantially coincides with the end portion 15a of the bonding layer 15. However, the present invention is not limited to this. Alternatively, it may be positioned on the end 16a side (not shown).
Further, here, the extra length portion 160 includes the end portion 15a of the bonding layer 15 positioned above the end portion 15a, the end portion 11a of the metal substrate 11, the end portion 12a of the intermediate layer 12, and the end portion 13a of the superconducting layer 13. , And an example in which the first metal stabilizing layer 14 is folded in half or curved without contacting any of the end portions 14a, but is not limited to this in the present invention. It may be folded back so as to contact any one or more of the end portions 11a to 15a (not shown).

前記端部接合層17は、第二の金属安定化層16の前記対向面160cを、第一の金属安定化層14に接着固定する。
端部接合層17は、導電性であり、はんだであることが好ましい。
このように第二の金属安定化層16は、第一の金属安定化層14及び超電導層13と電気的に接続され、第一の金属安定化層14と共に、超電導層13を安定化する
二つある端部接合層17の厚さは、互いに同一でも異なっていても良く、接合層15の場合と同様の理由で、1〜5μmであることが好ましい。
また、超電導線材1の長手方向における、端部接合層17の長さ(長手方向における前記余長部160の接着固定部の長さ)Lは、互いに同一でも異なっていても良く、第二の金属安定化層16を安定的に接着固定できれば特に限定されないが、30〜200mmであることが好ましい。下限値以上とすることで、第二の金属安定化層16を一層安定して第一の金属安定化層14に接着固定でき、上限値以下とすることで、超電導線材1を一層低コストで製造できる。
The end bonding layer 17 adheres and fixes the facing surface 160 c of the second metal stabilization layer 16 to the first metal stabilization layer 14.
The end bonding layer 17 is conductive and is preferably solder.
Thus, the second metal stabilization layer 16 is electrically connected to the first metal stabilization layer 14 and the superconducting layer 13, and stabilizes the superconducting layer 13 together with the first metal stabilization layer 14. The thickness of the one end bonding layer 17 may be the same as or different from each other, and is preferably 1 to 5 μm for the same reason as in the bonding layer 15.
The length L of the end bonding layer 17 in the longitudinal direction of the superconducting wire 1 (the length of the adhesive fixing portion of the extra length portion 160 in the longitudinal direction) L may be the same as or different from each other. Although it will not specifically limit if the metal stabilization layer 16 can be stably bonded and fixed, It is preferable that it is 30-200 mm. By setting the lower limit value or more, the second metal stabilization layer 16 can be more stably bonded and fixed to the first metal stabilization layer 14, and by setting the upper limit value or less, the superconducting wire 1 can be manufactured at a lower cost. Can be manufactured.

第二の金属安定化層16は、第一の金属安定化層14と同様の方法で積層できる。また、金属シートや合金シートが入手できる場合には、これを使用して積層しても良い。
第二の金属安定化層16の厚さは、材質に応じて適宜調整すれば良い。例えば、銀より導電性が低い銅等で形成する場合には、40〜300μmであることが好ましい。下限値以上とすることで、超電導層13の焼損を防止する一層高い効果が得られ、上限値以下とすることで、超電導線材1を薄型化できる。
The second metal stabilization layer 16 can be laminated in the same manner as the first metal stabilization layer 14. Further, when a metal sheet or an alloy sheet is available, it may be used for lamination.
What is necessary is just to adjust the thickness of the 2nd metal stabilization layer 16 suitably according to a material. For example, when formed of copper or the like having lower conductivity than silver, the thickness is preferably 40 to 300 μm. By setting it to the lower limit value or more, a higher effect of preventing burning of the superconducting layer 13 can be obtained. By setting the upper limit value or less, the superconducting wire 1 can be thinned.

超電導線材1は、さらに、全体が絶縁性の被覆層で被覆されていても良い(図示略)。被覆層で被覆することにより、特に溝加工部分が保護され、安定した性能の超電導線材が得られる。
被覆層は、例えば、超電導線材等の絶縁被覆に通常使用される、各種樹脂や酸化物等の公知の材質からなるもので良い。
前記樹脂として具体的には、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、ケイ素樹脂、シリコン樹脂、アルキッド樹脂、ビニル樹脂等が例示できる。また、紫外線硬化性樹脂が好ましい。
前記酸化物としては、CeO、Y、GdZr、Gd、ZrO−Y(YSZ)、Zr、Ho等が例示できる。
被覆層による被覆の厚さは特に限定されず、被覆対象部位等に応じて、適宜調節すれば良い。
被覆層は、その材質に応じて公知の方法で形成すれば良く、例えば、原料を塗布して、これを硬化させれば良い。また、シート状のものが入手できる場合には、これを使用して積層しても良い。
The superconducting wire 1 may further be entirely covered with an insulating coating layer (not shown). By covering with a coating layer, the grooved portion is particularly protected, and a superconducting wire with stable performance can be obtained.
The coating layer may be made of known materials such as various resins and oxides that are usually used for insulating coatings such as superconducting wires.
Specific examples of the resin include polyimide resin, polyamide resin, epoxy resin, acrylic resin, phenol resin, melamine resin, polyester resin, silicon resin, silicon resin, alkyd resin, and vinyl resin. Moreover, an ultraviolet curable resin is preferable.
As the oxide, CeO 2, Y 2 O 3 , Gd 2 Zr 2 O 7, Gd 2 O 3, ZrO 2 -Y 2 O 3 (YSZ), Zr 2 O 3, Ho 2 O 3 or the like can be mentioned .
The thickness of the coating by the coating layer is not particularly limited, and may be appropriately adjusted according to the portion to be coated.
The coating layer may be formed by a known method according to the material, for example, a raw material may be applied and cured. Moreover, when a sheet-like thing is available, you may laminate | stack using this.

本発明の超電導線材は、これまでに説明したものに限定されず、本発明の効果を損なわない範囲内において、一部構成を変更、追加又は削除したものでも良い、
例えば、第一の金属安定化層14及び超電導層13に形成する溝の数は、二つに限定されず、一つでも良いし、三つ以上でも良く、目的に応じて適宜調整すれば良い。
また、例えば、第二の金属安定化層16は、第一の切欠部161及び第二の切欠部162が形成されていなくても良い。
さらに、第二の金属安定化層16は、超電導層13と電気的に接続されていれば、必ずしも、図1に示す接続形態でなくても良い。
The superconducting wire of the present invention is not limited to what has been described so far, and within a range not impairing the effects of the present invention, a part of the configuration may be changed, added or deleted,
For example, the number of grooves formed in the first metal stabilizing layer 14 and the superconducting layer 13 is not limited to two, but may be one or three or more, and may be adjusted as appropriate according to the purpose. .
In addition, for example, the second metal stabilizing layer 16 may not have the first notch 161 and the second notch 162 formed therein.
Furthermore, the second metal stabilization layer 16 does not necessarily have the connection form shown in FIG. 1 as long as it is electrically connected to the superconducting layer 13.

超電導線材1は、例えば、以下の方法で製造できる。図2は、本発明の超電導線材の製造方法を説明するための概略図であり、超電導線材の長手方向の縦断面図である。
まず、図2(a)に示すように、金属基材の表面11c上に、中間層12、超電導層13及び第一の金属安定化層14をこの順に積層する。
The superconducting wire 1 can be manufactured, for example, by the following method. FIG. 2 is a schematic view for explaining the method of manufacturing a superconducting wire of the present invention, and is a longitudinal sectional view in the longitudinal direction of the superconducting wire.
First, as shown in FIG. 2A, the intermediate layer 12, the superconducting layer 13, and the first metal stabilizing layer 14 are laminated in this order on the surface 11c of the metal substrate.

次いで、第一の金属安定化層14及び超電導層13に、これらの長手方向に沿って一端から他端まで、第一の溝18及び第二の溝19を形成して、中間層12を露出させると共に、第一の金属安定化層14を三つの分割層141、142及び143に、超電導層13を三つの分割層131、132及び133に、それぞれ分割して細線化する。この時、第一の溝18及び第二の溝19は、第一の金属安定化層14及び超電導層13において、同一の手段で形成しても良いし、異なる手段で形成しても良い。前記S141及びS131、並びに前記S142及びS132をそれぞれ略同等とする場合には、同一の手段で形成することが好ましい。 Next, a first groove 18 and a second groove 19 are formed in the first metal stabilizing layer 14 and the superconducting layer 13 from one end to the other end along the longitudinal direction thereof, and the intermediate layer 12 is exposed. In addition, the first metal stabilizing layer 14 is divided into three divided layers 141, 142, and 143, and the superconducting layer 13 is divided into three divided layers 131, 132, and 133 to be thinned. At this time, the first groove 18 and the second groove 19 may be formed by the same means in the first metal stabilizing layer 14 and the superconducting layer 13 or may be formed by different means. In the case where the S 141 and S 131 and the S 142 and S 132 are substantially equal to each other, it is preferable that they are formed by the same means.

次いで、図2(b)に示すように、金属基材の裏面11d上に、接合層15及び第二の金属安定化層16をこの順に積層する。この時、第二の金属安定化層16の端部16a,16aの近傍にそれぞれ余長部160,160を設ける。この時、必要に応じて前記余長部160に、第一の切欠部161及び第二の切欠部162を形成する。   Next, as shown in FIG. 2B, the bonding layer 15 and the second metal stabilizing layer 16 are laminated in this order on the back surface 11d of the metal substrate. At this time, extra length portions 160 and 160 are provided in the vicinity of the end portions 16a and 16a of the second metal stabilizing layer 16, respectively. At this time, a first notch 161 and a second notch 162 are formed in the extra length 160 as necessary.

次いで、図2(c)に示すように、第二の金属安定化層16の余長部160をそれぞれ、折り返し開始部160aを基点として、基材表面11c側へ約180°の角度だけ折り返し、端部接合層17を介して、前記対向面160cを第一の金属安定化層14に接着固定する。なお、端部接合層17は、余長部160の折り返し前後のいずれで設けても良い。以上により、超電導線材1が得られる。   Next, as shown in FIG. 2 (c), the surplus length portions 160 of the second metal stabilization layer 16 are folded back to the base material surface 11c side by an angle of about 180 ° from the folding start portion 160a. The facing surface 160 c is bonded and fixed to the first metal stabilizing layer 14 through the end bonding layer 17. Note that the end bonding layer 17 may be provided before or after the surplus portion 160 is folded. As described above, the superconducting wire 1 is obtained.

このような製造方法によれば、第一の金属安定化層14及び超電導層13に、第一の溝18及び第二の溝19を形成して細線化してから、端部接合層17を積層し、第二の金属安定化層16を第一の金属安定化層14に接着固定するので、細線化時には端部接合層17が存在せず、端部接合層17が細線化時に劣化することが無い。したがって、第二の金属安定化層16を第一の金属安定化層14に安定して接着固定でき、クエンチ現象等を防止する安定化効果を安定して得られる。また、第一の金属安定化層14の厚さを厚くしなくても良いので、特殊な装置を使用しなくても容易に細線化できる。さらに、第一の金属安定化層14を銀安定化層としても、第二の金属安定化層16を設けることで、厚さが薄くてすむので、低コストで超電導線材1を製造でき、しかも線材を薄型化できる。
したがって、超電導層の安定化と交流損失の低減が可能な超電導線材を、簡便に且つ低コストで製造できる。
According to such a manufacturing method, the first groove 18 and the second groove 19 are formed in the first metal stabilizing layer 14 and the superconducting layer 13 to be thinned, and then the end bonding layer 17 is laminated. In addition, since the second metal stabilization layer 16 is bonded and fixed to the first metal stabilization layer 14, the end bonding layer 17 does not exist at the time of thinning, and the end bonding layer 17 deteriorates at the time of thinning. There is no. Therefore, the second metal stabilizing layer 16 can be stably bonded and fixed to the first metal stabilizing layer 14, and a stabilizing effect for preventing a quenching phenomenon or the like can be stably obtained. Further, since the thickness of the first metal stabilizing layer 14 does not need to be increased, it can be easily thinned without using a special apparatus. Furthermore, even if the first metal stabilizing layer 14 is a silver stabilizing layer, the thickness can be reduced by providing the second metal stabilizing layer 16, so that the superconducting wire 1 can be manufactured at a low cost. The wire can be made thinner.
Therefore, a superconducting wire capable of stabilizing the superconducting layer and reducing AC loss can be manufactured easily and at low cost.

以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.

[実施例1〜5]
図2に示す製造方法で、図1に示す超電導線材1を製造した。具体的には、以下の通りである。
ハステロイC276からなる幅5mm、長さ10m、厚さ0.1mmの金属基材表面上に、中間層としてIBAD法で厚さ1μmのGdZr層を積層し、その上にさらに、パルスレーザ蒸着法(Pulsed Laser Deposition法、以下、PLD法と略記する)で厚さ0.5μmのCeO層を積層した。そして、CeO層上に、PLD法で厚さ1μmのなる組成の超電導層を積層し、超電導層上にスパッタ法で厚さ7μmの銀からなる第一の金属安定化層を積層した。
次いで、回転させた超硬刃により、幅100μmの第一の溝及び第二の溝を、第一の金属安定化層及び超電導層に形成して、第一の金属安定化層及び超電導層を分割した。
次いで、前記基材の裏面上に接合層となる銀ペーストを塗布し、厚さ0.1mmの銅テープを、表1に示す条件で5m/時間の速度で銀ペースト上に載せ、銀ペーストを加熱硬化させながら張り合わせることで、銅からなる第二の金属安定化層を積層した。この時、第二の金属安定化層の両端部に、長さ100mmの余長部を残した。加熱硬化は、基材裏面上の銀ペーストに銅テープを載せ、これを加熱炉に通してから加熱したロールで挟むことで行った。
次いで、前記余長部に、前記第一の溝及び第二の溝と重なるように位置合わせした第一の切欠部及び第二の切欠部を形成し、余長部を基材表面側へ折り返して、端部接合層となるはんだを介して第一の金属安定化層上に積層し、超電導線材を得た。
得られた超電導線材について、接合層及び端部接合層の劣化が無いか、外観を確認した。また、基材裏面上への接合層及び第二の金属安定化層形成前後における超電導特性の劣化の有無を確認した。さらに、超電導層の安定化効果の程度を確認した。結果を表1に示す。
[Examples 1 to 5]
The superconducting wire 1 shown in FIG. 1 was manufactured by the manufacturing method shown in FIG. Specifically, it is as follows.
A Gd 2 Zr 2 O 7 layer having a thickness of 1 μm was laminated as an intermediate layer on the surface of a metal substrate having a width of 5 mm, a length of 10 m, and a thickness of 0.1 mm made of Hastelloy C276, and further, A CeO 2 layer having a thickness of 0.5 μm was laminated by a pulsed laser deposition method (hereinafter referred to as PLD method). Then, a superconducting layer having a composition of 1 μm thickness was laminated on the CeO 2 layer by a PLD method, and a first metal stabilizing layer made of silver having a thickness of 7 μm was laminated on the superconducting layer by a sputtering method.
Next, the first carbide stabilizing layer and the superconducting layer are formed by forming a first groove and a second groove having a width of 100 μm in the first metal stabilizing layer and the superconducting layer with the rotated carbide blade. Divided.
Next, a silver paste serving as a bonding layer is applied on the back surface of the substrate, and a copper tape having a thickness of 0.1 mm is placed on the silver paste at a speed of 5 m / hour under the conditions shown in Table 1, and the silver paste is applied. A second metal stabilization layer made of copper was laminated by laminating while being cured by heating. At this time, an extra length portion having a length of 100 mm was left at both ends of the second metal stabilizing layer. The heat curing was performed by placing a copper tape on the silver paste on the back surface of the base material and passing it through a heating furnace and sandwiching it with a heated roll.
Next, a first cutout portion and a second cutout portion that are aligned so as to overlap the first groove and the second groove are formed in the surplus length portion, and the surplus length portion is folded back to the substrate surface side. Then, the superconducting wire was obtained by laminating on the first metal stabilizing layer via the solder which becomes the end bonding layer.
About the obtained superconducting wire, the external appearance was confirmed whether there was any deterioration of a joining layer and an edge part joining layer. Moreover, the presence or absence of the deterioration of the superconducting characteristic before and behind formation of the joining layer and the 2nd metal stabilization layer on a base-material back surface was confirmed. Furthermore, the degree of stabilizing effect of the superconducting layer was confirmed. The results are shown in Table 1.

Figure 2011009098
Figure 2011009098

[実施例6]
銅テープを銀ペーストに接触させ、150〜200℃に加熱したプレス機で一分間プレスし、銀ペーストを加熱硬化させて銅テープを張り合わせることで、銅からなる第二の金属安定化層を積層したこと以外は、実施例1〜5と同様に超電導線材を得た。
その結果、得られた超電導線材は、実施例1〜5と同様に、接合層及び端部接合層の劣化が無く、外観が良好で、基材裏面上への接合層及び第二の金属安定化層形成前後における超電導特性の劣化も無かった。超電導層の安定化効果については、100Kまで良好であった。
[Example 6]
A second metal stabilization layer made of copper is obtained by bringing the copper tape into contact with the silver paste, pressing it for 1 minute with a press heated to 150 to 200 ° C., heat-curing the silver paste, and laminating the copper tape. A superconducting wire was obtained in the same manner as in Examples 1 to 5 except that the layers were laminated.
As a result, the obtained superconducting wire has no deterioration of the bonding layer and the end bonding layer as in Examples 1 to 5, the appearance is good, the bonding layer on the back surface of the base material, and the second metal stability. There was no deterioration of the superconducting properties before and after the formation of the chemical layer. The stabilizing effect of the superconducting layer was good up to 100K.

[比較例1〜5]
第二の金属安定化層の両端部に余長部を残さず、第二の金属安定化層を第一の金属安定化層上に積層しなかったこと以外は、実施例1〜5と同様に超電導線材を得た。結果を表2に示す。
[Comparative Examples 1-5]
The same as in Examples 1 to 5 except that no extra length was left at both ends of the second metal stabilization layer and the second metal stabilization layer was not laminated on the first metal stabilization layer. A superconducting wire was obtained. The results are shown in Table 2.

Figure 2011009098
Figure 2011009098

[比較例6]
銅テープを銀ペーストに接触させ、150〜200℃に加熱したプレス機で一分間プレスし、銀ペーストを加熱硬化させて銅テープを張り合わせることで、銅からなる第二の金属安定化層を積層し、さらに、第二の金属安定化層の両端部に余長部を残さず、第二の金属安定化層を第一の金属安定化層上に積層しなかったこと以外は、実施例1〜5と同様に超電導線材を得た。
その結果、得られた超電導線材は、実施例1〜5と同様に、接合層及び端部接合層の劣化が無く、外観が良好で、基材裏面上への接合層及び第二の金属安定化層形成前後における超電導特性の劣化も無かった。超電導層の安定化効果については、95Kまで良好であった。
[Comparative Example 6]
A second metal stabilization layer made of copper is obtained by bringing the copper tape into contact with the silver paste, pressing it for 1 minute with a press heated to 150 to 200 ° C., heat-curing the silver paste, and laminating the copper tape. Example, except that the second metal stabilization layer was not laminated on the first metal stabilization layer, and the second metal stabilization layer was not laminated on the first metal stabilization layer. Superconducting wires were obtained as in 1-5.
As a result, the obtained superconducting wire has no deterioration of the bonding layer and the end bonding layer as in Examples 1 to 5, the appearance is good, the bonding layer on the back surface of the base material, and the second metal stability. There was no deterioration of the superconducting properties before and after the formation of the chemical layer. The stabilizing effect of the superconducting layer was good up to 95K.

本発明は、エネルギーの貯蔵器、変圧器、モーター、発電機等の分野で利用可能である。   The present invention can be used in the fields of energy storage, transformers, motors, generators and the like.

1・・・超電導線材、11・・・金属基材、11c・・・金属基材の表面、11d・・・金属基材の裏面、12・・・中間層、13・・・超電導層、14・・・第一の金属安定化層、15・・・接合層、16・・・第二の金属安定化層、16a・・・第二の金属安定化層の端部、18・・・第一の溝、19・・・第二の溝、160・・・第二の金属安定化層の余長部   DESCRIPTION OF SYMBOLS 1 ... Superconducting wire, 11 ... Metal base material, 11c ... The surface of a metal base material, 11d ... The back surface of a metal base material, 12 ... Intermediate | middle layer, 13 ... Superconducting layer, 14 ... 1st metal stabilization layer, 15 ... Bonding layer, 16 ... 2nd metal stabilization layer, 16a ... End of 2nd metal stabilization layer, 18 ... 1st One groove, 19 ... second groove, 160 ... extra length of second metal stabilizing layer

Claims (3)

金属基材の表面側に金属酸化物からなる中間層、超電導層及び第一の金属安定化層がこの順に積層され、前記中間層に達して前記第一の金属安定化層及び超電導層を幅方向に分割する溝が、前記第一の金属安定化層及び超電導層に、長手方向に沿って一体に形成され、金属基材の裏面側に第二の金属安定化層が積層され、該第二の金属安定化層が、前記超電導層と電気的に接続されていることを特徴とする超電導線材。   An intermediate layer made of a metal oxide, a superconducting layer, and a first metal stabilizing layer are laminated in this order on the surface side of the metal substrate, and reach the intermediate layer to extend the width of the first metal stabilizing layer and the superconducting layer. A groove that is divided in a direction is formed integrally with the first metal stabilization layer and the superconducting layer along the longitudinal direction, and a second metal stabilization layer is laminated on the back side of the metal substrate. A superconducting wire, wherein the second metal stabilizing layer is electrically connected to the superconducting layer. 前記第二の金属安定化層が、導電性の接合層を介して前記金属基材の裏面に積層されていることを特徴とする請求項1に記載の超電導線材。   The superconducting wire according to claim 1, wherein the second metal stabilizing layer is laminated on the back surface of the metal substrate via a conductive bonding layer. 前記第二の金属安定化層が、長手方向両端に余長部を有し、該余長部が前記金属基材の表面側に折り返され、前記第一の金属安定化層と電気的に接続されていることを特徴とする請求項1又は2に記載の超電導線材。   The second metal stabilization layer has extra length portions at both ends in the longitudinal direction, the extra length portions are folded back to the surface side of the metal base material, and are electrically connected to the first metal stabilization layer. The superconducting wire according to claim 1, wherein the superconducting wire is formed.
JP2009152128A 2009-06-26 2009-06-26 Superconducting wire Expired - Fee Related JP5364467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152128A JP5364467B2 (en) 2009-06-26 2009-06-26 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152128A JP5364467B2 (en) 2009-06-26 2009-06-26 Superconducting wire

Publications (2)

Publication Number Publication Date
JP2011009098A true JP2011009098A (en) 2011-01-13
JP5364467B2 JP5364467B2 (en) 2013-12-11

Family

ID=43565512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152128A Expired - Fee Related JP5364467B2 (en) 2009-06-26 2009-06-26 Superconducting wire

Country Status (1)

Country Link
JP (1) JP5364467B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216504A (en) * 2011-03-31 2012-11-08 Fujikura Ltd High temperature superconductive wire material and high temperature superconductive coil
WO2013077387A1 (en) * 2011-11-21 2013-05-30 株式会社フジクラ Oxide superconducting wire material and a method for manufacturing oxide superconducting wire material
WO2013157286A1 (en) * 2012-04-16 2013-10-24 古河電気工業株式会社 Substrate for superconducting film, superconducting wire, and superconducting wire fabrication method
JP2013232297A (en) * 2012-04-27 2013-11-14 Fujikura Ltd Oxide superconducting wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505848A (en) * 1999-07-23 2003-02-12 アメリカン・スーパーコンダクター・コーポレーション Encapsulated ceramic superconductor
JP2007273201A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconductive device
JP2008243588A (en) * 2007-03-27 2008-10-09 Toshiba Corp High-temperature superconductive wire, high-temperature superconductive coil, and its manufacturing method
JP2009544144A (en) * 2006-07-14 2009-12-10 スーパーパワー インコーポレイテッド Method for forming a multifilament AC-resistant conductor having a line stabilizer, articles associated therewith, and apparatus incorporating the same
JP2010176892A (en) * 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd Superconductive wire and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505848A (en) * 1999-07-23 2003-02-12 アメリカン・スーパーコンダクター・コーポレーション Encapsulated ceramic superconductor
JP2007273201A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconductive device
JP2009544144A (en) * 2006-07-14 2009-12-10 スーパーパワー インコーポレイテッド Method for forming a multifilament AC-resistant conductor having a line stabilizer, articles associated therewith, and apparatus incorporating the same
JP2008243588A (en) * 2007-03-27 2008-10-09 Toshiba Corp High-temperature superconductive wire, high-temperature superconductive coil, and its manufacturing method
JP2010176892A (en) * 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd Superconductive wire and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216504A (en) * 2011-03-31 2012-11-08 Fujikura Ltd High temperature superconductive wire material and high temperature superconductive coil
WO2013077387A1 (en) * 2011-11-21 2013-05-30 株式会社フジクラ Oxide superconducting wire material and a method for manufacturing oxide superconducting wire material
CN103959401A (en) * 2011-11-21 2014-07-30 株式会社藤仓 Oxide superconducting wire material and a method for manufacturing oxide superconducting wire material
US9697930B2 (en) 2011-11-21 2017-07-04 Fujikura Ltd. Oxide superconductor wire and method of manufacturing oxide superconductor wire
WO2013157286A1 (en) * 2012-04-16 2013-10-24 古河電気工業株式会社 Substrate for superconducting film, superconducting wire, and superconducting wire fabrication method
JP5367927B1 (en) * 2012-04-16 2013-12-11 古河電気工業株式会社 Superconducting film-forming substrate, superconducting wire, and method of manufacturing superconducting wire
US9002424B2 (en) 2012-04-16 2015-04-07 Furukawa Electric Co., Ltd. Superconducting film-forming substrate, superconducting wire, and superconducting wire manufacturing method
KR101553183B1 (en) * 2012-04-16 2015-09-14 후루카와 덴키 고교 가부시키가이샤 Substrate for superconducting film, superconducting wire, and superconducting wire fabrication method
JP2013232297A (en) * 2012-04-27 2013-11-14 Fujikura Ltd Oxide superconducting wire

Also Published As

Publication number Publication date
JP5364467B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP4677032B2 (en) Superconducting magnet for permanent current and manufacturing method thereof
JP6064086B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP5427554B2 (en) Manufacturing method of low AC loss multifilament type superconducting wire
KR102562414B1 (en) Superconducting wire and superconducting coil
US20190172612A1 (en) Oxide superconducting wire
JP5364467B2 (en) Superconducting wire
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
JP6201080B1 (en) Oxide superconducting wire
JP2011228479A (en) Superconducting coil
JP6688914B1 (en) Oxide superconducting wire and superconducting coil
JP5393267B2 (en) Superconducting wire manufacturing method
JP2005044636A (en) Superconductive wire rod
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
KR20210026613A (en) High temperature superconducting wire with multi-superconducting layer
JP5694866B2 (en) Superconducting wire
CN108369842B (en) Superconducting wire
JP6356048B2 (en) Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method
JP2011258696A (en) Superconducting coil and method for manufacturing the same
JP2010282892A (en) Superconducting wire material
JP2013037991A (en) Connection structure for oxide superconductive wire and connection method for oxide superconductive wire
JP2014002833A (en) Oxide superconducting wire and method of manufacturing the same
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JP6106789B1 (en) Oxide superconducting wire, manufacturing method thereof, and superconducting coil
JP6492205B2 (en) Manufacturing method of oxide superconducting wire
KR20210037378A (en) High temperature superconducting wire manufacturing method and High temperature superconducting wire with multiple superconducting layers using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5364467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees