JP3764634B2 - Oxygen burner type melting furnace - Google Patents

Oxygen burner type melting furnace Download PDF

Info

Publication number
JP3764634B2
JP3764634B2 JP2000192321A JP2000192321A JP3764634B2 JP 3764634 B2 JP3764634 B2 JP 3764634B2 JP 2000192321 A JP2000192321 A JP 2000192321A JP 2000192321 A JP2000192321 A JP 2000192321A JP 3764634 B2 JP3764634 B2 JP 3764634B2
Authority
JP
Japan
Prior art keywords
incineration
oxygen
melting chamber
ash
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000192321A
Other languages
Japanese (ja)
Other versions
JP2002013718A (en
Inventor
仁 秋山
良二 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2000192321A priority Critical patent/JP3764634B2/en
Publication of JP2002013718A publication Critical patent/JP2002013718A/en
Application granted granted Critical
Publication of JP3764634B2 publication Critical patent/JP3764634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物等の廃棄物を焼却処理するストーカ式焼却炉や流動床式焼却炉から排出された焼却灰と各焼却炉の排ガス処理設備で捕集された焼却飛灰とを溶融処理する溶融炉に係り、特に、焼却飛灰及び焼却灰を灯油や天然ガス等の化石燃料の燃焼熱により溶融処理するようにした燃料燃焼式の酸素バーナ式溶融炉に関するものである。
【0002】
【従来の技術】
一般に、都市ごみ等の廃棄物は、その多くがストーカ式焼却炉や流動床式焼却炉により焼却処理されている。前者のストーカ式焼却炉に於いては、焼却残渣として炉内に残る焼却灰と、排ガス中に持ち出されて集塵器等の排ガス処理設備により捕集される焼却飛灰とが発生する。又、後者の流動床式焼却炉に於いては、その構造上、焼却残渣は全て焼却飛灰として排ガス処理設備により捕集されている。
【0003】
ところで、ストーカ式焼却炉から排出される焼却灰は、一般的に粗雑物を含む為に溶融処理前に磁性物除去や粒度選別等の前処理が必要であるが、融点は比較的低い。
一方、焼却炉の排ガス処理設備で捕集された焼却飛灰は、粉体状で低沸点の重金属類等の揮散成分やダイオキシン類を多く含んでいるばかりでなく、排ガス処理設備に於いて排ガス中に含まれるHClやSOx等の酸性ガス処理として消石灰Ca(OH)2 を吹き込む乾式処理を行った場合には、高塩基度(CaO/SiO2 )で且つ高融点物質となっている。
【0004】
そこで、近年、焼却灰や焼却飛灰の減容化や無害化、安定化を図る為、焼却灰や焼却飛灰の溶融固化処理が注目され、現実に実用に供されている。特に、焼却飛灰は、焼却灰に比べてダイオキシン類の濃度や重金属類の含有量が高く、溶融固化することが強く求められている。
【0005】
焼却灰や焼却飛灰の溶融処理には、灯油や天然ガス等の化石燃料の燃焼熱を熱源とする燃料燃焼式溶融炉(例えば表面溶融炉、旋回溶融炉、コークスベッド炉)や、電気エネルギーを熱源とする電気式溶融炉(例えばアーク溶融炉、プラズマアーク炉、電気抵抗炉)等があり、何れも実用に供している。一般的に、発電設備を有する焼却設備の場合には電気式溶融炉が、又、発電設備を持たない場合や広域処理を行う場合には燃料燃焼式溶融炉が用いられている。
【0006】
燃料燃焼式溶融炉の代表的なものとしては表面溶融炉が挙げられる。即ち、表面溶融炉は、炉内に4方向から焼却灰や焼却飛灰が供給されて傾斜状の溶融面を形成する4面式構造若しくは炉内に対面2方向から焼却灰や焼却飛灰が供給されて傾斜状の溶融面を形成する対面式構造となっており、溶融炉の周囲のホッパに溜めた焼却灰や焼却飛灰を灰供給装置により炉内に押し出し、炉天井に設けた予熱空気を支燃ガスとするバーナの燃焼熱により押し出された焼却灰や焼却飛灰の表面を溶融するようにしたものである。この表面溶融炉は、焼却灰のように粗物を含む粒径の不均一な被溶融物を溶融するのに適していること、構造が簡単で多様な化石燃料を使用できること等の利点を有している。
【0007】
【発明が解決しようとする課題】
ところで、表面溶融炉等の燃料燃焼式溶融炉で焼却灰と焼却飛灰を混合溶融する場合には次の▲1▼〜▲5▼のような問題がある。
▲1▼ 酸性ガス処理として消石灰Ca(OH)2 が吹き込まれた焼却飛灰は、高塩基度で且つ高融点となっている為、焼却飛灰と焼却灰の混合灰も必然的に融点が高くなる。その為、高融点の混合灰を溶融するには炉内温度を高く保つ必要があるが、従来の燃料燃焼式溶融炉では、炉内温度を十分な高温とする為には燃比が高くなると云う問題がある。
▲2▼ 通常の空気を支燃ガスとしたバーナを用いた従来の燃料燃焼式溶融炉では、排ガス量が多く、排ガス処理設備の大型化やコストの上昇を招くと云う問題がある。
▲3▼ 焼却飛灰には重金属類等の揮散成分が多く含まれ且つ粉粒状である為、未溶融のまま排ガスと一緒に持ち出される焼却飛灰も多く、排ガス中に含まれるダスト濃度が高くなってダクト等の閉塞を招く虞があるうえ、スラグ化率の低下を招くと云う問題がある。
▲4▼ 従来の燃料燃焼式溶融炉を用いて焼却灰と焼却飛灰を溶融するには、焼却灰及び焼却飛灰を均一に混合する為の混合機や焼却灰及び焼却飛灰を混合機に搬送するコンベヤ類等が必要となり、設置スペースの増加や設備コストの上昇を招くと云う問題がある。
▲5▼ 従来の燃料燃焼式溶融炉では、ホッパに混合灰を一定量溜めることで炉内と外部とのシール性を確保するようにしている。ところが、焼却飛灰は、吸湿性が高くて流動性が低い為、ホッパ内でブリッジを生じ、炉内へ円滑且つスムースに供給されないことがある。又、焼却飛灰は、噴流性が高い為にフラッシングを引き起こす等、燃料燃焼式溶融炉の運転上で問題となることがある。
【0008】
本発明は、このような問題点に鑑みて為されたものであり、その目的は廃棄物を焼却炉で焼却処理した際に発生する焼却灰及び焼却飛灰を低燃比で安定溶融することができるようにした酸素バーナ式溶融炉を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の発明は、横断面形状が円形の焼却飛灰溶融室及び焼却飛灰溶融室に連通して焼却飛灰溶融室内で発生した高温の燃焼排ガスが流入する焼却灰溶融室を有する耐火物構造の溶融炉本体と、溶融炉本体の焼却飛灰溶融室の天井壁に下向き姿勢で設けられ、支燃ガスとして一次酸素がそのウインドボックス内へ、また、二次酸素が溶融炉本体に設けた二次酸素ノズルからウインドボックス下方の焼却飛灰溶融室内へ、夫々旋回状態で供給される酸素バーナとを具備し、廃棄物の焼却処理により発生する焼却飛灰及び焼却灰を溶融するようにした酸素バーナ式溶融炉であって、焼却飛灰を酸素バーナの高温火炎中に気体輸送して焼却飛灰溶融室内で燃焼溶融すると共に、焼却灰を焼却灰溶融室内に供給して焼却飛灰溶融室から焼却灰溶融室へ流入する高温の燃焼排ガスに接触させ、焼却灰溶融室内の焼却灰を表面側から加熱溶融するようにした酸素バーナ式溶融炉において、前記溶融炉本体の焼却灰溶融室の天井壁に焼却灰溶融室内へ三次酸素を吹き込む酸素吹込みノズルを設け、焼却飛灰溶融室内の酸素量を酸素バーナの燃料の燃焼に必要な酸素量より少なくして焼却飛灰溶融室内を還元性雰囲気にすると共に、焼却灰溶融室内に酸素吹込みノズルから三次酸素を吹き込み、焼却飛灰溶融室から焼却灰溶融室に送り込まれた燃焼排ガス中の未燃焼ガスを焼却灰溶融室内に於いて三次酸素により完全燃焼させるようにしたことを発明の基本構成とするものである。
【0010】
請求項2の発明は、請求項1の発明において、焼却飛灰を酸素バーナの高温火炎中に気体輸送する気体輸送媒体、支燃ガスとして酸素バーナに供給される一次酸素としたものである。
【0011】
請求項3の発明は、請求項1の発明において、酸素バーナが、支燃ガスである酸素を焼却飛灰溶融室内へ一次酸素と二次酸素に分けて二段供給できる構造であり、一次酸素を焼却飛灰の気体輸送媒体としてこれ旋回させながら酸素バーナの高温火炎中に吹き込めると共に、二次酸素を焼却飛灰溶融室の天井壁に形成した二次酸素ノズルから旋回させながら焼却飛灰溶融室内へ吹き込めるようにしたものである。
【0012】
請求項4の発明は、請求項1の発明において、溶融炉本体の焼却飛灰溶融室の炉底に溶融スラグを溜める湯溜まり部を設け、湯溜まり部に溜まった溶融スラグを溶融炉本体の側壁下部に形成した出滓口からオーバーフローさせて出湯すると共に、焼却飛灰溶融室内の高温の燃焼排ガスを前記出滓口と対向する位置に設けた焼却飛灰溶融室と焼却灰溶融室を連通する排ガス出口から排出するようにしたものである。
【0013】
本発明の請求項5の発明は、溶融炉本体に焼却灰を焼却灰溶融室内へ押し込む灰押出し装置を設け、当該灰押出し装置により焼却灰を焼却灰溶融室内の燃焼排ガスの流れと対向して排ガス出口側に安息角をなすように押し込み、焼却灰溶融室内の燃焼排ガスと接触させることにより表面側から加熱溶融し、溶融した焼却灰の溶融スラグを湯溜まり部へ流下させるようにしたことに特徴がある。
【0014】
本発明の請求項6の発明は、溶融炉本体の焼却灰溶融室の天井壁に焼却灰溶融室内へ三次酸素を吹き込む酸素吹込みノズルを設け、焼却飛灰溶融室内の酸素量を酸素バーナの燃料の燃焼に必要な酸素量より少なくして焼却飛灰溶融室内を還元性雰囲気にすると共に、焼却灰溶融室内に酸素吹込みノズルから三次酸素を吹き込み、焼却飛灰溶融室から焼却灰溶融室に送り込まれた燃焼排ガス中の未燃ガスを焼却灰溶融室内に於いて三次酸素により完全燃焼させるようにしたことに特徴がある。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は本発明の実施の形態に係る酸素バーナ式溶融炉1のフロー図を示すものであり、当該酸素バーナ式溶融炉1は、焼却飛灰溶融室2及び焼却灰溶融室3を有する耐火物構造の溶融炉本体4と、溶融炉本体4に設けた酸素バーナ5と、酸素バーナ5に接続されて酸素バーナ5へ酸素(一次酸素A1、二次酸素A2)及び焼却飛灰Dを供給する酸素飛灰供給機構6と、酸素飛灰供給機構6へ焼却飛灰Dを供給する焼却飛灰供給装置7と、溶融炉本体4へ焼却灰D′を供給する焼却灰供給装置8等から構成されており、高融点の焼却飛灰Dを酸素バーナ5の支燃ガスである酸素(一次酸素A1)により酸素バーナ5の高温火炎中に気体輸送して焼却飛灰溶融室2内で燃焼溶融すると共に、比較的低融点の焼却灰D′を焼却灰溶融室3に供給して焼却飛灰溶融室2から焼却灰溶融室3へ流入した高温の燃焼排ガスGにより表面側から加熱溶融するようにしたものである。
【0016】
前記溶融炉本体4は、図1に示す如く、金属製ケーシング及び耐火物から成る側壁4a、天井壁4b及び炉底4cにより形成された横断面形状が円形の焼却飛灰溶融室2と、同じく金属製ケーシング及び耐火物から成る側壁4a′、天井壁4b′及び炉底4c′により形成され、焼却飛灰溶融室2に連通する焼却灰溶融室3と、焼却飛灰溶融室2を形成する側壁4a下部に形成され、溶融スラグS,S′を出湯する出滓口4d及び傾斜状の樋4eと、出滓口4dと反対側の側壁4a下部に形成され、焼却飛灰溶融室2と焼却灰溶融室3を連通すると共に焼却飛灰溶融室2内の燃焼排ガスGを焼却灰溶融室3へ導く排ガス出口4fと、焼却灰溶融室3を形成する側壁4a′の下部に排ガス出口4fに対向するように形成され、焼却灰溶融室3内に焼却灰D′を供給する焼却灰供給口4gと、焼却灰溶融室3内の燃焼排ガスGを排出する排ガス排出口4hとから構成されている。
又、焼却飛灰溶融室2の炉底4cには、焼却飛灰Dの溶融スラグSと焼却灰D′の溶融スラグS′を溜める窪み状の湯溜まり部4iが形成されており、湯溜まり部4iに溜まった各溶融スラグS,S′が出滓口4dからオーバーフローして出湯されるようになっている。
更に、溶融炉本体4の焼却灰溶融室3の天井壁4b′には、焼却灰溶融室3内へ三次酸素A3を吹き込む酸素吹込みノズル9が設けられている。この酸素吹込みノズル9は、酸素バーナ5への酸素吹込み量を燃料Fの燃焼に必要な酸素量より少なくして焼却飛灰溶融室2内を還元性雰囲気とした場合に、燃焼排ガスG中に含まれる未燃ガスを完全燃焼すると共に、焼却灰溶融室3内の温度を高温に保つ為のものであり、三次酸素供給管10、制御弁26及び流量計27を介して酸素供給源11に接続されている。この場合には、焼却飛灰溶融室2内を還元性雰囲気にすることができ、燃焼排ガスGの低NOx化を図れる。
【0017】
そして、前記溶融炉本体4には、焼却灰D′を一定量貯留する為の焼却灰ホッパ12と、焼却灰ホッパ12内の焼却灰D′を焼却灰溶融室3内へ押し込む灰押出し装置13とが夫々設けられている。
【0018】
即ち、焼却灰ホッパ12は、焼却灰溶融室3を形成する側壁4a′の外面に設けられており、焼却灰供給口4gに連通するようになっている。この焼却灰ホッパ12は、後述する焼却灰供給装置8の一部を構成するものである。
【0019】
一方、灰押出し装置13は、焼却灰ホッパ12の下部位置に設けられており、焼却灰ホッパ12の下部位置に並列状に配置され、焼却灰D′を焼却灰供給口4gから焼却灰溶融室3内へ押し込む複数台のプッシャー13aと、各プッシャー13aを進退移動させる流体圧シリンダ13bとから構成されている。
又、この灰押出し装置13は、焼却灰ホッパ12に貯留された焼却灰D′を焼却灰溶融室3内の燃焼排ガスGの流れに対向し且つ焼却灰溶融室3の炉底4c′に安息角をなすように焼却灰供給口4gから排ガス出口4f側へ押し込むようになっている。これにより、焼却灰溶融室3の炉底4c′には、表面が焼却灰供給口4g側から排ガス出口4f側へ向って漸次低くなる傾斜面となった状態の焼却灰D′層が形成されることなる。この焼却灰D′層の傾斜面は、焼却灰D′の安息角となっている。
【0020】
尚、図1に於いて、14は溶融炉本体4の出滓口4dに接続された耐火物構造の溶融スラグ落下シュート、15は溶融炉本体4の出滓口4dの下方位置に配設されたスラグ冷却水槽、16はスラグ冷却水槽内に配設された水封式スラグコンベヤである。
【0021】
前記酸素バーナ5は、溶融炉本体4の焼却飛灰溶融室2の天井壁4bの中心部に下向き姿勢で設けられており、後述する酸素飛灰供給機構6により供給された支燃ガスである酸素を焼却飛灰溶融室2内へ一次酸素A1と二次酸素A2に分けて二段供給できると共に、気体輸送媒体である一次酸素A1により気体輸送された焼却飛灰Dを一次酸素A1と一緒に焼却飛灰溶融室2内へ吹き込める構造となっている。即ち、酸素バーナ5は、一次酸素A1を焼却飛灰Dと一緒に酸素バーナ5の中心部から旋回させながら酸素バーナ5の高温火炎中に吹き込めると共に、二次酸素A2を溶融炉本体4に形成した二次酸素ノズル23から旋回させながら焼却飛灰溶融室2内へ吹き込めるように構成されている。
【0022】
具体的には、酸素バーナ5は、図2に示す如く、焼却飛灰溶融室2の天井壁4bの中心に形成したバーナスロート17及びバーナタイル18と、バーナスロート17の中心位置に配置され、先端部に焼却飛灰溶融室2内へ燃料F(灯油等の液体燃料や天然ガス等の気体燃料)を吹き込むノズル19aを備えたバーナガン19と、バーナガン19に接続された燃料供給管20と、バーナガン19に接続された噴霧媒体供給管21(燃料Fが気体燃料の場合には不要)と、バーナスロート17に連通状に接続され、バーナスロート17へ一次酸素A1と焼却飛灰Dを供給するウインドボックス22と、天井壁4b(若しくは側壁4c)に設けられ、焼却飛灰溶融室2内へ二次酸素A2を吹き込む複数の二次酸素ノズル23等から構成されており、バーナスロート17及び二次酸素ノズル23から焼却飛灰溶融室2内へ一次酸素A1及び二次酸素A2を吹き込みつつ、バーナガン19から焼却飛灰溶融室2内へ燃料Fを吹き込み、これらをパイロットバーナ等の着火器(図示省略)で着火燃焼させることによって、焼却飛灰溶融室2内に下向きの高温火炎を形成できるようになっている。
又、酸素バーナ5のウインドボックス22には、後述する酸素飛灰供給機構6の一次酸素供給管24が接線方向に接続されており、ウインドボックス22内に供給された一次酸素A1及び焼却飛灰Dが旋回しながらバーナスロート17から焼却飛灰溶融室2内へ吹き込まれるようになっている。
更に、酸素バーナ5の二次酸素ノズル23は、焼却飛灰溶融室2内へ吹き込まれる二次酸素A2が一次酸素A1と同じ方向へ旋回するように焼却飛灰溶融室2の天井壁4b(若しくは側壁4a)の数箇所に設けられており、二次酸素A2を焼却飛灰溶融室2内へ吹き込んで焼却飛灰溶融室2内に旋回流を形成できるようになっている。この二次酸素ノズル23は、後述する酸素飛灰供給機構6の二次酸素供給管25に接続されている。
【0023】
而して、前記酸素バーナ5によれば、一次酸素供給管24からウインドボックス22内に供給された一次酸素A1及び焼却飛灰Dは、ウインドボックス22内で旋回を与えられ、旋回しながらバーナスロート17から酸素バーナ5の高温火炎中に吹き込まれる。又、二次酸素供給管25から二次酸素ノズル23へ供給された二次酸素A2は、二次酸素ノズル23から一次酸素A1と同じ方向の旋回を与えられて焼却飛灰溶融室2内へ吹き込まれる。
【0024】
尚、この酸素バーナ5に於いては、燃料Fに液体燃料を使用する場合、噴霧媒体Hとして蒸気、酸素、圧縮空気を使用することができるが、NOxの発生量は蒸気<酸素<圧縮空気の順で高くなることから、NOxの抑制を考えると、噴霧媒体Hとして蒸気の使用が望まれる。
【0025】
前記酸素飛灰供給機構6は、酸素バーナ5に支燃ガスとして一次酸素A1及び二次酸素A2を供給すると共に、酸素バーナ5に気体輸送により焼却飛灰Dを供給するものであり、図1に示す如く、酸素バーナ5のウインドボックス22に接続され、ウインドボックス22に一次酸素A1及び焼却飛灰Dを供給する一次酸素供給管24と、二次酸素ノズル23に接続された二次酸素供給管25と、一次酸素供給管24及び二次酸素供給管25に接続された酸素供給源11と、一次酸素供給管24及び二次酸素供給管25に夫々介設された制御弁26及び流量計27等から構成されている。
【0026】
前記焼却飛灰供給装置7は、焼却炉の排ガス処理設備で捕集された焼却飛灰Dを貯留する飛灰用サイロ28と、飛灰用サイロ28内の焼却飛灰Dを切り出す飛灰定量切出し装置29と、切り出した焼却飛灰Dを搬送する飛灰供給コンベヤ30と、焼却飛灰Dを計量する飛灰計量機31と、飛灰計量機31内の焼却飛灰Dを排出する計量機排出装置32と、計量機排出装置32から排出された焼却飛灰Dを貯留するホッパ33と、ホッパ33内の焼却飛灰Dを一次酸素供給管24内へ切り出すホッパ定量切出し装置34と、ホッパ33内の焼却飛灰Dの貯留量を検出するホッパレベルセンサー35と、飛灰定量切出し装置29、飛灰供給コンベヤ30及び計量機排出装置32等を制御する制御装置36等から構成されており、ホッパ33内の焼却飛灰Dをホッパ定量切出し装置34により定量ずつ切り出して一次酸素供給管24内へ供給するようになっている。一次酸素供給管24内に切り出された焼却飛灰Dは、酸素供給源11から供給される一次酸素A1により気体輸送され、一次酸素A1と一緒に酸素バーナ5へ供給される。
又、焼却飛灰供給装置7は、ホッパ33内へ随時焼却飛灰Dを供給してホッパ33内の焼却飛灰Dのレベルが一定となるように制御装置36により駆動制御されている。即ち、制御装置36は、ホッパレベルセンサー35からホッパ33内の焼却飛灰Dのレベルが低下した信号を受けると、飛灰計量機31が設定された重量を検出するまで飛灰定量切出し装置29及び飛灰供給コンベヤ30を運転し、次に飛灰計量機31が設定された重量を検出すると、飛灰定量切出し装置29及び飛灰供給コンベヤ30を順次停止し、その後計量機排出装置32を運転して焼却飛灰Dをホッパ33へ供給するようになっている。
【0027】
前記焼却灰供給装置8は、焼却炉から排出された焼却灰D′を貯留する焼却灰用サイロ37と、焼却灰用サイロ37内の焼却灰D′を切り出す焼却灰定量切出し装置38と、焼却飛灰Dを計量する焼却灰計量機39と、焼却灰計量機39内の焼却灰D′を排出する計量機排出装置40と、計量機排出装置40から排出された焼却灰D′を搬送する焼却灰供給コンベヤ41と、焼却灰D′を貯留する焼却灰ホッパ12と、焼却灰ホッパ12内の焼却灰D′の貯留量を検出するホッパレベルセンサー42と、焼却灰定量切出し装置38、計量機排出装置40及び焼却灰供給コンベヤ41等を制御する制御装置43等から構成されている。
又、焼却灰供給装置8は、焼却灰ホッパ12内へ随時焼却灰D′を供給して焼却灰ホッパ12内の焼却灰D′のレベルが一定となるように制御装置43により駆動制御されている。即ち、制御装置43は、ホッパレベルセンサー42から焼却灰ホッパ12内の焼却灰D′のレベルが低下した信号を受けると、焼却灰計量機39が設定された重量を検出するまで焼却灰定量切出し装置38を運転し、次に焼却灰計量機39が設定された重量を検出すると、焼却灰定量切出し装置38を停止し、その後計量機排出装置40及び焼却灰供給コンベヤ41を運転して焼却灰D′を焼却灰ホッパ12へ供給するようになっている。
【0028】
次に、上述した酸素バーナ式溶融炉1を用いて焼却炉から排出された焼却灰D′と各焼却炉の排ガス処理設備で捕集された焼却飛灰Dとを溶融処理する場合について説明する。
焼却飛灰D及び焼却灰D′の溶融開始に際しては、予め酸素バーナ5等を作動させて溶融炉本体4の焼却飛灰溶融室2及び焼却灰溶融室3の温度を所定の温度(焼却飛灰D及び焼却灰D′を溶融できる温度)に予熱しておく。
【0029】
溶融炉本体4の焼却飛灰溶融室2及び焼却灰溶融室3内が所定の温度まで達すると、焼却飛灰供給装置7及び酸素飛灰供給機構6により焼却飛灰Dが一次酸素A1と一緒に酸素バーナ5へ供給される。即ち、飛灰用サイロ28に投入された焼却飛灰Dは、飛灰定量切出し装置29、飛灰供給コンベヤ30、飛灰計量機31、計量機排出装置32、ホッパ33及びホッパ定量切出し装置34を順次経て一次酸素供給管24に供給され、一次酸素供給管24内を流れる一次酸素A1により気体輸送されて一次酸素A1と一緒にウインドボックス22内に供給される。
【0030】
ウインドボックス22内に供給された一次酸素A1及び焼却飛灰Dは、旋回を与えられてバーナスロート17から焼却飛灰溶融室2内へ吹き込まれ、酸素バーナ5の高温火炎中で燃焼溶融されて溶融スラグSとなる。このとき、酸素バーナ5は、支燃ガスとして酸素を用いている為、支燃ガスに空気を用いる従来のバーナに比較して高温の火炎が得られる。その結果、高融点の焼却飛灰Dでも単独で確実に燃焼溶融することができる。又、支燃ガスである一次酸素A1により焼却飛灰Dを高温火炎中に気体輸送するようにしている為、個々の飛灰粒子の表面積を受熱面として十分活用することができ、焼却飛灰Dを効率良く溶融することができる。
【0031】
前記溶融スラグSは、焼却飛灰溶融室2内へ旋回しながら吹き込まれる一次酸素A1及び二次酸素A2により生じる燃焼排ガスGの旋回流により溶融炉本体4の側壁4a内面に付着して炉底4c側へ流れて行く。このとき、溶融炉本体4の側壁4a内面に付着する溶融スラグSによって、側壁4a内面には溶融スラグSのコーティング層が形成される。これによって、側壁4aを形成する耐火物の表面を酸素バーナ5の高温火炎から保護することができる。
【0032】
そして、炉底4c側へ流れた溶融スラグSは、炉底4cに形成した湯溜まり部4iに一時的に貯留された後、出滓口4dから順次オーバーフローして樋4eを流れてその下方のスラグ冷却水槽15内へ落下し、冷却水により急冷固化されて粒状の水砕スラグとなって水封式スラグコンベヤ16により運び出される。このとき、溶融炉本体4の炉底4cに形成した湯溜まり部4iに溶融スラグSを一時的に貯留するようにしている為、炉底4cを形成する耐火物の表面を酸素バーナ5の高温火炎から保護することができる。又、炉底4cの湯溜まり部4iに溶融スラグSを溜めるようにしている為、溶融スラグSの炉内への滞留時間が長くなって溶融スラグS中の重金属類の含有量が低下すると共に、燃焼排ガスG中の未溶融物が湯溜まり部4iに落下して完全溶融される。
【0033】
一方、焼却飛灰溶融室2内で発生した高温の燃焼排ガスGは、排ガス出口4fを通って焼却灰溶融室3内に送り込まれる。このとき、焼却灰溶融室3内には、焼却灰供給装置8及び灰押出し装置13により焼却灰D′が供給されている。即ち、焼却灰用サイロ37に投入された焼却灰D′は、焼却灰定量切出し装置38、焼却灰計量機39、計量機排出装置40及び焼却灰供給コンベヤ41を順次経て焼却灰ホッパ12内に供給され、ここに貯留される。焼却灰ホッパ12内に貯留された焼却灰D′は、引き続き灰押出し装置13のプッシャー13aにより焼却灰供給口4gから焼却灰溶融室3内へ順次押し込まれ、表面が焼却灰供給口4g側から排ガス出口4f側へ向って漸次低くなる傾斜面となった状態で焼却灰溶融室3の炉底4c′に堆積される。尚、焼却灰D′層の傾斜面の角度は、焼却灰D′の安息角となっている。
【0034】
そして、焼却灰溶融室3内に流入した高温の燃焼排ガスGは、焼却灰溶融室3の炉底4c′に形成されている焼却灰D′層の表面に沿って流れ、焼却灰D′層を表面側から順次加熱して排ガス排出口4hから排出される。これにより、炉底4c′に形成された焼却灰D′層は、焼却灰溶融室3内を排ガス出口4f側から排ガス排出口4h側へ向って流れる高温の燃焼排ガスGにより加熱され、表面側から順次溶融されてフィルム状の溶融スラグS′となる。この溶融スラグS′は、焼却灰D′層の傾斜面を流下して排ガス出口4fから焼却飛灰溶融室2の炉底4cに形成した湯溜まり部4iへ流入し、湯溜まり部4iに於いて焼却飛灰Dの溶融スラグSと混合されて一時的に貯留された後、出滓口4dから順次オーバーフローして樋4eを流れてその下方のスラグ冷却水槽15内へ落下し、冷却水により急冷固化されて粒状の水砕スラグとなって水封式スラグコンベヤ16により運び出される。
【0035】
又、排ガス排出口4hから排出された燃焼排ガスGは、減温塔(図示省略)へ送られ、ここで冷却水等の冷却媒体の噴射によって減温された後、集塵器や触媒脱硝塔等の排ガス処理設備(図示省略)を経てクリーンガスとなって煙突(図示省略)から大気中へ放出される。
【0036】
更に、焼却灰溶融室3内に於いては、焼却灰溶融室3の天井壁4b′に設けた酸素吹込みノズル9から焼却灰溶融室3内に三次酸素A3が吹き込まれている。これにより、焼却灰溶融室3内の燃焼排ガスGは、三次酸素A3により焼却灰溶融室3内に於いて二次燃焼される。従って、燃焼排ガスGの低NOx化を図る為、酸素バーナ5への一次酸素A1と二次酸素A2の合計の吹込み量を燃料Fの燃焼に必要な酸素量より少なくして焼却飛灰溶融室2内を還元性雰囲気とした場合に、燃焼排ガスG中に含まれる未燃ガスを完全燃焼することができると共に、焼却灰溶融室3内の温度を高温に保つことができて焼却灰D′を良好且つ確実に加熱溶融することができる。
尚、この酸素バーナ式溶融炉1に於いては、焼却飛灰Dと焼却灰D′の処理比により、一次酸素A1と二次酸素A2の合計量と三次酸素A3の分配比率を変え、焼却飛灰溶融室2と焼却灰溶融室3での燃焼割合を調節するようにしている。
【0037】
【発明の効果】
以上の説明からも明らかなように、本発明の酸素バーナ式溶融炉は、次のような効果を奏することができる。
(1)焼却飛灰溶融室及びこれに連通する焼却灰溶融室を有する溶融炉本体に酸素バーナを設け、高融点の焼却飛灰を酸素バーナの高温火炎中に気体輸送して焼却飛灰溶融室内で溶融すると共に、比較的低融点の焼却灰を焼却灰溶融室に供給して焼却飛灰溶融室内から焼却灰溶融室内へ流入する高温の燃焼排ガスにより加熱溶融するようにしている為、燃料の熱量を有効に活用することができ、燃比の削減が可能になる。
(2)支燃ガスである酸素により焼却飛灰を高温火炎中に気体輸送するようにしている為、個々の飛灰粒子の表面積を受熱面として十分活用することができ、焼却飛灰を効率良く溶融することが可能になる。
(3)酸素バーナを用いている為、排ガス量を減少することができる。その結果、排ガスの持出熱量を低減することができ、燃比の削減が可能になると共に、溶融炉本体や排ガス処理設備をコンパクト化することができ、設置スペースや設備コストの削減を図れる。
(4)酸素バーナの支燃ガスである酸素を焼却飛灰溶融室内へ一次酸素と二次酸素に分けて二段供給し、一次酸素及び二次酸素を旋回させながら焼却飛灰溶融室内へ吹き込めるようにしている為、焼却飛灰溶融室内へ旋回しながら吹き込まれる一次酸素及び二次酸素により生じる燃焼排ガスの旋回流により、溶融スラグは溶融炉本体の側壁内面に付着して炉底側へ流れて行く。その結果、溶融炉本体の側壁内面に付着する溶融スラグによって、側壁を形成する耐火物の表面を酸素バーナの高温火炎から保護することができる。
(5)焼却飛灰は酸素バーナの高温火炎中で瞬時に溶融されると共に、焼却飛灰の一部は焼却飛灰溶融室の側壁内面を流下している溶融スラグに付着して溶融される為、燃焼排ガスと一緒に排出される未溶融灰を少なくすることができる。
(6)溶融炉本体の焼却飛灰溶融室の炉底に焼却飛灰の溶融スラグと焼却灰の溶融スラグを一時的に貯留する湯溜まり部を設け、湯溜まり部に溜まった溶融スラグを出滓口からオーバーフローさせて出湯するようにしている為、湯溜まり部に一時的に貯留した溶融スラグよって、炉底を形成する耐火物の表面を酸素バーナの高温火炎から保護することができる。
(7)溶融炉本体の焼却飛灰溶融室の炉底に焼却飛灰の溶融スラグと焼却灰の溶融スラグを一時的に貯留する湯溜まり部を設けている為、溶融スラグが十分な滞留時間をもって高温環境中に置かれることで完全溶融できると共に、溶融スラグ中の重金属類の含有量の低減を図れる。
(8)焼却灰溶融室の天井壁に焼却灰溶融室内へ三次酸素を吹き込む酸素吹込みノズルを設け、焼却飛灰溶融室から焼却灰溶融室内へ送り込まれた燃焼排ガス中の未燃ガスを焼却灰溶融室内に於いて三次酸素により燃焼させるようにしている為、燃焼排ガス中の未燃ガスを完全燃焼することができると共に、酸素バーナへの酸素を少なくして焼却飛灰溶融室内を還元性雰囲気にすることができ、燃焼排ガスの低NOx化を図れる。然も、焼却飛灰を高温火炎中で且つ還元性雰囲気で溶融することで、溶融スラグ中の重金属類の含有量を低減することができる。
(9)焼却飛灰を溶融炉本体の焼却飛灰溶融室内に、又、焼却灰を溶融炉本体の焼却灰溶融室内に別々に供給するようにしている為、従来の燃料燃焼式溶融炉のように焼却灰と焼却飛灰を均一に混合する為の混合機や焼却灰及び焼却飛灰を混合機に搬送するコンベヤ類等を必要とすると云うことがなく、設置スペースが少なくて済むと共に設備コストの削減を図れる。
(10)焼却飛灰溶融室内に一次酸素と二次酸素を、又、焼却灰溶融室内に三次酸素を吹き込めるようにしている為、焼却飛灰溶融室及び焼却灰溶融室に吹き込む酸素の分配量を調整することで、焼却飛灰及び焼却灰の処理比に合わせた運転を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る酸素バーナ式溶融炉のフロー図である。
【図2】酸素バーナ式溶融炉に用いる酸素バーナの概略縦断面図である。
【符号の簡単な説明】
1は酸素バーナ式溶融炉、2は焼却飛灰溶融室、3は焼却灰溶融室、4は溶融炉本体、4b,4b′は天井壁、4c,4c′は炉底、4dは出滓口、4fは排ガス出口、4iは湯溜まり部、5は酸素バーナ、9は酸素吹込みノズル、13は灰押出し装置、23は二次酸素ノズル、A1は一次酸素、A2は二次酸素、A3は三次酸素、Dは焼却飛灰、D′は焼却灰、Gは燃焼排ガス、S,S′は溶融スラグ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to incineration ash discharged from a stoker-type incinerator or fluidized bed incinerator for incinerating waste such as municipal waste and industrial waste, and incineration fly ash collected by the exhaust gas treatment equipment of each incinerator In particular, the present invention relates to a fuel combustion type oxygen burner melting furnace in which incineration fly ash and incineration ash are melted by the combustion heat of fossil fuels such as kerosene and natural gas. .
[0002]
[Prior art]
In general, most of waste such as municipal waste is incinerated by a stoker-type incinerator or a fluidized bed incinerator. In the former stoker type incinerator, incineration ash that remains in the furnace as incineration residue and incineration fly ash that is taken out into the exhaust gas and collected by exhaust gas treatment equipment such as a dust collector are generated. Further, in the latter fluidized bed incinerator, due to its structure, all incineration residue is collected as incineration fly ash by an exhaust gas treatment facility.
[0003]
By the way, incineration ash discharged from a stoker-type incinerator generally contains coarse substances, and thus pretreatment such as magnetic substance removal and particle size selection is required before melting treatment, but the melting point is relatively low.
On the other hand, the incineration fly ash collected by the incinerator exhaust gas treatment equipment not only contains a large amount of volatilized components such as powdered low boiling point heavy metals and dioxins, but also exhaust gas in the exhaust gas treatment equipment. Slaked lime Ca (OH) as a treatment for acidic gas such as HCl and SOx 2 When a dry treatment is performed by blowing in, high basicity (CaO / SiO 2 ) And a high melting point substance.
[0004]
Therefore, in recent years, in order to reduce the volume, detoxify, and stabilize the incineration ash and the incineration fly ash, the melting and solidifying treatment of the incineration ash and the incineration fly ash has attracted attention and is actually put into practical use. In particular, incineration fly ash has a higher concentration of dioxins and a heavy metal content than incineration ash, and is strongly required to be melted and solidified.
[0005]
For melting of incineration ash and incineration fly ash, fuel combustion type melting furnaces (for example, surface melting furnaces, swirl melting furnaces, coke bed furnaces) that use the heat of combustion of fossil fuels such as kerosene and natural gas, and electric energy There is an electric melting furnace (for example, an arc melting furnace, a plasma arc furnace, an electric resistance furnace) or the like that uses as a heat source. In general, an electric melting furnace is used in the case of an incineration facility having a power generation facility, and a fuel combustion melting furnace is used in the case where there is no power generation facility or when performing wide-area treatment.
[0006]
A typical example of the fuel combustion melting furnace is a surface melting furnace. That is, the surface melting furnace is supplied with incineration ash and incineration fly ash from four directions in the furnace to form an inclined melting surface, or incineration ash and incineration fly ash from the facing two directions in the furnace. It has a face-to-face structure that forms an inclined melting surface that is supplied, and incineration ash and incineration fly ash collected in a hopper around the melting furnace are pushed into the furnace by an ash supply device and preheated on the furnace ceiling The surface of the incineration ash and incineration fly ash extruded by the combustion heat of the burner using air as the supporting gas is melted. This surface melting furnace has advantages such as being suitable for melting materials to be melted with non-uniform particle sizes including coarse materials such as incineration ash, and being able to use various fossil fuels with a simple structure. is doing.
[0007]
[Problems to be solved by the invention]
By the way, when incineration ash and incineration fly ash are mixed and melted in a fuel combustion type melting furnace such as a surface melting furnace, there are the following problems (1) to (5).
(1) Slaked lime Ca (OH) for acid gas treatment 2 Since the incinerated fly ash into which the incineration is blown has a high basicity and a high melting point, the mixed ash of the incinerated fly ash and the incinerated ash necessarily has a high melting point. Therefore, in order to melt the high melting point mixed ash, it is necessary to keep the furnace temperature high. However, in the conventional fuel combustion melting furnace, the fuel ratio becomes high in order to make the furnace temperature sufficiently high. There's a problem.
(2) The conventional fuel combustion type melting furnace using a burner using normal air as a supporting gas has a problem that the amount of exhaust gas is large, resulting in an increase in the size and cost of the exhaust gas treatment facility.
(3) Incinerated fly ash contains a lot of volatile components such as heavy metals and is granular, so there are many incinerated fly ash that is taken out together with the exhaust gas without melting, and the concentration of dust contained in the exhaust gas is high. Therefore, there is a possibility that the ducts and the like are blocked, and that the slag rate is lowered.
(4) In order to melt incineration ash and incineration fly ash using a conventional fuel combustion melting furnace, a mixer for uniformly mixing incineration ash and incineration fly ash, or a mixer for incineration ash and incineration fly ash However, there is a problem in that a conveyor or the like to be transported is required, resulting in an increase in installation space and an increase in equipment cost.
(5) In a conventional fuel combustion type melting furnace, a certain amount of mixed ash is stored in a hopper so as to ensure a sealing property between the inside and outside of the furnace. However, incinerated fly ash has high hygroscopicity and low fluidity, so that it may cause a bridge in the hopper and not be supplied smoothly and smoothly into the furnace. Incinerated fly ash may cause problems in the operation of a fuel combustion melting furnace, such as causing flushing due to its high jet property.
[0008]
The present invention has been made in view of such problems, and its purpose is to stably melt incineration ash and incineration fly ash generated when incineration of waste in an incinerator at a low fuel ratio. An object of the present invention is to provide an oxygen burner type melting furnace which can be made.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present invention is a high-temperature combustion generated in an incineration fly ash melting chamber in communication with an incineration fly ash melting chamber having a circular cross section and an incineration fly ash melting chamber. In a refractory structure melting furnace body with an incineration ash melting chamber into which exhaust gas flows, and a ceiling wall of the incineration fly ash melting chamber of the melting furnace body in a downward posture Primary oxygen is provided as a combustion support gas in the wind box, and secondary oxygen is supplied in a swirling state from a secondary oxygen nozzle provided in the melting furnace body to the incineration fly ash melting chamber below the wind box. Ru An oxygen burner melting furnace equipped with an oxygen burner that melts incineration fly ash and incineration ash generated by incineration of waste, and transports the incineration fly ash into the high-temperature flame of the oxygen burner. Combustion and melting in the incineration fly ash melting chamber, and supply incineration ash to the incineration ash melting chamber to contact the high-temperature combustion exhaust gas flowing from the incineration fly ash melting chamber into the incineration ash melting chamber, and incineration in the incineration ash melting chamber Ashes were melted by heating from the surface side. In the oxygen burner type melting furnace, into the incineration ash melting chamber on the ceiling wall of the incineration ash melting chamber of the melting furnace body An oxygen blowing nozzle for injecting tertiary oxygen is provided, and the amount of oxygen in the incineration fly ash melting chamber is made smaller than the amount of oxygen necessary for combustion of the oxygen burner fuel to make the incineration fly ash melting chamber a reducing atmosphere and incineration ash Tertiary oxygen is blown from the oxygen blowing nozzle into the melting chamber, and unburned gas in the combustion exhaust gas sent from the incineration fly ash melting chamber to the incineration ash melting chamber is completely burned by tertiary oxygen in the incineration ash melting chamber. This is the basic configuration of the invention.
[0010]
The invention according to claim 2 is the gas transport medium according to claim 1, wherein the incinerated fly ash is gas transported into the high-temperature flame of an oxygen burner. The , Supplied to oxygen burner as combustion support gas Primary oxygen It is what.
[0011]
The invention according to claim 3 is the structure according to claim 1, wherein the oxygen burner is capable of supplying oxygen, which is a combustion support gas, into the incineration fly ash melting chamber divided into primary oxygen and secondary oxygen in two stages. As a gas transport medium for incineration fly ash The While swirling, it can be blown into the high-temperature flame of an oxygen burner and secondary oxygen Formed on the ceiling wall of the incineration fly ash melting chamber It is designed to be blown into the incineration fly ash melting chamber while swirling from the secondary oxygen nozzle.
[0012]
According to a fourth aspect of the present invention, in the first aspect of the present invention, there is provided a hot water reservoir portion for accumulating molten slag at the bottom of the incineration fly ash melting chamber of the melting furnace main body, and the molten slag accumulated in the hot water reservoir portion of the melting furnace main body. The hot water flue gas in the incineration fly ash melting chamber is connected to the incineration fly ash melting chamber and the incineration ash melting chamber, which are provided at a position opposite to the tap outlet, while overflowing from the tap outlet formed at the bottom of the side wall. It is made to discharge from the exhaust gas outlet.
[0013]
The invention of claim 5 of the present invention is provided with an ash extrusion device for pushing incineration ash into the incineration ash melting chamber in the melting furnace main body, and the incineration ash is opposed to the flow of combustion exhaust gas in the incineration ash melting chamber by the ash extrusion device. It was pushed so as to form an angle of repose on the exhaust gas outlet side and brought into contact with the combustion exhaust gas in the incineration ash melting chamber, heated and melted from the surface side, and the molten slag of the molten incineration ash was allowed to flow down to the hot water reservoir There are features.
[0014]
In the invention of claim 6 of the present invention, an oxygen blowing nozzle for blowing tertiary oxygen into the incineration ash melting chamber is provided on the ceiling wall of the incineration ash melting chamber of the melting furnace main body, and the amount of oxygen in the incineration fly ash melting chamber is controlled by an oxygen burner. The amount of oxygen required for fuel combustion is reduced to make the incineration fly ash melting chamber a reducing atmosphere, and tertiary oxygen is blown from the oxygen blowing nozzle into the incineration ash melting chamber, and then the incineration ash melting chamber is injected from the incineration fly ash melting chamber. This is characterized in that the unburned gas in the combustion exhaust gas sent to the tank is completely burned with tertiary oxygen in the incineration ash melting chamber.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a flow diagram of an oxygen burner melting furnace 1 according to an embodiment of the present invention. The oxygen burner melting furnace 1 has a fireproof ash melting chamber 2 and an incineration ash melting chamber 3. A melting furnace body 4 having a physical structure, an oxygen burner 5 provided in the melting furnace body 4, oxygen (primary oxygen A1, secondary oxygen A2) and incineration fly ash D are supplied to the oxygen burner 5 connected to the oxygen burner 5 From the oxygen fly ash supply mechanism 6 that performs the operation, the incineration fly ash supply apparatus 7 that supplies the incineration fly ash D to the oxygen fly ash supply mechanism 6, and the incineration ash supply apparatus 8 that supplies the incineration ash D ′ to the melting furnace body 4 The incinerated fly ash D having a high melting point is configured to be gas transported into the high-temperature flame of the oxygen burner 5 by oxygen (primary oxygen A1) as a combustion gas of the oxygen burner 5 and burned in the incinerated fly ash melting chamber 2 While melting, the relatively low melting point incineration ash D ′ is supplied to the incineration ash melting chamber 3. The combustion exhaust gas G of high temperature flowing into the ash melting chamber 3 from 却飛 ash melting chamber 2 is obtained so as to heat and melt the surface.
[0016]
As shown in FIG. 1, the melting furnace body 4 is similar to the incineration fly ash melting chamber 2 having a circular cross section formed by a side wall 4a, a ceiling wall 4b and a furnace bottom 4c made of a metal casing and a refractory. An incineration ash melting chamber 3 and an incineration fly ash melting chamber 2 which are formed by a side wall 4a ′, a ceiling wall 4b ′ and a furnace bottom 4c ′ made of a metal casing and a refractory and communicate with the incineration fly ash melting chamber 2 are formed. Formed at the bottom of the side wall 4a, for pouring the molten slag S, S ', and at the bottom of the side wall 4a opposite to the tapping port 4d, the incineration fly ash melting chamber 2 An exhaust gas outlet 4f that communicates with the incineration ash melting chamber 3 and leads the combustion exhaust gas G in the incineration fly ash melting chamber 2 to the incineration ash melting chamber 3, and an exhaust gas outlet 4f below the side wall 4a 'that forms the incineration ash melting chamber 3 In the incinerated ash melting chamber 3 And ash supply port 4g supplies ash D ', is composed of a gas discharge port 4h for discharging the combustion exhaust gas G of incinerated ash melting chamber 3.
The furnace bottom 4c of the incineration fly ash melting chamber 2 is formed with a hollow hot water reservoir 4i for storing the molten slag S of the incineration fly ash D and the molten slag S 'of the incineration ash D'. The molten slags S and S 'accumulated in the portion 4i overflow from the tap outlet 4d and are discharged.
Further, an oxygen blowing nozzle 9 for blowing tertiary oxygen A3 into the incineration ash melting chamber 3 is provided on the ceiling wall 4 b ′ of the incineration ash melting chamber 3 of the melting furnace body 4. This oxygen blowing nozzle 9 is used for the combustion exhaust gas G when the oxygen blowing amount into the oxygen burner 5 is made smaller than the oxygen amount necessary for the combustion of the fuel F and the inside of the incineration fly ash melting chamber 2 is made a reducing atmosphere. In order to completely burn the unburned gas contained therein and to keep the temperature in the incineration ash melting chamber 3 at a high temperature, an oxygen supply source is provided via the tertiary oxygen supply pipe 10, the control valve 26 and the flow meter 27. 11 is connected. In this case, the inside of the incineration fly ash melting chamber 2 can be made a reducing atmosphere, and the combustion exhaust gas G can be reduced in NOx.
[0017]
In the melting furnace main body 4, an incineration ash hopper 12 for storing a certain amount of incineration ash D ′ and an ash extrusion device 13 for pushing the incineration ash D ′ in the incineration ash hopper 12 into the incineration ash melting chamber 3. Are provided.
[0018]
That is, the incineration ash hopper 12 is provided on the outer surface of the side wall 4a ′ forming the incineration ash melting chamber 3, and communicates with the incineration ash supply port 4g. The incineration ash hopper 12 constitutes a part of the incineration ash supply device 8 described later.
[0019]
On the other hand, the ash extrusion device 13 is provided at a lower position of the incineration ash hopper 12, and is arranged in parallel at a lower position of the incineration ash hopper 12, so that the incineration ash D ′ is infused from the incineration ash supply port 4g into the incineration ash melting chamber. 3 includes a plurality of pushers 13a that are pushed into 3 and a fluid pressure cylinder 13b that moves the pushers 13a forward and backward.
The ash extruding device 13 has the incineration ash D ′ stored in the incineration ash hopper 12 facing the flow of the combustion exhaust gas G in the incineration ash melting chamber 3 and rests on the furnace bottom 4 c ′ of the incineration ash melting chamber 3. The incineration ash supply port 4g is pushed toward the exhaust gas outlet 4f so as to form a corner. As a result, an incineration ash D ′ layer is formed on the furnace bottom 4c ′ of the incineration ash melting chamber 3 in a state where the surface is an inclined surface that gradually decreases from the incineration ash supply port 4g side toward the exhaust gas outlet 4f side. It will be different. The inclined surface of the incineration ash D ′ layer is an angle of repose of the incineration ash D ′.
[0020]
In FIG. 1, 14 is a molten slag dropping chute having a refractory structure connected to the outlet 4d of the melting furnace body 4, and 15 is disposed below the outlet 4d of the melting furnace body 4. A slag cooling water tank 16 is a water-sealed slag conveyor disposed in the slag cooling water tank.
[0021]
The oxygen burner 5 is provided in a downward posture at the center of the ceiling wall 4b of the incineration fly ash melting chamber 2 of the melting furnace body 4, and is a combustion supporting gas supplied by an oxygen fly ash supply mechanism 6 described later. Oxygen can be supplied into the incineration fly ash melting chamber 2 in two stages by dividing it into primary oxygen A1 and secondary oxygen A2, and the incineration fly ash D gas-transported by the primary oxygen A1, which is a gas transport medium, together with the primary oxygen A1 It is structured to be blown into the incineration fly ash melting chamber 2. In other words, the oxygen burner 5 blows the primary oxygen A1 together with the incineration fly ash D from the center of the oxygen burner 5 into the high-temperature flame of the oxygen burner 5 and the secondary oxygen A2 into the melting furnace body 4. It is configured to be blown into the incineration fly ash melting chamber 2 while being swung from the formed secondary oxygen nozzle 23.
[0022]
Specifically, as shown in FIG. 2, the oxygen burner 5 is disposed at the center of the burner throat 17 and the burner tile 18 formed at the center of the ceiling wall 4b of the incineration fly ash melting chamber 2, and the burner throat 17. A burner gun 19 provided with a nozzle 19a for blowing fuel F (liquid fuel such as kerosene or gaseous fuel such as natural gas) into the incineration fly ash melting chamber 2 at the tip, and a fuel supply pipe 20 connected to the burner gun 19, The spray medium supply pipe 21 connected to the burner gun 19 (not required when the fuel F is gaseous fuel) and the burner throat 17 are connected in communication to supply the primary oxygen A1 and the incineration fly ash D to the burner throat 17. The wind box 22 and the ceiling wall 4b (or the side wall 4c) are provided with a plurality of secondary oxygen nozzles 23 and the like for blowing secondary oxygen A2 into the incineration fly ash melting chamber 2. -While blowing primary oxygen A1 and secondary oxygen A2 from the throat throat 17 and the secondary oxygen nozzle 23 into the incineration fly ash melting chamber 2, the fuel F is blown from the burner gun 19 into the incineration fly ash melting chamber 2, and these are pilot burners, etc. By igniting and burning with an igniter (not shown), a downward high-temperature flame can be formed in the incineration fly ash melting chamber 2.
Further, a primary oxygen supply pipe 24 of an oxygen fly ash supply mechanism 6 to be described later is connected to the wind box 22 of the oxygen burner 5 in a tangential direction, and the primary oxygen A1 and incineration fly ash supplied into the wind box 22 are connected. D is blown into the incineration fly ash melting chamber 2 from the burner throat 17 while turning.
Further, the secondary oxygen nozzle 23 of the oxygen burner 5 is arranged so that the secondary oxygen A2 blown into the incineration fly ash melting chamber 2 swirls in the same direction as the primary oxygen A1. Or it is provided in several places of the side wall 4a), and the secondary oxygen A2 is blown into the incineration fly ash melting chamber 2 so that a swirl flow can be formed in the incineration fly ash melting chamber 2. The secondary oxygen nozzle 23 is connected to a secondary oxygen supply pipe 25 of the oxygen fly ash supply mechanism 6 described later.
[0023]
Thus, according to the oxygen burner 5, the primary oxygen A1 and the incineration fly ash D supplied from the primary oxygen supply pipe 24 into the wind box 22 are swirled in the wind box 22, and the burner is swung. It is blown from the throat 17 into the high temperature flame of the oxygen burner 5. The secondary oxygen A2 supplied from the secondary oxygen supply pipe 25 to the secondary oxygen nozzle 23 is swung in the same direction as the primary oxygen A1 from the secondary oxygen nozzle 23 and enters the incineration fly ash melting chamber 2. Infused.
[0024]
In the oxygen burner 5, when liquid fuel is used as the fuel F, steam, oxygen, and compressed air can be used as the spray medium H, but the amount of NOx generated is steam <oxygen <compressed air. Therefore, the use of steam as the spray medium H is desired in consideration of the suppression of NOx.
[0025]
The oxygen fly ash supply mechanism 6 supplies primary oxygen A1 and secondary oxygen A2 as supporting gases to the oxygen burner 5 and supplies incinerated fly ash D to the oxygen burner 5 by gas transport. As shown in FIG. 2, a secondary oxygen supply connected to a wind box 22 of the oxygen burner 5, a primary oxygen supply pipe 24 for supplying primary oxygen A 1 and incineration fly ash D to the wind box 22, and a secondary oxygen nozzle 23. A pipe 25, an oxygen supply source 11 connected to the primary oxygen supply pipe 24 and the secondary oxygen supply pipe 25, a control valve 26 and a flow meter interposed in the primary oxygen supply pipe 24 and the secondary oxygen supply pipe 25, respectively. 27 etc.
[0026]
The incineration fly ash supply device 7 has a fly ash silo 28 for storing the incineration fly ash D collected by the exhaust gas treatment facility of the incinerator, and a fly ash quantitative amount for cutting out the incineration fly ash D in the fly ash silo 28. A cutting device 29, a fly ash supply conveyor 30 for conveying the cut out incineration fly ash D, a fly ash weighing machine 31 for weighing the incineration fly ash D, and a weighing for discharging the incineration fly ash D in the fly ash measurement machine 31 A machine discharger 32, a hopper 33 for storing the incineration fly ash D discharged from the weighing machine discharger 32, a hopper quantitative cutout device 34 for cutting out the incineration fly ash D in the hopper 33 into the primary oxygen supply pipe 24, It comprises a hopper level sensor 35 that detects the amount of incinerated fly ash D stored in the hopper 33, a fly ash quantitative cutting device 29, a fly ash supply conveyor 30, a control device 36 that controls the weighing machine discharge device 32, and the like. Baked in the hopper 33 Fly ash D cut by hopper quantitative cutout device 34 by quantitative and supplies the primary oxygen supply pipe 24. The incineration fly ash D cut out in the primary oxygen supply pipe 24 is gas-transported by the primary oxygen A1 supplied from the oxygen supply source 11, and is supplied to the oxygen burner 5 together with the primary oxygen A1.
The incineration fly ash supply device 7 is driven and controlled by the control device 36 so that the incineration fly ash D is supplied into the hopper 33 at any time so that the level of the incineration fly ash D in the hopper 33 becomes constant. That is, when the control device 36 receives a signal indicating that the level of the incineration fly ash D in the hopper 33 has decreased from the hopper level sensor 35, the fly ash metering device 29 until the fly ash meter 31 detects the set weight. Then, when the fly ash supply conveyor 30 is operated and the fly ash meter 31 detects the set weight, the fly ash quantitative cutting device 29 and the fly ash supply conveyor 30 are sequentially stopped, and then the meter discharge device 32 is turned on. The incineration fly ash D is operated and supplied to the hopper 33.
[0027]
The incineration ash supply device 8 includes an incineration ash silo 37 for storing the incineration ash D ′ discharged from the incinerator, an incineration ash quantitative extraction device 38 for cutting out the incineration ash D ′ in the incineration ash silo 37, and incineration. The incineration ash measuring machine 39 for measuring the fly ash D, the weighing machine discharge device 40 for discharging the incineration ash D ′ in the incineration ash measurement machine 39, and the incineration ash D ′ discharged from the weighing machine discharge device 40 are conveyed. Incineration ash supply conveyor 41, incineration ash hopper 12 for storing incineration ash D ', hopper level sensor 42 for detecting the amount of incineration ash D' stored in incineration ash hopper 12, incineration ash quantitative cutting device 38, weighing It comprises a control device 43 for controlling the machine discharge device 40 and the incineration ash supply conveyor 41 and the like.
Further, the incineration ash supply device 8 is driven and controlled by the control device 43 so that the incineration ash D ′ is supplied into the incineration ash hopper 12 at any time so that the level of the incineration ash D ′ in the incineration ash hopper 12 becomes constant. Yes. That is, when the control device 43 receives a signal indicating that the level of the incineration ash D ′ in the incineration ash hopper 12 has decreased from the hopper level sensor 42, the control device 43 extracts the incineration ash quantitatively until the incineration ash meter 39 detects the set weight. When the apparatus 38 is operated and the incinerated ash metering machine 39 detects the set weight, the incinerated ash metering device 38 is stopped, and then the weighing machine discharge device 40 and the incinerated ash supply conveyor 41 are operated to incinerate the incineration ash. D ′ is supplied to the incineration ash hopper 12.
[0028]
Next, the case where the incineration ash D ′ discharged from the incinerator and the incineration fly ash D collected by the exhaust gas treatment facility of each incinerator are melt-processed using the above-described oxygen burner melting furnace 1 will be described. .
At the start of melting of the incineration fly ash D and the incineration ash D ′, the oxygen burner 5 and the like are operated in advance to set the temperatures of the incineration fly ash melting chamber 2 and the incineration ash melting chamber 3 of the melting furnace body 4 to predetermined temperatures (incineration fly The ash D and the incinerated ash D ′ are preheated to a temperature capable of melting.
[0029]
When the incineration fly ash melting chamber 2 and the incineration ash melting chamber 3 of the melting furnace body 4 reach a predetermined temperature, the incineration fly ash D and the primary oxygen A1 are combined with the incineration fly ash supply device 7 and the oxygen fly ash supply mechanism 6. To the oxygen burner 5. That is, the incineration fly ash D put into the fly ash silo 28 is a fly ash quantitative cutout device 29, a fly ash supply conveyor 30, a fly ash meter 31, a meter discharger 32, a hopper 33, and a hopper quantitative cutout device 34. Are sequentially supplied to the primary oxygen supply pipe 24, are transported in gas by the primary oxygen A1 flowing in the primary oxygen supply pipe 24, and are supplied into the wind box 22 together with the primary oxygen A1.
[0030]
The primary oxygen A1 and the incineration fly ash D supplied into the wind box 22 are swirled and blown into the incineration fly ash melting chamber 2 from the burner throat 17 and burned and melted in the high temperature flame of the oxygen burner 5. It becomes the molten slag S. At this time, since the oxygen burner 5 uses oxygen as the combustion support gas, a high-temperature flame can be obtained as compared with a conventional burner using air as the combustion support gas. As a result, even the high melting point incineration fly ash D can be reliably burned and melted alone. In addition, since the incineration fly ash D is gas-transported into the high-temperature flame by the primary oxygen A1 that is the combustion support gas, the surface area of each fly ash particle can be fully utilized as the heat receiving surface, and the incineration fly ash D can be efficiently melted.
[0031]
The molten slag S adheres to the inner surface of the side wall 4a of the melting furnace body 4 by the swirling flow of the combustion exhaust gas G generated by swirling the primary oxygen A1 and the secondary oxygen A2 while swirling into the incineration fly ash melting chamber 2. It flows to the 4c side. At this time, a coating layer of the molten slag S is formed on the inner surface of the side wall 4a by the molten slag S adhering to the inner surface of the side wall 4a of the melting furnace body 4. Thereby, the surface of the refractory forming the side wall 4 a can be protected from the high temperature flame of the oxygen burner 5.
[0032]
The molten slag S that has flowed to the furnace bottom 4c side is temporarily stored in the hot water reservoir 4i formed in the furnace bottom 4c, and then overflows sequentially from the tap 4d to flow through the bowl 4e. It falls into the slag cooling water tank 15, is rapidly cooled and solidified by the cooling water, becomes granular granulated slag, and is carried out by the water-sealed slag conveyor 16. At this time, since the molten slag S is temporarily stored in the hot water pool portion 4i formed on the furnace bottom 4c of the melting furnace body 4, the surface of the refractory forming the furnace bottom 4c is set at a high temperature of the oxygen burner 5. Can be protected from flames. Further, since the molten slag S is accumulated in the hot water reservoir 4i of the furnace bottom 4c, the residence time of the molten slag S in the furnace becomes longer, and the content of heavy metals in the molten slag S is reduced. The unmelted material in the combustion exhaust gas G falls into the hot water reservoir 4i and is completely melted.
[0033]
On the other hand, the high-temperature combustion exhaust gas G generated in the incineration fly ash melting chamber 2 is sent into the incineration ash melting chamber 3 through the exhaust gas outlet 4f. At this time, incineration ash D ′ is supplied into the incineration ash melting chamber 3 by the incineration ash supply device 8 and the ash extrusion device 13. That is, the incineration ash D ′ charged into the incineration ash silo 37 passes through the incineration ash quantitative cutting device 38, the incineration ash metering device 39, the weighing machine discharge device 40 and the incineration ash supply conveyor 41 in order into the incineration ash hopper 12. Supplied and stored here. The incineration ash D ′ stored in the incineration ash hopper 12 is successively pushed into the incineration ash melting chamber 3 sequentially from the incineration ash supply port 4g by the pusher 13a of the ash extrusion device 13, and the surface is in turn from the incineration ash supply port 4g side. It is deposited on the furnace bottom 4c ′ of the incineration ash melting chamber 3 in a state where the inclined surface gradually becomes lower toward the exhaust gas outlet 4f. The angle of the inclined surface of the incinerated ash D ′ layer is the angle of repose of the incinerated ash D ′.
[0034]
The high-temperature combustion exhaust gas G flowing into the incineration ash melting chamber 3 flows along the surface of the incineration ash D ′ layer formed on the furnace bottom 4 c ′ of the incineration ash melting chamber 3, and the incineration ash D ′ layer Are sequentially heated from the surface side and discharged from the exhaust gas outlet 4h. Thereby, the incineration ash D ′ layer formed on the furnace bottom 4c ′ is heated by the high-temperature combustion exhaust gas G flowing in the incineration ash melting chamber 3 from the exhaust gas outlet 4f side to the exhaust gas outlet 4h side, Are sequentially melted to form a film-like molten slag S ′. The molten slag S ′ flows down the inclined surface of the incinerated ash D ′ layer and flows from the exhaust gas outlet 4f into the hot water reservoir 4i formed in the furnace bottom 4c of the incinerated fly ash melting chamber 2, and in the hot water reservoir 4i. After being mixed with the molten slag S of the incineration fly ash D and temporarily stored, it sequentially overflows from the outlet 4d and flows into the slag cooling water tank 15 below the outlet 4e. It is rapidly cooled and solidified to form granular granulated slag, which is carried out by a water-sealed slag conveyor 16.
[0035]
Further, the combustion exhaust gas G discharged from the exhaust gas discharge port 4h is sent to a temperature reducing tower (not shown), where the temperature is reduced by injection of a cooling medium such as cooling water, and then a dust collector or a catalyst denitration tower. After passing through an exhaust gas treatment facility (not shown) such as a clean gas, it is discharged into the atmosphere from a chimney (not shown).
[0036]
Further, in the incineration ash melting chamber 3, tertiary oxygen A <b> 3 is blown into the incineration ash melting chamber 3 from an oxygen blowing nozzle 9 provided on the ceiling wall 4 b ′ of the incineration ash melting chamber 3. Thereby, the combustion exhaust gas G in the incineration ash melting chamber 3 is subjected to secondary combustion in the incineration ash melting chamber 3 by the tertiary oxygen A3. Therefore, in order to reduce NOx in the combustion exhaust gas G, the total amount of primary oxygen A1 and secondary oxygen A2 injected into the oxygen burner 5 is made smaller than the amount of oxygen required for the combustion of the fuel F, and incineration fly ash is melted. When the inside of the chamber 2 is in a reducing atmosphere, the unburned gas contained in the combustion exhaust gas G can be completely burned, and the temperature in the incineration ash melting chamber 3 can be maintained at a high temperature so that the incineration ash D ′ Can be satisfactorily heated and melted.
In this oxygen burner type melting furnace 1, the total amount of primary oxygen A1 and secondary oxygen A2 and the distribution ratio of tertiary oxygen A3 are changed according to the treatment ratio of incineration fly ash D and incineration ash D ′. The combustion ratio in the fly ash melting chamber 2 and the incineration ash melting chamber 3 is adjusted.
[0037]
【The invention's effect】
As is clear from the above description, the oxygen burner melting furnace of the present invention can achieve the following effects.
(1) An incinerator fly ash melting chamber and an incinerator ash melting chamber communicating with the incinerator ash melting chamber are provided with an oxygen burner, and the high melting point incineration fly ash is gas transported into the high-temperature flame of the oxygen burner for incineration fly ash melting. In addition to melting in the room, the incineration ash with a relatively low melting point is supplied to the incineration ash melting chamber and heated and melted by the high-temperature combustion exhaust gas flowing from the incineration fly ash melting chamber into the incineration ash melting chamber. The amount of heat can be effectively used, and the fuel ratio can be reduced.
(2) Since the incineration fly ash is gas transported into the high-temperature flame by oxygen as the combustion-supporting gas, the surface area of each fly ash particle can be fully utilized as the heat receiving surface, and the incineration fly ash is efficient. It becomes possible to melt well.
(3) Since an oxygen burner is used, the amount of exhaust gas can be reduced. As a result, the amount of heat taken out of the exhaust gas can be reduced, the fuel ratio can be reduced, the melting furnace body and the exhaust gas treatment facility can be made compact, and the installation space and equipment cost can be reduced.
(4) Oxygen, which is the combustion gas of the oxygen burner, is supplied into the incineration fly ash melting chamber divided into primary oxygen and secondary oxygen in two stages, and blown into the incineration fly ash melting chamber while swirling the primary and secondary oxygen. Therefore, the molten slag adheres to the inner surface of the side wall of the melting furnace main body due to the swirling flow of the combustion exhaust gas generated by the primary oxygen and the secondary oxygen blown into the incineration fly ash melting chamber, and moves toward the bottom of the furnace. It flows. As a result, the surface of the refractory forming the side wall can be protected from the high temperature flame of the oxygen burner by the molten slag adhering to the inner surface of the side wall of the melting furnace body.
(5) Incineration fly ash is instantly melted in a high-temperature flame of an oxygen burner, and a part of the incineration fly ash adheres to the molten slag flowing down the inner wall of the incineration fly ash melting chamber and is melted. Therefore, it is possible to reduce unmelted ash discharged together with the combustion exhaust gas.
(6) An incineration fly ash melting slag and an incineration ash molten slag are provided at the bottom of the incinerator fly ash melting chamber of the melting furnace body to temporarily store the molten slag that has accumulated in the hot pool. Since the hot water is discharged from the tap, the surface of the refractory forming the furnace bottom can be protected from the high-temperature flame of the oxygen burner by the molten slag temporarily stored in the hot water reservoir.
(7) Since the molten iron slag for incineration fly ash and the molten slag for incineration ash are temporarily stored at the bottom of the incineration fly ash melting chamber of the melting furnace body, the molten slag has sufficient residence time Can be completely melted by being placed in a high temperature environment, and the content of heavy metals in the molten slag can be reduced.
(8) An oxygen blowing nozzle that blows tertiary oxygen into the incineration ash melting chamber is provided on the ceiling wall of the incineration ash melting chamber, and the unburned gas in the combustion exhaust gas sent from the incineration fly ash melting chamber into the incineration ash melting chamber is incinerated. Because it burns with tertiary oxygen in the ash melting chamber, unburned gas in the combustion exhaust gas can be completely burned, and oxygen in the oxygen burner is reduced to reduce the incineration fly ash melting chamber. The atmosphere can be made, and NOx reduction of combustion exhaust gas can be achieved. However, the content of heavy metals in the molten slag can be reduced by melting the incinerated fly ash in a high-temperature flame and in a reducing atmosphere.
(9) Since the incineration fly ash is separately supplied into the incineration fly ash melting chamber of the melting furnace main body and the incineration ash is separately supplied into the incineration ash melting chamber of the melting furnace main body, In this way, there is no need for a mixer to uniformly mix incineration ash and incineration fly ash, or a conveyor to transport the incineration ash and incineration fly ash to the mixer. Cost can be reduced.
(10) Since primary oxygen and secondary oxygen are blown into the incineration fly ash melting chamber and tertiary oxygen is blown into the incineration ash melting chamber, distribution of oxygen blown into the incineration fly ash melting chamber and incineration ash melting chamber By adjusting the amount, it is possible to perform operation in accordance with the treatment ratio of incineration fly ash and incineration ash.
[Brief description of the drawings]
FIG. 1 is a flow diagram of an oxygen burner type melting furnace according to an embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of an oxygen burner used in an oxygen burner melting furnace.
[Brief description of symbols]
1 is an oxygen burner melting furnace, 2 is an incineration fly ash melting chamber, 3 is an incineration ash melting chamber, 4 is a melting furnace body, 4b and 4b 'are ceiling walls, 4c and 4c' are furnace bottoms, and 4d is an outlet 4f is an exhaust gas outlet, 4i is a hot water reservoir, 5 is an oxygen burner, 9 is an oxygen blowing nozzle, 13 is an ash extrusion device, 23 is a secondary oxygen nozzle, A1 is primary oxygen, A2 is secondary oxygen, and A3 is Tertiary oxygen, D is incineration fly ash, D 'is incineration ash, G is combustion exhaust gas, and S and S' are molten slag.

Claims (5)

横断面形状が円形の焼却飛灰溶融室及び焼却飛灰溶融室に連通して焼却飛灰溶融室内で発生した高温の燃焼排ガスが流入する焼却灰溶融室を有する耐火物構造の溶融炉本体と、溶融炉本体の焼却飛灰溶融室の天井壁に下向き姿勢で設けられ、支燃ガスとして一次酸素がそのウインドボックス内へ、また、二次酸素が溶融炉本体に設けた二次酸素ノズルからウインドボックス下方の焼却飛灰溶融室内へ、夫々旋回状態で供給される酸素バーナとを具備し、廃棄物の焼却処理により発生する焼却飛灰及び焼却灰を溶融するようにした酸素バーナ式溶融炉であって、焼却飛灰を酸素バーナの高温火炎中に気体輸送して焼却飛灰溶融室内で燃焼溶融すると共に、焼却灰を焼却灰溶融室内に供給して焼却飛灰溶融室から焼却灰溶融室へ流入する高温の燃焼排ガスに接触させ、焼却灰溶融室内の焼却灰を表面側から加熱溶融するようにした酸素バーナ式溶融炉において、前記溶融炉本体の焼却灰溶融室の天井壁に焼却灰溶融室内へ三次酸素を吹き込む酸素吹込みノズルを設け、焼却飛灰溶融室内の酸素量を酸素バーナの燃料の燃焼に必要な酸素量より少なくして焼却飛灰溶融室内を還元性雰囲気にすると共に、焼却灰溶融室内に酸素吹込みノズルから三次酸素を吹き込み、焼却飛灰溶融室から焼却灰溶融室に送り込まれた燃焼排ガス中の未燃焼ガスを焼却灰溶融室内に於いて三次酸素により完全燃焼させるようにしたことを特徴とする酸素バーナ式溶融炉。A refractory structure melting furnace body having an incineration ash melting chamber in which a high-temperature combustion exhaust gas generated in the incineration fly ash melting chamber flows in communication with the incineration fly ash melting chamber having a circular cross-sectional shape and the incineration fly ash melting chamber; In the incineration fly ash melting chamber of the melting furnace main body, it is installed in a downward posture, primary oxygen as a combustion support gas into the wind box, and secondary oxygen from a secondary oxygen nozzle provided in the melting furnace main body An oxygen burner melting furnace equipped with an oxygen burner that is supplied in a swirling state into the incineration fly ash melting chamber below the wind box and that melts incineration fly ash and incineration ash generated by incineration of waste. The incineration fly ash is gas transported into the high-temperature flame of the oxygen burner and burned and melted in the incineration fly ash melting chamber, and the incineration ash is supplied into the incineration ash melting chamber to melt the incineration ash from the incineration fly ash melting chamber. Hot fuel flowing into the chamber In an oxygen burner melting furnace that is brought into contact with exhaust gas and heat-melts the incineration ash in the incineration ash melting chamber from the surface side, tertiary oxygen is introduced into the incineration ash melting chamber on the ceiling wall of the incineration ash melting chamber of the melting furnace body. An oxygen blowing nozzle is provided to reduce the amount of oxygen in the incineration fly ash melting chamber to less than the amount of oxygen necessary for the combustion of the oxygen burner fuel to make the incineration fly ash melting chamber a reducing atmosphere, and in the incineration ash melting chamber The tertiary oxygen was blown from the oxygen blowing nozzle, and the unburned gas in the combustion exhaust gas sent from the incineration fly ash melting chamber to the incineration ash melting chamber was completely burned by the tertiary oxygen in the incineration ash melting chamber. Features an oxygen burner melting furnace. 焼却飛灰を酸素バーナの高温火炎中に気体輸送する気体輸送媒体が、支燃ガスとして酸素バーナに供給される一次酸素であることを特徴とする請求項1に記載の酸素バーナ式溶融炉。The oxygen burner melting furnace according to claim 1, wherein the gas transport medium for transporting the incinerated fly ash into the high-temperature flame of the oxygen burner is primary oxygen supplied to the oxygen burner as a combustion support gas. 酸素バーナが、支燃ガスである酸素を焼却飛灰溶融室内へ一次酸素と二次酸素に分けて二段供給できる構造であり、一次酸素を焼却飛灰の気体輸送媒体としてこれ旋回させながら酸素バーナの高温火炎中に吹き込めると共に、二次酸素を焼却飛灰溶融室の天井壁に形成した二次酸素ノズルから旋回させながら焼却飛灰溶融室内へ吹き込めるように構成されていることを特徴とする請求項1に記載の酸素バーナ式溶融炉。Oxygen burner, a structure capable of supplying two stages divided into primary oxygen and the secondary oxygen oxygen is the oxidizing gas to the incineration fly ash melting chamber, while turning it the primary oxygen as gaseous transport medium incineration fly ash It is configured to blow into the high-temperature flame of the oxygen burner and to blow secondary oxygen into the incineration fly ash melting chamber while swirling from the secondary oxygen nozzle formed on the ceiling wall of the incineration fly ash melting chamber. The oxygen burner melting furnace according to claim 1, wherein 溶融炉本体の焼却飛灰溶融室の炉底に溶融スラグを溜める湯溜まり部を設け、湯溜まり部に溜まった溶融スラグを溶融炉本体の側壁下部に形成した出滓口からオーバーフローさせて出湯すると共に、焼却飛灰溶融室内の高温の燃焼排ガスを前記出滓口と対向する位置に設けた焼却飛灰溶融室と焼却灰溶融室を連通する排ガス出口から排出するようにしたことを特徴とする請求項1に記載の酸素バーナ式溶融炉。  A hot water reservoir for storing molten slag is provided at the bottom of the incinerator fly ash melting chamber of the melting furnace main body, and the molten slag accumulated in the hot water reservoir is overflowed from the outlet formed at the lower side of the side wall of the melting furnace main body and discharged. In addition, the high-temperature combustion exhaust gas in the incineration fly ash melting chamber is discharged from an exhaust gas outlet communicating the incineration fly ash melting chamber and the incineration ash melting chamber provided at a position facing the tap outlet. The oxygen burner type melting furnace according to claim 1. 溶融炉本体に焼却灰を焼却灰溶融室内へ押し込む灰押出し装置を設け、当該灰押出し装置により焼却灰を焼却灰溶融室内の燃焼排ガスの流れと対向して排ガス出口側に安息角をなすように押し込み、焼却灰溶融室内の燃焼排ガスと接触させることにより表面側から加熱溶融し、溶融した焼却灰の溶融スラグを湯溜まり部へ流下させるようにしたことを特徴とする請求項1に記載の酸素バーナ式溶融炉。  An ash extrusion device that pushes incineration ash into the incineration ash melting chamber is installed in the melting furnace body, and the ash extrusion device forms an angle of repose on the exhaust gas outlet side facing the flow of combustion exhaust gas in the incineration ash melting chamber. 2. The oxygen according to claim 1, wherein the molten slag of the incinerated ash is pressed and melted from the surface side by contacting with the combustion exhaust gas in the incinerated ash melting chamber, and the molten slag of the molten incinerated ash is caused to flow down to the hot water pool portion. Burner type melting furnace.
JP2000192321A 2000-06-27 2000-06-27 Oxygen burner type melting furnace Expired - Fee Related JP3764634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000192321A JP3764634B2 (en) 2000-06-27 2000-06-27 Oxygen burner type melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192321A JP3764634B2 (en) 2000-06-27 2000-06-27 Oxygen burner type melting furnace

Publications (2)

Publication Number Publication Date
JP2002013718A JP2002013718A (en) 2002-01-18
JP3764634B2 true JP3764634B2 (en) 2006-04-12

Family

ID=18691471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192321A Expired - Fee Related JP3764634B2 (en) 2000-06-27 2000-06-27 Oxygen burner type melting furnace

Country Status (1)

Country Link
JP (1) JP3764634B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004564B2 (en) * 2006-11-21 2012-08-22 大同特殊鋼株式会社 Burner protection method
US7621154B2 (en) * 2007-05-02 2009-11-24 Air Products And Chemicals, Inc. Solid fuel combustion for industrial melting with a slagging combustor
KR101085000B1 (en) * 2011-01-25 2011-11-21 주식회사 제이텍 Melting furnace for asbestos wastes
KR101323636B1 (en) 2013-09-02 2013-11-05 지에스플라텍 주식회사 Gasification melting furnace and treating method for combustible material using the same

Also Published As

Publication number Publication date
JP2002013718A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US4861262A (en) Method and apparatus for waste disposal
JP4548785B2 (en) Waste gasification melting apparatus melting furnace, and control method and apparatus in the melting furnace
USRE34298E (en) Method for waste disposal
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
WO2003031873A1 (en) Ash melting type u-firing combustion boiler and method of operating the boiler
JP3748364B2 (en) Fly ash melting furnace
JP3764634B2 (en) Oxygen burner type melting furnace
JP4116698B2 (en) Ash fusion incineration system
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
EP1367323A1 (en) Gasification melting furnace and gasification melting method for combustible refuse and/or burned ash
JP2003042429A (en) Ash melting furnace equipment for gasifying/melting plasma, and method for its control
CA1333973C (en) Method and apparatus for waste disposal
JPH11118123A (en) Combustion furnace and method of combusting powder
JP2950754B2 (en) Method and equipment for melting incineration ash
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP4285760B2 (en) Operation control method of gasification and melting system and system
JP3754472B2 (en) Surface melting furnace using gas fuel
JPH10185115A (en) Powder combustion burner of industrial waste incinerator
AU621059B2 (en) A method and apparatus for waste disposal
JP3273114B2 (en) Surface melting furnace
JPH09273736A (en) Surface melting furnace
JP3556525B2 (en) Surface melting furnace melting burner
JP3959067B2 (en) Incinerator
KR100402844B1 (en) Fly ash swirl melting system
JP2000161630A (en) Cyclone type ash melting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees