JP4116698B2 - Ash fusion incineration system - Google Patents

Ash fusion incineration system Download PDF

Info

Publication number
JP4116698B2
JP4116698B2 JP18518898A JP18518898A JP4116698B2 JP 4116698 B2 JP4116698 B2 JP 4116698B2 JP 18518898 A JP18518898 A JP 18518898A JP 18518898 A JP18518898 A JP 18518898A JP 4116698 B2 JP4116698 B2 JP 4116698B2
Authority
JP
Japan
Prior art keywords
chamber
incineration
ash
melting
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18518898A
Other languages
Japanese (ja)
Other versions
JP2000018529A (en
Inventor
精治 明木
Original Assignee
株式会社ニッショー機工
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニッショー機工 filed Critical 株式会社ニッショー機工
Priority to JP18518898A priority Critical patent/JP4116698B2/en
Publication of JP2000018529A publication Critical patent/JP2000018529A/en
Application granted granted Critical
Publication of JP4116698B2 publication Critical patent/JP4116698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【0001】
【発明の属する技術分野】
本発明は、都市ゴミや産業廃棄物等を焼却し、更に、焼却灰を熔融・固化する灰熔融式焼却システムに関するものである。
【0002】
【従来の技術】
従来から、都市ゴミや産業廃棄物等は、焼却炉等で焼却した後、焼却灰を土中等に埋めて処理されている。しかしながら、近年では、焼却灰で埋め立てられた埋立地に焼却灰中の有害物質が溶出する等の環境汚染が社会問題となり、焼却灰を熔融・固化して処理している。
都市ゴミや産業廃棄物等を焼却した焼却灰を熔融・固化して処理する従来の装置として、以下のものが開示されている。
実開昭61−96128号公報(以下、イ号公報という)には、「ストーカ式焼却炉の燃焼ゾーンの後に直接焼却灰の溶融又は焼結装置を接続した廃棄物焼却炉」が開示されている。
実開平5−79225号公報(以下、ロ号公報という)には、「溶融炉の溶融室に溶融バーナを備え、この溶融バーナにより焼却灰を溶融しこの溶融スラグをスラグ抜出口から溶融室下流側のスラグ冷却室に排出する焼却灰溶融処理装置において、スラグ抜出口を、開口をほぼ円形の横孔または傾斜孔形状とし、溶融室の下流側側壁の端面に設けた焼却灰溶融処理装置」が開示されている。
特開平6−323514号公報(以下、ハ号公報という)には、「出口方向に少し傾斜のついたベッドと、水冷壁からなる周壁の下部に設けた高温予熱空気吹き出しの羽口より構成された溶融焼却炉を有し、排ガスとの熱交換による高温予熱空気を羽口から噴出させ、ゴミの燃焼灰分も溶融せしめ、傾斜したベッドを流下せしめて取り出す灰溶融式ゴミ焼却炉」が開示されている。
特公平7−81695号公報(以下、ニ号公報という)には、「溶融炉の溶融室に溶融バーナを備え、この溶融バーナにより焼却灰を溶融しこの溶融スラグを溶融室下流側のスラグ冷却室に排出する焼却灰溶融処理装置において、溶融室上流側の焼却灰投入ホッパと溶融室との間の溶融炉壁面に燃焼排ガスの排ガス管を接続し、溶融室と排ガス管との間を、燃焼排ガスにより焼却灰を予熱する予熱室に構成し、溶融バーナを空気不足の状態で燃焼させるとともに、予熱室に焼却排ガスの可燃分を2次燃焼させる追加空気ノズルを設け、予熱室と溶融室の間の溶融炉底壁に、溶融室側が下位となる段差を形成した焼却灰溶融処理装置」が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の焼却灰を熔融・固化して処理する焼却灰溶融処理装置や灰溶融式ゴミ焼却炉は以下の課題を有していた。
イ号公報に記載の焼却灰溶融処理装置では、
a.焼却灰の溶融又は焼却装置で加えられた熱エネルギーは、焼却,溶融時の熱エネルギーとして利用できず、焼却灰の溶融又は焼却装置の動作時の省エネルギー性に欠ける。
ロ号公報に記載の焼却灰溶融処理装置では、
b.予熱室及びスラグ冷却室と、空気予熱器とを接続する排ガス管を備えているため、該装置が大型化するとともに、構造が複雑で該装置の生産性やメンテナンス性に欠ける。
c.溶融バーナで焼却灰の上面から焼却灰を溶融しているため、溶融炉の底側の焼却灰の溶融効率に欠けるとともに、溶融炉の底壁に焼却灰が接触しているため焼却灰の溶融時に壁が損傷し易く、溶融炉の耐火物に耐スラグ浸蝕性の高い高級耐火物を要し、しかも溶融炉が大型化する。
d.予熱室に供給された焼却灰を溶融バーナの燃焼排ガスで予熱して溶融室で溶融し、更にその燃焼排ガスを空気予熱器に導入して溶融バーナの燃焼用空気を加熱しているので、焼却灰の予熱時に燃焼排ガスの熱量が奪われ燃焼用空気の加熱効率に欠ける。
ハ号公報に記載の灰溶融式ゴミ焼却炉では、
e.溶融焼却炉で、ゴミの燃焼と燃焼灰分の溶融が同時に行われるため、ゴミの燃焼や燃焼灰分の溶融にムラが生じやすく、ゴミの燃焼・溶融処理性能に欠ける。
f.溶融焼却炉の周壁の下部に高温空気羽口を有しているとともに、高温空気羽口の周囲にゴミや燃焼灰分が直接接触しているため、高温空気羽口に溶融物等が付着し易く溶融焼却炉内のメンテナンス性に欠けるとともに、高温空気羽口に燃焼灰分等が詰まり易く運転適性に欠ける。
ニ号公報に記載の焼却灰溶融処理装置では、
g.予熱室に対応した追加空気ノズルを有し、追加空気ノズルから追加空気を供給しているため、予熱室に供給されたごみ焼却灰が飛散しごみ焼却灰の溶融処理性能に欠ける。
h.予熱室と溶融室の間に段差を設けているため、溶融炉内の構造が複雑で溶融炉の生産性やメンテナンス性に欠ける。
i.予熱室やスラグ冷却室に接続された排ガス管や追加空気管を有しているため、構造が複雑で該装置が大型化する。
更に、ロ号公報やニ号公報に記載の焼却灰溶融処理装置では、焼却灰の溶融しかできず溶融炉内の塵等を再度焼却することができないとともに、既存の焼却炉で焼却されたゴミ等の焼却灰を投入する手間を要し作業性に欠ける。
【0004】
本発明は上記従来の課題を解決するもので、簡単な構造で小型化が図れるとともに、都市ゴミや産業廃棄物等を一度で確実に焼却,溶融,固化して処理することができ、焼却作業の作業性や減容化に優れ、更に、ダイオキシン等の環境ホルモンの発生を防止でき焼却・溶融処理性能に優れた灰熔融式焼却システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1に記載の灰熔融式焼却システムは、上流側から下流側へ向けて傾斜した傾斜床を有した一次焼却室と、前記一次焼却室と連通した二次焼却室と、前記二次焼却室に連接した灰熔融室と、炎口を前記灰熔融室に向けて配設された熔融バーナと、前記灰熔融室の下流側端部の下方に配置された冷却室と、前記一次焼却室の前記傾斜床,前記二次焼却室及び前記灰熔融室の床に敷設された粒子層と、前記一次焼却室,前記二次焼却室,前記灰熔融室の前記粒子層内に埋設された空気供給部と、前記空気供給部に接続された送風機と、前記一次焼却室の上流側に連接された投入口と、前記灰熔融室に形成されたバーナ用空気供給部と、前記二次焼却室と前記バーナ用空気供給部を連通した熱交換器と、を備えた構成を有している。
これにより、投入口から投入された都市ゴミや産業廃棄物等の焼却物が、一次焼却室の傾斜床に敷設された粒子層により二次焼却室側へ移動しながら燃焼されて焼却灰を生成するとともに、燃焼時に発生した燃焼ガスとともに焼却灰が二次焼却室へ流下して二次焼却室で完全燃焼され、更に、灰熔融室で焼却灰が熔融バーナ及び輻射熱で熔融され熔融スラグが生成され、次いで熔融スラグが冷却室に落下して固化されてスラグが生成され、都市ゴミや産業廃棄物等の焼却物を一度に焼却・熔融・固化処理できるという作用を有する。
一次焼却室の傾斜床,二次焼却室及び灰熔融室の床に粒子層が敷設されているとともに、粒子層に埋設された空気供給部を有しているため、都市ゴミや産業廃棄物等の焼却物を投入して着火するだけで、空気供給部から燃焼用空気が供給されて粒子層側から焼却されるとともに、含水ゴミや有機汚泥等の任意の焼却物を完全燃焼させて熔融処理することができるという作用を有する。
特に、二次焼却室では、粒子層側から燃焼ガスを十分な酸素雰囲気中で燃焼させることができるとともに、高温と十分な滞留時間を与えることができ、ダイオキシン等の環境ホルモンの発生を防止できるという作用を有する。
灰熔融室の床に粒子層が敷設されているとともに、粒子層内に空気供給部が埋設されているため、灰熔融室内で熔融された焼却灰の熔融スラグの粒子層側が、空気供給部による通気により冷却されて固化するので、熔融による高温等で床が損傷するのを防止できるという作用を有する。
二次焼却室と灰熔融室のバーナ用空気供給部を連通した熱交換器を有しているため、二次焼却室で発生した燃焼熱を熱交換器で回収し、バーナ用空気供給部を介して、灰熔融室に配設された熔融バーナに高温のバーナ用空気を供給できるという作用を有する。
嵩密度の大きい種々雑多な廃棄物からなる都市ゴミでも焼却・熔融を一度に行うので、著しく減容化することができ、埋立地の有効化を図ることができるという作用を有する。
【0006】
ここで、一次焼却室の傾斜床の傾斜角度としては、傾斜床上に敷設された粒子層中の粒子の安息角をαとすると、α−30°〜α+30°で形成するのが好ましい。傾斜角度がα−30°より小さくなると一次焼却室に投入された焼却物が粒子層上で燃焼しながら二次焼却室へ移動し難く燃焼効率に欠ける傾向があり、α+30°より大きくなると一次焼却室に投入された焼却物が燃焼する前に二次焼却室に移動し一次焼却室での燃焼が行われ難くなる傾向があり、いずれも好ましくない。
熔融バーナとしては、灰熔融室内の焼却灰を熔融するだけでなく、二次焼却室の温度も維持できる構造に配設される。また、二次焼却室の温度維持のため二次焼却室に補助バーナを配設してもよい。これにより、二次焼却室における燃焼動作開始時等に十分な温度を維持できる。また、熔融バーナの代わりに、アーク加熱やプラズマトーチ加熱等を用いてもよい。
冷却室としては、水を貯留した水槽部を有したもの等が用いられ、灰熔融室で熔融された熔融スラグが水槽部の水中へ滴下されて急冷水さいとして処理される。
粒子層としては、粒径が1mm〜30mm、好ましくは3mm〜10mmの川砂,山砂等の砕石類,蛇紋岩,玄武岩等の岩石屑,ガラス屑,カレット,高炉スラグ,石灰石等の、低融点で焼却灰と共融する無機質粒子が、単独又は混合して用いられる。これにより、焼却物の焼却灰と共融して粒子層上で焼却灰を低温で熔融できる。尚、粒径が3mmより小さくなるにつれ、粒子層における通気の際の圧力損失が大きくなり、また通気の分散効果が小さく粒子層上での燃焼効率に欠ける傾向があり、粒径が10mmより大きくなるにつれ、粒子層での断熱効果に欠け熱損失が増加する傾向があり、いずれも好ましくない。
空気供給部としては、少なくとも、一次焼却室側,二次焼却室と灰熔融室側で各々独立しているのが好ましい。これにより、一次焼却室側,二次焼却室と灰熔融室側で別々に空気の供給量を調節でき燃焼や熔融に適した空気量を供給できる。また、空気供給部から供給される空気の供給量としては、少なくとも粒子層の表面側の粒子が昇温,熔着するのを防止できる空気量で、かつ、粒子層の粒子が空気の供給に伴い流動や飛散することのない空気量が、焼却物の種類や量に応じて適宜決められる。
バーナ用空気供給部としては、灰熔融室の周壁の天井部や天井部の周壁の1以上の所定部に熱交換器と連通した貫通口等により形成される。
尚、焼却灰を一次焼却室に投入し、該熔融式焼却システムを灰熔融の専用装置として使用してもよい。一次焼却室で未燃物を完全燃焼させ熔融効率を高めることができる。
ボイラー用燃焼炉等の汎用の燃焼炉として使用してもよい。これにより、灰分を含む燃料,RDF(ペレット化した廃棄物),石炭,重油,アスファルト類の安全な燃焼炉として使用でき、副生される灰熔融スラグを安全に利用することができる。
焼却物の種類等に応じて灰熔融室に、ソーダ灰,水ガラス,燐鉱石,石灰等の熔融補助剤を投入してもよい。これにより、灰熔融室での焼却灰の熔融を促進させることができるとともに、低温で熔融でき省エネルギー効率を高めることができる。
含水ゴミや有機汚泥等の水分の多い焼却物の場合、一次焼却室の上部にヒーティングパイプを追加して排出口の排ガスをヒーティングパイプ内に供給することにより、一次焼却室内で乾燥部分を作りだすことができ、一次焼却室内で焼却物の乾燥,燃焼を行うことができる。
また、水分の多い焼却物に石炭や重油等の燃料を混合して発熱量を調整することにより、通常の焼却物と同様に焼却熔融処理ができる。
更に、粒子層中にガスや軽油等の流体燃料の燃料噴出管を埋設し、粒子層中、若しくは粒子層表面に燃料を微量で噴出させてもよい。これにより、粒子層の表面がパイロットバーナと同様の役割を果たし、特に、一次焼却室や二次焼却室での焼却物の燃焼を確実に継続させることができる。
【0007】
本発明の請求項2に記載の灰熔融式焼却システムは、請求項1に記載の発明において、前記空気供給部が、前記一次焼却室の前記傾斜床,前記二次焼却室及び前記灰熔融室の前記床の上面に所定間隔で立設された複数の床桟と、各前記床桟の間に配設され前記送風機に接続された空気管と、前記空気管の前記傾斜床又は前記床側の周壁に穿設された空気噴出孔と、を備えた構成を有している。
これにより、空気管が複数の床桟の間に配設されているため、空気管から噴出された空気が床桟に沿って粒子層へ供給されてチャンネリングやショートパスが発生するのを防止でき、特に、灰熔融室において、熔融処理する焼却灰のない所へ空気が偏流するのを防止できるという作用を有する。また、空気噴出孔が、空気管の傾斜床又は床側の周壁に穿設されているため、空気供給時に空気の噴出によって焼却灰が浮遊するのを防止できるとともに、空気噴出孔が焼却灰や熔融スラグ等で塞がれるのを防止できるという作用を有する。
ここで、床桟及び空気管としては、一次焼却室の傾斜床の傾斜方向と略直角に配設されるのが好ましい。これにより、焼却物の燃焼及び焼却灰の熔融の各処理段階に応じて空気の供給量を容易に調節することができ燃焼効率,熔融効率を向上させることができる。
空気管としては、鉄やアルミニウム等の金属管,陶器や磁器等のセラミック管等の円管,楕円管,角管,箱状体等が用いられる。
空気噴出孔としては、円形状や四角形状等の多角形状の孔を空気管に複数穿設したものが用いられ、空気噴出孔の大きさとしては、直径又は対角線が1mm〜10mm、好ましくは1.5mm〜6mmに形成される。これにより、空気噴出孔から噴出された空気を粒子層へ均一に供給できる。また、1.5mmより小さくなるにつれ、焼却物の燃焼や焼却灰の熔融に必要な空気量を得難いとともに、必要な空気量を供給すると、空気管や送風機に背圧がかかり易くなる傾向が有り、6mmより大きくなるにつれ、粒子層を通気する空気の通気速度が遅くなり燃焼効率に欠ける傾向が有り、いずれも好ましくない。
尚、空気管の上部でかつ粒子層中に多数のレール状又はロストル等の火格子状の仕切り板を配設した場合、粒子層表面で生成した焼却灰を移動させる場合のガイドレールとして作用し、粒子層の粒子の移動を防止できる。
【0008】
本発明の請求項3に記載の灰熔融式焼却システムは、請求項1又は2の内いずれか1項に記載の発明において、前記熱交換器が、前記二次焼却室に連通した熱交換室と、前記熱交換室に形成された係止部と、前記係止部に係止されて所定間隔で前記熱交換室に遊挿され一端が前記バーナ用空気供給部に遊挿された1乃至複数の伝熱管と、前記伝熱管の上流側に接続された送風機と、を備えた構成を有している。
これにより、一次焼却室や二次焼却室で発生した燃焼熱が熱交換室に流入し熱交換室に配設された伝熱管が熱伝達により加熱されるため、送風機から伝熱管に供給された空気を加熱することができ、バーナ用空気供給部を介して灰熔融室に配設された熔融バーナに高温に加熱されたバーナ用空気を供給できるという作用を有する。
伝熱管を熱交換室に形成された係止部に係止するだけで、送風機とバーナ用空気供給部を伝熱管で連通して伝熱管を介して高温のバーナ用空気を灰熔融室に供給でき、簡単な構造で熱交換器を形成できるという作用を有する。
伝熱管が係止部やバーナ用空気供給部に遊挿して支持されているので、焼却時や未焼却時の温度差による伝熱管の膨張収縮を吸収でき耐久性を向上できるという作用を有する。
ここで、伝熱管としては、耐熱ステンレス,鋼,インコネル,ハステロイ等の金属製又はムライト,アルミナ,窒化珪素等のセラミック製の円管や楕円管,角管等が用いられ、送風機により伝熱管の内部に空気を供給して熱交換室内で伝熱管を加熱して灰熔融室に高温の空気を供給できるものが用いられる。
また、バーナ用空気供給部に連通された伝熱管の一端部としては、灰熔融室に伝熱管の一端部が露出しないように遊挿されるのが好ましい。これにより、伝熱管の端部が灰熔融室の熱等により損傷するのを防止できる。
熱交換室に形成された係止部としては、燃焼排ガスと送風機から供給される空気を分離する平板と、平板に1乃至複数の伝熱管を遊挿保持できる挿着孔を有したもの等任意の形状のものが用いられ、伝熱管を容易に吊り下げ等で係止できる形状であればよく、また、伝熱管を脱着自在に係止できる形状が好ましい。これにより、伝熱管の交換等の熱交換器内のメンテナンスが容易にできる。
【0009】
本発明の請求項4に記載の灰熔融式焼却システムは、請求項1乃至3の内いずれか1項に記載の発明において、前記二次焼却室,前記灰熔融室,前記冷却室の内いずれか1以上に接続された集塵機と、前記集塵機と前記一次焼却室を接続して配設された給送機と、を備えた構成を有している。
これにより、二次焼却室,灰熔融室,冷却室で発生した煤塵を集塵機で回収して給送機を介して一次焼却室へ戻すことができ、焼却,熔融,固化処理中に発生した煤塵を外部に排出することなく同時に該灰熔融式焼却システムで処理できるという作用を有する。
ここで、熔融スラグを水さい処理した冷却室の水をポンプ等で一次焼却室へ送り、冷却室の水中で濃縮された溶解成分を一次焼却室へ戻して焼却灰の熔融時の熔融剤として使用してもよい。これにより、灰熔融室へ熔融剤を投入する手間を省くことができる。また、汚泥の滞留を防止し、排水処理設備を著しく簡素化することができる。
尚、冷却室で冷却して生成されたスラグを洗浄水で洗浄しながら排出した場合、スラグ洗浄水を濾過手段を介して冷却室の水として使用し、更に、汚泥等を一次焼却室へ戻して焼却処理してもよい。
【0010】
本発明の請求項5に記載の灰熔融式焼却システムは、請求項1乃至4の内いずれか1項に記載の発明において、少なくとも前記一次焼却室の周壁が、空洞状の炉壁部と、前記炉壁部の空洞部に充填された水と、を有した水冷壁で形成された構成を有している。
これにより、一次焼却室に投入された都市ゴミや産業廃棄物等の焼却物中に、プラスチック廃棄物や石油製品等を含んでいる場合に、水冷壁の昇温を均一に防止できプラスチック廃棄物や石油製品等の熔融液化・ガス発生の暴走を防ぎ、一次焼却室内でのガスの発生を均一化することができるという作用を有する。
また、耐火物や断熱材の内張りを要さず施工性を向上できるという作用を有する。
ここで、一次焼却室の周壁のみを水冷壁とした場合、二次焼却室及び灰熔融室等の周壁は、耐火物や断熱材を内張りした煉瓦壁構造等で形成される。
また、温水による熱回収を計る場合には、二次焼却室や灰熔融室の周壁も水冷壁で形成し、その内側に耐火物や断熱材を張り形成するのが好ましい。これにより、従来は壁から放熱していた熱の回収を向上できるとともに、壁の耐火物や断熱材の寿命を著しく延長できる。
【0011】
本発明の請求項6に記載の灰熔融式焼却システムは、請求項1乃至5の内いずれか1項に記載の発明において、前記一次焼却室の上流側に連接された熔融剤投入口、前記一次焼却室の上流側に配設されたプッシャー、前記粒子層の上面に配設された仕切板、の内いずれか1以上を備えた構成を有している。
これにより、焼却灰の熔融処理中に、焼却物の種類等に応じて熔融剤投入口からガラス屑や玄武岩,蛇紋岩等の岩石屑等の熔融剤、及び/又は固体燃料を投入することができ、焼却灰の熔融を促し熔融処理性能を向上できるという作用を有する。
プッシャーを一次焼却室の上流側に備えることにより、投入口から投入された焼却物や熔融剤投入口から投入された熔融剤を一次焼却室内へ強制的に押し込むと同時に未燃焼物や熔融剤を移動・攪拌することができ、焼却物の焼却処理速度を向上できるという作用を有する。
粒子層の上面にレール状又はロストル等の火格子状の仕切板を備えることにより、一次焼却室,二次焼却室,灰熔融室内のメンテナンス時等に粒子層の粒子が掻きだされるのを防止できるという作用を有する。
【0012】
【発明の実施の形態】
(実施の形態1)
本発明における灰熔融式焼却システムの実施の形態1について、以下図面を用いて説明する。
図1は実施の形態1における灰熔融式焼却システムの要部断面全体側面図である。
図中、1は実施の形態1における灰熔融式焼却システム、2は灰熔融式焼却システム1の一次焼却室、2aは上流側から下流側へ向けて傾斜した一次焼却室2の傾斜床、3は一次焼却室2と連通した二次焼却室、4は二次焼却室3と連通した灰熔融室、4aは灰熔融室4の下流側端部、5は二次焼却室3及び灰熔融室4の床、6は炎口6aが灰熔融室4の底面の上部に向けられて配設された熔融バーナ、7は灰熔融室4の下流側端部4aの下方に位置した冷却室、7aは冷却室7の水槽部、7bは水槽部7aに貯留された冷却水、8は傾斜床2a及び床5に敷設された川砂等の砕石類や蛇紋岩等の岩石屑,ガラス屑等の無機質粒子からなる粒子層、9a,9bは傾斜床2a上の粒子層8,床5上の粒子層8に埋設された空気供給部、10a,10bは空気供給部9a,9bに接続された送風機、11は粒子層8の上面に配設されたレール状又は火格子状等からなる仕切板、12は一次焼却室2の上流側に配設され仕切板11上で往復動するプッシャー、13は一次焼却室2の周壁の水冷壁、13aは空洞状に形成された水冷壁13の炉壁部、13bは炉壁部13aの空洞部に充填された水、14は一次焼却室2の上流側に形成された焼却物を投入する投入口、15aは二次焼却室3の周壁、15bは二次焼却室3及び灰熔融室4の周壁、16は灰熔融室4の上方の周壁15bに形成された貫通孔からなるバーナ用空気供給部、17は二次焼却室3の下流側に開口して形成された熱交換器接続部、18は熱交換器接続部17を介してバーナ用空気供給部16に接続され二次焼却室3と灰熔融室4を連通した伝熱管を備えた熱交換器、18aは熱風と熱交換器18の伝熱管との接融時間を長くするとともに熱風のショートパスや偏流を防ぐバッファ、19は熱交換器18の上流側に接続された送風機、20は熱交換器18に接続され灰熔融式焼却システム1で発生した排ガスや煤塵,廃熱等が排出される排出部、21aは排出部20に接続されたヒートパイプ(図示せず)等からなり燃焼排ガスの燃焼熱を回収する排熱回収器、21bは排出部20に接続されたバッグフィルター等の濾布式やサイクロン等の遠心力式,衝突式等の慣性式の集塵機、21cは排熱回収器21a,集塵機21bに接続され排ガスを排出する煙突、22は集塵機21bと一次焼却室2を連通し媒塵等を一次焼却室2に給送する給送機、23は冷却室7の水槽部7aに接続され水槽部7a内のスラグを搬送しながら洗浄する洗浄兼用スクリューコンベヤ、23aは冷却室7で水さい処理されたスラグを排出するスラグ排出口、23bは洗浄兼用スクリューコンベヤ23に接続され搬送中のスラグを洗浄する洗浄水供給部、24は冷却室7の水槽部7aに接続され水槽部7aの冷却水7bを濾過手段(図示せず)を介して一次焼却室に供給するポンプである。
尚、図中、矢印Aは二次焼却室3中における燃焼熱の流れ、矢印Bは熱交換器18に供給されたバーナ用空気の流れ、を示す。
ここで、粒子層8は、粒径が1mm〜30mmの粒子を3cm〜60cmの厚さに敷きつめて形成されている。粒子層8の厚さが3cmより薄くなると、空気供給部9a,9bを粒子層8に埋設し難くなり、空気供給部9a,9bの大きさが不十分で十分な空気量を供給できない傾向が有り、また、粒子層8の厚さが60cmより厚くなっても粒子層8による効果は略一定となるため不必要であり、いずれも好ましくない。
【0013】
次に、実施の形態1における灰熔融式焼却システム1の空気供給部9a,9bについて、図面を用いて説明する。
図2(a)は実施の形態1における灰熔融式焼却システムの空気供給部の要部断面側面図であり、図2(b)は実施の形態1における灰熔融式焼却システムの他の形状の空気供給部の要部断面側面図である。
図中、25は略垂直方向に傾斜床2a,床5に粒子層8の流れと直交状に立設された複数の床桟、26は各床桟25の間に配設され送風機10a,10bに接続された鉄やアルミニウム等の金属管,陶器や磁器等のセラミック管等からなる空気管、26aは空気管26の傾斜床2a又は床5側の周壁に複数穿設された空気噴出孔、26′は傾斜床2a,床5の下方に形成され送風機10a,10bに接続された空洞状の空気箱、26′aは空気箱26′に連通し各床桟25の間に配設された角管からなる空気管、26′bは空気管26′aの側面に複数穿設された空気噴出孔である。
尚、図中の矢印Cは空気管26の空気噴出孔26aから噴出された空気の流れを示す。
ここで、空気管26,26′aは、空気管26,26′aの外周面の上部が粒子層8の表面から10mm〜100mm、好ましくは20mm〜70mmの位置に埋設される。20mmより浅く埋設されると、空気管26,26′aから供給する空気量を増加した場合に粒子層8の粒子が飛散し易くなる傾向が有り、また、70mmより深く埋設されると、送風機10a,10bに背圧がかかる傾向があるため、いずれも好ましくない。
次に、実施の形態1における灰熔融焼却システム1の熱交換器18について、図面を用いて説明する。
図3(a)は実施の形態1における灰熔融式焼却システムの熱交換器の要部断面側面図であり、図3(b)は熱交換器の上端部を示す要部断面側面図であり、図3(c)は熱交換器の下端部を示す要部断面側面図である。
図中、27は熱交換器接続部17及びバーナ用空気供給部16を介して二次焼却室3と灰熔融室4を連通した熱交換器18の熱交換室、28は熱交換室27の上部に形成された板状体等からなる係止部、28aは係止部28に穿設された孔状部からなる吊設部、29は係止部28の吊設部28aに挿入されて熱交換室27内に所定間隔で複数配設された耐熱ステンレス,鋼,インコネル,ハステロイ等の金属製又はムライト,アルミナ,窒化珪素等のセラミック製の伝熱管、29aは伝熱管29の上端につば状に形成され吊設部28aの外周に係止して伝熱管29の上端部を係止した伝熱管係止つば、29bは伝熱管29を吊設部28aに挿着した際に伝熱管29が吊設部28aと当接する位置に装着されたサヤ管、29cは貫通口からなるバーナ用空気供給部16の途中まで遊挿された伝熱管29の下端部である。
【0014】
以上のように構成された灰熔融式焼却システムにおいて、以下焼却物の焼却熔融処理動作について説明する。
一次焼却室2の投入口14から都市ゴミや産業廃棄物等の焼却物を投入し、送風機10a,10bの運転を開始して空気供給部9a,9bの空気管26に空気を供給し、図2(a)若しくは図2(b)の矢印Cに示すように、空気噴出孔26aから粒子層8を介して一次焼却室2,二次焼却室3,灰熔融室4へ空気を供給するとともに、一次焼却室2に投入された焼却物に着火して焼却物の燃焼を開始する。
次に、一次焼却室2に投入された焼却物は、一次焼却室2の傾斜床2aに敷設された粒子層8の表面で移動しながら粒子層8側から燃焼されて焼却灰及び燃焼ガスを生成し、一次焼却室2で生成された燃焼ガスが二次焼却室3へ流入するとともに、焼却灰や未燃焼物等が粒子層8上の表面流若しくはプッシャー12により二次焼却室3へ供給される。
二次焼却室3では、空気供給部9bの空気管26の空気噴出孔26aから粒子層8を介して二次焼却室3に空気が供給され、一次焼却室2から二次焼却室3へ流下した燃焼ガスが完全燃焼されるとともに、未燃焼物が燃焼されて焼却灰が生成されて粒子層8の表面を移動しながら灰熔融室4へ焼却灰が供給される。
ここで、一次焼却室2,二次焼却室3及び灰熔融室4で発生した燃焼熱は、矢印Aに示すように、二次焼却室3から熱交換器接続部17を介して熱交換器18の熱交換室27へ流入して熱交換室27に配設されたバッファ18aにより整流され、伝熱管29の外周面に沿って伝熱管29を加熱しながら排出部20側へ流動し、排出部20から排熱回収器21a及び集塵機21bへ排出される。また、送風機19から伝熱管29に供給された空気は、燃焼熱で加熱された伝熱管29内を通過する間に加熱され、伝熱管29の下端部29cからバーナ用空気供給部16を介して灰熔融室4に供給される。
次に、二次焼却室3から灰熔融室4に供給された焼却灰は、炎口6aを灰熔融室4の焼却灰に向けて配設された熔融バーナ6及び灰熔融室4における輻射熱により、焼却灰の上面側から熔融されて熔融スラグが生成される。
ここで、粒子層8側は、空気供給部9bの空気管26から供給された空気により冷却されるため、粒子層8側に生成された熔融スラグが冷却されて固化し、焼却灰の上面側に生成された熔融スラグが冷却室7側へ移動するための流路が形成される。尚、灰熔融室4の粒子層8に供給する空気供給部9bからの空気の供給量を調節することにより、熔融スラグの流路の形状を調節できる。
次いで、灰熔融室4で生成した熔融スラグが、灰熔融室4の下流側端部4aから冷却室7の水槽部7aの冷却水7b中に滴下し、冷却水7bで急冷水さい化されて固化し、スラグが生成される。
次いで、冷却室7の水槽部7aで固化して生成されたスラグは、洗浄兼用スクリューコンベヤ23でスラグ排出口23a側へ搬送されながら、洗浄水供給部23bから供給される洗浄水で洗浄されてスラグ排出口23aから灰熔融式焼却システム1の系外へ排出される。尚、系外へ排出されたスラグは、再資源として利用される他、灰熔融式焼却システム1の粒子層8の粒子として使用される。
また、熱交換室27に連通された排熱回収器21aにより回収された燃焼排ガスは、煤塵と排ガスに分離されて排ガスが煙突21cから大気に放出され、また、集塵機21bにより回収された灰熔融式焼却システム1内で発生した煤塵や燃焼排ガスから分離された煤塵等は、給送機22により一次焼却室2へ給送されて焼却熔融処理される。更に、冷却室7の水槽部7aに接続されたポンプ24により水槽部7aの冷却水7b中に濃縮された溶解成分が一次焼却室2へ戻され、熔融剤として使用される。
尚、冷却室7で生成されたスラグを洗浄した洗浄水を一次焼却室へ戻し、焼却熔融処理してもよい。
また、粒子層8中にガスや軽油等の流体燃料の燃料噴出管を埋設し、粒子層8中に燃料を供給し燃焼させてもよい。これにより、燃焼のとろ火効果で一次焼却室2,二次焼却室3での焼却物の燃焼を確実に継続させることができる。
更に、焼却物の投入時に予め炭素質の多い石炭やコークス類の粉末や重質廃油等を混合して一次焼却室2に投入してもよい。これにより、ガス化の不安定性を防ぎ安全性を向上できるとともに、灰の熔融を助長することができ、廃油やヘドロ等の液状可燃物の焼却もできる。
【0015】
以上のように実施の形態1における灰熔融式焼却システムは構成されているため、以下の作用を有する。
a.投入口から投入された都市ゴミや産業廃棄物等の焼却物が、一次焼却室で燃焼されて燃焼ガスと焼却灰を生成するとともに、二次焼却室で燃焼ガスと未燃焼物を完全燃焼させて焼却灰を生成し、更に、灰熔融室で熔融バーナ及び輻射熱により焼却灰を熔融して熔融スラグを生成して冷却室に滴下し、冷却室の水槽部内の冷却水による水さい処理で熔融スラグを冷却固化することができ、該灰熔融式焼却システムで一度に焼却物の焼却・熔融・固化の処理ができる。
b.一次焼却室の傾斜床,二次焼却室及び灰熔融室の床に粒子層が敷設されているとともに、粒子層に埋設した空気供給部を有しているため、都市ゴミや産業廃棄物等の焼却物を投入して着火するだけで、空気供給部から燃焼用空気が供給されて粒子層側から焼却することができ、含水ゴミや有機汚泥等の任意の焼却物を完全燃焼させ、かつ熔融処理することができる。
c.灰熔融室の床に粒子層が敷設されているとともに、粒子層内に空気供給部が埋設されているため、灰熔融室内で熔融された焼却灰の熔融スラグの粒子層側が空気供給部による通気により冷却されて固化して熔融スラグの液溜り及び流路を形成できるとともに、高温化での焼却灰の熔融スラグとの反応等で床が損傷するのを防止できる。また、該灰熔融式焼却システムの運転の停止,再運転の場合、従来の熔融炉ではスラグ液溜り部の破損防止のために急熱が困難であったが、該灰熔融式焼却システムの粒子層で形成された熔融スラグの液溜り部は、破損しても再熔融して形成でき該灰熔融式焼却システムの制御が簡単にできる。
d.空気供給部が、床桟と空気管からなり、空気管が複数の床桟の間に配設されているため、各空気管から噴出された空気がチャンネリングするのを防止でき、特に、灰熔融室において、熔融処理する焼却灰のない所へ空気が偏流するのを防止し熔融効率を高めることができる。
e.空気噴出孔が、空気管の傾斜床又は床側の周壁に穿設されているため、空気が傾斜床等の全体から低流速で供給されるので、空気供給時に焼却灰が浮遊するのを防止できるとともに、空気噴出孔が焼却灰や熔融スラグ等で塞がれるのを防止できる。
f.二次焼却室と灰熔融室を連通した熱交換器を有しているため、二次焼却室で発生した燃焼熱を熱交換器で回収し、バーナ用空気供給部を介して、灰熔融室に配設された熔融バーナに高温に加熱されたバーナ用空気を供給でき灰熔融室での熔融処理性能を向上でき、また、省エネルギー性を向上できる。
g.熱交換器が、熱交換室と、上端部が熱交換室の係止部に係止された伝熱管で構成されているため、伝熱管を係止部に挿入して係止するだけで送風機とバーナ用空気供給部を連通して高温のバーナ用空気を灰熔融室に供給でき、簡単な構造で熱交換器が形成できるとともに、メンテナンスが容易で保守作業性に優れ、また、伝熱管の下端部がバーナ用空気供給部の途中まで挿入されているため伝熱管の下端部が熔融バーナの炎等で損傷するのを防止できる。
h.熱交換器が、二次焼却室と灰熔融室を連通しているため、二次焼却室から熱交換室に流入した燃焼熱で伝熱管を加熱するとともに、送風機から伝熱管に供給された空気を加熱することができ、バーナ用空気供給部を介して灰熔融室に配設された熔融バーナに高温のバーナ用空気を供給でき灰熔融室での熔融処理性能を向上できる。
i.熱交換器の熱交換室に接続された集塵機と、集塵機と一次焼却室を連通した給送機を備えているため、焼却物の焼却・熔融処理中に発生した煤塵等を集塵機で回収して一次焼却室へ戻すことができ、焼却・熔融処理中に発生した煤塵等を該灰熔融式焼却システムの系外に排出することなく処理でき、有毒排出物(ダイオキシン等)の排出を防止できる。
j.一次焼却室の周壁が、水冷壁で形成されているため、一次焼却室に投入される都市ゴミや産業廃棄物等の焼却物中に、プラスチック廃棄物や石油製品等を含んでいる場合にも、プラスチック廃棄物や石油製品等の熔融液化・ガス発生の暴走を防ぎ、一次焼却室内でのガスの発生を均一化することができるとともに、耐火物や断熱材の内張りを要さず施工性を向上できる。
k.一次焼却室の上流側にプッシャーを備えているため、一次焼却室で生成された焼却灰や未焼却物等を連続的又は間欠的に二次焼却室へプッシャーで強制的に供給することができるとともに、焼却灰や未焼却物と粒子層中の熔融剤等とを攪拌しながら二次焼却室へ供給することができ、焼却物の焼却や熔融を促進し燃焼効率や熔融効率を向上させることができる。
l.粒子層の上面に火格子状等からなる仕切板を備えているため、プッシャーの駆動時に粒子層の粒子が二次焼却室側へ移動されるのを防止できるとともに、一次焼却室,二次焼却室,灰熔融室内のメンテナンス時等に粒子層の粒子が掻きだされるのを防止できる。
【0016】
(実施の形態2)
本発明における灰熔融式焼却システムの実施の形態2について、以下図面を用いて説明する。
図4は実施の形態2における灰熔融式焼却システムの要部断面全体側面図である。尚、実施の形態1と同様のものには同一の符号を付して説明を省略する。
図中、30は実施の形態2における灰熔融式焼却システム、31は一次焼却室2の上流側に連接された熔融剤投入口である。
以上のように構成された実施の形態2における灰熔融式焼却システム30では、実施の形態1と同様に、一次焼却室2に焼却物を投入して焼却物を燃焼し、次いで、未焼却物と燃焼ガスを二次焼却室3で完全燃焼させ、更に、灰熔融室4で焼却灰を熔融して熔融スラグを生成し、冷却室7で熔融スラグを水さい処理して固化し、スラグを生成するとともに、洗浄兼用スクリューコンベヤ23でスラグ排出口23aからこの回収スラグを排出し、焼却物の焼却・熔融・固化処理が行われる。
また、焼却物の種類等に応じて、焼却物の焼却熔融処理中に熔融剤投入口31からソーダ灰,水ガラスやガラス屑,燐鉱石,石灰,玄武岩,蛇紋岩等の岩石屑若しくは上記回収スラグ等を投入して添加することにより、焼却物の燃焼・熔融が促進される。
以上のように実施の形態2における灰熔融式焼却システムは構成されているため、実施の形態1の作用に加え、一次焼却室の上流側に熔融剤投入口を備えているので、焼却物に予め熔融剤を混合することなく焼却物を投入口から投入し、焼却物の種類等に応じて、焼却物の焼却熔融処理中に熔融剤投入口から熔融剤を投入して焼却物の燃焼・熔融を促進させることができるという作用を有する。
【0017】
【発明の効果】
以上のように本発明における灰熔融式焼却システムによれば、以下の優れた効果を実現できる。
請求項1に記載の灰熔融式焼却システムによれば、
(1)投入口から投入された都市ゴミや産業廃棄物等の焼却物が、一次焼却室の傾斜床に敷設された粒子層により二次焼却室側へ移動しながら燃焼されて焼却灰を生成するとともに、燃焼時に発生した燃焼ガスとともに焼却灰が二次焼却室へ流下して二次焼却室で完全燃焼され、更に、灰熔融室で焼却灰が熔融バーナ及び輻射熱で熔融され熔融スラグが生成され、次いで熔融スラグが冷却室に落下して固化されてスラグが生成され、都市ゴミや産業廃棄物等の焼却物を一度に焼却・熔融・固化処理でき焼却物の処理性能に優れるとともに、該灰熔融式焼却システムを小型化でき省エネルギー性,生産性に優れる。
(2)一次焼却室の傾斜床,二次焼却室及び灰熔融室の床に粒子層が敷設されているとともに、粒子層に埋設した空気供給部を有しているため、都市ゴミや産業廃棄物等の焼却物を投入して着火するだけで、空気供給部から燃焼用空気が供給されて粒子層側から酸化雰囲気で焼却することができ、含水ゴミや有機汚泥等の任意の焼却物を確実に完全燃焼させて熔融処理することができ焼却物の焼却効率・処理性能に優れる。
(3)灰熔融室の床に粒子層が敷設されているとともに、粒子層内に空気供給部が埋設されているため、灰熔融室内で熔融された焼却灰の熔融スラグの粒子層側が、空気供給部による通気により冷却されて固化して上面側の熔融スラグの容器となるとともに、熔融スラグが移動する流路が形成されるので、熔融による高温や熔融スラグの熱等で床が損傷するのを防止でき安全性に優れるとともに、耐スラグ浸蝕性の高級耐火物を要さず低コスト化を図れ、また、該熔融式焼却システムの耐久性に優れる。
(4)二次焼却室と灰熔融室のバーナ用空気供給部を連通した熱交換器を有しているため、焼却物の焼却及び焼却灰の熔融時に発生した燃焼熱を熱交換器で回収し、バーナ用空気供給部を介して、灰熔融室に配設された熔融バーナに高温のバーナ用空気を供給でき灰熔融室での焼却灰の熔融効率,熱効率を向上できるとともに、熔融処理性能に優れる。
(5)冷却室で回収されたスラグを水洗浄して排出する場合、スラグ中のアルカリ等の水溶性成分を除去することができ、スラグを埋め立てやリサイクル材料として安全に使用することができ、環境汚染を防止できるとともに、洗浄により回収された水溶性成分を熔融補助剤として一次焼却室に戻した場合、水溶性成分を分解又はガラス成分としてスラグ中に固定されて安定化され、安全に処理することができる。
請求項2に記載の発明によれば、請求項1の効果に加えて、
(6)空気供給部が、床桟と、床桟の間に配設された空気管で構成されているため、空気管から噴出された空気が床桟に沿って粒子層へ供給されてチャンネリングが発生するのを防止でき、特に、灰熔融室において、熔融処理する焼却灰のない所へ空気が流れるのを防止でき、各焼却室での焼却効率及び灰熔融室での熔融効率に優れ、焼却物の処理性能に優れる。
(7)空気噴出孔が、空気管の傾斜床又は床側の周壁に穿設されているため、空気供給時に空気の噴出によって焼却灰が浮遊するのを防止できるとともに、空気噴出孔が焼却灰や熔融スラグ等で塞がれるのを防止でき、空気をスムーズに供給でき焼却物の焼却熔融処理性能に優れる。
【0018】
請求項3に記載の発明によれば、請求項1又は2の効果に加えて、
(8)熱交換器が、熱交換室と、係止部と、伝熱管で構成され、伝熱管を熱交換室に形成された係止部に係止するだけで、送風機とバーナ用空気供給部を伝熱管で連通して伝熱管を介して高温のバーナ用空気を灰熔融室に供給できる熱交換器を形成でき、構造が簡単でメンテナンス性に優れるとともに生産性に優れ、また、伝熱管に直接燃焼熱を当てて伝熱管を加熱して、バーナ用空気を加熱できるため熱効率に優れる。
(9)二次焼却室で発生した燃焼熱が熱交換室に流入し熱交換室に配設された伝熱管が熱伝達により加熱されるため、送風機から伝熱管に供給された空気を加熱することができ、バーナ用空気供給部を介して灰熔融室に配設された熔融バーナに高温のバーナ用空気を供給でき、熔融バーナの燃焼効率を向上でき灰熔融室における焼却灰の熔融処理性能に優れる。
請求項4に記載の発明によれば、請求項1乃至3の効果に加えて、
(10)二次焼却室,灰熔融室,冷却室の内いずれか1以上に接続された集塵機と、集塵機と一次焼却室を連通した給送機と、を備えることにより、二次焼却室,灰熔融室,冷却室で発生した煤塵を集塵機で回収して給送機を介して一次焼却室へ戻すことができ、焼却,熔融,固化処理中に発生した煤塵を外部に排出することなく同時に該灰熔融式焼却システムで処理でき、該灰熔融式焼却システムの動作時に系外へ煤塵等を排出するのを防止でき作業環境に優れるとともに、焼却物の処理性能に優れる。
請求項5に記載の発明によれば、請求項1乃至4の効果に加えて、
(11)少なくとも一次焼却室の周壁を水冷壁で形成することにより、特に、一次焼却室に投入される都市ゴミや産業廃棄物等の焼却物中に、プラスチック廃棄物や石油製品等を含んでいる場合に、プラスチック廃棄物や石油製品等の熔融液化・ガス発生の暴走を防ぎ、一次焼却室内でのガスの発生を均一化することができ安全性に優れる。
(12)周壁の形成時に耐火物や断熱材の内張りを要さず施工性を向上でき、該灰熔融式焼却システムの生産性を向上できるとともに、従来炉壁から放熱されていた熱を温水として回収することができ、熱の有効利用性に優れる。
請求項6に記載の発明によれば、請求項1乃至5の効果に加えて、
(13)一次焼却室の上流側に連接された熔融剤投入口を備えることにより、焼却灰の熔融処理中に、熔融剤投入口からガラス屑や玄武岩,蛇紋岩等の岩石屑等の熔融剤を投入することができ、焼却灰の熔融を促し熔融処理性能を向上できる。
(14)一次焼却室の上流側に配設されたプッシャーを備えることにより、投入口から投入された焼却物や熔融剤投入口から投入された熔融剤を一次焼却室内へ強制的に押し込むと同時に未燃焼物や熔融剤を移動・攪拌することができ、焼却物の燃焼処理速度を向上できる
(15)粒子層の上面に配設された仕切板を備えることにより、一次焼却室,二次焼却室,灰熔融室内のメンテナンス時等に粒子層の粒子が掻きだされるのを防止でき、メンテナンス性に優れる。
【図面の簡単な説明】
【図1】実施の形態1における灰熔融式焼却システムの要部断面全体側面図
【図2】(a)実施の形態1における灰熔融式焼却システムの空気供給部の要部断面側面図
(b)実施の形態1における灰熔融式焼却システムの他の形状の空気供給部の要部断面側面図
【図3】(a)実施の形態1における灰熔融式焼却システムの熱交換器の要部断面側面図
(b)熱交換器の上端部を示す要部断面側面図
(c)熱交換器の下端部を示す要部断面側面図
【図4】実施の形態2における灰熔融式焼却システムの要部断面全体側面図
【符号の説明】
1,30 灰熔融式焼却システム
2 一次焼却室
2a 傾斜床
3 二次焼却室
4 灰熔融室
4a 下流側端部
5 床
6 熔融バーナ
6a 炎口
7 冷却室
7a 水槽部
7b 冷却水
8 粒子層
9a,9b 空気供給部
10a,10b 送風機
11 仕切板
12 プッシャー
13 水冷壁
13a 炉壁部
13b 水
14 投入口
15a,15b 周壁
16 バーナ用空気供給部
17 熱交換器接続部
18 熱交換器
18a バッファ
19 送風機
20 排出部
21a 排熱回収器
21b 集塵機
21c 煙突
22 給送機
23 洗浄兼用スクリューコンベヤ
23a スラグ排出口
23b 洗浄水供給部
24 ポンプ
25 床桟
26,26′a 空気管
26′ 空気箱
26a,26′b 空気噴出孔
27 熱交換室
28 係止部
29 伝熱管
31 熔融剤投入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ash fusion incineration system that incinerates municipal waste, industrial waste, and the like, and further melts and solidifies incineration ash.
[0002]
[Prior art]
Conventionally, municipal waste, industrial waste, and the like have been incinerated in an incinerator or the like, and then incinerated ash is buried in the soil. However, in recent years, environmental pollution such as leaching of harmful substances in incineration ash to landfills filled with incineration ash has become a social problem, and incineration ash is melted and solidified for treatment.
The following are disclosed as conventional apparatuses for melting and solidifying incineration ash obtained by incineration of municipal waste, industrial waste, and the like.
Japanese Utility Model Publication No. 61-96128 (hereinafter referred to as “A”) discloses a “waste incinerator in which a combustion or incinerator ash is directly connected to a combustion zone of a stoker incinerator”. Yes.
Japanese Utility Model Laid-Open No. 5-79225 (hereinafter referred to as “B”) discloses that “the melting chamber of the melting furnace is provided with a melting burner, incineration ash is melted by the melting burner, and this molten slag is discharged from the slag outlet to the downstream of the melting chamber. In the incinerated ash melting apparatus for discharging to the side slag cooling chamber, the incinerated ash melting apparatus in which the opening of the slag outlet has a substantially circular horizontal hole or inclined hole shape and is provided on the end surface of the downstream side wall of the melting chamber. Is disclosed.
Japanese Laid-Open Patent Publication No. 6-323514 (hereinafter referred to as “C”) includes “a bed slightly inclined in the exit direction and a tuyere of high-temperature preheated air blowing provided at a lower portion of a peripheral wall made of a water-cooled wall. An ash-melting-type waste incinerator that has high-temperature preheated air by exchanging heat with exhaust gas from the tuyere, melts the combustion ash of the garbage, and flows down the slanted bed to take it out. ing.
Japanese Examined Patent Publication No. 7-81695 (hereinafter referred to as “Di”) “provides a melting burner in the melting chamber of the melting furnace, melts the incinerated ash by this melting burner, and cools the molten slag downstream of the melting chamber. In the incineration ash melting treatment device discharged into the chamber, an exhaust gas pipe for combustion exhaust gas is connected to the melting furnace wall between the incineration ash charging hopper and the melting chamber upstream of the melting chamber, and between the melting chamber and the exhaust gas pipe, Constructed in a preheating chamber that preheats incineration ash with combustion exhaust gas, and burns the molten burner in an air-deficient state, and an additional air nozzle is provided in the preheating chamber for secondary combustion of combustible components of the incineration exhaust gas. An incinerated ash melting processing apparatus is disclosed in which a step having a lower melting chamber side is formed on the bottom wall of the melting furnace.
[0003]
[Problems to be solved by the invention]
However, the conventional incineration ash melting processing apparatus and ash melting type garbage incinerator for melting and solidifying the above incineration ash have the following problems.
In the incineration ash melting processing device described in the gazette,
a. The thermal energy applied by incineration ash melting or incineration equipment cannot be used as thermal energy during incineration or melting, and lacks energy saving performance during incineration ash melting or incineration equipment operation.
In the incineration ash melting treatment apparatus described in
b. Since the exhaust gas pipe that connects the preheating chamber and the slag cooling chamber and the air preheater is provided, the apparatus becomes large in size, and the structure is complicated and the productivity and maintenance of the apparatus are lacking.
c. Since the incineration ash is melted from the top surface of the incineration ash with a melting burner, the melting efficiency of the incineration ash on the bottom side of the melting furnace is lacking, and the incineration ash is in contact with the bottom wall of the melting furnace, so the incineration ash melts Sometimes the walls are easily damaged, and the refractory of the melting furnace requires a high-grade refractory having high slag erosion resistance, and the melting furnace is enlarged.
d. The incineration ash supplied to the preheating chamber is preheated with the combustion exhaust gas from the molten burner and melted in the melting chamber, and the combustion exhaust gas is introduced into the air preheater to heat the combustion air in the melting burner. When the ash is preheated, the amount of heat of the combustion exhaust gas is lost and the heating efficiency of the combustion air is lacking.
In the ash melting type garbage incinerator described in C
e. In the melting incinerator, the combustion of the garbage and the melting of the combustion ash are performed at the same time. Therefore, the combustion of the garbage and the melting of the combustion ash are likely to be uneven, and the combustion / melting performance of the garbage is lacking.
f. It has a high temperature air tuyere at the lower part of the peripheral wall of the melting incinerator, and dust and combustion ash are in direct contact with the periphery of the hot air tuyere. In addition to lack of maintainability in the melting incinerator, combustion ash and the like are easily clogged in the high-temperature air tuyere and lack of suitability for operation.
In the incineration ash melting apparatus described in
g. Since the additional air nozzle corresponding to the preheating chamber is provided and additional air is supplied from the additional air nozzle, the waste incineration ash supplied to the preheating chamber is scattered and lacks the melting performance of the waste incineration ash.
h. Since a step is provided between the preheating chamber and the melting chamber, the structure in the melting furnace is complicated and the productivity and maintainability of the melting furnace are lacking.
i. Since the exhaust gas pipe and the additional air pipe connected to the preheating chamber and the slag cooling chamber are provided, the structure is complicated and the apparatus is enlarged.
Furthermore, in the incineration ash melting treatment apparatus described in the bulletin No. 2 or No. 2 of the incineration, only the incineration ash can be melted and the dust in the melting furnace cannot be incinerated again, and the waste incinerated in the existing incinerator It takes time and effort to put incineration ash, etc.
[0004]
The present invention solves the above-mentioned conventional problems, can be downsized with a simple structure, and can reliably incinerate, melt and solidify municipal waste, industrial waste, etc. at one time, and incineration work It is an object of the present invention to provide an ash-melting incineration system that is excellent in workability and volume reduction, and that can prevent the generation of environmental hormones such as dioxins and has excellent incineration and melting performance.
[0005]
[Means for Solving the Problems]
The ash fusion type incineration system according to claim 1 of the present invention includes a primary incineration chamber having an inclined bed inclined from the upstream side toward the downstream side, a secondary incineration chamber communicating with the primary incineration chamber, An ash melting chamber connected to the secondary incineration chamber, a melting burner disposed with a flame port facing the ash melting chamber, a cooling chamber disposed below a downstream end of the ash melting chamber, and Embedded in the inclined bed of the primary incineration chamber, the particle layer laid on the floor of the secondary incineration chamber and the ash melting chamber, and embedded in the particle layer of the primary incineration chamber, the secondary incineration chamber, and the ash melting chamber An air supply unit, a blower connected to the air supply unit, an inlet connected to the upstream side of the primary incineration chamber, a burner air supply unit formed in the ash melting chamber, and the two The heat exchanger which connected the next incinerator and the said air supply part for burners was provided.
As a result, incinerated waste such as municipal waste and industrial waste that is input from the inlet is burned while moving to the secondary incinerator side by the particle layer laid on the inclined floor of the primary incinerator to generate incineration ash At the same time, the incineration ash flows into the secondary incineration chamber together with the combustion gas generated during combustion, and is completely burned in the secondary incineration chamber. Further, the incineration ash is melted by the melt burner and radiant heat in the ash melting chamber to produce molten slag. Then, the molten slag falls into the cooling chamber and is solidified to produce slag, which has the effect of incineration, melting, and solidification treatment of municipal waste and industrial waste.
Since the particle bed is laid on the inclined floor of the primary incineration chamber, the secondary incineration chamber, and the ash melting chamber, and has an air supply section embedded in the particle layer, municipal waste, industrial waste, etc. Just by injecting and igniting the incinerated product, combustion air is supplied from the air supply unit and incinerated from the particle layer side, and any incinerated product such as water-containing waste and organic sludge is completely combusted for melting treatment It has the effect of being able to.
In particular, in the secondary incineration chamber, combustion gas can be combusted in a sufficient oxygen atmosphere from the particle layer side, high temperature and sufficient residence time can be given, and generation of environmental hormones such as dioxin can be prevented. It has the action.
Since the particle layer is laid on the floor of the ash melting chamber and the air supply unit is embedded in the particle layer, the particle layer side of the molten slag of incinerated ash melted in the ash melting chamber is due to the air supply unit Since it is cooled and solidified by aeration, it has the effect of preventing the floor from being damaged by high temperature caused by melting.
Since it has a heat exchanger that connects the burner air supply section of the secondary incineration chamber and the ash melting chamber, the combustion heat generated in the secondary incineration chamber is recovered by the heat exchanger, and the burner air supply section is Thus, the hot burner air can be supplied to the melt burner disposed in the ash melting chamber.
Even municipal waste made of various wastes with high bulk density is incinerated and melted at a time, so that the volume can be remarkably reduced and the landfill can be made effective.
[0006]
Here, as the inclination angle of the inclined bed of the primary incineration chamber, it is preferable that the angle of repose of the particles in the particle layer laid on the inclined bed is α−30 ° to α + 30 °. When the inclination angle is smaller than α-30 °, the incinerated product put into the primary incineration chamber tends to be difficult to move to the secondary incineration chamber while burning on the particle layer, and tends to lack combustion efficiency. There is a tendency that the incinerated product thrown into the chamber moves to the secondary incineration chamber before combustion and the combustion in the primary incineration chamber becomes difficult to be performed, and both are not preferable.
The melting burner is disposed in a structure that not only melts the incineration ash in the ash melting chamber but also maintains the temperature of the secondary incineration chamber. Moreover, you may arrange | position an auxiliary burner in a secondary incinerator in order to maintain the temperature of a secondary incinerator. Thereby, sufficient temperature can be maintained at the time of the start of combustion operation in the secondary incinerator. Further, arc heating, plasma torch heating, or the like may be used instead of the melt burner.
As the cooling chamber, one having a water tank portion storing water or the like is used, and the molten slag melted in the ash melting chamber is dropped into the water of the water tank portion and treated as a quench water pad.
The particle layer has a low melting point such as crushed stones such as river sand and mountain sand having a particle size of 1 mm to 30 mm, preferably 3 mm to 10 mm, debris such as serpentine and basalt, glass debris, cullet, blast furnace slag, limestone, etc. Inorganic particles that are eutectic with incinerated ash are used alone or in combination. Thereby, the incineration ash can be melted at a low temperature on the particle layer by eutectic melting with the incineration ash of the incineration product. As the particle size becomes smaller than 3 mm, the pressure loss during ventilation in the particle layer increases, the dispersion effect of the ventilation tends to be small, and the combustion efficiency on the particle layer tends to be lacking, and the particle size is larger than 10 mm. As it becomes, the heat insulation effect in the particle layer tends to increase and heat loss tends to increase.
It is preferable that the air supply unit is independent at least on the primary incineration chamber side, the secondary incineration chamber side, and the ash melting chamber side. Thereby, the supply amount of air can be adjusted separately on the primary incineration chamber side, the secondary incineration chamber side, and the ash melting chamber side, and an air amount suitable for combustion and melting can be supplied. The amount of air supplied from the air supply unit is at least the amount of air that can prevent the particles on the surface side of the particle layer from rising in temperature and welding, and the particles in the particle layer are used for supplying air. The amount of air that does not flow or scatter is appropriately determined according to the type and amount of the incinerated material.
The burner air supply section is formed by a through-hole or the like communicating with a heat exchanger at one or more predetermined parts of the peripheral wall of the ash melting chamber or the peripheral wall of the ceiling section.
In addition, incineration ash may be put into a primary incineration chamber, and the melting incineration system may be used as a dedicated apparatus for ash melting. Unburnt materials can be completely burned in the primary incinerator to increase melting efficiency.
You may use as general-purpose combustion furnaces, such as a combustion furnace for boilers. Thereby, it can be used as a safe combustion furnace for fuel containing ash, RDF (pelleted waste), coal, heavy oil, and asphalt, and by-product ash melt slag can be used safely.
Depending on the type of incinerator, etc., a melting aid such as soda ash, water glass, phosphate rock, or lime may be added to the ash melting chamber. Thereby, melting of the incinerated ash in the ash melting chamber can be promoted, and it can be melted at a low temperature to improve energy saving efficiency.
In the case of incinerated products with a high water content such as water-containing waste and organic sludge, a heating pipe is added to the upper part of the primary incineration chamber, and exhaust gas from the discharge port is supplied into the heating pipe, so that the dry part is removed in the primary incineration chamber. It can be produced and the incinerated product can be dried and burned in the primary incineration chamber.
In addition, by mixing fuel such as coal or heavy oil with an incinerated product with a high amount of water and adjusting the calorific value, the incineration and melting treatment can be performed in the same manner as a normal incinerated product.
Furthermore, a fuel jet pipe of fluid fuel such as gas or light oil may be embedded in the particle layer, and a small amount of fuel may be jetted in the particle layer or on the particle layer surface. Thereby, the surface of the particle layer plays the same role as the pilot burner, and in particular, the combustion of the incinerated material in the primary incineration chamber and the secondary incineration chamber can be reliably continued.
[0007]
The ash fusion incineration system according to claim 2 of the present invention is the ash fusion incineration system according to claim 1, wherein the air supply unit includes the inclined bed, the secondary incineration chamber, and the ash melting chamber of the primary incineration chamber. A plurality of floor rails erected on the upper surface of the floor at predetermined intervals, an air pipe disposed between the floor rails and connected to the blower, and the inclined floor or the floor side of the air pipe And an air ejection hole drilled in the peripheral wall.
As a result, the air pipes are arranged between the plurality of floor rails, so that air blown from the air pipes is supplied to the particle layer along the floor rails to prevent channeling and short paths from occurring. In particular, in the ash melting chamber, the air can be prevented from drifting to a place where there is no incinerated ash to be melted. In addition, since the air ejection holes are formed in the inclined floor of the air pipe or the peripheral wall on the floor side, it is possible to prevent the incineration ash from floating due to the ejection of air during air supply, and the air ejection holes It has the effect that it can be prevented from being clogged with molten slag or the like.
Here, it is preferable that the floor rails and the air pipes are disposed substantially perpendicular to the inclination direction of the inclined floor of the primary incineration chamber. Thereby, the supply amount of air can be easily adjusted according to each processing step of combustion of incinerated products and melting of incinerated ash, and combustion efficiency and melting efficiency can be improved.
As the air tube, a metal tube such as iron or aluminum, a circular tube such as a ceramic tube such as ceramic or porcelain, an elliptical tube, a square tube, a box-like body, or the like is used.
As the air ejection hole, a plurality of polygonal holes such as a circular shape or a quadrangular shape are formed in the air tube, and the size or size of the air ejection hole is 1 mm to 10 mm, preferably 1 .5 mm to 6 mm. Thereby, the air ejected from the air ejection holes can be uniformly supplied to the particle layer. Also, as it becomes smaller than 1.5 mm, it is difficult to obtain the amount of air necessary for combustion of incinerated products and melting of incinerated ash, and when the necessary amount of air is supplied, there is a tendency for back pressure to be easily applied to the air pipe and blower. As the diameter becomes larger than 6 mm, there is a tendency that the ventilation rate of the air that passes through the particle layer becomes slow and the combustion efficiency tends to be lacking, both of which are not preferable.
In addition, when a large number of rail-like or grate-like partition plates such as rooster are arranged in the upper part of the air pipe and in the particle layer, it acts as a guide rail when moving the incinerated ash generated on the particle layer surface. The movement of the particles in the particle layer can be prevented.
[0008]
The ash fusion incineration system according to claim 3 of the present invention is the heat exchange chamber according to any one of claims 1 and 2, wherein the heat exchanger communicates with the secondary incineration chamber. A locking portion formed in the heat exchange chamber, and 1 to 1 locked to the locking portion and loosely inserted into the heat exchange chamber at predetermined intervals, and one end loosely inserted into the burner air supply portion. It has the structure provided with the several heat exchanger tube and the air blower connected to the upstream of the said heat exchanger tube.
As a result, the heat of combustion generated in the primary incineration chamber and the secondary incineration chamber flows into the heat exchange chamber, and the heat transfer tubes arranged in the heat exchange chamber are heated by heat transfer, so that they are supplied from the blower to the heat transfer tubes. The air can be heated, and the burner air heated to a high temperature can be supplied to the melt burner disposed in the ash melting chamber via the burner air supply unit.
Just by locking the heat transfer tube to the locking part formed in the heat exchange chamber, the blower and the burner air supply unit are connected by the heat transfer tube, and hot air for the burner is supplied to the ash melting chamber through the heat transfer tube. The heat exchanger can be formed with a simple structure.
Since the heat transfer tube is loosely inserted into and supported by the locking portion and the burner air supply portion, the heat transfer tube can absorb expansion and contraction due to a temperature difference during incineration or non-incineration, thereby improving durability.
Here, as the heat transfer tubes, metal tubes such as heat-resistant stainless steel, steel, Inconel, Hastelloy, or ceramic tubes such as mullite, alumina, silicon nitride, etc., elliptic tubes, square tubes, etc. are used. What can supply high temperature air to an ash melting chamber by supplying air inside and heating a heat exchanger tube in a heat exchange chamber is used.
Further, it is preferable that the one end of the heat transfer tube communicated with the burner air supply unit is loosely inserted in the ash melting chamber so that one end of the heat transfer tube is not exposed. Thereby, it can prevent that the edge part of a heat exchanger tube is damaged with the heat | fever etc. of an ash melting chamber.
As the locking portion formed in the heat exchange chamber, a flat plate that separates combustion exhaust gas and air supplied from the blower, and an insertion hole that can freely hold one or more heat transfer tubes on the flat plate are arbitrary. Any shape may be used as long as the heat transfer tube can be easily locked by hanging or the like, and a shape capable of detachably locking the heat transfer tube is preferable. Thereby, the maintenance in heat exchangers, such as exchange of a heat exchanger tube, can be performed easily.
[0009]
The ash melting incineration system according to claim 4 of the present invention is the ash melting incineration system according to any one of claims 1 to 3, wherein any one of the secondary incineration chamber, the ash melting chamber, and the cooling chamber. Or a dust collector connected to one or more, and a feeder provided by connecting the dust collector and the primary incineration chamber.
As a result, the dust generated in the secondary incineration chamber, ash melting chamber, and cooling chamber can be collected by the dust collector and returned to the primary incineration chamber via the feeder, and the dust generated during incineration, melting, and solidification treatment Can be simultaneously processed by the ash fusion incineration system without discharging to the outside.
Here, the water in the cooling chamber treated with the molten slag is sent to the primary incineration chamber with a pump or the like, and the dissolved components concentrated in the water in the cooling chamber are returned to the primary incineration chamber as a melting agent for melting the incineration ash. May be used. Thereby, the effort which throws a melting agent into an ash melting chamber can be saved. Moreover, sludge can be prevented from staying and the waste water treatment facility can be remarkably simplified.
In addition, when the slag generated by cooling in the cooling chamber is discharged while being washed with washing water, the slag washing water is used as cooling chamber water through the filtering means, and sludge is returned to the primary incineration chamber. You may incinerate.
[0010]
The ash melting incineration system according to claim 5 of the present invention is the invention according to any one of claims 1 to 4, wherein at least the peripheral wall of the primary incineration chamber is a hollow furnace wall portion, And a water-cooled wall having water filled in the cavity of the furnace wall.
This makes it possible to uniformly prevent the temperature of the water cooling wall from rising even when incinerated waste such as municipal waste and industrial waste put into the primary incineration chamber contains plastic waste or petroleum products. It has the effect of preventing gas runaway from melting and gas generation of oil and petroleum products, etc., and uniformizing gas generation in the primary incineration chamber.
Moreover, it has the effect | action that a workability can be improved, without requiring the lining of a refractory material and a heat insulating material.
Here, when only the peripheral wall of the primary incineration chamber is a water-cooled wall, the peripheral walls of the secondary incineration chamber and the ash melting chamber are formed with a brick wall structure lined with a refractory or a heat insulating material.
Moreover, when measuring heat recovery by warm water, it is preferable that the peripheral wall of the secondary incineration chamber or the ash melting chamber is also formed of a water-cooled wall, and a refractory or a heat insulating material is stretched on the inside thereof. As a result, it is possible to improve the recovery of heat that has been radiated from the wall in the past, and to significantly extend the life of the refractory and the heat insulating material on the wall.
[0011]
The ash melting incineration system according to claim 6 of the present invention is the invention according to any one of claims 1 to 5, wherein the melting agent inlet connected to the upstream side of the primary incineration chamber, Upstream side of the primary incineration chamber And a partition plate provided on the upper surface of the particle layer.
As a result, during the melting treatment of incineration ash, it is possible to input a melting agent such as glass scrap, basalt, serpentinite, and / or solid fuel from the melting agent inlet according to the type of incinerated material. It has the effect of promoting the melting of the incinerated ash and improving the melting processing performance.
By installing a pusher on the upstream side of the primary incineration chamber, the incinerated material injected from the inlet and the melted agent injected from the melting agent inlet are forcibly pushed into the primary incineration chamber, and at the same time, unburned material and melting agent are removed. It can be moved and stirred, and has the effect of improving the incineration speed of the incinerated product.
By providing a rail-like or rooster-like partition plate on the upper surface of the particle layer, particles in the particle layer are scraped out during maintenance in the primary incinerator, secondary incinerator, and ash melting chamber. It has the effect that it can be prevented.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Embodiment 1 of the ash fusion incineration system according to the present invention will be described below with reference to the drawings.
1 is an overall cross-sectional side view of a main part of an ash fusion incineration system according to Embodiment 1. FIG.
In the figure, 1 is the ash-melting incineration system in the first embodiment, 2 is the primary incineration chamber of the ash-melting incineration system 1, 2a is the inclined bed of the primary incineration chamber 2 inclined from the upstream side to the downstream side, 3 Is a secondary incineration chamber communicating with the primary incineration chamber 2, 4 is an ash melting chamber communicating with the secondary incineration chamber 3, 4a is a downstream end of the ash melting chamber 4, and 5 is a secondary incineration chamber 3 and an ash melting chamber. 4, 6 is a melting burner in which the flame port 6 a is arranged to face the upper part of the bottom of the ash melting chamber 4, 7 is a cooling chamber located below the downstream end 4 a of the ash melting chamber 4, 7 a Is a water tank part of the cooling chamber 7, 7b is cooling water stored in the water tank part 7a, 8 is an inorganic substance such as crushed stones such as river sand laid on the inclined floor 2a and the floor 5, rock debris such as serpentine, and glass debris The particle layers 9a and 9b are composed of particles, the particle layer 8 on the inclined bed 2a, and the air supply unit 10a, embedded in the particle layer 8 on the bed 5. 0b is a blower connected to the air supply units 9a and 9b, 11 is a rail-like or grate-like partition plate arranged on the upper surface of the particle layer 8, and 12 is arranged upstream of the primary incineration chamber 2. The pusher that reciprocates on the partition plate 11, 13 is a water-cooled wall of the peripheral wall of the primary incinerator 2, 13 a is a furnace wall portion of the water-cooled wall 13 formed in a hollow shape, and 13 b is filled in the cavity portion of the furnace wall portion 13 a. 14 is an inlet for charging incinerated material formed upstream of the primary incineration chamber 2, 15a is a peripheral wall of the secondary incineration chamber 3, 15b is a peripheral wall of the secondary incineration chamber 3 and the ash melting chamber 4, Reference numeral 16 denotes a burner air supply portion formed of a through hole formed in the peripheral wall 15b above the ash melting chamber 4, reference numeral 17 denotes a heat exchanger connection portion formed on the downstream side of the secondary incineration chamber 3, and reference numeral 18 denotes The secondary incinerator 3 connected to the burner air supply unit 16 via the heat exchanger connection unit 17 A heat exchanger provided with a heat transfer tube communicating with the melting chamber 4, a buffer 18 a for extending the time of fusion between the hot air and the heat transfer tube of the heat exchanger 18 and preventing a short path and drift of the hot air, 19 is a heat exchanger A blower connected to the upstream side of 18, 20 is connected to the heat exchanger 18 and is a discharge unit from which exhaust gas, dust, waste heat, etc. generated in the ash fusion incineration system 1 are discharged, and 21 a is connected to the discharge unit 20. An exhaust heat recovery unit that recovers the combustion heat of combustion exhaust gas, including a heat pipe (not shown), 21b is a filter cloth type such as a bag filter connected to the discharge unit 20, a centrifugal type such as a cyclone, and a collision type Inertia-type dust collectors such as 21c are connected to the exhaust heat recovery device 21a and the dust collector 21b to discharge exhaust gas, 22 is connected to the primary incinerator 2 through the dust collector 21b and feeds dust and the like to the primary incinerator 2. Feeder 23 is cooling chamber 7 The cleaning and screw conveyor is connected to the water tank portion 7a and is cleaned while transporting the slag in the water tank portion 7a, 23a is a slag discharge port for discharging the slag treated in the cooling chamber 7, and 23b is the cleaning and screw conveyor 23 A washing water supply unit 24 is connected to the slag to wash the slag being transported, and 24 is connected to the water tank part 7a of the cooling chamber 7 and supplies the cooling water 7b of the water tank part 7a to the primary incineration chamber through a filtering means (not shown). It is a pump.
In the figure, arrow A indicates the flow of combustion heat in the secondary incineration chamber 3, and arrow B indicates the flow of burner air supplied to the heat exchanger 18.
Here, the particle layer 8 is formed by spreading particles having a particle diameter of 1 mm to 30 mm in a thickness of 3 cm to 60 cm. When the thickness of the particle layer 8 is less than 3 cm, it becomes difficult to embed the air supply units 9a and 9b in the particle layer 8, and the air supply units 9a and 9b are insufficient in size and cannot supply a sufficient amount of air. Yes, and even if the thickness of the particle layer 8 is greater than 60 cm, the effect of the particle layer 8 is substantially constant, which is not necessary.
[0013]
Next, the air supply units 9a and 9b of the ash fusion incineration system 1 according to Embodiment 1 will be described with reference to the drawings.
FIG. 2 (a) is a cross-sectional side view of the main part of the air supply unit of the ash fusion incineration system in the first embodiment, and FIG. 2 (b) is another shape of the ash fusion incineration system in the first embodiment. It is a principal part cross-sectional side view of an air supply part.
In the figure, reference numeral 25 denotes an inclined floor 2a in a substantially vertical direction, a plurality of floor rails erected on the floor 5 perpendicular to the flow of the particle layer 8, and 26 is disposed between the floor rails 25 and blowers 10a and 10b. An air pipe made of a metal pipe such as iron or aluminum, a ceramic pipe such as earthenware or porcelain, and the like, 26a is a plurality of air ejection holes formed in the inclined floor 2a of the air pipe 26 or the peripheral wall on the floor 5 side, Reference numeral 26 'denotes a hollow air box formed below the inclined floor 2a and the floor 5 and connected to the fans 10a and 10b, and 26'a communicates with the air box 26' and is disposed between the floor rails 25. An air tube 26'b made of a square tube is a plurality of air ejection holes formed in the side surface of the air tube 26'a.
The arrow C in the figure indicates the flow of air ejected from the air ejection hole 26a of the air pipe 26.
Here, the upper portions of the outer peripheral surfaces of the air tubes 26, 26'a are embedded at positions 10 mm to 100 mm, preferably 20 mm to 70 mm from the surface of the particle layer 8. When buried below 20 mm, when the amount of air supplied from the air pipes 26, 26 ′ a is increased, the particles of the particle layer 8 tend to scatter, and when buried deeper than 70 mm, the blower Since back pressure tends to be applied to 10a and 10b, both are not preferable.
Next, the heat exchanger 18 of the ash fusion incineration system 1 in Embodiment 1 is demonstrated using drawing.
3 (a) is a cross-sectional side view of the main part of the heat exchanger of the ash fusion incineration system according to Embodiment 1, and FIG. 3 (b) is a cross-sectional side view of the main part showing the upper end of the heat exchanger. FIG.3 (c) is a principal part cross-section side view which shows the lower end part of a heat exchanger.
In the figure, 27 is a heat exchange chamber of the heat exchanger 18 that connects the secondary incineration chamber 3 and the ash melting chamber 4 via the heat exchanger connecting portion 17 and the burner air supply portion 16, and 28 is the heat exchange chamber 27. An engaging portion made of a plate-like body or the like formed on the upper portion, 28a is a hanging portion consisting of a hole-like portion drilled in the engaging portion 28, and 29 is inserted into the hanging portion 28a of the engaging portion 28. A heat transfer tube made of a metal such as heat-resistant stainless steel, steel, Inconel, Hastelloy, etc. or a ceramic such as mullite, alumina, silicon nitride, etc., disposed in the heat exchange chamber 27 at a predetermined interval. The heat transfer tube locking collar 29b formed on the outer periphery of the suspended portion 28a and engaged with the upper end portion of the heat transfer tube 29 is attached to the heat transfer tube 29 when the heat transfer tube 29 is inserted into the suspended portion 28a. Saya tube 29c is installed at a position where it is in contact with the suspended portion 28a, and 29c is a through hole. Halfway over Na air supply unit 16 is a lower end portion of the heat transfer tube 29 which is loosely inserted.
[0014]
In the ash-melting incineration system configured as described above, the incineration melting processing operation of the incinerated product will be described below.
An incinerator such as municipal waste or industrial waste is introduced from the inlet 14 of the primary incinerator 2, the operation of the blowers 10a and 10b is started, and air is supplied to the air pipes 26 of the air supply units 9a and 9b. As shown by the arrow C in FIG. 2 (a) or FIG. 2 (b), air is supplied from the air ejection holes 26a to the primary incineration chamber 2, the secondary incineration chamber 3, and the ash melting chamber 4 through the particle layer 8. Then, the incinerated material thrown into the primary incineration chamber 2 is ignited and combustion of the incinerated material is started.
Next, the incinerated product charged into the primary incineration chamber 2 is burned from the particle layer 8 side while moving on the surface of the particle layer 8 laid on the inclined floor 2a of the primary incineration chamber 2, and incineration ash and combustion gas are removed. The combustion gas generated and generated in the primary incineration chamber 2 flows into the secondary incineration chamber 3, and incineration ash, unburned matter, etc. are supplied to the secondary incineration chamber 3 by the surface flow on the particle layer 8 or the pusher 12. Is done.
In the secondary incineration chamber 3, air is supplied to the secondary incineration chamber 3 through the particle layer 8 from the air ejection holes 26 a of the air pipe 26 of the air supply unit 9 b and flows down from the primary incineration chamber 2 to the secondary incineration chamber 3. The burned gas is completely burned, and unburned matter is burned to generate incinerated ash, which is supplied to the ash melting chamber 4 while moving on the surface of the particle layer 8.
Here, the combustion heat generated in the primary incineration chamber 2, the secondary incineration chamber 3, and the ash melting chamber 4 is transferred from the secondary incineration chamber 3 through the heat exchanger connection 17 as indicated by an arrow A. 18 flows into the heat exchange chamber 27, is rectified by the buffer 18 a disposed in the heat exchange chamber 27, flows to the discharge unit 20 side while heating the heat transfer tube 29 along the outer peripheral surface of the heat transfer tube 29, and is discharged It is discharged from the part 20 to the exhaust heat recovery device 21a and the dust collector 21b. The air supplied from the blower 19 to the heat transfer tube 29 is heated while passing through the heat transfer tube 29 heated by the combustion heat, and is passed from the lower end portion 29 c of the heat transfer tube 29 through the burner air supply unit 16. Supplied to the ash melting chamber 4.
Next, the incineration ash supplied from the secondary incineration chamber 3 to the ash melting chamber 4 is caused by the radiant heat in the ash melting chamber 4 and the melting burner 6 arranged with the flame port 6a facing the incineration ash in the ash melting chamber 4. The molten slag is produced by melting from the upper surface side of the incinerated ash.
Here, since the particle layer 8 side is cooled by the air supplied from the air pipe 26 of the air supply unit 9b, the molten slag generated on the particle layer 8 side is cooled and solidified, and the upper surface side of the incineration ash The flow path for the molten slag produced | generated by this to move to the cooling chamber 7 side is formed. The shape of the flow path of the molten slag can be adjusted by adjusting the amount of air supplied from the air supply unit 9b supplied to the particle layer 8 of the ash melting chamber 4.
Next, the molten slag generated in the ash melting chamber 4 is dropped from the downstream end 4a of the ash melting chamber 4 into the cooling water 7b of the water tank portion 7a of the cooling chamber 7, and is quenched into the cooling water 7b. Solidifies and slag is generated.
Next, the slag generated by solidification in the water tank section 7a of the cooling chamber 7 is washed with the washing water supplied from the washing water supply section 23b while being conveyed to the slag discharge port 23a side by the washing and screw conveyor 23. It is discharged from the slag discharge port 23a to the outside of the ash fusion incineration system 1. In addition, the slag discharged | emitted out of the system is used not only as a resource but also as particles of the particle layer 8 of the ash fusion incineration system 1.
Further, the combustion exhaust gas recovered by the exhaust heat recovery device 21a communicated with the heat exchange chamber 27 is separated into soot and exhaust gas, and the exhaust gas is released to the atmosphere from the chimney 21c, and the ash melt recovered by the dust collector 21b The dust generated in the incineration system 1 and the dust separated from the combustion exhaust gas are fed to the primary incineration chamber 2 by the feeder 22 and incinerated and melted. Further, the dissolved component concentrated in the cooling water 7b of the water tank part 7a is returned to the primary incineration chamber 2 by the pump 24 connected to the water tank part 7a of the cooling chamber 7, and used as a melting agent.
In addition, you may return the washing | cleaning water which wash | cleaned the slag produced | generated in the cooling chamber 7 to a primary incineration chamber, and incinerate and melt-process.
Further, a fuel jet pipe of fluid fuel such as gas or light oil may be embedded in the particle layer 8, and the fuel may be supplied into the particle layer 8 and burned. Thereby, combustion of the incinerated material in the primary incineration chamber 2 and the secondary incineration chamber 3 can be reliably continued by the melting effect of combustion.
Further, coal or coke powder having a high carbonaceous content, heavy waste oil, or the like may be mixed in advance and charged into the primary incineration chamber 2 when the incinerated material is charged. Thereby, instability of gasification can be prevented and safety can be improved, ash melting can be promoted, and liquid combustibles such as waste oil and sludge can be incinerated.
[0015]
Since the ash fusion incineration system in Embodiment 1 is configured as described above, it has the following effects.
a. Incinerators such as municipal waste and industrial waste that are input from the inlet are combusted in the primary incinerator to generate combustion gas and incineration ash, and the combustion gas and unburned material are completely combusted in the secondary incineration chamber. Incinerated ash is then produced, and then the incinerated ash is melted by a melting burner and radiant heat in the ash melting chamber to produce molten slag, which is then dropped into the cooling chamber, and then melted by a wetting process using cooling water in the water tank section of the cooling chamber. The slag can be cooled and solidified, and incineration, melting, and solidification of the incineration can be performed at a time by the ash melting incineration system.
b. Since the particle bed is laid on the floor of the primary incineration chamber, the secondary incineration chamber, and the ash melting chamber, and it has an air supply section embedded in the particle layer, municipal waste, industrial waste, etc. By simply putting incinerators and igniting, combustion air is supplied from the air supply unit and can be incinerated from the particle layer side. Any incinerators such as water-containing waste and organic sludge are completely burned and melted. Can be processed.
c. Since the particle layer is laid on the floor of the ash melting chamber and the air supply unit is embedded in the particle layer, the particle layer side of the molten slag of incinerated ash melted in the ash melting chamber is vented by the air supply unit It can be cooled and solidified to form a liquid pool of slag and a flow path, and can prevent the floor from being damaged due to reaction of the incinerated ash with the molten slag at a high temperature. In addition, when stopping or restarting the ash melting incineration system, rapid heating was difficult in the conventional melting furnace to prevent damage to the slag liquid reservoir, but the particles of the ash melting incineration system The molten slag reservoir formed by the layers can be formed by re-melting even if it breaks, and the control of the ash fusion incineration system can be simplified.
d. Since the air supply unit is composed of floor rails and air pipes, and the air pipes are arranged between the plurality of floor rails, it is possible to prevent the air ejected from each air pipe from channeling, and in particular, ash In the melting chamber, air can be prevented from drifting to a place where there is no incinerated ash to be melted, and the melting efficiency can be increased.
e. Air blow holes are drilled in the inclined floor of the air pipe or the peripheral wall on the floor side, so air is supplied at a low flow rate from the entire inclined floor, etc., preventing incineration ash from floating when supplying air. In addition, the air ejection holes can be prevented from being blocked by incinerated ash, molten slag, or the like.
f. Because it has a heat exchanger that connects the secondary incineration chamber and the ash melting chamber, the heat of combustion generated in the secondary incineration chamber is recovered by the heat exchanger, and the ash melting chamber is connected via the burner air supply unit. The air for the burner heated to a high temperature can be supplied to the melting burner disposed in the, so that the melting performance in the ash melting chamber can be improved, and the energy saving can be improved.
g. Since the heat exchanger is composed of a heat exchange chamber and a heat transfer tube whose upper end is locked to the locking portion of the heat exchange chamber, simply inserting the heat transfer tube into the locking portion and locking the blower And the burner air supply unit can be connected to supply high-temperature burner air to the ash melting chamber, a heat exchanger can be formed with a simple structure, maintenance is easy, and maintenance workability is excellent. Since the lower end portion is inserted partway through the burner air supply portion, the lower end portion of the heat transfer tube can be prevented from being damaged by the flame of the melt burner.
h. Since the heat exchanger communicates with the secondary incineration chamber and the ash melting chamber, the heat transfer tube is heated by the combustion heat flowing into the heat exchange chamber from the secondary incineration chamber, and the air supplied from the blower to the heat transfer tube The high-temperature burner air can be supplied to the melt burner disposed in the ash melting chamber via the burner air supply unit, and the melting performance in the ash melting chamber can be improved.
i. Because it is equipped with a dust collector connected to the heat exchange chamber of the heat exchanger and a feeder that connects the dust collector and the primary incineration chamber, dust collected during incineration and melting of incinerated materials is collected by the dust collector. It can be returned to the primary incineration chamber, so that dust generated during the incineration / melting process can be processed without being discharged out of the system of the ash fusion incineration system, and discharge of toxic emissions (dioxins, etc.) can be prevented.
j. Because the peripheral wall of the primary incineration chamber is formed with water-cooled walls, incinerators such as municipal waste and industrial waste thrown into the primary incinerator also contain plastic waste, petroleum products, etc. In addition, it is possible to prevent melt runoff and gas generation runaway of plastic waste, petroleum products, etc., uniform gas generation in the primary incineration chamber, and workability without requiring lining of refractories and heat insulating materials. It can be improved.
k. Since a pusher is provided on the upstream side of the primary incineration chamber, the incineration ash and unincinerated material generated in the primary incineration chamber can be forcibly supplied to the secondary incineration chamber with the pusher continuously or intermittently. At the same time, incinerated ash and unincinerated materials and the melting agent in the particle layer can be supplied to the secondary incineration chamber while stirring, promoting incineration and melting of the incinerated materials and improving combustion efficiency and melting efficiency. Can do.
l. A partition plate made of grate or the like is provided on the upper surface of the particle layer, so that the particles in the particle layer can be prevented from moving to the secondary incineration chamber when the pusher is driven, and the primary incineration chamber and secondary incineration Particles in the particle layer can be prevented from being scraped out during maintenance in the chamber and ash melting chamber.
[0016]
(Embodiment 2)
A second embodiment of the ash fusion incineration system according to the present invention will be described below with reference to the drawings.
FIG. 4 is an overall cross-sectional side view of the main part of the ash fusion incineration system in the second embodiment. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1, and description is abbreviate | omitted.
In the figure, 30 is an ash-melting type incineration system in the second embodiment, and 31 is a melting agent inlet connected to the upstream side of the primary incineration chamber 2.
In the ash fusion incineration system 30 according to the second embodiment configured as described above, as in the first embodiment, the incinerated material is injected into the primary incineration chamber 2 to burn the incinerated material, and then the unincinerated material. And the combustion gas are completely combusted in the secondary incineration chamber 3, and the incineration ash is melted in the ash melting chamber 4 to produce molten slag, and the molten slag is treated with water in the cooling chamber 7 to solidify the slag. The recovered slag is discharged from the slag discharge port 23a by the cleaning and screw conveyor 23, and the incinerated product is incinerated, melted and solidified.
Depending on the type of incinerator, etc., during the incineration melting process of the incinerator, the soda ash, water glass, glass scrap, phosphate rock, lime, basalt, serpentinite, etc. By adding slag and the like, the combustion and melting of the incinerated material is promoted.
As described above, since the ash fusion incineration system according to the second embodiment is configured, in addition to the operation of the first embodiment, since the melt inlet is provided on the upstream side of the primary incineration chamber, The incinerated material is charged from the inlet without mixing the melting agent in advance, and the incinerated material is burned by injecting the melting agent from the inlet during the incineration melting process of the incinerated material, depending on the type of incinerated material. It has the effect that melting can be promoted.
[0017]
【The invention's effect】
As described above, according to the ash fusion incineration system of the present invention, the following excellent effects can be realized.
According to the ash fusion incineration system according to claim 1,
(1) Incineration waste such as municipal waste and industrial waste introduced from the inlet is burned while moving to the secondary incineration chamber by the particle layer laid on the inclined floor of the primary incineration chamber to produce incineration ash At the same time, the incineration ash flows into the secondary incineration chamber together with the combustion gas generated during combustion, and is completely burned in the secondary incineration chamber. Further, the incineration ash is melted by the melt burner and radiant heat in the ash melting chamber to produce molten slag. Then, the molten slag falls into the cooling chamber and solidifies to produce slag, which can incinerate, melt and solidify municipal waste and industrial waste at one time, and has excellent incineration processing performance. The ash-melting incineration system can be downsized, resulting in excellent energy savings and productivity.
(2) Since the particle bed is laid on the sloped floor of the primary incineration chamber, the secondary incineration chamber, and the ash melting chamber, and has an air supply section embedded in the particle layer, municipal waste and industrial waste By simply putting incinerated materials and igniting them, combustion air is supplied from the air supply unit and can be incinerated from the particle layer side in an oxidizing atmosphere, and any incinerated materials such as water-containing waste and organic sludge can be Incineration efficiency and processing performance of incinerated products are excellent because it can be completely burned and melted.
(3) Since the particle layer is laid on the floor of the ash melting chamber and the air supply part is embedded in the particle layer, the particle layer side of the molten slag of incinerated ash melted in the ash melting chamber is air It is cooled and solidified by aeration by the supply unit to become a container for molten slag on the upper surface side, and a flow path for moving the molten slag is formed, so the floor is damaged by high temperature due to melting, heat of the molten slag, etc. In addition to being excellent in safety, it is possible to reduce the cost without requiring a high-grade refractory resistant to slag erosion, and the durability of the melt-type incineration system is excellent.
(4) Because it has a heat exchanger that connects the air supply section for the burner between the secondary incineration chamber and the ash melting chamber, the heat generated by the incineration of incineration and melting of the incineration ash is recovered by the heat exchanger. In addition, high-temperature burner air can be supplied to the melting burner installed in the ash melting chamber via the burner air supply unit, so that the melting efficiency and thermal efficiency of the incinerated ash in the ash melting chamber can be improved, and the melting performance can be improved. Excellent.
(5) When the slag collected in the cooling chamber is washed and discharged, water-soluble components such as alkali in the slag can be removed, and the slag can be safely used as landfill or recycled material, In addition to preventing environmental pollution, when water-soluble components recovered by washing are returned to the primary incineration chamber as a melting aid, the water-soluble components are decomposed or fixed as glass components in the slag and stabilized for safe processing. can do.
According to the invention described in claim 2, in addition to the effect of claim 1,
(6) Since the air supply unit is composed of a floor rail and an air pipe disposed between the floor rails, the air blown from the air pipe is supplied to the particle layer along the floor rail and In particular, in the ash melting chamber, air can be prevented from flowing to places where there is no incineration ash to be melted, and the incineration efficiency in each incineration chamber and the melting efficiency in the ash melting chamber are excellent. Excellent in incineration processing performance.
(7) Since the air ejection holes are formed in the inclined floor of the air pipe or the peripheral wall on the floor side, it is possible to prevent the incineration ash from floating due to the air ejection during the air supply, and the air ejection holes are incinerated ash. And can be prevented from being clogged with molten slag, etc., air can be supplied smoothly, and incineration melting performance of incinerated products is excellent.
[0018]
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(8) The heat exchanger is composed of a heat exchange chamber, a locking portion, and a heat transfer tube, and the air supply for the blower and the burner is achieved simply by locking the heat transfer tube to the locking portion formed in the heat exchange chamber. The heat exchanger can be connected with a heat transfer tube to form a heat exchanger that can supply high-temperature burner air to the ash melting chamber via the heat transfer tube. The structure is simple and has excellent maintainability and productivity. Direct heat of combustion is applied to the heat transfer tube to heat the burner air, resulting in excellent thermal efficiency.
(9) Since the combustion heat generated in the secondary incineration chamber flows into the heat exchange chamber and the heat transfer tubes arranged in the heat exchange chamber are heated by heat transfer, the air supplied from the blower to the heat transfer tubes is heated. High temperature burner air can be supplied to the melting burner installed in the ash melting chamber via the burner air supply unit, and the combustion efficiency of the melting burner can be improved. Excellent.
According to invention of Claim 4, in addition to the effect of Claims 1 to 3,
(10) By providing a dust collector connected to any one or more of the secondary incineration chamber, the ash melting chamber, and the cooling chamber, and a feeder that communicates the dust collector with the primary incineration chamber, The dust generated in the ash melting chamber and cooling chamber can be collected by the dust collector and returned to the primary incineration chamber via the feeder, and the dust generated during incineration, melting, and solidification treatment can be simultaneously discharged without discharging to the outside. It can be treated with the ash fusion incineration system, can prevent dust and the like from being discharged outside the system during operation of the ash fusion incineration system, and has an excellent working environment and an excellent incineration treatment performance.
According to the invention of claim 5, in addition to the effects of claims 1 to 4,
(11) By forming at least the peripheral wall of the primary incineration chamber with water-cooled walls, especially incineration waste such as municipal waste and industrial waste thrown into the primary incineration chamber contains plastic waste, petroleum products, etc. In this case, plastic waste and petroleum products can be melted and gas runaway is prevented, and the generation of gas in the primary incinerator can be made uniform, resulting in excellent safety.
(12) Workability can be improved without the need for refractory or heat insulation lining when forming the peripheral wall, productivity of the ash fusion incineration system can be improved, and heat that has been radiated from the furnace wall as hot water can be used. It can be recovered and has excellent heat availability.
According to the invention described in claim 6, in addition to the effects of claims 1 to 5,
(13) By providing a melting agent inlet connected to the upstream side of the primary incineration chamber, during the melting treatment of the incineration ash, a melting agent such as debris such as glass scrap, basalt, and serpentine from the melting agent inlet. Can be injected, and the melting of the incinerated ash can be promoted to improve the melting performance.
(14) Upstream side of primary incinerator By installing the pusher installed in the incinerator, the incinerated material introduced from the inlet and the melted agent injected from the melter inlet are forcibly pushed into the primary incinerator, and at the same time, the unburned material and the melt are moved. Can stir and improve the combustion processing speed of incinerated products it can .
(15) By providing a partition plate disposed on the upper surface of the particle layer, it is possible to prevent the particles of the particle layer from being scraped out during maintenance in the primary incineration chamber, the secondary incineration chamber, the ash melting chamber, Excellent maintainability.
[Brief description of the drawings]
FIG. 1 is an overall cross-sectional side view of a main part of an ash fusion incineration system according to a first embodiment.
FIG. 2 (a) is a cross-sectional side view of an essential part of an air supply unit of an ash fusion incineration system according to Embodiment 1.
(B) The principal part cross-section side view of the air supply part of the other shape of the ash fusion type incineration system in Embodiment 1
FIG. 3 (a) is a cross-sectional side view of an essential part of a heat exchanger of an ash fusion incineration system according to Embodiment 1.
(B) Main part cross-sectional side view showing the upper end of the heat exchanger
(C) Main part cross-sectional side view showing the lower end of the heat exchanger
FIG. 4 is a cross-sectional side view of the main part of an ash fusion incineration system according to a second embodiment.
[Explanation of symbols]
1,30 Ash fusion incineration system
2 Primary incineration room
2a inclined floor
3 Secondary incineration room
4 Ash melting chamber
4a Downstream end
5 floors
6 Melting burner
6a Flame outlet
7 Cooling room
7a Water tank
7b Cooling water
8 Particle layer
9a, 9b Air supply part
10a, 10b Blower
11 Partition plate
12 pushers
13 Water cooling wall
13a Furnace wall
13b water
14 slot
15a, 15b wall
16 Air supply section for burner
17 Heat exchanger connection
18 Heat exchanger
18a buffer
19 Blower
20 Discharge section
21a Waste heat recovery unit
21b Dust collector
21c Chimney
22 Feeder
23 Cleaning and screw conveyor
23a Slag outlet
23b Washing water supply unit
24 pump
25 floor pier
26, 26'a air pipe
26 'air box
26a, 26'b Air outlet hole
27 Heat exchange room
28 Locking part
29 Heat transfer tube
31 Melting agent inlet

Claims (6)

  1. 上流側から下流側へ向けて傾斜した傾斜床を有した一次焼却室と、前記一次焼却室と連通した二次焼却室と、前記二次焼却室に連接した灰熔融室と、炎口を前記灰熔融室に向けて配設された熔融バーナと、前記灰熔融室の下流側端部の下方に配置された冷却室と、前記一次焼却室の前記傾斜床,前記二次焼却室及び前記灰熔融室の床に敷設された粒子層と、前記一次焼却室,前記二次焼却室,前記灰熔融室の前記粒子層内に埋設された空気供給部と、前記空気供給部に接続された送風機と、前記一次焼却室の上流側に連接された投入口と、前記灰熔融室に形成されたバーナ用空気供給部と、前記二次焼却室と前記バーナ用空気供給部を連通した熱交換器と、を備えていることを特徴とする灰熔融式焼却システム。A primary incineration chamber having an inclined floor inclined from the upstream side toward the downstream side, a secondary incineration chamber communicating with the primary incineration chamber, an ash melting chamber connected to the secondary incineration chamber, and a flame port A melting burner disposed toward the ash melting chamber, a cooling chamber disposed below a downstream end of the ash melting chamber, the inclined floor of the primary incineration chamber, the secondary incineration chamber, and the ash A particle layer laid on the floor of the melting chamber, an air supply unit embedded in the particle layer of the primary incineration chamber, the secondary incineration chamber, and the ash melting chamber, and a blower connected to the air supply unit An inlet connected to the upstream side of the primary incineration chamber, a burner air supply unit formed in the ash melting chamber, and a heat exchanger that connects the secondary incineration chamber and the burner air supply unit And an ash fusion incineration system.
  2. 前記空気供給部が、前記一次焼却室の前記傾斜床,前記二次焼却室及び前記灰熔融室の前記床の上面に所定間隔で立設された複数の床桟と、各前記床桟の間に配設され前記送風機に接続された空気管と、前記空気管の前記傾斜床又は前記床側の周壁に穿設された空気噴出孔と、を備えていることを特徴とする請求項1に記載の灰熔融式焼却システム。The air supply unit includes a plurality of floor rails erected at predetermined intervals on the upper surfaces of the inclined floor of the primary incineration chamber, the secondary incineration chamber, and the ash melting chamber, and between the floor rails An air pipe disposed in the air pipe and connected to the blower, and an air ejection hole formed in the inclined floor of the air pipe or a peripheral wall on the floor side. The ash fusion incineration system described.
  3. 前記熱交換器が、前記二次焼却室に連通した熱交換室と、前記熱交換室に形成された係止部と、前記係止部に係止されて所定間隔で前記熱交換室に遊挿され一端が前記バーナ用空気供給部に遊挿された1乃至複数の伝熱管と、前記伝熱管の上流側に接続された送風機と、を備えていることを特徴とする請求項1又は2の内いずれか1項に記載の灰熔融式焼却システム。The heat exchanger includes a heat exchange chamber that communicates with the secondary incineration chamber, a locking portion that is formed in the heat exchange chamber, and a locking portion that is locked to the locking portion and is allowed to play in the heat exchange chamber at predetermined intervals. 3. One or more heat transfer tubes inserted at one end into the burner air supply section, and a blower connected to the upstream side of the heat transfer tubes. The ash-melting type incineration system according to any one of the above.
  4. 前記二次焼却室,前記灰熔融室,前記冷却室の内いずれか1以上に接続された集塵機と、前記集塵機と前記一次焼却室を接続して配設された給送機と、を備えていることを特徴とする請求項1乃至3の内いずれか1項に記載の灰熔融式焼却システム。A dust collector connected to any one or more of the secondary incineration chamber, the ash melting chamber, and the cooling chamber; and a feeder disposed by connecting the dust collector and the primary incineration chamber. The ash fusion incineration system according to any one of claims 1 to 3, wherein the ash fusion incineration system is provided.
  5. 少なくとも前記一次焼却室の周壁が、空洞状の炉壁部と、前記炉壁部の空洞部に充填された水と、を有した水冷壁で形成されていることを特徴とする請求項1乃至4の内いずれか1項に記載の灰熔融式焼却システム。The peripheral wall of at least the primary incineration chamber is formed of a water-cooled wall having a hollow furnace wall portion and water filled in the cavity portion of the furnace wall portion. 5. The ash fusion incineration system according to any one of 4 above.
  6. 前記一次焼却室の上流側に連接された熔融剤投入口、前記一次焼却室の上流側に配設されたプッシャー、前記粒子層の上面に配設された仕切板、の内いずれか1以上を備えていることを特徴とする請求項1乃至5の内いずれか1項に記載の灰熔融式焼却システム。One or more of a melting agent inlet connected to the upstream side of the primary incineration chamber, a pusher provided on the upstream side of the primary incineration chamber, and a partition plate provided on the upper surface of the particle layer. The ash fusion incineration system according to any one of claims 1 to 5, further comprising:
JP18518898A 1998-06-30 1998-06-30 Ash fusion incineration system Expired - Fee Related JP4116698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18518898A JP4116698B2 (en) 1998-06-30 1998-06-30 Ash fusion incineration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18518898A JP4116698B2 (en) 1998-06-30 1998-06-30 Ash fusion incineration system

Publications (2)

Publication Number Publication Date
JP2000018529A JP2000018529A (en) 2000-01-18
JP4116698B2 true JP4116698B2 (en) 2008-07-09

Family

ID=16166402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18518898A Expired - Fee Related JP4116698B2 (en) 1998-06-30 1998-06-30 Ash fusion incineration system

Country Status (1)

Country Link
JP (1) JP4116698B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879773A (en) * 2015-05-27 2015-09-02 安徽瀚洋节能科技有限公司 Air preheater for heat exchange of flow layer
CN105114975A (en) * 2014-12-03 2015-12-02 芜湖三峰节能设备有限公司 Air preheater for heat exchange of flowing layer
KR102046329B1 (en) 2018-02-14 2019-12-23 (주)하이젠 Incineration apparatus for hot water/wind

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100368059C (en) * 2006-02-14 2008-02-13 杨广胜 Treatment method and device of waste gas in pigment production
JP5828590B2 (en) * 2013-01-25 2015-12-09 一伸 真田 Garbage incinerator
CN107044639A (en) * 2017-05-09 2017-08-15 章水红 A kind of environmental-protection equipment recycled for waste incineration heat energy
CN110822469A (en) * 2019-11-18 2020-02-21 山东禹王生态食业有限公司 Method and device for preheating air entering furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105114975A (en) * 2014-12-03 2015-12-02 芜湖三峰节能设备有限公司 Air preheater for heat exchange of flowing layer
CN104879773A (en) * 2015-05-27 2015-09-02 安徽瀚洋节能科技有限公司 Air preheater for heat exchange of flow layer
KR102046329B1 (en) 2018-02-14 2019-12-23 (주)하이젠 Incineration apparatus for hot water/wind

Also Published As

Publication number Publication date
JP2000018529A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP4548785B2 (en) Waste gasification melting apparatus melting furnace, and control method and apparatus in the melting furnace
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
KR100763531B1 (en) Method for incineration disposal of waste
JP3034467B2 (en) Direct-type incineration ash melting treatment equipment and treatment method
JP4116698B2 (en) Ash fusion incineration system
WO2003087669A1 (en) Fusion furnace, gasification fusion furnace, and method of processing waste
US5127345A (en) Combustion apparatus and combustion control method therefor
JP4589832B2 (en) Incinerator
JP3525077B2 (en) Directly connected incineration ash melting equipment and its operation control method
JP2001317715A (en) Method and device for incineration disposal of solid waste
JP3564040B2 (en) Exhaust heat recovery equipment in melting furnace
JP4285760B2 (en) Operation control method of gasification and melting system and system
JP2000199620A (en) Incinerating heat treating furnace for refuse
EP1367323A1 (en) Gasification melting furnace and gasification melting method for combustible refuse and/or burned ash
JPH08121728A (en) Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace
JP3764634B2 (en) Oxygen burner type melting furnace
JP2004077013A (en) Operation method of waste incinerator, and waste incinerator
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2001027410A (en) Separate type incineration ash melting facility, and its operation controlling method
WO2000022348A1 (en) Waste disposal device
JP4791157B2 (en) Waste gasification melting equipment melting furnace
KR20010082743A (en) Melting furnace for gasifying inflammabile waste and melting method for gasifying the same
JP3460604B2 (en) Waste incineration melting furnace
JPH10176811A (en) Particle bed type incinerator and incinerating method for the same
KR100621461B1 (en) Method and system for treating exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170425

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees