JP5720981B2 - Waste gasification method - Google Patents

Waste gasification method Download PDF

Info

Publication number
JP5720981B2
JP5720981B2 JP2010245482A JP2010245482A JP5720981B2 JP 5720981 B2 JP5720981 B2 JP 5720981B2 JP 2010245482 A JP2010245482 A JP 2010245482A JP 2010245482 A JP2010245482 A JP 2010245482A JP 5720981 B2 JP5720981 B2 JP 5720981B2
Authority
JP
Japan
Prior art keywords
connecting pipe
gas
temperature
wall
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010245482A
Other languages
Japanese (ja)
Other versions
JP2012097178A (en
Inventor
史洋 三好
史洋 三好
平 明典
明典 平
齊藤 聡
聡 齊藤
平田 修一
修一 平田
稔也 佐藤
稔也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010245482A priority Critical patent/JP5720981B2/en
Publication of JP2012097178A publication Critical patent/JP2012097178A/en
Application granted granted Critical
Publication of JP5720981B2 publication Critical patent/JP5720981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、廃棄物を部分酸化・熱分解しガス化して発生したガスを改質して改質ガスを生成し燃料ガス等として供給する廃棄物ガス化処理方法に関する。 The present invention relates to a waste gas treatment method for supplying a waste was generated by gasified partial oxidation and pyrolysis gas is reformed to generate a reformed gas fuel gas or the like.

近年、廃棄物を部分酸化・熱分解しガス化して得られるガスを燃料用ガスなどとして利用することが進められている。このような廃棄物ガス化処理装置として、特許文献1に開示されている装置が挙げられる。   In recent years, it has been promoted to use a gas obtained by partially oxidizing and thermally decomposing waste to gasify it as a fuel gas. As such a waste gasification processing apparatus, an apparatus disclosed in Patent Document 1 can be cited.

廃棄物の圧縮成形物が高温反応塔の下部で部分酸化・熱分解され熱分解ガスが発生し、高温反応塔の上部で熱分解ガスが改質されて一酸化炭素と水素を含む改質ガスが生成され、燃料ガスとして利用される。高温反応塔から抜き出された改質ガスは冷却装置で冷却液と接触し、後段のガス精製プロセスに適した温度にまで冷却される。   The waste compression molding is partially oxidized and pyrolyzed at the lower part of the high-temperature reaction tower to generate pyrolysis gas, and the pyrolysis gas is reformed at the upper part of the high-temperature reaction tower, and reformed gas containing carbon monoxide and hydrogen Is generated and used as fuel gas. The reformed gas extracted from the high-temperature reaction tower is brought into contact with the coolant in the cooling device, and cooled to a temperature suitable for the subsequent gas purification process.

本発明ではかかる高温反応塔をガス化改質炉という。   In the present invention, such a high-temperature reaction tower is called a gasification reforming furnace.

ガス化改質炉と冷却装置を連結していて改質ガスを冷却装置へ送る連結管の内壁に、ガス化改質炉からの改質ガスに随伴されるダストが付着する状況が度々発生する。連結管内壁にダストが付着して堆積すると管路が狭まり、連結管における改質ガスの圧力損失が増大し、ガス化改質炉から排出される改質ガスの流れが影響されて、ガス化改質炉内の圧力が上昇する。安全上の理由から炉内の圧力を所定値以下に抑えることが求められ、そのためには、連結管の通過ガス量を低下させる必要があり、その結果、廃棄物の処理量を低下させ発生ガス量を低減させることになり、ガス化改質炉の操業効率が低下する。また、連結管内壁に付着したダストを除去するため、定期的にガス化改質炉の操業を停止しなければならないので、稼働率が低くなる。   There is often a situation in which dust accompanying the reformed gas from the gasification reformer adheres to the inner wall of the connecting pipe that connects the gasification reformer and the cooling device and sends the reformed gas to the cooling device. . When dust adheres to and accumulates on the inner wall of the connecting pipe, the pipe line narrows, the pressure loss of the reformed gas in the connecting pipe increases, and the flow of the reformed gas discharged from the gasification reforming furnace is affected. The pressure in the reforming furnace increases. For safety reasons, it is required to keep the pressure in the furnace below a predetermined value. To that end, it is necessary to reduce the amount of gas passing through the connecting pipe. As a result, the operation efficiency of the gasification reforming furnace decreases. Moreover, in order to remove the dust adhering to the inner wall of the connecting pipe, the operation of the gasification reforming furnace must be periodically stopped, so the operating rate is lowered.

連結管内壁へのダスト付着を防止する対策として、特許文献2に、連結管内壁温度を1190℃超1300℃以下に保持する加熱装置を設置することが記載されている。すなわち、この特許文献2では、ガス化改質炉から改質ガスに随伴されるダストの溶融温度以上に、連結管内壁温度を保持することにより、ダストを溶融状態に保持し、連結管内壁表面で溶融ダストが冷却され固化し付着するのを防ぐこととしている(特許文献2、段落[0027],[0028],[0034])。   As a countermeasure for preventing dust from adhering to the inner wall of the connecting pipe, Patent Document 2 describes that a heating device that keeps the temperature of the inner wall of the connecting pipe above 1190 ° C. and below 1300 ° C. is described. That is, in Patent Document 2, by maintaining the inner wall temperature of the connecting pipe at a temperature higher than the melting temperature of the dust accompanying the reformed gas from the gasification reforming furnace, the dust is held in a molten state, and the inner surface of the inner wall of the connecting pipe The molten dust is cooled and solidified to prevent adhesion (Patent Document 2, paragraphs [0027], [0028], [0034]).

また、特許文献3に、連結管の内壁温度を連結管に付着するダストの溶融温度以上に制御することによって連結管内での付着物による詰まりを防ぐことができること、ガス化改質炉に溶融促進剤(石灰石、消石灰)を添加することにより、ダストの溶融温度を低下させ、連結管の内壁温度の制御目標温度を低めることができることが記載されている。   Further, Patent Document 3 discloses that by controlling the inner wall temperature of the connecting pipe to be equal to or higher than the melting temperature of dust adhering to the connecting pipe, it is possible to prevent clogging due to deposits in the connecting pipe, It is described that by adding an agent (limestone, slaked lime), the melting temperature of dust can be lowered and the control target temperature of the inner wall temperature of the connecting pipe can be lowered.

特開2001−205244JP 2001-205244 A 特開2001−259600JP 2001-259600 A 特開2005−226027JP 2005-226027 A

しかしながら、特許文献2又は特許文献3に記載の方法では、連結管内壁温度をダストの溶融温度以上に保持する加熱装置として連結管壁内に加熱用高温ガスを流通する機構や、電気ヒータを設けることが必要であり、設備コストや運転コストが嵩むという問題がある。また、特許文献3に記載の方法では、連結管内壁をダストの溶融温度以上に保持するのに設備コストや運転コストが嵩むという問題に加え、溶融促進剤を添加するため運転コストがさらに嵩む問題や、廃棄物の性状によっては溶融促進剤の添加によるダストの溶融温度を低下させる効果が少なく、連結管の閉塞を防止できないという問題がある。   However, in the method described in Patent Document 2 or Patent Document 3, a mechanism for circulating a high-temperature gas for heating in the connecting pipe wall or an electric heater is provided as a heating device that keeps the inner wall temperature of the connecting pipe at or above the melting temperature of dust. There is a problem that equipment costs and operating costs increase. In addition, in the method described in Patent Document 3, in addition to the problem that the equipment cost and the operating cost increase to keep the inner wall of the connecting pipe above the melting temperature of dust, the problem that the operating cost further increases due to the addition of a melting accelerator. In addition, depending on the properties of the waste, there is a problem that the effect of lowering the melting temperature of dust due to the addition of a melting accelerator is small, and blockage of the connecting pipe cannot be prevented.

本発明は、上述したような事情に鑑みてなされたものであって、廃棄物ガス化改質炉と冷却装置とを連結する連結管内壁へのダスト付着を防止することが、安価に、かつ廃棄物の性状にかかわらず安定して行うことができる廃棄物ガス化処理方法を提供することを課題とする。 The present invention has been made in view of the circumstances as described above, and it is inexpensive to prevent adhesion of dust to the inner wall of the connecting pipe that connects the waste gasification reforming furnace and the cooling device. It is an object of the present invention to provide a waste gasification method that can be performed stably regardless of the properties of the waste.

本発明に係る廃棄物ガス化処理方法では、廃棄物を部分酸化・熱分解しガス化して発生したガスを改質して改質ガスを生成するガス化改質炉と、該ガス化改質炉からの改質ガスを受けてこれを冷却する冷却装置と、該ガス化改質炉と冷却装置とを連結して改質ガスを冷却装置へ送る連結管とを少なくとも有する廃棄物ガス化処理装置を用いるIn the waste gasification method according to the present invention, a gasification reforming furnace for generating a reformed gas by reforming a gas generated by partially oxidizing and thermally decomposing waste and gasifying the gasification reformer. Waste gasification having at least a cooling device that receives and cools the reformed gas from the quality furnace, and a connecting pipe that connects the gasification reforming furnace and the cooling device and sends the reformed gas to the cooling device A processing device is used .

かかる廃棄物ガス化処理方法において、本発明は連結管に備えられたバーナから酸素含有ガスを連結管内に吹き込み改質ガスの一部を燃焼させ高温燃焼ガスを発生させ、高温燃焼ガスによる加熱により連結管内壁の表面温度をダストの溶融温度以上に保持し、連結管内の圧力損失を計測する連結管内の圧力損失計測手段により測定された圧力損失が許容値を超えるときに、連結管に送られる改質ガス量を低減するとともに、高温燃焼ガスにより連結管の内壁面に付着した付着物を加熱し溶融流動化させて冷却装置へ流下させ除去することを特徴としている。 In such a waste gasification method , the present invention blows an oxygen-containing gas from a burner provided in a connecting pipe into the connecting pipe to burn a part of the reformed gas to generate a high-temperature combustion gas, which is heated by the high-temperature combustion gas. When the pressure loss measured by the pressure loss measuring means in the connecting pipe that keeps the surface temperature of the inner wall of the connecting pipe above the melting temperature of dust and measures the pressure loss in the connecting pipe exceeds the allowable value, it is sent to the connecting pipe In addition to reducing the amount of reformed gas, the deposit attached to the inner wall surface of the connecting pipe by the high-temperature combustion gas is heated, melted and fluidized, and flows down to the cooling device to be removed .

このように構成される本発明では、バーナから吹き込まれる酸素含有ガスで改質ガスの一部を燃焼させて連結管内壁の温度をダストの溶融点以上に保持し、ダストを冷却装置へ向け送り込むことで、溶融したダストが上記連結管内壁面で冷却固化して付着することを防止する。   In the present invention configured as described above, a part of the reformed gas is combusted by the oxygen-containing gas blown from the burner, the temperature of the inner wall of the connecting pipe is maintained at or above the melting point of the dust, and the dust is sent to the cooling device. This prevents the molten dust from being cooled and solidified on the inner wall surface of the connecting pipe.

本発明では、バーナは、酸素含有ガスに加え、燃料ガスをも吹き込むこととしてもよい。燃料ガスをも吹き込むことにより、燃焼が促進される。   In the present invention, the burner may inject fuel gas in addition to the oxygen-containing gas. Combustion is promoted by also injecting fuel gas.

本発明において、連結管内壁の温度を計測する連結管内の温度計測手段により測定された連結管内壁の表面温度をダストの溶融温度以上に保持するように、バーナに供給する酸素含有ガス供給量を制御することが好ましい。このように、温度制御することにより、バーナから吹き込む酸素含有ガスを過不足ない量とすることができ、ダストの溶融状態を維持するのに十分な燃焼を無駄なく十分に行うことができる。 In the present invention, the oxygen-containing gas supply amount supplied to the burner is maintained so that the surface temperature of the inner wall of the connecting pipe measured by the temperature measuring means in the connecting pipe for measuring the temperature of the inner wall of the connecting pipe is kept above the melting temperature of the dust. It is preferable to control. Thus, by controlling the temperature, the amount of oxygen-containing gas blown from the burner can be set to an amount that is not excessive and insufficient, and combustion sufficient to maintain the molten state of dust can be performed sufficiently without waste.

本発明では、バーナが燃料ガスをも吹き込む場合には、連結管内壁の温度を計測する温度計測手段と、温度計測手段により測定された連結管内壁の温度測定値に基づきバーナに供給する酸素含有ガス供給量及び燃料ガス供給量のうち少なくとも一つを制御する連結管内壁温度制御手段を備えることとしてもよい。このように、温度制御することにより、バーナから吹き込む酸素含有ガスそして燃料ガスを過不足ない量とすることができ、ダストの溶融状態を維持するのに十分な燃焼を無駄なく十分に行うことができる。 In the present invention , when the burner also blows fuel gas, the temperature measuring means for measuring the temperature of the inner wall of the connecting pipe, and the oxygen-containing content supplied to the burner based on the temperature measurement value of the inner wall of the connecting pipe measured by the temperature measuring means A connecting pipe inner wall temperature control means for controlling at least one of the gas supply amount and the fuel gas supply amount may be provided. In this way, by controlling the temperature, the oxygen-containing gas and the fuel gas blown from the burner can be made in an amount that is not excessive and insufficient, and sufficient combustion can be performed without waste to maintain the molten state of the dust. it can.

本発明により、廃棄物ガス化改質炉と冷却装置とを連結する連結管内へバーナから酸素含有ガス、もしくは酸素含有ガスと燃料ガスを吹き込むことにより該連結管内で改質ガスの一部を燃焼させて高温燃焼ガスを発生させ、高温燃焼ガスによる加熱により該連結管内壁温度をダスト溶融点以上に保持することとし、連結管内で圧力損失が許容値を超えたときに連結管へ送られる改質ガス量を低減するとともに、高温燃焼ガスにより連結管の内壁面に付着した付着物を加熱し溶融流動化させて冷却装置へ流下させ除去することとしたので、該連結管内壁へのダスト付着を容易に防止することが可能となり、安価に、かつ廃棄物の性状にかかわらず安定して操業を行うことができる廃棄物ガス化処理方法が得られる。 According to the present invention, part of the reformed gas is combusted in the connecting pipe by blowing oxygen-containing gas or oxygen-containing gas and fuel gas from the burner into the connecting pipe connecting the waste gasification reforming furnace and the cooling device. The high temperature combustion gas is generated, and the inner wall temperature of the connection pipe is maintained at the dust melting point or higher by heating with the high temperature combustion gas. When the pressure loss in the connection pipe exceeds the allowable value, the modification is sent to the connection pipe. In addition to reducing the amount of gaseous gases, the adhering matter adhering to the inner wall surface of the connecting pipe by the high-temperature combustion gas is heated, melted and fluidized, and then flows down to the cooling device to be removed, so that dust adheres to the inner wall of the connecting pipe. Can be easily prevented, and a waste gasification process method can be obtained that can be operated stably at low cost regardless of the properties of the waste.

本発明の一実施形態装置を示す概要構成図である。It is a schematic block diagram which shows the one Embodiment apparatus of this invention.

以下、添付図面にもとづき、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1において、本実施形態の廃棄物ガス化処理装置は、廃棄物を熱分解してガス化するガス化改質炉10と、該ガス化改質炉10で生成かつ改質された改質ガスを受けてこれを冷却する冷却装置20と、上記ガス化改質炉10と冷却装置20を連結して改質ガスを冷却装置20へ送る連結管30と、該連結管30に酸素含有ガスを吹き込むバーナ装置40と、さらには、本実施形態での好ましい形態として、該バーナ装置40を制御する制御手段50とを備えている。   In FIG. 1, the waste gasification processing apparatus of this embodiment includes a gasification reforming furnace 10 that thermally decomposes and gasifies waste, and a reformation that is generated and reformed in the gasification reforming furnace 10. A cooling device 20 that receives and cools the gas, a connecting pipe 30 that connects the gasification reforming furnace 10 and the cooling device 20 to send the reformed gas to the cooling device 20, and an oxygen-containing gas in the connecting pipe 30 And a control means 50 for controlling the burner device 40 as a preferred embodiment in the present embodiment.

ガス化改質炉10は、竪型の炉本体11の内部空間にガス改質のためのガス改質空間12が形成されており、上記ガス化改質炉10の下方には廃棄物Pを堆積してこれを加熱する熱分解部13と該熱分解部13から横方向に延びる溶融部14が設けられている。さらに、上記熱分解部13の上部側壁には、側方から廃棄物Pを装入するための廃棄物装入部15が設けられている。これらの熱分解部13、溶融部14そして廃棄物装入部15自体は、例えば、特許文献1で公知であり、本発明の主旨とする部分ではないので、これらの説明は省略する。   In the gasification reforming furnace 10, a gas reforming space 12 for gas reforming is formed in an internal space of a vertical furnace body 11, and waste P is placed below the gasification reforming furnace 10. A thermal decomposition unit 13 that deposits and heats the thermal decomposition unit 13 and a melting unit 14 that extends laterally from the thermal decomposition unit 13 are provided. Further, a waste charging portion 15 for charging the waste P from the side is provided on the upper side wall of the thermal decomposition portion 13. The pyrolysis section 13, the melting section 14, and the waste charging section 15 themselves are known from, for example, Patent Document 1 and are not the main subject of the present invention, and thus description thereof is omitted.

上記ガス化改質炉10は、そのガス改質空間12へガス改質のための酸素含有ガスを供給する酸素含有ガス供給口12Aが設けられていて、熱分解部13で加熱された廃棄物Pから生成され上昇するガスを上記酸素含有ガスで改質し、改質ガスとして上記冷却装置20へ送り出すようになっている。酸素含有ガス供給口12Aには酸素含有ガス供給装置16が接続されている。かかるガス化改質炉10の頂部には、改質ガス送出し口10Aが設けられており、該改質ガス送出し口10Aに、上記連結管30の一端側(図1にて左端側)が接続されている。改質ガス送出し口10Aの内部には、ガス化改質炉10の頂部から送出される改質ガスの温度を検出する温度センサ17が設けられており、該温度センサ17は制御装置18に接続されている。該制御装置18は、上記温度センサ17の検出温度にもとづき、上記酸素含有ガス供給装置16の酸素含有ガス供給口12Aへの酸素含有ガス供給量を制御するようになっている。   The gasification reforming furnace 10 is provided with an oxygen-containing gas supply port 12A for supplying an oxygen-containing gas for gas reforming to the gas reforming space 12, and is heated by the thermal decomposition unit 13. The gas generated from P and rising is reformed by the oxygen-containing gas and sent to the cooling device 20 as a reformed gas. An oxygen-containing gas supply device 16 is connected to the oxygen-containing gas supply port 12A. A reformed gas delivery port 10A is provided at the top of the gasification reforming furnace 10, and one end side (the left end side in FIG. 1) of the connecting pipe 30 is connected to the reformed gas delivery port 10A. Is connected. A temperature sensor 17 for detecting the temperature of the reformed gas sent from the top of the gasification reforming furnace 10 is provided inside the reformed gas delivery port 10A. It is connected. The control device 18 controls the oxygen-containing gas supply amount to the oxygen-containing gas supply port 12A of the oxygen-containing gas supply device 16 based on the temperature detected by the temperature sensor 17.

上記連結管30は、他端側(図1にて右端側)に向け下向き勾配をもって配設されており、該他端側で冷却装置20に接続されている。上記連結管30の一端側には、バーナ装置40のバーナ41が他端側に向け設けられている。該バーナ41には、酸素含有ガス供給装置42そして燃料ガス供給装置43が接続されている。また、上記連結管30には、好ましい形態として、管壁の温度を検出する温度センサ51が設けられており、該温度センサ51は制御装置50に接続されている。該制御装置50は、上記温度センサ51の検出温度にもとづき、上記酸素含有ガス供給装置42と燃料ガス供給装置43のバーナ41へのガス供給量を制御するようになっている。本実施形態では、バーナ41は、酸素含有ガスを吹き出すが、制御装置50の設定により、上記酸素含有ガスに加え、適宜燃料ガスをも吹き出すようになっている。   The connecting pipe 30 is disposed with a downward gradient toward the other end side (the right end side in FIG. 1), and is connected to the cooling device 20 at the other end side. A burner 41 of the burner device 40 is provided on one end side of the connecting pipe 30 toward the other end side. An oxygen-containing gas supply device 42 and a fuel gas supply device 43 are connected to the burner 41. The connecting pipe 30 is provided with a temperature sensor 51 for detecting the temperature of the pipe wall as a preferred form, and the temperature sensor 51 is connected to the control device 50. The control device 50 controls the amount of gas supplied to the burner 41 of the oxygen-containing gas supply device 42 and the fuel gas supply device 43 based on the temperature detected by the temperature sensor 51. In the present embodiment, the burner 41 blows out oxygen-containing gas. However, depending on the setting of the control device 50, in addition to the oxygen-containing gas, fuel gas is also blown out as appropriate.

上記冷却装置20は、冷却槽21と、その上方に位置する連結管30の他端部と該冷却槽21を結ぶ冷却管22とを有している。該冷却管22は上記連結管30の他端部から垂下しており、その下端で冷却槽21に連通している。該冷却管22の上部には、下方に向けて該冷却管22内へ酸性洗浄液を噴射する洗浄液ノズル23が設けられている。また、該冷却管22内の上端位置には、管内面の付着物を掻き取る掻き取り装置24が設けられている。該掻き取り装置24は、管外に向け上方に延出するロッド24Aの下端に取り付けられた掻き部材24Bを有し、ロッド24Aを昇降させることで、該掻き部材24Bが冷却管22の内面を掻いて、付着物を掻き落とすようになっている。   The cooling device 20 includes a cooling tank 21, and a cooling pipe 22 that connects the other end of the connecting pipe 30 positioned above the cooling tank 21. The cooling pipe 22 hangs down from the other end of the connecting pipe 30 and communicates with the cooling tank 21 at the lower end. A cleaning liquid nozzle 23 for injecting an acidic cleaning liquid into the cooling pipe 22 downward is provided above the cooling pipe 22. Further, a scraping device 24 that scrapes off deposits on the inner surface of the pipe is provided at the upper end position in the cooling pipe 22. The scraping device 24 has a scraping member 24B attached to the lower end of a rod 24A that extends upward to the outside of the pipe. It is designed to scrape off the deposits.

冷却槽21は、その下部に洗浄液排出口21Aが、そして上部に粗ガス排出口21Bが設けられている。   The cooling tank 21 is provided with a cleaning liquid discharge port 21 </ b> A at the lower portion and a crude gas discharge port 21 </ b> B at the upper portion.

かかる本実施形態装置では、廃棄物の部分酸化・熱分解によるガス化そしてガス改質は、次の要領で行われる。   In the apparatus of this embodiment, gasification and gas reforming by waste partial oxidation / pyrolysis is performed as follows.

ピット(図示せず)に集積された都市ごみ、産業廃棄物等の廃棄物はプレス機(図示せず)で圧縮され圧縮成形物とされた後、加熱炉(図示せず)で加熱乾留されてから廃棄物装入部15を経てガス化改質炉10に送られ熱分解部13で熱分解されてガス化する。ガス化改質炉10のガス改質空間12の下部に設けられた酸素含有ガス供給口12A(ランス)から炉内に酸素含有ガスが導入され、この酸素ガスが圧縮成形物中の炭素と反応し、一酸化炭素と二酸化炭素が生成される。また、廃棄物から発生した又は外部から供給された高温水蒸気が存在するため、炭素と水蒸気とによる水性ガス反応が生じて、水素と一酸化炭素が生成される。更に、圧縮成形物の熱分解・部分酸化により発生した炭化水素が水蒸気と反応して、水素と一酸化炭素が生成する。これらの廃棄物から発生したガスから水素と一酸化炭素に富むガスを生成することを改質といい、ガス化改質炉の塔頂部の改質ガス送出し口10Aより改質ガスが排出される。改質ガス送出し口10Aの内部に設けられた温度センサ17により検出された改質ガスの温度にもとづき、制御装置18が、酸素含有ガス供給装置16の酸素含有ガス供給口12Aへの酸素含有ガス供給量を制御する。改質ガスは、該改質ガス送出し口10Aから連結管30を経て冷却装置20へ送られ、該冷却装置20で洗浄液ノズル23からの酸性洗浄液と接触し急冷酸洗浄された後に、粗ガス排出口21Bから排出され、後段のガス精製工程に適切な温度にまで冷却され、ガス精製工程を経て燃料ガス等として取り出されて利用される。   Wastes such as municipal waste and industrial waste accumulated in pits (not shown) are compressed by a press machine (not shown) to form a compression-molded product, and then heated and dry-distilled in a heating furnace (not shown). After that, it is sent to the gasification reforming furnace 10 through the waste charging unit 15 and pyrolyzed by the thermal decomposition unit 13 to be gasified. An oxygen-containing gas is introduced into the furnace from an oxygen-containing gas supply port 12A (lance) provided in the lower part of the gas reforming space 12 of the gasification reforming furnace 10, and this oxygen gas reacts with carbon in the compression molded product. As a result, carbon monoxide and carbon dioxide are generated. In addition, since there is high-temperature steam generated from waste or supplied from the outside, a water gas reaction occurs between carbon and water vapor to generate hydrogen and carbon monoxide. Furthermore, hydrocarbons generated by thermal decomposition and partial oxidation of the compression molded product react with water vapor to generate hydrogen and carbon monoxide. Generating a gas rich in hydrogen and carbon monoxide from the gas generated from these wastes is called reforming, and the reformed gas is discharged from the reformed gas delivery port 10A at the top of the gasification reforming furnace. The Based on the temperature of the reformed gas detected by the temperature sensor 17 provided inside the reformed gas delivery port 10A, the control device 18 contains oxygen to the oxygen-containing gas supply port 12A of the oxygen-containing gas supply device 16. Control gas supply. The reformed gas is sent from the reformed gas delivery port 10A to the cooling device 20 via the connecting pipe 30, and after contacted with the acidic cleaning liquid from the cleaning liquid nozzle 23 by the cooling apparatus 20 and being subjected to rapid acid cleaning, the crude gas is supplied. The gas is discharged from the discharge port 21B, cooled to a temperature suitable for the subsequent gas purification process, and taken out as fuel gas or the like through the gas purification process.

一方、ガス化改質炉10の下部で生成した熱分解残渣や灰分は溶融部14で溶融され、溶融物がガス化改質炉下部から後段の均質化炉(図示せず)へ流れ出る。均質化炉において金属溶融物は比重が大きいため、スラグの下部を流れる。溶融物は水砕システムに流れ落ちて、冷却固化され、水砕メタル・スラグの混合物は、磁選によりメタルとスラグに分離される。   On the other hand, the pyrolysis residue and ash generated in the lower part of the gasification reforming furnace 10 are melted in the melting part 14, and the melt flows out from the lower part of the gasification reforming furnace to a subsequent homogenization furnace (not shown). In the homogenizing furnace, the metal melt has a large specific gravity and therefore flows under the slag. The melt flows down to the granulation system and is cooled and solidified, and the mixture of granulated metal slag is separated into metal and slag by magnetic separation.

このようなガス改質の工程において、上記ガス改質炉10から抜き出される改質ガスには、廃棄物から発生したダスト(灰分)が溶融した粒子状で含まれており、これが改質ガスに乗って連結管30内を流れる。   In such a gas reforming process, the reformed gas extracted from the gas reforming furnace 10 contains dust (ash) generated from waste in the form of molten particles, which is the reformed gas. And flows in the connecting pipe 30.

本実施形態では、上記連結管30の上流端となる一端側にバーナ41が設けられており、酸素含有ガス供給装置42からの酸素含有ガス(例えば純酸素や高濃度酸素含有ガス)を連結管30の下流側たる他端側に向け改質ガスの流れの方向に吹き出している。この酸素含有ガスは、連結管30内で改質ガスの一部を燃焼させ、高温の燃焼ガスにより連結管30の内壁の表面温度をダストの溶融温度以上に保有する。したがって、連結管30内を流れる改質ガス中の溶融状ダストは、連結管30の内壁面と接触しても、冷却されて固化されることがなく、上記内壁面に付着せずに、連結管30を改質ガスと共に下流端まで流れて冷却装置20まで導かれる。   In the present embodiment, a burner 41 is provided at one end which is the upstream end of the connecting pipe 30, and oxygen-containing gas (for example, pure oxygen or high-concentration oxygen-containing gas) from the oxygen-containing gas supply device 42 is connected to the connecting pipe 30. It is blown out in the direction of the flow of the reformed gas toward the other end side which is the downstream side of 30. This oxygen-containing gas burns part of the reformed gas in the connecting pipe 30 and retains the surface temperature of the inner wall of the connecting pipe 30 above the melting temperature of dust by the high-temperature combustion gas. Therefore, even if the molten dust in the reformed gas flowing in the connection pipe 30 comes into contact with the inner wall surface of the connection pipe 30, it is not cooled and solidified, and does not adhere to the inner wall surface. The pipe 30 flows to the downstream end together with the reformed gas and is led to the cooling device 20.

改質ガスは、冷却装置20の冷却管22に達すると、洗浄液ノズル23から噴射される酸性洗浄液と接触して冷却され、ダストは固化して洗浄液で捕捉され冷却槽21へ至る。冷却管22の内面に付着物が生じたときには、上記掻き取り装置24を作動させて該付着物を掻き落とす。   When the reformed gas reaches the cooling pipe 22 of the cooling device 20, the reformed gas comes into contact with the acidic cleaning liquid sprayed from the cleaning liquid nozzle 23 and is cooled, and the dust is solidified and captured by the cleaning liquid and reaches the cooling tank 21. When deposits are generated on the inner surface of the cooling pipe 22, the scraping device 24 is activated to scrape the deposits.

本実施形態では、好ましい形態として、上記の改質ガスの温度制御とは別に、連結管30内に連結管30の内壁面温度を検出する温度センサ51を配し、この検出手段にもとづき、制御装置50によって、上記酸素含有ガス供給装置42と燃料ガス供給装置43のガス供給量を制御するようになっている。そこで、本実施形態では、上記検出温度にもとづき、酸素含有ガス供給装置42を制御してバーナ41から吹き込む酸素含有ガス供給量を調整して、上記連結管30の内壁面の温度をダストの溶融温度とする。この場合、必要に応じ、酸素含有ガスに加え、燃料ガス供給装置43を作動させて、燃料ガスをもバーナ41から吹き込むようにしてもよい。燃料ガスを連結管30内で燃焼させるということは、連結管30内を流れる改質ガスの一部を燃焼させる必要がないということであり、改質ガス中の可燃ガス成分の量が低下せず、改質ガスを最終的に燃料用ガスとして取り出し利用する場合に好ましい。バーナ41からのこの燃料ガスの供給量は、上記温度センサ51にもとづいて、酸素含有ガス供給量と相俟って調整される。かくして、ダストは連結管30への付着が防止される。   In the present embodiment, as a preferred embodiment, a temperature sensor 51 for detecting the inner wall surface temperature of the connection pipe 30 is arranged in the connection pipe 30 separately from the above-described temperature control of the reformed gas, and the control is performed based on this detection means. The apparatus 50 controls the gas supply amounts of the oxygen-containing gas supply device 42 and the fuel gas supply device 43. Therefore, in the present embodiment, based on the detected temperature, the oxygen-containing gas supply device 42 is controlled to adjust the oxygen-containing gas supply amount blown from the burner 41 so that the temperature of the inner wall surface of the connecting pipe 30 is melted. Let it be temperature. In this case, the fuel gas may be blown from the burner 41 by operating the fuel gas supply device 43 in addition to the oxygen-containing gas as necessary. Combusting the fuel gas in the connecting pipe 30 means that it is not necessary to burn a part of the reformed gas flowing in the connecting pipe 30, and the amount of combustible gas components in the reformed gas is reduced. However, it is preferable when the reformed gas is finally taken out and used as a fuel gas. The fuel gas supply amount from the burner 41 is adjusted based on the temperature sensor 51 in combination with the oxygen-containing gas supply amount. Thus, the dust is prevented from adhering to the connecting pipe 30.

バーナ41から燃料ガスをも供給する場合、バーナからは、この燃料ガスの燃焼に必要な理論酸素量より少ない酸素量となる酸素含有ガスを吹き込むようにするとよい。この場合、酸素比(供給酸素量/理論酸素量)は0.7以上1.0未満が好ましく、0.8以上1.0未満がさらに好ましい。   When fuel gas is also supplied from the burner 41, an oxygen-containing gas having an oxygen amount smaller than the theoretical oxygen amount necessary for combustion of the fuel gas may be blown from the burner. In this case, the oxygen ratio (supply oxygen amount / theoretical oxygen amount) is preferably 0.7 or more and less than 1.0, and more preferably 0.8 or more and less than 1.0.

このように、バーナから酸素含有ガスを連結管内へ吹き込むことにより、連結管の内壁面へのダストの付着を防止していても、ダストは付着してしまうこともあり、装置を長期にわたり操業している間には、この付着が堆積してその量が増加し、連結管内の有効流通断面積が減少する結果、圧力損失が増大してしまう。そこで、この場合には、連結管内に圧損センサを設けることにより、圧力損失が許容値を超えるときに、バーナから酸素含有ガスを吹き込んで、改質ガスの一部を燃焼させて、その高温の燃焼ガスで連結管の内壁面に付着した付着物を加熱そして溶融流動化させて除去させることができる。除去された付着物は冷却装置へ送られる。このような付着物の除去において、既述のダスト付着防止の際と同様に、バーナから上記酸素含有ガスと共に燃料ガスをも連結管内へ吹き込むことも可能である。   In this way, blowing oxygen-containing gas from the burner into the connecting pipe prevents dust from adhering to the inner wall surface of the connecting pipe. During this time, this deposit accumulates and increases in volume, resulting in a decrease in the effective cross-sectional area in the connecting pipe, resulting in an increase in pressure loss. Therefore, in this case, by providing a pressure loss sensor in the connecting pipe, when the pressure loss exceeds the allowable value, an oxygen-containing gas is blown from the burner, and a part of the reformed gas is burned, Deposits adhering to the inner wall surface of the connecting pipe with the combustion gas can be removed by heating, melting and fluidizing. The removed deposit is sent to the cooling device. In the removal of such deposits, it is also possible to blow fuel gas together with the oxygen-containing gas from the burner into the connecting pipe, as in the case of the dust adhesion prevention described above.

このように、付着物の除去のために、バーナから酸素含有ガスそして必要に応じこれと共に燃料ガスを連結管内へ吹き込む場合、本実施形態では、連結管30が冷却装置20へ向って下方へ向け傾斜して延びているので、溶融流動化した付着物は冷却装置20へ容易に流下する。   As described above, when removing the oxygen-containing gas from the burner and, if necessary, the fuel gas into the connecting pipe in order to remove the deposits, in this embodiment, the connecting pipe 30 is directed downward toward the cooling device 20. Since it is inclined and extended, the melt-fluidized deposit easily flows down to the cooling device 20.

このように、連結管内壁に付着した付着物を溶融流動化させ除去する操作を行う際には、ガス化改質炉への廃棄物の供給量を低減するか、あるいは、ガス化改質炉に供給する酸素含有ガスの供給量を低減させて、ガス化改質炉で発生するガス量を低減させることにより、連結管に送られる改質ガス量を低減させることが望まれる。こうすることにより、バーナからの高温の燃焼ガスによる付着物の加熱が効率よく行われ、付着物を溶融流動化させ除去させるための時間を短縮できる。   In this way, when performing the operation of melting and fluidizing and removing the deposits adhering to the inner wall of the connecting pipe, the amount of waste supplied to the gasification reforming furnace is reduced, or the gasification reforming furnace It is desired to reduce the amount of reformed gas sent to the connecting pipe by reducing the amount of oxygen-containing gas supplied to the gas and reducing the amount of gas generated in the gasification reforming furnace. By doing so, the deposits are efficiently heated by the high-temperature combustion gas from the burner, and the time for melting and fluidizing and removing the deposits can be shortened.

図1に示す廃棄物ガス化処理装置を用い、ガス化改質処理を行った。連結管の上流部にバーナを設置し、連結管の圧力損失が許容値より高くなったとき、廃棄物の供給量を5t/hから4t/hに低下させた上で、LNGと理論酸素量より低い酸素量の酸素含有ガスとをバーナに供給し、LNGを燃焼させ連結管内壁を、ダストの溶融温度より高い温度である1300℃に加熱し、内壁表面に付着した付着物を溶融流動化し、冷却装置へ流下させた。バーナにLNGを供給してから3時間で付着物を除去し圧力損失を許容値未満にすることができた。このような連結管の圧力損失の監視とバーナからの燃料ガスによる付着物除去運転を継続して行った。ガス化改質炉から排出する改質ガスの温度を通常の運転時と同じ1200℃のまま変更することなく、連結管の付着物除去を行うことができるため、ガス化改質炉の炉壁耐火物の劣化を生じさせることがなく耐火物の耐用年数を低下させることがなかった。   Gasification reforming treatment was performed using the waste gasification processing apparatus shown in FIG. When a burner is installed in the upstream part of the connecting pipe and the pressure loss of the connecting pipe becomes higher than the allowable value, the waste supply amount is reduced from 5 t / h to 4 t / h, and then LNG and the theoretical oxygen amount An oxygen-containing gas having a lower oxygen amount is supplied to the burner, LNG is combusted, the inner wall of the connecting pipe is heated to 1300 ° C., which is higher than the melting temperature of the dust, and the deposit adhering to the inner wall surface is melted and fluidized And let it flow down to the cooling device. In 3 hours after supplying LNG to the burner, the deposits were removed, and the pressure loss could be made less than the allowable value. The monitoring of the pressure loss of the connecting pipe and the operation for removing the deposits by the fuel gas from the burner were continued. Since the deposits on the connecting pipe can be removed without changing the temperature of the reformed gas discharged from the gasification reforming furnace at the same 1200 ° C. as in normal operation, the furnace wall of the gasification reforming furnace There was no deterioration of the refractory and the service life of the refractory was not reduced.

比較例Comparative example

連結管にバーナを設けない廃棄物ガス化処理装置を用い、廃棄物の供給量を5t/hとしてガス化改質処理を行った。ガス化改質炉から排出する改質ガスの温度を1200℃とした。連結管の圧力損失が許容値より高くなった時、ガス化改質炉に供給する酸素量を増加させ、炉内ガスを部分燃焼しガス化改質炉から排出する改質ガスの温度を1350℃に昇温し、連結管内壁表面を加熱し、付着した付着物を溶融流動化し除去した。このような連結管の圧力損失の監視とガス化改質炉の炉内ガスの部分燃焼による改質ガスの温度上昇による付着物除去運転を継続して行った。この付着物除去運転は5日毎に8時間程度必要であった。改質ガスの温度を1350℃に昇温するためガス化改質炉の炉壁耐火物の劣化が早く生じるため、耐火物の耐用年数が通常操業の場合の1/8にまで短くなり問題となった。   Gasification reforming treatment was performed using a waste gasification processing apparatus in which no burner was provided in the connecting pipe, and the amount of waste supplied was 5 t / h. The temperature of the reformed gas discharged from the gasification reforming furnace was 1200 ° C. When the pressure loss of the connecting pipe becomes higher than the allowable value, the amount of oxygen supplied to the gasification reforming furnace is increased, and the temperature of the reformed gas discharged from the gasification reforming furnace after partially burning the gas in the furnace is set to 1350. The temperature was raised to 0 ° C., the inner wall surface of the connecting pipe was heated, and the attached deposits were melted and fluidized and removed. The monitoring of the pressure loss of such a connecting pipe and the deposit removal operation by the temperature rise of the reformed gas by partial combustion of the gas in the gasification reforming furnace were continued. This deposit removal operation required about 8 hours every 5 days. Since the temperature of the reformed gas is raised to 1350 ° C., deterioration of the furnace wall refractory of the gasification reforming furnace occurs quickly, so that the service life of the refractory is shortened to 1/8 that of normal operation. became.

10 ガス化改質炉
20 冷却装置
30 連結管
41 バーナ
50 連結管内壁温度制御手段(制御装置)
51 温度計測手段(温度センサ)
DESCRIPTION OF SYMBOLS 10 Gasification reformer 20 Cooling device 30 Connecting pipe 41 Burner 50 Connecting pipe inner wall temperature control means (control apparatus)
51 Temperature measuring means (temperature sensor)

Claims (4)

廃棄物を部分酸化・熱分解しガス化して発生したガスを改質して改質ガスを生成するガス化改質炉と、該ガス化改質炉からの溶融ダストを含む改質ガスを受けてこれを冷却する冷却装置と、該ガス化改質炉と冷却装置とを連結して改質ガスを冷却装置へ送る連結管とを少なくとも有する廃棄物ガス化処理装置を用いる廃棄物ガス化処理方法において、
連結管に備えられたバーナから酸素含有ガスを連結管内に吹き込み改質ガスの一部を燃焼させ高温燃焼ガスを発生させ、高温燃焼ガスによる加熱により連結管内壁の表面温度をダストの溶融温度以上に保持し、
連結管内の圧力損失を計測する連結管内の圧力損失計測手段により測定された圧力損失が許容値を超えるときに、連結管に送られる改質ガス量を低減するとともに、高温燃焼ガスにより連結管の内壁面に付着した付着物を加熱し溶融流動化させて冷却装置へ流下させ除去することを特徴とする廃棄物ガス化処理方法
A gasification reforming furnace for generating a reformed gas by reforming gas generated by partial oxidation and thermal decomposition of waste, and a reformed gas containing molten dust from the gasification reforming furnace Waste gasification processing using a waste gasification processing device having at least a cooling device that cools the gasification reforming furnace and the cooling device, and a connecting pipe that sends the reformed gas to the cooling device In the method
An oxygen-containing gas is blown into the connecting pipe from the burner provided in the connecting pipe to burn part of the reformed gas to generate high-temperature combustion gas, and the surface temperature of the inner wall of the connecting pipe exceeds the melting temperature of dust by heating with the high-temperature combustion gas. Hold on
When the pressure loss measured by the pressure loss measuring means in the connecting pipe exceeds the allowable value, the amount of reformed gas sent to the connecting pipe is reduced and the high temperature combustion gas A waste gasification method characterized in that deposits adhering to an inner wall surface are heated, melted and fluidized, and flowed down to a cooling device to be removed .
廃棄物を部分酸化・熱分解しガス化して発生したガスを改質して改質ガスを生成するガス化改質炉と、該ガス化改質炉からの溶融ダストを含む改質ガスを受けてこれを冷却する冷却装置と、該ガス化改質炉と冷却装置とを連結して改質ガスを冷却装置へ送る連結管とを少なくとも有する廃棄物ガス化処理装置を用いる廃棄物ガス化処理方法において、
連結管に備えられたバーナから酸素含有ガス燃料ガスを連結管内に吹き込み少なくとも燃料ガスを燃焼させ高温燃焼ガスを発生させ、高温燃焼ガスによる加熱により連結管内壁の表面温度をダストの溶融温度以上に保持し、
連結管内の圧力損失を計測する連結管内の圧力損失計測手段により測定された圧力損失が許容値を超えるときに、連結管に送られる改質ガス量を低減するとともに、高温燃焼ガスにより連結管の内壁面に付着した付着物を加熱し溶融流動化させて冷却装置へ流下させ除去することを特徴とする廃棄物ガス化処理方法
A gasification reforming furnace for generating a reformed gas by reforming gas generated by partial oxidation and thermal decomposition of waste, and a reformed gas containing molten dust from the gasification reforming furnace Waste gasification processing using a waste gasification processing device having at least a cooling device that cools the gasification reforming furnace and the cooling device, and a connecting pipe that sends the reformed gas to the cooling device In the method
At least the fuel gas is burned to generate hot combustion gases, the melting of the surface temperature of the connecting tube wall of the dust by heating by the hot combustion gases seen write blown from the burner provided in connection pipe containing gas and a fuel gas connecting pipe Hold above temperature,
When the pressure loss measured by the pressure loss measuring means in the connecting pipe exceeds the allowable value, the amount of reformed gas sent to the connecting pipe is reduced and the high temperature combustion gas A waste gasification method characterized in that deposits adhering to an inner wall surface are heated, melted and fluidized, and flowed down to a cooling device to be removed .
連結管内壁の温度を計測する連結管内の温度計測手段により測定された連結管内壁の温度測定値に基づき、高温燃焼ガスによる加熱により連結管内壁の表面温度をダストの溶融温度以上に保持するように、バーナに供給する酸素含有ガス供給量を制御することとする請求項1に記載の廃棄物ガス化処理方法Based on the measured temperature of the inner wall of the connecting pipe measured by the temperature measuring means in the connecting pipe, which measures the temperature of the inner wall of the connecting pipe, the surface temperature of the inner wall of the connecting pipe is maintained above the melting temperature of the dust by heating with high-temperature combustion gas. The waste gasification method according to claim 1, wherein the oxygen-containing gas supply amount supplied to the burner is controlled. 連結管内壁の温度を計測する連結管内の温度計測手段により測定された連結管内壁の温度測定値に基づき、高温燃焼ガスよる加熱により連結管内壁の表面温度をダストの溶融温度以上に保持するように、バーナに供給する酸素含有ガス供給量及び燃料ガス供給量のうち少なくとも一を制御することとする請求項2に記載の廃棄物ガス化処理方法Based on the measured temperature of the inner wall of the connecting pipe measured by the temperature measuring means in the connecting pipe, which measures the temperature of the inner wall of the connecting pipe, the surface temperature of the inner wall of the connecting pipe is maintained above the melting temperature of the dust by heating with high-temperature combustion gas. the waste gas treatment method according to claim 2, control at least hand of the oxygen-containing gas supply amount and the fuel gas supply amount supplied to the burner.
JP2010245482A 2010-11-01 2010-11-01 Waste gasification method Active JP5720981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245482A JP5720981B2 (en) 2010-11-01 2010-11-01 Waste gasification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245482A JP5720981B2 (en) 2010-11-01 2010-11-01 Waste gasification method

Publications (2)

Publication Number Publication Date
JP2012097178A JP2012097178A (en) 2012-05-24
JP5720981B2 true JP5720981B2 (en) 2015-05-20

Family

ID=46389458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245482A Active JP5720981B2 (en) 2010-11-01 2010-11-01 Waste gasification method

Country Status (1)

Country Link
JP (1) JP5720981B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN156182B (en) * 1981-11-16 1985-06-01 Shell Int Research
DE19533605A1 (en) * 1995-09-11 1997-03-13 Siemens Ag Waste pyrolysis plant avoiding condensation of hydrocarbon(s) to tar
JP2005226027A (en) * 2004-02-16 2005-08-25 Jfe Engineering Kk Waste treating method and waste treating apparatus

Also Published As

Publication number Publication date
JP2012097178A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
US7040240B2 (en) Ash fusing system, method of operating the system, and gasification fusing system for waste
JP2008542481A (en) System for converting coal to gas of specific composition
JP2008545840A (en) A system for converting carbonaceous feedstock to gas of specific composition
TW409172B (en) Waste gasification melting furnace and gasification melting method
SK288020B6 (en) Reactor and method for gasifying and/or melting materials
AU2011241502B2 (en) Method for thermally decomposing and gasifying coal and apparatus for thermally decomposing and gasifying coal
JP2022514196A (en) Reactor and process for gasification and / or melting of feedstock
JP5720981B2 (en) Waste gasification method
JP6066461B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP2007231203A (en) Method for gasifying carbonaceous raw material
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP4918834B2 (en) Waste melting furnace and waste melting furnace operating method
JP2012107085A (en) Slag removal method in coal gasification apparatus, and coal gasification apparatus
JP2006097918A (en) Combustion furnace and waste treatment facility
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2006112715A (en) Operation method of waste melting gasifying furnace
JP2006284106A (en) Highly efficient generation method using gasifying melting furnace and its device
JP4018554B2 (en) Pyrolysis melting equipment
JP2004035749A (en) Method for gasifying waste plastic
JP2008106117A (en) Operation control method for gasification reforming facility
JP6901165B2 (en) Equilibrium approach reactor
JP5569666B2 (en) Fuel gas reforming method
JP2005226027A (en) Waste treating method and waste treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150312

R150 Certificate of patent or registration of utility model

Ref document number: 5720981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350