JP2007021451A - Thermal decomposition method for combustible waste - Google Patents

Thermal decomposition method for combustible waste Download PDF

Info

Publication number
JP2007021451A
JP2007021451A JP2005210979A JP2005210979A JP2007021451A JP 2007021451 A JP2007021451 A JP 2007021451A JP 2005210979 A JP2005210979 A JP 2005210979A JP 2005210979 A JP2005210979 A JP 2005210979A JP 2007021451 A JP2007021451 A JP 2007021451A
Authority
JP
Japan
Prior art keywords
metal
gas
pyrolysis
thermal decomposition
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005210979A
Other languages
Japanese (ja)
Inventor
Hideo Nishimura
秀生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005210979A priority Critical patent/JP2007021451A/en
Publication of JP2007021451A publication Critical patent/JP2007021451A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for thermal decomposition without enlarging the facility scale even in the case of thermal decomposition of combustible wastes, which cause endothermal reaction at the time of thermal decomposition reaction, with an external heating type thermal decomposition furnace, unlike conventional methods difficult to carry out thermal decomposition in that way. <P>SOLUTION: The thermal decomposition method for combustible wastes is for thermally decomposing combustible wastes in an external heating type thermal decomposition furnace and producing a thermal decomposition gas and thermal decomposition char. In the method, a metal or a metal compound causing exothermal reaction with at least one of gases selected from carbon dioxide, steam, and hydrogen is supplied to the external heating type thermal decomposition furnace and reaction of the metal or the metal compound with at least one of gases selected from carbon dioxide, steam, and hydrogen existing in the thermal decomposition gas is caused to utilize the generated reaction heat as an auxiliary heat source at the time of thermal decomposition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は可燃性廃棄物を燃料や原料として有効利用するための熱分解処理方法に関するものである。特に、熱分解に外熱式熱分解炉を用いる熱分解処理方法に関するものである。   The present invention relates to a thermal decomposition treatment method for effectively using combustible waste as fuel or raw material. In particular, the present invention relates to a thermal decomposition method using an external heat type thermal decomposition furnace for thermal decomposition.

産業廃プラ系や一般廃プラ系の可燃性廃棄物処理は、従来、単純焼却や埋立てが中心であったが、循環型社会促進が近年の大きな社会的課題となっており、これら廃プラ系の可燃性廃棄物の有効利用が可能な廃棄物処理技術が求められている。   Conventionally, combustible waste treatment of industrial waste plastic and general waste plastic has mainly focused on simple incineration and landfill, but the promotion of a recycling-oriented society has become a major social issue in recent years. There is a need for waste treatment technology that enables effective use of combustible wastes.

廃プラ系の可燃性廃棄物の有効利用を目的とした廃棄物処理方法としては、例えば、非特許文献1に記載されているように、可燃性廃棄物を熱分解炉で熱分解処理して廃棄物中の揮発分を熱分解ガスとした後、熱分解ガスを改質炉内に導入し、改質炉内で1000〜1200℃程度の高温雰囲気下で熱分解ガス中に含まれる高分子量の有機化合物であるタール成分を部分燃焼反応および水蒸気改質反応させてCO、H、C数1〜4程度の炭化水素等からなる低分子量の改質ガスに変換し、改質ガスを冷却、精製して精製ガスを製造する廃棄物ガス変換法が開発されている。 For example, as described in Non-Patent Document 1, as a waste disposal method for the purpose of effectively using waste plastic flammable waste, a flammable waste is pyrolyzed in a pyrolysis furnace. After making the volatile matter in the waste into pyrolysis gas, the pyrolysis gas is introduced into the reforming furnace, and the high molecular weight contained in the pyrolysis gas in a high temperature atmosphere of about 1000 to 1200 ° C. in the reforming furnace. The tar component, which is an organic compound, is subjected to partial combustion reaction and steam reforming reaction to convert it into low molecular weight reformed gas composed of CO, H 2 , hydrocarbons having about 1 to 4 carbon atoms, etc., and cooling the reformed gas Waste gas conversion methods that produce purified gas by purification have been developed.

また、例えば、非特許文献2〜3に記載されているように、可燃性廃棄物を熱分解炉で加熱して熱分解ガスと熱分解残渣とを発生させた後、熱分解ガスを後段で冷却して可燃性ガス成分とタール成分とを分離し、可燃性ガス成分は燃料ガスや化学原料ガスとして利用し、タール成分は燃料油等として利用し、熱分解残渣は炭素質燃料や金属原料等として利用する廃棄物熱分解法が提案されている。   In addition, for example, as described in Non-Patent Documents 2 to 3, after combustible waste is heated in a pyrolysis furnace to generate pyrolysis gas and pyrolysis residue, the pyrolysis gas is added at a later stage. Cool to separate the combustible gas component from the tar component, the combustible gas component is used as fuel gas or chemical raw material gas, the tar component is used as fuel oil, etc., and the pyrolysis residue is carbonaceous fuel or metal raw material A waste pyrolysis method has been proposed to be used as such.

これら廃棄物ガス変換法や廃棄物熱分解法における熱分解炉の方式としては、ロータリーキルン熱分解炉に代表される外熱式熱分解炉、流動床熱分解炉や移動床熱分解炉等に代表される部分燃焼式熱分解炉が挙げられるが、外熱式熱分解炉は、部分燃焼空気や流動化ガスによる熱分解ガスカロリー低下がなく、設備が簡便で安定運転し易い等の特長があることから広く用いられている。   The pyrolysis furnaces used in these waste gas conversion methods and waste pyrolysis methods are represented by external thermal pyrolysis furnaces such as rotary kiln pyrolysis furnaces, fluidized bed pyrolysis furnaces, and moving bed pyrolysis furnaces. However, the externally-heated pyrolysis furnace has the features that the pyrolysis gas calories are not reduced by the partially-combusted air and fluidized gas, and the equipment is simple and easy to operate stably. It is widely used.

「自動車研究」第23巻、第12号、P668−673(2001)、670頁、図1“Car Research” Vol. 23, No. 12, P668-673 (2001), p. 670, FIG. 「日本ゴム協会誌」第59巻、第10号、P565−567(1986)、565頁、図1“The Journal of Japan Rubber Association” Vol. 59, No. 10, P565-567 (1986), p. 565, FIG. 「リサイクル技術研究発表会講演論文集」6th、P89−92(1998)、92頁、図4“Recycling Technology Research Presentation Papers” 6th, P89-92 (1998), p. 92, FIG. 「京都大学院工学研究科1986年博士論文」請求記号新制工664、登録番号9487、81頁"Kyoto Graduate School of Engineering Doctoral Dissertation in 1986" Request Code New System 664, Registration No. 9487, p. 81 「(社)日本鉄鋼協会白石記念講座」P85〜P99、94頁4行目(1999)"Shiroishi Memorial Lecture, Japan Iron and Steel Institute" P85-P99, page 94, line 4 (1999) 「Technical Information Center講習会テキスト 廃プラスチックの脱塩素処理とリサイクル技術」P25〜P35、31頁8行目(2001年3月30日開催)"Technical Information Center Workshop Text Dechlorination and Recycling Technology for Waste Plastic" P25-P35, page 31, line 8 (held on March 30, 2001) 「日本化学会編 化学便覧改訂第4版基礎編I」I−132−16及びI−133−20"The Chemical Society of Japan, Chemistry Handbook Revised 4th Edition Fundamentals I" I-132-16 and I-133-20 「まてりあ」第39巻、第4号、365頁(2000)"Materia" Vol. 39, No. 4, pp. 365 (2000)

しかしながら、ロータリーキルン熱分解炉に代表される外熱式熱分解炉による熱分解方法の抱える課題として、ポリエチレンなどのような熱分解時の吸熱量が大きな化合物を主要成分とする可燃性廃棄物を熱分解する場合、熱分解炉の処理能力が低下する点があげられる。   However, one of the challenges of the pyrolysis method using an external heat pyrolysis furnace represented by a rotary kiln pyrolysis furnace is that combustible waste such as polyethylene, which has a large endotherm during pyrolysis, is used as a main component. When decomposing, the treatment capacity of the pyrolysis furnace is lowered.

処理能力維持のためには、熱分解炉内への投入熱量増加が必要であるが、伝熱性確保のために、通常、外熱式熱分解炉の材質は金属製であるため、機械強度上の問題やHCl等による高温腐食問題から、外熱温度上昇によって投入熱量を増やすことは困難である。このため、従来技術では、外熱式熱分解炉への投入熱量を増やすためには、炉内の加熱面積を大きくする必要があり、熱分解炉の大型化や基数アップ等の設備規模増大を招くことになる。   In order to maintain the processing capacity, it is necessary to increase the amount of heat input into the pyrolysis furnace. However, in order to ensure heat transfer, the external heat pyrolysis furnace is usually made of metal, which increases the mechanical strength. It is difficult to increase the amount of heat input due to the rise in the external heat temperature due to the above problem and the high temperature corrosion problem due to HCl or the like. For this reason, in the prior art, in order to increase the amount of heat input to the external heating type pyrolysis furnace, it is necessary to increase the heating area in the furnace, and increase the scale of the pyrolysis furnace, increase the number of facilities, etc. Will be invited.

そこで、本発明は、熱分解反応時に吸熱反応を生じる可燃性廃棄物を外熱式熱分解炉で熱分解する場合でも、設備規模を大型化させずに熱分解処理するための方法を提供することを目的とする。   Therefore, the present invention provides a method for pyrolyzing a combustible waste that generates an endothermic reaction during a pyrolysis reaction without increasing the scale of the equipment even when pyrolyzing the combustible waste in an external thermal pyrolysis furnace. For the purpose.

係る課題を解決するため、本発明の要旨とするところは、以下(1)〜(8)に示す通りである。   In order to solve the problem, the gist of the present invention is as follows (1) to (8).

(1)可燃性廃棄物を外熱式熱分解炉で熱分解して熱分解ガスと熱分解チャーを生成する可燃性廃棄物の熱分解処理方法において、二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスと発熱反応を生じる金属又は金属化合物を、前記外熱式熱分解炉内に供給し、当該炉内で前記金属又は金属化合物と前記熱分解ガス中に存在する二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスとを反応させ、発生した反応熱を前記熱分解時の補助熱源として利用することを特徴とする可燃性廃棄物の熱分解処理方法。   (1) In a method for thermally decomposing flammable waste by thermally decomposing flammable waste in an external thermal pyrolysis furnace to generate pyrolysis gas and pyrolysis char, at least one of carbon dioxide, water vapor, and hydrogen A metal or a metal compound that causes an exothermic reaction with the gas is supplied into the external heat type pyrolysis furnace, and carbon dioxide, water vapor, or water present in the metal or metal compound and the pyrolysis gas in the furnace, or A method for pyrolyzing flammable waste, comprising reacting at least one of hydrogen gas and using the generated reaction heat as an auxiliary heat source during the pyrolysis.

(2)前記可燃性廃棄物が、熱分解時に吸熱反応を生じる可燃性廃棄物であることを特徴とする前記(1)記載の可燃性廃棄物の熱分解処理方法。   (2) The method for thermal decomposition treatment of combustible waste according to (1), wherein the combustible waste is a combustible waste that generates an endothermic reaction during thermal decomposition.

(3)前記外熱式熱分解炉内に、更に、二酸化炭素、水蒸気、及び水素の少なくともいずれか一種類のガスを供給することを特徴とする前記(1)又は(2)記載の可燃性廃棄物の熱分解処理方法。   (3) The combustibility as described in (1) or (2) above, wherein at least one of carbon dioxide, water vapor, and hydrogen is further supplied into the external heat pyrolysis furnace. Waste pyrolysis method.

(4)前記二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスと前記金属又は金属化合物との発熱反応が、前記熱分解時の前記炉内の最大温度以下において不可逆反応であることを特徴とする前記(1)〜(3)のいずれかに記載の可燃性廃棄物の熱分解処理方法。   (4) The exothermic reaction between at least one of the carbon dioxide, water vapor, or hydrogen gas and the metal or metal compound is an irreversible reaction below a maximum temperature in the furnace during the thermal decomposition. The method for thermally decomposing flammable waste according to any one of (1) to (3).

(5)前記金属又は金属化合物が、金属カルシウム、金属リチウム、金属チタン、酸化カルシウム、酸化リチウムのうちの1種又は2種以上であることを特徴とする前記(1)〜(4)のいずれかに記載の可燃性廃棄物の熱解処理方法。   (5) Any of the above (1) to (4), wherein the metal or metal compound is one or more of metal calcium, metal lithium, metal titanium, calcium oxide, and lithium oxide A method for thermal treatment of flammable waste according to any one of the above.

(6)前記金属又は金属化合物が、粒径0.1〜5cmの粒状であることを特徴とする前記(1)〜(5)のいずれかに記載の可燃性廃棄物の熱分解処理方法。   (6) The method for thermally decomposing flammable waste according to any one of (1) to (5), wherein the metal or metal compound has a particle size of 0.1 to 5 cm.

(7)前記生成した熱分解ガスに、酸素含有ガス及び水蒸気を供給して前記熱分解ガスと反応させ、一酸化炭素、水素、二酸化炭素、水蒸気を主成分とする改質ガスを生成し、当該改質ガスの顕熱を用いて、前記金属又は金属化合物と二酸化炭素、水蒸気、水素の少なくともいずれかのガスとの反応により生成する反応生成物を加熱して、元の金属又は金属化合物に再生することを特徴とする前記(1)〜(6)のいずれかに記載の可燃性廃棄物の熱分解処理方法。   (7) An oxygen-containing gas and water vapor are supplied to the generated pyrolysis gas to react with the pyrolysis gas to produce a reformed gas mainly composed of carbon monoxide, hydrogen, carbon dioxide, and water vapor, Using the sensible heat of the reformed gas, the reaction product produced by the reaction of the metal or metal compound and at least one of carbon dioxide, water vapor, and hydrogen gas is heated to obtain the original metal or metal compound. The method for pyrolyzing flammable waste according to any one of (1) to (6), wherein the method is regenerated.

(8)前記生成した熱分解チャーに、酸素含有ガスを供給して前記熱分解チャーと反応させ、一酸化炭素、水素、二酸化炭素、又は水蒸気を主成分とするガス化ガス、及びスラグを生成し、当該ガス化ガスの顕熱を用いて、前記固体の金属又は金属化合物と二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスとの反応により生成する反応生成物を加熱して、元の金属又は金属化合物に再生することを特徴とする前記(1)〜(7)のいずれかに記載の可燃性廃棄物の熱分解処理方法。   (8) Oxygen-containing gas is supplied to the generated pyrolysis char and reacted with the pyrolysis char to generate gasified gas mainly containing carbon monoxide, hydrogen, carbon dioxide, or water vapor, and slag. Then, using the sensible heat of the gasified gas, the reaction product produced by the reaction of the solid metal or metal compound and at least one of carbon dioxide, water vapor, or hydrogen gas is heated, The method for pyrolyzing flammable waste according to any one of (1) to (7), wherein the method is regenerated into a metal or a metal compound.

本発明により、熱分解反応時に吸熱反応を生じる可燃性廃棄物を外熱式熱分解炉で熱分解する場合でも、設備規模を大型化させずに処理することが可能となる。   According to the present invention, even when combustible waste that undergoes an endothermic reaction during a pyrolysis reaction is pyrolyzed in an external heating type pyrolysis furnace, it is possible to treat it without increasing the equipment scale.

本発明者は、金属又は金属化合物の種類を選定すれば、廃棄物の熱分解温度条件下で二酸化炭素、水蒸気、水素の少なくともいずれか一種類のガスと発熱反応を生じるものがあることに着眼し、外熱式の熱分解炉内で金属又は金属化合物とこれらガス種を反応させて反応熱を発生させ、それにより発生ガスを昇温し、その顕熱を可燃性廃棄物の加熱に利用する本方法を発明した。   The present inventor notices that, if the type of metal or metal compound is selected, there are those that generate an exothermic reaction with at least one of carbon dioxide, water vapor, and hydrogen under the thermal decomposition temperature conditions of waste. In the external heating type pyrolysis furnace, metal or metal compound reacts with these gas species to generate reaction heat, thereby raising the temperature of the generated gas and using the sensible heat to heat combustible waste. Invented this method.

図1は、本発明の可燃性廃棄物の熱分解処理方法を実施するためのプロセスの一例を示すブロック図である。以下に、図1に基づいて本発明の第一の実施形態の一例を示す。   FIG. 1 is a block diagram showing an example of a process for carrying out the thermal decomposition method for combustible waste according to the present invention. An example of the first embodiment of the present invention is shown below based on FIG.

可燃性廃棄物1を、廃棄物供給装置2を用いて外熱式の熱分解炉3(図ではロータリーキルン)内に供給し、二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスと発熱反応を生じる金属又は金属化合物7を、金属又は金属化合物供給装置8を用いて熱分解炉3内に供給する。   The combustible waste 1 is supplied into an externally-heated pyrolysis furnace 3 (rotary kiln in the figure) using the waste supply device 2, and an exothermic reaction with at least one of carbon dioxide, water vapor, and hydrogen is performed. The resulting metal or metal compound 7 is supplied into the pyrolysis furnace 3 using a metal or metal compound supply device 8.

熱分解炉3は加熱炉4によって間接加熱され、可燃性廃棄物は熱分解炉内で空気を断った雰囲気下(不可避的侵入空気を除く)で、常温から熱分解温度まで昇温され、乾燥及び熱分解されて、熱分解ガス5と残渣6を生成する。   The pyrolysis furnace 3 is indirectly heated by the heating furnace 4, and the combustible waste is heated from room temperature to the pyrolysis temperature in an atmosphere where air is cut off in the pyrolysis furnace (excluding inevitable intrusion air) and dried. And pyrolysis to produce pyrolysis gas 5 and residue 6.

金属又は金属化合物は、熱分解炉内で二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスと発熱反応を起こし、発生したガスの顕熱を熱分解炉3内での熱分解の補助熱源として利用する。即ち、可燃性廃棄物の加熱の補助として用いる。   The metal or metal compound causes an exothermic reaction with at least one of carbon dioxide, water vapor, and hydrogen in the pyrolysis furnace, and the sensible heat of the generated gas is used as an auxiliary heat source for pyrolysis in the pyrolysis furnace 3. Use. That is, it is used as an aid for heating combustible waste.

発熱反応を起こすガス種である二酸化炭素、水蒸気、水素は、可燃性廃棄物の乾燥及び熱分解時に発生する熱分解ガス中に存在する当該ガスを用いるか、あるいは反応ガス供給装置10を用いて熱分解炉3内に追加導入する。   Carbon dioxide, water vapor, and hydrogen, which are gas species that cause an exothermic reaction, use the gas present in the pyrolysis gas generated during drying and pyrolysis of the combustible waste, or use the reaction gas supply device 10. Additional introduction into the pyrolysis furnace 3 is performed.

可燃性廃棄物の熱分解温度は廃棄物の種類によって異なるが、一般的に400〜600℃程度である。   The thermal decomposition temperature of combustible waste varies depending on the type of waste, but is generally about 400 to 600 ° C.

金属又は金属化合物7の種類は、二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスと熱分解が完了する温度まで発熱反応を生じるものであれば特に限定するところはないが、発熱反応が熱分解時の熱分解炉内の最大温度(外熱式熱分解炉の加熱温度に略等しい)以下において不可逆性反応となる金属又は金属化合物を用いることが、熱分解炉操業が容易となるためより好ましい。   The type of the metal or metal compound 7 is not particularly limited as long as it causes an exothermic reaction up to a temperature at which thermal decomposition is completed with at least one of carbon dioxide, water vapor, and hydrogen. Use of a metal or metal compound that causes an irreversible reaction below the maximum temperature in the pyrolysis furnace during decomposition (approximately equal to the heating temperature of the external heating pyrolysis furnace) makes it easier to operate the pyrolysis furnace. preferable.

言い換えれば、熱分解炉内において、出発物である金属又は金属化合物に戻って吸熱反応を起こさないことが好ましい。   In other words, it is preferable not to cause an endothermic reaction by returning to the starting metal or metal compound in the pyrolysis furnace.

即ち、可燃性廃棄物の熱分解速度は加熱温度と反応時間に依存し、操業条件に応じて熱分解完了時点での炉内雰囲気温度が異なるため、熱分解時の熱分解炉内の最大温度以下で不可逆反応を生じる金属又は金属化合物を選定しておけば、操業制約条件が少なくなり操業がより容易となる。   That is, the pyrolysis rate of combustible waste depends on the heating temperature and reaction time, and the furnace temperature at the time of completion of pyrolysis differs depending on the operating conditions, so the maximum temperature in the pyrolysis furnace during pyrolysis is If a metal or a metal compound that causes an irreversible reaction is selected below, the operation constraint condition is reduced and the operation becomes easier.

なお、炉内において固着や融着のトラブルを防止するため、上記の金属又は金属化合物は固体(粒状、粉状を含む)であることが好ましい。   In addition, in order to prevent the trouble of adhesion | attachment and a fusion | melting in a furnace, it is preferable that said metal or metal compound is solid (a granular form and a powder form are included).

二酸化炭素と発熱反応を生じる金属又は金属化合物の例としては、それぞれ、反応式:CaO+CO→CaCO+180kJ/mol、LiO+CO→LiCO+222kJ/molで表される酸化カルシウム、酸化リチウムなどが挙げられる。 Examples of metals or metal compounds that cause an exothermic reaction with carbon dioxide include calcium oxide and oxidation represented by reaction formulas: CaO + CO 2 → CaCO 3 +180 kJ / mol, Li 2 O + CO 2 → Li 2 CO 3 +222 kJ / mol, respectively. Examples include lithium.

金属化合物1kg当たりに換算した発生熱量は、CaOの場合(分子量56.7)で3MJ/kg、LiOの場合(分子量40.9)で5MJ/kgとなり、一方、生産量が多く、一般廃プラの主要成分でもあるポリエチレンを熱分解する場合の吸熱量は、非特許文献4等に記載されているように、1MJ/kg程度であることから、二酸化炭素と金属化合物との化学反応によって生じる発熱量は、ポリエチレン熱分解時の吸熱量を補うのに有意な熱量に相当する。 The amount of heat generated per kg of metal compound is 3 MJ / kg for CaO (molecular weight 56.7) and 5 MJ / kg for LiO 2 (molecular weight 40.9). The amount of heat absorbed when thermally decomposing polyethylene, which is the main component of plastic, is about 1 MJ / kg as described in Non-Patent Document 4 and the like, and is generated by a chemical reaction between carbon dioxide and a metal compound. The calorific value corresponds to a significant calorific value to supplement the endothermic amount during polyethylene pyrolysis.

また、水蒸気ガスと発熱反応を生じる金属又は金属化合物の例としては、反応式:CaO+HO→Ca(OH)+63kJ/molで表される酸化カルシウムが挙げられる。金属化合物1kg当たりの発生熱量は、1MJ/kgであり、ポリエチレン熱分解時の吸熱量を補うのに有意な熱量に相当する。 Examples of the metal or metal compound that causes an exothermic reaction with water vapor gas include calcium oxide represented by the reaction formula: CaO + H 2 O → Ca (OH) 2 +63 kJ / mol. The amount of heat generated per 1 kg of the metal compound is 1 MJ / kg, which corresponds to a significant amount of heat to supplement the endothermic amount during polyethylene pyrolysis.

また、水素ガスと発熱反応を生じる金属又は金属化合物の例としては、金属チタン、金属カルシウム、金属リチウム等が挙げられ、例えば、金属チタンの例では、反応式:Ti+H→TiH+142kJ/mol(金属1kg当たりの発生熱量は3MJ/kgであり)で表されて、ポリエチレン熱分解時の吸熱量を補うのに有意な熱量に相当する。 Examples of metals or metal compounds that cause an exothermic reaction with hydrogen gas include metal titanium, metal calcium, metal lithium, and the like. For example, in the case of metal titanium, the reaction formula: Ti + H 2 → TiH 2 +142 kJ / mol (The amount of heat generated per 1 kg of metal is 3 MJ / kg), which corresponds to a significant amount of heat to supplement the endothermic amount during polyethylene pyrolysis.

金属又は金属化合物7が反応した後に生じた金属化合物は、熱分解チャーと共に残渣6として熱分解炉3から排出される。反応後の金属又は金属化合物7は、工業原料として利用してもよいし、金属又は金属化合物に再生して熱分解炉3内で再度利用してもよい。   The metal compound generated after the reaction of the metal or metal compound 7 is discharged from the pyrolysis furnace 3 as a residue 6 together with the pyrolysis char. The metal or metal compound 7 after the reaction may be used as an industrial raw material, or may be regenerated into a metal or metal compound and reused in the pyrolysis furnace 3.

図1に示すプロセス例では、残渣6から熱分解チャー分離装置11によって熱分解チャー13を分離した後の反応後に生じた金属化合物14を再生装置12に装入して、元の金属又は金属化合物15に再生し、熱分解炉3へ供給する。   In the process example shown in FIG. 1, the metal compound 14 generated after the reaction after separating the pyrolysis char 13 from the residue 6 by the pyrolysis char separator 11 is charged into the regenerator 12, and the original metal or metal compound 15 is supplied to the pyrolysis furnace 3.

また、本発明の第二の実施形態は、前述の金属又は金属化合物の形状を粒状物とすることにより、金属又は金属化合物をプラスチックの塊状防止材として利用することを特徴とする。   In addition, the second embodiment of the present invention is characterized in that the metal or metal compound is used as a plastic block preventive material by making the shape of the metal or metal compound granular.

ポリエチレンやポリプロピレンを初めとしたプラスチック類の多くは、高温になると流動性を呈する熱可塑性プラスチックであるため、外熱式熱分解内で昇温される過程で溶融軟化して塊状物を形成し、外熱式熱分解炉内の伝熱阻害や閉塞トラブルに繋がり易いといった問題点がある。   Many of plastics such as polyethylene and polypropylene are thermoplastics that exhibit fluidity at high temperatures, so they melt and soften in the process of increasing the temperature in external heat pyrolysis to form a lump. There is a problem that it is easy to lead to heat transfer inhibition and blockage trouble in the external heat type pyrolysis furnace.

これを抑制する手段として、例えば、非特許文献5、6に記載されているように、非揮発性の炭化物や無機化合物から成る粒状物をプラスチックの塊状化防止材として外熱式熱分解炉内に新たに添加する方法が提案されているが、前記(6)に係る本発明は、金属又は金属化合物を粒状化することにより塊状化防止材代替としての機能を付加することが可能となる。   As a means for suppressing this, for example, as described in Non-Patent Documents 5 and 6, a granular material made of a non-volatile carbide or inorganic compound is used as an agglomeration preventing material for plastics in an external heating type pyrolysis furnace. Although a method of newly adding to a metal is proposed, the present invention according to the above (6) can add a function as an agglomeration preventing material substitute by granulating a metal or a metal compound.

金属又は金属化合物の粒度(粒径)は0.1〜5cmの範囲が好ましく、粒度5cm超では炉内での分散効率が低下して塊状化防止材としての機能を十分発揮しにくくなり、粒度0.1cm未満まで小さくすると、熱分解ガスと同伴して飛散しやすくなって残渣からの回収効率低下を招く。   The particle size (particle size) of the metal or metal compound is preferably in the range of 0.1 to 5 cm. If the particle size exceeds 5 cm, the dispersion efficiency in the furnace is lowered and the function as an agglomeration preventing material is not sufficiently exhibited. If it is made smaller than 0.1 cm, it is likely to be scattered together with the pyrolysis gas, and the recovery efficiency from the residue is reduced.

上記範囲の粒度とするには、篩い分けすることで可能となるが、粒度範囲内の市販の金属又は金属化合物を購入して使用することもできる。   In order to obtain a particle size in the above range, it is possible by sieving, but a commercially available metal or metal compound within the particle size range can also be purchased and used.

また、図2〜図3は、本発明の可燃性廃棄物の熱分解処理方法を実施するための別のプロセス例を示すブロック図である。   2 to 3 are block diagrams showing another process example for carrying out the method for thermally decomposing flammable waste according to the present invention.

図2に示すプロセス例では、熱分解炉3から発生した熱分解ガス5を後段に設けた改質炉16へ導入し、改質炉内で酸素含有ガスおよび水蒸気17と反応させて一酸化炭素、水素、二酸化炭素、水蒸気、低分子量炭化水素を主成分とし、その他少量成分(HCl等の廃棄物の種類により異なるガス)を含む改質ガス18に変換し、改質ガスを排熱回収装置19、ガス精製装置20を通過させてHCl等の有害ガス成分およびダスト類、ミスト類を除去し精製ガス21を得る。   In the process example shown in FIG. 2, the pyrolysis gas 5 generated from the pyrolysis furnace 3 is introduced into a reforming furnace 16 provided at a subsequent stage, and is reacted with oxygen-containing gas and water vapor 17 in the reforming furnace. , Converted to reformed gas 18 containing hydrogen, carbon dioxide, water vapor, low molecular weight hydrocarbons as main components and other minor components (gases that vary depending on the type of waste such as HCl), and the reformed gas is an exhaust heat recovery device 19. Pass through the gas purifier 20 to remove harmful gas components such as HCl, dusts, and mists to obtain a purified gas 21.

酸素含有ガスは、酸素濃度が高い方が、改質炉16へ導入するガス量が少なくて済み、改質ガス18の温度上昇に有利であるが、純酸素に近い高濃度の酸素は製造コストが高いので、吸着分離法や深冷分離法等の汎用法で製造可能な酸素含有ガス(80体積%濃度程度)を用いることが好ましい。酸素含有ガスと水蒸気の比率は、条件に応じて適宜設定すればよい。   An oxygen-containing gas having a higher oxygen concentration requires less gas to be introduced into the reforming furnace 16 and is advantageous for increasing the temperature of the reformed gas 18. However, a high concentration of oxygen close to pure oxygen is costly to produce. Therefore, it is preferable to use an oxygen-containing gas (about 80% by volume concentration) that can be produced by a general-purpose method such as an adsorption separation method or a cryogenic separation method. What is necessary is just to set suitably the ratio of oxygen-containing gas and water vapor | steam according to conditions.

図3に示すプロセス例では、熱分解チャー13をチャー供給装置22を用いてガス化炉23に吹込み、ガス化炉23内に酸素又は酸素富化空気24を吹込んで高温で部分燃焼させ、熱分解チャー中の可燃分を、一酸化炭素、水素、二酸化炭素、水蒸気を主成分とし、その他少量成分(廃棄物の種類により異なる)を含む低分子量のガス化ガス25に変換すると共に、熱分解チャー13中の灰分を溶融してスラグ26に変換する。   In the process example shown in FIG. 3, the pyrolysis char 13 is blown into the gasification furnace 23 using the char supply device 22, oxygen or oxygen-enriched air 24 is blown into the gasification furnace 23, and partial combustion is performed at a high temperature. The combustible component in the pyrolysis char is converted into a low molecular weight gasification gas 25 containing carbon monoxide, hydrogen, carbon dioxide, water vapor as the main component and other minor components (depending on the type of waste), The ash content in the decomposition char 13 is melted and converted to slag 26.

ガス化ガス25は熱回収装置27、ガス精製装置28を通過させて、有害ガス成分及びダスト類、ミスト類を除去し精製ガス29を得る。酸素富化空気24は、酸素濃度が高い方が、ガス化炉23へ吹き込むガス量が少なくて済み、ガス化ガス25の温度上昇に有利であるが、純酸素に近い高濃度の酸素は製造コストが高いので、吸着分離法や深冷分離法等の汎用法で製造可能な酸素富化空気24(80体積%濃度程度)を用いることが好ましい。   The gasified gas 25 is passed through a heat recovery device 27 and a gas purification device 28 to remove harmful gas components, dusts, and mists to obtain a purified gas 29. The oxygen-enriched air 24 is advantageous in that the higher the oxygen concentration, the smaller the amount of gas blown into the gasification furnace 23 and the higher the temperature of the gasification gas 25. However, high-concentration oxygen close to pure oxygen is produced. Since the cost is high, it is preferable to use oxygen-enriched air 24 (approximately 80% by volume concentration) that can be produced by a general-purpose method such as an adsorption separation method or a cryogenic separation method.

本発明の第三の実施形態は、二酸化炭素、水蒸気及び水素の少なくともいずれか一種類のガスと反応後の金属又は金属化合物を、前述の改質ガスやガス化ガスの顕熱を利用して、元の金属又は金属化合物に再生することを特徴とする。   In the third embodiment of the present invention, a metal or a metal compound after reaction with at least one of carbon dioxide, water vapor, and hydrogen is used, using the sensible heat of the above-described reformed gas or gasification gas. , Regenerated to the original metal or metal compound.

例えば、金属又は金属化合物として酸化カルシウムを用いた場合では、加熱再生に必要な温度は、非特許文献7等に記載されているように、Ca(OH)→CaO再生時で580℃以上、CaCO→CaO再生時で880℃以上であり、また、例えば、金属又は金属化合物として金属チタンを用いた場合では、加熱再生に必要な温度は、非特許文献8等に記載されているように、TiH→Ti再生時で700℃以上である。 For example, in the case where calcium oxide is used as the metal or metal compound, the temperature required for heating regeneration is 580 ° C. or higher during Ca (OH) 2 → CaO regeneration, as described in Non-Patent Document 7 and the like. When CaCO 3 → CaO is regenerated, the temperature is 880 ° C. or higher. For example, when metal titanium is used as the metal or metal compound, the temperature necessary for heat regeneration is as described in Non-Patent Document 8, etc. , TiH 2 → Ti regeneration is 700 ° C. or higher.

一方、改質炉の所要反応温度は1000〜1200℃程度、ガス化炉の所要反応温度は1300〜1500℃程度であることから、反応後の金属又は金属化合物の加熱再生に利用可能な温度ポテンシャルを有している。   On the other hand, since the required reaction temperature of the reforming furnace is about 1000 to 1200 ° C., and the required reaction temperature of the gasification furnace is about 1300 to 1500 ° C., a temperature potential that can be used for heating and regeneration of the metal or metal compound after the reaction. have.

なお、改質ガス顕熱やガス化ガス顕熱の加熱再生への利用方法には、特に限定するところはなく、改質炉やガス化炉から発生したガス顕熱を一旦熱交換する間接加熱方式や、改質炉やガス化炉から発生したガス顕熱を直接反応後の固体金属又は金属化合物と接触させる直接加熱方式など、一般的に用いられている熱交換方法が適用可能である。   In addition, there is no particular limitation on the method of using the reformed gas sensible heat or the gasified gas sensible heat for heating and regeneration, and indirect heating in which the gas sensible heat generated from the reforming furnace or the gasification furnace is temporarily exchanged. Commonly used heat exchange methods such as a method and a direct heating method in which gas sensible heat generated from a reforming furnace or gasification furnace is brought into contact with a solid metal or metal compound after direct reaction can be applied.

図4に示すプロセス例では、高温の改質ガス18で加熱再生装置12中の炭酸化合物又は炭酸化合物14を直接加熱して固体の金属又は金属化合物15に再生し、また、図5に示すプロセス例では、高温のガス化ガス25を一旦高温空気30に熱交換した後、炭酸化合物又は炭酸化合物14の固体の金属又は金属化合物15への再生熱に利用する。   In the process example shown in FIG. 4, the carbonic acid compound or carbonic acid compound 14 in the heating and regenerating apparatus 12 is directly heated with the high-temperature reformed gas 18 to regenerate the solid metal or metal compound 15, and the process shown in FIG. In the example, the high-temperature gasified gas 25 is once subjected to heat exchange with the high-temperature air 30, and then used for regeneration heat of the carbonate compound or the carbonate compound 14 to the solid metal or metal compound 15.

(実施例1)
図4に示すプロセス例を用い、ポリエチレンを主要成分する化学組成がC=70mass%、H=10mass%、O=10mass%、N=0.5mass%、Cl=1.5mass%、灰分5mass%、水分3mass%、発熱量約34MJ/kgであるプラスチック系廃棄物を、廃棄物供給装置2により熱分解炉3に供給し、処理量100t/日で熱分解処理した。
Example 1
Using the process example shown in FIG. 4, the chemical composition mainly comprising polyethylene is C = 70 mass%, H = 10 mass%, O = 10 mass%, N = 0.5 mass%, Cl = 1.5 mass%, ash content 5 mass%, Plastic waste having a moisture content of 3 mass% and a calorific value of about 34 MJ / kg was supplied to the pyrolysis furnace 3 by the waste supply device 2 and pyrolyzed at a treatment rate of 100 t / day.

熱分解炉3には外熱式ロータリーキルンを用い、加熱炉4にはLNG焚き熱風発生炉を用い、熱分解温度は500℃とした。熱分解炉3の回転ドラムの寸法は内径2.5m×長さ25mとした。熱分解炉内で発熱反応を起こす金属化合物として粒径範囲0.1〜5cmの粒状酸化カルシウムを選定し、固体の金属又は金属化合物供給装置8により0.75t/hr供給した。   An externally heated rotary kiln was used for the pyrolysis furnace 3, an LNG-fired hot air generator was used for the heating furnace 4, and the pyrolysis temperature was 500 ° C. The dimensions of the rotary drum of the pyrolysis furnace 3 were 2.5 m inside diameter x 25 m length. Granular calcium oxide having a particle size range of 0.1 to 5 cm was selected as a metal compound causing an exothermic reaction in the pyrolysis furnace, and 0.75 t / hr was supplied by a solid metal or metal compound supply device 8.

酸化カルシウムとの反応ガス種には廃棄物の乾燥及び熱分解によって発生した熱分解ガス5 約4t/hr中に含まれる水蒸気約0.13t/hr及び二酸化炭素約0.03t/hrに加え、反応ガス供給装置10を用いて二酸化炭素を供給した。反応ガス供給装置10による二酸化炭素供給量は約0.5t/hrとした。   In addition to about 0.13 t / hr of water vapor and about 0.03 t / hr of carbon dioxide contained in about 4 t / hr of pyrolysis gas 5 generated by drying and pyrolysis of waste, the reactive gas species with calcium oxide are: Carbon dioxide was supplied using the reaction gas supply device 10. The amount of carbon dioxide supplied by the reaction gas supply device 10 was about 0.5 t / hr.

熱分解炉3で発生したタール分を含む熱分解ガス5を、後段の改質炉16へ送り、改質炉16で酸素含有ガスである純酸素及び水蒸気17と反応させて、CO、CO、H、HO、CH、及び、その他微量ガスから構成される低分子量の改質ガス18に変換し、改質ガス18は、排熱回収装置19により熱交換されて、200℃までガスクウェンチされた後、ガス精製装置20であるバグフィルタとアルカリースクラバーで、ダスト除去及び塩酸ガス除去して、発熱量11MJ/Nmの精製ガス29を1万Nm/hr得た。 The pyrolysis gas 5 containing the tar content generated in the pyrolysis furnace 3 is sent to the reforming furnace 16 at the subsequent stage, and is reacted with pure oxygen and water vapor 17 which are oxygen-containing gas in the reforming furnace 16, and CO, CO 2. , H 2 , H 2 O, CH 4 , and other low-molecular-weight reformed gas 18 composed of a small amount of gas, and the reformed gas 18 is heat-exchanged by the exhaust heat recovery device 19 to be 200 ° C. After gas quenching, dust removal and hydrochloric acid gas removal were performed with a bag filter and an alkali scrubber as the gas purification device 20 to obtain 10,000 Nm 3 / hr of purified gas 29 having a calorific value of 11 MJ / Nm 3 .

熱分解炉3から排出された残渣6は、熱分解チャー分離装置11で熱分解チャー13として0.25t/hrを分離し、反応後の固体の金属化合物14であるカルシウム化合物は、改質ガス18の顕熱を利用して加熱再生装置12において900℃まで加熱して酸化カルシウムに再生し、熱分解炉3内で再度使用した。   The residue 6 discharged from the pyrolysis furnace 3 is separated into 0.25 t / hr as the pyrolysis char 13 by the pyrolysis char separator 11, and the calcium compound which is the solid metal compound 14 after the reaction is reformed gas. The sensible heat of 18 was used to heat up to 900 ° C. in the heating / regenerating apparatus 12 to regenerate calcium oxide, and it was used again in the pyrolysis furnace 3.

なお、熱分解炉から排出される残渣6中にはプラスチック系廃棄物の未乾留塊状物は見られず、本発明による粒状物の金属化合物が塊状化防止材として機能することを確認した。   In addition, in the residue 6 discharged | emitted from a pyrolysis furnace, the undried lump of plastic waste was not seen, but it confirmed that the metal compound of the granular material by this invention functions as an agglomeration prevention material.

一方、熱分解チャーは純酸素吹きの噴流床式ガス化炉23へN搬送ガスと共に吹込み反応温度1300℃でガス化溶融し、可燃分をCO、CO、H、HO、及び、その他微量ガスから構成されるガス化ガス25に変換すると共に、灰分をスラグ26化した。 On the other hand, the pyrolysis char is gasified and melted at a reaction temperature of 1300 ° C. with N 2 carrier gas into a spouted bed gasification furnace 23 blown with pure oxygen, and combustible components are CO, CO 2 , H 2 , H 2 O, In addition, the ash was converted into a slag 26 while being converted to a gasified gas 25 composed of a trace amount of other gases.

ガス化ガス25は、熱回収装置27により熱交換されて200℃までガスクウェンチされた後、ガス精製装置28であるバグフィルタ及びアルカリースクラバーでダスト除去及び塩酸ガス除去して、発熱量10MJ/Nmの精製ガス29を100Nm/hr得た。 The gasified gas 25 is subjected to heat exchange by a heat recovery device 27 and gas-quenched to 200 ° C., and then dust and hydrochloric acid gas are removed by a bag filter and an alkali scrubber which are gas purification devices 28 to generate a calorific value of 10 MJ / Nm. 3 purified gas 29 was obtained at 100 Nm 3 / hr.

(比較例1)
比較例1として、熱分解炉3内に発熱反応を起こす金属化合物及び反応ガスを供給せずに実施例1と同じ廃プラスチック系廃棄物を処理量100t/日で熱分解処理した例を示す。
(Comparative Example 1)
As Comparative Example 1, an example is shown in which the same waste plastic waste as in Example 1 is pyrolyzed at a treatment rate of 100 t / day without supplying a metal compound that causes an exothermic reaction and a reaction gas into the pyrolysis furnace 3.

熱分解炉3及び加熱炉4には、実施例1と同様に、外熱式ロータリーキルン及びLNG焚き熱風発生炉を用い、熱分解温度は500℃とした。また、熱分解ガス5は、実施例1と同様に、改質炉16に導入して改質ガス18に変換し、熱分解チャー13は実施例1と同様に噴流床式ガス化炉23に導入してガス化ガス25及びスラグ26を製造した。   As in Example 1, an externally heated rotary kiln and an LNG-fired hot air generator were used for the pyrolysis furnace 3 and the heating furnace 4, and the pyrolysis temperature was 500 ° C. The pyrolysis gas 5 is introduced into the reforming furnace 16 and converted into the reforming gas 18 as in the first embodiment, and the pyrolysis char 13 is transferred to the entrained bed gasification furnace 23 as in the first embodiment. The gasification gas 25 and the slag 26 were manufactured by introducing the gas.

プラスチック系廃棄物が熱分解する際の吸熱量は、単位処理量及び単位時間当りで、夫々、1.3MJ/kg、5000MJ/hrであり、一方、加熱炉4から外熱式ロータリキルン内への平均熱伝達量は約40MJ/m・hであったが、発熱反応を起こす固体の金属化合物及び反応ガスを供給しない比較例1は、実施例1に比べロータリキルンの必要加熱面積が約60m増加して、熱分解炉の回転ドラム寸法は内径2.5m×長さ33mとなり、設備が大型化した。 The amount of heat absorbed when plastic waste is thermally decomposed is 1.3 MJ / kg and 5000 MJ / hr per unit processing amount and unit time, respectively, while from the heating furnace 4 into the external heating rotary kiln. The average heat transfer amount was about 40 MJ / m 2 · h, but in Comparative Example 1 in which no solid metal compound and reaction gas causing an exothermic reaction were supplied, the required heating area of the rotary kiln was about As the size of the rotating drum of the pyrolysis furnace increased by 60 m 2, the inner diameter became 2.5 m and the length became 33 m, and the equipment was enlarged.

また、熱分解炉から排出された残渣中には熱分解が十分完了していない塊状廃ブラスチックが混在していた。   In addition, in the residue discharged from the pyrolysis furnace, massive waste plastics that were not completely pyrolyzed were mixed.

本発明に係るプロセスの一例を示すブロック図である。It is a block diagram which shows an example of the process which concerns on this invention. 本発明に係るプロセスの別の一例を示すブロック図である。It is a block diagram which shows another example of the process which concerns on this invention. 本発明に係るプロセスの別の一例を示すブロック図である。It is a block diagram which shows another example of the process which concerns on this invention. 本発明に係るプロセスの別の一例を示すブロック図である。It is a block diagram which shows another example of the process which concerns on this invention. 本発明に係るプロセスの別の一例を示すブロック図である。It is a block diagram which shows another example of the process which concerns on this invention.

符号の説明Explanation of symbols

1 廃棄物
2 廃棄物供給装置
3 熱分解炉
4 加熱炉
5 熱分解ガス
6 残渣
7 固体の金属又は金属化合物
8 固体の金属又は金属化合物供給装置
9 二酸化炭素又は水蒸気又は水素
10 反応ガス供給装置
11 熱分解チャー分離装置
12 加熱再生装置
13 熱分解チャー
14 反応後の金属化合物
15 再生後固体の金属又は金属化合物
16 改質炉
17 酸素含有ガスおよび水蒸気
18 改質ガス
19 排熱回収装置
20 ガス精製装置
21 精製ガス
22 チャー供給装置
23 ガス化炉
24 酸素含有ガス
25 ガス化ガス
26 スラグ
27 熱回収装置
28 ガス精製装置
29 精製ガス
30 高温空気
DESCRIPTION OF SYMBOLS 1 Waste 2 Waste supply apparatus 3 Pyrolysis furnace 4 Heating furnace 5 Pyrolysis gas 6 Residue 7 Solid metal or metal compound 8 Solid metal or metal compound supply apparatus 9 Carbon dioxide, water vapor, or hydrogen 10 Reaction gas supply apparatus 11 Pyrolysis char separator 12 Heating regenerator 13 Pyrolysis char 14 Metal compound after reaction 15 Solid metal or metal compound after regeneration 16 Reforming furnace 17 Oxygen-containing gas and water vapor 18 Reformed gas 19 Waste heat recovery device 20 Gas purification Equipment 21 Purified gas 22 Char supply equipment 23 Gasification furnace 24 Oxygen-containing gas 25 Gasification gas 26 Slag 27 Heat recovery equipment 28 Gas purification equipment 29 Purified gas 30 High temperature air

Claims (8)

可燃性廃棄物を外熱式熱分解炉で熱分解して熱分解ガスと熱分解チャーを生成する可燃性廃棄物の熱分解処理方法において、二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスと発熱反応を生じる金属又は金属化合物を、前記外熱式熱分解炉内に供給し、当該炉内で前記金属又は金属化合物と前記熱分解ガス中に存在する二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスとを反応させ、発生した反応熱を前記熱分解時の補助熱源として利用することを特徴とする可燃性廃棄物の熱分解処理方法。   In a method for thermally decomposing flammable waste by pyrolyzing flammable waste in an external thermal pyrolysis furnace to generate pyrolysis gas and pyrolysis char, a gas of at least one of carbon dioxide, water vapor, and hydrogen A metal or a metal compound that generates an exothermic reaction with the pyrolysis furnace, and at least carbon dioxide, water vapor, or hydrogen present in the metal or metal compound and the pyrolysis gas in the furnace. A method for pyrolyzing flammable waste, comprising reacting with any gas and utilizing the generated reaction heat as an auxiliary heat source during the pyrolysis. 前記可燃性廃棄物が、熱分解時に吸熱反応を生じる可燃性廃棄物であることを特徴とする請求項1記載の可燃性廃棄物の熱分解処理方法。   The method for pyrolyzing flammable waste according to claim 1, wherein the flammable waste is a flammable waste that generates an endothermic reaction during thermal decomposition. 前記外熱式熱分解炉内に、更に、二酸化炭素、水蒸気、及び水素の少なくともいずれか一種類のガスを供給することを特徴とする請求項1又は2記載の可燃性廃棄物の熱分解処理方法。   The pyrolysis treatment of combustible waste according to claim 1 or 2, wherein at least one of carbon dioxide, water vapor, and hydrogen is further supplied into the external heat type pyrolysis furnace. Method. 前記二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスと前記金属又は金属化合物との発熱反応が、前記熱分解時の前記炉内の最大温度以下において不可逆反応であることを特徴とする請求項1〜3のいずれか1項に記載の可燃性廃棄物の熱分解処理方法。   The exothermic reaction between at least one of the carbon dioxide, water vapor, and hydrogen gas and the metal or metal compound is an irreversible reaction below a maximum temperature in the furnace during the thermal decomposition. The thermal decomposition processing method of the combustible waste of any one of 1-3. 前記金属又は金属化合物が、金属カルシウム、金属リチウム、金属チタン、酸化カルシウム、酸化リチウムのうちの1種又は2種以上であることを特徴とする請求項1〜4のいずれか1項に記載の可燃性廃棄物の熱分解処理方法。   The metal or metal compound is one or more of metal calcium, metal lithium, metal titanium, calcium oxide, and lithium oxide, according to any one of claims 1 to 4. Thermal decomposition treatment method for combustible waste. 前記金属又は金属化合物が、粒径0.1〜5cmの粒状であることを特徴とする請求項1〜5のいずれか1項に記載の可燃性廃棄物の熱分解処理方法。   The method for thermally decomposing flammable waste according to any one of claims 1 to 5, wherein the metal or metal compound is in the form of particles having a particle size of 0.1 to 5 cm. 前記生成した熱分解ガスに、酸素含有ガス及び水蒸気を供給して前記熱分解ガスと反応させ、一酸化炭素、水素、二酸化炭素、水蒸気を主成分とする改質ガスを生成し、当該改質ガスの顕熱を用いて、前記金属又は金属化合物と二酸化炭素、水蒸気、水素の少なくともいずれかのガスとの反応により生成する反応生成物を加熱して、元の金属又は金属化合物に再生することを特徴とする請求項1〜6のいずれか1項に記載の可燃性廃棄物の熱分解処理方法。   The generated pyrolysis gas is supplied with an oxygen-containing gas and water vapor and reacted with the pyrolysis gas to produce a reformed gas mainly composed of carbon monoxide, hydrogen, carbon dioxide, and water vapor. Using the sensible heat of the gas, heating the reaction product produced by the reaction of the metal or metal compound and at least one of carbon dioxide, water vapor, and hydrogen gas to regenerate the original metal or metal compound The thermal decomposition processing method of the combustible waste of any one of Claims 1-6 characterized by these. 前記生成した熱分解チャーに、酸素含有ガスを供給して前記熱分解チャーと反応させ、一酸化炭素、水素、二酸化炭素、又は水蒸気を主成分とするガス化ガス、及びスラグを生成し、当該ガス化ガスの顕熱を用いて、前記固体の金属または金属化合物と二酸化炭素、水蒸気、又は水素の少なくともいずれかのガスとの反応により生成する反応生成物を加熱して、元の金属または金属化合物に再生することを特徴とする請求項1〜7のいずれか1項に記載の可燃性廃棄物の熱分解処理方法。   The generated pyrolysis char is supplied with an oxygen-containing gas and reacted with the pyrolysis char to generate a gasification gas mainly composed of carbon monoxide, hydrogen, carbon dioxide, or water vapor, and slag, Using the sensible heat of the gasification gas, the reaction product produced by the reaction of the solid metal or metal compound and at least one of carbon dioxide, water vapor, or hydrogen gas is heated to produce the original metal or metal. The method for thermal decomposition treatment of combustible waste according to any one of claims 1 to 7, wherein the method is regenerated into a compound.
JP2005210979A 2005-07-21 2005-07-21 Thermal decomposition method for combustible waste Withdrawn JP2007021451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210979A JP2007021451A (en) 2005-07-21 2005-07-21 Thermal decomposition method for combustible waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210979A JP2007021451A (en) 2005-07-21 2005-07-21 Thermal decomposition method for combustible waste

Publications (1)

Publication Number Publication Date
JP2007021451A true JP2007021451A (en) 2007-02-01

Family

ID=37782896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210979A Withdrawn JP2007021451A (en) 2005-07-21 2005-07-21 Thermal decomposition method for combustible waste

Country Status (1)

Country Link
JP (1) JP2007021451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058600A (en) * 2012-09-14 2014-04-03 Chisaki:Kk Apparatus for pyrolyzing combustible-containing raw ingredient
WO2014158779A1 (en) * 2013-03-14 2014-10-02 Clean Blue Technologies, Inc. Apparatus, system, and method for processing materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058600A (en) * 2012-09-14 2014-04-03 Chisaki:Kk Apparatus for pyrolyzing combustible-containing raw ingredient
WO2014158779A1 (en) * 2013-03-14 2014-10-02 Clean Blue Technologies, Inc. Apparatus, system, and method for processing materials
CN105163875A (en) * 2013-03-14 2015-12-16 净蓝技术股份有限公司 Apparatus, system, and method for processing materials

Similar Documents

Publication Publication Date Title
US3533739A (en) Combustion of sulfur-bearing carbonaceous fuel
US20070256360A1 (en) Method for the gasification of moisture-containing hydrocarbon feedstocks
KR19980023905A (en) Methods and apparatus for treating waste through vaporization
JP2009262047A (en) Method for utilizing waste material containing sludge in coal boiler for power generation
JP4515975B2 (en) System and method using reformed gas
JP2007021451A (en) Thermal decomposition method for combustible waste
JP4601576B2 (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from combustible waste
JP2004002587A (en) Ecofriendry method for recycling refuse
JP4155507B2 (en) Biomass gasification method and gasification apparatus
JP2004195459A (en) Waste treatment apparatus
JP2009242714A (en) Waste gasification disposal system
JP2000212620A (en) Production of reduced iron
CN1135233A (en) Method for reducing hydrogen halide content in synthesis gas
JP7191676B2 (en) Combustible material processing apparatus and combustible material processing method
JP3980426B2 (en) Waste plastic gasification method
JP2635652B2 (en) Dry desulfurization of coal gas
JP2002371307A (en) Method for recycling organic or hydrocarbon waste, and blast furnace facility suitable for recycling
US11952277B2 (en) Conversion of solid waste into syngas and hydrogen
JP2006104339A (en) Method for gasification-reforming wastes
Rao et al. Plasma waste gasification: decentralized approach to production of energy from waste
JP2005187322A (en) Method for decomposing gypsum
JP4028934B2 (en) Waste treatment method and treatment apparatus
JP2977743B2 (en) Plastic waste gasification gas treatment method
JP2006036804A (en) Method for producing combustible gas from organic waste
JP2002130628A (en) Thermal gas decomposition gas rectifying apparatus for thermal decomposition/melting combustion apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007