JP3742441B2 - Method for adjusting combustion temperature in shaft furnace type waste melting furnace - Google Patents

Method for adjusting combustion temperature in shaft furnace type waste melting furnace Download PDF

Info

Publication number
JP3742441B2
JP3742441B2 JP11277595A JP11277595A JP3742441B2 JP 3742441 B2 JP3742441 B2 JP 3742441B2 JP 11277595 A JP11277595 A JP 11277595A JP 11277595 A JP11277595 A JP 11277595A JP 3742441 B2 JP3742441 B2 JP 3742441B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
air
tuyere
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11277595A
Other languages
Japanese (ja)
Other versions
JPH08152118A (en
Inventor
吉浩 石田
浩一郎 森
也寸彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11277595A priority Critical patent/JP3742441B2/en
Publication of JPH08152118A publication Critical patent/JPH08152118A/en
Application granted granted Critical
Publication of JP3742441B2 publication Critical patent/JP3742441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、一般都市ごみ及び各種の産業廃棄物等を熱分解して溶融処理する設備に係り、特にシャフト炉方式の溶融炉の上段羽口部分の燃焼温度を空気よりも低酸素濃度ガスを利用して温度調整し半溶融物の生成を抑えるようにした温度調整方法に関する。
【0002】
【従来の技術】
廃棄物を乾燥,熱分解及び燃焼溶融の過程によって熱溶融する溶融式熱分解炉として、たとえば特公昭60−11766号公報に記載されたものがある。
【0003】
これは、水分50%以上の固体廃棄物を主として1350〜1550℃の溶融スラグと可燃ガスに分解する際、空気と高濃度酸素によって廃棄物1トン当たり50〜300Nm3 の酸素分を炉底の下段羽口とその上方の300〜1500mmに設置した上段羽口から供給する炉構造としたものである。そして、上段羽口から吹き込むガスは、ガス量でもその中に含まれる総酸素量でも下段羽口から送り込むガスより少なくし、且つ上段羽口からは空気のみを送り込んで廃棄物の乾燥を行ない、下段羽口からは空気に高濃度酸素を富化し25〜40%の酸素濃度にして高温燃焼により廃棄物中の不燃分を溶融する。
【0004】
【発明が解決しようとする課題】
上段羽口から吹き込む燃焼支持ガスとして従来炉でも空気が利用されるが、被処理物により上段羽口の燃焼温度が過大になった場合または灰分の融点が低下するような場合には、廃棄物中の灰分の半溶融物を発生することがある。この半溶融物は、炉内壁面に付着して次第に成長していき、荷下がり不良等の物流の阻害要因となることがある。
【0005】
このような半溶融物は、特に上段羽口での炉内充填物,熱分解残渣及び可燃性発生ガス等の燃焼温度が、たとえば1100℃以上となったときに発生しやすいことが確認されている。
【0006】
本発明において解決すべき課題は、廃棄物を溶融処理するシャフト炉方式の溶融炉において、溶融炉内での廃棄物の熱分解残渣及び可燃性ガスの燃焼割合の低下や煙突排ガスの増加を伴うことなく半溶融物の炉内発生及び炉壁への付着成長を防止することにある。
【0007】
【課題を解決するための手段】
本発明は、炉床部に下段羽口を備えると共にその上方の朝顔部に配置した上段羽口を備え、前記下段羽口からは酸素及び燃焼支持ガスを吹き込み、前記上段羽口からは常温空気を吹き込み、前記上段羽口から吹き込む空気によって熱分解残渣及び可燃性ガスを燃焼させ、この燃焼熱を前記下段羽口での燃焼ガスと共に廃棄物の乾燥用熱源として利用する複数段の羽口を備えたシャフト炉方式の廃棄物の溶融炉において、前記上段羽口に吹き込む常温の空気に水蒸気を添加した混合気を吹き込むと共に炉内通気差圧と排ガス温度を検出して炉内通気差圧と排ガス温度を適正範囲内に維持するように前記空気と前記水蒸気の混合比を適正に設定することにより前記上段羽口部分の燃焼温度を灰分の溶融温度より低くすることを特徴とする。
【0008】
また、低酸素濃度のガスと常温空気との混合気に代えて、水蒸気を空気との混合気を上段羽口から吹き込むようにしてもよい。
【0009】
【作用】
溶融過程において上段羽口からは常温の空気が供給されるが、上段羽口部分での固形廃棄物,熱分解残渣及び可燃性ガス等の燃焼温度は、燃焼条件によっては最大で1000〜1200℃程度となり、通常の場合では灰分の溶融温度1000〜1100℃を超える可能性がある。
【0010】
これに対し、たとえば廃熱ボイラ等のような熱回収装置から集塵機を経た比較的低温で低酸素濃度の排ガスを常温空気と混合させて供給することで、上段羽口部分の燃焼温度を灰分の溶融温度以下とすることができる。したがって、熱分解残渣や可燃性発生ガスによる半溶融物の生成が抑制され、炉内壁への付着成長が防止される。
【0012】
また、水蒸気と空気との混合気を上段羽口から吹き込む場合であっても、水蒸気添加によるH2 O+C→CO+H2 の吸熱反応によって上段羽口部分の燃焼温度を灰分の溶融温度以下に制御することで、半溶融物の生成の抑制が可能である。そして、水蒸気添加による吸熱反応によって装入物中のCのガス化が促進され、炉内の通気性の向上も可能となる。
【0013】
【実施例】
図1は本発明の溶融炉を備えた廃棄物処理設備を示す概略図である。
【0014】
図において、廃棄物が装入される溶融炉1の下流に二次燃焼室2を配置し、更にその下流には熱回収装置としての廃熱ボイラ3及び集塵機4を備え、最終段を煙突5に接続している。
【0015】
溶融炉1は等径のシャフト部1aと下端の朝顔部1bとを備え、朝顔部1bの下端部には下段羽口1cを設けると共にその上方には2段の上段羽口1d,1eを備えている。下段羽口1cからは空気と酸素とを混合したものが供給され、上段羽口1d,1eには燃焼支持ガスとして常温の空気が供給される。
【0016】
下段羽口1c及び上段羽口1d,1eへの空気の供給のために押込送風機6を設け、更に上段羽口1d,1e部分の温度を低めに調整して半溶融物の炉内壁への付着成長を抑制するため、集塵機4を出た後の低温の排ガスを供給する循環流路7を上段羽口1d,1eに接続すると共に、この循環流路7には循環ブロワ7aを組み込む。
【0017】
溶融炉1に装入された廃棄物は、シャフト部1aの上層から乾燥,乾留熱分解及び燃焼溶融の過程を経過して溶融処理される。そして、乾留熱分解及び燃焼が主として行われる朝顔部1b内には、熱分解後の残渣の層が存在しており、下段羽口1cからの常温の空気及び酸素,上段羽口1d,1eからの常温空気の吹き込みによって燃焼,溶融過程が継続される。
【0018】
ここで、上段羽口1d,1eからたとえば常温の空気を供給する操業条件であっても、上段羽口1d,1e部分での固形廃棄物,熱分解残渣及び可燃性ガス等の燃焼温度は、燃焼条件によっては最大で1000〜1200℃程度となり得る。一方、従来技術の項でも述べたように、通常の場合では灰分の溶融温度は1000〜1100℃程度であって、このような温度範囲では半溶融物の生成及び炉内壁への付着が発生することが懸念される。
【0019】
一方、本発明者等の経験によれば、乾留後の残渣は酸素分が存在すれば500〜600℃以上の条件にて燃焼は可能であった。
【0020】
以上のことから、上段羽口1d,1eから適度に低温で低酸素濃度のガスを供給すれば、半溶融物の生成を抑えることが可能であり、本発明では廃熱ボイラ3を経由して熱交換され集塵機4によって清浄化された残存酸素を含む低温の排ガスを常温の空気と共に上段羽口1d,1eから炉内に供給することとした。
【0021】
このような排ガス吹き込みに際して、操業期間において炉内の温度変動が多少生じた場合であっても、半溶融物の生成及び炉内壁への付着の防止と同時に炉内での溶融燃焼性に影響を及ぼさないように集塵機4を出た後の循環排ガス量を設定することは無論である。
【0022】
すなわち、溶融炉1を出て二次燃焼室2を経由して排出される燃焼ガスは廃熱ボイラ3によって熱交換され、一次流体である燃焼ガスと二次流体である廃熱回収流体(蒸気等)との間の伝熱量によって集塵機4側へ向かう排ガスの温度が決まる。したがって、集塵機4を出た排ガスの再循環量を適宜設定し、上段羽口1d,1eから常温空気に混合して吹き込むことにより、吹き込み部分の炉内温度を調整することが可能である。
【0023】
また、排ガス吹き込みによる溶融炉1内での燃焼性を阻害させないため、1000〜1100℃の半溶融物の生成温度域に対して、上段羽口1d,1e部分の温度は1000℃以下程度に維持することが好ましい。このような温度の設定は、たとえば集塵機4を出た排ガス温度が150〜200℃程度であれば、上段羽口1d,1eからの常温の空気の吹き込み量に対して排ガス量を0〜50%程度の範囲とすることで可能である。
【0024】
以上のように、集塵機4を出たクリーンな排ガスであってその温度も常温空気との量比の設定等によって上段羽口1d,1e部分の燃焼温度を1000℃以下程度に維持できる排ガスを、循環流路7から溶融炉1に供給することができる。このため、炉内充填物,熱分解残渣及び可燃性発生ガス等の燃焼温度を1000℃以下程度に抑えることができ、半溶融物の生成や炉内壁への付着成長を防ぐことができる。
【0025】
ここで、集塵機4を出た排ガスを上部羽口1d,1eから常温の空気と共に供給して温度調整する操作は、操業の間循環排ガス量を経験的な一定量とすることもできるが、炉内の状況に応じて吹き込み量を制御する等の各種の対応が可能であることは無論である。
【0026】
このような制御は、たとえば炉内での溶融物の荷下がり状況や炉内温度を監視し、灰分の半溶融物の生成等の現象が発生する傾向があれば循環ブロワ7aを作動して冷却用の排ガスを上段羽口1d,1eから常温の空気と共に供給するような要領で行えばよい。この操作では、排ガス量の設定は先に説明したとおりであり、半溶融物の生成や炉内壁への付着成長が防止できる条件を満たすものであればよい。
【0027】
なお、図1の例では下段羽口1cを1段としているがこれを複数段としてもよく、また2段の上段羽口1d,1eに代えて1段または3段以上の複数段としてもよい。
【0028】
図2は炉内燃焼温度調節用のガスを水蒸気を添加した空気とした場合を示す例である。
【0029】
この例でも、溶融炉1は先の例と同様の構造であり、その炉頂部を二次燃焼室を接続したものであって、各部材については図1に示したものと共通の符号で指示している。
【0030】
下段羽口1cには、先の例と同様に空気と酸素とを混合したものが供給され、上段羽口1d,1eには燃焼支持ガスとしての常温の空気に加えて水蒸気を添加した混合気が供給される。図示の例では、上段羽口1d,1eには常温空気の空気供給路11と水蒸気用の水蒸気供給路12とを合流させた混合気供給路が接続されている。そして、これらの空気供給路11と水蒸気供給路のそれぞれには、流量計11a,12a及び流量調節用の調節弁11b,12bを設け、これらの流量調節弁11b,12bによって、空気と水蒸気の混合比を設定して炉内への吹き込みを可能とする。
【0031】
ここで、水蒸気吹き込みにより、上段羽口1d,1e前では単にガスが希釈されるだけでなく、H2 O+C→CO+H2 −2610Kcal/Kg(C)主体の吸熱反応によってガスが冷却される。このような水蒸気の吹き込みに際しては、溶融炉1内への装入物の組成の変動等によって、装入物の乾燥に必要な熱量の不足,炉頂からの排出ガスの温度低下が生じる。このため、熱量不足の場合には炉底での溶融温度の低下が発生し、また排出ガス温度の低下はタールの析出により排出ガス管の閉塞を招きやすいため、この空気と水蒸気の混合比は制御する必要がある。
【0032】
空気と水蒸気との混合比は、燃焼時の炉内通気抵抗と炉頂ガス温度を検出してこれらの相関によって推定される燃焼状況に対して、熱分解残渣の水蒸気との反応による消費や炉内通気抵抗の低減等を含めた最適な燃焼が得られるように制御する。この制御のため、溶融路1のシャフト部1aの上下の圧力差を検出するための炉内通気差圧計13及び炉頂部から二次燃焼室に向かう排ガスの温度を検出する排ガス温度計14を設ける。
【0033】
ここで、装入物の発熱量が大のときには装入物の水分割合は小さくて可燃分割合は大きくなり、このとき付着水分は少ないので燃焼域での固体温度が上昇する。したがって、燃焼ガス温度が上昇するためと、乾燥に必要な熱量も少なくて済むことから、炉頂排ガス温度は上昇する。そして、可燃分割合が大のときには、熱分解によって生成する熱分解残渣の発生量も増加する。このような炉頂ガス温度と熱分解残渣との間での関係から、炉頂排ガス温度を適正値に保つように水蒸気添加割合を増せば、燃焼域の温度を上げることなく熱分解残渣の消費が可能となる。
【0034】
一方、装入物の発熱量が小さいときでは、装入物の水分割合は大きくて可燃分割合は小さくなり、燃焼域での固体温度が上昇する。したがって、燃焼ガス温度が低下するためと、乾燥に必要な熱量を多く必要とすることから、炉頂排ガス温度は低下する。そして、可燃分割合が小のときには、熱分解によって生成する熱分解残渣の発生量は減少する。したがって、装入物の発熱量が大の場合と同様に炉頂排ガス温度を適正値に保つためには、水蒸気の添加割合を減らすように制御すればよい。
【0035】
また、燃焼時での炉内の通気抵抗が大と検出されたときは、炉頂ガス温度が適正範囲内で水蒸気添加割合を増すことによって、炉頂ガス温度を変更する。すなわち、水蒸気の炉内吹き込みにより、H2 O+C→CO+H2 の反応が起こるので、装入物中のCのガス化を促進することができ、通気性の向上が可能である。したがって、通気抵抗が大の期間では、水蒸気の混合比を多くして吹き込むことによって、炉内通気抵抗を低減することができ、炉内装入物の荷下がり性が確保されると同時に吹き抜け等の現象も抑えられる。
【0036】
このような炉内通気差圧及び排ガス温度を検出対象とし、空気と水蒸気との混合比を適正に設定するため、図2の一点鎖線で囲んだ制御系を設けて排ガス温度と炉内通気圧差のいずれもを適正範囲内に維持するように制御する。
【0037】
すなわち、溶融炉1内の通気差圧は炉内通気差圧計13によって検出されて排ガス温度目標値設定回路15に送られ、予め設定した通気差圧と実際値とを比較し、その偏差に応じて排ガス温度の目標値を増減し、その目標値は予め設定している上限リミットと下限リミットの範囲内で排ガス温度調節計16に送られる。一方、排ガス温度は排ガス温度計14によって検出されて排ガス温度調節計16に送られ、排ガス温度目標値設定回路15で設定された目標値と実際値を比較し、その偏差に応じて蒸気添加割合の目標値を増減し、蒸気添加割合(量)設定回路17に送る。また、上段羽口1d,1eからの空気吹き込み量もこの蒸気添加割合(量)設定回路17に送り、蒸気添加割合の目標値となるように、蒸気添加量の目標値を決定する。これにより、上段羽口1d,1eからの吹き込み空気量が変動していても、蒸気添加割合を制御することができる。また、蒸気添加量目標値は、蒸気添加量調節計18に送られ、フィードバック制御を行う。
【0038】
以上により、装入物の組成に応じて排ガス温度のみが変動する場合、炉内通気差圧のみが変動する場合、及び排ガス温度と炉内通気圧差の両方が変動する場合のいずれにおいても、蒸気添加割合を制御することで、排ガス温度と炉内通気圧差を同時に適正範囲に保つことが可能となる。
【0039】
ここで、上段羽口1d,1eから水蒸気を添加した空気を吹き込む場合でも、半溶融物の生成を抑えることが可能である。そして、水蒸気と空気との混合比を、先の制御に沿って適切に設定することにより、半溶融物の生成及び炉内壁への付着の防止と同時に炉内での溶融燃焼性に影響を及ぼさないようにすることは無論である。
【0040】
すなわち、図1に示した例の場合と同様に、水蒸気を添加した空気の吹き込みによる溶融炉1内での燃焼性を阻害させないため、1000〜1100℃の半溶融物の生成温度域に対して、上段羽口1d,1e部分の温度は1000℃以下程度に維持することが好ましい。このような温度の設定は、本発明者等の知見によれば、炉頂の排ガス温度が150℃以上となるように保持することにより可能であり、このような条件であれば装入物の乾燥熱量を確保することができると同時に、タールの析出も防止され得る。
【0041】
また、上段羽口1d,1e部分の燃焼温度を1000℃以下程度に維持できるように水蒸気と空気との混合比及びこれらの混合気の流量を制御することにより、先の例と同様に炉内充填物,熱分解残渣及び可燃性発生ガス等の燃焼温度を1000℃以下程度に抑えることができ、半溶融物の生成や炉内壁への付着成長を防ぐことができる。
【0042】
更に、装入物中の可燃分の熱分解残渣の発生量の変動を炉内通気差圧と炉頂排ガスとの相関によって知り、これに基づいて適正な水蒸気と空気との混合比により、発生する熱分解残渣を水蒸気との反応で消費することができ、発生する熱分解残渣の量的な変動を抑えることができる。そして、これに加えて、水蒸気の吹き込みによるH2 O+C→=CO+H2 の反応によって、装入物中のCのガス化を促進することができる。したがって、発生する熱分解残渣の水蒸気による消費とCのガス化によって、炉内の通気性が向上が更に促進されることになる。その結果、装入物の乾燥及び乾留分の荷下がり性が十分に確保されると共に、吹き抜けの防止も可能となる。
【0043】
更に、このような発生する熱分解残渣の水蒸気による消費と通気性の向上及び発生熱分解残渣の量的な変動の抑制によって、飛散する可燃性ダスト(微細な熱分解残渣)の量とその変動も抑えられる。このため、溶融炉1からの発生ガスを完全燃焼させるための二次燃焼室での燃焼変動も抑制されることになり、残留未燃COやクリンカの生成も抑えられる。
【0044】
【発明の効果】
本発明により次の効果を奏する。
【0045】
1)空気よりも酸素濃度の低いガス(低酸素濃度の排ガスあるいは水蒸気)を上段羽口から常温空気と混合させて供給することによって、熱分解残渣や可燃性発生ガス等の燃焼温度が過大となることを防止でき、灰分の半溶融物の生成が阻止されると共に炉内壁への付着成長が防止され、荷下がり阻害等を回避した操業が可能となる。
【0046】
2)上記吹き込み低酸素濃度ガスとして、溶融炉からの燃焼ガスを熱交換及び集塵した後の排ガスを用いて温度調整を行えば、系外からの冷却用のガスを用いるのに比べて総排ガス量の増大もなくなると共に、排ガスを有効に利用した設備が得られる。
【0047】
3)水蒸気と空気の混合気を吹き込む場合では、吸熱反応による温度調整に加えて装入物中の炭素分をガス化することができるので、炉内の通気性の向上が図られ、装入物の荷下がり性を良好に維持できると共に吹き抜け等の事故も防ぐことができる。
【図面の簡単な説明】
【図1】 本発明の溶融炉の温度調整方法を適用した廃棄物の溶融処理設備を示す概略図である。
【図2】 上段羽口から空気と水蒸気の混合気を吹き込む例を示す概略図である。
【符号の説明】
1 溶融炉
1a シャフト部
1b 朝顔部
1c 下段羽口
1d 上段羽口
1e 上段羽口
2 二次燃焼室
3 廃熱ボイラ(熱回収装置)
4 集塵機
5 煙突
6 押込送風機
7 循環流路
7a 循環ブロワ
11 空気供給路
12 水蒸気供給路
13 炉内通気差圧計
14 排ガス温度計
[0001]
[Industrial application fields]
The present invention relates to a facility for thermally decomposing general municipal waste and various industrial wastes, etc., and in particular, lowering the combustion temperature of the upper tuyere part of a shaft furnace type melting furnace to a gas having a lower oxygen concentration than air. The present invention relates to a temperature adjustment method that uses the temperature to suppress the formation of a semi-melt.
[0002]
[Prior art]
For example, Japanese Patent Publication No. 60-11766 discloses a melting-type pyrolysis furnace that melts waste by drying, pyrolysis, and combustion melting.
[0003]
This is because when solid waste with a water content of 50% or more is decomposed mainly into molten slag of 1350 to 1550 ° C. and combustible gas, oxygen of 50 to 300 Nm 3 per ton of waste is generated at the bottom of the furnace by air and high-concentration oxygen. The furnace structure is configured to supply from the lower tuyere and the upper tuyere installed at 300 to 1500 mm above the lower tuyere. The gas blown from the upper tuyere is less than the gas fed from the lower tuyere, both in the amount of gas and the total oxygen contained therein, and only the air is fed from the upper tuyere to dry the waste, From the lower tuyere, high-concentration oxygen is enriched in the air to an oxygen concentration of 25 to 40%, and incombustible components in the waste are melted by high-temperature combustion.
[0004]
[Problems to be solved by the invention]
Air is also used in conventional furnaces as the combustion support gas blown from the upper tuyere, but if the combustion temperature of the upper tuyere becomes excessive due to the material to be treated or if the melting point of ash is lowered, waste May produce a semi-melt of ash in it. This semi-melted material adheres to the inner wall surface of the furnace and grows gradually, which may be an obstacle to physical distribution such as unloading failure.
[0005]
It has been confirmed that such a semi-melt is likely to be generated especially when the combustion temperature of the furnace filling, pyrolysis residue, combustible generated gas, etc. at the upper tuyere becomes, for example, 1100 ° C. or higher. Yes.
[0006]
The problem to be solved in the present invention is that in a shaft furnace type melting furnace for melting waste, there is a decrease in the pyrolysis residue of the waste in the melting furnace and the combustion ratio of the combustible gas and an increase in the chimney exhaust gas. The object is to prevent the generation of the semi-molten material in the furnace and the adhesion growth to the furnace wall.
[0007]
[Means for Solving the Problems]
The present invention is provided with a lower tuyere at the hearth and an upper tuyere disposed above the morning glory, oxygen and combustion support gas are blown from the lower tuyere, and room temperature air is blown from the upper tuyere blowing, the burned pyrolysis residue and combustible gas by the air blown from the upper tuyeres, tuyere multiple stages utilizing this combustion heat as the drying heat source waste with the combustion gas at the lower tuyeres In a shaft furnace type waste melting furnace equipped with an air pressure difference in the furnace by injecting an air-fuel mixture with water vapor added to room temperature air to be blown into the upper tuyere and detecting an in-furnace aeration pressure difference and an exhaust gas temperature The combustion temperature of the upper tuyere portion is made lower than the melting temperature of ash by appropriately setting the mixing ratio of the air and the water vapor so as to maintain the exhaust gas temperature within an appropriate range .
[0008]
Further, instead of a mixture of low oxygen concentration gas and room temperature air, a mixture of water vapor and air may be blown from the upper tuyere.
[0009]
[Action]
In the melting process, normal temperature air is supplied from the upper tuyere, but the combustion temperature of solid waste, pyrolysis residue, combustible gas, etc. in the upper tuyere is 1000 to 1200 ° C at maximum depending on the combustion conditions. In a normal case, the melting temperature of ash may exceed 1000 to 1100 ° C.
[0010]
On the other hand, the combustion temperature of the upper tuyere portion is reduced by supplying a relatively low temperature and low oxygen concentration exhaust gas that has passed through a dust collector from a heat recovery device such as a waste heat boiler, etc. and mixed with room temperature air. It can be below the melting temperature. Therefore, generation of a semi-molten product due to pyrolysis residue and combustible gas is suppressed, and adhesion growth on the inner wall of the furnace is prevented.
[0012]
Even when a mixture of water vapor and air is blown from the upper tuyere, the combustion temperature of the upper tuyere is controlled to be equal to or lower than the melting temperature of the ash by the endothermic reaction of H 2 O + C → CO + H 2 by the addition of water vapor. Thus, it is possible to suppress the generation of the semi-melt. And the gasification of C in the charged material is promoted by the endothermic reaction due to the addition of water vapor, and the air permeability in the furnace can be improved.
[0013]
【Example】
FIG. 1 is a schematic view showing a waste treatment facility equipped with the melting furnace of the present invention.
[0014]
In the figure, a secondary combustion chamber 2 is arranged downstream of a melting furnace 1 into which waste is charged, and further, a waste heat boiler 3 and a dust collector 4 as heat recovery devices are provided downstream thereof, and the final stage is a chimney 5. Connected to.
[0015]
The melting furnace 1 includes a shaft portion 1a having an equal diameter and a morning glory portion 1b at the lower end. A lower tuyere 1c is provided at the lower end portion of the morning glory portion 1b, and two upper upper tuyere 1d and 1e are provided above the lower tuyere. ing. A mixture of air and oxygen is supplied from the lower tuyere 1c, and air at normal temperature is supplied to the upper tuyere 1d and 1e as a combustion support gas.
[0016]
A forced blower 6 is provided to supply air to the lower tuyere 1c and upper tuyere 1d, 1e, and the temperature of the upper tuyere 1d, 1e is adjusted to be lower, so that the semi-melt is deposited on the inner wall of the furnace. In order to suppress the growth, a circulation passage 7 for supplying low-temperature exhaust gas after exiting the dust collector 4 is connected to the upper tuyere 1d and 1e, and a circulation blower 7a is incorporated in the circulation passage 7.
[0017]
The waste charged in the melting furnace 1 is melted from the upper layer of the shaft portion 1a through the processes of drying, pyrolysis and combustion melting. In the morning glory portion 1b where pyrolysis and combustion are mainly performed, there is a layer of residue after pyrolysis, and air and oxygen at normal temperature from the lower tuyere 1c, from the upper tuyere 1d and 1e. The combustion and melting process is continued by blowing normal temperature air.
[0018]
Here, even under operating conditions in which air at normal temperature is supplied from the upper tuyere 1d, 1e, for example, the combustion temperature of solid waste, pyrolysis residue, combustible gas, etc. in the upper tuyere 1d, 1e is Depending on the combustion conditions, it may be about 1000 to 1200 ° C. at the maximum. On the other hand, as described in the section of the prior art, in the normal case, the melting temperature of the ash is about 1000 to 1100 ° C., and in such a temperature range, the generation of the semi-melt and the adhesion to the inner wall of the furnace occur. There is concern.
[0019]
On the other hand, according to the experience of the present inventors, the residue after dry distillation could be burned under conditions of 500 to 600 ° C. or higher if oxygen content was present.
[0020]
From the above, it is possible to suppress the generation of a semi-melt by supplying a gas having a low oxygen concentration at a moderately low temperature from the upper tuyere 1d, 1e. In the present invention, the waste heat boiler 3 is used. The low-temperature exhaust gas containing residual oxygen that was heat-exchanged and cleaned by the dust collector 4 was supplied into the furnace from the upper tuyere 1d and 1e together with room-temperature air.
[0021]
Even when there is some temperature fluctuation in the furnace during the operation period, the melting and combustibility in the furnace is affected at the same time as preventing the generation of semi-melt and adhesion to the furnace inner wall. Of course, it is of course possible to set the circulating exhaust gas amount after leaving the dust collector 4 so as not to reach.
[0022]
That is, the combustion gas discharged from the melting furnace 1 and discharged through the secondary combustion chamber 2 is heat-exchanged by the waste heat boiler 3, and the combustion gas as the primary fluid and the waste heat recovery fluid (steam as the secondary fluid) Etc.), the temperature of the exhaust gas toward the dust collector 4 is determined. Therefore, it is possible to adjust the in-furnace temperature of the blowing portion by appropriately setting the recirculation amount of the exhaust gas exiting the dust collector 4 and mixing and blowing it into the room temperature air from the upper tuyere 1d and 1e.
[0023]
Moreover, in order not to inhibit the combustibility in the melting furnace 1 due to the exhaust gas blowing, the temperature of the upper tuyere 1d and 1e portions is maintained at about 1000 ° C. or less with respect to the production temperature range of 1000 to 1100 ° C. semi-melt. It is preferable to do. For example, if the temperature of the exhaust gas exiting the dust collector 4 is about 150 to 200 ° C., the amount of exhaust gas is set to 0 to 50% with respect to the amount of normal temperature air blown from the upper tuyere 1d and 1e. This is possible by setting a range of about.
[0024]
As described above, the exhaust gas that has been discharged from the dust collector 4 and that can maintain the combustion temperature of the upper tuyere 1d and 1e portions at about 1000 ° C. or less by setting the quantity ratio with room temperature air or the like, It can be supplied from the circulation channel 7 to the melting furnace 1. For this reason, the combustion temperature of the furnace filling, pyrolysis residue, combustible generated gas, etc. can be suppressed to about 1000 ° C. or less, and generation of semi-melt and adhesion growth to the furnace inner wall can be prevented.
[0025]
Here, the operation of adjusting the temperature by supplying the exhaust gas from the dust collector 4 together with air at normal temperature from the upper tuyere 1d, 1e can make the amount of exhaust gas circulated empirically constant during the operation. Needless to say, various measures such as controlling the amount of blown air in accordance with the circumstances are possible.
[0026]
Such control is performed, for example, by monitoring the state of the molten material falling in the furnace and the temperature in the furnace, and if there is a tendency for the generation of ash semi-melt, etc., the circulating blower 7a is operated and cooled. The exhaust gas may be supplied from the upper tuyere 1d, 1e together with air at normal temperature. In this operation, the amount of exhaust gas is set as described above, as long as it satisfies the conditions that can prevent the generation of a semi-melt and the adhesion growth on the inner wall of the furnace.
[0027]
In the example of FIG. 1, the lower tuyere 1c has one stage, but it may be a plurality of stages, or may be one stage or a plurality of stages of three or more instead of the two upper tuyere 1d and 1e. .
[0028]
FIG. 2 shows an example in which the gas for adjusting the combustion temperature in the furnace is air added with water vapor.
[0029]
Also in this example, the melting furnace 1 has the same structure as the previous example, and the top of the furnace is connected to the secondary combustion chamber, and each member is indicated by the same reference numeral as shown in FIG. is doing.
[0030]
The lower tuyere 1c is supplied with a mixture of air and oxygen as in the previous example, and the upper tuyere 1d, 1e is a mixture in which water vapor is added in addition to air at normal temperature as a combustion support gas. Is supplied. In the illustrated example, an air-fuel mixture supply path obtained by joining an air supply path 11 for room temperature air and a water vapor supply path 12 for water vapor is connected to the upper tuyere 1d and 1e. The air supply path 11 and the water vapor supply path are respectively provided with flow meters 11a and 12a and flow control valves 11b and 12b, and the flow control valves 11b and 12b mix air and water vapor. The ratio is set to allow blowing into the furnace.
[0031]
Here, by blowing water vapor, the gas is not only diluted in front of the upper tuyere 1d and 1e, but also cooled by an endothermic reaction mainly composed of H 2 O + C → CO + H 2 −2610 Kcal / Kg (C). When such steam is blown in, due to fluctuations in the composition of the charge into the melting furnace 1, a shortage of heat necessary for drying the charge and a decrease in the temperature of the exhaust gas from the top of the furnace occur. For this reason, when the amount of heat is insufficient, the melting temperature at the bottom of the furnace will decrease, and the decrease in the exhaust gas temperature will tend to cause clogging of the exhaust gas pipe due to precipitation of tar. Need to control.
[0032]
The mixing ratio of air and water vapor is determined by detecting the ventilation resistance in the furnace and the gas temperature at the top of the furnace during combustion. Control is performed so as to obtain optimum combustion including reduction of internal ventilation resistance. For this control, an in-furnace differential pressure gauge 13 for detecting the pressure difference between the upper and lower sides of the shaft portion 1a of the melting path 1 and an exhaust gas thermometer 14 for detecting the temperature of the exhaust gas from the top of the furnace toward the secondary combustion chamber are provided. .
[0033]
Here, when the calorific value of the charge is large, the moisture ratio of the charge is small and the combustible ratio is large. At this time, the adhering moisture is small, so that the solid temperature in the combustion zone increases. Therefore, since the combustion gas temperature rises and the amount of heat necessary for drying is small, the furnace top exhaust gas temperature rises. When the combustible fraction is large, the amount of pyrolysis residue generated by pyrolysis also increases. From the relationship between the furnace top gas temperature and the pyrolysis residue, if the steam addition ratio is increased so as to keep the furnace top exhaust gas temperature at an appropriate value, the consumption of the pyrolysis residue without increasing the temperature in the combustion zone. Is possible.
[0034]
On the other hand, when the calorific value of the charge is small, the moisture content of the charge is large and the combustible content ratio is small, and the solid temperature in the combustion zone increases. Therefore, since the combustion gas temperature is lowered and a large amount of heat is required for drying, the furnace top exhaust gas temperature is lowered. When the combustible fraction is small, the amount of pyrolysis residue generated by pyrolysis decreases. Therefore, in order to keep the furnace top exhaust gas temperature at an appropriate value as in the case where the calorific value of the charge is large, it may be controlled to reduce the addition ratio of water vapor.
[0035]
Further, when it is detected that the ventilation resistance in the furnace during combustion is large, the furnace top gas temperature is changed by increasing the steam addition ratio within the furnace top gas temperature within an appropriate range. That is, since the reaction of H 2 O + C → CO + H 2 occurs when steam is blown into the furnace, gasification of C in the charge can be promoted, and air permeability can be improved. Therefore, in the period when the ventilation resistance is large, by increasing the mixing ratio of the steam, the ventilation resistance in the furnace can be reduced, and the unloading property of the furnace interior can be ensured, and at the same time, such as blow-through. The phenomenon is also suppressed.
[0036]
In order to set the air flow differential pressure and the exhaust gas temperature as detection targets and to appropriately set the mixing ratio of air and water vapor, a control system surrounded by a one-dot chain line in FIG. 2 is provided to provide the exhaust gas temperature and the furnace air pressure. Control to maintain any difference within the proper range.
[0037]
That is, the aeration differential pressure in the melting furnace 1 is detected by the in-furnace aeration differential pressure gauge 13 and sent to the exhaust gas temperature target value setting circuit 15, and the preset aeration differential pressure is compared with the actual value, and according to the deviation. The target value of the exhaust gas temperature is increased or decreased, and the target value is sent to the exhaust gas temperature controller 16 within a preset upper limit and lower limit. On the other hand, the exhaust gas temperature is sent to the exhaust gas temperature adjusting meter 16 is detected by the exhaust gas temperature gauge 14 compares the actual value and the set target value at the exhaust gas temperature target value setting circuit 15, steam addition in accordance with the deviation The ratio target value is increased or decreased and sent to the steam addition ratio (amount) setting circuit 17. Further, the amount of air blown from the upper tuyere 1d, 1e is also sent to the steam addition ratio (amount) setting circuit 17, and the target value of the steam addition amount is determined so as to become the target value of the steam addition ratio. Thereby, even if the amount of air blown from the upper tuyere 1d, 1e varies, the steam addition ratio can be controlled. The steam addition amount target value is sent to the steam addition amount controller 18 to perform feedback control.
[0038]
From the above, when only the exhaust gas temperature varies according to the composition of the charge, only when the in-furnace aeration differential pressure fluctuates, and when both the exhaust gas temperature and the in-furnace aeration pressure difference vary, By controlling the steam addition ratio, the exhaust gas temperature and the furnace aeration pressure difference can be simultaneously maintained within an appropriate range.
[0039]
Here, even when air added with water vapor is blown from the upper tuyere 1d, 1e, it is possible to suppress the generation of the semi-melt. Then, by appropriately setting the mixing ratio of water vapor and air in accordance with the previous control, the molten combustibility in the furnace is affected at the same time as the generation of the semi-melt and the adhesion to the inner wall of the furnace are prevented. It goes without saying that it should not be.
[0040]
That is, as in the case of the example shown in FIG. 1, in order not to disturb the combustibility in the melting furnace 1 due to the blowing of air to which water vapor has been added, The temperature of the upper tuyere 1d and 1e is preferably maintained at about 1000 ° C. or less. According to the knowledge of the present inventors, such a temperature can be set by maintaining the exhaust gas temperature at the top of the furnace at 150 ° C. or higher. The amount of heat of drying can be ensured, and at the same time, precipitation of tar can be prevented.
[0041]
In addition, by controlling the mixing ratio of water vapor and air and the flow rate of the air-fuel mixture so that the combustion temperature of the upper tuyere 1d and 1e can be maintained at about 1000 ° C. or less, The combustion temperature of the filler, pyrolysis residue, combustible generated gas, etc. can be suppressed to about 1000 ° C. or less, and generation of semi-melt and adhesion growth on the furnace inner wall can be prevented.
[0042]
In addition, fluctuations in the amount of pyrolysis residue generated from combustibles in the charge are known from the correlation between the furnace aeration differential pressure and the exhaust gas from the furnace, and based on this, it is generated by the appropriate mixing ratio of water vapor and air. The pyrolysis residue to be consumed can be consumed by the reaction with water vapor, and the quantitative fluctuation of the generated pyrolysis residue can be suppressed. In addition to this, the gasification of C in the charge can be promoted by the reaction of H 2 O + C → = CO + H 2 by blowing water vapor. Therefore, the improvement of the air permeability in the furnace is further promoted by the consumption of the generated thermal decomposition residue by steam and the gasification of C. As a result, it is possible to sufficiently ensure the drying of the charge and the unloading property of the dry distillation, and it is possible to prevent the blow-through.
[0043]
In addition, the amount of flammable dust (fine pyrolysis residue) that scatters and its fluctuations by improving the consumption and breathability of the generated pyrolysis residue with water vapor and suppressing the quantitative change of the generated pyrolysis residue. Is also suppressed. Therefore, combustion fluctuations in the secondary combustion chamber for completely burning the gas generated from the melting furnace 1 are also suppressed, and the generation of residual unburned CO and clinker is also suppressed.
[0044]
【The invention's effect】
The present invention has the following effects.
[0045]
1) By supplying a gas having a lower oxygen concentration than air ( exhaust gas or water vapor having a low oxygen concentration ) mixed with room temperature air from the upper tuyere, the combustion temperature of pyrolysis residue, combustible gas, etc. is excessive. It is possible to prevent the generation of the ash semi-melt and the adhesion growth to the inner wall of the furnace, thereby enabling the operation avoiding the unloading inhibition and the like.
[0046]
2) If the temperature is adjusted using the exhaust gas after heat exchange and dust collection of the combustion gas from the melting furnace as the blown low oxygen concentration gas, the total gas is less than that used for cooling from outside the system. There is no increase in the amount of exhaust gas, and a facility that effectively uses exhaust gas is obtained.
[0047]
3) In the case of blowing a mixture of water vapor and air, in addition to adjusting the temperature by endothermic reaction, the carbon content in the charge can be gasified, so that the air permeability in the furnace is improved and the charge is It is possible to maintain a good unloading property and prevent accidents such as blow-throughs.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a waste melting treatment facility to which a temperature adjusting method for a melting furnace according to the present invention is applied.
FIG. 2 is a schematic view showing an example in which an air / water vapor mixture is blown from an upper tuyere.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Melting furnace 1a Shaft part 1b Morning glory part 1c Lower tuyere 1d Upper tuyere 1e Upper tuyere 2 Secondary combustion chamber 3 Waste heat boiler (heat recovery device)
4 Dust collector 5 Chimney 6 Pushing blower 7 Circulating flow path 7a Circulating blower 11 Air supply path 12 Steam supply path 13 Furnace differential pressure gauge 14 Exhaust gas thermometer

Claims (1)

炉床部に下段羽口を備えると共にその上方の朝顔部に配置した上段羽口を備え、前記下段羽口からは酸素及び燃焼支持ガスを吹き込み、前記上段羽口からは常温空気を吹き込み、前記上段羽口から吹き込む空気によって熱分解残渣及び可燃性ガスを燃焼させ、この燃焼熱を前記下段羽口での燃焼ガスと共に廃棄物の乾燥用熱源として利用する複数段の羽口を備えたシャフト炉方式の廃棄物の溶融炉において、
前記上段羽口に吹き込む常温の空気に水蒸気を添加した混合気を吹き込むと共に炉内通気差圧と排ガス温度を検出して炉内通気差圧と排ガス温度を適正範囲内に維持するように前記空気と前記水蒸気の混合比を適正に設定することにより前記上段羽口部分の燃焼温度を灰分の溶融温度より低くするシャフト炉方式の廃棄物の溶融炉における燃焼温度調整方法。
Provided with a lower tuyere in the hearth part and an upper tuyere arranged above the morning glory, oxygen and combustion support gas were blown from the lower tuyere, room temperature air was blown from the upper tuyere, Shaft furnace equipped with a plurality of tuyere which burns pyrolysis residue and combustible gas by air blown from the upper tuyere and uses this combustion heat as a heat source for drying waste together with the combustion gas in the lower tuyere In the type of waste melting furnace,
The air is blown into the air at normal temperature to be blown into the upper tuyere, and the air is supplied so that the air flow differential pressure and the exhaust gas temperature in the furnace are detected and the air flow differential pressure and the exhaust gas temperature are maintained within an appropriate range. Combustion temperature adjustment method in a shaft furnace type waste melting furnace in which the combustion temperature of the upper tuyere portion is made lower than the melting temperature of ash by appropriately setting the mixing ratio of water and the steam .
JP11277595A 1994-09-27 1995-05-11 Method for adjusting combustion temperature in shaft furnace type waste melting furnace Expired - Fee Related JP3742441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11277595A JP3742441B2 (en) 1994-09-27 1995-05-11 Method for adjusting combustion temperature in shaft furnace type waste melting furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-231674 1994-09-27
JP23167494 1994-09-27
JP11277595A JP3742441B2 (en) 1994-09-27 1995-05-11 Method for adjusting combustion temperature in shaft furnace type waste melting furnace

Publications (2)

Publication Number Publication Date
JPH08152118A JPH08152118A (en) 1996-06-11
JP3742441B2 true JP3742441B2 (en) 2006-02-01

Family

ID=26451864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11277595A Expired - Fee Related JP3742441B2 (en) 1994-09-27 1995-05-11 Method for adjusting combustion temperature in shaft furnace type waste melting furnace

Country Status (1)

Country Link
JP (1) JP3742441B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153371A (en) * 2004-11-30 2006-06-15 Plantec Inc Combustion control method of vertical refuse incinerator for incinerating industrial wastes
JP4933134B2 (en) * 2006-04-24 2012-05-16 株式会社プランテック Vertical waste incinerator for industrial waste incineration
JP5283780B1 (en) * 2012-12-25 2013-09-04 新日鉄住金エンジニアリング株式会社 Waste melting furnace
JP6299467B2 (en) * 2014-06-17 2018-03-28 Jfeエンジニアリング株式会社 Waste gasification and melting apparatus and waste gasification and melting method
CN111678151B (en) * 2020-06-29 2021-02-09 山东龙之源节能环保科技有限公司 Direct sludge drying and incinerating system and drying and incinerating method thereof

Also Published As

Publication number Publication date
JPH08152118A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
CN100467948C (en) Grate type waste incinerator and method of controlling combustion of same
KR101890873B1 (en) Waste gasification and melting furnace
WO2002021047A1 (en) Waste-gasified fusion furnace and method of operating the fusion furnace
JP3742441B2 (en) Method for adjusting combustion temperature in shaft furnace type waste melting furnace
JP5426119B2 (en) Combustion control method for gasification melting system and system
CN105650618A (en) Water gas production and combustion integrated combustion method and equipment
US6189462B1 (en) Burning/melting method of waste melting furnace
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
US20070295250A1 (en) Oxygen-enhanced combustion of unburned carbon in ash
JPH08121728A (en) Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace
JPH08159436A (en) Combustion control method of waste melting furnace
JP2007271207A (en) Operation control method of gasification melting system, and system
JPH0331966B2 (en)
JP2002303412A (en) Method for gasifying and melting waste
JP4105963B2 (en) Pyrolysis gasification melting system
JPH08121727A (en) Secondary combustion furnace structure for melting furnace of wasted matter
JP3857107B2 (en) Pyrolysis gas reburning equipment for waste incineration
JPS59167627A (en) Automatic control procedure for industrial waste material melting furnace
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
CA2092216A1 (en) Waste melting furnace
JPH0256565B2 (en)
JPH08121726A (en) Secondary combustion furnace for waste melting furnace
JPH0894031A (en) Waste gasification melting furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees