JP2007271205A - Furnace situation monitoring/controlling method for melting furnace and its device - Google Patents

Furnace situation monitoring/controlling method for melting furnace and its device Download PDF

Info

Publication number
JP2007271205A
JP2007271205A JP2006099149A JP2006099149A JP2007271205A JP 2007271205 A JP2007271205 A JP 2007271205A JP 2006099149 A JP2006099149 A JP 2006099149A JP 2006099149 A JP2006099149 A JP 2006099149A JP 2007271205 A JP2007271205 A JP 2007271205A
Authority
JP
Japan
Prior art keywords
furnace
block
cooling
amount
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099149A
Other languages
Japanese (ja)
Other versions
JP4234727B2 (en
Inventor
Toshimasa Shirai
利昌 白井
Yoshihisa Saito
芳久 齊藤
Jun Sato
佐藤  淳
Takehiro Kitsuta
岳洋 橘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006099149A priority Critical patent/JP4234727B2/en
Publication of JP2007271205A publication Critical patent/JP2007271205A/en
Application granted granted Critical
Publication of JP4234727B2 publication Critical patent/JP4234727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a furnace situation monitoring/controlling method for a melting furnace capable of properly grasping a furnace situation and performing proper control for a stable operation. <P>SOLUTION: In this furnace situation monitoring/controlling method of the melting furnace having a furnace main body 2 provided with a water-cooled wall 3, communicated with a secondary combustion chamber 26 at its upper portion, provided with a slag cinder notch 6 at its lower portion, introducing a thermal decomposition gas 43 generated by thermally decomposing wastes, from a thermal decomposition gas burner 4 disposed on a furnace wall, and melting ash content in the gas by combustion heat of the thermal decomposition gas, three cooling blocks composed of one or plural adjacent cooling water passages exist at an upper portion, an intermediate portion and a lower portion, and a combustion exhaust gas generating situation is monitored at the upper block 8, an auxiliary fuel supplying situation is monitored at the intermediate block 9, and a slag discharging situation is monitored at the lower block 10 on the basis of a cooling water flow rate of each cooling block, and heat absorption quantity calculated from temperature difference at an inlet and an outlet of cooling water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスの燃焼熱で灰分を溶融するガス化溶融システムにおける溶融炉に関し、特に、炉内状況を適確に把握することができ、さらには溶融炉を安定運転するための適切な制御を可能とした溶融炉の炉内状況監視・制御方法及び該装置に関する。   The present invention relates to a melting furnace in a gasification melting system in which waste is pyrolyzed to generate pyrolysis gas, and ash is melted by the combustion heat of the pyrolysis gas. Furthermore, the present invention relates to a method and apparatus for monitoring and controlling the in-furnace condition of a melting furnace, which enables appropriate control for stable operation of the melting furnace.

従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる技術としてガス化溶融システムが知られている。ガス化溶融システムは、廃棄物を熱分解してガス化するガス化炉と、該ガス化炉の下流側に設けられ、ガス化炉にて生成された熱分解ガスを高温燃焼し、ガス中の灰分を溶融スラグ化する溶融炉と、該溶融炉から排出される排ガスを燃焼する二次燃焼室とを備えており、廃棄物の資源化、減容化及び無害化を図るために、溶融炉からスラグを取り出して路盤材等の土木資材として再利用したり、二次燃焼室から排出される排ガスから廃熱を回収して発電を行うなどしている(特許文献1等)。   Conventionally, a gasification and melting system is known as a technology capable of processing a wide range of wastes such as municipal waste, non-combustible waste, incineration residue, sludge, landfill waste, and the like. The gasification and melting system includes a gasification furnace that thermally decomposes and gasifies waste, and a pyrolysis gas that is provided downstream of the gasification furnace and that is generated in the gasification furnace at high temperature. It has a melting furnace that melts ash content into slag, and a secondary combustion chamber that burns exhaust gas discharged from the melting furnace. In order to reduce the waste resources, reduce the volume and make them harmless, The slag is taken out from the furnace and reused as a civil engineering material such as a roadbed material, or the waste heat is recovered from the exhaust gas discharged from the secondary combustion chamber to generate electric power (Patent Document 1, etc.).

ガス化溶融システムの溶融炉には、ガス化炉にて発生した熱分解ガスを溶融炉内に吹き込む熱分解ガスバーナが配設されるとともに、燃焼空気を導入する燃焼空気供給ノズルが配設されている。炉本体は外側を鉄皮で被覆され、内壁は耐火材で形成される。溶融炉内は1300〜1500℃の高温雰囲気となるため、炉壁内には冷却水管若しくは冷却ジャケットが配設され、冷却水を通流することにより炉壁を冷却するようになっている。そして、この水冷構造により冷却・固化したスラグのセルフコート層を炉内壁面に形成させ、耐火材の侵食を防止する。特許文献2(特開2003−161419号公報)には、水冷ジャケットを備えた溶融炉の冷却システムが開示されており、溶融炉の外壁を覆う水冷ジャケットに独立して流量調整されるブロックを複数並列に設け、各ブロックには冷却水が流れる仕切室を複数直列に設け、ブロック化された水冷ジャケット毎に冷却水を流して溶融炉を冷却するようになっている。そして、溶融炉外壁を均等に且つ過不足なく冷却するように、冷却水の流量を調節するようにしている。   The melting furnace of the gasification melting system is provided with a pyrolysis gas burner for blowing the pyrolysis gas generated in the gasification furnace into the melting furnace and a combustion air supply nozzle for introducing the combustion air. Yes. The furnace body is coated on the outside with an iron skin, and the inner wall is formed of a refractory material. Since the inside of the melting furnace has a high temperature atmosphere of 1300 to 1500 ° C., a cooling water pipe or a cooling jacket is provided in the furnace wall, and the furnace wall is cooled by flowing cooling water. Then, a self-coating layer of slag cooled and solidified by this water cooling structure is formed on the inner wall surface of the furnace to prevent the refractory material from being eroded. Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-161419) discloses a cooling system for a melting furnace provided with a water cooling jacket, and a plurality of blocks whose flow rates are adjusted independently by a water cooling jacket covering the outer wall of the melting furnace. A plurality of partition chambers through which cooling water flows are provided in series in each block, and the melting furnace is cooled by flowing cooling water for each of the water cooling jackets that are made into blocks. The flow rate of the cooling water is adjusted so that the outer wall of the melting furnace is cooled evenly and without excess or deficiency.

溶融炉内は、その温度分布が均一でなく、また熱分解ガス、助燃料又は燃焼用空気の供給状況、廃棄物供給量などの運転条件によって変化する。従って、溶融炉を適性に運転するためには、炉内状況を逐次監視し、これに応じた各操作端の制御を行う必要がある。
そこで、炉内温度を測定して、これに応じた運転を行う技術が提案されている。例えば特許文献3(特開平10−89653号公報)では、溶融炉の炉内温度が所定の値を超えて上昇した時に、温度の低い燃焼用空気を過剰に供給して溶融炉の炉内温度を下げる構成が開示されている。炉内温度の検出には温度センサを用いている。
The temperature distribution in the melting furnace is not uniform, and changes depending on operating conditions such as the supply status of pyrolysis gas, auxiliary fuel or combustion air, and the amount of waste supplied. Therefore, in order to properly operate the melting furnace, it is necessary to monitor the in-furnace situation sequentially and control each operation end in accordance with this.
Therefore, a technique has been proposed in which the temperature in the furnace is measured and an operation corresponding to this is performed. For example, in Patent Document 3 (Japanese Patent Laid-Open No. 10-89653), when the furnace temperature of the melting furnace rises above a predetermined value, the combustion temperature in the melting furnace is excessively supplied by supplying low-temperature combustion air. A configuration for lowering is disclosed. A temperature sensor is used to detect the furnace temperature.

また、特許文献4(特開2004−183914号公報)には、溶融炉内温度を灰分がスラグ化するのに適した温度に維持するための温度補償方法が開示されており、温度センサ若しくはテレビカメラからなる温度監視手段により炉内温度を検出し、該温度に基づいて温度制御手段を制御して炉内温度を所定温度に維持するようにしている。温度制御手段としては、溶融炉内への二次空気供給量と酸素供給量の比を制御する手段が提案されている。テレビカメラは、その出力を画像処理し、炉内のスラグ状態から炉内温度を監視するものである。   Patent Document 4 (Japanese Patent Application Laid-Open No. 2004-183914) discloses a temperature compensation method for maintaining the temperature in the melting furnace at a temperature suitable for ashing into slag, and a temperature sensor or a television is disclosed. The temperature in the furnace is detected by a temperature monitoring means comprising a camera, and the temperature control means is controlled based on the temperature to maintain the furnace temperature at a predetermined temperature. As temperature control means, means for controlling the ratio of the amount of secondary air supplied to the melting furnace and the amount of oxygen supplied has been proposed. The TV camera performs image processing on the output and monitors the furnace temperature from the slag state in the furnace.

特開2004−144402号公報JP 2004-144402 A 特開2003−161419号公報JP 2003-161419 A 特開平10−89653号公報Japanese Patent Laid-Open No. 10-89653 特開2004−183914号公報JP 2004-183914 A

上記したように、溶融炉の炉内状況を監視する手段の一つとして、特許文献3及び4に記載されるように炉内温度を計測する温度センサを設け、これに基づき炉内状況を監視する手段がある。従来、温度センサとしては熱電対や放射温度計が用いられていた。しかしながら、熱電対は精度良く温度を計測できる反面、炉内雰囲気により劣化し易く、特に1300℃〜1500℃程度となる高温雰囲気においては寿命が短くなり溶融炉での使用には適さない。また、放射温度計は高温雰囲気下でも使用可能であるが、信頼性が低く、精度に欠けるという問題があった。同様に、テレビカメラによる炉内温度の監視も目視によるところが大きいため、信頼性が低いものであった。また、特許文献2に記載される方法は、溶融炉外壁を均等に冷却することを目的とし、炉内の温度分布に基づき冷却流量を変化させる構成であり、炉内状況を監視する構成は具備していない。
従って、本発明は上記従来技術の問題点に鑑み、ガス化溶融システムにおける溶融炉にて、炉内状況を適確に把握することができ、さらには溶融炉を安定運転するための適切な制御を可能としたガス化溶融炉における溶融炉の炉内状況監視・制御方法及び該装置を提案することを目的とする。
As described above, as one of means for monitoring the in-furnace condition of the melting furnace, a temperature sensor for measuring the in-furnace temperature is provided as described in Patent Documents 3 and 4, and the in-furnace condition is monitored based on this. There is a means to do. Conventionally, thermocouples and radiation thermometers have been used as temperature sensors. However, thermocouples can measure temperature with high accuracy, but are easily deteriorated by the atmosphere in the furnace, and particularly in a high temperature atmosphere of about 1300 ° C. to 1500 ° C., the life is shortened and is not suitable for use in a melting furnace. Although the radiation thermometer can be used even in a high temperature atmosphere, there is a problem that the reliability is low and the accuracy is lacking. Similarly, monitoring of the furnace temperature with a TV camera is also very unreliable because it is largely visually observed. In addition, the method described in Patent Document 2 aims to uniformly cool the outer wall of the melting furnace, and is configured to change the cooling flow rate based on the temperature distribution in the furnace. Not done.
Therefore, in view of the above-mentioned problems of the prior art, the present invention can accurately grasp the in-furnace condition in the melting furnace in the gasification melting system, and further, appropriate control for stable operation of the melting furnace. It is an object of the present invention to propose a method and apparatus for monitoring and controlling the state of a melting furnace in a gasification melting furnace that enables the above.

そこで、本発明はかかる課題を解決するために、
耐火壁の外側に水冷壁が配設された炉本体を有し、上部が二次燃焼室に連通し、下部にスラグ出滓口を備え、廃棄物を熱分解して発生させた熱分解ガスを炉壁に設けられた熱分解ガスバーナより導入し、該熱分解ガスの燃焼熱によりガス中の灰分を溶融する溶融炉の炉内状況監視・制御方法において、
前記水冷壁の冷却水通路が鉛直方向に複数に分割されており、一又は近接する複数の前記冷却水通路からなる冷却ブロックが複数存在し、
各冷却ブロックにおける冷却水流量と、冷却水の入口側と出口側の温度差とから算出した吸熱量の時間的変化に基づき各ブロックに対応する部位の炉内状況を監視することを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
Pyrolysis gas generated by pyrolyzing waste, having a furnace body with a water-cooled wall outside the refractory wall, the upper part communicating with the secondary combustion chamber, the lower part with a slag outlet In a melting furnace in-furnace situation monitoring and control method for introducing ash from the pyrolysis gas burner provided on the furnace wall and melting the ash in the gas by the combustion heat of the pyrolysis gas,
The cooling water passage of the water cooling wall is divided into a plurality in the vertical direction, and there are a plurality of cooling blocks composed of one or a plurality of the cooling water passages adjacent to each other,
It is characterized in that the in-furnace situation of the part corresponding to each block is monitored based on the temporal change of the endothermic amount calculated from the cooling water flow rate in each cooling block and the temperature difference between the inlet side and the outlet side of the cooling water. .

本発明によれば、冷却ブロック毎に冷却水流量と温度差の積から吸熱量の推移を求めることにより、炉内の温度変化が適確に且つリアルタイムで把握できる。さらに、鉛直方向に並んだ複数の冷却ブロック毎にその温度変化を検出することができるため、溶融炉の各部位における状況を適宜監視することが可能である。
また、耐火壁の肉厚が薄くなると冷却水の吸熱が増大するため、耐火壁の侵食が検出できるとともに、ブロック毎に吸熱量を測定しているため、侵食位置も特定できるようになり、耐火壁の補修、メンテナンスが容易になる。
According to the present invention, the temperature change in the furnace can be grasped accurately and in real time by obtaining the transition of the heat absorption amount from the product of the cooling water flow rate and the temperature difference for each cooling block. Furthermore, since the temperature change can be detected for each of the plurality of cooling blocks arranged in the vertical direction, the situation in each part of the melting furnace can be appropriately monitored.
In addition, as the wall thickness of the fire wall decreases, the endotherm of the cooling water increases, so erosion of the fire wall can be detected and the amount of heat absorbed is measured for each block. Wall repair and maintenance become easy.

また、耐火壁の外側に水冷壁が配設された炉本体を有し、上部が二次燃焼室に連通し、下部にスラグ出滓口を備え、廃棄物を熱分解して発生させた熱分解ガスを炉壁に設けられた熱分解ガスバーナより導入し、該熱分解ガスの燃焼熱によりガス中の灰分を溶融する溶融炉の炉内状況監視・制御方法において、
前記水冷壁の冷却水通路が鉛直方向に複数に分割されており、一又は近接する複数の前記冷却水通路からなる冷却ブロックが上部、中間、下部に3つ存在し、
各冷却ブロックにおける冷却水流量と、冷却水の入口側と出口側の温度差とから夫々の冷却ブロックにおける吸熱量を算出し、該算出した吸熱量に基づいて、上部ブロックでは燃焼排ガス発生状況、中間ブロックでは助燃料供給状況、下部ブロックではスラグ出滓状況を夫々監視することを特徴とする。
It also has a furnace body with a water-cooled wall on the outside of the refractory wall, the upper part communicates with the secondary combustion chamber, the lower part has a slag outlet, and heat generated by pyrolyzing waste In the method for monitoring and controlling the in-furnace situation of a melting furnace in which cracked gas is introduced from a pyrolysis gas burner provided on the furnace wall, and the ash content in the gas is melted by the combustion heat of the pyrolysis gas,
The cooling water passage of the water cooling wall is divided into a plurality in the vertical direction, and there are three cooling blocks composed of one or a plurality of adjacent cooling water passages in the upper part, the middle part, and the lower part,
Calculate the endothermic amount in each cooling block from the cooling water flow rate in each cooling block and the temperature difference between the inlet side and the outlet side of the cooling water, and based on the calculated endothermic amount, in the upper block, the state of combustion exhaust gas generation, In the middle block, the auxiliary fuel supply status is monitored, and in the lower block, the slag output status is monitored.

本発明では、鉛直方向に上部、中間、下部の3つの冷却ブロックを配置し、各冷却ブロックから得られる吸熱量を求めることにより、溶融炉におけるガス量変動の監視、助燃料の過負荷検出、スラグ出滓口の閉塞状況の監視を同時に行うことが可能となる。   In the present invention, three cooling blocks, upper, middle, and lower, are arranged in the vertical direction, and by obtaining the endothermic amount obtained from each cooling block, monitoring of gas amount fluctuation in the melting furnace, detection of overload of auxiliary fuel, It becomes possible to simultaneously monitor the blockage of the slag outlet.

また、前記中間ブロックにて前記吸熱量が異常値を示した場合に、主として助燃料供給量を制御することを特徴とする。
中間ブロックは炉内の燃焼域に相当し、この吸熱量が異常値を示した場合、燃焼状態が良好でないと判断できる。例えば、吸熱量が異常に高い値を示した場合には助燃料の供給量過多により燃焼温度が高くなりすぎていると判断できる。
従って、本発明のように助燃料供給量を調節することにより燃焼状態を良好に保つことが可能となるとともに、助燃料供給量を適正化することが可能となり、経済的な運転が可能となる。
The auxiliary fuel supply amount is mainly controlled when the endothermic amount shows an abnormal value in the intermediate block.
The intermediate block corresponds to a combustion zone in the furnace, and when the endothermic amount shows an abnormal value, it can be determined that the combustion state is not good. For example, when the endothermic amount shows an abnormally high value, it can be determined that the combustion temperature is too high due to an excessive supply amount of auxiliary fuel.
Therefore, by adjusting the auxiliary fuel supply amount as in the present invention, it is possible to maintain a good combustion state, and it is possible to optimize the auxiliary fuel supply amount, thereby enabling economical operation. .

さらに、前記上部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、助燃料供給量のうち少なくとも何れか一を制御することを特徴とする。
上部ブロックは溶融炉の排ガス出口側に相当し、この吸熱量が異常値を示した場合、例えば吸熱量が高い値を示した場合には、燃焼域が排ガス出口側に存在するため排ガス量が増大したと推定される。これは、燃焼空気量、廃棄物供給量、あるいは補助燃料が所定量以上に供給されているため、燃焼排ガス量が増大したと判断できる。排ガス量が増大すると溶融炉および二次燃焼室でのガス滞留時間が短く、充分な燃焼時間が得られず不完全燃焼となり、CO、DXN類の発生の原因となる。
従って、本発明のように、燃焼空気量、廃棄物供給量、助燃料のうち少なくとも一を制御し、排ガス量を所定量に戻すことにより、溶融炉を安定運転することが可能となる。
Furthermore, when the endothermic amount shows an abnormal value in the upper block, at least one of the combustion air amount, the waste supply amount, and the auxiliary fuel supply amount is controlled.
The upper block corresponds to the exhaust gas outlet side of the melting furnace, and when this endothermic value shows an abnormal value, for example, when the endothermic amount shows a high value, the combustion zone exists on the exhaust gas outlet side, so the amount of exhaust gas is It is estimated that it has increased. This can be determined that the amount of combustion exhaust gas has increased because the amount of combustion air, the amount of waste supplied, or the auxiliary fuel is supplied in excess of a predetermined amount. When the amount of exhaust gas increases, the gas residence time in the melting furnace and the secondary combustion chamber is short, and sufficient combustion time cannot be obtained, resulting in incomplete combustion, which causes generation of CO and DXNs.
Accordingly, as in the present invention, it is possible to stably operate the melting furnace by controlling at least one of the combustion air amount, the waste supply amount, and the auxiliary fuel and returning the exhaust gas amount to a predetermined amount.

さらにまた、前記下部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、前記スラグ出滓口を加温するバーナ出力のうち少なくとも何れか一を制御することを特徴とする。
下部ブロックは溶融炉のスラグ出滓口に相当し、この吸熱量が異常値を示した場合、例えば吸熱量が低い値の場合には、スラグ出滓口が閉塞している若しくは閉塞傾向であると判断できる。従って、本発明のように、燃焼空気量、廃棄物供給量、酸素バーナ出力のうち少なくとも一を制御することによりスラグ出滓口近傍の温度を高くし、スラグ固化による閉塞を防止することが可能となる。
Furthermore, when the endothermic amount shows an abnormal value in the lower block, at least one of a combustion air amount, a waste supply amount, and a burner output for heating the slag outlet is controlled. It is characterized by.
The lower block corresponds to the slag outlet of the melting furnace, and when the endothermic amount shows an abnormal value, for example, when the endothermic amount is low, the slag outlet is clogged or tends to be clogged. It can be judged. Therefore, as in the present invention, by controlling at least one of the combustion air amount, waste supply amount, and oxygen burner output, it is possible to increase the temperature near the slag outlet and prevent clogging due to slag solidification It becomes.

また、耐火壁の外側に水冷壁が配設された炉本体を有し、上部が二次燃焼室に連通し、下部にスラグ出滓口を備え、炉壁に廃棄物を熱分解して発生させた熱分解ガスを導入する熱分解ガスバーナが設けられ、該熱分解ガスの燃焼熱によりガス中の灰分を溶融する溶融炉の炉内状況監視・制御装置において、
前記水冷壁の冷却水通路が鉛直方向に複数に分割されており、一又は近接する複数の前記冷却水通路からなる冷却ブロックが上部、中間、下部に3つ存在し、
各冷却ブロックにおける冷却水流量を計測する流量計測手段と、冷却水の入口側と出口側の温度を夫々計測する温度計測手段と、該計測された冷却水流量と前記温度計測手段から得られる温度差から吸熱量を算出する制御手段と、を備え、
前記吸熱量に基づいて、上部ブロックでは燃焼排ガス発生状況、中間ブロックでは助燃料供給状況、下部ブロックではスラグ出滓状況を夫々監視することを特徴とする。
It also has a furnace body with a water-cooled wall on the outside of the refractory wall, the upper part communicates with the secondary combustion chamber, the lower part has a slag outlet, and it is generated by pyrolyzing waste on the furnace wall In the in-furnace situation monitoring / control device of the melting furnace, in which a pyrolysis gas burner for introducing the pyrolysis gas is provided, and the ash content in the gas is melted by the combustion heat of the pyrolysis gas,
The cooling water passage of the water cooling wall is divided into a plurality in the vertical direction, and there are three cooling blocks composed of one or a plurality of adjacent cooling water passages in the upper part, the middle part, and the lower part,
Flow rate measuring means for measuring the cooling water flow rate in each cooling block, temperature measuring means for measuring the temperatures of the inlet side and the outlet side of the cooling water, the measured cooling water flow rate and the temperature obtained from the temperature measuring means. A control means for calculating an endothermic amount from the difference,
On the basis of the heat absorption amount, combustion exhaust gas generation status is monitored in the upper block, auxiliary fuel supply status is monitored in the intermediate block, and slag outflow status is monitored in the lower block.

また、前記制御手段は、前記中間ブロックの吸熱量が異常値を示した場合に、主として助燃料供給量を制御することを特徴とする。
さらに、前記制御手段は、前記上部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、助燃料供給量のうち少なくとも何れか一を制御することを特徴とする。
さらにまた、前記制御手段は、前記下部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、前記スラグ出滓口を加温するバーナ出力のうち少なくとも何れか一を制御することを特徴とする。
Further, the control means mainly controls the auxiliary fuel supply amount when the endothermic amount of the intermediate block shows an abnormal value.
Further, the control means controls at least one of a combustion air amount, a waste supply amount, and an auxiliary fuel supply amount when the endothermic amount shows an abnormal value in the upper block. To do.
Furthermore, the control means may be configured to output at least one of a combustion air amount, a waste supply amount, and a burner output for heating the slag outlet when the endothermic amount shows an abnormal value in the lower block. It is characterized by controlling one.

以上記載のごとく本発明によれば、ガス化溶融システムにおける溶融炉にて、炉内状況を適確に把握することができ、さらには溶融炉を安定運転するための適切な制御が可能となる。
即ち、冷却ブロック毎に冷却水流量と温度差の積から吸熱量の推移を求めることにより、炉内の温度変化が適確に且つリアルタイムで把握できる。さらに、鉛直方向に並んだ複数の冷却ブロック毎にその温度変化を検出することができるため、溶融炉の各部位における状況を適宜監視することが可能である。
As described above, according to the present invention, in the melting furnace in the gasification melting system, the state in the furnace can be accurately grasped, and further, appropriate control for stable operation of the melting furnace becomes possible. .
That is, by obtaining the transition of the endothermic amount from the product of the coolant flow rate and the temperature difference for each cooling block, the temperature change in the furnace can be grasped accurately and in real time. Furthermore, since the temperature change can be detected for each of the plurality of cooling blocks arranged in the vertical direction, the situation in each part of the melting furnace can be appropriately monitored.

また、冷却ブロックを、上部ブロック、中間ブロック、下部ブロックの3つとし、夫々の吸熱量を求めることにより、ガス量変動の監視、助燃料の過負荷検出、スラグ出滓口の閉塞状況の監視を同時に行うことが可能となる。さらに、夫々の冷却ブロックに対応した制御を行うことにより、助燃料供給量の適正化、燃焼位置の適正化、スラグ出滓口の閉塞防止が可能となり経済的で且つ安定した運転が可能となる。   In addition, there are three cooling blocks, an upper block, an intermediate block, and a lower block. By determining the amount of heat absorbed by each block, monitoring of gas amount fluctuations, detection of overload of auxiliary fuel, and monitoring of the slag outlet closure status Can be performed simultaneously. Furthermore, by performing the control corresponding to each cooling block, it is possible to optimize the auxiliary fuel supply amount, optimize the combustion position, and prevent the slag outlet from being blocked, thereby enabling economical and stable operation. .

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係る炉内監視・制御装置を備えた溶融炉の構成図、図2はガス化溶融システムの概略を示す全体構成図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a configuration diagram of a melting furnace provided with an in-furnace monitoring / control device according to an embodiment of the present invention, and FIG. 2 is an overall configuration diagram showing an outline of a gasification melting system.

まず、図2を参照して、本実施例に係るガス化溶融システムの概略構成を説明する。
廃棄物投入ホッパ21から投入された廃棄物40は、必要に応じて破砕、乾燥された後に給じん機22を介して流動床式ガス化炉23へ定量供給される。流動床ガス化炉23では、温度約120〜230℃、空気比0.2〜0.7程度の燃焼空気41が炉下部から風箱24を介して炉内に吹き込まれ、流動層温度が500〜600℃程度に維持されている。
廃棄物40は流動床ガス化炉23で熱分解ガス化され、ガス、タール、チャー(炭化物)に分解される。タールは、常温では液体となる成分であるが、ガス化炉内ではガス状で存在する。
チャーは流動層内で徐々に微粉化され、ガス及びタールに同伴して旋回溶融炉1へ導入される。以下、旋回溶融炉1へ導入されるこれらの成分を総称して熱分解ガス43と呼ぶ。
First, the schematic configuration of the gasification and melting system according to the present embodiment will be described with reference to FIG.
The waste 40 input from the waste input hopper 21 is crushed and dried as necessary, and then quantitatively supplied to the fluidized bed gasifier 23 through the dust feeder 22. In the fluidized bed gasification furnace 23, combustion air 41 having a temperature of about 120 to 230 ° C. and an air ratio of about 0.2 to 0.7 is blown into the furnace through the wind box 24 from the lower part of the furnace, and the fluidized bed temperature is 500. It is maintained at about ~ 600 ° C.
The waste 40 is pyrolyzed and gasified in the fluidized bed gasification furnace 23 and decomposed into gas, tar, and char (carbide). Tar is a component that becomes liquid at room temperature, but is present in a gaseous state in the gasification furnace.
The char is gradually pulverized in the fluidized bed and is introduced into the swirl melting furnace 1 along with gas and tar. Hereinafter, these components introduced into the swirl melting furnace 1 are collectively referred to as a pyrolysis gas 43.

前記流動床ガス化炉23の炉頂部より排出された熱分解ガス43は、ライニングダクトを経て旋回溶融炉1の熱分解ガスバーナへ導入される。該熱分解ガスバーナで、熱分解ガス43は燃焼空気44と混合されて炉内に導入され、旋回流を形成する。このとき、燃焼空気44は空気比0.9〜1.1、好ましくは1.0程度であると良い。
前記旋回溶融炉1では、熱分解ガス43と燃焼空気44の混合ガスが燃焼することにより炉内温度が1300〜1500℃に維持され、熱分解ガス43中の灰分が溶融、スラグ化される。溶融したスラグは、旋回溶融炉1の内壁面に付着、流下し、炉底部のスラグ出滓口から排出される。旋回溶融炉1から排出されたスラグは、水砕水槽28で急冷され、スラグコンベア29により搬出されて水砕スラグとして回収される。回収された水砕スラグは、路盤材等に有効利用することが可能である。
The pyrolysis gas 43 discharged from the top of the fluidized bed gasification furnace 23 is introduced into the pyrolysis gas burner of the swirl melting furnace 1 through a lining duct. In the pyrolysis gas burner, pyrolysis gas 43 is mixed with combustion air 44 and introduced into the furnace to form a swirling flow. At this time, the combustion air 44 may have an air ratio of 0.9 to 1.1, preferably about 1.0.
In the swirl melting furnace 1, the mixed gas of the pyrolysis gas 43 and the combustion air 44 is combusted so that the furnace temperature is maintained at 1300 to 1500 ° C., and the ash content in the pyrolysis gas 43 is melted and slagged. The molten slag adheres and flows down on the inner wall surface of the swirl melting furnace 1 and is discharged from the slag outlet at the bottom of the furnace. The slag discharged from the slewing melting furnace 1 is rapidly cooled in the granulated water tank 28, carried out by the slag conveyor 29, and collected as granulated slag. The recovered granulated slag can be effectively used for roadbed materials and the like.

一方、旋回溶融炉1ら排出された燃焼排ガスは二次燃焼室26へ導入される。二次燃焼室26では、燃焼空気47が空気比1.2〜1.5となるように供給され、前記燃焼排ガス中の未燃分はここで完全燃焼される。
燃焼排ガスは、ボイラ部27で熱回収されて、200〜250℃程度まで冷却される。ボイラ部27から排出された燃焼排ガスは、減温塔30へ導入され、直接水噴霧により150℃程度まで冷却される。減温塔30から排出された燃焼排ガスは、必要に応じて煙道で消石灰、活性炭が噴霧され、反応集塵装置31に導入される。反応集塵装置31では、燃焼排ガス中の煤塵、酸性ガス、DXN類等が除去される。反応集塵装置31から排出された集塵灰は薬剤処理して埋立処分され、燃焼排ガスは蒸気式加熱器32で再加熱され、触媒反応装置33でNOが除去された後、誘引ファン34を介して煙突35より大気放出される。
On the other hand, the combustion exhaust gas discharged from the swirl melting furnace 1 is introduced into the secondary combustion chamber 26. In the secondary combustion chamber 26, the combustion air 47 is supplied so as to have an air ratio of 1.2 to 1.5, and unburned components in the combustion exhaust gas are completely burned here.
The combustion exhaust gas is heat recovered by the boiler unit 27 and cooled to about 200 to 250 ° C. The combustion exhaust gas discharged from the boiler unit 27 is introduced into the temperature reducing tower 30 and cooled to about 150 ° C. by direct water spray. The combustion exhaust gas discharged from the temperature reducing tower 30 is sprayed with slaked lime and activated carbon in the flue as necessary, and introduced into the reaction dust collector 31. In the reaction dust collector 31, dust, acid gas, DXNs, etc. in the combustion exhaust gas are removed. The dust ash discharged from the reaction dust collector 31 is treated with chemicals and disposed of in landfill. The combustion exhaust gas is reheated by the steam heater 32 and NO x is removed by the catalyst reactor 33, and then the attracting fan 34. Through the chimney 35 through the atmosphere.

次に、図1を参照して本実施例における溶融炉につき具体的に説明する。
同図に示されるように、旋回溶融炉1は断面円形状の炉本体2を有しており、該炉本体2の側壁には、熱分解ガス43を吹き込む一又は複数の熱分解ガスバーナ4が配設され、該熱分解ガスバーナ4には燃焼空気(一次空気)44を導入する燃焼空気供給ノズル5が付設されている。また、熱分解ガスバーナ4の近傍には、助燃バーナ12が配設されている。さらに、炉本体2の上部は二次燃焼室26に連通しており溶融炉1で発生した燃焼排ガスは二次燃焼室26に送られるようになっている。炉本体2の底部にはスラグ出滓口6が設けられている。スラグ出滓口6には、溶融スラグが固化して閉塞しないように酸素バーナ7が設けられている。酸素バーナ7は通常は使用しないが、スラグ出滓口6が閉塞あるいは閉塞傾向にある場合に着火し、閉塞の度合いによってバーナ出力を調整しながらスラグ出滓口6を加温し、溶融スラグの固化による閉塞を防止する。
炉本体2は外側を鉄皮20で被覆され、内壁は耐火材で形成される。耐火材で保護された炉壁内には複数の冷却管が埋設された水冷壁3が形成され、炉壁を冷却するようになっている。そして、この水冷構造により冷却・固化したスラグのセルフコート層を炉内壁面に形成させ、耐火材の侵食を防止するようにしている。耐火材としては、耐火材としては、耐火レンガ、不定形耐火物等が適宜用いられる。
Next, the melting furnace in the present embodiment will be specifically described with reference to FIG.
As shown in the figure, the swirl melting furnace 1 has a furnace body 2 having a circular cross section, and one or more pyrolysis gas burners 4 for blowing a pyrolysis gas 43 are provided on the side wall of the furnace body 2. The pyrolysis gas burner 4 is provided with a combustion air supply nozzle 5 for introducing combustion air (primary air) 44. Further, an auxiliary burner 12 is disposed in the vicinity of the pyrolysis gas burner 4. Further, the upper part of the furnace body 2 communicates with the secondary combustion chamber 26, and the combustion exhaust gas generated in the melting furnace 1 is sent to the secondary combustion chamber 26. A slag outlet 6 is provided at the bottom of the furnace body 2. An oxygen burner 7 is provided at the slag outlet 6 so that the molten slag does not solidify and close. Although the oxygen burner 7 is not normally used, it is ignited when the slag outlet 6 is closed or has a tendency to close. Prevent clogging due to solidification.
The furnace body 2 is covered with an iron skin 20 on the outside, and the inner wall is formed of a refractory material. A water cooling wall 3 in which a plurality of cooling pipes are embedded is formed in the furnace wall protected by the refractory material so as to cool the furnace wall. Then, a self-coating layer of slag cooled and solidified by this water cooling structure is formed on the inner wall surface of the furnace to prevent erosion of the refractory material. As the refractory material, as the refractory material, a refractory brick, an irregular refractory, or the like is appropriately used.

また、本実施例の特徴的構成として、炉本体2に設けられた水冷壁3において、冷却水が循環する冷却水通路を鉛直方向に対して複数系統に分割し、一又は近接する複数の冷却水通路からなる冷却ブロックを複数形成した構成としている。本実施例では水冷壁3を3つの冷却ブロックに区画している。
3つの冷却ブロックのうち、上部ブロック8は炉本体2の二次燃焼室26に通じる絞り構造のデフューザ部に位置し、中間ブロック9は炉本体2の直胴部に位置し、下部ブロック10は炉底部に位置する。このとき、上部、中間、下部の冷却ブロックは夫々離間して(間に他の冷却水通路が存在する)設けてもよいし、隣接して設けてもよい。冷却水通路である水冷管は炉壁の円周上に沿って配置されることが好ましい。
Further, as a characteristic configuration of the present embodiment, in the water cooling wall 3 provided in the furnace body 2, the cooling water passage through which the cooling water circulates is divided into a plurality of systems in the vertical direction, and one or a plurality of adjacent cooling A plurality of cooling blocks including water passages are formed. In this embodiment, the water cooling wall 3 is divided into three cooling blocks.
Of the three cooling blocks, the upper block 8 is located in the diffuser portion of the throttle structure leading to the secondary combustion chamber 26 of the furnace body 2, the intermediate block 9 is located in the straight body portion of the furnace body 2, and the lower block 10 is Located at the bottom of the furnace. At this time, the upper, middle, and lower cooling blocks may be provided separately (with other cooling water passages between them) or may be provided adjacent to each other. It is preferable that the water cooling pipe which is a cooling water channel | path is arrange | positioned along the circumference of a furnace wall.

冷却水径路は、図示されるように冷却水入口側で3系統に分岐させ、分岐させた冷却水11a〜11cを夫々の冷却ブロックに供給するようにしてもよいし、入口側から完全に独立させた3つの循環系統としてもよい。
夫々の冷却水通路には、冷却水流量及び温度差を検出する検出計が備えられている。入口側には冷却水11の温度を計測する温度計11Aが設けられる。上部ブロック8には、冷却水11a’の出口側温度を計測する温度計13、冷却水流量を計測する流量計14が設けられ、同様に、中間ブロック9では温度計15、流量計16、下部ブロック10では温度計17、流量計18が設けられている。
The cooling water path may be branched into three systems on the cooling water inlet side as shown in the figure, and the branched cooling waters 11a to 11c may be supplied to the respective cooling blocks, or completely independent from the inlet side. The three circulation systems may be used.
Each of the cooling water passages is provided with a detector for detecting the cooling water flow rate and the temperature difference. A thermometer 11A that measures the temperature of the cooling water 11 is provided on the inlet side. The upper block 8 is provided with a thermometer 13 for measuring the outlet side temperature of the cooling water 11a ′ and a flow meter 14 for measuring the cooling water flow rate. Similarly, in the intermediate block 9, a thermometer 15, a flow meter 16, and a lower part are provided. In the block 10, a thermometer 17 and a flow meter 18 are provided.

各冷却ブロックからの冷却水流量、温度情報は制御装置19に送られる。そして、該制御装置19にて、各冷却ブロック毎の冷却水流量と出入り口温度差とにより吸熱量が算出される。即ち、上部ブロック8では、入口側温度計11Aで計測された温度Tと、出口側温度計13で検出された温度T’の差ΔT(T’−T)と、流量計14で計測された冷却水流量Fとの積から吸熱量Qを求める。中間ブロック9、下部ブロック10でも同様に吸熱量を求める。そして、これらの吸熱量に基づいて各冷却ブロックに対応する炉内部位における炉内状況を監視する。このとき、吸熱量の時間的変化に基づいて炉内の異常を判断することが好ましい。また、予め吸熱量の適正範囲を設定しておき、吸熱量がこの適正範囲から外れた場合に炉内の異常を判断するようにしてもよい。   The coolant flow rate and temperature information from each cooling block are sent to the control device 19. Then, the controller 19 calculates an endothermic amount from the cooling water flow rate and the inlet / outlet temperature difference for each cooling block. That is, in the upper block 8, the difference ΔT (T′−T) between the temperature T measured by the inlet side thermometer 11 </ b> A and the temperature T ′ detected by the outlet side thermometer 13 and the flow meter 14 measured. The amount of heat absorption Q is obtained from the product of the cooling water flow rate F. Similarly, the endothermic amount is obtained for the intermediate block 9 and the lower block 10. Then, the in-furnace situation at the in-furnace portion corresponding to each cooling block is monitored based on the amount of heat absorbed. At this time, it is preferable to determine an abnormality in the furnace based on a temporal change in the endothermic amount. Further, an appropriate range of the endothermic amount may be set in advance, and an abnormality in the furnace may be determined when the endothermic amount deviates from the appropriate range.

このように本構成によれば、冷却ブロック毎に冷却水流量と温度差の積から吸熱量の推移を求めることにより、炉内の温度変化が適確に且つリアルタイムで把握できる。さらに、鉛直方向に並んだ複数の冷却ブロック毎にその温度変化を検出することができるため、溶融炉1の各部位における状況を適宜監視することが可能である。
また、耐火壁の肉厚が薄くなると冷却水の吸熱が増大するため、耐火壁の侵食が検出できるとともに、ブロック毎に吸熱量を測定しているため、侵食位置も特定できるようになり、耐火壁の補修、メンテナンスが容易になる。
As described above, according to this configuration, the temperature change in the furnace can be grasped accurately and in real time by obtaining the transition of the heat absorption amount from the product of the cooling water flow rate and the temperature difference for each cooling block. Furthermore, since the temperature change can be detected for each of the plurality of cooling blocks arranged in the vertical direction, the situation in each part of the melting furnace 1 can be appropriately monitored.
In addition, as the wall thickness of the fire wall decreases, the endotherm of the cooling water increases, so erosion of the fire wall can be detected and the amount of heat absorbed is measured for each block. Wall repair and maintenance become easy.

さらに、夫々の冷却ブロックにおける炉内監視・制御の具体例を以下に示す。
中間ブロック9は炉内の燃焼域に相当し、この部位の吸熱量が異常値を示した場合、助燃料45の供給状況が適切でないため燃焼状態が良好でないと判断できる。例えば、吸熱量が異常に高い値を示した場合には助燃料45の供給量過多により燃焼温度が高くなりすぎていると判断できる。
このように、中間ブロック9ではその吸熱量に基づいて助燃料45の供給状況を監視する。中間ブロック9における吸熱量の時間的変化を測定し、これに基づき助燃料供給状況の良否を判断する。また、予め正常運転時における吸熱量の適正範囲を設定しておき、吸熱量がこの適正範囲内に存在しない場合には、助燃料45の供給量が適正でないと判断するようにしてもよい。
吸熱量が異常値を示した際に、正常範囲より大きい場合には助燃料45の供給量が過多であり、一方、吸熱量が正常範囲より小さい場合には、助燃料45の供給量が不足であると判断できる。
さらに、中間ブロック9の吸熱量に応じて助燃料供給量を制御することが好ましい。吸熱量が大きい場合には助燃料供給量を低減し、小さい場合には助燃料供給量を増大させる。このように、助燃料供給量を調節することにより燃焼状態を良好に保つことが可能となるとともに、助燃料供給量を適正化することが可能となり、経済的な運転が可能となる。
Furthermore, specific examples of in-furnace monitoring and control in each cooling block are shown below.
The intermediate block 9 corresponds to a combustion zone in the furnace, and when the endothermic amount at this portion shows an abnormal value, it can be determined that the combustion state is not good because the supply state of the auxiliary fuel 45 is not appropriate. For example, when the endothermic amount shows an abnormally high value, it can be determined that the combustion temperature is too high due to an excessive supply amount of the auxiliary fuel 45.
Thus, the intermediate block 9 monitors the supply status of the auxiliary fuel 45 based on the amount of absorbed heat. A temporal change in the heat absorption amount in the intermediate block 9 is measured, and based on this, the quality of the auxiliary fuel supply status is judged. In addition, an appropriate range of the endothermic amount during normal operation may be set in advance, and when the endothermic amount is not within the appropriate range, it may be determined that the supply amount of the auxiliary fuel 45 is not appropriate.
When the endothermic amount shows an abnormal value, if the heat absorption amount is larger than the normal range, the supply amount of the auxiliary fuel 45 is excessive. On the other hand, if the heat absorption amount is smaller than the normal range, the supply amount of the auxiliary fuel 45 is insufficient. It can be judged that.
Furthermore, it is preferable to control the auxiliary fuel supply amount according to the heat absorption amount of the intermediate block 9. When the heat absorption amount is large, the auxiliary fuel supply amount is reduced, and when the heat absorption amount is small, the auxiliary fuel supply amount is increased. As described above, by adjusting the auxiliary fuel supply amount, it is possible to maintain a good combustion state, and it is possible to optimize the auxiliary fuel supply amount, which enables economical operation.

上部ブロック8では溶融炉1の排ガス出口側に相当し、この部位の吸熱量が異常値を示した場合、例えば吸熱量が高い値を示した場合には、燃焼域が排ガス出口側に存在するため燃焼排ガス発生量が増大したと推定される。これは、燃焼空気量、廃棄物供給量、あるいは補助燃料が所定量以上に供給されているため、燃焼排ガス量が増大したと判断できる。排ガス量が増大すると溶融炉および二次燃焼室でのガス滞留時間が短く、充分な燃焼時間が得られず不完全燃焼となり、CO、DXN類の発生の原因となる。
このように、上部ブロック8ではその吸熱量に基づいて燃焼排ガス発生状況を監視する。これは、中間ブロック9と同様に、吸熱量の時間的変化から異常状態を検出してもよいし、予め設定した吸熱量の適正範囲から異常状態を検出してもよい。
さらに好適には、上部ブロック8の吸熱量に応じて、排ガス量が適正となるように燃焼空気量、廃棄物供給量、助燃料供給量のうち少なくとも何れか一を制御する。これにより、排ガス量を所定量に戻すことができ、溶融炉の安定運転が可能となる。
The upper block 8 corresponds to the exhaust gas outlet side of the melting furnace 1, and when the endothermic amount of this part shows an abnormal value, for example, when the endothermic amount shows a high value, the combustion zone exists on the exhaust gas outlet side. Therefore, it is estimated that the amount of combustion exhaust gas generated has increased. This can be determined that the amount of combustion exhaust gas has increased because the amount of combustion air, the amount of waste supplied, or the auxiliary fuel is supplied in excess of a predetermined amount. When the amount of exhaust gas increases, the gas residence time in the melting furnace and the secondary combustion chamber is short, and sufficient combustion time cannot be obtained, resulting in incomplete combustion, which causes generation of CO and DXNs.
Thus, the upper block 8 monitors the combustion exhaust gas generation status based on the heat absorption amount. As in the intermediate block 9, this may detect an abnormal state from a temporal change in the endothermic amount, or may detect an abnormal state from a preset appropriate range of the endothermic amount.
More preferably, at least one of the combustion air amount, the waste supply amount, and the auxiliary fuel supply amount is controlled so that the exhaust gas amount becomes appropriate according to the heat absorption amount of the upper block 8. Thereby, the amount of exhaust gas can be returned to a predetermined amount, and stable operation of the melting furnace becomes possible.

下部ブロック10では、溶融炉1のスラグ出滓口6に相当し、この部位の吸熱量が異常値を示した場合、例えば吸熱量が低い値の場合には、スラグ出滓口6が閉塞している、若しくは閉塞傾向であると判断できる。
このように、下部ブロック10ではその吸熱量に基づいてスラグ出滓状況を監視する。これは、中間ブロック9、上部ブロック8と同様に、吸熱量の時間的変化から異常状態を検出してもよいし、予め設定した吸熱量の適正範囲から異常状態を検出してもよい。
さらに好適には、下部ブロック10の吸熱量に応じて、燃焼空気量、廃棄物供給量、酸素バーナ7出力のうち少なくとも一を制御する。これによりスラグ出滓口近傍の温度を高くし、スラグ固化による閉塞を防止することが可能となる。
In the lower block 10, it corresponds to the slag outlet 6 of the melting furnace 1, and when the endothermic amount of this part shows an abnormal value, for example, when the endothermic amount is low, the slag outlet 6 is closed. It can be determined that the device has a tendency to block or is obstructed.
As described above, the lower block 10 monitors the slag outflow condition based on the endothermic amount. As with the intermediate block 9 and the upper block 8, this may detect an abnormal state from a temporal change in the endothermic amount, or may detect an abnormal state from a preset appropriate range of the endothermic amount.
More preferably, at least one of the combustion air amount, the waste supply amount, and the oxygen burner 7 output is controlled according to the heat absorption amount of the lower block 10. As a result, the temperature in the vicinity of the slag outlet is increased, and blockage due to slag solidification can be prevented.

本発明の実施例に係る炉内監視・制御装置を備えた溶融炉の構成図である。It is a block diagram of the melting furnace provided with the in-furnace monitoring and control apparatus which concerns on the Example of this invention. ガス化溶融システムの概略を示す全体構成図である。It is a whole lineblock diagram showing the outline of a gasification fusion system.

符号の説明Explanation of symbols

1 溶融炉
2 炉本体
3 水冷壁
4 熱分解ガスバーナ
5 燃焼空気ノズル
6 スラグ出滓口
7 酸素バーナ
8 上部ブロック
9 中間ブロック
10 下部ブロック
12 助燃バーナ
11A、13、15、17 温度計
14、16、17 流量計
19 制御装置
23 ガス化炉
26 二次燃焼室
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Furnace main body 3 Water cooling wall 4 Pyrolysis gas burner 5 Combustion air nozzle 6 Slag outlet 7 Oxygen burner 8 Upper block 9 Middle block 10 Lower block 12 Auxiliary burner 11A, 13, 15, 17 Thermometer 14, 16, 17 Flow meter 19 Control device 23 Gasification furnace 26 Secondary combustion chamber

Claims (9)

耐火壁の外側に水冷壁が配設された炉本体を有し、上部が二次燃焼室に連通し、下部にスラグ出滓口を備え、廃棄物を熱分解して発生させた熱分解ガスを炉壁に設けられた熱分解ガスバーナより導入し、該熱分解ガスの燃焼熱によりガス中の灰分を溶融する溶融炉の炉内状況監視・制御方法において、
前記水冷壁の冷却水通路が鉛直方向に複数に分割されており、一又は近接する複数の前記冷却水通路からなる冷却ブロックが複数存在し、
各冷却ブロックにおける冷却水流量と、冷却水の入口側と出口側の温度差とから算出した吸熱量の時間的変化に基づき各ブロックに対応する部位の炉内状況を監視することを特徴とする溶融炉の炉内状況監視・制御方法。
Pyrolysis gas generated by pyrolyzing waste, having a furnace body with a water-cooled wall outside the refractory wall, the upper part communicating with the secondary combustion chamber, the lower part with a slag outlet In a melting furnace in-furnace situation monitoring and control method for introducing ash from the pyrolysis gas burner provided on the furnace wall and melting the ash in the gas by the combustion heat of the pyrolysis gas,
The cooling water passage of the water cooling wall is divided into a plurality in the vertical direction, and there are a plurality of cooling blocks composed of one or a plurality of the cooling water passages adjacent to each other,
It is characterized in that the in-furnace situation of the part corresponding to each block is monitored based on the temporal change of the endothermic amount calculated from the cooling water flow rate in each cooling block and the temperature difference between the inlet side and the outlet side of the cooling water. In-furnace condition monitoring and control method for melting furnaces.
耐火壁の外側に水冷壁が配設された炉本体を有し、上部が二次燃焼室に連通し、下部にスラグ出滓口を備え、廃棄物を熱分解して発生させた熱分解ガスを炉壁に設けられた熱分解ガスバーナより導入し、該熱分解ガスの燃焼熱によりガス中の灰分を溶融する溶融炉の炉内状況監視・制御方法において、
前記水冷壁の冷却水通路が鉛直方向に複数に分割されており、一又は近接する複数の前記冷却水通路からなる冷却ブロックが上部、中間、下部に3つ存在し、
各冷却ブロックにおける冷却水流量と、冷却水の入口側と出口側の温度差とから夫々の冷却ブロックにおける吸熱量を算出し、該算出した吸熱量に基づいて、上部ブロックでは燃焼排ガス発生状況、中間ブロックでは助燃料供給状況、下部ブロックではスラグ出滓状況を夫々監視することを特徴とする溶融炉の炉内状況監視・制御方法。
Pyrolysis gas generated by pyrolyzing waste, having a furnace body with a water-cooled wall outside the refractory wall, the upper part communicating with the secondary combustion chamber, the lower part with a slag outlet In a melting furnace in-furnace situation monitoring and control method for introducing ash from the pyrolysis gas burner provided on the furnace wall and melting the ash in the gas by the combustion heat of the pyrolysis gas,
The cooling water passage of the water cooling wall is divided into a plurality in the vertical direction, and there are three cooling blocks composed of one or a plurality of adjacent cooling water passages in the upper part, the middle part, and the lower part,
Calculate the endothermic amount in each cooling block from the cooling water flow rate in each cooling block and the temperature difference between the inlet side and the outlet side of the cooling water, and based on the calculated endothermic amount, in the upper block, the state of combustion exhaust gas generation, A method for monitoring and controlling the in-furnace situation of a melting furnace, characterized by monitoring the auxiliary fuel supply status in the intermediate block and the slag outflow status in the lower block.
前記中間ブロックにて前記吸熱量が異常値を示した場合に、主として助燃料供給量を制御することを特徴とする請求項2記載の溶融炉の炉内状況監視・制御方法。   The method for monitoring and controlling the in-furnace situation of a melting furnace according to claim 2, wherein the auxiliary fuel supply amount is mainly controlled when the endothermic amount shows an abnormal value in the intermediate block. 前記上部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、助燃料供給量のうち少なくとも何れか一を制御することを特徴とする請求項2記載の溶融炉の炉内状況監視・制御方法。   3. The melting according to claim 2, wherein when the endothermic amount shows an abnormal value in the upper block, at least one of combustion air amount, waste supply amount, and auxiliary fuel supply amount is controlled. In-furnace situation monitoring and control method. 前記下部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、前記スラグ出滓口を加温するバーナ出力のうち少なくとも何れか一を制御することを特徴とする請求項2記載の溶融炉の炉内状況監視・制御方法。   Controlling at least one of a combustion air amount, a waste supply amount, and a burner output for heating the slag outlet when the endothermic amount shows an abnormal value in the lower block, The in-furnace condition monitoring / control method for a melting furnace according to claim 2. 耐火壁の外側に水冷壁が配設された炉本体を有し、上部が二次燃焼室に連通し、下部にスラグ出滓口を備え、炉壁に廃棄物を熱分解して発生させた熱分解ガスを導入する熱分解ガスバーナが設けられ、該熱分解ガスの燃焼熱によりガス中の灰分を溶融する溶融炉の炉内状況監視・制御装置において、
前記水冷壁の冷却水通路が鉛直方向に複数に分割されており、一又は近接する複数の前記冷却水通路からなる冷却ブロックが上部、中間、下部に3つ存在し、
各冷却ブロックにおける冷却水流量を計測する流量計測手段と、冷却水の入口側と出口側の温度を夫々計測する温度計測手段と、該計測された冷却水流量と前記温度計測手段から得られる温度差から吸熱量を算出する制御手段と、を備え、
前記吸熱量に基づいて、上部ブロックでは燃焼排ガス発生状況、中間ブロックでは助燃料供給状況、下部ブロックではスラグ出滓状況を夫々監視することを特徴とする溶融炉の炉内状況監視・制御装置。
It has a furnace body with a water-cooled wall on the outside of the refractory wall, the upper part communicates with the secondary combustion chamber, the lower part has a slag outlet, and waste is pyrolyzed on the furnace wall. In the in-furnace situation monitoring / control device of a melting furnace provided with a pyrolysis gas burner for introducing pyrolysis gas and melting the ash in the gas by the combustion heat of the pyrolysis gas,
The cooling water passage of the water cooling wall is divided into a plurality in the vertical direction, and there are three cooling blocks composed of one or a plurality of adjacent cooling water passages in the upper part, the middle part, and the lower part,
Flow rate measuring means for measuring the cooling water flow rate in each cooling block, temperature measuring means for measuring the temperatures of the inlet side and the outlet side of the cooling water, the measured cooling water flow rate and the temperature obtained from the temperature measuring means. A control means for calculating an endothermic amount from the difference,
An in-furnace situation monitoring / control apparatus for a melting furnace, which monitors a combustion exhaust gas generation status in an upper block, an auxiliary fuel supply status in an intermediate block, and a slag discharge status in a lower block based on the heat absorption amount.
前記制御手段は、前記中間ブロックの吸熱量が異常値を示した場合に、主として助燃料供給量を制御することを特徴とする請求項6記載の溶融炉の炉内状況監視・制御装置。   The apparatus for monitoring and controlling the in-furnace condition of a melting furnace according to claim 6, wherein said control means mainly controls the auxiliary fuel supply amount when the endothermic amount of said intermediate block shows an abnormal value. 前記制御手段は、前記上部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、助燃料供給量のうち少なくとも何れか一を制御することを特徴とする請求項6記載の溶融炉の炉内状況監視・制御装置。   The control means controls at least one of a combustion air amount, a waste supply amount, and an auxiliary fuel supply amount when the heat absorption amount shows an abnormal value in the upper block. Item 7. A melting furnace in-furnace condition monitoring and control device according to Item 6. 前記制御手段は、前記下部ブロックにて前記吸熱量が異常値を示した場合に、燃焼空気量、廃棄物供給量、前記スラグ出滓口を加温するバーナ出力のうち少なくとも何れか一を制御することを特徴とする請求項6記載の溶融炉の炉内状況監視・制御装置。
The control means controls at least one of a combustion air amount, a waste supply amount, and a burner output for heating the slag outlet when the endothermic amount shows an abnormal value in the lower block. An in-furnace situation monitoring / control device for a melting furnace according to claim 6.
JP2006099149A 2006-03-31 2006-03-31 In-furnace condition monitoring / control method and apparatus for melting furnace Active JP4234727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099149A JP4234727B2 (en) 2006-03-31 2006-03-31 In-furnace condition monitoring / control method and apparatus for melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099149A JP4234727B2 (en) 2006-03-31 2006-03-31 In-furnace condition monitoring / control method and apparatus for melting furnace

Publications (2)

Publication Number Publication Date
JP2007271205A true JP2007271205A (en) 2007-10-18
JP4234727B2 JP4234727B2 (en) 2009-03-04

Family

ID=38674193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099149A Active JP4234727B2 (en) 2006-03-31 2006-03-31 In-furnace condition monitoring / control method and apparatus for melting furnace

Country Status (1)

Country Link
JP (1) JP4234727B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611448B2 (en) * 2011-03-18 2014-10-22 三菱重工環境・化学エンジニアリング株式会社 Combustion device
CN111928258A (en) * 2020-07-15 2020-11-13 高祥达 Environment-friendly energy-saving equipment with purification device and purification method
KR20220136674A (en) * 2021-04-01 2022-10-11 (주)항성메탈 Continuous melting furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611448B2 (en) * 2011-03-18 2014-10-22 三菱重工環境・化学エンジニアリング株式会社 Combustion device
US9765962B2 (en) 2011-03-18 2017-09-19 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Combustion device
CN111928258A (en) * 2020-07-15 2020-11-13 高祥达 Environment-friendly energy-saving equipment with purification device and purification method
KR20220136674A (en) * 2021-04-01 2022-10-11 (주)항성메탈 Continuous melting furnace
KR102522083B1 (en) * 2021-04-01 2023-05-15 (주)항성메탈 Continuous melting furnace

Also Published As

Publication number Publication date
JP4234727B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP4474429B2 (en) Waste incinerator and incineration method
EP1304525A1 (en) Waste incinerator and method of operating the incinerator
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP5154094B2 (en) Combustion control method for gasification melting system and system
CN112240553B (en) Plasma gasification melting furnace system and control method thereof
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP2018040533A (en) Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
US20040237861A1 (en) Fusion furnace, gasification fusion furnace, and method of processing waste
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP3742441B2 (en) Method for adjusting combustion temperature in shaft furnace type waste melting furnace
JP4096509B2 (en) Gasification and melting apparatus and method
JP3944389B2 (en) Combustion air volume control system in pyrolysis gasification melting furnace
JP2018040534A (en) Waste gasification melting apparatus and waste gasification melting method
JP4285760B2 (en) Operation control method of gasification and melting system and system
JP5893956B2 (en) Gasification furnace and slag tap blockage detection method thereof
JP2005282910A (en) Combustion control method of waste gasifying melting furnace
JP4105963B2 (en) Pyrolysis gasification melting system
JP2006097914A (en) Ash melting furnace
JP5720981B2 (en) Waste gasification method
JP5783078B2 (en) Waste gasification melting furnace clinker destruction and suppression device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4234727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5