JP2004035749A - Method for gasifying waste plastic - Google Patents

Method for gasifying waste plastic Download PDF

Info

Publication number
JP2004035749A
JP2004035749A JP2002195628A JP2002195628A JP2004035749A JP 2004035749 A JP2004035749 A JP 2004035749A JP 2002195628 A JP2002195628 A JP 2002195628A JP 2002195628 A JP2002195628 A JP 2002195628A JP 2004035749 A JP2004035749 A JP 2004035749A
Authority
JP
Japan
Prior art keywords
gas
gasification
waste plastic
temperature
gasification furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002195628A
Other languages
Japanese (ja)
Other versions
JP3980426B2 (en
Inventor
Hiroyuki Kotsuru
小水流 広行
Takafumi Kawamura
河村 隆文
Hitoshi Sanpei
三瓶 均
Kiyoshi Uenoyama
上野山 清
Toshifumi Motochi
元内 利文
Katsushi Kosuge
小菅 克志
Toshiya Higuchi
樋口 俊也
Wataru Shiromizu
白水 渡
Kentaro Morita
森田 健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Daicel Chemical Industries Ltd filed Critical Nippon Steel Corp
Priority to JP2002195628A priority Critical patent/JP3980426B2/en
Publication of JP2004035749A publication Critical patent/JP2004035749A/en
Application granted granted Critical
Publication of JP3980426B2 publication Critical patent/JP3980426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decrease the amount of oxygen used by carrying out gasification of waste plastic particles at a low temperature. <P>SOLUTION: A method for gasifying a waste plastic comprises partially oxidizing plastic particles containing chlorine with oxygen and steam. In the gasification method, a partial oxidation temperature is ≥1,100 °C and a gas retention time in a gasification furnace is ≥2 sec and generated gas is thermally recovered. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、塩素を含有する廃プラスチックをガス化する方法に関する。
【0002】
【従来の技術】
近年、資源リサイクルの要望から廃プラスチックのリサイクル利用が進んできているが、未だ廃棄あるいは単純燃焼処理されているものが多いというのが現状である。廃プラスチックの利用方法としては高炉の羽口に吹き込み、鉄鉱石の還元剤として活用する方法やコークス炉に添加して処理する方法等が最近実施されているが、塩化ビニル樹脂等の含塩素プラスチックからは塩素ガスが発生し、機器・配管を腐食させることがあるため、事前に除去する必要がある。塩素分を除去せずに燃料ガスを製造する方法としては、特開平11−216445号公報において、廃プラスチックのガス化方法が示されている。この公報においては、気流層のガス化炉の後段にガス冷却装置が設置され、ガス中に含まれる固体分を回収した後、廃プラスチックに含まれる塩素分を塩酸として回収するプロセスが示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平11−216445号公報で提示した方法では、ガス化炉の温度を1300℃以上に上げる必要があり、その温度未満ではガス化が完全には行われないというという問題があった。1300℃未満でガス化が完全に行われない場合には、廃プラスチック由来の炭化水素成分がガス中に残り、冷却過程でダイオキシンが再合成される可能性があり問題となる。
【0004】
そこで、本発明は上記問題点を解消し安定した廃プラスチックのガス化炉操業方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決した本発明の廃プラスチックのガス化装置および方法は、以下の特徴を有する。
【0006】
(1) 塩素を含む廃プラスチックをガス化する方法において、部分酸化温度を1100℃以上として、さらにガス化炉内ガス滞留時間を2秒以上とすることを特徴とする廃プラスチックのガス化方法。
【0007】
(2) 前記(1)に記載の方法において、発生したガスからの熱回収を行うことを特徴とする廃プラスチックのガス化方法。
【0008】
【発明の実施の形態】
塩素を含有する廃プラスチックを高温で燃焼あるいはガス化した場合、廃プラスチックに含まれる炭素、水素、塩素等が分離され、CO、CO、H、HO、HClなどが生成する。廃プラスチックのガス化は、廃プラスチックに含まれる炭素、水素等と反応する酸素量が、当量未満の場合に起こり、部分酸化反応と称する。
【0009】
一般にゴミ焼却炉などでは、焼却炉出口の排ガスは800〜900℃の高温にあり、大量の飛灰(ダスト)とともに、ダイオキシン再合成の原因となる芳香族塩素化合物からなるダイオキシン前駆物質や塩素、塩酸などの酸性物質を含んでいる。
【0010】
このようなガスを冷却する過程で、ダイオキシンが再合成される。この反応は複雑多岐であるが、現在のところ、以下の2反応が主体であるといわれている。
【0011】
i) 250〜400℃の温度域で、不完全燃焼により残留した直鎖状炭化水素から大量の飛灰もしくは飛灰中に含まれるCuClのような金属塩化物を触媒として、その表面で塩素化反応が生じ、クロロフェノールやクロロベンゼンなどのダイオキシン前駆体が生成しダイオキシンが合成される。本反応は、高速(数秒〜数十秒)で起こるといわれており、本機構による再合成を防止するためには、析出サイト、塩素化触媒の除去とともに、高温排ガスを急速冷却して、上記生成温度領域を短時間で通過させることが肝要となる。
【0012】
ii) 250〜350℃の温度域で、未燃カーボン、空気、水分、無機塩素などが共存した場合に、未燃カーボン粒子表面を析出サイトとして固気あるいは固固反応を介してダイオキシンが生成される。この反応は、化学構造的に関連の薄い物質から合成されるという意味で、デノボ合成(de novo reaction)と呼ばれている。この場合も、飛灰表面に析出したCuClのような金属塩化物は、合成反応促進触媒として作用する。本反応は、i)に比較して合成速度は桁違いに遅いが、飛灰などの粒子状物質が反応促進サイトとして作用することから、未燃カーボンが付着した飛灰が、比較的低温の上記析出温度範囲に滞留する時間が、i)に比べ長時間にわたるものと想定されることから、排ガス処理工程における再合成ダイオキシンの主体を占めるともいわれている。
【0013】
従って、従来焼却炉からの排ガスは、200℃程度まで急速に冷却する必要があったため、熱回収されることなく無駄に捨てられている。そこで、廃プラスチックをガス化する場合、ガス化炉でダイオキシンの前駆体となる炭化水素分を分解除去することで、ガス化ガスを急速に冷却しなくても、ダイオキシンの再合成を防ぐことが可能となる。また、通常ガス化ガス中には酸素ガスが存在しないため、デノボ合成反応は起こらない。このため、廃プラスチックのガス化の際に、炭化水素分を分解除去できる条件で操業すれば、上記問題は起こらないものの、温度条件としては高くする必要があり、ガス化温度が高くなるにつれて、ガス化に必要な酸素量が増加し、その結果生成ガス中の二酸化炭素量が増加し、生成ガスの熱量が低下する。従って、ガス化反応条件として、炭化水素分を分解除去でき、さらにより低い温度条件で生成ガス中の二酸化炭素量を低減できる条件が望まれていた。
【0014】
本発明者らは、炭化水素分をより低い温度で、ダイオキシンの生成に問題にならない程度に分解するためには、ガス化炉内の滞留時間を長くする必要があることに着目し、具体的にはガス化炉温度は1100℃以上で、ガス化炉内でのガス滞留時間を2秒以上とすれば、ガス化炉から発生するガス中の炭化水素分を完全に分解できることを見い出した。本願発明の方法では生成ガスを急冷する必要がないため、顕熱を回収することが可能となり、さらに二酸化炭素量の低減により高い熱量のガスを得ることを可能とするものである。
【0015】
1100℃未満ではプラスチック粒子から発生する炭化水素成分を完全に分解することはできず、1100℃の温度では滞留時間2秒以上の条件が必要である。また、ガス化炉での滞留時間が2秒以上の場合、ガス化炉温度の上限は特に規定するものではないが、1300℃以上になると滞留時間の効果が小さくなることや、熱量的にも不利になる傾向にあるため、1300℃未満が好ましい。また、滞留時間については、2秒以上であれば特に規定するものではない。
【0016】
例えば、ガス化炉の温度を1100℃に低下させるためには、ガス化炉に投入される酸素、空気などの量を減らせば良く、そうすることで生成ガス中の二酸化炭素を減らすことが可能となり、生成ガスの熱量を増加させることが可能となる。つまり、ガス化炉の温度を低下させることは高価な酸素の使用量を減少させ、さらに発熱量を増加させることで、経済的に貢献できる。
【0017】
ここでガス化炉内のガス滞留時間とは、ガス化炉出口でのガス流量およびガス化炉容積、ガス化炉温度、ガス化炉内圧力より算出されるもので、ガス化炉容積を実ガス流量で割った数値である。従って、ガス化炉内のガス滞留時間を2秒以上とするためには、これらの条件を適宜設定すれば良い。
【0018】
また、ガス化生成ガスからの熱回収方法としては、化学プラント等で通常用いられている熱交換器等を用いることができるが、特に規定するものではない。
【0019】
次に、本発明方法について図面を用いて説明する。図1は、本発明方法を実施する装置の一例である。廃プラスチック6はガス化バーナー5からガス化炉1に投入される。通常、廃プラスチックは粒子状のものを扱う。ガス化バーナー5の先端で酸素(または空気)、水蒸気7と混合され、ガス化反応を起こす。ガス化炉1の温度はガス化炉1内に設置された熱電対12により測定される。廃プラスチック粒子6に含まれる灰分は、ガス化炉1内で溶融し溶融スラグ11は、ガス化炉1の下部に設けられたスラグタップ10よりガス化炉1から排出され水槽4で急冷される。生成ガス化ガス8は生成ガス出口2から出た後に熱回収器3に送られ、生成ガス化ガス8中の顕熱が回収され、熱回収後の生成ガス9は熱回収器3より排出される。熱回収器出側温度は水分の凝縮を防ぐため100℃以上が望ましい。
【0020】
本願発明での廃プラスチックとは一般廃棄物、産業廃棄物として発生するプラスチックの総称である。また、工業分析による揮発分を70質量%以上含んだプラスチック樹脂を指す。
また、塩素を含む廃プラスチックの含塩素量については、少くとも含まれていることを意味し、特に規定するものではない。
【0021】
【実施例】
つぎに、実施例を挙げて本発明をさらに詳細に説明する。
【0022】
実施例
本発明による実施例を、廃プラスチックを5ton/dで処理した場合について説明する。廃プラスチックは、炭素72質量%、水素10質量%、酸素9.7質量%、塩素2.5質量%および灰分5質量%を含む組成のものを相当直径6mm以下に粉砕して、窒素ガス100Nm/hで搬送して、図1に示すように、ガスバーナー5よりガス化炉1に供給した。ガス化炉1の温度は、1200℃、ガス化炉内圧力は0.1MPaG、酸素供給量は180Nm/h、ガス化炉投入水蒸気量は60kg/hで操業を行った。結果として、発生ガス組成は、CO:30容量%、CO2:8.7容量%、水素25容量%、水蒸気21.5容量%、窒素15容量%、塩化水素0.5容量%となった。ガス化炉出口2での発生ガス量は675Nm/hで、ガス化炉の体積1.3mから計算されるガス化炉内ガス滞留時間は2.6secである。このときの生成ガス発熱量は、8.2MJ/Nm−dryとなり、高い熱量の生成ガスを得ることができた。このガスから、熱回収器3で熱回収を行い、約200℃までボイラーでガスを冷却し顕熱を回収した。この時の発生ガス中メタン濃度は0.01容量%、発生ガス中ダイオキシン類の濃度は0.002ng−TEQ/m以下と十分に少ないものであった。
【0023】
【発明の効果】
本発明の廃プラスチックのガス化方法によって、より低温でのガス化操業が可能となり、より高い熱量のガスを得ることが可能である。また、ガス化に使用する酸素の使用量を減らすことができ、ガス化炉から発生したガスからの熱回収を行うことができるようになり効率の高い操業が可能である。
【図面の簡単な説明】
【図1】本発明例の廃プラスチックガス化装置概略図。
【符号の説明】
1 ガス化炉、
2 生成ガス出口、
3 熱回収器、
4 水槽、
5 ガス化バーナー、
6 廃プラスチック、
7 酸素(または空気)、水蒸気、
8 生成ガス化ガス、
9 熱回収後の生成ガス、
10 スラグタップ、
11 溶融スラグ、
12 熱電対。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for gasifying waste plastics containing chlorine.
[0002]
[Prior art]
In recent years, recycling of waste plastic has been promoted due to a demand for resource recycling, but at present, there are still many that have been disposed of or simply burnt. Recently, waste plastic has been blown into the tuyere of a blast furnace and used as a reducing agent for iron ore, or added to a coke oven for treatment. Must be removed in advance because chlorine gas is generated from it and may corrode equipment and piping. As a method for producing a fuel gas without removing chlorine, Japanese Patent Application Laid-Open No. H11-216445 discloses a method for gasifying waste plastic. This publication discloses a process in which a gas cooling device is installed at a stage subsequent to a gasification furnace for an airflow layer, and after recovering solid content contained in gas, recovering chlorine content contained in waste plastic as hydrochloric acid. I have.
[0003]
[Problems to be solved by the invention]
However, in the method disclosed in Japanese Patent Application Laid-Open No. 11-216445, it is necessary to raise the temperature of the gasification furnace to 1300 ° C. or higher, and there is a problem that the gasification is not completely performed below the temperature. If the gasification is not completely performed at a temperature lower than 1300 ° C., hydrocarbon components derived from waste plastic remain in the gas, and there is a possibility that dioxin may be resynthesized in the cooling process, which poses a problem.
[0004]
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a stable waste plastic gasifier operating method.
[0005]
[Means for Solving the Problems]
The waste plastic gasifier and method of the present invention that has solved the above-mentioned problems have the following features.
[0006]
(1) A method for gasifying waste plastic containing chlorine, wherein the partial oxidation temperature is 1100 ° C. or higher and the gas residence time in the gasification furnace is 2 seconds or longer.
[0007]
(2) The method for gasifying waste plastic according to the method according to (1), wherein heat is recovered from the generated gas.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
When a waste plastic containing chlorine is burned or gasified at a high temperature, carbon, hydrogen, chlorine and the like contained in the waste plastic are separated, and CO, CO 2 , H 2 , H 2 O, HCl and the like are generated. Gasification of waste plastics occurs when the amount of oxygen that reacts with carbon, hydrogen, etc. contained in the waste plastics is less than an equivalent, and is referred to as a partial oxidation reaction.
[0009]
In general, in waste incinerators and the like, the exhaust gas at the outlet of the incinerator is at a high temperature of 800 to 900 ° C., and together with a large amount of fly ash (dust), dioxin precursor and chlorine, which are aromatic chlorine compounds that cause dioxin resynthesis, Contains acidic substances such as hydrochloric acid.
[0010]
In the process of cooling such a gas, dioxin is resynthesized. This reaction is complex and diverse, but at present it is said that the following two reactions are mainly involved.
[0011]
i) In a temperature range of 250 to 400 ° C., a large amount of fly ash or a metal chloride such as CuCl 2 contained in the fly ash is used as a catalyst from linear hydrocarbons remaining after incomplete combustion, and chlorine is applied on the surface thereof. A dioxin precursor such as chlorophenol or chlorobenzene is generated to synthesize dioxin. This reaction is said to take place at a high speed (several seconds to several tens of seconds). To prevent resynthesis by this mechanism, the high temperature exhaust gas is rapidly cooled by removing the precipitation site and the chlorination catalyst, and It is important to pass through the generation temperature range in a short time.
[0012]
ii) When unburned carbon, air, moisture, inorganic chlorine, and the like coexist in the temperature range of 250 to 350 ° C., dioxin is generated via solid-gas or solid-solid reaction with unburned carbon particle surfaces as deposition sites. You. This reaction is called de novo synthesis in the sense that it is synthesized from substances that are chemically structurally related. Also in this case, the metal chloride such as CuCl 2 deposited on the fly ash surface acts as a synthesis reaction promoting catalyst. In this reaction, the synthesis rate is orders of magnitude slower than in i), but since particulate matter such as fly ash acts as a reaction accelerating site, the fly ash with unburned carbon is relatively low in temperature. Since it is assumed that the residence time in the above-mentioned precipitation temperature range is longer than in the case of i), it is said that the main component of the resynthesized dioxin in the exhaust gas treatment step.
[0013]
Therefore, the exhaust gas from the incinerator has conventionally been required to be rapidly cooled to about 200 ° C., and thus is wastefully discarded without heat recovery. Therefore, when gasifying waste plastics, it is possible to prevent the resynthesis of dioxin without rapidly cooling the gasified gas by decomposing and removing the hydrocarbons that are the precursors of dioxin in the gasifier. It becomes possible. Further, since no oxygen gas is usually present in the gasification gas, no de novo synthesis reaction occurs. For this reason, at the time of gasification of waste plastics, if operating under conditions that can decompose and remove hydrocarbon components, the above problem does not occur, but it is necessary to increase the temperature conditions, and as the gasification temperature increases, The amount of oxygen required for gasification increases, and as a result, the amount of carbon dioxide in the product gas increases, and the calorific value of the product gas decreases. Therefore, as the gasification reaction conditions, there have been demands for conditions capable of decomposing and removing hydrocarbon components and reducing the amount of carbon dioxide in the product gas at lower temperature conditions.
[0014]
The present inventors have focused on the fact that in order to decompose hydrocarbon components at lower temperatures to such an extent that dioxin generation does not become a problem, it is necessary to increase the residence time in the gasification furnace, and specifically, It has been found that if the gasification furnace temperature is 1100 ° C. or higher and the gas residence time in the gasification furnace is 2 seconds or longer, the hydrocarbons in the gas generated from the gasification furnace can be completely decomposed. In the method of the present invention, it is not necessary to rapidly cool the produced gas, so that it is possible to recover sensible heat and to obtain a gas having a high calorific value by reducing the amount of carbon dioxide.
[0015]
If the temperature is lower than 1100 ° C., the hydrocarbon component generated from the plastic particles cannot be completely decomposed. At a temperature of 1100 ° C., a residence time of 2 seconds or more is required. Further, when the residence time in the gasifier is 2 seconds or longer, the upper limit of the gasifier temperature is not particularly specified, but when the residence time is 1300 ° C or higher, the effect of the residence time is reduced, and the calorific value is also reduced. Since it tends to be disadvantageous, the temperature is preferably lower than 1300 ° C. Further, the residence time is not particularly limited as long as it is 2 seconds or more.
[0016]
For example, in order to lower the temperature of the gasifier to 1100 ° C, it is only necessary to reduce the amount of oxygen, air, etc. supplied to the gasifier, thereby reducing the carbon dioxide in the product gas. Thus, the calorific value of the generated gas can be increased. In other words, lowering the temperature of the gasification furnace can reduce the amount of expensive oxygen used, and further increase the heat generation, thereby making an economic contribution.
[0017]
Here, the gas residence time in the gasifier is calculated from the gas flow rate at the gasifier outlet, the gasifier volume, the gasifier temperature, and the gasifier pressure. It is a numerical value divided by the gas flow rate. Therefore, in order to set the gas residence time in the gasification furnace to 2 seconds or more, these conditions may be appropriately set.
[0018]
As a method for recovering heat from the gasification product gas, a heat exchanger or the like generally used in a chemical plant or the like can be used, but is not particularly limited.
[0019]
Next, the method of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an apparatus for implementing the method of the present invention. The waste plastic 6 is supplied from the gasification burner 5 to the gasification furnace 1. Normally, waste plastics are in the form of particles. At the tip of the gasification burner 5, oxygen (or air) and water vapor 7 are mixed to cause a gasification reaction. The temperature of the gasifier 1 is measured by a thermocouple 12 installed in the gasifier 1. The ash contained in the waste plastic particles 6 is melted in the gasification furnace 1, and the molten slag 11 is discharged from the gasification furnace 1 through a slag tap 10 provided at the lower part of the gasification furnace 1 and rapidly cooled in the water tank 4. . The generated gasification gas 8 is sent to the heat recovery unit 3 after exiting from the generation gas outlet 2, and the sensible heat in the generation gasification gas 8 is recovered. The generated gas 9 after heat recovery is discharged from the heat recovery unit 3. You. The outlet temperature of the heat recovery unit is desirably 100 ° C. or higher to prevent condensation of moisture.
[0020]
Waste plastic in the present invention is a general term for plastics generated as general waste and industrial waste. Further, it refers to a plastic resin containing 70% by mass or more of volatile matter by industrial analysis.
Further, the chlorine content of the waste plastic containing chlorine means that it is contained at least, and is not particularly specified.
[0021]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0022]
Example An example according to the present invention will be described for the case where waste plastic is treated at 5 ton / d. Waste plastic having a composition containing 72% by mass of carbon, 10% by mass of hydrogen, 9.7% by mass of oxygen, 2.5% by mass of chlorine and 5% by mass of ash is pulverized to an equivalent diameter of 6 mm or less, and nitrogen gas 100Nm It was conveyed at 3 / h, and was supplied to the gasification furnace 1 from the gas burner 5 as shown in FIG. The gasification furnace 1 was operated at a temperature of 1200 ° C., a gasification furnace internal pressure of 0.1 MPaG, an oxygen supply amount of 180 Nm 3 / h, and a gasification furnace input steam amount of 60 kg / h. As a result, the composition of the generated gas was 30% by volume of CO, 8.7% by volume of CO2, 25% by volume of hydrogen, 21.5% by volume of steam, 15% by volume of nitrogen, and 0.5% by volume of hydrogen chloride. The amount of gas generated at the gasification furnace outlet 2 is 675 Nm 3 / h, and the gas residence time in the gasification furnace calculated from the gasification furnace volume of 1.3 m 3 is 2.6 sec. The calorific value of the generated gas at this time was 8.2 MJ / Nm 3 -dry, and a generated gas having a high calorific value could be obtained. From this gas, heat was recovered by the heat recovery unit 3 and the gas was cooled to about 200 ° C. by a boiler to recover sensible heat. At this time, the concentration of methane in the generated gas was 0.01% by volume, and the concentration of dioxins in the generated gas was 0.002 ng-TEQ / m 3 or less, which was sufficiently low.
[0023]
【The invention's effect】
The gasification method of waste plastic according to the present invention enables a gasification operation at a lower temperature, and it is possible to obtain a gas having a higher calorific value. Further, the amount of oxygen used for gasification can be reduced, and heat can be recovered from gas generated from the gasification furnace, so that highly efficient operation is possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a waste plastic gasifier of the present invention.
[Explanation of symbols]
1 gasifier,
2 Product gas outlet,
3 heat recovery unit,
4 aquarium,
5 gasification burners,
6 Waste plastic,
7 oxygen (or air), water vapor,
8 generated gasification gas,
9 generated gas after heat recovery,
10 slug taps,
11 molten slag,
12 Thermocouple.

Claims (2)

塩素を含む廃プラスチックをガス化する方法において、部分酸化温度を1100℃以上として、さらにガス化炉内ガス滞留時間を2秒以上とすることを特徴とする廃プラスチックのガス化方法A method for gasifying waste plastics containing chlorine, wherein the partial oxidation temperature is set to 1100 ° C. or higher, and the gas residence time in the gasification furnace is set to 2 seconds or longer. 請求項1記載の方法において、発生したガスからの熱回収を行うことを特徴とする廃プラスチックのガス化方法2. The method according to claim 1, wherein heat is recovered from the generated gas.
JP2002195628A 2002-07-04 2002-07-04 Waste plastic gasification method Expired - Fee Related JP3980426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195628A JP3980426B2 (en) 2002-07-04 2002-07-04 Waste plastic gasification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195628A JP3980426B2 (en) 2002-07-04 2002-07-04 Waste plastic gasification method

Publications (2)

Publication Number Publication Date
JP2004035749A true JP2004035749A (en) 2004-02-05
JP3980426B2 JP3980426B2 (en) 2007-09-26

Family

ID=31703947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195628A Expired - Fee Related JP3980426B2 (en) 2002-07-04 2002-07-04 Waste plastic gasification method

Country Status (1)

Country Link
JP (1) JP3980426B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286436B2 (en) 2019-02-04 2022-03-29 Eastman Chemical Company Feed location for gasification of plastics and solid fossil fuels
US11447576B2 (en) 2019-02-04 2022-09-20 Eastman Chemical Company Cellulose ester compositions derived from recycled plastic content syngas
US11939406B2 (en) 2019-03-29 2024-03-26 Eastman Chemical Company Polymers, articles, and chemicals made from densified textile derived syngas

Also Published As

Publication number Publication date
JP3980426B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
CA2424805C (en) Two-stage plasma process for converting waste into fuel gas and apparatus therefor
JP2007039613A (en) Method and apparatus for purifying gasified gas
KR20090101382A (en) Method and installation for generating electric energy in a gas/steam turbine power plant
US6021723A (en) Hazardous waste treatment method and apparatus
JP2003336079A (en) Method for reforming thermally cracked gas
JP3980426B2 (en) Waste plastic gasification method
JP2004002587A (en) Ecofriendry method for recycling refuse
JP2004277647A (en) Process for gasification of waste product and installation therefor
JP2006097918A (en) Combustion furnace and waste treatment facility
JP2005249310A (en) Waste melting and treating method using lumpy biomass
KR100259970B1 (en) Scrap melting method
JP2004077118A (en) Operation method of waste gasifying melting furnace
JP2003049178A (en) Plasma melting furnace
JP4173041B2 (en) Waste plastic gasification apparatus and method
JP2003262319A (en) Gasification melting system and gasification melting method
JP2006112715A (en) Operation method of waste melting gasifying furnace
JPH11257628A (en) Furnace for gasification-melting of waste and method therefor
JPH10281437A (en) Method and apparatus for treating chlorine-containing plastic
JP2002371307A (en) Method for recycling organic or hydrocarbon waste, and blast furnace facility suitable for recycling
JP2008106117A (en) Operation control method for gasification reforming facility
JP2009298909A (en) Utilizing method of pyrolysis char as carbonaceous material for sintering
NL1006379C2 (en) Method for cooling polluted gas.
JP2007021451A (en) Thermal decomposition method for combustible waste
JP3980427B2 (en) Waste plastic gasification gas cooling method and apparatus
JP5569666B2 (en) Fuel gas reforming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees