JP2007271206A - Operation control method of gasification melting system, and system - Google Patents

Operation control method of gasification melting system, and system Download PDF

Info

Publication number
JP2007271206A
JP2007271206A JP2006099150A JP2006099150A JP2007271206A JP 2007271206 A JP2007271206 A JP 2007271206A JP 2006099150 A JP2006099150 A JP 2006099150A JP 2006099150 A JP2006099150 A JP 2006099150A JP 2007271206 A JP2007271206 A JP 2007271206A
Authority
JP
Japan
Prior art keywords
furnace
gasification
melting
temperature
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099150A
Other languages
Japanese (ja)
Other versions
JP4285760B2 (en
Inventor
Toshimasa Shirai
利昌 白井
Yoshihisa Saito
芳久 齊藤
Jun Sato
佐藤  淳
Takehiro Kitsuta
岳洋 橘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006099150A priority Critical patent/JP4285760B2/en
Publication of JP2007271206A publication Critical patent/JP2007271206A/en
Application granted granted Critical
Publication of JP4285760B2 publication Critical patent/JP4285760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation control method of a gasification melting system and the system capable of reducing its running cost by reducing the use of fuel such as an auxiliary fuel in starting, performing economical operation, and being stably started without blockage of a slag cinder notch of a melting furnace. <P>SOLUTION: In this operation control method of the gasification melting system wherein a thermal decomposition gas is generated by thermally decomposing wastes 31 in a fluidized bed gasification furnace 3, the thermal decomposition gas 31 is introduced into the melting furnace 6, and ash content is melted by combustion heat of the thermal decomposition gas 31 in the melting furnace 6, fluidization of a bed material is started by combustion air 32 introduced from a bottom of the gasification furnace 3 while synchronously raising temperatures of the gasification furnace 3 and the melting furnace 6, a fluidized state in the gasification furnace 3 is detected after the lapse of a prescribed time from the start of temperature rise, and the temperature rise of the melting furnace 6 is stopped when the fluidization is not established. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスの燃焼熱で灰分を溶融するガス化溶融システムに関し、特に、起動時に必要とされる燃料コストを低減させ、且つ円滑な起動を可能としたガス化溶融システムの運転制御方法及び該システムに関する。   The present invention relates to a gasification melting system in which waste is pyrolyzed to generate pyrolysis gas, and ash is melted by the combustion heat of the pyrolysis gas, and in particular, the fuel cost required at startup is reduced, In addition, the present invention relates to an operation control method for a gasification and melting system that enables smooth start-up and the system.

従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる技術としてガス化溶融システムが知られている。
ガス化溶融システムの概略を図4に示す。ガス化溶融システムは、熱分解してガス化するガス化炉3と、該ガス化炉33にて生成された熱分解ガス33を高温燃焼し、ガス中の灰分を溶融スラグ化する旋回溶融炉6と、該旋回溶融炉6の排ガスが導入され、排ガス中の未燃分を燃焼させる二次燃焼室12と、減温塔14、反応集じん装置15、蒸気式加熱器16、触媒反応装置17等からなる排ガス処理設備とを備えている。廃棄物の資源化、減容化及び無害化を図るために、旋回溶融炉6からスラグを取り出して路盤材等の土木資材として再利用したり、二次燃焼室12からの高温排ガスからボイラ部13にて廃熱を回収して発電を行うなどしている。
Conventionally, a gasification and melting system is known as a technology capable of processing a wide range of wastes such as municipal waste, non-combustible waste, incineration residue, sludge, landfill waste and the like.
An outline of the gasification melting system is shown in FIG. The gasification melting system includes a gasification furnace 3 that thermally decomposes and gasifies, and a swirl melting furnace that combusts the pyrolysis gas 33 generated in the gasification furnace 33 at a high temperature and converts the ash content in the gas into molten slag. 6, the secondary combustion chamber 12 in which the exhaust gas of the swirling melting furnace 6 is introduced and the unburned portion in the exhaust gas is combusted, the temperature reducing tower 14, the reaction dust collector 15, the steam heater 16, the catalytic reactor And an exhaust gas treatment facility consisting of 17 etc. In order to recycle waste, reduce its volume, and make it harmless, slag is taken out from the swivel melting furnace 6 and reused as civil engineering materials such as roadbed materials, or from high temperature exhaust gas from the secondary combustion chamber 12 13 recovers waste heat and generates power.

上記したようなガス化溶融システムでは、起動時にガス化炉3の炉底に充填された流動媒体(流動層30)を流動化する操作、及びシステム内を昇温する操作が必要となる。ガス化炉3では、流動層30を流動化するために燃焼空気32を供給するとともに、補助燃料バーナ21を着火して炉内温度を昇温させる。また旋回溶融炉6は、ガス化炉3から流入する高温ガスにより昇温されるとともに、不足する熱量を種火バーナ24、補助燃料バーナ25により補填する。同様に二次燃焼室12では、高温ガスによる昇温とともに補助燃料バーナ27を着火して昇温を行う。   In the gasification and melting system as described above, an operation for fluidizing the fluidized medium (fluidized bed 30) filled in the bottom of the gasification furnace 3 at the time of start-up and an operation for raising the temperature in the system are required. In the gasification furnace 3, combustion air 32 is supplied to fluidize the fluidized bed 30, and the auxiliary fuel burner 21 is ignited to raise the temperature in the furnace. In addition, the swirl melting furnace 6 is heated by the high-temperature gas flowing from the gasification furnace 3, and the insufficient heat quantity is compensated by the seed flame burner 24 and the auxiliary fuel burner 25. Similarly, in the secondary combustion chamber 12, the temperature is raised by igniting the auxiliary fuel burner 27 together with the temperature rise by the high temperature gas.

ガス化溶融システムでは、直列に接続されたガス化炉3、溶融炉6、二次燃焼室12の昇温タイミングを適正化して炉内温度を均一化に昇温し、且つ燃料コストを低減することが求められる。
特許文献1(特開2003−302023号公報)では、溶融炉の昇温用バーナの着火前に溶融炉内に過剰の燃焼空気を供給し、この状態で昇温用バーナを着火し、温度センサにより炉内の温度を検出しながら予め設定された昇温テーブルに従って徐々に昇温する運転方法が開示されている。昇温は、昇温用バーナの出力制御及び燃焼空気の導入流量により制御される。これにより、溶融炉内にて過剰の燃焼空気により大量の熱ガスを生成することができ、炉内温度が均一化される。
In the gasification and melting system, the temperature inside the gasification furnace 3, the melting furnace 6, and the secondary combustion chamber 12 connected in series is optimized to raise the temperature inside the furnace uniformly, and to reduce the fuel cost. Is required.
In Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-302023), excessive combustion air is supplied into the melting furnace before ignition of the temperature raising burner of the melting furnace, and the temperature raising burner is ignited in this state. Discloses an operation method in which the temperature is gradually raised according to a preset temperature rise table while detecting the temperature in the furnace. The temperature rise is controlled by the output control of the temperature raising burner and the introduction flow rate of the combustion air. Thereby, a large amount of hot gas can be generated by excess combustion air in the melting furnace, and the furnace temperature is made uniform.

また、特許文献2(特開2002−22126号公報)では、ガス化炉の起動バーナをを用いて燃料を空気過剰で燃焼させて昇温起動した後に、燃料吹き込みノズルを用いてこの燃料を空気不足で燃焼させて可燃性ガスを発生させ、溶融炉に設けた点火用パイロットバーナを用いて可燃性ガスを燃焼させて炉内を昇温する方法が提案されている。これにより、ガス化炉と溶融炉の昇温タイミングを合わせることができ、また燃料コストを低減することができる。
さらに、特許文献3(特開2001−296013号公報)では、ガス化炉と溶融炉の夫々の起動バーナに供給される空気量を燃料量から独立して調整する構成を提案している。これは、システム全体に対して余分な空気を供給しないことにより溶融炉の冷却を防ぎ、最低の燃料使用量で目標温度に到達する時間を短縮することを可能としている。
Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 2002-22126), after starting up temperature by burning a fuel with excess air using the starting burner of a gasifier, this fuel is air-released using a fuel blowing nozzle. There has been proposed a method in which a combustible gas is generated by burning in a shortage, and the temperature inside the furnace is increased by burning the combustible gas using an ignition pilot burner provided in a melting furnace. Thereby, the temperature rising timing of a gasification furnace and a melting furnace can be match | combined, and fuel cost can be reduced.
Furthermore, Patent Document 3 (Japanese Patent Laid-Open No. 2001-296013) proposes a configuration in which the amount of air supplied to the respective start burners of the gasification furnace and the melting furnace is adjusted independently of the fuel amount. This prevents cooling of the melting furnace by not supplying excess air to the entire system, and shortens the time to reach the target temperature with the minimum amount of fuel used.

特開2003−302023号公報JP 2003-302023 A 特開2002−22126号公報Japanese Patent Laid-Open No. 2002-22126 特開2001−296013号公報JP 2001-296013 A

特許文献1乃至3に記載されるように、ガス化溶融システムではガス化炉と同時に溶融炉も昇温しており、ガス化炉と溶融炉は同期化された起動操作が行われていた。しかし、流動層ガス化炉を備えるシステムにおいて、流動化が確立されずガス化炉の起動が適切に行われなかった場合に、溶融炉のみが昇温を継続されるため溶融炉に供給される燃料コストが無駄に使われるという問題があった。この場合ガス化炉の流動化が正常化するまで溶融炉は高温に維持され、そのために使用される燃料によりランニングコストが増大してしまうことがある。
また、システムを再起動する場合には、溶融炉の炉壁に溶融スラグが皮膜したスラグコート層が形成されており、溶融炉の昇温段階でこのスラグコート層が溶融することがある。完全に昇温されていない炉内では、スラグコート層の溶融物はスラグ出滓口を閉塞してしまうため、安定した起動が行われない惧れがある。
従って、本発明は上記従来技術の問題点に鑑み、起動時における補助燃料等の燃料使用量を低減させてランニングコストを抑え、経済的な運転を可能とするとともに、溶融炉のスラグ出滓口の閉塞を発生させることなく安定した起動を可能としたガス化溶融システムの運転制御方法及び該システムを提案することを目的とする。
As described in Patent Documents 1 to 3, in the gasification and melting system, the temperature of the melting furnace is raised at the same time as the gasification furnace, and the gasification furnace and the melting furnace are operated in a synchronized manner. However, in a system equipped with a fluidized bed gasification furnace, when fluidization is not established and the gasification furnace is not properly started up, only the melting furnace continues to be heated and supplied to the melting furnace. There was a problem that fuel costs were wasted. In this case, the melting furnace is maintained at a high temperature until the fluidization of the gasification furnace becomes normal, and the running cost may increase due to the fuel used therefor.
Further, when the system is restarted, a slag coat layer coated with molten slag is formed on the furnace wall of the melting furnace, and this slag coat layer may be melted at the temperature rising stage of the melting furnace. In a furnace where the temperature has not been raised completely, the slag coat layer melt may block the slag outlet, so there is a risk that stable startup will not be performed.
Therefore, in view of the above-described problems of the prior art, the present invention reduces the amount of fuel used such as auxiliary fuel at the time of start-up, reduces running costs, enables economical operation, and provides a slag outlet for a melting furnace. It is an object of the present invention to propose an operation control method for a gasification and melting system capable of stable start-up without causing any blockage of the gas, and the system.

そこで、本発明はかかる課題を解決するために、流動層ガス化炉にて廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスを溶融炉内に導入し、該溶融炉にて前記熱分解ガスの燃焼熱により灰分を溶融するガス化溶融システムの運転制御方法において、
前記ガス化炉と前記溶融炉を同期させて昇温しながら、前記ガス化炉の炉底から燃焼空気を導入し、
前記昇温開始から所定時間経過後に前記ガス化炉における流動化状態を検出し、流動化が確立されていない場合には前記溶融炉の昇温を停止することを特徴とする。
本発明によれば、ガス化炉の流動化が完全に確立されたことを判断し、該流動化が確立された場合にのみ溶融炉の昇温を行うようにしたため、溶融炉にて無駄な燃料が使用されることがなく、燃料コストを低減して経済的な運転を行うことを可能とする。
Therefore, in order to solve such a problem, the present invention thermally decomposes waste in a fluidized bed gasification furnace to generate pyrolysis gas, introduces the pyrolysis gas into the melting furnace, In the operation control method of the gasification and melting system for melting ash by the combustion heat of the pyrolysis gas,
While raising the temperature of the gasification furnace and the melting furnace synchronously, introducing combustion air from the bottom of the gasification furnace,
A fluidization state in the gasification furnace is detected after a predetermined time has elapsed from the start of the temperature increase, and when the fluidization is not established, the temperature increase of the melting furnace is stopped.
According to the present invention, it is judged that fluidization of the gasification furnace is completely established, and the temperature of the melting furnace is increased only when the fluidization is established. The fuel is not used, and it is possible to reduce the fuel cost and perform an economical operation.

また、前記ガス化溶融システムを再起動する場合であって、前記溶融炉の炉壁に溶融スラグが付着固化したセルフコート層が形成されており、
前記溶融炉の昇温時に炉内温度を検出し、該炉内温度が前記セルフコート層の溶融温度に達するより前に、前記溶融炉のスラグ出滓口を加熱する溶融固化物溶融バーナを着火することを特徴とする。
これにより、溶融炉の昇温過程でセルフコート層が溶融した場合であっても、溶融固化物溶融バーナにてスラグ出滓口を加温することによりスラグ出滓口の閉塞を防止することができる。
Further, in the case of restarting the gasification melting system, a self-coat layer in which molten slag is adhered and solidified on the furnace wall of the melting furnace is formed,
The temperature in the furnace is detected when the melting furnace is heated, and before the furnace temperature reaches the melting temperature of the self-coat layer, the molten solidified melting burner that heats the slag outlet of the melting furnace is ignited. It is characterized by doing.
As a result, even when the self-coating layer is melted during the temperature rising process of the melting furnace, the slag tap outlet can be prevented from being blocked by heating the slag tap outlet with a melt-solidified product melting burner. it can.

また、前記溶融炉の昇温停止は、既着火バーナの出力増大停止若しくは未着火バーナの着火停止により行うことを特徴とする。
このように、既に着火しているバーナについては出力増大を停止し、着火していないバーナについては着火を停止することにより、溶融炉内温度が極端に温度低下することなく、昇温のみを停止することが可能である。
Further, the temperature raising stop of the melting furnace is performed by stopping the output increase of the already ignited burner or stopping the ignition of the unignited burner.
In this way, for burners that have already ignited, the output increase is stopped, and for burners that have not ignited, ignition is stopped, so that only the temperature rise is stopped without the temperature in the melting furnace dropping extremely. Is possible.

さらに、前記流動化状態の検出は、前記ガス化炉に形成された流動層の温度分布に基づき判断することを特徴とする。
これは、流動層内の温度分布を検出し、温度分布が略均一であれば十分な流動化が確立されているものと判断できる。従って、本構成によれば流動層の流動化を正確に検出することができる。
さらにまた、前記流動化が確立されていない場合に、前記ガス化炉の炉底全面もしくは一部局所的に燃焼空気の供給量を一時的に増大することを特徴とする。
これにより、ガス化炉を停止することなく流動化を促進することができ、円滑な起動が可能となる。
Further, the fluidization state is detected based on a temperature distribution of a fluidized bed formed in the gasification furnace.
This is because the temperature distribution in the fluidized bed is detected, and if the temperature distribution is substantially uniform, it can be determined that sufficient fluidization has been established. Therefore, according to this configuration, fluidization of the fluidized bed can be accurately detected.
Furthermore, when the fluidization is not established, the supply amount of the combustion air is temporarily increased over the entire bottom or part of the gasification furnace.
Thereby, fluidization can be promoted without stopping the gasification furnace, and smooth start-up becomes possible.

また、廃棄物を熱分解して熱分解ガスを発生させる流動層ガス化炉と、該熱分解ガスの燃焼熱により灰分を溶融する溶融炉とからなり、前記溶融炉が、前記熱分解ガスを炉内に導入する熱分解ガスバーナと、該熱分解ガスバーナの着火を促進する種火バーナと、溶融炉内に補助燃料を導入する補助燃料バーナとを備えたガス化溶融システムにおいて、
前記ガス化炉の昇温開始から所定時間経過後に流動化状態を検出する流動化検出手段と、
前記流動化検出手段により検出された流動化状態に基づいて前記補助燃料バーナ、前記種火バーナの着火若しくは出力を制御する制御装置と、を備えたことを特徴とする。
And a fluidized bed gasification furnace that thermally decomposes waste to generate pyrolysis gas, and a melting furnace that melts ash by the combustion heat of the pyrolysis gas, and the melting furnace converts the pyrolysis gas into In a gasification and melting system comprising a pyrolysis gas burner introduced into a furnace, a seed flame burner that promotes ignition of the pyrolysis gas burner, and an auxiliary fuel burner that introduces auxiliary fuel into the melting furnace,
Fluidization detection means for detecting a fluidization state after a predetermined time has elapsed from the start of temperature rise of the gasification furnace;
And a control device for controlling ignition or output of the auxiliary fuel burner and the seed burner based on the fluidization state detected by the fluidization detection means.

さらに、前記制御装置は、前記流動化検出手段により流動化の確立が検出されなかった場合に、前記溶融炉の昇温を停止するように前記補助燃料バーナ及び前記種火バーナを制御することを特徴とする。
さらにまた、前記流動化検出手段が、前記ガス化炉の流動層内の温度分布を検出する温度センサ群であることを特徴とする。
Further, the control device controls the auxiliary fuel burner and the seed fire burner so as to stop the temperature rise of the melting furnace when the fluidization detection means does not detect the establishment of fluidization. Features.
Furthermore, the fluidization detection means is a temperature sensor group that detects a temperature distribution in a fluidized bed of the gasification furnace.

以上記載のごとく本発明によれば、ガス化炉の流動化が完全に確立されたことを判断し、該流動化が確立された場合にのみ溶融炉の昇温を行うようにしたため、溶融炉にて無駄な燃料が使用されることがなく、燃料コストを低減して経済的な運転を行うことを可能とする。
また、溶融炉の昇温過程において溶融炉壁に付着したセルフコート層が溶融した場合であっても、溶融固化物溶融バーナにてスラグ出滓口を加温することによりスラグ出滓口の閉塞を防止することができる。
As described above, according to the present invention, it is determined that the fluidization of the gasifier is completely established, and the melting furnace is heated only when the fluidization is established. In this case, useless fuel is not used, and it is possible to reduce the fuel cost and perform economical operation.
In addition, even when the self-coat layer adhering to the melting furnace wall melts during the temperature rising process of the melting furnace, the slag outlet is closed by heating the slag outlet with a molten solidified melting burner. Can be prevented.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係るガス化溶融システムの全体構成を示す概略図、図2は起動時の温度制御を示すグラフで、(a)はガス化炉、(b)は溶融炉、(c)は二次燃焼室を夫々示し、図3は本発明の実施例に係るガス化溶融システムの制御フローを示す図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a schematic diagram showing the overall configuration of a gasification and melting system according to an embodiment of the present invention, FIG. 2 is a graph showing temperature control at startup, (a) is a gasification furnace, (b) is a melting furnace, (C) shows a secondary combustion chamber, respectively, and FIG. 3 is a diagram showing a control flow of a gasification melting system according to an embodiment of the present invention.

図1を参照して、本実施例に係るガス化溶融システムの概略構成を説明する。
廃棄物投入ホッパ1から投入された廃棄物31は、必要に応じて破砕、乾燥された後に給じん機2を介して流動床式ガス化炉3へ定量供給される。流動層ガス化炉3では、温度約120〜230℃、空気比0.2〜0.7程度の燃焼空気32が炉下部から風箱4を介して炉内に吹き込まれ、流動層温度が500〜600℃程度に維持されている。
廃棄物31は流動層ガス化炉3で熱分解ガス化され、ガス、タール、チャー(炭化物)に分解される。タールは、常温では液体となる成分であるが、ガス化炉内ではガス状で存在する。ガス化炉3の不燃物は不燃物排出口5より逐次排出される。
チャーは流動層内で徐々に微粉化され、ガス及びタールに同伴して旋回溶融炉6へ導入される。以下、溶融炉6へ導入されるこれらの成分を総称して熱分解ガス33と呼ぶ。
With reference to FIG. 1, schematic structure of the gasification melting system which concerns on a present Example is demonstrated.
The waste 31 input from the waste input hopper 1 is crushed and dried as necessary, and then quantitatively supplied to the fluidized bed gasifier 3 through the dust feeder 2. In the fluidized bed gasification furnace 3, combustion air 32 having a temperature of about 120 to 230 ° C. and an air ratio of about 0.2 to 0.7 is blown into the furnace through the wind box 4 from the lower part of the furnace, and the fluidized bed temperature is 500. It is maintained at about ~ 600 ° C.
The waste 31 is pyrolyzed and gasified in the fluidized bed gasification furnace 3 and decomposed into gas, tar and char (carbide). Tar is a component that becomes liquid at room temperature, but is present in a gaseous state in the gasification furnace. The incombustible material in the gasification furnace 3 is sequentially discharged from the incombustible material discharge port 5.
The char is gradually pulverized in the fluidized bed, and is introduced into the swirl melting furnace 6 along with gas and tar. Hereinafter, these components introduced into the melting furnace 6 are collectively referred to as a pyrolysis gas 33.

前記流動層ガス化炉3の炉頂部より排出された熱分解ガス33は、ライニングダクトを経て旋回溶融炉6の熱分解ガスバーナ29へ導入される。該熱分解ガスバーナ29で、熱分解ガス33は燃焼空気34と混合されて炉内に導入され、旋回流を形成する。このとき、燃焼空気は空気比0.9〜1.1、好ましくは1.0程度であると良い。
前記旋回溶融炉6では、熱分解ガス33と燃焼空気34の混合ガスが燃焼することにより炉内温度が1300〜1500℃に維持され、熱分解ガス33中の灰分が溶融、スラグ化される。溶融したスラグは、旋回溶融炉6の内壁面に付着、流下し、炉底部のスラグ出滓口7からスラグ抜出シュート8を経て排出される。旋回溶融炉6から排出されたスラグは、水砕槽9で急冷され、スラグコンベア10により搬出されて水砕スラグとして回収される。回収された水砕スラグは、路盤材等に有効利用することが可能である。
The pyrolysis gas 33 discharged from the top of the fluidized bed gasification furnace 3 is introduced into the pyrolysis gas burner 29 of the swirling melting furnace 6 through a lining duct. In the pyrolysis gas burner 29, the pyrolysis gas 33 is mixed with the combustion air 34 and introduced into the furnace to form a swirling flow. At this time, the combustion air may have an air ratio of 0.9 to 1.1, preferably about 1.0.
In the swirling melting furnace 6, the mixed gas of the pyrolysis gas 33 and the combustion air 34 is combusted, so that the furnace temperature is maintained at 1300 to 1500 ° C., and the ash content in the pyrolysis gas 33 is melted and slagged. The molten slag adheres and flows down on the inner wall surface of the swirl melting furnace 6 and is discharged from the slag outlet 7 at the bottom of the furnace through the slag extraction chute 8. The slag discharged from the slewing melting furnace 6 is rapidly cooled in the water granulating tank 9, carried out by the slag conveyor 10, and collected as granulated slag. The recovered granulated slag can be effectively used for roadbed materials and the like.

一方、旋回溶融炉6から排出された燃焼排ガスは連結部11を介して二次燃焼室12へ導入される。二次燃焼室12では、燃焼空気35が空気比1.2〜1.5となるように供給されるとともに、必要に応じて補助燃料バーナ27で所定温度まで昇温され、前記燃焼排ガス中の未燃分はここで完全燃焼される。
燃焼排ガスは、ボイラ部13で熱回収されて、200〜250℃程度まで冷却される。ボイラ部13から排出された燃焼排ガスは、減温塔14へ導入され、直接水噴霧により150℃程度まで冷却される。減温塔14から排出された燃焼排ガスは、必要に応じて煙道で消石灰、活性炭が噴霧され、反応集塵装置15に導入される。反応集塵装置15では、燃焼排ガス中の煤塵、酸性ガス、DXN類等が除去される。反応集塵装置15から排出された集塵灰は薬剤処理して埋立処分され、燃焼排ガスは蒸気式加熱器16で再加熱され、触媒反応装置17でNOが除去された後、誘引ファン18を介して煙突19より大気放出される。
On the other hand, the combustion exhaust gas discharged from the swirling melting furnace 6 is introduced into the secondary combustion chamber 12 via the connecting portion 11. In the secondary combustion chamber 12, the combustion air 35 is supplied so as to have an air ratio of 1.2 to 1.5, and if necessary, the temperature is raised to a predetermined temperature by the auxiliary fuel burner 27. The unburned portion is completely burned here.
Combustion exhaust gas is heat-recovered by the boiler part 13, and is cooled to about 200-250 degreeC. The combustion exhaust gas discharged from the boiler unit 13 is introduced into the temperature reducing tower 14 and cooled to about 150 ° C. by direct water spray. The combustion exhaust gas discharged from the temperature reducing tower 14 is sprayed with slaked lime and activated carbon in the flue as necessary, and is introduced into the reaction dust collector 15. The reaction dust collector 15 removes soot, acid gas, DXNs and the like in the combustion exhaust gas. The dust ash discharged from the reaction dust collector 15 is treated with chemicals and disposed of in landfill. The combustion exhaust gas is reheated by the steam heater 16 and NO x is removed by the catalyst reactor 17. The air is discharged from the chimney 19 through the air.

流動層ガス化炉3は、炉底部に流動砂が充填された流動層30が形成され、その上方に補助燃料バーナ21が設けられている。炉底部には複数の風箱4が並設されており、該風箱4を介して炉内に燃焼空気32が導入される。尚、起動初期の流動層30は流動媒体が流動していない場合もあるが、本実施例ではこれも含み流動層30と呼称する。通常運転時の流動層30は、500〜600℃程度の温度に維持される。
さらに本実施例では、起動時に流動層30内に位置する少なくとも一の温度センサ22を備える。好適には、流動層内の複数の水平断面であって、かつ同一水平断面上に離間されて配置された複数の温度センサ22からなる温度センサ群を備える。この温度センサ群により流動層の水平方向および鉛直方向の温度分布が検出できる。
In the fluidized bed gasification furnace 3, a fluidized bed 30 in which fluidized sand is filled at the bottom of the furnace is formed, and an auxiliary fuel burner 21 is provided thereabove. A plurality of wind boxes 4 are arranged in parallel at the furnace bottom, and combustion air 32 is introduced into the furnace via the wind boxes 4. In addition, although the fluidized medium 30 at the initial stage of startup may not be fluidized, it is also referred to as the fluidized bed 30 in this embodiment. The fluidized bed 30 during normal operation is maintained at a temperature of about 500 to 600 ° C.
Furthermore, in this embodiment, at least one temperature sensor 22 located in the fluidized bed 30 at the time of activation is provided. Preferably, a temperature sensor group including a plurality of temperature sensors 22 arranged at a plurality of horizontal sections in the fluidized bed and spaced apart on the same horizontal section is provided. This temperature sensor group can detect the temperature distribution in the horizontal direction and the vertical direction of the fluidized bed.

旋回溶融炉は6は断面円形状の炉本体を有しており、側壁には熱分解ガス33を吹き込む一又は複数の熱分解ガスバーナ29が配設される。熱分解ガスバーナ29の近傍には、助燃バーナ25が配設される。さらに、炉上部は絞り構造の連結部11を介して二次燃焼室12に連通しており、旋回溶融炉6で発生した燃焼排ガスは二次燃焼室12に送られる。炉底部にはスラグ出滓口7が設けおり、該スラグ出滓口7から下方に延設されたスラグ抜出シュート8を通って溶融スラグが排出されるようになっている。スラグ抜出シュート8にはスラグ出滓口7へ向けて溶融固化物溶融バーナ23が取り付けられており、スラグ出滓口7から排出される溶融スラグが固化して閉塞しないように加温するようになっている。溶融固化物溶融バーナ23は通常は使用しないが、スラグ出滓口7が閉塞あるいは閉塞傾向にある場合に着火し、閉塞の度合いによってバーナ出力を調整しながらスラグ出滓口7を加温し、溶融スラグの固化による閉塞を防止する。
二次燃焼室12には燃焼空気35が供給され、旋回溶融炉6からの燃焼排ガスを完全燃焼する。また、二次燃焼室12の側壁には一又は複数の補助燃料バーナ27が設けられており、二次燃焼室内の温度を維持するようになっている。
The swirl melting furnace 6 has a furnace body having a circular cross section, and one or a plurality of pyrolysis gas burners 29 for blowing the pyrolysis gas 33 are disposed on the side walls. In the vicinity of the pyrolysis gas burner 29, an auxiliary burner 25 is disposed. Further, the upper part of the furnace communicates with the secondary combustion chamber 12 via the connecting portion 11 having a throttle structure, and the combustion exhaust gas generated in the swirling melting furnace 6 is sent to the secondary combustion chamber 12. A slag outlet 7 is provided at the bottom of the furnace, and molten slag is discharged through a slag extraction chute 8 extending downward from the slag outlet 7. The slag extraction chute 8 is provided with a melt-solidified melt burner 23 toward the slag outlet 7 so as to heat the molten slag discharged from the slag outlet 7 so that it does not solidify and become blocked. It has become. Although the melted solid melt melting burner 23 is not normally used, it is ignited when the slag outlet 7 is clogged or tends to be clogged, and the slag outlet 7 is heated while adjusting the burner output depending on the degree of clogging. Prevent clogging due to solidification of molten slag.
Combustion air 35 is supplied to the secondary combustion chamber 12 to completely burn the combustion exhaust gas from the swirling melting furnace 6. One or more auxiliary fuel burners 27 are provided on the side wall of the secondary combustion chamber 12 so as to maintain the temperature in the secondary combustion chamber.

次に、図3に基づいて本システムの起動時における制御フローを説明する。図2は、図3に示す制御フローの時系列に対応したガス化炉3、溶融炉6、二次燃焼室12の温度変化を示すグラフである。
まず、ガス化炉3内に流動砂を初期充填量だけ投入し(S1)、燃焼空気32の供給を開始する(S2)とともに、ガス化炉3の補助燃料バーナ21(図中、補助バーナと略す)を着火する(S3)。図2において燃焼空気供給、補助燃料バーナ着火はA点で示される。
そして、ガス化炉3の補助バーナ21の出力を制御することにより、ガス化炉上方のフリーボード部の温度を一定昇温速度にて昇温する(S4)。ガス化炉3のフリーボード部の温度が予め設定した温度以上であるか否かを判断し(S5)、設定温度以上となったらガス化炉3の補助バーナ21の出力を定常値に固定する(S6)。図2においてガス化炉3の補助バーナ21の出力の固定はB点以降で行われ、このときの温度はtである。尚、定常値とは、起動完了後の通常運転時と同等の値である。設定温度以下である場合は、ガス化炉3の補助バーナ21の出力による温度制御を続行する(S4)。さらに、必要に応じて流動砂の追加供給を逐次行う。
Next, a control flow at the time of activation of the present system will be described based on FIG. FIG. 2 is a graph showing temperature changes in the gasification furnace 3, the melting furnace 6, and the secondary combustion chamber 12 corresponding to the time series of the control flow shown in FIG.
First, the fluidized sand is charged into the gasification furnace 3 by an initial filling amount (S1), the supply of the combustion air 32 is started (S2), and the auxiliary fuel burner 21 of the gasification furnace 3 (in the figure, the auxiliary burner and (Abbreviated) is ignited (S3). In FIG. 2, combustion air supply and auxiliary fuel burner ignition are indicated by point A.
Then, by controlling the output of the auxiliary burner 21 of the gasification furnace 3, the temperature of the free board part above the gasification furnace is raised at a constant temperature increase rate (S4). It is determined whether or not the temperature of the free board portion of the gasification furnace 3 is equal to or higher than a preset temperature (S5). (S6). Fixing the output of the auxiliary burner 21 of the gasification furnace 3 in FIG. 2 is carried out at point B since the temperature at this time is t 2. In addition, a steady value is a value equivalent to the time of normal operation after completion of starting. When the temperature is equal to or lower than the set temperature, the temperature control by the output of the auxiliary burner 21 of the gasification furnace 3 is continued (S4). Furthermore, additional supply of fluidized sand is sequentially performed as necessary.

ガス化炉3を昇温すると、これに伴い後段側の溶融炉6、二次燃焼室12へ高温ガスが流入し、徐々に昇温し始める。二次燃焼室12は、比較的早い段階で補助燃料バーナ27を着火することが好ましく、一定昇温速度で昇温が行われるように補助燃料バーナ27の出力制御を行う。図2において補助燃料バーナ27の着火はG点で行われ、このときの温度はtである。
溶融炉6では、種火バーナ24を着火し(S7)、次いで補助燃料バーナ25を着火する(S8)。種火バーナ24、補助燃料バーナ25が複数存在する場合には、順次着火するようにしてもよい。図2において種火バーナ24の着火は炉内温度がtであるC点で示される。また、補助燃料バーナ25の着火は炉内温度がtであるD点で示される。
When the temperature of the gasification furnace 3 is increased, a high-temperature gas flows into the subsequent melting furnace 6 and the secondary combustion chamber 12 and gradually starts to increase in temperature. The secondary combustion chamber 12 preferably ignites the auxiliary fuel burner 27 at a relatively early stage, and performs output control of the auxiliary fuel burner 27 so that the temperature is raised at a constant temperature increase rate. Ignition of the auxiliary fuel burner 27 in FIG. 2 is performed in point G, the temperature at this time is t 1.
In the melting furnace 6, the seed flame burner 24 is ignited (S7), and then the auxiliary fuel burner 25 is ignited (S8). When there are a plurality of seed flame burners 24 and auxiliary fuel burners 25, they may be ignited sequentially. Ignition of the pilot flame burner 24 in Figure 2 the temperature in the furnace is indicated by point C is t 2. Also, ignition of the auxiliary fuel burner 25 is the furnace temperature is shown by point D is t 3.

さらに、溶融炉6の補助燃料バーナ25の出力制御を行う(S9)ことにより溶融炉内温度を一定昇温速度にて昇温する。
昇温開始から所定時間経過後、温度センサ22にて検出された温度に基づいてガス化炉3の流動化を確認し(S10)、制御装置20にて流動化の有無を判断する(S11)。図2において流動化の確認は、時間tであるE点で示される。
制御装置20にて流動化が確立されていると判断された場合には、溶融炉内温度の昇温を続行して行う。一方、流動化が確立されていないと判断された場合には、溶融炉内の昇温を停止する(S12)。昇温の停止は、溶融炉6の種火バーナ24、補助燃料バーナ25の着火、出力制御により行う。例えば、既に着火しているバーナは出力増大を停止して現状維持とし、未着火のバーナは着火を停止する。このとき、炉内の極端な温度低下を防止するように、既に着火しているバーナの消火は行わないことが好ましい。図2において、E点にて流動化が確認されない場合には、流動化が確認されるE’点まで昇温を停止して温度を維持する。時間t’におけるE’点にて流動化が確認されたら昇温を再開する。
Further, by controlling the output of the auxiliary fuel burner 25 of the melting furnace 6 (S9), the temperature in the melting furnace is increased at a constant rate of temperature increase.
After a predetermined time has elapsed from the start of temperature increase, fluidization of the gasification furnace 3 is confirmed based on the temperature detected by the temperature sensor 22 (S10), and the presence or absence of fluidization is determined by the control device 20 (S11). . In FIG. 2, confirmation of fluidization is indicated by point E, which is time t 4 .
When it is determined by the control device 20 that fluidization has been established, the temperature inside the melting furnace is continuously increased. On the other hand, if it is determined that fluidization has not been established, the temperature rise in the melting furnace is stopped (S12). The temperature rise is stopped by igniting the seed flame burner 24 and the auxiliary fuel burner 25 of the melting furnace 6 and controlling the output. For example, the burner that has already been ignited stops the output increase and maintains the current state, and the burner that has not been ignited stops the ignition. At this time, it is preferable not to extinguish an already ignited burner so as to prevent an extreme temperature drop in the furnace. In FIG. 2, when fluidization is not confirmed at point E, the temperature rise is stopped to maintain the temperature up to point E ′ where fluidization is confirmed. When fluidization is confirmed at point E ′ at time t 4 ′, the temperature rise is resumed.

また、ガス化炉3側では、流動層30の流動化を促進するために、ガス化炉3の炉下部の複数の風箱4の全部もしくは一部から供給する燃焼空気量を増大し、過剰な燃焼空気32を供給することにより流動化を促す(S13)。この操作は、流動化が安定的に確立されるまで複数回繰り返し行ってもよい。流動化の確認は、上記と同様に、流動層30に設置された温度センサ22により温度分布を検出する方法、昇温初期に温度センサ22の検出温度が低いまま上昇してこない部分を検出する方法などが挙げられる。   Further, on the gasification furnace 3 side, in order to promote fluidization of the fluidized bed 30, the amount of combustion air supplied from all or a part of the plurality of wind boxes 4 at the lower part of the gasification furnace 3 is increased. Fluidization is promoted by supplying fresh combustion air 32 (S13). This operation may be repeated a plurality of times until fluidization is stably established. In the confirmation of fluidization, a method of detecting the temperature distribution by the temperature sensor 22 installed in the fluidized bed 30 is detected in the same manner as described above, and a part where the temperature detected by the temperature sensor 22 does not rise at the initial stage of temperature rise is detected. The method etc. are mentioned.

溶融炉6内の温度は温度センサ26により逐次検出し(S14)、炉内温度が設定温度以上まで昇温されたか否かを判断する(S15)。設定温度は、溶融炉内のスラグコート層の溶融温度より低い温度とし、例えば1000℃程度とする。炉内温度が設定温度以上となった場合には、溶融固化物溶融バーナ23を着火する(S16)。図2において溶融固化物溶融バーナ23の着火は時間tにおけるF点で示される。
設定温度以下の場合は、溶融炉6の補助燃料バーナ25の出力制御を続行する。
補助燃料バーナ25の出力制御により、溶融炉内温度が1300℃程度となるまで一定の昇温速度で昇温を行うとともに、溶融炉内温度が1300℃程度に達したら廃棄物の投入を行い、通常運転を開始する(S17)。
The temperature in the melting furnace 6 is sequentially detected by the temperature sensor 26 (S14), and it is determined whether or not the furnace temperature has been raised to a set temperature or higher (S15). The set temperature is lower than the melting temperature of the slag coat layer in the melting furnace, for example, about 1000 ° C. When the furnace temperature becomes equal to or higher than the set temperature, the melt-solidified melt burner 23 is ignited (S16). Ignition of molten solidified melt burner 23 in FIG. 2 are indicated by the point F at time t 5.
When the temperature is lower than the set temperature, the output control of the auxiliary fuel burner 25 of the melting furnace 6 is continued.
By controlling the output of the auxiliary fuel burner 25, the temperature is increased at a constant temperature increase rate until the temperature in the melting furnace reaches about 1300 ° C., and when the temperature in the melting furnace reaches about 1300 ° C., waste is input. Normal operation is started (S17).

本構成のごとく、起動時に必要とされる各種バーナを着火するとともに燃焼空気を供給して起動操作を行う際に、昇温から所定時間経過後にガス化炉3の流動化を確認し、流動化が確立されていない場合には溶融炉6の昇温を停止することにより、溶融炉6において不要な燃料を供給することを回避でき、燃料コストの低減が可能となる。
また、溶融炉6内が所定温度以上となったら溶融固化物溶融バーナ23を着火してスラグ出滓口7を加温する構成としたため、スラグ出滓口7の閉塞を防止することができる。
As in this configuration, when igniting the various burners required at the start-up and supplying the combustion air to perform the start-up operation, the fluidization of the gasification furnace 3 is confirmed after a predetermined time from the temperature rise, and the fluidization is performed. Is not established, it is possible to avoid supplying unnecessary fuel in the melting furnace 6 by stopping the temperature rise of the melting furnace 6 and to reduce the fuel cost.
Moreover, since it was set as the structure which ignites the molten solidified material fusion burner 23 and heats the slag outlet 7 if the inside of the melting furnace 6 becomes more than predetermined temperature, obstruction | occlusion of the slag outlet 7 can be prevented.

本発明の実施例に係るガス化溶融システムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the gasification melting system which concerns on the Example of this invention. 起動時の温度制御を示すグラフで、(a)はガス化炉、(b)は溶融炉、(c)は二次燃焼室を夫々示す。It is a graph which shows the temperature control at the time of starting, (a) shows a gasification furnace, (b) shows a melting furnace, (c) shows a secondary combustion chamber, respectively. 本発明の実施例に係るガス化溶融システムの制御フローを示す図である。It is a figure which shows the control flow of the gasification melting system which concerns on the Example of this invention. 従来のガス化溶融システムの全体構成を示す概略図である。It is the schematic which shows the whole structure of the conventional gasification melting system.

符号の説明Explanation of symbols

3 ガス化炉
6 旋回溶融炉
7 スラグ出滓口
12 二次燃焼室
20 制御装置
21 補助燃料バーナ(ガス化炉)
22、26 温度センサ
24 種火バーナ
25 補助燃料バーナ(溶融炉)
27 補助燃料バーナ(二次燃焼室)
29 熱分解ガスバーナ
30 流動層
3 Gasification furnace 6 Swivel melting furnace 7 Slag outlet 12 Secondary combustion chamber 20 Controller 21 Auxiliary fuel burner (gasification furnace)
22, 26 Temperature sensor 24 Seed fire burner 25 Auxiliary fuel burner (melting furnace)
27 Auxiliary fuel burner (secondary combustion chamber)
29 Pyrolysis gas burner 30 Fluidized bed

Claims (8)

流動層ガス化炉にて廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスを溶融炉内に導入し、該溶融炉にて前記熱分解ガスの燃焼熱により灰分を溶融するガス化溶融システムの運転制御方法において、
前記ガス化炉と前記溶融炉を同期させて昇温しながら、前記ガス化炉の炉底から燃焼空気を導入し、
前記昇温開始から所定時間経過後に前記ガス化炉における流動化状態を検出し、流動化が確立されていない場合には前記溶融炉の昇温を停止することを特徴とするガス化溶融システムの運転制御方法。
The waste is pyrolyzed in a fluidized bed gasification furnace to generate pyrolysis gas, the pyrolysis gas is introduced into the melting furnace, and the ash is melted by the combustion heat of the pyrolysis gas in the melting furnace. In the operation control method of the gasification melting system,
While raising the temperature of the gasification furnace and the melting furnace synchronously, introducing combustion air from the bottom of the gasification furnace,
A gasification and melting system characterized by detecting a fluidization state in the gasification furnace after a lapse of a predetermined time from the start of temperature rise, and stopping temperature rise of the melting furnace when fluidization is not established. Operation control method.
前記ガス化溶融システムを再起動する場合であって、前記溶融炉の炉壁に溶融スラグが付着固化したセルフコート層が形成されており、
前記溶融炉の昇温時に炉内温度を検出し、該炉内温度が前記セルフコート層の溶融温度に達するより前に、前記溶融炉のスラグ出滓口を加熱する溶融固化物溶融バーナを着火することを特徴とする請求項1記載のガス化溶融システムの運転制御方法。
In the case of restarting the gasification melting system, a self-coat layer in which molten slag adheres and solidifies on the furnace wall of the melting furnace is formed,
The temperature in the furnace is detected when the melting furnace is heated, and before the furnace temperature reaches the melting temperature of the self-coat layer, the molten solidified melting burner that heats the slag outlet of the melting furnace is ignited. The operation control method for a gasification and melting system according to claim 1.
前記溶融炉の昇温停止は、既着火バーナの出力増大停止若しくは未着火バーナの着火停止により行うことを特徴とする請求項1記載のガス化溶融システムの運転制御方法。   The operation control method of the gasification melting system according to claim 1, wherein the temperature rise stop of the melting furnace is performed by stopping the increase in output of the already ignited burner or stopping the ignition of the unignited burner. 前記流動化状態の検出は、前記ガス化炉に形成された流動層の温度分布に基づき判断することを特徴とする請求項1記載のガス化溶融システムの運転制御方法。   The operation control method for a gasification and melting system according to claim 1, wherein the detection of the fluidization state is determined based on a temperature distribution of a fluidized bed formed in the gasification furnace. 前記流動化が確立されていない場合に、前記ガス化炉の炉底全面もしくは一部局所的に燃焼空気の供給量を一時的に増大することを特徴とする請求項1記載のガス化溶融システムの運転制御方法。   2. The gasification and melting system according to claim 1, wherein when the fluidization is not established, the supply amount of the combustion air is temporarily increased over the entire bottom or part of the gasification furnace. Operation control method. 廃棄物を熱分解して熱分解ガスを発生させる流動層ガス化炉と、該熱分解ガスの燃焼熱により灰分を溶融する溶融炉とからなり、前記溶融炉が、前記熱分解ガスを炉内に導入する熱分解ガスバーナと、該熱分解ガスバーナの着火を促進する種火バーナと、溶融炉内に補助燃料を導入する補助燃料バーナとを備えたガス化溶融システムにおいて、
前記ガス化炉の昇温開始から所定時間経過後に流動化状態を検出する流動化検出手段と、
前記流動化検出手段により検出された流動化状態に基づいて前記補助燃料バーナ、前記種火バーナの着火若しくは出力を制御する制御装置と、を備えたことを特徴とするガス化溶融システム。
A fluidized bed gasification furnace that thermally decomposes waste to generate pyrolysis gas, and a melting furnace that melts ash by the combustion heat of the pyrolysis gas, and the melting furnace converts the pyrolysis gas into the furnace In a gasification and melting system comprising a pyrolysis gas burner to be introduced into a gas, a seed flame burner that promotes ignition of the pyrolysis gas burner, and an auxiliary fuel burner that introduces auxiliary fuel into the melting furnace,
Fluidization detection means for detecting a fluidization state after a predetermined time has elapsed from the start of temperature rise of the gasification furnace;
A gasification and melting system comprising: a control device that controls ignition or output of the auxiliary fuel burner and the seed flame burner based on a fluidization state detected by the fluidization detection means.
前記制御装置は、前記流動化検出手段により流動化の確立が検出されなかった場合に、前記溶融炉の昇温を停止するように前記補助燃料バーナ及び前記種火バーナを制御することを特徴とする請求項6記載のガス化溶融システム。   The control device controls the auxiliary fuel burner and the seed fire burner so as to stop the temperature rise of the melting furnace when the establishment of fluidization is not detected by the fluidization detection means. The gasification melting system according to claim 6. 前記流動化検出手段が、前記ガス化炉の流動層内の温度分布を検出する温度センサ群であることを特徴とする請求項6若しくは7記載のガス化溶融システム。
The gasification and melting system according to claim 6 or 7, wherein the fluidization detection means is a temperature sensor group that detects a temperature distribution in a fluidized bed of the gasification furnace.
JP2006099150A 2006-03-31 2006-03-31 Operation control method of gasification and melting system and system Active JP4285760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099150A JP4285760B2 (en) 2006-03-31 2006-03-31 Operation control method of gasification and melting system and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099150A JP4285760B2 (en) 2006-03-31 2006-03-31 Operation control method of gasification and melting system and system

Publications (2)

Publication Number Publication Date
JP2007271206A true JP2007271206A (en) 2007-10-18
JP4285760B2 JP4285760B2 (en) 2009-06-24

Family

ID=38674194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099150A Active JP4285760B2 (en) 2006-03-31 2006-03-31 Operation control method of gasification and melting system and system

Country Status (1)

Country Link
JP (1) JP4285760B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636026A (en) * 2012-03-27 2012-08-15 安徽海螺川崎装备制造有限公司 Environment-friendly type C-KSV decomposition furnace
CN112029539A (en) * 2020-09-08 2020-12-04 广州卓邦科技有限公司 Horizontal fixed gasifier for solid waste treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636026A (en) * 2012-03-27 2012-08-15 安徽海螺川崎装备制造有限公司 Environment-friendly type C-KSV decomposition furnace
CN112029539A (en) * 2020-09-08 2020-12-04 广州卓邦科技有限公司 Horizontal fixed gasifier for solid waste treatment

Also Published As

Publication number Publication date
JP4285760B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4548785B2 (en) Waste gasification melting apparatus melting furnace, and control method and apparatus in the melting furnace
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP3034467B2 (en) Direct-type incineration ash melting treatment equipment and treatment method
KR20030024853A (en) Method for incineration disposal of waste
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP4285760B2 (en) Operation control method of gasification and melting system and system
JP4116698B2 (en) Ash fusion incineration system
JP3525077B2 (en) Directly connected incineration ash melting equipment and its operation control method
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP4589832B2 (en) Incinerator
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2007078197A (en) Incinerator and incinerating method of waste
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
JP3004629B1 (en) Start control method and stop control method for partial combustion furnace, and start / stop control device
JP2002310412A (en) Vertical refuse incinerating facility having ash melting device and its operating method
JP3764634B2 (en) Oxygen burner type melting furnace
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP2007271205A (en) Furnace situation monitoring/controlling method for melting furnace and its device
JP2003302023A (en) Operation method for melting furnace, operation control device and gasification melting system
JP2001027410A (en) Separate type incineration ash melting facility, and its operation controlling method
JP3305172B2 (en) Superheated steam production equipment using waste incineration heat
JP2010236733A (en) Gasification melting method and gasification melting facility for waste
JPH08121727A (en) Secondary combustion furnace structure for melting furnace of wasted matter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250